WorldWideScience

Sample records for volume fraction variable

  1. Controlling thermal deformation by using composite materials having variable fiber volume fraction

    International Nuclear Information System (INIS)

    Bouremana, M.; Tounsi, A.; Kaci, A.; Mechab, I.

    2009-01-01

    In application, many thin structural components such as beams, plates and shells experience a through-thickness temperature variation. This temperature variation can produce both an in-plane expansion and an out-of-plane (bending) curvature. Given that these thin components interact with or connect to other components, we often wish to minimize the thermal deformation or match the thermal deformation of another component. This is accomplished by using a composite whose fibers have a negative axial thermal expansion coefficient. By varying the fiber volume fraction within a symmetric laminated beam to create a functionally graded material (FGM), certain thermal deformations can be controlled or tailored. Specifically, a beam can be designed which does not curve under a steady-state through-thickness temperature variation. Continuous gradation of the fiber volume fraction in the FGM layer is modelled in the form of a mth power polynomial of the coordinate axis in thickness direction of the beam. The beam results are independent of the actual temperature values, within the limitations of steady-state heat transfer and constant material properties. The influence of volume fiber fraction distributions are studied to match or eliminate an in-plane expansion coefficient, or to match a desired axial stiffness. Combining two fiber types to create a hybrid FGM can offer desirable increase in axial and bending stiffness while still retaining the useful thermal deformation behavior.

  2. Influence of bladder and rectal volume on spatial variability of a bladder tumor during radical radiotherapy

    International Nuclear Information System (INIS)

    Pos, Floris J.; Koedooder, Kees; Hulshof, Maarten C.C.M.; Tienhoven, Geertjan van; Gonzalez Gonzalez, Dionisio

    2003-01-01

    Purpose: To assess the spatial variability of a bladder tumor relative to the planning target volume boundaries during radical radiotherapy, and furthermore to develop strategies to reduce spatial variability. Methods and Materials: Seventeen patients with solitary T2-T4N0M0 bladder cancer were treated with a technique delivering 40 Gy/2 Gy in 20 fractions to the whole bladder with a concomitant boost to the bladder tumor of 20 Gy in 1 Gy fractions in an overall time of 4 weeks. CT scans were made weekly, immediately after treatment, and matched with the planning CT scan. Spatial variability of the tumor, as well as bladder volume and rectal diameter, were scored for each patient each week. Results: In 65% of patients, a part of the tumor appeared outside the planning target volume boundaries at least one time during the course of radiotherapy. No consistent relation of this variability with time was found. Bladder volumes and rectal diameters showed marked variability during the course of treatment. A large initial bladder volume and rectal diameter predicted a large volume variation and a large tumor spatial variability. Conclusion: In this study, a margin of 1.5 to 2 cm seemed to be inadequate in 65% of the patients with respect to spatial variability. Bladder volume and rectal diameter were found to be predictive for spatial variability of a bladder tumor during concomitant boost radiotherapy

  3. Influence of bladder and rectal volume on spatial variability of a bladder tumor during radical radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Pos, Floris J; Koedooder, Kees; Hulshof, Maarten C.C.M.; Tienhoven, Geertjan van; Gonzalez Gonzalez, Dionisio

    2003-03-01

    Purpose: To assess the spatial variability of a bladder tumor relative to the planning target volume boundaries during radical radiotherapy, and furthermore to develop strategies to reduce spatial variability. Methods and Materials: Seventeen patients with solitary T2-T4N0M0 bladder cancer were treated with a technique delivering 40 Gy/2 Gy in 20 fractions to the whole bladder with a concomitant boost to the bladder tumor of 20 Gy in 1 Gy fractions in an overall time of 4 weeks. CT scans were made weekly, immediately after treatment, and matched with the planning CT scan. Spatial variability of the tumor, as well as bladder volume and rectal diameter, were scored for each patient each week. Results: In 65% of patients, a part of the tumor appeared outside the planning target volume boundaries at least one time during the course of radiotherapy. No consistent relation of this variability with time was found. Bladder volumes and rectal diameters showed marked variability during the course of treatment. A large initial bladder volume and rectal diameter predicted a large volume variation and a large tumor spatial variability. Conclusion: In this study, a margin of 1.5 to 2 cm seemed to be inadequate in 65% of the patients with respect to spatial variability. Bladder volume and rectal diameter were found to be predictive for spatial variability of a bladder tumor during concomitant boost radiotherapy.

  4. A generalized fractional sub-equation method for fractional differential equations with variable coefficients

    International Nuclear Information System (INIS)

    Tang, Bo; He, Yinnian; Wei, Leilei; Zhang, Xindong

    2012-01-01

    In this Letter, a generalized fractional sub-equation method is proposed for solving fractional differential equations with variable coefficients. Being concise and straightforward, this method is applied to the space–time fractional Gardner equation with variable coefficients. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the considered method provides a very effective, convenient and powerful mathematical tool for solving many other fractional differential equations in mathematical physics. -- Highlights: ► Study of fractional differential equations with variable coefficients plays a role in applied physical sciences. ► It is shown that the proposed algorithm is effective for solving fractional differential equations with variable coefficients. ► The obtained solutions may give insight into many considerable physical processes.

  5. Effective moduli of high volume fraction particulate composites

    International Nuclear Information System (INIS)

    Kwon, P.; Dharan, C.K.H.

    1995-01-01

    Predictions using current micromechanics theories for the effective moduli of particulate-reinforced composites tend to break down at high volume fractions of the reinforcing phase. The predictions are usually well below experimentally measured values of the Young's modulus for volume fractions exceeding about 0.6. In this paper, the concept of contiguity, which is a measure of phase continuity, is applied to Mori-Tanaka micromechanics theory. It is shown that contiguity of the second phase increases with volume fraction, leading eventually to a reversal in the roles of the inclusion and matrix. In powder metallurgy practice, it is well known that at high volume fractions, sintering and consolidation of the reinforcement make it increasingly continuous and more like the matrix phase, while the former matrix tends to become more like the inclusion phase. The concept of contiguity applied to micromechanics theory results in very good agreement between the predicted Young's modulus and experimental data on tungsten carbide particulate-reinforced cobalt

  6. Variable volume combustor

    Science.gov (United States)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  7. SOLA-VOF, 2-D Transient Hydrodynamic Using Fractional Volume of Fluid Method

    International Nuclear Information System (INIS)

    Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.

    1991-01-01

    1 - Description of problem or function: SOLA-VOF is a program for the solution of two-dimensional transient fluid flow with free boundaries, based on the concept of a fractional volume of fluid (VOF). Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. 2 - Method of solution: The basis of the SOLA-VOF method is the fractional volume of fluid scheme for tracking free boundaries. In this technique, a function F(x,y,t) is defined whose value is unity at any point occupied by fluid and zero elsewhere. When averaged over the cells of a computational mesh, the average value of F in a cell is equal to the fractional volume of the cell occupied by fluid. In particular, a unit value of F corresponds to a cell full of fluid, whereas a zero value indicates that the cell contains no fluid. Cells with F values between zero and one contain a free surface. SOLA-VOF uses an Eulerian mesh of rectangular cells having variable sizes. The fluid equations solved are the finite difference approximations of the Navier-Stokes equations. 3 - Restrictions on the complexity of the problem: The setting of array dimensions is controlled through PARAMETER statements

  8. Lamb Wave Assessment of Fiber Volume Fraction in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.

    1998-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.

  9. On solutions of variable-order fractional differential equations

    Directory of Open Access Journals (Sweden)

    Ali Akgül

    2017-01-01

    solutions to fractional differential equations are compelling to get in real applications, due to the nonlocality and complexity of the fractional differential operators, especially for variable-order fractional differential equations. Therefore, it is significant to enhanced numerical methods for fractional differential equations. In this work, we consider variable-order fractional differential equations by reproducing kernel method. There has been much attention in the use of reproducing kernels for the solutions to many problems in the recent years. We give two examples to demonstrate how efficiently our theory can be implemented in practice.

  10. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  11. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  12. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    Energy Technology Data Exchange (ETDEWEB)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania, E-mail: oocristina@yahoo.com; Mitoseriu, Liliana, E-mail: lmtsr@uaic.ro

    2013-11-20

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring.

  13. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    International Nuclear Information System (INIS)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania; Mitoseriu, Liliana

    2013-01-01

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring

  14. Adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion

    International Nuclear Information System (INIS)

    Webb, S

    2008-01-01

    This paper presents a technique for coping with variable intrafraction organ motion when delivering intensity-modulated radiation therapy (IMRT). The strategy is an adaptive delivery in which the fluence delivered up to a particular fraction is subtracted from the required total-course planned fluence to create an adapted residual fluence for the next fraction. This requires that the fluence already delivered can be computed, knowing the intrafraction motion during each fraction. If the adaptation is unconstrained, as would be required for perfect delivery of the planned fluence, then the individual fractional fluences would become unphysical, with both negative components and spikes. Hence it is argued that constraints must be applied; first, positivity constraints and second, constraints to limit fluence spikes. Additionally, it is shown to be helpful to constrain other quantities which are explained. The power of the strategy is that it adapts to the (potentially variable) moving geometry during each fraction. It is not a perfect delivery but it is always better than making no adaptation. The fractionated nature of radiation therapy is thus exploited to advantage. The fluence adaptation method does not require re-planning at each fraction but this imposes limitations which are stated. The fuller theory of dose adaptation is also developed for intrafraction motion. The method is complementary to other adaptive strategies recently discussed with respect to interfraction motion

  15. TU-H-CAMPUS-TeP1-01: Variable-Beam Fractionation for SAbR

    Energy Technology Data Exchange (ETDEWEB)

    Modiri, A; Sawant, A [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: In current conventionally-fractionated as well as hypofractionated 3D conformal radiotherapy (CRT), the same beam arrangement is employed from fraction to fraction. We challenge this notion and postulate that by varying the beam arrangement between fractions we can achieve greater sparing of organs at risk (OARs) while maintaining PTV coverage. We use an inverse planning strategy using a swarm intelligence-based global optimization algorithm to exploit the additional degree of freedom represented by inter-fractional variation in beam angles. Methods: To evaluate our variable-beam fractionation (VBF) method, a 10-beam ITV-based conformal stereotactic ablative radiotherapy (CRT-SAbR) plan was optimized. In the clinical plan, 54 Gy was delivered to a 41cc lung tumor over 3 fractions. In VBF, each original clinically-assigned beam was multiplied to a bundle of n α-degree-spaced beams, n being number of fractions. Selection of α was a compromise between retaining similar tumor irradiation and separating inline OAR sub-regions. We optimized the beam fluence weights setting an upper limit for beam delivery duration (and implicitly, monitor units) along with clinical organ-based dose-volume constraints. Zero weights were allowed so that the optimization algorithm could remove unnecessary beams. All fractions in final plan had to deliver identical monitor units (MU) while satisfying a soft constraint on having no more than one beam from every n-beam bundle in each fraction. α was 10 degrees and the dose rate was 600 MU/min. Results: The VBF plan achieved significantly superior OAR sparing compared to the clinical internal target volume (ITV)-based plan. Setting maximum beam delivery duration to 13 seconds (well within breath-hold range), Esophagus Dmax, Heart Dmax, Spinal cord Dmax and Lung V13 were improved by 25%, 81%, 0% and 27%, respectively. Conclusion: We investigated a simple approach to inter-fractional VBF planning and demonstrated its potential in

  16. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Mechitoua, N.; Boucker, M.; Lavieville, J.; Pigny, S.; Serre, G.

    2003-01-01

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  17. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    International Nuclear Information System (INIS)

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  18. Crystallization of sheared hard spheres at 64.5% volume fraction

    Science.gov (United States)

    Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.

    2017-11-01

    A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.

  19. Assessment of vasodilator therapy in patients with severe congestive heart failure: limitations of measurements of left ventricular ejection fraction and volumes

    International Nuclear Information System (INIS)

    Firth, B.G.; Dehmer, G.J.; Markham, R.V. Jr.; Willerson, J.T.; Hillis, L.D.

    1982-01-01

    Although noninvasive techniques are often used to assess the effect of vasodilator therapy in patients with congestive heart failure, it is unknown whether changes in noninvasively determined left ventricular ejection fraction, volume, or dimension reliably reflect alterations in intracardiac pressure and flow. Accordingly, we compared the acute effect of sodium nitroprusside on left ventricular volume and ejection fraction (determined scintigraphically) with its effect on intracardiac pressure and forward cardiac index (determined by thermodilution) in 12 patients with severe, chronic congestive heart failure and a markedly dilated left ventricle. Nitroprusside (infused at 1.3 +/- 1.1 [mean +/- standard deviation] microgram/kg/min) caused a decrease in mean systemic arterial, mean pulmonary arterial, and mean pulmonary capillary wedge pressure as well as a concomitant increase in forward cardiac index. Simultaneously, left ventricular end-diastolic and end-systolic volume indexes decreased, but the scintigraphically determined cardiac index did not change significantly. Left ventricular ejection fraction averaged 0.19 +/- 0.05 before nitroprusside administration and increased by less than 0.05 units in response to nitroprusside in 11 of 12 patients. The only significant correlation between scintigraphically and invasively determined variables was that between the percent change in end-diastolic volume index and the percent change in pulmonary capillary wedge pressure (r . 0.68, p . 0.01). Although nitroprusside produced changes in scintigraphically determined left ventricular ejection fraction, end-systolic volume index, and cardiac index, these alterations bore no predictable relation to changes in intracardiac pressure, forward cardiac index, or vascular resistance. Furthermore, nitroprusside produced a considerably greater percent change in the invasively measured variables than in the scintigraphically determined ones

  20. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    International Nuclear Information System (INIS)

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua; Liu, Songtao; Sibley, Christopher T.; Bluemke, David A.; Nacif, Marcelo S.

    2013-01-01

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use

  1. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua, E-mail: JYao@cc.nih.gov [Clinical Image Processing Service, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Liu, Songtao; Sibley, Christopher T.; Bluemke, David A. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 and Molecular Biomedical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Nacif, Marcelo S. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 (United States)

    2013-10-15

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use.

  2. Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; Ferruzzi, Gabriele

    2013-01-01

    The paper investigates different control strategies for the thermal storage management in SHC (Solar Heating and Cooling) systems. The SHC system under investigation is based on a field of evacuated solar collectors coupled with a single-stage LiBr–H 2 O absorption chiller; auxiliary thermal energy is supplied by a gas-fired boiler. The SHC is also equipped with a novel thermal storage system, consisting in a variable volume storage tank. It includes three separate tanks and a number of mixers and diverters managed by novel control strategies, based on combinations of series/parallel charging and discharging approaches. The aim of this component is to vary the thermal storage capacity as a function of the combinations of solar radiation availability and user thermal/cooling energy demands. The system allows one to increase the number of active tanks when the time shift between solar energy and user demand is high. Conversely, when this time shift is low, the number of active tanks is automatically reduced. In addition, when the solar energy in excess cannot be stored in such tanks, a heat exchanger is also used in the solar loop for producing DHW (Domestic Hot Water). The analysis is carried out by means of a zero-dimensional transient simulation model, developed by using the TRNSYS software. In order to assess the operating and capital costs of the systems under analysis, an economic model is also proposed. In addition, in order to determine the set of the synthesis/design variables which maximize the system profitability, a parametric analysis was implemented. The novel variable-volume storage system, in both the proposed configurations, was also compared with a constant-volume storage system from the energy and economic points of view. The results showed that the presented storage system allows one to save up to 20% of the natural gas used by the auxiliary boiler only for very high solar fractions. In all the other cases, marginal savings are achieved by the

  3. Absorbed fractions for alpha particles in ellipsoidal volumes

    International Nuclear Information System (INIS)

    Amato, Ernesto; Baldari, Sergio; Italiano, Antonio

    2013-01-01

    Internal dosimetry of alpha particles is gaining attention due to the increasing applications in cancer treatment and also for the assessment of environmental contamination from radionuclides. We developed a Monte Carlo simulation in GEANT4 in order to calculate the absorbed fractions for monoenergetic alpha particles in the energy interval between 0.1 and 10 MeV, uniformly distributed in ellipsoids made of soft tissue. For each volume, we simulated a spherical shape, three oblate and three prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a ‘generalized radius’ was found; and the dependence of the fit parameters on the alpha energy is discussed and fitted by parametric functions. With the proposed formulation, the absorbed fraction for alpha particles in the energy range explored can be calculated for volumes and for ellipsoidal shapes of practical interest. This method can be applied to the evaluation of absorbed fraction from alpha-emitting radionuclides. The contribution to the deposited energy coming from electron and photon emissions can be accounted for exploiting the specific formulations previously introduced. As an example of application, the dosimetry of 213 Bi and its decay chain in ellipsoids is reported. (paper)

  4. Pancreas volume and fat fraction in children with Type 1 diabetes.

    Science.gov (United States)

    Regnell, S E; Peterson, P; Trinh, L; Broberg, P; Leander, P; Lernmark, Å; Månsson, S; Elding Larsson, H

    2016-10-01

    People with Type 1 diabetes have smaller pancreases than healthy individuals. Several diseases causing pancreatic atrophy are associated with pancreatic steatosis, but pancreatic fat in Type 1 diabetes has not been measured. This cross-sectional study aimed to compare pancreas size and fat fraction in children with Type 1 diabetes and controls. The volume and fat fraction of the pancreases of 22 children with Type 1 diabetes and 29 controls were determined using magnetic resonance imaging. Pancreas volume was 27% smaller in children with diabetes (median 34.9 cm(3) ) than in controls (47.8 cm(3) ; P Pancreas volume correlated positively with age in controls (P = 0.033), but not in children with diabetes (P = 0.649). Pancreas volume did not correlate with diabetes duration, but it did correlate positively with units of insulin/kg body weight/day (P = 0.048). A linear model of pancreas volume as influenced by age, body surface area and insulin units/kg body weight/day found that insulin dosage correlated with pancreas volume after controlling for both age and body surface area (P = 0.009). Pancreatic fat fraction was not significantly different between the two groups (1.34% vs. 1.57%; P = 0.891). Our findings do not indicate that pancreatic atrophy in Type 1 diabetes is associated with an increased pancreatic fat fraction, unlike some other diseases featuring reduced pancreatic volume. We speculate that our results may support the hypotheses that much of pancreatic atrophy in Type 1 diabetes occurs before the clinical onset of the disease and that exogenous insulin administration decelerates pancreatic atrophy after diabetes onset. © 2016 Diabetes UK.

  5. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Wienbeucker, F; Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  6. Gamma ray densitometry techniques for measuring of volume fractions

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques

    2015-01-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  7. Gamma ray densitometry techniques for measuring of volume fractions

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  8. Efficacy and safety of 10,600-nm carbon dioxide fractional laser on facial skin with previous volume injections

    Directory of Open Access Journals (Sweden)

    Josiane Hélou

    2013-01-01

    Full Text Available Background: Fractionated carbon dioxide (CO 2 lasers are a new treatment modality for skin resurfacing. The cosmetic rejuvenation market abounds with various injectable devices (poly-L-lactic acid, polymethyl-methacrylate, collagens, hyaluronic acids, silicone. The objective of this study is to examine the efficacy and safety of 10,600-nm CO 2 fractional laser on facial skin with previous volume injections. Materials and Methods: This is a retrospective study including 14 patients treated with fractional CO 2 laser and who have had previous facial volume restoration. The indication for the laser therapy, the age of the patients, previous facial volume restoration, and side effects were all recorded from their medical files. Objective assessments were made through clinical physician global assessment records and improvement scores records. Patients′ satisfaction rates were also recorded. Results: Review of medical records of the 14 patients show that five patients had polylactic acid injection prior to the laser session. Eight patients had hyaluronic acid injection prior to the laser session. Two patients had fat injection, two had silicone injection and one patient had facial thread lift. Side effects included pain during the laser treatment, post-treatment scaling, post-treatment erythema, hyperpigmentation which spontaneously resolved within a month. Concerning the previous facial volume restoration, no granulomatous reactions were noted, no facial shape deformation and no asymmetry were encountered whatever the facial volume product was. Conclusion: CO 2 fractional laser treatments do not seem to affect facial skin which had previous facial volume restoration with polylactic acid for more than 6 years, hyaluronic acid for more than 0.5 year, silicone for more than 6 years, or fat for more than 1.4 year. Prospective larger studies focusing on many other variables (skin phototype, injected device type are required to achieve better

  9. Dosimetric impact of prostate volume change between CT-based HDR brachytherapy fractions

    International Nuclear Information System (INIS)

    Kim, Yongbok; Hsu, I-C.; Lessard, Etienne; Vujic, Jasmina; Pouliot, Jean

    2004-01-01

    Purpose: The objective is to evaluate the prostate volume change and its dosimetric consequences after the insertion of catheters for high-dose-rate brachytherapy. Methods and Materials: For 13 consecutive patients, a spiral CT scan was acquired before each of the 2 fractions, separated on average by 20 hours. The coordinates of the catheters were obtained on 3 axial CT slices corresponding to apex, mid portion, and base portion of the prostate. A mathematical expansion model was used to evaluate the change of prostate volumes between the 2 fractions. It is based on the difference in the cube of the average distance between the centroid and catheter positions. The variation of implant dose-volume histograms between fractions was computed for plans produced by either inverse planning based on simulated annealing or geometric optimization. Results: The average magnitude of either increase or reduction in prostate volume was 7.8% (range, 2-17%). This volume change corresponds to an average prostate radius change of only 2.5% (range, 0.7-5.4%). For 5 patients, the prostate volume increased on average by 9% (range, 2-17%), whereas a reduction was observed for 8 patients by an average of 7% (range, 2-13%). More variation was observed at the prostate base than at mid or apex gland. The comparison of implant dose-volume histograms showed a small reduction of V100 receiving the prescription dose, with an average of 3.5% (range, 0.5-12%) and 2.2% (range, 1-6%) for inverse planning based on our simulated annealing and geometric optimization plans, respectively. Conclusion: Small volume change was observed between treatment fractions. This translates into small changes in dose delivered to the prostate volume

  10. Method and apparatus for probing relative volume fractions

    Science.gov (United States)

    Jandrasits, Walter G.; Kikta, Thomas J.

    1998-01-01

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.

  11. Volume fraction calculation in multiphase system such as oil-water-gas using neutron

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: robson@ien.gov.br; brandao@ien.gov.br; otero@ien.gov.br; cmnap@ien.gov.br; Schirru, Roberto; Silva, Ademir Xavier da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mails: schirru@lmp.ufrj.br; ademir@con.ufrj.br

    2007-07-01

    Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic {sup 241}Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)

  12. Volume fraction calculation in multiphase system such as oil-water-gas using neutron

    International Nuclear Information System (INIS)

    Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da

    2007-01-01

    Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic 241 Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)

  13. Design and FPGA Implementation of Variable Cutoff Frequency Filter based on Continuously Variable Fractional Delay Structure and Interpolation Technique

    Directory of Open Access Journals (Sweden)

    Sumedh Dhabu

    2015-09-01

    Full Text Available This paper presents the design and FPGA implementation of interpolated continuously variable fractional delay structure based filter (ICVFD filter with fine control over the cutoff frequency. In the ICVFD filter, each unit delay of the prototype lowpass filter is replaced by a continuously variable fractional delay (CVFD element proposed in this paper. The CVFD element requires the same number of multiplications as that of the second-order fractional delay structure used in the existing fractional delay structure based variable filter (FDS based filter, however it provides fractional delays corresponding to the higher-order fractional delay structures. Hence, the proposed ICVFD filter provides wider cutoff frequency range compared to the FDS based filter. The ICVFD filter is also capable of providing variable bandpass and highpass responses. We use two-stage approach for the FPGA implementation of the ICVFD filter. First, we use pipelining stages to shorten the critical path and improve the operating frequency. Then, we make use of specific hardware resource, i.e. RAM-based Shift Register (SRL to further improve the operating frequency and resource usage.

  14. Influence of titanium volume fraction on the mechanical properties of Mg-Ti composites

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Pablo; Garces, Gerardo; Adeva, Paloma [Centro Nacional de Investigaciones Metalurgicas (CENIM, CSIC), Madrid (Spain). Dept. de Metalurgia Fisica

    2009-03-15

    The influence of titanium volume fraction on the mechanical properties of Mg-Ti composites prepared through a powder metallurgy route has been evaluated. Titanium was added as particles smaller than 25 {mu}m and volume fractions ranging from 5 to 15%. The increase in the volume fraction of titanium particles results in a slight decrease in the maximum strength. In contrast to this, the ductility of all composites was significantly enhanced by titanium additions. The mechanical properties can be explained on the basis of texture changes induced by the presence of titanium particles. The decrease in the basal texture along the extrusion direction as the amount of titanium is progressively increased accounts for the decrease in the maximum strength. (orig.)

  15. Variable volume combustor with a conical liner support

    Science.gov (United States)

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul; Ostebee, Heath Michael

    2017-06-27

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  16. A new way of adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion

    International Nuclear Information System (INIS)

    Webb, S; Bortfeld, T

    2008-01-01

    In this paper a technique is presented for adaptive therapy to compensate for variable intrafraction tissue motion. So long as the motion can be measured or deduced for each fraction the technique modifies the fluence profile for the subsequent fractions in a repeatable cyclic way. The fluence modification is based on projecting the dose discrepancies between the cumulative delivered dose after each fraction and the expected planned dose at the same stage. It was shown that, in general, it is best to adapt the fluence profile to moving leaves that also have been modified to 'breathe' according to some regular default motion. However, it is important to point out that, if this regular default motion were to differ too much from the variable motion at each fraction, then the result can be worse than adapting to non-breathing leaves in a dynamic MLC technique. Furthermore, in general it should always be possible to improve results by starting the adaptation process with a constrained deconvolution of the regular default motion

  17. Study of volume fractions on biphasic stratified regime using gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, William L.; Brandão, Luis E.B., E-mail: william.otero@hotmail.com, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In the oil industries, interconnected pipelines are used to carry large quantities of petroleum and its byproducts. This modal has an advantage because they are more economical, eliminate a need for stocks and, in addition, great safety in operation minimizing a possibility of loss or theft when transported another way. In many cases, especially in the petrochemical industry, the same pipeline is used to carry more than one type of product. They are called poliduct. In the operation of a poliduct there is a sequence of products to be transported and during the exchange of the product, there are still fractions of the previous product and this generates contamination. It is therefore important to identify precisely this region in order to reduce the costs of reprocessing and treatment of discarded products. In this way, this work presents a methodology to evaluate the sensitivity of the gamma densitometry technique in a study of the calculation of volume fractions in biphasic systems, submitted to the stratified flow regime. Using computational simulations using the Monte Carlo Method with the MCNPX code measurement geometry was proposed that presented a higher sensitivity for the calculation of volume fractions. The relevant technical data to perform a simulation of the scintillator detectors were based on information obtained from the gammagraphy technique. The study had a theoretical validation through analytical equations, and the results show that it is possible to identify volume fractions equivalent to 3%. (author)

  18. Study of volume fractions on biphasic stratified regime using gamma ray

    International Nuclear Information System (INIS)

    Salgado, William L.; Brandão, Luis E.B.

    2017-01-01

    In the oil industries, interconnected pipelines are used to carry large quantities of petroleum and its byproducts. This modal has an advantage because they are more economical, eliminate a need for stocks and, in addition, great safety in operation minimizing a possibility of loss or theft when transported another way. In many cases, especially in the petrochemical industry, the same pipeline is used to carry more than one type of product. They are called poliduct. In the operation of a poliduct there is a sequence of products to be transported and during the exchange of the product, there are still fractions of the previous product and this generates contamination. It is therefore important to identify precisely this region in order to reduce the costs of reprocessing and treatment of discarded products. In this way, this work presents a methodology to evaluate the sensitivity of the gamma densitometry technique in a study of the calculation of volume fractions in biphasic systems, submitted to the stratified flow regime. Using computational simulations using the Monte Carlo Method with the MCNPX code measurement geometry was proposed that presented a higher sensitivity for the calculation of volume fractions. The relevant technical data to perform a simulation of the scintillator detectors were based on information obtained from the gammagraphy technique. The study had a theoretical validation through analytical equations, and the results show that it is possible to identify volume fractions equivalent to 3%. (author)

  19. Stationarity-conservation laws for fractional differential equations with variable coefficients

    International Nuclear Information System (INIS)

    Klimek, Malgorzata

    2002-01-01

    In this paper, we study linear fractional differential equations with variable coefficients. It is shown that, by assuming some conditions for the coefficients, the stationarity-conservation laws can be derived. The area where these are valid is restricted by the asymptotic properties of solutions of the respective equation. Applications of the proposed procedure include the fractional Fokker-Planck equation in (1+1)- and (d+1)-dimensional space and the fractional Klein-Kramers equation. (author)

  20. Stationarity-conservation laws for fractional differential equations with variable coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, Malgorzata [Institute of Mathematics and Computer Science, Technical University of Czestochowa, Czestochowa (Poland)

    2002-08-09

    In this paper, we study linear fractional differential equations with variable coefficients. It is shown that, by assuming some conditions for the coefficients, the stationarity-conservation laws can be derived. The area where these are valid is restricted by the asymptotic properties of solutions of the respective equation. Applications of the proposed procedure include the fractional Fokker-Planck equation in (1+1)- and (d+1)-dimensional space and the fractional Klein-Kramers equation. (author)

  1. Effect of reinforcement volume fraction on the density & elastic ...

    African Journals Online (AJOL)

    Effect of reinforcement volume fraction on the density & elastic parameters of BMG's matrix composites. Wahiba Metiri 1, Fatiha Hadjoub1, 2 and Leila Touati Tliba 1. 1 Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-. Mokhtar, BP 12, Annaba -23000, Algeria.

  2. Planar measurements of soot volume fraction and OH in a JP-8 pool fire

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G. [Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Nathan, Graham J. [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); Alwahabi, Zeyad T.; Qamar, Nader [School of Chemical Engineering, University of Adelaide, SA 5005 (Australia)

    2009-07-15

    The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near the base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)

  3. Volume Fraction Dependent Thermal Performance of UAlx-Al Dispersion Target

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Eui Hyun; Tahk, Young Wook; Kim, Hyun Jung; Oh, Jae Yong; Yim, Jeong Sik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Unlike U-Al alloys, properties of UAl{sub x}-Al dispersion target can be highly sensitive to volume fraction of UAlx in a target meat due to the interface resistance between target particles and matrix. The interface resistance effects on properties of the target meat including thermal conductivity, thermal expansion coefficient, specific heat, elastic modulus and so on. Thermal performances of a dispersion target meat were theoretically evaluated under normal operation condition of KJRR (Kijang Research Reactor) during short effective full power days (EFPD) of 7 days, based on reported measured thermal conductivities of UAl{sub x}-Al dispersion fuels. Effective thermal conductivity determines maximum temperature of dispersion target plate. And for that volume fraction of UAlx in target meat has to be determined considering manufacturing of target plate without degradation of physical and mechanical characteristics.

  4. SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves

    International Nuclear Information System (INIS)

    Chvetsov, A

    2014-01-01

    Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method where the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S 2 =0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S 2 =0.7 and then approached zero as S 2 is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S 2 is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S 2 are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation

  5. The componential processing of fractions in adults and children: effects of stimuli variability and contextual interference.

    Science.gov (United States)

    Zhang, Li; Fang, Qiaochu; Gabriel, Florence C; Szücs, Dénes

    2014-01-01

    Recent studies have indicated that people have a strong tendency to compare fractions based on constituent numerators or denominators. This is called componential processing. This study explored whether componential processing was preferred in tasks involving high stimuli variability and high contextual interference, when fractions could be compared based either on the holistic values of fractions or on their denominators. Here, stimuli variability referred to the fact that fractions were not monotonous but diversiform. Contextual interference referred to the fact that the processing of fractions was interfered by other stimuli. To our ends, three tasks were used. In Task 1, participants compared a standard fraction 1/5 to unit fractions. This task was used as a low stimuli variability and low contextual interference task. In Task 2 stimuli variability was increased by mixing unit and non-unit fractions. In Task 3, high contextual interference was created by incorporating decimals into fractions. The RT results showed that the processing patterns of fractions were very similar for adults and children. In task 1 and task 3, only componential processing was utilzied. In contrast, both holistic processing and componential processing were utilized in task 2. These results suggest that, if individuals are presented with the opportunity to perform componential processing, both adults and children will tend to do so, even if they are faced with high variability of fractions or high contextual interference.

  6. The functional variable method for solving the fractional Korteweg ...

    Indian Academy of Sciences (India)

    The physical and engineering processes have been modelled by means of fractional ... very important role in various fields such as economics, chemistry, notably control the- .... In §3, the functional variable method is applied for finding exact.

  7. Influence of bress laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-09-15

    The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

  8. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    Science.gov (United States)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  9. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Brandao, Luis E.B.

    2015-01-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ( 137 Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  10. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  11. Volume fraction dependence of transient absorption signal and nonlinearities in metal nanocolloids

    International Nuclear Information System (INIS)

    Jayabalan, J; Singh, Asha; Khan, Salahuddin; Chari, Rama

    2013-01-01

    Electron–lattice thermalization dynamics in metal nanoparticles or in bulk metal is usually estimated by measuring the decay time of the change in transmission following an optical excitation. Such measurements can be performed in transient absorption geometry using a femtosecond laser. We find that for silver nanoplatelet/water colloids, the decay time of the transient absorption depends on the volume fraction of silver in water. By estimating the volume fraction dependence of nonlinearities in the same samples, we show that the variation in the measured decay time is due to pump-depletion effects present in the sample. The correct correction factor for taking into account pump-depletion effects in fifth- and higher-order nonlinearities is also presented. (paper)

  12. Volume fraction dependence and reorganization in cluster-cluster aggregation processes

    NARCIS (Netherlands)

    Garderen, van H.F.; Dokter, W.H.; Beelen, T.P.M.; Santen, van R.A.; Pantos, E.; Michels, M.A.J.; Hilbers, P.A.J.

    1995-01-01

    Off-lattice diffusion limited cluster aggregation simulations in two dimensions have been performed in a wide volume fraction range between 0.001 and 0.60. Starting from a system of 10 000 monomers with radius 0.5, that follow Brownian trajectories, larger aggregates are generated by bond formation

  13. Effect of Fiber Volume Fraction and Water Absorption toward Bending Strength of Coconut Filters/ Polyester Composite

    Directory of Open Access Journals (Sweden)

    I Putu Lokantara

    2012-11-01

    Full Text Available The variation of fibre volume and the duration of water soaking take influence on the mechanical properties of composite. This research aim is to know the influence of fraction volume fibre and soaking duration on the mineral watertoward the tensile strength and flexural of polyester-coconut-tapis composite. This research used coconut-tapis fibre which is cut 1 cm in length with 0%, 5%, 7,5%, and 10% fiber volume fraction, unsaturated-polyester (UPRs matrix resin type Yucalac 157 BQTN-EX, and MEKPO hardener. The flexure specimen are made by press hand lay-up method and cut according ASTM D790-03 for the flexure test. The result of flexure test shows that the duration of soaking and the fiber volume fraction give a significant effect on the flexural strength of composite. The highest strength are reached by composite with 10% fibre volume on 48 hour soaking time equal to 41.994 MPa. The flexure modulus happenend shows increasing until 24 hour soaking time. The highest modulus are reached by composite with 10% fibre volume equal to 7.114 GPa while the lowest are reached by composite with 0% fibre volume equal to 3,023 GPa.

  14. Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.

    Science.gov (United States)

    Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume

    2012-12-17

    A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.

  15. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    Science.gov (United States)

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)

    2009-09-07

    Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.

  17. Variable-Volume Flushing (V-VF) device for water conservation in toilets

    Science.gov (United States)

    Jasper, Louis J., Jr.

    1993-01-01

    Thirty five percent of residential indoor water used is flushed down the toilet. Five out of six flushes are for liquid waste only, which requires only a fraction of the water needed for solid waste. Designers of current low-flush toilets (3.5-gal. flush) and ultra-low-flush toilets (1.5-gal. flush) did not consider the vastly reduced amount of water needed to flush liquid waste versus solid waste. Consequently, these toilets are less practical than desired and can be improved upon for water conservation. This paper describes a variable-volume flushing (V-VF) device that is more reliable than the currently used flushing devices (it will not leak), is simple, more economical, and more water conserving (allowing one to choose the amount of water to use for flushing solid and liquid waste).

  18. Commutators of Integral Operators with Variable Kernels on Hardy ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 4. Commutators of Integral Operators with Variable Kernels on Hardy Spaces. Pu Zhang Kai Zhao. Volume 115 Issue 4 November 2005 pp 399-410 ... Keywords. Singular and fractional integrals; variable kernel; commutator; Hardy space.

  19. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, N.H.; Alwahabi, Z.T.; King, K.D. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chan, Q.N. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Nathan, G.J. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Roekaerts, D. [Department of Multi-Scale Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg, 1, NL-2628 CJ Delft (Netherlands)

    2009-07-15

    Planar laser-induced incandescence (LII) has been used to measure soot volume fraction in a well-characterised, piloted, turbulent non-premixed flame known as the ''Delft Flame III''. Simulated Dutch natural gas was used as the fuel to produce a flame closely matching those in which a wide range of previous investigations, both experimental and modelling, have been performed. The LII method was calibrated using a Santoro-style burner with ethylene as the fuel. Instantaneous and time-averaged data of the axial and radial soot volume fraction distributions of the flame are presented here along with the Probability Density Functions (PDFs) and intermittency. The PDFs were found to be well-characterised by a single exponential distribution function. The distribution of soot was found to be highly intermittent, with intermittency typically exceeding 97%, which increases measurement uncertainty. The instantaneous values of volume fraction are everywhere less than the values in strained laminar flames. This is consistent with the soot being found locally in strained flame sheets that are convected and distorted by the flow. (author)

  20. An investigation of the relation between the 30 meter running time and the femoral volume fraction in the thigh

    Directory of Open Access Journals (Sweden)

    MY Tasmektepligil

    2009-12-01

    Full Text Available Leg components are thought to be a related to speed. Only a limited number of studies have, however, examined the interaction between speed and bone size. In this study, we examined the relationship between the time taken by football players to run thirty meters and the fraction which the femur forms compared to the entire thigh region. Data collected from thirty male football players of average age 17.3 (between 16-19 years old were analyzed. First we detected the thirty meter running times and then we estimated the volume fraction of the femur to the entire thigh region using stereological methods on magnetic resonance images. Our data showed that there was a highly negative relationship between the 30 meter running times and the volume fraction of the bone to the thigh region. Thus, 30 meter running time decreases as the fraction of the bone to the thigh region increases. In other words, speed increases as the fraction of bone volume increases. Our data indicate that selecting sportsman whose femoral volume fractions are high will provide a significant benefit to enhancing performance in those branches of sports which require speed. Moreover, we concluded that training which can increase the bone volume fraction should be practiced when an increase in speed is desired and that the changes in the fraction of thigh region components should be monitored during these trainings.

  1. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    International Nuclear Information System (INIS)

    Ding, C; Hrycushko, B; Jiang, S; Meyer, J; Timmerman, R

    2014-01-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm 3 ) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan, the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment

  2. SU-F-T-113: Inherent Functional Dependence of Spinal Cord Doses of Variable Irradiated Volumes in Spine SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L; Braunstein, S; Chiu, J [University of California San Francisco, San Francisco, CA (United States); Sahgal, A [Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive an EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.

  3. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  4. Tracer responses and control of vessels with variable flow and volume

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1990-01-01

    Continuous flow vessels which are subject to variation of flow and volume are characterized by time-variable parameters. It is shown that their residence time distributions and weighting functions obtained by tracer testing are made invariant with regard to the integrated flow variables which are introduced. Under variable flow but constant volume, one such integrated variable is sufficient. Under variable volume, two different variables are suggested for the residence time distribution and weighting function, while the appropriate variable of the perfect mixer differs distinctly from that of vessels with a distinct velocity profile. It is shown through a number of example cases, that an agreement with their mathematical models is reached. The approach is extended to include also arbitrary, non-analytic response functions obtained by tracer measurements. Applications of the derived models and their incorporation in automatic control algorithms is discussed. (orig.) [de

  5. Artificial neural network and neutron application in a volume fraction calculation in annular and stratified multiphase system

    International Nuclear Information System (INIS)

    Ramos, Robson; Brandao, Luis E.B.; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da

    2009-01-01

    Multiphase flows, type oil-water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241 Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X -computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air = 3.85; water = 4.31; oil=1.08); stratified (air = 3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique. (author)

  6. Variability of Arthroscopy Case Volume in Orthopaedic Surgery Residency.

    Science.gov (United States)

    Gil, Joseph A; Waryasz, Gregory R; Owens, Brett D; Daniels, Alan H

    2016-05-01

    To examine orthopaedic surgery case logs for arthroscopy case volume during residency training and to evaluate trends in case volume and variability over time. Publicly available Accreditation Council for Graduate Medical Education surgical case logs from 2007 to 2013 for orthopaedic surgery residency were assessed for variability and case volume trends in shoulder, elbow, wrist, hip, knee, and ankle arthroscopy. The national average number of procedures performed in each arthroscopy category reported was directly compared from 2009 to 2013. The 10th and 90th percentile arthroscopy case volume was compared between 2007 and 2013 for shoulder and knee arthroscopy procedures. Subsequently, the difference between the 10th and 90th percentile arthroscopy case volume in each category in 2007 was compared with the difference between the 10th and 90th percentile arthroscopy case volume in each category in 2013. From 2007 to 2013, shoulder arthroscopy procedures performed per resident increased by 43.1% (P = .0001); elbow arthroscopy procedures increased by 28.0% (P = .00612); wrist arthroscopy procedures increased by 8.6% (P = .05); hip arthroscopy procedures, which were first reported in 2012, increased by 588.9%; knee arthroscopy procedures increased by 8.5% (P = .0435); ankle arthroscopy increased by 27.6% (P = .00149). The difference in knee and shoulder arthroscopy volume between residents in the 10th and 90th percentile in 2007 and residents in the 10th and 90th percentile in 2013 was not significant (P > .05). There was a 3.66-fold difference in knee arthroscopy volume between residents in the 10th and 90th percentile in 2007, whereas the difference was 3.36-fold in 2013 (P = .70). There was a 5.86-fold difference in shoulder arthroscopy case volume between residents in the 10th and 90th percentile in 2007, whereas the difference was 4.96-fold in 2013 (P = .29). The volume of arthroscopy cases performed by graduating orthopaedic surgery residents has

  7. Visit-to-Visit Blood Pressure Variability in Young Adulthood and Hippocampal Volume and Integrity at Middle Age: The CARDIA Study (Coronary Artery Risk Development in Young Adults).

    Science.gov (United States)

    Yano, Yuichiro; Reis, Jared P; Levine, Deborah A; Bryan, R Nick; Viera, Anthony J; Shimbo, Daichi; Tedla, Yacob G; Allen, Norrina B; Schreiner, Pamela J; Bancks, Michael P; Sidney, Stephen; Pletcher, Mark J; Liu, Kiang; Greenland, Philip; Lloyd-Jones, Donald M; Launer, Lenore J

    2017-12-01

    The aims of this study are to assess the relationships of visit-to-visit blood pressure (BP) variability in young adulthood to hippocampal volume and integrity at middle age. We used data over 8 examinations spanning 25 years collected in the CARDIA study (Coronary Artery Risk Development in Young Adults) of black and white adults (age, 18-30 years) started in 1985 to 1986. Visit-to-visit BP variability was defined as by SD BP and average real variability (ARV BP , defined as the absolute differences of BP between successive BP measurements). Hippocampal tissue volume standardized by intracranial volume (%) and integrity assessed by fractional anisotropy were measured by 3-Tesla magnetic resonance imaging at the year-25 examination (n=545; mean age, 51 years; 54% women and 34% African Americans). Mean systolic BP (SBP)/diastolic BP levels were 110/69 mm Hg at year 0 (baseline), 117/73 mm Hg at year 25, and ARV SBP and SD SBP were 7.7 and 7.9 mm Hg, respectively. In multivariable-adjusted linear models, higher ARV SBP was associated with lower hippocampal volume (unstandardized regression coefficient [standard error] with 1-SD higher ARV SBP : -0.006 [0.003]), and higher SD SBP with lower hippocampal fractional anisotropy (-0.02 [0.01]; all P young adulthood may be useful in assessing the potential risk for reductions in hippocampal volume and integrity in midlife. © 2017 American Heart Association, Inc.

  8. Models for high cell density bioreactors must consider biomass volume fraction: Cell recycle example.

    Science.gov (United States)

    Monbouquette, H G

    1987-06-01

    Intrinsic models, which take into account biomass volume fraction, must be formulated for adequate simulation of high-biomass-density fermentations with cell recycle. Through comparison of corresponding intrinsic and non-intrinsic models in dimensionless form, constraints for non-intrinsic model usage in terms of biokinetic and fermenter operating parameters can be identified a priori. Analysis of a simple product-inhibition model indicates that the non-intrinsic approach is suitable only when the attainable biomass volume fraction in the fermentation broth is less than about 0.10. Inappropriate application of a non-intrinsic model can lead to gross errors in calculated substrate and product concentrations, substrate conversion, and volumetric productivity.

  9. Models for high cell density bioreactors must consider biomass volume fraction: cell recycle example

    Energy Technology Data Exchange (ETDEWEB)

    Monbouquette, H.G.

    1987-06-01

    Intrinsic models, which take into account biomass volume fraction, must be formulated for adequate simulation of high-biomass-density fermentations with cell recycle. Through comparison of corresponding intrinsic and non-intrinsic models in dimensionless form, constraints for non-intrinsic model usage in terms of biokinetic and fermenter operating parameters can be identified a priori. Analysis of a simple product-inhibition model indicates that the non-intrinsic approach is suitable only when the attainable biomass volume fraction in the fermentation broth is less than about 0.10. Inappropriate application of a non-intrinsic model can lead to gross errors in calculated substrate and product concentrations, substrate conversion, and volumetric productivity. (Refs. 14).

  10. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  11. Ejection fraction response to exercise in patients with chest pain and normal coronary arteriograms

    International Nuclear Information System (INIS)

    Gibbons, R.L.; Lee, K.L.; Cobb, F.; Jones, R.H.

    1981-01-01

    In this study we describe the ejection fraction response to upright exercise using first-pass radionuclide angiocardiography in a group of 60 patients with chest pain, normal coronary ateriograms and normal resting ventricular function. A wide range of resting function (heart rate and ejection fraction) and exercise function (heart rate, ejection fraction, peak work load and estimated peak oxygen uptake) were measured. The ejection fraction response to exercise demonstrated wide variation, ranging from a decrease of 23% to an increase of 24%. Six of 22 clinical and radionuclide angiocardiographic variables (resting ejection fraction, peak work load, age, sex, body surface area and the change in end-diastolic volume index with exercise) were significant univariate predictors of the ejection fraction response to exercise. Multivariable analysis identified resting ejection fraction, the change in end-diastolic volume index with exercise and either sex or peak work load as variables that provided significant independent predictive information. These observations indicate that the ejection fraction response to exercise is a complex response that is influenced by multiple physiologic variables. The wide variation in this population suggests that the ejection fraction response to exercise is not a reliable test for the diagnosis of coronary artery disease because of its low specificity

  12. Calculation of Steam Volume Fraction in Subcooled Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1967-06-15

    An analysis of subcooled boiling is presented. It is assumed that heat is removed by vapor generation, heating of the liquid that replaces the detached bubbles, and to some extent by single phase heat transfer. Two regions of subcooled boiling are considered and a criterion is provided for obtaining the limiting value of subcooling between the two regions. Condensation of vapor in the subcooled liquid is analysed and the relative velocity of vapor with respect to the liquid is neglected in these regions. The theoretical arguments result in some equations for the calculation of steam volume fraction and true liquid subcooling.

  13. Artificial neural network and neutron application in a volume fraction calculation in annular and stratified multiphase system

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Robson; Brandao, Luis E.B.; Pereira, Claudio M.N.A., E-mail: robson@ien.gov.b, E-mail: brandao@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos; Schirru, Roberto; Silva, Ademir Xavier da, E-mail: schirru@lmp.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Dept.

    2009-07-01

    Multiphase flows, type oil-water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a {sup 241}Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X -computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air = 3.85; water = 4.31; oil=1.08); stratified (air = 3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique. (author)

  14. Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control

    Science.gov (United States)

    Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong

    2017-09-01

    In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council

  15. Quantitative grain-scale ferroic domain volume fractions and domain switching strains from three-dimensional X-ray diffraction data

    DEFF Research Database (Denmark)

    Oddershede, Jette; Majkut, Marta; Caosyd, Qinghua

    2015-01-01

    A method for the extension of the three-dimensional X-ray diffraction technique to allow the extraction of domain volume fractions in polycrystalline ferroic materials is presented. This method gives access to quantitative domain volume fractions of hundreds of independent embedded grains within...... are applied to tetragonal coarse-grained Ba0.88Ca0.12Zr0.06Ti0.94O3 and rhombohedral fine-grained (0.82)Bi0.5Na0.5TiO3–(0.18)Bi0.5K0.5TiO3 electroceramic materials. The fitted volume fraction information is used to calculate grain-scale non-180° ferroelectric domain switching strains. The absolute errors...

  16. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  17. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    International Nuclear Information System (INIS)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  18. Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose–volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Yasutaka [Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Kita-11, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0811 (Japan); Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L. [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)

    2015-11-15

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.

  19. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    Science.gov (United States)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  20. Cerebral blood volume alterations during fractional pneumoencephalography

    International Nuclear Information System (INIS)

    Voigt, K.; Greitz, T.

    1976-01-01

    Simultaneous and continuous measurements of the cerebral blood volume (CBV), cerebrospinal fluid (CSF) and blood pressure were carried out in six patients during fractional pneumoencephalography in order to examine intracranial volumetric interactions. Three patients (Group A) showed normal encephalographic findings, and in three patients (Group B) communicating hydrocephalus with convexity block was found encephalographically. In all patients the injection of air was followed by an immediate increase of CSF pressure and blood pressure and a concomitant decrease of CBV. The initial CSF pressure was invariably re-established within 3 to 3.5 min. During this time interval the CBV of the patients of Group B decreased significantly and 30 percent more than that of Group A. Furthermore, after restoration of the original CSF pressure, CBV returned to its initial level in all patients of Group A, whereas it remained unchanged or showed a further decrease in the patients of Group B. Removal of an amount of CSF corresponding to half of the amount of injected air was followed by a significant reactive hyperemic response in two normal patients. The intracranial volumetric alterations during fractional pneumoencephalography are discussed in detail with respect to the underlying physiologic mechanisms and are suggested as a model for acute and low pressure hydrocephalus

  1. The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.

    Energy Technology Data Exchange (ETDEWEB)

    Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard

    2005-07-01

    Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).

  2. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat transfer problems

    Directory of Open Access Journals (Sweden)

    Yang Xiao-Jun

    2017-01-01

    Full Text Available In this paper, we address a class of the fractional derivatives of constant and variable orders for the first time. Fractional-order relaxation equations of constants and variable orders in the sense of Caputo type are modeled from mathematical view of point. The comparative results of the anomalous relaxation among the various fractional derivatives are also given. They are very efficient in description of the complex phenomenon arising in heat transfer.

  3. Study of volume fractions for stratified and annular regime in multiphase flows using gamma-rays and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson; Schirru, Roberto; Silva, Ademir X.

    2007-01-01

    This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)

  4. Study of volume fractions for stratified and annular regime in multiphase flows using gamma-rays and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: otero@ien.gov.br; brandao@ien.gov.br; cmnap@ien.gov.br; robson@ien.gov.br; Schirru, Roberto; Silva, Ademir X. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Energia Nuclear (PEN)]. E-mails: ademir@con.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)

  5. Non-equilibrium Inertial Separation Array for High-throughput, Large-volume Blood Fractionation.

    Science.gov (United States)

    Mutlu, Baris R; Smith, Kyle C; Edd, Jon F; Nadar, Priyanka; Dlamini, Mcolisi; Kapur, Ravi; Toner, Mehmet

    2017-08-30

    Microfluidic blood processing is used in a range of applications from cancer therapeutics to infectious disease diagnostics. As these applications are being translated to clinical use, processing larger volumes of blood in shorter timescales with high-reliability and robustness is becoming a pressing need. In this work, we report a scaled, label-free cell separation mechanism called non-equilibrium inertial separation array (NISA). The NISA mechanism consists of an array of islands that exert a passive inertial lift force on proximate cells, thus enabling gentler manipulation of the cells without the need of physical contact. As the cells follow their size-based, deterministic path to their equilibrium positions, a preset fraction of the flow is siphoned to separate the smaller cells from the main flow. The NISA device was used to fractionate 400 mL of whole blood in less than 3 hours, and produce an ultrapure buffy coat (96.6% white blood cell yield, 0.0059% red blood cell carryover) by processing whole blood at 3 mL/min, or ∼300 million cells/second. This device presents a feasible alternative for fractionating blood for transfusion, cellular therapy and blood-based diagnostics, and could significantly improve the sensitivity of rare cell isolation devices by increasing the processed whole blood volume.

  6. Determination of volume fraction in biphasic flows oil-gas and water-gas using artificial neural network and gamma densitometry

    International Nuclear Information System (INIS)

    Peixoto, Philippe Netto Belache

    2016-01-01

    This study presents a methodology based on the principles of gamma ray attenuation to identify volume fractions in biphasic systems composed of oil-gas-water and gas which are found in the offshore oil industry. This methodology is based on the acknowledgment counts per second on the photopeak energy using a detection system composed of a NaI (Tl) detector, a source of 137 Cs without collimation positioned at 180 ° relative to the detector on a smooth stratified flow regime. The mathematical modeling for computational simulation using the code MCNP-X was performed using the experimental measurements of the detector characteristics (energy resolution and efficiency), characteristics of the material water and oil (density and coefficient attenuation) and measurement of the volume fractions. To predict these fractions were used artificial neural networks (ANNs), and to obtain an adequate training the ANNs for the prediction of volume fractions were simulated a larger number of volume fractions in MCNP-X. The experimental data were used in the set data necessary for validation of ANNs and the data generated using the computer code MCNP-X were used in training and test sets of the ANNs. Were used ANNs of type feed-forward Multilayer Perceptron (MLP) and analyzed two functions of training, Levenberg-Marquardt (LM) and gradient descent with momentum (GDM), both using the Backpropagation training algorithm. The ANNs identified correctly the volume fractions of the multiphase system with mean relative errors lower than 1.21 %, enabling the application of this methodology for this purpose. (author)

  7. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions

    Science.gov (United States)

    Peng, Xiaoguang; McKenna, Gregory B.

    2016-04-01

    Three important kinetic phenomena have been cataloged by Kovacs in the investigation of molecular glasses during structural recovery or physical aging. These are responses to temperature-jump histories referred to as intrinsic isotherms, asymmetry of approach, and memory effect. Here we use a thermosensitive polystyrene-poly (N -isopropylacrylamide)-poly (acrylic acid) core-shell particle-based dispersion as a colloidal model and by working at a constant number concentration of particles we use temperature changes to create volume-fraction changes. This imposes conditions similar to those defined by Kovacs on the colloidal system. We use creep experiments to probe the physical aging and structural recovery behavior of colloidal glasses in the Kovacs-type histories and compare the results with those seen in molecular glasses. We find that there are similarities in aging dynamics between molecular glasses and colloidal glasses, but differences also persist. For the intrinsic isotherms, the times teq needed for relaxing or evolving into the equilibrium (or stationary) state are relatively insensitive to the volume fraction and the values of teq are longer than the α -relaxation time τα at the same volume fraction. On the other hand, both of these times grow at least exponentially with decreasing temperature in molecular glasses. For the asymmetry of approach, similar nonlinear behavior is observed for both colloidal and molecular glasses. However, the equilibration time teq is the same for both volume-fraction up-jump and down-jump experiments, different from the finding in molecular glasses that it takes longer for the structure to evolve into equilibrium for the temperature up-jump condition than for the temperature down-jump condition. For the two-step volume-fraction jumps, a memory response is observed that is different from observations of structural recovery in two-step temperature histories in molecular glasses. The concentration dependence of the dynamics

  8. Modeling the Effect of Glass Microballoon (GMB) Volume Fraction on Behavior of Sylgard/GMB Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This work was done to support customer questions about whether a Sylgard/Glass Microballoon (GMB) potting material in current use could be replaced with pure Sylgard and if this would significantly change stresses imparted to internal components under thermal cycling conditions. To address these questions, we provide micromechanics analysis of Sylgard/GMB materials using both analytic composite theory and finite element simulations to better understand the role of the GMB volume fraction in determining thermal expansion coefficient, elastic constants, and behavior in both confined and unconfined compression boundary value problems. A key finding is that damage accumulation in the material from breakage of GMBs significantly limits the global stress magnitude and results in a plateau stress behavior over large ranges of compressive strain. The magnitude of this plateau stress is reduced with higher volume fractions of GMBs. This effect is particularly pronounced in confined compression, which we estimate bears the most similarity to the application of interest. This stress-limiting damage mechanism is not present in pure Sylgard, however, and the result is much higher stresses under confined compression. Thus, we recommend that some volume fraction greater than 10% GMBs be used for confined deformation applications.

  9. Formulation and solutions of fractional continuously variable order mass–spring–damper systems controlled by viscoelastic and viscous–viscoelastic dampers

    Directory of Open Access Journals (Sweden)

    S Saha Ray

    2016-05-01

    Full Text Available This article presents the formulation and a new approach to find analytic solutions for fractional continuously variable order dynamic models, namely, fractional continuously variable order mass–spring–damper systems. Here, we use the viscoelastic and viscous–viscoelastic dampers for describing the damping nature of the oscillating systems, where the order of fractional derivative varies continuously. Here, we handle the continuous changing nature of fractional order derivative for dynamic systems, which has not been studied yet. By successive recursive method, here we find the solution of fractional continuously variable order mass–spring–damper systems and then obtain closed-form solutions. We then present and discuss the solutions obtained in the cases with continuously variable order of damping for oscillator through graphical plots.

  10. Damping behavior of polymer composites with high volume fraction of NiMnGa powders

    Science.gov (United States)

    Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying

    2011-03-01

    Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.

  11. 40 CFR 63.2854 - How do I determine the weighted average volume fraction of HAP in the actual solvent loss?

    Science.gov (United States)

    2010-07-01

    ... volume fraction of HAP in the actual solvent loss? 63.2854 Section 63.2854 Protection of Environment... AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Solvent... average volume fraction of HAP in the actual solvent loss? (a) This section describes the information and...

  12. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, A; Schwartz, J; Mayr, N [University of Washington, Seattle, WA (United States); Yartsev, S [London Health Sciences Centre, London, Ontario (Canada)

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume

  13. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    International Nuclear Information System (INIS)

    Chvetsov, A; Schwartz, J; Mayr, N; Yartsev, S

    2014-01-01

    Purpose: To show that a distribution of cell surviving fractions S 2 in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S 2 and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S 2 for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S 2 reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S 2 can be reconstructed from the tumor volume variation curves measured

  14. Atomic force microscopy imaging to measure precipitate volume fraction in nickel-based superalloys

    International Nuclear Information System (INIS)

    Bourhettar, A.; Troyon, M.; Hazotte, A.

    1995-01-01

    In nickel-based superalloys, quantitative analysis of scanning electron microscopy images fails in providing accurate microstructural data, whereas more efficient techniques are very time-consuming. As an alternative approach, the authors propose to perform quantitative analysis of atomic force microscopy images of polished/etched surfaces (quantitative microprofilometry). This permits the measurement of microstructural parameters and the depth of etching, which is the main source of measurement bias. Thus, nonbiased estimations can be obtained by extrapolation of the measurements up to zero etching depth. In this article, the authors used this approach to estimate the volume fraction of γ' precipitates in a nickel-based superalloy single crystal. Atomic force microscopy images of samples etched for different times show definition, homogeneity, and contrast high enough to perform image analysis. The result after extrapolation is in very good agreement with volume fraction values available from published reports

  15. Volume fractions of DCE-MRI parameter as early predictor of histologic response in soft tissue sarcoma: A feasibility study.

    Science.gov (United States)

    Xia, Wei; Yan, Zhuangzhi; Gao, Xin

    2017-10-01

    To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Volume measurement variability in three-dimensional high-frequency ultrasound images of murine liver metastases

    International Nuclear Information System (INIS)

    Wirtzfeld, L A; Graham, K C; Groom, A C; MacDonald, I C; Chambers, A F; Fenster, A; Lacefield, J C

    2006-01-01

    The identification and quantification of tumour volume measurement variability is imperative for proper study design of longitudinal non-invasive imaging of pre-clinical mouse models of cancer. Measurement variability will dictate the minimum detectable volume change, which in turn influences the scheduling of imaging sessions and the interpretation of observed changes in tumour volume. In this paper, variability is quantified for tumour volume measurements from 3D high-frequency ultrasound images of murine liver metastases. Experimental B16F1 liver metastases were analysed in different size ranges including less than 1 mm 3 , 1-4 mm 3 , 4-8 mm 3 and 8-70 mm 3 . The intra- and inter-observer repeatability was high over a large range of tumour volumes, but the coefficients of variation (COV) varied over the volume ranges. The minimum and maximum intra-observer COV were 4% and 14% for the 1-4 mm 3 and 3 tumours, respectively. For tumour volumes measured by segmenting parallel planes, the maximum inter-slice distance that maintained acceptable measurement variability increased from 100 to 600 μm as tumour volume increased. Comparison of free breathing versus ventilated animals demonstrated that respiratory motion did not significantly change the measured volume. These results enable design of more efficient imaging studies by using the measured variability to estimate the time required to observe a significant change in tumour volume

  17. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    Science.gov (United States)

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-11-02

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.

  18. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    International Nuclear Information System (INIS)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J.; Wang, D.F.

    2015-01-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  19. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J., E-mail: nana.adoo@usask.ca [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); Wang, D.F. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  20. IMRT dose fractionation for head and neck cancer: Variation in current approaches will make standardisation difficult

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Kean F. (Academic Dept. of Radiation Oncology, Univ. of Manchester, Manchester (United Kingdom)); Fowler, Jack F. (Dept. of Human Oncology and Medical Physics, Univ. of Wisconsin, Wisconsin (United States)); Sykes, Andrew J.; Yap, Beng K.; Lee, Lip W.; Slevin, Nick J. (Dept. of Clinical Oncology, Christie Hospital NHS Foundation Trust, Manchester (United Kingdom))

    2009-04-15

    Introduction. Altered fractionation has demonstrated clinical benefits compared to the conventional 2 Gy/day standard of 70 Gy. When using synchronous chemotherapy, there is uncertainty about optimum fractionation. IMRT with its potential for Simultaneous Integrated Boost (SIB) adds further to this uncertainty. This survey will examine international practice of IMRT fractionation and suggest possible reasons for diversity in approach. Material and methods. Fourteen international cancer centres were surveyed for IMRT dose/fractionation practised in each centre. Results. Twelve different types of dose fractionation were reported. Conventional 70-72 Gy (daily 2 Gy/fraction) was used in 3/14 centres with concurrent chemotherapy while 11/14 centres used altered fractionation. Two centres used >1 schedule. Reported schedules and number of centres included 6 fractions/week DAHANCA regime (3), modest hypofractionation (=2.2 Gy/fraction) (3), dose-escalated hypofractionation (=2.3 Gy/fraction) (4), hyperfractionation (1), continuous acceleration (1) and concomitant boost (1). Reasons for dose fractionation variability include (i) dose escalation; (ii) total irradiated volume; (iii) number of target volumes; (iv) synchronous systemic treatment; (v) shorter overall treatment time; (vi) resources availability; (vii) longer time on treatment couch; (viii) variable GTV margins; (ix) confidence in treatment setup; (x) late tissue toxicity and (xi) use of lower neck anterior fields. Conclusions. This variability in IMRT fractionation makes any meaningful comparison of treatment results difficult. Some standardization is needed particularly for design of multi-centre randomized clinical trials.

  1. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  2. Effects of local single and fractionated X-ray doses on rat bone marrow blood flow and red blood cell volume

    International Nuclear Information System (INIS)

    Pitkaenen, M.A.; Hopewell, J.W.

    1985-01-01

    Time and dose dependent changes in blood flow and red blood cell volume were studied in the locally irradiated bone marrow of the rat femur after single and fractionated doses of X-rays. With the single dose of 10 Gy the bone marrow blood flow although initially reduced returned to the control levels by seven months after irradiation. With doses >=15 Gy the blood flow was still significantly reduced at seven months. The total dose levels predicted by the nominal standard dose equation for treatments in three, six or nine fractions produced approximately the same degree of reduction in the bone marrow blood flow seven months after the irradiation. However, the fall in the red blood cell volume was from 23 to 37% greater in the three fractions groups compared with that in the nine fractions groups. Using the red blood cell volume as a parameter the nominal standard dose formula underestimated the severity of radiation damage in rat bone marrow at seven months for irradiation with small numbers of large dose fractions. (orig.) [de

  3. Variability of left ventricular ejection fraction and volumes with quantitative gated SPECT: influence of algorithm, pixel size and reconstruction parameters in small and normal-sized hearts

    International Nuclear Information System (INIS)

    Hambye, Anne-Sophie; Vervaet, Ann; Dobbeleir, Andre

    2004-01-01

    Several software packages are commercially available for quantification of left ventricular ejection fraction (LVEF) and volumes from myocardial gated single-photon emission computed tomography (SPECT), all of which display a high reproducibility. However, their accuracy has been questioned in patients with a small heart. This study aimed to evaluate the performances of different software and the influence of modifications in acquisition or reconstruction parameters on LVEF and volume measurements, depending on the heart size. In 31 patients referred for gated SPECT, 64 2 and 128 2 matrix acquisitions were consecutively obtained. After reconstruction by filtered back-projection (Butterworth, 0.4, 0.5 or 0.6 cycles/cm cut-off, order 6), LVEF and volumes were computed with different software [three versions of Quantitative Gated SPECT (QGS), the Emory Cardiac Toolbox (ECT) and the Stanford University (SU-Segami) Medical School algorithm] and processing workstations. Depending upon their end-systolic volume (ESV), patients were classified into two groups: group I (ESV>30 ml, n=14) and group II (ESV 2 to 128 2 were associated with significantly larger volumes as well as lower LVEF values. Increasing the filter cut-off frequency had the same effect. With SU-Segami, a larger matrix was associated with larger end-diastolic volumes and smaller ESVs, resulting in a highly significant increase in LVEF. Increasing the filter sharpness, on the other hand, had no influence on LVEF though the measured volumes were significantly larger. (orig.)

  4. ECG-gated blood pool tomography in the determination of left ventricular volume, ejection fraction, and wall motion

    International Nuclear Information System (INIS)

    Underwood, S.R.; Ell, P.J.; Jarritt, P.H.; Emanuel, R.W.; Swanton, R.H.

    1984-01-01

    ECG-gated blood pool tomography promises to provide a ''gold standard'' for noninvasive measurement of left ventricular volume, ejection fraction, and wall motion. This study compares these measurements with those from planar radionuclide imaging and contrast ventriculography. End diastolic and end systolic blood pool images were acquired tomographically using an IGE400A rotating gamma camera and Star computer, and slices were reconstructed orthogonal to the long axis of the heart. Left ventricular volume was determined by summing the areas of the slices, and wall motion was determined by comparison of end diastolic and end systolic contours. In phantom experiments this provided an accurate measurement of volume (r=0.98). In 32 subjects who were either normal or who had coronary artery disease left ventricular volume (r=0.83) and ejection fraction (r=0.89) correlated well with those using a counts based planar technique. In 16 of 18 subjects who underwent right anterior oblique X-ray contrast ventriculography, tomographic wall motion agreed for anterior, apical, and inferior walls, but abnormal septal motion which was not apparent by contrast ventriculography, was seen in 12 subjects tomographically. All 12 had disease of the left anterior descending coronary artery and might have been expected to have abnormal septal motion. ECG-gated blood pool tomography can thus determine left ventricular volume and ejection fraction accurately, and provides a global description of wall motion in a way that is not possible from any single planar image

  5. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.

    2017-06-03

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  6. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le

    2017-01-01

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  7. Evaluation of gamma prime volume fractions and lattice misfits in a nickel base superalloy using the external standard X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Tiley, J., E-mail: jaimie.tiley@wpafb.af.mil [Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH (United States); Viswanathan, G.B. [Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH (United States); Hwang, J.Y. [Materials Engineering Department, University of North Texas, Denton, TX (United States); Shiveley, A. [Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH (United States); Banerjee, R. [Materials Engineering Department, University of North Texas, Denton, TX (United States)

    2010-11-25

    The unconstrained lattice parameters and volume fractions of {gamma}' for a low misfit nickel based superalloy were evaluated using X-ray diffraction techniques. Extraction techniques were used to provide unconstrained {gamma}' powders for both water quenched and slow cooled samples that were aged at 760 deg. C for 0, 25, 50, 100, and 200 h. The external standard method was used to determine the volume fraction for the unaged water quenched sample and the slow cooled sample aged for 200 h. These two extremes in processing conditions provided an increase in the total volume fraction of {gamma}'.

  8. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multi-frequency EM

    Science.gov (United States)

    Hendricks, S.; Hoppmann, M.; Hunkeler, P. A.; Kalscheuer, T.; Gerdes, R.

    2015-12-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise and accumulate beneath nearby sea ice to form a several meter thick sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator for ice - ocean interactions. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and sub-ice platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions from platelet-layer conductivities using Archie's Law. The thickness results agreed well with drill-hole validation datasets within the uncertainty range, and the ice-volume fraction also yielded plausible results. Our findings imply that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties. However, we emphasize that the successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.

  9. Use of fractional dose–volume histograms to model risk of acute rectal toxicity among patients treated on RTOG 94-06

    International Nuclear Information System (INIS)

    Tucker, Susan L.; Michalski, Jeff M.; Bosch, Walter R.; Mohan, Radhe; Dong, Lei; Winter, Kathryn; Purdy, James A.; Cox, James D.

    2012-01-01

    Background and purpose: For toxicities occurring during the course of radiotherapy, it is conceptually inaccurate to perform normal-tissue complication probability analyses using the complete dose–volume histogram. The goal of this study was to analyze acute rectal toxicity using a novel approach in which the fit of the Lyman–Kutcher–Burman (LKB) model is based on the fractional rectal dose–volume histogram (DVH). Materials and methods: Grade ⩾2 acute rectal toxicity was analyzed in 509 patients treated on Radiation Therapy Oncology Group (RTOG) protocol 94-06. These patients had no field reductions or treatment-plan revisions during therapy, allowing the fractional rectal DVH to be estimated from the complete rectal DVH based on the total number of dose fractions delivered. Results: The majority of patients experiencing Grade ⩾2 acute rectal toxicity did so before completion of radiotherapy (70/80 = 88%). Acute rectal toxicity depends on fractional mean rectal dose, with no significant improvement in the LKB model fit when the volume parameter differs from n = 1. The incidence of toxicity was significantly lower for patients who received hormone therapy (P = 0.024). Conclusions: Variations in fractional mean dose explain the differences in incidence of acute rectal toxicity, with no detectable effect seen here for differences in numbers of dose fractions delivered.

  10. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    Science.gov (United States)

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  11. CONVERGENCE OF THE FRACTIONAL PARTS OF THE RANDOM VARIABLES TO THE TRUNCATED EXPONENTIAL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Bogdan Gheorghe Munteanu

    2013-01-01

    Full Text Available Using the stochastic approximations, in this paper it was studiedthe convergence in distribution of the fractional parts of the sum of random variables to the truncated exponential distribution with parameter lambda. This fact is feasible by means of the Fourier-Stieltjes sequence (FSS of the random variable.

  12. Quantification and variability in colonic volume with a novel magnetic resonance imaging method

    DEFF Research Database (Denmark)

    Nilsson, M; Sandberg, Thomas Holm; Poulsen, Jakob Lykke

    2015-01-01

    Background: Segmental distribution of colorectal volume is relevant in a number of diseases, but clinical and experimental use demands robust reliability and validity. Using a novel semi-automatic magnetic resonance imaging-based technique, the aims of this study were to describe: (i) inter......-individual and intra-individual variability of segmental colorectal volumes between two observations in healthy subjects and (ii) the change in segmental colorectal volume distribution before and after defecation. Methods: The inter-individual and intra-individual variability of four colorectal volumes (cecum...... (p = 0.02). Conclusions & Inferences: Imaging of segmental colorectal volume, morphology, and fecal accumulation is advantageous to conventional methods in its low variability, high spatial resolution, and its absence of contrast-enhancing agents and irradiation. Hence, the method is suitable...

  13. Thermosetting resins with high fractions of free volume and inherently low dielectric constants.

    Science.gov (United States)

    Lin, Liang-Kai; Hu, Chien-Chieh; Su, Wen-Chiung; Liu, Ying-Ling

    2015-08-18

    This work demonstrates a new class of thermosetting resins, based on Meldrum's acid (MA) derivatives, which have high fractions of free volume and inherently low k values of about 2.0 at 1 MHz. Thermal decomposition of the MA groups evolves CO2 and acetone to create air-trapped cavities so as to reduce the dielectric constants.

  14. Quantitative gated SPECT: the effect of reconstruction filter on calculated left ventricular ejection fractions and volumes

    International Nuclear Information System (INIS)

    Wright, Graham A.; McDade, Mark; Martin, William; Hutton, William

    2002-01-01

    Gated SPECT (GSPECT) offers the possibility of obtaining additional functional information from perfusion studies, including calculation of left ventricular ejection fraction (LVEF). The calculation of LVEF relies upon the identification of the endocardial surface, which will be affected by the spatial resolution and statistical noise in the reconstructed images. The aim of this study was to compare LVEFs and ventricular volumes calculated from GSPECT using six reconstruction filters. GSPECT and radionuclide ventriculography (RNVG) were performed on 40 patients; filtered back projection was used to reconstruct the datasets with each filter. LVEFs and volumes were calculated using the Cedars-Sinai QGS package. The correlation coefficient between RNVG and GSPECT ranged from 0.81 to 0.86 with higher correlations for smoother filters. The narrowest prediction interval was 11±2%. There was a trend towards higher LVEF values with smoother filters, the ramp filter yielding LVEFs 2.55±3.10% (p<0.001) lower than the Hann filter. There was an overall fall in ventricular volumes with smoother filters with a mean difference of 13.98±10.15 ml (p<0.001) in EDV between the Butterworth-0.5 and Butterworth-0.3 filters. In conclusion, smoother reconstruction filters lead to lower volumes and higher ejection fractions with the QGS algorithm, with the Butterworth-0.4 filter giving the highest correlation with LVEFs from RNVG. Even if the optimal filter is chosen the uncertainty in the measured ejection fractions is still too great to be clinically acceptable. (author)

  15. Effect of fluid loading on left ventricular volume and stroke volume variability in patients with end-stage renal disease: a pilot study

    Science.gov (United States)

    Kanda, Hirotsugu; Hirasaki, Yuji; Iida, Takafumi; Kanao-Kanda, Megumi; Toyama, Yuki; Kunisawa, Takayuki; Iwasaki, Hiroshi

    2015-01-01

    Purpose The aim of this study was to investigate fluid loading-induced changes in left ventricular end-diastolic volume (LVEDV) and stroke volume variability (SVV) in patients with end-stage renal disease (ESRD) using real-time three-dimensional transesophageal echocardiography and the Vigileo-FloTrac system. Patients and methods After obtaining ethics committee approval and informed consent, 28 patients undergoing peripheral vascular procedures were studied. Fourteen patients with ESRD on hemodialysis (HD) were assigned to the HD group and 14 patients without ESRD were assigned to the control group. Institutional standardized general anesthesia was provided in both groups. SVV was measured using the Vigileo-FloTrac system. Simultaneously, a full-volume three-dimensional transesophageal echocardiography dataset was acquired to measure LVEDV, left ventricular end-systolic volume, and left ventricular ejection fraction. Measurements were obtained before and after loading 500 mL hydroxyethyl starch over 30 minutes in both groups. Results In the control group, intravenous colloid infusion was associated with a significant decrease in SVV (13.8%±2.6% to 6.5%±2.6%, P<0.001) and a significant increase in LVEDV (83.6±23.4 mL to 96.1±28.8 mL, P<0.001). While SVV significantly decreased after infusion in the HD group (16.2%±6.0% to 6.2%±2.8%, P<0.001), there was no significant change in LVEDV. Conclusion Our preliminary data suggest that fluid responsiveness can be assessed not by LVEDV but also by SVV due to underlying cardiovascular pathophysiology in patients with ESRD. PMID:26527879

  16. Entropy of level-cut random Gaussian structures at different volume fractions.

    Science.gov (United States)

    Marčelja, Stjepan

    2017-10-01

    Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.

  17. Entropy of level-cut random Gaussian structures at different volume fractions

    Science.gov (United States)

    Marčelja, Stjepan

    2017-10-01

    Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.

  18. Usefulness of acoustic quantification method in left ventricular volume and ejection fraction. Compared with ventriculography and scintigraphy

    International Nuclear Information System (INIS)

    Shibata, Takahiro; Honda, Youichi; Kashiwagi, Hidehiko

    1996-01-01

    Acoustic quantification method (AQ: on-line automated boundary detection system) has proved to have a good correlation with left ventriculography (LVG) and scintigraphy (SG) in patients with normal left ventricular (LV) function. The aim of this study is to determine whether AQ is also useful in patients with abnormal LV function. We examined 54 patients with LV asynergy. End-diastolic volumes with AQ, LVG and SG were 77, 135, 118 ml. A good correlation was found between AQ and LVG and SG (LVG; r=0.81, SG; r=0.68). End-systolic volumes with AQ, LVG and SG were 38, 64 and 57 ml. Left ventricular volumes obtained from AQ had a good correlation with LVG and SG, but were underestimated. LV ejection fraction obtained from AQ had good correlation with those with LVG and SG (LVG; r=0.84. SG; r=0.77). On-line AQ appears to be a useful noninvasive method for evaluation of the left ventricular ejection fraction, but care must be exercised when estimations of left ventricular volumes are made. (author)

  19. Dose fractionated gamma knife radiosurgery for large arteriovenous malformations on daily or alternate day schedule outside the linear quadratic model: Proof of concept and early results. A substitute to volume fractionation.

    Science.gov (United States)

    Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep

    2017-01-01

    To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume

  20. Peristaltic transport of a fractional Burgers' fluid with variable viscosity through an inclined tube

    Science.gov (United States)

    Rachid, Hassan

    2015-12-01

    In the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers' model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.

  1. Birth weight and neonatal adiposity prediction using fractional limb volume obtained with 3D ultrasound.

    Science.gov (United States)

    O'Connor, Clare; O'Higgins, Amy; Doolan, Anne; Segurado, Ricardo; Stuart, Bernard; Turner, Michael J; Kennelly, Máireád M

    2014-01-01

    The objective of this investigation was to study fetal thigh volume throughout gestation and explore its correlation with birth weight and neonatal body composition. This novel technique may improve birth weight prediction and lead to improved detection rates for fetal growth restriction. Fractional thigh volume (TVol) using 3D ultrasound, fetal biometry and soft tissue thickness were studied longitudinally in 42 mother-infant pairs. The percentages of neonatal body fat, fat mass and fat-free mass were determined using air displacement plethysmography. Correlation and linear regression analyses were performed. Linear regression analysis showed an association between TVol and birth weight. TVol at 33 weeks was also associated with neonatal fat-free mass. There was no correlation between TVol and neonatal fat mass. Abdominal circumference, estimated fetal weight (EFW) and EFW centile showed consistent correlations with birth weight. Thigh volume demonstrated an additional independent contribution to birth weight prediction when added to the EFW centile from the 38-week scan (p = 0.03). Fractional TVol performed at 33 weeks gestation is correlated with birth weight and neonatal lean body mass. This screening test may highlight those at risk of fetal growth restriction or macrosomia.

  2. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations

    Science.gov (United States)

    Gómez-Aguilar, J. F.

    2018-03-01

    In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.

  3. Influence of primary α-phase volume fraction on the mechanical properties of Ti-6Al-4V alloy at different strain rates and temperatures

    Science.gov (United States)

    Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing

    2018-03-01

    Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.

  4. Self Absorbed Fraction for Electrons and Beta Particles in Small Spherical Volumes

    International Nuclear Information System (INIS)

    Grosev, D.

    2003-01-01

    Absorbed fraction and target organ mass are important parameters of internal dosimetry calculations that define the geometry of the system. Standard MIRD (Medical Internal Radiation Dosimetry) formalism assumes that the absorbed fraction for non-penetrating radiations (e.g., electrons, beta particles) is 1. This may not be correct in cases where dimensions of organs/tissues are comparable with the ranges of electrons/beta particles. Such is the case for example in radiodine ablation of thyroid remnant tissue. In this work the self-absorbed fraction (source and target volumes are the same) for monoenergetic electrons and beta particles is calculated for small spherical volumes of various sizes and unit density. Absorbed fraction can be expressed as an integral of the product of two quantities: (a) Scaled beta dose point kernel (mean absorbed dose rate per activity of the point source in infinite homogenous medium), F β ; (b) special geometrical reduction factor (GRF). F β is calculated using EGS4 Monte Carlo (MC) code for transport of electrons and photons. MC source code calculates the deposition of energy inside concentric spherical shells around the isotropic point source of electrons/beta particles in infinite medium (water). Shell thickness was δr=0.02·X 90 , where X 90 represents the radius of the sphere inside which 90% of the source energy is absorbed. Number of concentric spherical shells was 100, 10000 electron histories were started in each program run, and 10 runs were repeated for statistical reason. Numerical integration of the product of F β , calculated by MC program, and GRF for sphere was done using Simpson method. Absorbed fractions were calculated for spheres with mass from 0.01-20 g (r = 0.13 - 1.68 cm). Results are given for monoenergetic electrons with kinetic energy T=0.2, 0.4, 1.0 MeV, and for three beta emitters 1 31I , 3 2P , 9 0Y . For quantitative dosimetric protocols in radioiodine ablation therapy, results for 1 31I are of

  5. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    Science.gov (United States)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  6. In vivo assessment of the tolerance dose of small liver volumes after single-fraction HDR irradiation

    International Nuclear Information System (INIS)

    Ricke, Jens; Seidensticker, Max; Luedemann, Lutz; Pech, Maciej; Wieners, Gero; Hengst, Susanne; Mohnike, Konrad; Cho, Chie Hee; Lopez Haenninen, Enrique; Al-Abadi, Hussain; Felix, Roland; Wust, Peter

    2005-01-01

    Purpose: To prospectively assess a dose-response relationship for small volumes of liver parenchyma after single-fraction irradiation. Methods and Materials: Twenty-five liver metastases were treated by computed tomography (CT)-guided interstitial brachytherapy. Magnetic resonance imaging was performed 1 day before and 3 days and 6, 12, and 24 weeks after therapy. MR sequences included T1-w gradient echo (GRE) enhanced by hepatocyte-targeted gadobenate dimeglumine. All MRI data sets were merged with 3D dosimetry data and evaluated by two radiologists. The reviewers indicated the border of hyperintensity on T2-w images (edema) or hypointensity on T1-w images (loss of hepatocyte function). Based on the total 3D data, a dose-volume histogram was calculated. We estimated the threshold dose for either edema or function loss as the D 90 , i.e., the dose achieved in at least 90% of the pseudolesion volume. Results: Between 3 days and 6 weeks, the extension of the edema increased significantly from the 12.9 Gy isosurface to 9.9 Gy (standard deviation [SD], 3.3 and 2.6). No significant change was detected between 6 and 12 weeks. After 24 weeks, the edematous tissue had shrunk significantly to 14.7 Gy (SD, 4.2). Three days postbrachytherapy, the D 90 for hepatocyte function loss reached the 14.9 Gy isosurface (SD, 3.9). At 6 weeks, the respective zone had increased significantly to 9.9 Gy (SD, 2.3). After 12 and 24 weeks, the dysfunction volume had decreased significantly to the 11.9 Gy and 15.2 Gy isosurface, respectively (SD, 3 and 4.1). Conclusions: The 95% interval from 7.6 to 12.2 Gy found as the minimal hepatocyte tolerance after 6 weeks accounts for the radiobiologic variations found in CT-guided brachytherapy, including heterogeneous dose rates by variable catheter arrays

  7. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows

    Science.gov (United States)

    Gholipour Peyvandi, R.; Islami Rad, S. Z.

    2017-12-01

    The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.

  8. A new fractional operator of variable order: Application in the description of anomalous diffusion

    Science.gov (United States)

    Yang, Xiao-Jun; Machado, J. A. Tenreiro

    2017-09-01

    In this paper, a new fractional operator of variable order with the use of the monotonic increasing function is proposed in sense of Caputo type. The properties in term of the Laplace and Fourier transforms are analyzed and the results for the anomalous diffusion equations of variable order are discussed. The new formulation is efficient in modeling a class of concentrations in the complex transport process.

  9. A Variable Order Fractional Differential-Based Texture Enhancement Algorithm with Application in Medical Imaging.

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    Full Text Available Texture enhancement is one of the most important techniques in digital image processing and plays an essential role in medical imaging since textures discriminate information. Most image texture enhancement techniques use classical integral order differential mask operators or fractional differential mask operators using fixed fractional order. These masks can produce excessive enhancement of low spatial frequency content, insufficient enhancement of large spatial frequency content, and retention of high spatial frequency noise. To improve upon existing approaches of texture enhancement, we derive an improved Variable Order Fractional Centered Difference (VOFCD scheme which dynamically adjusts the fractional differential order instead of fixing it. The new VOFCD technique is based on the second order Riesz fractional differential operator using a Lagrange 3-point interpolation formula, for both grey scale and colour image enhancement. We then use this method to enhance photographs and a set of medical images related to patients with stroke and Parkinson's disease. The experiments show that our improved fractional differential mask has a higher signal to noise ratio value than the other fractional differential mask operators. Based on the corresponding quantitative analysis we conclude that the new method offers a superior texture enhancement over existing methods.

  10. Separation of Yttrium from Rare Earth Concentrates in Fractional Hydroxide Precipitation

    International Nuclear Information System (INIS)

    Tri Handini; Purwoto; Mulyono

    2007-01-01

    Yttrium has been separated from rare earth concentrates by precipitation in fractional hydroxide using urea. The purpose of this research is to increase the yttrium rate resulting from the sedimentary process through separation of yttrium from other rare earth in fractional hydroxide precipitation using urea. In this research, we study the process variable of the concentration of urea, the ratio of feed volume to condensation volume of urea, as well as the temperature. Determination analysis of the rare earth rate is conducted using an X-ray spectrometer. The best result Y=92.89 % is obtained at a concentration of urea of 50 %, a level of precipitation of 3 times, and a temperature of 80°C. (author)

  11. The effect of different fibre volume fraction on mechanical properties of banana/pineapple leaf (PaLF)/glass hybrid composite

    Science.gov (United States)

    Hanafee, Z. M.; Khalina, A.; Norkhairunnisa, M.; Syams, Z. Edi; Liew, K. E.

    2017-09-01

    This paper investigates the effect of fibre volume fraction on mechanical properties of banana-pineapple leaf (PaLF)-glass reinforced epoxy resin under tensile loading. Uniaxial tensile tests were carried out on specimens with different fibre contents (30%, 40%, 50% in weight). The composite specimens consists of 13 different combinations. The effect of hybridisation between synthetic and natural fibre onto tensile properties was determined and the optimum fibre volume fraction was obtained at 50% for both banana and PaLF composites. Additional 1 layer of woven glass fibre increased the tensile strength of banana-PaLF composite up to 85%.

  12. Fractional filling with the microdepot technique as an alternative to bolus hyaluronic acid injections in facial volume restoration.

    Science.gov (United States)

    Lim, Adrian C; Lowe, Patricia M

    2011-05-01

    For volume restoration of the face, hyaluronic acid is conventionally injected through long, large-bore, 18-gauge needles because of the higher viscosity subtypes required. These hyaluronic acids are either more highly cross-linked or larger in particle size than the less-viscous subtypes. The microdepot injection technique involves using the 31-gauge BD insulin syringe (Becton-Dickinson, North Ryde, NSW Australia) to deposit small amounts of filler (0.05-0.1 mL) throughout the area of volume loss. The procedure is extremely well tolerated, requiring only topical and ice anaesthesia. Using this method, volume restoration can be achieved naturally and progressively over a period of time. Fractional filling every 3-4 months is continued until the desired level of volume correction is attained. Patients undergoing fractional filling followed over a 12-month period did not indicate any observable compromise in filler longevity, even when highly viscous hyaluronic acid fillers were injected through small-bore, 31-gauge insulin syringes. © 2011 The Authors. Australasian Journal of Dermatology © 2011 The Australasian College of Dermatologists.

  13. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    Science.gov (United States)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  14. The Effect of Fiber Strength Stochastics and Local Fiber Volume Fraction on Multiscale Progressive Failure of Composites

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.

  15. Intake plenum volume and its influence on the engine performance, cyclic variability and emissions

    International Nuclear Information System (INIS)

    Ceviz, M.A.

    2007-01-01

    Intake manifold connects the intake system to the intake valve of the engine and through which air or air-fuel mixture is drawn into the cylinder. Details of the flow in intake manifolds are extremely complex. Recently, most of engine companies are focused on variable intake manifold technology due to their improvement on engine performance. This paper investigates the effects of intake plenum volume variation on engine performance and emissions to constitute a base study for variable intake plenum. Brake and indicated engine performance characteristics, coefficient of variation in indicated mean effective pressure (COV imep ) as an indicator for cyclic variability, pulsating flow pressure in the intake manifold runner, and CO, CO 2 and HC emissions were taken into consideration to evaluate the effects of different plenum volumes. The results of this study showed that the variation in the plenum volume causes an improvement on the engine performance and the pollutant emissions. The brake torque and related performance characteristics improved pronouncedly about between 1700 and 2600 rpm by increasing plenum volume. Additionally, although the increase in the plenum volume caused the mixture leaner due to the increase in the intake runner pressure and lean mixtures inclined to increase the cyclic variability, a decrease was interestingly observed in the COV imep

  16. Thermal Diffusivity and Thermal Conductivity of Dispersed Glass Sphere Composites Over a Range of Volume Fractions

    Science.gov (United States)

    Carson, James K.

    2018-06-01

    Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.

  17. SU-F-T-378: Evaluation of Dose-Volume Variability and Parameters Between Prostate IMRT and VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J [Princess Margaret Cancer Centre, Toronto, ON (Canada); Jiang, R [Grand River Regional Cancer Centre, Kitchener, ON (Canada); Kiciak, A [University of Waterloo, Waterloo, ON (Canada)

    2016-06-15

    Purpose: This study compared the rectal dose-volume consistency, equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: For forty prostate IMRT and fifty VMAT patients treated using the same dose prescription (78 Gy/39 fraction) and dose-volume criteria in inverse planning optimization, the rectal EUD and NTCP were calculated for each patient. The rectal dose-volume consistency, showing the variability of dose-volume histogram (DVH) among patients, was defined and calculated based on the deviation between the mean and corresponding rectal DVH. Results: From both the prostate IMRT and VMAT plans, the rectal EUD and NTCP were found decreasing with the rectal volume. The decrease rates for the IMRT plans (EUD = 0.47 × 10{sup −3} Gy cm{sup −3} and NTCP = 3.94 × 10{sup −2} % cm{sup −3}) were higher than those for the VMAT (EUD = 0.28 × 10{sup −3} Gy cm{sup −3} and NTCP = 2.61 × 10{sup −2} % cm{sup −3}). In addition, the dependences of the rectal EUD and NTCP on the dose-volume consistency were found very similar between the prostate IMRT and VMAT plans. This shows that both delivery techniques have similar variations of the rectal EUD and NTCP on the dose-volume consistency. Conclusion: Dependences of the dose-volume consistency on the rectal EUD and NTCP were compared between the prostate IMRT and VMAT plans. It is concluded that both rectal EUD and NTCP decreased with an increase of the rectal volume. The variation rates of the rectal EUD and NTCP on the rectal volume were higher for the IMRT plans than VMAT. However, variations of the rectal dose-volume consistency on the rectal EUD and NTCP were found not significant for both delivery techniques.

  18. SU-E-J-176: Characterization of Inter-Fraction Breast Variability and the Implications On Delivered Dose

    Energy Technology Data Exchange (ETDEWEB)

    Sudhoff, M; Lamba, M; Kumar, N; Ward, A; Elson, H [University of Cincinnati, Cincinnati, OH (United States)

    2015-06-15

    Purpose: To systematically characterize inter-fraction breast variability and determine implications on delivered dose. Methods: Weekly port films were used to characterize breast setup variability. Five evenly spaced representative positions across the contour of each breast were chosen on the electronic port film in reference to graticule, and window and level was set such that the skin surface of the breast was visible. Measurements from the skin surface to treatment field edge were taken on each port film at each position and compared to the planning DRR, quantifying the variability. The systematic measurement technique was repeated for all port films for 20 recently treated breast cancer patients. Measured setup variability for each patient was modeled as a normal distribution. The distribution was randomly sampled from the model and applied as isocentric shifts in the treatment planning computer, representing setup variability for each fraction. Dose was calculated for each shifted fraction and summed to obtain DVHs and BEDs that modeled the dose with daily setup variability. Patients were categorized in to relevant groupings that were chosen to investigate the rigorousness of immobilization types, treatment techniques, and inherent anatomical difficulties. Mean position differences and dosimetric differences were evaluated between planned and delivered doses. Results: The setup variability was found to follow a normal distribution with mean position differences between the DRR and port film between − 8.6–3.5 mm with sigma range of 5.3–9.8 mm. Setup position was not found to be significantly different than zero. The mean seroma or whole breast PTV dosimetric difference, calculated as BED, ranged from a −0.23 to +1.13Gy. Conclusion: A systematic technique to quantify and model setup variability was used to calculate the dose in 20 breast cancer patients including variable setup. No statistically significant PTV or OAR BED differences were found between

  19. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam; Zhang, Ji; Fang, Tiegang; Roberts, William L.

    2014-01-01

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both

  20. A randomized trial comparing bladder volume consistency during fractionated prostate radiation therapy

    LENUS (Irish Health Repository)

    Mullaney, L.

    2014-01-10

    Organ motion is a contributory factor to the variation in location of the prostate and organs at risk during a course of fractionated prostate radiation therapy (RT). A prospective randomized controlled trial was designed with the primary endpoint to provide evidence-based bladder-filling instructions to achieve a consistent bladder volume (BV) and thus reduce the bladder-related organ motion. The secondary endpoints were to assess the incidence of acute and late genitourinary (GU) and gastrointestinal (GI) toxicity for patients and patients’ satisfaction with the bladder-filling instructions.

  1. Effects of morphology and wavelength on the measurement accuracy of soot volume fraction by laser extinction

    Science.gov (United States)

    Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua

    2018-01-01

    A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.

  2. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  3. System modeling and identification in indicator dilution method for assessment of ejection fraction and pulmonary blood volume

    NARCIS (Netherlands)

    Bharath, H.N.; Prabhu, K.M.M.; Korsten, H.H.M.; Mischi, M.

    2012-01-01

    Clinically relevant cardiovascular parameters, such as pulmonary blood volume (PBV) and ejection fraction (EF), can be assessed through indicator dilution techniques. Among these techniques, which are typically invasive due to the need for central catheterization, contrast ultrasonography provides a

  4. Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.

    2017-12-01

    In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.

  5. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength.

    Science.gov (United States)

    Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G

    2015-02-01

    Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  6. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    International Nuclear Information System (INIS)

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-01-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  7. The effect of the volume fraction and viscosity on the compression and tension behavior of the cobalt-ferrite magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    H. Shokrollahi

    2016-03-01

    Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.

  8. Systematic Investigation of Magnetostriction in Composite Magnetorheological Elastomers: the Effect of Particle Shape, Alignment, and Volume Fraction

    Science.gov (United States)

    Kassner, Christopher; Rieger, William; von Lockette, Paris; Lofland, Samuel

    2013-03-01

    We have completed a study of the magnetoelastic properties of several types of magnetorheological elastomers (MREs), composites consisting of magnetic particles cured in an elastic matrix. We have made a number of samples with different particle arrangements (pseudo-random and aligned), volume fraction, and particle shape (rods, spheres, and disks) and measured the field dependent strain in order to determine the magnetostriction. We found that the magnetostriction in these samples is highly dependent on the sample particle shape (aspect ratio) and volume fraction and ordering to a lesser extent. While much of the past work has focused on spherical particles, our results indicate that both rods and disks can yield enhanced results. We discuss our findings in terms of magnetic energy of the particles and elastic energy of the matrix. We then consider the issue of optimization. This work was supported in part by NSF Grant CMMI - 0927326.

  9. Trends and variability of cloud fraction cover in the Arctic, 1982-2009

    Science.gov (United States)

    Boccolari, Mauro; Parmiggiani, Flavio

    2018-05-01

    Climatology, trends and variability of cloud fraction cover (CFC) data over the Arctic (north of 70°N), were analysed over the 1982-2009 period. Data, available from the Climate Monitoring Satellite Application Facility (CM SAF), are derived from satellite measurements by AVHRR. Climatological means confirm permanent high CFC values over the Atlantic sector during all the year and during summer over the eastern Arctic Ocean. Lower values are found in the rest of the analysed area especially over Greenland and the Canadian Archipelago, nearly continuously during all the months. These results are confirmed by CFC trends and variability. Statistically significant trends were found during all the months over the Greenland Sea, particularly during the winter season (negative, less than -5 % dec -1) and over the Beaufort Sea in spring (positive, more than +5 % dec -1). CFC variability, investigated by the Empirical Orthogonal Functions, shows a substantial "non-variability" in the Northern Atlantic Ocean. Statistically significant correlations between CFC principal components elements and both the Pacific Decadal Oscillation index and Pacific North America patterns are found.

  10. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  11. Soft X-ray variability and the covering fraction of active galactic nuclei

    International Nuclear Information System (INIS)

    Wachter, K.W.; Strauss, M.A.; Filippenko, A.V.

    1988-01-01

    A model to explain the observed soft X-ray variability to some low-luminosity Seyfert 1 galaxies is developed. The variability is due to changes in the covering fraction of the central source as broad-line clouds move across our line of sight. A formalism is developed which is used to demonstrate how analysis of a soft X-ray light curve can provide three important quantities: the radius of the X-ray emitting region, the radius of a typical broad-line cloud, and the electron density in the cloud. It is shown that the results are rather insensitive to the assumed radial dependence of the surface brightness of the source, but are quite sensitive to a large dispersion in cloud sizes. 55 references

  12. Determination of volume fraction in biphasic flows oil-gas and water-gas using artificial neural network and gamma densitometry; Determinacao de fracoes de volume em fluxos bifasicos oleo-gas e agua-gas utilizando redes neurais artificiais e densitometria gama

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Philippe Netto Belache

    2016-07-01

    This study presents a methodology based on the principles of gamma ray attenuation to identify volume fractions in biphasic systems composed of oil-gas-water and gas which are found in the offshore oil industry. This methodology is based on the acknowledgment counts per second on the photopeak energy using a detection system composed of a NaI (Tl) detector, a source of {sup 137}Cs without collimation positioned at 180 ° relative to the detector on a smooth stratified flow regime. The mathematical modeling for computational simulation using the code MCNP-X was performed using the experimental measurements of the detector characteristics (energy resolution and efficiency), characteristics of the material water and oil (density and coefficient attenuation) and measurement of the volume fractions. To predict these fractions were used artificial neural networks (ANNs), and to obtain an adequate training the ANNs for the prediction of volume fractions were simulated a larger number of volume fractions in MCNP-X. The experimental data were used in the set data necessary for validation of ANNs and the data generated using the computer code MCNP-X were used in training and test sets of the ANNs. Were used ANNs of type feed-forward Multilayer Perceptron (MLP) and analyzed two functions of training, Levenberg-Marquardt (LM) and gradient descent with momentum (GDM), both using the Backpropagation training algorithm. The ANNs identified correctly the volume fractions of the multiphase system with mean relative errors lower than 1.21 %, enabling the application of this methodology for this purpose. (author)

  13. The effect of strain path change on subgrain volume fraction determined from in situ X-ray measurements

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Poulsen, Henning Friis; Lienert, U.

    2009-01-01

    to additional 5% strain is performed in situ while mapping a selected X-ray reflection from one particular bulk grain with high angular resolution. The reciprocal space maps are analyzed with a recently developed fitting method, and a correlation is found between the evolution of the subgrain volume fraction...

  14. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Dale, Einar; Skjoensberg, Ane; Olsen, Dag Rune

    2001-01-01

    Purpose: To evaluate variation of dose to organs at risk for patients receiving fractionated high dose rate gynaecological brachytherapy by using CT-based 3D treatment planning and dose-volume histograms (DVH). Materials and methods: Fourteen patients with cancer of the uterine cervix underwent three to six CT examinations (mean 4.9) during their course of high-dose-rate brachytherapy using radiographically compatible applicators. The rectal and bladder walls were delineated and DVHs were calculated. Results: Inter fraction variation of the bladder volume (CV mean =44.1%) was significantly larger than the inter fraction variation of the mean dose (CV mean =19.9%, P=0.005) and the maximum dose (CV mean =17.5%, P=0.003) of the bladder wall. The same trend was seen for rectum, although the figures were not significantly different. Performing CT examinations at four of seven brachytherapy fractions reduced the uncertainty to 4 and 7% for the bladder and rectal doses, respectively. A linear regression analysis showed a significant, negative relationship between time after treatment start and the whole bladder volume (P=0.018), whereas no correlation was found for the rectum. For both rectum and bladder a linear regression analysis revealed a significant, negative relationship between the whole volume and median dose (P<0.05). Conclusion: Preferably a CT examination should be provided at every fraction. However, this is logistically unfeasible in most institutions. To obtain reliable DVHs the patients will in the future undergo 3-4 CT examinations during the course of brachytherapy at our institution. Since this study showed an association between large bladder volumes and dose reductions, the patients will be treated with a standardized bladder volume

  15. New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks

    Science.gov (United States)

    Zúñiga-Aguilar, C. J.; Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Martínez, V. M.; Romero-Ugalde, H. M.

    2018-02-01

    In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.

  16. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2015-02-01

    The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Left ventricular ejection fraction and volumes as measured by 3D echocardiography and ultrafast computed tomography

    International Nuclear Information System (INIS)

    Vieira, Marcelo Luiz Campos; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Passos, Rodrigo B.D.; Funari, Marcelo B. G.; Fischer, Claudio H.; Morhy, Samira S.

    2009-01-01

    Background: Real-time three-dimensional echocardiography (RT-3D-Echo) and ultrafast computed tomography (CT) are two novel methods for the analysis of LV ejection fraction and volumes. Objective: To compare LVEF and volume measurements as obtained using RT-3D-Echo and ultrafast CT. Methods: Thirty nine consecutive patients (27 men, mean age of 57+- 12 years) were studied using RT-3D-Echo and 64-slice ultrafast CT. LVEF and LV volumes were analyzed. Statistical analysis: coefficient of correlation (r: Pearson), Bland-Altman analysis, linear regression analysis, 95% CI, p 5 .58)%; end-diastolic volume ranged from 49.6 to 178.2 (87+-27.8) ml; end-systolic volume ranged from 11.4 to 78 (33.1+-13.6) ml. CT scan measurements: LVEF ranged from 53 to 86% (67.8+-7.78); end-diastolic volume ranged from 51 to 186 (106.5+-30.3) ml; end-systolic volume ranged from 7 to 72 (35.5+-13.4)ml. Correlations between RT-3D-Echo and CT were: LVEF (r: 0.7888, p<0.0001, 95% CI 0.6301 to 0.8843); end-diastolic volume (r: 0.7695, p<0.0001, 95% CI 0.5995 to 0.8730); end-systolic volume (r: 0.8119, p<0.0001, 95% CI 0.6673 to 0.8975). Conclusion: Good correlation between LVEF and ventricular volume parameters as measured by RT-3D-Echo and 64-slice ultrafast CT was found in the present case series. (author)

  18. Hidden measurements, hidden variables and the volume representation of transition probabilities

    OpenAIRE

    Oliynyk, Todd A.

    2005-01-01

    We construct, for any finite dimension $n$, a new hidden measurement model for quantum mechanics based on representing quantum transition probabilities by the volume of regions in projective Hilbert space. For $n=2$ our model is equivalent to the Aerts sphere model and serves as a generalization of it for dimensions $n \\geq 3$. We also show how to construct a hidden variables scheme based on hidden measurements and we discuss how joint distributions arise in our hidden variables scheme and th...

  19. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: shenyf@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Qiu, L.N. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Sun, X. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Zuo, L. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Raabe, D. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 8, 40237 Düsseldorf (Germany)

    2015-06-11

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percent, wt%). After intercritical annealing and bainitic holding, a combination of ultimate tensile strength (UTS) of 1100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including the magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governing microstructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.

  20. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be

  1. Large volume TENAX {sup registered} extraction of the bioaccessible fraction of sediment-associated organic compounds for a subsequent effect-directed analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, K.; Brack, W. [UFZ - Helmholtz Centre or Environmental Research, Leipzig (Germany). Dept. of Effect-Directed Analysis

    2007-06-15

    Background, Aim and Scope: Effect-directed analysis (EDA) is a powerful tool for the identification of key toxicants in complex environmental samples. In most cases, EDA is based on total extraction of organic contaminants leading to an erroneous prioritization with regard to hazard and risk. Bioaccessibility-directed extraction aims to discriminate between contaminants that take part in partitioning between sediment and biota in a relevant time frame and those that are enclosed in structures, that do not allow rapid desorption. Standard protocols of targeted extraction of rapidly desorbing, and thus bioaccessible fraction using TENAX {sup registered} are based only on small amounts of sediment. In order to get sufficient amounts of extracts for subsequent biotesting, fractionation, and structure elucidation a large volume extraction technique needs to be developed applying one selected extraction time and excluding toxic procedural blanks. Materials and Methods: Desorption behaviour of sediment contaminants was determined by a consecutive solid-solid extraction of sediment using TENAX {sup registered} fitting a tri-compartment model on experimental data. Time needed to remove the rapidly desorbing fraction trap was calculated to select a fixed extraction time for single extraction procedures. Up-scaling by about a factor of 100 provided a large volume extraction technique for EDA. Reproducibility and comparability to small volume approach were proved. Blanks of respective TENAX {sup registered} mass were investigated using Scenedesmus vacuolatus and Artemia salina as test organisms. Results: Desorption kinetics showed that 12 to 30 % of sediment associated pollutants are available for rapid desorption. t{sub r}ap is compound dependent and covers a range of 2 to 18 h. On that basis a fixed extraction time of 24 h was selected. Validation of large volume approach was done by the means of comparison to small method and reproducibility. The large volume showed a good

  2. Intra-fraction motion of larynx radiotherapy

    Science.gov (United States)

    Durmus, Ismail Faruk; Tas, Bora

    2018-02-01

    In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.

  3. Study on the detection of three-dimensional soot temperature and volume fraction fields of a laminar flame by multispectral imaging system

    International Nuclear Information System (INIS)

    Ni, Mingjiang; Zhang, Haidan; Wang, Fei; Xie, Zhengchao; Huang, Qunxing; Yan, Jianhua; Cen, Kefa

    2016-01-01

    Highlights: • Multispectral flame images were used to reconstruct the soot temperature and volume fraction. • The proposed multi-wavelength method and the original two-color method were compared. • The effect of signal to noise ratio (SNR) was discussed. • The best number of selected wavelengths was determined to be 6–11. - Abstract: Charge-coupled device (CCD) cameras with liquid crystal tunable filters (LCTF) were introduced to capture the multispectral flame images for obtaining the line-of-sight radiation intensities. A least square QR decomposition method was applied to solve the reconstruction matrix equation and obtain the multi-wavelength local emission distributions from which temperature and volume fraction profiles can be retrieved. Compared with the original two-color method, the use of a wide range of spectral data was proved to be capable of reducing the reconstruction error. Reconstruction results of the two methods with different signal to noise ratio (SNR) were discussed. The effect of selected wavelength number is analyzed and the best number is determined to be in the range of 6–11. The proposed multispectral imaging system was verified to be feasible for the reconstruction of temperature and soot volume fraction distributions according to the experimental measurement results.

  4. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy

    International Nuclear Information System (INIS)

    Grosu, Anca-Ligia; Weber, Wolfgang A.; Astner, Sabrina T.; Adam, Markus; Krause, Bernd J.; Schwaiger, Markus; Molls, Michael; Nieder, Carsten

    2006-01-01

    Purpose: To evaluate the role of 11 C-methionine positron emission tomography (MET-PET) in target volume delineation for meningiomas and to determine the interobserver variability. Methods and Materials: Two independent observers performed treatment planning in 10 patients according to a prospective written protocol. In the first step, they used coregistered computed tomography (CT) and magnetic resonance imaging (MRI). In the second step, MET-PET was added to CT/MRI (image fusion based on mutual information). Results: The correlation between gross tumor volume (GTVs) delineated by the two observers based on CT/MRI was r = 0.855 (Spearman's correlation coefficient, p = 0.002) and r = 0.988 (p = 0.000) when MET-PET/CT/MRI were used. The number of patients with agreement in more then 80% of the outlined volume increased with the availability of MET-PET from 1 in 10 to 5 in 10. The median volume of intersection between the regions delineated by two observers increased significantly from 69% (from the composite volume) to 79%, by the addition of MET-PET (p = 0.005). The information of MET-PET was useful to delineate GTV in the area of cavernous sinus, orbit, and base of the skull. Conclusions: The hypothesis-generating findings of potential normal tissue sparing and reduced interobserver variability provide arguments for invasive studies of the correlation between MET-PET images and histologic tumor extension and for prospective trials of target volume delineation with CT/MRI/MET-PET image fusion

  5. SU-E-J-266: Cone Beam Computed Tomography (CBCT) Inter-Scan and Inter-Observer Tumor Volume Variability Assessment in Patients Treated with Stereotactic Body Radiation Therapy (SBRT) for Early Stage Non-Small Cell Lung Cancer (NSCLC)

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y; Aileen, C; Kozono, D; Killoran, J; Wagar, M; Lee, S; Hacker, F; Aerts, H; Lewis, J; Mak, R [Brigham and Women’s Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT. Methods: Twenty earlystage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after the same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4. Results: The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were −0.32cc to 0.32cc and −0.5% to 0.5% versus −1.9 cc to 1.8 cc and −15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were −3.3 cc to 2.3 cc and −42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc). Conclusion: Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (∼15–30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors. Part of the work was funded by a Kaye

  6. SU-E-J-266: Cone Beam Computed Tomography (CBCT) Inter-Scan and Inter-Observer Tumor Volume Variability Assessment in Patients Treated with Stereotactic Body Radiation Therapy (SBRT) for Early Stage Non-Small Cell Lung Cancer (NSCLC)

    International Nuclear Information System (INIS)

    Hou, Y; Aileen, C; Kozono, D; Killoran, J; Wagar, M; Lee, S; Hacker, F; Aerts, H; Lewis, J; Mak, R

    2015-01-01

    Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT. Methods: Twenty earlystage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after the same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4. Results: The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were −0.32cc to 0.32cc and −0.5% to 0.5% versus −1.9 cc to 1.8 cc and −15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were −3.3 cc to 2.3 cc and −42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc). Conclusion: Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (∼15–30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors. Part of the work was funded by a Kaye

  7. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique

    International Nuclear Information System (INIS)

    Esmaeili, Shahrzad; Lloyd, David J.

    2005-01-01

    Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results from a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods

  8. Immunoglobulin G levels during collection of large volume plasma for fractionation.

    Science.gov (United States)

    Burkhardt, Thomas; Rothe, Remo; Moog, Rainer

    2017-06-01

    There is a need of comprehensive work dealing with the quality of plasma for fractionation with respect to the IgG content as today most plasma derivates are used to treat patients with immunodeficiencies and autoimmune disorders. Therefore, a prospective study was carried out to analyse IgG levels before plasmapheresis and every 200ml collected plasma. Fifty-four experienced plasmapheresis donors were recruited for subsequent 850ml plasmapheresis using the Aurora Plasmapheresis System. Donorś peripheral blood counts were analysed before and after plasmapheresis using an electronic counter. Total protein, IgG and citrate were measured turbidometrically before, during and after apheresis as well as in the plasma product. Furthermore, platelets, red and white blood cells were analysed as parameters of product quality. An average of 2751±247ml blood was processed in 47±6min. The collected plasma volume was 850±1mL and citrate consumption was 177±15mL. A continuous drop of donors' IgG level was observed during plasmapheresis. The drop was 13% of the IgG baseline value at 800mL collected plasma. Total protein, IgG and cell counts of the plasma product met current guidelines of plasma for fractionation. Donors' IgG levels during apheresis showed a steady decrease without compromising the quality of plasma product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure

    Directory of Open Access Journals (Sweden)

    G.A. Sheikhzadeh

    2013-07-01

    Full Text Available In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperatures. The study is carried out for Richardson numbers of 0.01–1000, the solid volume fractions of 0–0.05 and the Grashof number of 104. The transport equations are solved numerically with a finite volume approach using the SIMPLER algorithm. The results show that the Nusselt number is mainly affected by the viscosity, density and conductivity variations. For low Richardson numbers, although viscosity increases by increasing the nanoparticles volume fraction, due to high intensity convection of enhanced conductivity nanofluid, the average Nusselt number increases for both constant and variable cases. However, for high Richardson numbers, as the volume fraction of nanoparticles increases heat transfer enhancement occurs for the constant properties cases but deterioration in heat transfer occurs for the variable properties cases. The distinction is due to underestimation of viscosity of the nanofluid by the constant viscosity model in the constant properties cases and states important effects of temperature dependency of thermophysical properties, in particular the viscosity distribution in the domain.

  10. Measurement of transplanted pancreatic volume using computed tomography: reliability by intra- and inter-observer variability

    International Nuclear Information System (INIS)

    Lundqvist, Eva; Segelsjoe, Monica; Magnusson, Anders; Andersson, Anna; Biglarnia, Ali-Reza

    2012-01-01

    Background Unlike other solid organ transplants, pancreas allografts can undergo a substantial decrease in baseline volume after transplantation. This phenomenon has not been well characterized, as there are insufficient data on reliable and reproducible volume assessments. We hypothesized that characterization of pancreatic volume by means of computed tomography (CT) could be a useful method for clinical follow-up in pancreas transplant patients. Purpose To evaluate the feasibility and reliability of pancreatic volume assessment using CT scan in transplanted patients. Material and Methods CT examinations were performed on 21 consecutive patients undergoing pancreas transplantation. Volume measurements were carried out by two observers tracing the pancreatic contours in all slices. The observers performed the measurements twice for each patient. Differences in volume measurement were used to evaluate intra- and inter-observer variability. Results The intra-observer variability for the pancreatic volume measurements of Observers 1 and 2 was found to be in almost perfect agreement, with an intraclass correlation coefficient (ICC) of 0.90 (0.77-0.96) and 0.99 (0.98-1.0), respectively. Regarding inter-observer validity, the ICCs for the first and second measurements were 0.90 (range, 0.77-0.96) and 0.95 (range, 0.85-0.98), respectively. Conclusion CT volumetry is a reliable and reproducible method for measurement of transplanted pancreatic volume

  11. Measurement of transplanted pancreatic volume using computed tomography: reliability by intra- and inter-observer variability

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Eva; Segelsjoe, Monica; Magnusson, Anders [Uppsala Univ., Dept. of Radiology, Oncology and Radiation Science, Section of Radiology, Uppsala (Sweden)], E-mail: eva.lundqvist.8954@student.uu.se; Andersson, Anna; Biglarnia, Ali-Reza [Dept. of Surgical Sciences, Section of Transplantation Surgery, Uppsala Univ. Hospital, Uppsala (Sweden)

    2012-11-15

    Background Unlike other solid organ transplants, pancreas allografts can undergo a substantial decrease in baseline volume after transplantation. This phenomenon has not been well characterized, as there are insufficient data on reliable and reproducible volume assessments. We hypothesized that characterization of pancreatic volume by means of computed tomography (CT) could be a useful method for clinical follow-up in pancreas transplant patients. Purpose To evaluate the feasibility and reliability of pancreatic volume assessment using CT scan in transplanted patients. Material and Methods CT examinations were performed on 21 consecutive patients undergoing pancreas transplantation. Volume measurements were carried out by two observers tracing the pancreatic contours in all slices. The observers performed the measurements twice for each patient. Differences in volume measurement were used to evaluate intra- and inter-observer variability. Results The intra-observer variability for the pancreatic volume measurements of Observers 1 and 2 was found to be in almost perfect agreement, with an intraclass correlation coefficient (ICC) of 0.90 (0.77-0.96) and 0.99 (0.98-1.0), respectively. Regarding inter-observer validity, the ICCs for the first and second measurements were 0.90 (range, 0.77-0.96) and 0.95 (range, 0.85-0.98), respectively. Conclusion CT volumetry is a reliable and reproducible method for measurement of transplanted pancreatic volume.

  12. Validity of automated measurement of left ventricular ejection fraction and volume using the Philips EPIQ system.

    Science.gov (United States)

    Hovnanians, Ninel; Win, Theresa; Makkiya, Mohammed; Zheng, Qi; Taub, Cynthia

    2017-11-01

    To assess the efficiency and reproducibility of automated measurements of left ventricular (LV) volumes and LV ejection fraction (LVEF) in comparison to manually traced biplane Simpson's method. This is a single-center prospective study. Apical four- and two-chamber views were acquired in patients in sinus rhythm. Two operators independently measured LV volumes and LVEF using biplane Simpson's method. In addition, the image analysis software a2DQ on the Philips EPIQ system was applied to automatically assess the LV volumes and LVEF. Time spent on each analysis, using both methods, was documented. Concordance of echocardiographic measures was evaluated using intraclass correlation (ICC) and Bland-Altman analysis. Manual tracing and automated measurement of LV volumes and LVEF were performed in 184 patients with a mean age of 67.3 ± 17.3 years and BMI 28.0 ± 6.8 kg/m 2 . ICC and Bland-Altman analysis showed good agreements between manual and automated methods measuring LVEF, end-systolic, and end-diastolic volumes. The average analysis time was significantly less using the automated method than manual tracing (116 vs 217 seconds/patient, P Automated measurement using the novel image analysis software a2DQ on the Philips EPIQ system produced accurate, efficient, and reproducible assessment of LV volumes and LVEF compared with manual measurement. © 2017, Wiley Periodicals, Inc.

  13. A probabilistic method for determining the volume fraction of pre-embedded capsules in self-healing materials

    International Nuclear Information System (INIS)

    Lv, Zhong; Chen, Huisu

    2014-01-01

    Autonomous healing of cracks using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of self-healing materials. Assuming that the pre-embedded capsules are randomly dispersed we theoretically model flat ellipsoidal crack interaction with capsules and determine the probability of a crack intersecting the pre-embedded capsules i.e. the self-healing probability. We also develop a probabilistic model of a crack simultaneously meeting with capsules and catalyst carriers in two-component self-healing system matrix. Using a risk-based healing approach, we determine the volume fraction and size of the pre-embedded capsules that are required to achieve a certain self-healing probability. To understand the effect of the shape of the capsules on self-healing we theoretically modeled crack interaction with spherical and cylindrical capsules. We compared the results of our theoretical model with Monte-Carlo simulations of crack interaction with capsules. The formulae presented in this paper will provide guidelines for engineers working with self-healing structures in material selection and sustenance. (paper)

  14. Intracapillary HbO2 saturations in murine tumours and human tumour xenografts measured by cryospectrophotometry: relationship to tumour volume, tumour pH and fraction of radiobiologically hypoxic cells.

    Science.gov (United States)

    Rofstad, E K; Fenton, B M; Sutherland, R M

    1988-05-01

    Frequency distributions for intracapillary HbO2 saturation were determined for two murine tumour lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI) using a cryospectrophotometric method. The aim was to search for possible relationships between HbO2 saturation status and tumour volume, tumour pH and fraction of radiobiologically hypoxic cells. Tumour pH was measured by 31P NMR spectroscopy. Hypoxic fractions were determined from cell survival curves for tumours irradiated in vivo and assayed in vitro. Tumours in the volume range 100-4000 mm3 were studied and the majority of the vessels were found to have HbO2 saturations below 10%. The volume-dependence of the HbO2 frequency distributions differed significantly among the four tumour lines; HbO2 saturation status decreased with increasing tumour volume for the KHT, RIF-1 and MLS lines and was independent of tumour volume for the OWI line. The data indicated that the rate of decrease in HbO2 saturation status during tumour growth was related to the rate of development of necrosis. The volume-dependence of tumour pH was very similar to that of the HbO2 saturation status for all tumour lines. Significant correlations were therefore found between HbO2 saturation status and tumour pH, both within tumour lines and across the four tumour lines, reflecting that the volume-dependence of both parameters probably was a compulsory consequence of reduced oxygen supply conditions during tumour growth. Hypoxic fraction increased during tumour growth for the KHT, RIF-1 and MLS lines and was volume-independent for the OWI line, suggesting a relationship between HbO2 saturation status and hypoxic fraction within tumour lines. However, there was no correlation between these two parameters across the four tumour lines, indicating that the hypoxic fraction of a tumour is not determined only by the oxygen supply conditions; other parameters may also be important, e.g. oxygen diffusivity, rate of oxygen

  15. Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Volume 2, Appendices

    International Nuclear Information System (INIS)

    1994-12-01

    This document contains compiled data from the DOE Handbook on Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear facilities. Source data and example facilities utilized, such as the Plutonium Recovery Facility, are included

  16. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis : The Framingham Heart Study

    NARCIS (Netherlands)

    Chuang, Michael L.; Gona, Philimon; Hautvast, Gilion L.T.F.; Salton, Carol J.; Breeuwer, Marcel; O'Donnell, Christopher J.; Manning, Warren J.

    Purpose To determine sex-specific reference values for left ventricular (LV) volumes, mass, and ejection fraction (EF) in healthy adults using computer-aided analysis and to examine the effect of age on LV parameters. Materials and Methods We examined data from 1494 members of the Framingham Heart

  17. Lung lesion doubling times: values and variability based on method of volume determination

    International Nuclear Information System (INIS)

    Eisenbud Quint, Leslie; Cheng, Joan; Schipper, Matthew; Chang, Andrew C.; Kalemkerian, Gregory

    2008-01-01

    Purpose: To determine doubling times (DTs) of lung lesions based on volumetric measurements from thin-section CT imaging. Methods: Previously untreated patients with ≥ two thin-section CT scans showing a focal lung lesion were identified. Lesion volumes were derived using direct volume measurements and volume calculations based on lesion area and diameter. Growth rates (GRs) were compared by tissue diagnosis and measurement technique. Results: 54 lesions were evaluated including 8 benign lesions, 10 metastases, 3 lymphomas, 15 adenocarcinomas, 11 squamous carcinomas, and 7 miscellaneous lung cancers. Using direct volume measurements, median DTs were 453, 111, 15, 181, 139 and 137 days, respectively. Lung cancer DTs ranged from 23-2239 days. There were no significant differences in GRs among the different lesion types. There was considerable variability among GRs using different volume determination methods. Conclusions: Lung cancer doubling times showed a substantial range, and different volume determination methods gave considerably different DTs

  18. Fractional Processes and Fractional-Order Signal Processing Techniques and Applications

    CERN Document Server

    Sheng, Hu; Qiu, TianShuang

    2012-01-01

    Fractional processes are widely found in science, technology and engineering systems. In Fractional Processes and Fractional-order Signal Processing, some complex random signals, characterized by the presence of a heavy-tailed distribution or non-negligible dependence between distant observations (local and long memory), are introduced and examined from the ‘fractional’ perspective using simulation, fractional-order modeling and filtering and realization of fractional-order systems. These fractional-order signal processing (FOSP) techniques are based on fractional calculus, the fractional Fourier transform and fractional lower-order moments. Fractional Processes and Fractional-order Signal Processing: • presents fractional processes of fixed, variable and distributed order studied as the output of fractional-order differential systems; • introduces FOSP techniques and the fractional signals and fractional systems point of view; • details real-world-application examples of FOSP techniques to demonstr...

  19. Intra- and interobserver variability of MRI-based volume measurements of the hippocampus and amygdala using the manual ray-tracing method

    International Nuclear Information System (INIS)

    Achten, E.; Deblaere, K.; Damme, F. van; Kunnen, M.; Wagter, C. de; Boon, P.; Reuck, J. de

    1998-01-01

    We studied the intra- and interobserver variability of volume measurments of the hippocampus (HC) and the amygdala as applied to the detection of HC atrophy in patients with complex partial seizures (CPE), measuring the volumes of the HC and amygdala of 11 normal volunteers and 12 patients with presumed CPE, using the manual ray-tracing method. Two independent observers performed these measurements twice each using home-made software. The intra- and interobserver variability of the absolute volumes and of the normalised left-to-right volume differences (δV) between the HC (δV HC ), the amygdala (δV A ) and the sum of both (δV HCA) were assessed. In our mainly right-handed normals, the right HC and amygdala were on average 0.05 and 0.03 ml larger respectively than on the left. The interobserver variability for volume measurements in normal subjects was 1.80 ml for the HC and 0.82 ml for the amygdala, the intraobserver variability roughly one third of these values. The interobserver variability coefficient in normals was 3.6 % for δV HCA , 4.7 % for δV HC and 7.3 % for δV A . The intraobserver variability coefficient was 3.4 % for δV HCA , 4.2 % for δV HC amd 5.6 % for δV A . The variability in patients was the same for volume differences less than 5 % either side of the interval for normality, but was higher when large volume differences were encountered, is probably due to the lack of thresholding and/or normalisation. Cutoff values for lateralisation with the δV were defined. No intra- or interobserver lateralisation differences were encountered with δV HCA and δV HC . From these observations we conclude that the manual ray-tracing method is a robust method for lateralisation in patients with TLE. Due to its higher variability, this method is less suited to measure absolute volumes. (orig.) (orig.)

  20. Intra- and interobserver variability of MRI-based volume measurements of the hippocampus and amygdala using the manual ray-tracing method

    Energy Technology Data Exchange (ETDEWEB)

    Achten, E.; Deblaere, K.; Damme, F. van; Kunnen, M. [MR Department 1K12, University Hospital Gent (Belgium); Wagter, C. de [Department of Radiotherapy and Nuclear Medicine, University Hospital Gent (Belgium); Boon, P.; Reuck, J. de [Department of Neurology, University Hospital Gent (Belgium)

    1998-09-01

    We studied the intra- and interobserver variability of volume measurments of the hippocampus (HC) and the amygdala as applied to the detection of HC atrophy in patients with complex partial seizures (CPE), measuring the volumes of the HC and amygdala of 11 normal volunteers and 12 patients with presumed CPE, using the manual ray-tracing method. Two independent observers performed these measurements twice each using home-made software. The intra- and interobserver variability of the absolute volumes and of the normalised left-to-right volume differences ({delta}V) between the HC ({delta}V{sub HC}), the amygdala ({delta}V{sub A}) and the sum of both ({delta}V{sub HCA)} were assessed. In our mainly right-handed normals, the right HC and amygdala were on average 0.05 and 0.03 ml larger respectively than on the left. The interobserver variability for volume measurements in normal subjects was 1.80 ml for the HC and 0.82 ml for the amygdala, the intraobserver variability roughly one third of these values. The interobserver variability coefficient in normals was 3.6 % for {delta}V{sub HCA}, 4.7 % for {delta}V{sub HC} and 7.3 % for {delta}V{sub A}. The intraobserver variability coefficient was 3.4 % for {delta}V{sub HCA}, 4.2 % for {delta}V{sub HC} amd 5.6 % for {delta}V{sub A}. The variability in patients was the same for volume differences less than 5 % either side of the interval for normality, but was higher when large volume differences were encountered, is probably due to the lack of thresholding and/or normalisation. Cutoff values for lateralisation with the {delta}V were defined. No intra- or interobserver lateralisation differences were encountered with {delta}V{sub HCA} and {delta}V{sub HC}. From these observations we conclude that the manual ray-tracing method is a robust method for lateralisation in patients with TLE. Due to its higher variability, this method is less suited to measure absolute volumes. (orig.) (orig.) With 2 figs., 7 tabs., 23 refs.

  1. Myocardial T1 and extracellular volume fraction mapping at 3 tesla

    Directory of Open Access Journals (Sweden)

    Lee Jason J

    2011-11-01

    Full Text Available Abstract Background To compare 11 heartbeat (HB and 17 HB modified lock locker inversion recovery (MOLLI pulse sequence at 3T and to establish preliminary reference values for myocardial T1 and the extracellular volume fraction (ECV. Methods Both phantoms and normal volunteers were scanned at 3T using 11 HB and 17 HB MOLLI sequence with the following parameters: spatial resolution = 1.75 × 1.75 × 10 mm on a 256 × 180 matrix, TI initial = 110 ms, TI increment = 80 ms, flip angle = 35°, TR/TE = 1.9/1.0 ms. All volunteers were administered Gadolinium-DTPA (Magnevist, 0.15 mmol/kg, and multiple post-contrast MOLLI scans were performed at the same pre-contrast position from 3.5-23.5 minutes after a bolus contrast injection. Late gadolinium enhancement (LGE images were also acquired 12-30 minutes after the gadolinium bolus. Results T1 values of 11 HB and 17 HB MOLLI displayed good agreement in both phantom and volunteers. The average pre-contrast myocardial and blood T1 was 1315 ± 39 ms and 2020 ± 129 ms, respectively. ECV was stable between 8.5 to 23.5 minutes post contrast with an average of 26.7 ± 1.0%. Conclusion The 11 HB MOLLI is a faster method for high-resolution myocardial T1 mapping at 3T. ECV fractions are stable over a wide time range after contrast administration.

  2. Quantitative assessment of inter-observer variability in target volume delineation on stereotactic radiotherapy treatment for pituitary adenoma and meningioma near optic tract

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Ogita, Mikio; Yamashita, Koichi; Kotsuma, Tadayuki; Shiomi, Hiroya; Tsubokura, Takuji; Kodani, Naohiro; Nishimura, Takuya; Aibe, Norihiro; Udono, Hiroki; Nishikata, Manabu; Baba, Yoshimi

    2011-01-01

    To assess inter-observer variability in delineating target volume and organs at risk in benign tumor adjacent to optic tract as a quality assurance exercise. We quantitatively analyzed 21 plans made by 11 clinicians in seven CyberKnife centers. The clinicians were provided with a raw data set (pituitary adenoma and meningioma) including clinical information, and were asked to delineate the lesions and create a treatment plan. Their contouring and plans (10 adenoma and 11 meningioma plans), were then compared. In addition, we estimated the influence of differences in contouring by superimposing the respective contours onto a default plan. The median planning target volume (PTV) and the ratio of the largest to the smallest contoured volume were 9.22 cm 3 (range, 7.17 - 14.3 cm 3 ) and 1.99 for pituitary adenoma, and 6.86 cm 3 (range 6.05 - 14.6 cm 3 ) and 2.41 for meningioma. PTV volume was 10.1 ± 1.74 cm 3 for group 1 with a margin of 1 -2 mm around the CTV (n = 3) and 9.28 ± 1.8 cm 3 (p = 0.51) for group 2 with no margin (n = 7) in pituitary adenoma. In meningioma, group 1 showed larger PTV volume (10.1 ± 3.26 cm 3 ) than group 2 (6.91 ± 0.7 cm 3 , p = 0.03). All submitted plan keep the irradiated dose to optic tract within the range of 50 Gy (equivalent total doses in 2 Gy fractionation). However, contours superimposed onto the dose distribution of the default plan indicated that an excessive dose 23.64 Gy (up to 268% of the default plan) in pituitary adenoma and 24.84 Gy (131% of the default plan) in meningioma to the optic nerve in the contours from different contouring. Quality assurance revealed inter-observer variability in contour delineation and their influences on planning for pituitary adenoma and meningioma near optic tract

  3. Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin's disease. A multi-institutional experience

    International Nuclear Information System (INIS)

    Genovesi, Domenico; Cefaro, Giampiero Ausili; Vinciguerra, Annamaria

    2011-01-01

    To determine interobserver variability in clinical target volume (CTV) of supra-diaphragmatic Hodgkin's lymphoma. At the 2008 AIRO (Italian Society of Radiation Oncology) Meeting, the Radiation Oncology Department of Chieti proposed a multi-institutional contouring dummy-run of two cases of early stage supra-diaphragmatic Hodgkin's lymphoma after chemotherapy. Clinical history, diagnostics, and planning CT imaging were available on Chieti's radiotherapy website (www.radioterapia.unich.it). Participating centers were requested to delineate the CTV and submit it to the coordinating center. To quantify interobserver variability of CTV delineations, the total volume, craniocaudal, laterolateral, and anteroposterior diameters were calculated. A total of 18 institutions for case A and 15 institutions for case B submitted the targets. Case A presented significant variability in total volume (range: 74.1-1,157.1 cc), craniocaudal (range: 6.5-22.5 cm; median: 16.25 cm), anteroposterior (range: 5.04-14.82 cm; median: 10.28 cm), and laterolateral diameters (range: 8.23-22.88 cm; median: 15.5 cm). Mean CTV was 464.8 cc (standard deviation: 280.5 cc). Case B presented significant variability in total volume (range: 341.8-1,662 cc), cranio-caudal (range: 8.0-28.5 cm; median: 23 cm), anteroposterior (range: 7.9-1.8 cm; median: 11.1 cm), and laterolateral diameters (range: 12.9-24.0 cm; median: 18.8 cm). Mean CTV was 926.0 cc (standard deviation: 445.7 cc). This significant variability confirms the need to apply specific guidelines to improve contouring uniformity in Hodgkin's lymphoma. (orig.)

  4. Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites.

    Science.gov (United States)

    Räth, Christoph; Baum, Thomas; Monetti, Roberto; Sidorenko, Irina; Wolf, Petra; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K; Rummeny, Ernst J; Link, Thomas M; Bauer, Jan S

    2013-12-01

    In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices ( and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), -0.28 to -0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (), 0.07 to 0.11 (), -0.44 to -0.30 (σ(α)), and -0.39 to -0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60-69, 70-79, and >79years. In conclusion, the bone volume fraction-microstructure scaling relations showed a rather universal character. © 2013.

  5. Pre-chemotherapy values for left and right ventricular volumes and ejection fraction by gated tomographic radionuclide angiography using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Haarmark, Christian; Haase, Christine; Jensen, Maria Maj

    2016-01-01

    age and both left and right ventricular volumes in women (r = -0.4, P right end systolic ventricular volume in men (r = -0.3, P = .001). CONCLUSION: A set of reference values for cardiac evaluation prior to chemotherapy in cancer patients without other known cardiopulmonary......BACKGROUND: Estimation of left ventricular ejection fraction (LVEF) using equilibrium radionuclide angiography is an established method for assessment of left ventricular function. The purpose of this study was to establish normative data on left and right ventricular volumes and ejection fraction......, using cadmium-zinc-telluride SPECT camera. METHODS AND RESULTS: From routine assessments of left ventricular function in 1172 patients, we included 463 subjects (194 men and 269 women) without diabetes, previous potentially cardiotoxic chemotherapy, known cardiovascular or pulmonary disease. The lower...

  6. Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1-xLixNbO3 textured ceramics

    Science.gov (United States)

    Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.

    2011-06-01

    The structure, ferroelectric and piezoelectric properties of textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.

  7. Investigating the evolution of the phase behavior of AOT-based w/o microemulsions in dodecane as a function of droplet volume fraction.

    Science.gov (United States)

    Ganguly, R; Choudhury, N

    2012-04-15

    AOT-based water in oil (w/o) microemulsions are one of the most extensively studied reverse micellar systems because of their rich phase behavior and their ability to form in the absence of any co-surfactant. The aggregation characteristics and interaction of the microemulsion droplets in these systems are known to be governed by AOT-oil compatibility and water to AOT molar ratio (w). In this manuscript by using Dynamic Light Scattering (DLS) and viscometry techniques, we show that droplet volume fraction too plays an important role in shaping the phase behavior of these microemulsions in dodecane. The phase separation characteristics and the evolution of the viscosity and the hydrodynamic radius of the microemulsion droplets on approaching the cloud points have thus been found to undergo complete transformation as one goes from low to high droplet volume fraction even at a fixed 'w'. Modeling of the DLS data attributes this to the weakening of inter droplet attractive interaction caused by the growing dominance of the excluded volume effect with increase in droplet volume fraction. In the literature, the inter droplet attractive interaction driven phase separation in these microemulsions is explained based on gas-liquid type phase transition, conceptualized in the framework of Baxter adhesive hard sphere theory. The modeling of our viscosity data, however, does not support such proposition as the characteristic stickiness parameter (τ(-1)) of the microemulsion droplets in this system remains much lower than the critical value (τ(c)(-1)≈10.25) required to enforce such phase transition. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Microstrain evolution during creep of a high volume fraction superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, S. [Materials Department, New Mexico Tech, Socorro, NM 87801 (United States); Brown, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Daymond, M.R. [Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Majumdar, B.S. [Materials Department, New Mexico Tech, Socorro, NM 87801 (United States)]. E-mail: majumdar@nmt.edu

    2005-06-15

    The creep of superalloys containing a high volume fraction of {gamma}' phase is significantly influenced by initial misfit and by the evolution of internal stresses. An in situ neutron diffraction technique was used to monitor elastic microstrains in a polycrystalline superalloy, CM247 LC. The misfit was nearly zero at room temperature and it increased to -0.17% at 900 deg. C. These values are rationalized in terms of thermal mismatch using an eigenstrain formulation and a simple formula is derived to relate the thermal mismatch to the misfit strain. During creep at 425 MPa at 900 deg. C, the material exhibited primarily tertiary behavior. For grains with [0 0 1] axis close to the loading direction, the elastic microstrain in the loading direction increased with creep time for the {gamma}' phase, whereas the opposite occurred for the {gamma} phase. These results are explained in terms of constrained deformation in the narrow {gamma} channels and by an interface dislocation buildup. TEM analysis of the crept microstructure provides evidence of the interface dislocation network.

  9. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    International Nuclear Information System (INIS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-01-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)

  10. Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density

    KAUST Repository

    Guermond, J.-L.; Salgado, Abner J.

    2011-01-01

    In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.

  11. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    Science.gov (United States)

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  12. Effects of variable thermal conductivity on Stokes' flow of a thermoelectric fluid with fractional order of heat transfer

    International Nuclear Information System (INIS)

    Ezzat, M.A.; El-Bary, A.A.

    2016-01-01

    In this study, the constitutive relation for the heat flux vector is derived to be the Fourier's law of heat conduction with a variable thermal conductivity and time-fractional order. The Stokes' flow of unsteady incompressible thermoelectric fluid due to a moving plate in the presence of a transverse magnetic field is molded. Stokes' first problem is solved by applying Laplace transform with respect to time variable and evaluating the inverse transform integrals by using a numerical approach. Numerical results for the temperature and the velocity distributions are given and illustrated graphically for given problem. The results indicate that the thermal conductivity and time-fractional order play a major role in the temperature and velocity distributions. (authors)

  13. A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation

    Science.gov (United States)

    Tayebi, A.; Shekari, Y.; Heydari, M. H.

    2017-07-01

    Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.

  14. Stratification of mixtures in evaporating liquid films occurs only for a range of volume fractions of the smaller component

    Science.gov (United States)

    Sear, Richard P.

    2018-04-01

    I model the drying of a liquid film containing small and big colloid particles. Fortini et al. [Phys. Rev. Lett. 116, 118301 (2016)] studied these films with both computer simulation and experiment. They found that at the end of drying, the mixture had stratified with a layer of the smaller particles on top of the big particles. I develop a simple model for this process. The model has two ingredients: arrest of the diffusion of the particles at high density and diffusiophoretic motion of the big particles due to gradients in the volume fraction of the small particles. The model predicts that stratification only occurs over a range of initial volume fractions of the smaller colloidal species. Above and below this range, the downward diffusiophoretic motion of the big particles is too slow to remove the big particles from the top of the film, and so there is no stratification. In agreement with earlier work, the model also predicts that large Péclet numbers for drying are needed to see stratification.

  15. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H., E-mail: songm@dgu.edu [Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2015-03-15

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  16. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    International Nuclear Information System (INIS)

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H.

    2015-01-01

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made

  17. Temperature effect on the inter-micellar collision and maximum packaging volume fraction in water/AOT/isooctane micro-emulsions

    International Nuclear Information System (INIS)

    Guettari, Moez; Ben Naceur, Imen; Kassab, Ghazi; Tajouri, Tahar

    2016-01-01

    We have studied the viscosity behaviour of water/AOT/isooctane micro-emulsions as a function of the volume fraction of the dispersed phase over a temperature range from the (298.15 to 328.15) K. For all the studied temperature range, a sharp increase of the viscosities is observed when the droplets concentration was varied. Several equations based on hard sphere model were examined to explain the behaviours of micro-emulsions under temperature and concentration effects. According to these equations, the shape factor and the inter-particle interaction parameters were found to be dependent on temperature which is in contradiction with experimental results reported in the literature. A modified Vand equation, taking into account the inter-particle collision time, is used to interpret the results obtained. This deviation is attributed to the aggregation of the droplets which becomes important by increasing temperature. The maximum packaging volume fraction of particles Φ_d_m and the intrinsic viscosity [η] were determined according to the Krieger and Dougherty equation through the temperature range studied. These two parameters were shown to be dependent on temperature but their product was found to be constant and close to 2 as reported in theory.

  18. Integer, fractional, and anomalous quantum Hall effects explained with Eyring's rate process theory and free volume concept.

    Science.gov (United States)

    Hao, Tian

    2017-02-22

    The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.

  19. Influence of Fiber Volume Fraction on the Tensile Properties and Dynamic Characteristics of Coconut Fiber Reinforced Composite

    OpenAIRE

    Izzuddin Zaman; Al Emran Ismail; Muhamad Khairudin Awang

    2011-01-01

    The utilization of coconut fibers as reinforcement in polymer composites has been increased significantly due to their low cost and high specific mechanical properties. In this paper, the mechanical properties and dynamic characteristics of a proposed combined polymer composite which consist of a polyester matrix and coconut fibers are determined. The influence of fibers volume fraction (%) is also evaluated and composites with volumetric amounts of coconut fiber up to 15% are fabricated. In ...

  20. Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth

    Directory of Open Access Journals (Sweden)

    I. Didenkulova

    2010-11-01

    Full Text Available Tsunami wave generation by submarine landslides of a variable volume in a basin of variable depth is studied within the shallow-water theory. The problem of landslide induced tsunami wave generation and propagation is studied analytically for two specific convex bottom profiles (h ~ x4/3 and h ~ x4. In these cases the basic equations can be reduced to the constant-coefficient wave equation with the forcing determined by the landslide motion. For certain conditions on the landslide characteristics (speed and volume per unit cross-section the wave field can be described explicitly. It is represented by one forced wave propagating with the speed of the landslide and following its offshore direction, and two free waves propagating in opposite directions with the wave celerity. For the case of a near-resonant motion of the landslide along the power bottom profile h ~ xγ the dynamics of the waves propagating offshore is studied using the asymptotic approach. If the landslide is moving in the fully resonant regime the explicit formula for the amplitude of the wave can be derived. It is demonstrated that generally tsunami wave amplitude varies non-monotonically with distance.

  1. Right heart ejection fraction, ventricular volumes, and left to right cardiac shunt measurements with a conventional Anger camera in congenital heart disease

    International Nuclear Information System (INIS)

    Cook, S.A.; Go, R.T.; MacIntyre, W.J.; Moodie, D.S.; Houser, T.S.; Ceimo, J.; Underwood, D.; Yiannikas, J.

    1982-01-01

    The object of this investigation was to demonstrate that a conventional Anger camera can be used for measurement of right heart ejection fraction, ventricular volumes and left to right shunts in routine clinical determinations. The automatic selection of chamber and lung regions, the recirculation subtraction of recirculation, and the filtering of the right heart ejection fraction dilution curves are all done entirely without operator intervention. Thus, this entire evaluation has been incorporated into the routine procedures of patient care

  2. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer

    International Nuclear Information System (INIS)

    Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias

    2008-01-01

    To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R 2 = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R 2 = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)

  3. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology

    2008-12-15

    To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R{sup 2} = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R{sup 2} = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)

  4. Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder

    International Nuclear Information System (INIS)

    Pinkawa, Michael; Asadpour, Branka; Gagel, Bernd; Piroth, Marc D.; Holy, Richard; Eble, Michael J.

    2006-01-01

    Purpose: To evaluate prostate position variability and dose-volume histograms in prostate radiotherapy with full bladder (FB) and empty bladder (EB). Methods and Materials: Thirty patients underwent planning computed tomography scans in a supine position with FB and EB before and after 4 and 8 weeks of radiation therapy. The scans were matched by alignment of pelvic bones. Displacements of the prostate/seminal vesicle organ borders and center of mass were determined. Treatment plans (FB vs. EB) were compared. Results: Compared with the primary scan, FB volume varied more than EB volume (standard deviation, 106 cm 3 vs. 47 cm 3 ), but the prostate/seminal vesicle center of mass position variability was the same (>3 mm deviation in right-left, anterior-posterior, and superior-inferior directions in 0, 41%, and 33%, respectively, with FB vs. 0, 44%, and 33% with EB). The bladder volume treated with 90% of the prescription dose was significantly larger with EB (39% ± 14% vs. 22% ± 10%; p < 0.01). Bowel loops received ≥90% of prescription dose in 37% (3% with FB; p < 0.01). Conclusion: Despite the larger variability of bladder filling, prostate position stability was the same with FB compared with EB. An increased amount of bladder volume in the high-dose region and a higher dose to bowel loops result from treatment plans with EB

  5. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    Science.gov (United States)

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  6. The relationship between prostate volume and prostate-specific antigen variability: data from the Baltimore Longitudinal Study of Aging and the Johns Hopkins Active Surveillance Program.

    Science.gov (United States)

    Nichols, John H; Loeb, Stacy; Metter, E Jeffrey; Ferrucci, Luigi; Carter, H Ballentine

    2012-05-01

    Study Type--Prognostic (cohort). Level of Evidence 2b. What's known on the subject? And what does the study add? Previous studies have attempted to characterize the normal biological variability in PSA among men without prostate cancer. These reports suggest that PSA variability is unrelated to age, but there are conflicting data on its association with the baseline PSA level. There are limited published data regarding the effects of prostate volume on PSA variability. A prior study assessing whether prostate volume changes would confound the use of PSA velocity in clinical practice reported that prostate volume changes were not significantly related to PSA changes. This study did not directly address the effect of baseline prostate volume on serial PSA variability. The objective of the current study was to further examine the relationship between prostate volume and PSA variability. Our hypothesis was that larger baseline prostate volume would be associated with increased PSA variability in men without known prostate cancer and in those with suspected small-volume disease. The results of the study suggest that baseline PSA, not prostate volume, is the primary driver of PSA variability in these populations. • To clarify the relationship between serial prostate-specific antigen (PSA) variability and prostate volume in both cancer-free participants from the Baltimore Longitudinal Study of Aging (BLSA) and patients with low-risk prostate cancer from the Johns Hopkins Active Surveillance Program (AS). • In all, 287 men from the BLSA and 131 patients from the AS were included in the analysis, all with at least two PSA measurements and concurrent prostate volume measurements. • PSA variability was calculated in ng/mL per year, and a linear mixed-effects model was used to determine the relative effects of prostate volume, baseline PSA and age on PSA change over time. • In a model with prostate volume, age and baseline PSA, there was no significant relationship

  7. Non-invasive measurement of stroke volume and left ventricular ejection fraction. Radionuclide cardiography compared with left ventricular cardioangiography

    DEFF Research Database (Denmark)

    Kelbaek, H; Svendsen, J H; Aldershvile, J

    1988-01-01

    The stroke volume (SV) was determined by first passage radionuclide cardiography and the left ventricular ejection fraction (LVEF) by multigated radionuclide cardiography in 20 patients with ischemic heart disease. The results were evaluated against those obtained by the invasive dye dilution or ...... are reliable. The discrepancy between the non-invasive and invasive LVEF values raises the question, whether LVEF is overestimated by cardioangiography or underestimated by radionuclide cardiography....

  8. Structuring polymer blends with bicontinuous phase morphology. Part II. Tailoring blends with ultralow critical volume fraction

    DEFF Research Database (Denmark)

    Lyngaae-Jørgensen, Jørgen; Utracki, Leszek

    2003-01-01

    A hypothesis providing a guideline for the development of immiscible polymer blends with co-continuous phase structure at very low critical volume fraction of one component is. postulated and experimentally verified. Based on a number of simplifying assumptions the following relation was derived......: phi(cr) = k(lambdagamma)(1-z)/(theta(b)(*))(z) where lambdagamma is a Deborah number and theta(b)(*) is a dimensionless break-up time. The equation parameters, k and z are constant that depend on the flow field hence on the blending equipment. For the studies an internal mixer with Walzenkneter...

  9. Variable-order fractional MSD function to describe the evolution of protein lateral diffusion ability in cell membranes

    Science.gov (United States)

    Yin, Deshun; Qu, Pengfei

    2018-02-01

    Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.

  10. Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound

    International Nuclear Information System (INIS)

    Andermann, P.; Schloegl, S.; Maeder, U.; Luster, M.; Lassmann, M.; Reiners, C.

    2007-01-01

    Thyroid volume measurement by ultrasonography (US) is essential in numerous clinical diagnostic and therapeutic fields. While known to be limited, the accuracy and precision of two-dimensional (2D) US thyroid volume measurement have not been thoroughly characterized. Objective: We sought to assess the intra- and interobserver variability, accuracy and precision of thyroid volume determination by conventional 2D US in healthy adults using reference volumes determined by three-dimensional (3D) US. Design, methods: In a prospective blinded trial, thyroid volumes of ten volunteers were determined repeatedly by nine experienced sonographers using conventional 2D US (ellipsoid model). The values obtained were statistically compared to the so-called true volumes determined by 3D US (multiplanar approximation), the so-called gold standard, to estimate systematic errors and relative deviations of individual observers. Results: The standard error of measurement (SEM) for one observer and successive measurements (intraobserver variability), was 14%, and for different observers and repeated measurements (interobserver variability), 17%. The minimum relative thyroid volume change significantly different at the 95% level was 39% for the same observer and 46% for different observers. Regarding accuracy, the mean value of the differences showed a significant thyroid volume overestimation (17%, p <0.01) by 2D relative to 3D US. Conclusion: 2D US is appropriate for routine thyroid volumetry. Nevertheless, the so-called human factor (random error) should be kept in mind and correction is needed for methodical bias (systematic error). Further efforts are required to improve the accuracy and precision of 2D US thyroid volumetry by optimizing the underlying geometrical modeling or by the application of 3D US. (orig.)

  11. Mechanisms of the 40-70 Day Variability in the Yucatan Channel Volume Transport

    Science.gov (United States)

    van Westen, René M.; Dijkstra, Henk A.; Klees, Roland; Riva, Riccardo E. M.; Slobbe, D. Cornelis; van der Boog, Carine G.; Katsman, Caroline A.; Candy, Adam S.; Pietrzak, Julie D.; Zijlema, Marcel; James, Rebecca K.; Bouma, Tjeerd J.

    2018-02-01

    The Yucatan Channel connects the Caribbean Sea with the Gulf of Mexico and is the main outflow region of the Caribbean Sea. Moorings in the Yucatan Channel show high-frequent variability in kinetic energy (50-100 days) and transport (20-40 days), but the physical mechanisms controlling this variability are poorly understood. In this study, we show that the short-term variability in the Yucatan Channel transport has an upstream origin and arises from processes in the North Brazil Current. To establish this connection, we use data from altimetry and model output from several high resolution global models. A significant 40-70 day variability is found in the sea surface height in the North Brazil Current retroflection region with a propagation toward the Lesser Antilles. The frequency of variability is generated by intrinsic processes associated with the shedding of eddies, rather than by atmospheric forcing. This sea surface height variability is able to pass the Lesser Antilles, it propagates westward with the background ocean flow in the Caribbean Sea and finally affects the variability in the Yucatan Channel volume transport.

  12. Fractional dynamic calculus and fractional dynamic equations on time scales

    CERN Document Server

    Georgiev, Svetlin G

    2018-01-01

    Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations.  Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .

  13. Rapid Estimation Method for State of Charge of Lithium-Ion Battery Based on Fractional Continual Variable Order Model

    Directory of Open Access Journals (Sweden)

    Xin Lu

    2018-03-01

    Full Text Available In recent years, the fractional order model has been employed to state of charge (SOC estimation. The non integer differentiation order being expressed as a function of recursive factors defining the fractality of charge distribution on porous electrodes. The battery SOC affects the fractal dimension of charge distribution, therefore the order of the fractional order model varies with the SOC at the same condition. This paper proposes a new method to estimate the SOC. A fractional continuous variable order model is used to characterize the fractal morphology of charge distribution. The order identification results showed that there is a stable monotonic relationship between the fractional order and the SOC after the battery inner electrochemical reaction reaches balanced. This feature makes the proposed model particularly suitable for SOC estimation when the battery is in the resting state. Moreover, a fast iterative method based on the proposed model is introduced for SOC estimation. The experimental results showed that the proposed iterative method can quickly estimate the SOC by several iterations while maintaining high estimation accuracy.

  14. Quantitative Analysis of Variability and Uncertainty in Environmental Data and Models. Volume 1. Theory and Methodology Based Upon Bootstrap Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H. Christopher [North Carolina State University, Raleigh, NC (United States); Rhodes, David S. [North Carolina State University, Raleigh, NC (United States)

    1999-04-30

    This is Volume 1 of a two-volume set of reports describing work conducted at North Carolina State University sponsored by Grant Number DE-FG05-95ER30250 by the U.S. Department of Energy. The title of the project is “Quantitative Analysis of Variability and Uncertainty in Acid Rain Assessments.” The work conducted under sponsorship of this grant pertains primarily to two main topics: (1) development of new methods for quantitative analysis of variability and uncertainty applicable to any type of model; and (2) analysis of variability and uncertainty in the performance, emissions, and cost of electric power plant combustion-based NOx control technologies. These two main topics are reported separately in Volumes 1 and 2.

  15. SGS Analysis of the Evolution Equations of the Mixture Fraction and the Progress Variable Variances in the Presence of Spray Combustion

    Directory of Open Access Journals (Sweden)

    H. Meftah

    2010-03-01

    Full Text Available In this paper, direct numerical simulation databases have been generated to analyze the impact of the propagation of a spray flame on several subgrid scales (SGS models dedicated to the closure of the transport equations of the subgrid fluctuations of the mixture fraction Z and the progress variable c. Computations have been carried out starting from a previous inert database [22] where a cold flame has been ignited in the center of the mixture when the droplet segregation and evaporation rate were at their highest levels. First, a RANS analysis has shown a brutal increase of the mixture fraction fluctuations due to the fuel consumption by the flame. Indeed, local vapour mass fraction reaches then a minimum value, far from the saturation level. It leads to a strong increase of the evaporation rate, which is also accompanied by a diminution of the oxidiser level. In a second part of this paper, a detailed evaluation of the subgrid models allowing to close the variance and the dissipation rates of the mixture fraction and the progress variable has been carried out. Models that have been selected for their efficiency in inert flows have shown a very good behaviour in the framework of reactive flows.

  16. Agreement of left ventricular ejection fraction and volumes between adenosine stress TL-201 gated SPECT and echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Pai, M. S. [College of Medicine, Univ. of Ewha, Seoul (Korea, Republic of); Moon, D. H.; Kim, H. M.; Yang, Y. J.; Kang, D. H. [Asan Medical Center, Seoul (Korea, Republic of)

    2003-07-01

    Electrocardiogram-gated TI-201 SPECT measurements of left ventricular ejection fraction (EF), end-diastolic volume (EDV), and end-systolic volume (ESV) have shown high correlation with conventional methods. However, how much these parameters measured by TI-201 gated SPECT differ from those by echocardiography has not been assessed. Adenosine stress (Ad-G) and redistribution TI-201 gated SPECT (Re-G) and resting echocardiography were conducted in 337 patients (184 male, 153 female). EDV, ESV and LVEF measured by QGS software were compared with the results by echocardiography. Patients with arrhythmia (atrial fibrillation or frequent premature contractions) or evidence of fixed or reversible perfusion defects on TI-201 SPECT were excluded. EF, EDV and ESV measured by Ad-G (63.3{+-}9.8,73.8{+-}30.2,29.1{+-}20.1) and Re-G (65.2{+-}11.6,69.1{+-}30.1,26.5{+-}20.3) correlated well with those by Echo (61.4{+-}7.9,78.3{+-}2.7, 30.7{+-} 17.5 ; r of Ad-G=0.547, 0.850, 0.827, p<0.001 ; r of Re-G=0.585, 0.838, 0.819, p<0.001). However the difference (mean, SD, SEE of Echo - gated SPECT) was statistically significant (EF: Ad-G=1.71, 8.92, 0.48, Re-G=3.59, 10.39, 0.56, p<0.001 ; EDV: Ad-G=4.75, 16.21, 0.88, Re-G=9.53, 16.77, 0.91, p<0.001 ; ESV: Ad-G=1.75, 11.35, 0.61, p<0.05, Re-G=4.29, 11.7, 0.63, p<0.001). Bland-Altman plots showed that the difference of EDV and ESV did not vary in any systematic way over the range of measurement, whereas the difference of EF increased with increasing average EF by Echo and gated-SPECT. The difference of EF, EDV, and ESV between Ad-G and Echo was significantly smaller than those between Re-G and Echo (p<0.001). Gated TI-201 SPECT underestimates EDV and ESV over a wide range of volume. As a result, EF by gated TI-201 SPECT is overestimated especially in patients with small LV volume. Ad-G is preferable to Re-G in assessing left ventricular ejection fraction and volume in place of Echo because of smaller bias.

  17. A stochastic fractional dynamics model of space-time variability of rain

    Science.gov (United States)

    Kundu, Prasun K.; Travis, James E.

    2013-09-01

    varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, which allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and time scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and on the Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to fit the second moment statistics of radar data at the smaller spatiotemporal scales. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well at these scales without any further adjustment.

  18. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    Science.gov (United States)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  19. Determination of average fission fraction produced by 14 MeV neutrons in assemblies with large volume of depleted uranium

    International Nuclear Information System (INIS)

    Wang Dalun; Li Benci; Wang Xiuchun; Li Yijun; Zhang Shaohua; He Yongwu

    1991-07-01

    The average fission fraction of 238 U caused by 14 MeV neutrons in assemblies with large volume depleted uranium has been determined. The measured value of p f 238U (R ∞ depleted ) 14 was 0.897 ± 0.036. Measurements were also completed for neutron flux distribution and average fission fraction of 235 U isotope in depleted uranium sphere. Values of p f 238U (R depleted ) have been obtained by using a series of uranium spheres. For a sphere with Φ 600 the p f 23 '8 U (R 300 depleted ) is 0.823 ± 0.041, the density of depleted uranium assembly is 18.8g/cm 3 and total weight of assembly is about 2.8t

  20. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2018-04-01

    Full Text Available The combined effects of thermal stratification, applied electric and magnetic fields, thermal radiation, viscous dissipation and Joules heating are numerically studied on a boundary layer flow of electrical conducting nanofluid over a nonlinearly stretching sheet with variable thickness. The governing equations which are partial differential equations are converted to a couple of ordinary differential equations with suitable similarity transformation techniques and are solved using implicit finite difference scheme. The electrical conducting nanofluid particle fraction on the boundary is passively rather than actively controlled. The effects of the emerging parameters on the electrical conducting nanofluid velocity, temperature, and nanoparticles concentration volume fraction with skin friction, heat transfer characteristics are examined with the aids of graphs and tabular form. It is observed that the variable thickness enhances the fluid velocity, temperature, and nanoparticle concentration volume fraction. The heat and mass transfer rate at the surface increases with thermal stratification resulting to a reduction in the fluid temperature. Electric field enhances the nanofluid velocity which resolved the sticking effects caused by a magnetic field which suppressed the profiles. Radiative heat transfer and viscous dissipation are sensitive to an increase in the fluid temperature and thicker thermal boundary layer thickness. Comparison with published results is examined and presented. Keywords: MHD nanofluid, Variable thickness, Thermal radiation, Similarity solution, Thermal stratification

  1. The reproducibility and variability of sequential left ventricular ejection fraction measurements by the nuclear stethoscope

    International Nuclear Information System (INIS)

    Kurata, Chinori; Hayashi, Hideharu; Kobayashi, Akira; Yamazaki, Noboru

    1986-01-01

    We evaluated the reproducibility and variability of sequential left ventricular ejection fraction (LVEF) measurements by the nuclear stethoscope in 72 patients. The group as a whole demonstrated excellent reproducibility (r = 0.96). However, repeat LVEF measurements by the nuclear stethoscope at 5-minute interval showed around 9 % absolute difference, at 95 % confidence levels, from one measurement to the next. The finding indicates that a change in LVEF greater than 9 % is necessary for determining an acute effect of an intervention in individual cases. (author)

  2. Three-dimensional echocardiography: assessment of inter- and intra-operator variability and accuracy in the measurement of left ventricular cavity volume and myocardial mass

    International Nuclear Information System (INIS)

    Nadkarni, S.K.; Drangova, M.; Boughner, D.R.; Fenster, A.; Department of Medical Biophysics, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1

    2000-01-01

    Accurate left ventricular (LV) volume and mass estimation is a strong predictor of cardiovascular morbidity and mortality. We propose that our technique of 3D echocardiography provides an accurate quantification of LV volume and mass by the reconstruction of 2D images into 3D volumes, thus avoiding the need for geometric assumptions. We compared the accuracy and variability in LV volume and mass measurement using 3D echocardiography with 2D echocardiography, using in vitro studies. Six operators measured the LV volume and mass of seven porcine hearts, using both 3D and 2D techniques. Regression analysis was used to test the accuracy of results and an ANOVA test was used to compute variability in measurement. LV volume measurement accuracy was 9.8% (3D) and 18.4% (2D); LV mass measurement accuracy was 5% (3D) and 9.2% (2D). Variability in LV volume quantification with 3D echocardiography was %SEM inter = 13.5%, %SEM intra = 11.4%, and for 2D echocardiography was %SEM inter = 21.5%, %SEM intra = 19.1%. We derived an equation to predict uncertainty in measurement of LV volume and mass using 3D echocardiography, the results of which agreed with our experimental results to within 13%. 3D echocardiography provided twice the accuracy for LV volume and mass measurement and half the variability for LV volume measurement as compared with 2D echocardiography. (author)

  3. About the use of the Monte-Carlo code based tracing algorithm and the volume fraction method for S n full core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, M. I.; Oleynik, D. S. [RRC Kurchatov Inst., Kurchatov Sq., 1, 123182, Moscow (Russian Federation); Russkov, A. A.; Voloschenko, A. M. [Keldysh Inst. of Applied Mathematics, Miusskaya Sq., 4, 125047, Moscow (Russian Federation)

    2006-07-01

    The tracing algorithm that is implemented in the geometrical module of Monte-Carlo transport code MCU is applied to calculate the volume fractions of original materials by spatial cells of the mesh that overlays problem geometry. In this way the 3D combinatorial geometry presentation of the problem geometry, used by MCU code, is transformed to the user defined 2D or 3D bit-mapped ones. Next, these data are used in the volume fraction (VF) method to approximate problem geometry by introducing additional mixtures for spatial cells, where a few original materials are included. We have found that in solving realistic 2D and 3D core problems a sufficiently fast convergence of the VF method takes place if the spatial mesh is refined. Virtually, the proposed variant of implementation of the VF method seems as a suitable geometry interface between Monte-Carlo and S{sub n} transport codes. (authors)

  4. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension.

    Science.gov (United States)

    Chemla, Denis; Castelain, Vincent; Zhu, Kaixian; Papelier, Yves; Creuzé, Nicolas; Hoette, Susana; Parent, Florence; Simonneau, Gérald; Humbert, Marc; Herve, Philippe

    2013-05-01

    The mean pulmonary artery pressure (mPAP) replaces mean systolic ejection pressure (msePAP) in the classic formula of right ventricular stroke work (RVSW) = (mPAP - RAP) × stroke volume, where RAP is mean right atrial pressure. Only the steady work is thus taken into account, not the pulsatile work, whereas pulmonary circulation is highly pulsatile. Our retrospective, high-fidelity pressure study tested the hypothesis that msePAP was proportional to mPAP, and looked at the implications for RVSW. Eleven patients with severe, precapillary pulmonary hypertension (PH) (six patients with idiopathic pulmonary arterial hypertension and five with chronic thromboembolic PH; mPAP = 57 ± 10 mm Hg) were studied at rest and during mild to moderate exercise. Eight non-PH control subjects were also studied at rest (mPAP = 16 ± 2 mm Hg). The msePAP was averaged from end diastole to dicrotic notch. In the full data set (53 pressure-flow points), mPAP ranged from 14 to 99.5 mm Hg, cardiac output from 2.38 to 11.1 L/min, and heart rate from 53 to 163 beats/min. There was a linear relationship between msePAP and mPAP (r² = 0.99). The msePAP matched 1.25 mPAP (bias, -0.5 ± 2.6 mm Hg). Results were similar in the resting non-PH group and in resting and the exercising PH group. This implies that the classic formula markedly underestimates RVSW and that the pulsatile work may be a variable 20% to 55% fraction of RVSW, depending on RAP and mPAP. At rest, RVSW in patients with PH was twice as high as that of the non-PH group (P work fraction was similar between the two groups (26 ± 4% vs 24 ± 1%) because of the counterbalancing effects of high RAP (11 ± 5 mm Hg vs 4 ± 2 mm Hg), which increases the fraction, and high mPAP, which decreases the fraction. Our study favored the use of an improved formula that takes into account the variable pulsatile work fraction: RVSW = (1.25 mPAP - RAP) × stroke volume. Increased RAP and increased mPAP have opposite effects on the pulsatile work

  5. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  6. Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions

    Directory of Open Access Journals (Sweden)

    Jinsong Zhang

    2018-05-01

    Full Text Available Large petroleum resources in deep sea, and huge market demands for petroleum need advanced petroleum extraction technology. The multiphase pump, which can simultaneously transport oil and gas with considerable efficiency, has been a crucial technology in petroleum extraction. A numerical approach with mesh generation and a Navier-Stokes equation solution is employed to evaluate the effects of gas volume fraction on energy performance and pressure fluctuations of a multiphase pump. Good agreement of experimental and calculation results indicates that the numerical approach can accurately simulate the multiphase flow in pumps. The pressure rise of a pump decreases with the increasing of flow rate, and the pump efficiency decreases with the increasing of GVF (the ratio of the gas volume to the whole volume. Results show that the dominant frequencies of pressure fluctuation in the impeller and diffuser are eleven and three times those of the impeller rotational frequency, respectively. Due to the larger density of water and centrifugal forces, the water aggregates to the shroud and the gas gathers to the hub, which renders the distribution of GVF in the pump uneven. A vortex develops at the blade suction side, near the leading edge, induced by the leakage flow, and further affects the pressure fluctuation in the impeller. The obvious vortex in the diffuser indicates that the design of the divergence angle of the diffuser is not optimal, which induces flow separation due to large diffusion ratio. A uniform flow pattern in the impeller indicates good hydraulic performance of the pump.

  7. Equations of bark thickness and volume profiles at different heights with easy-measurement variables

    Energy Technology Data Exchange (ETDEWEB)

    Cellini, J. M.; Galarza, M.; Burns, S. L.; Martinez-Pastur, G. J.; Lencinas, M. V.

    2012-11-01

    The objective of this work was to develop equations of thickness profile and bark volume at different heights with easy-measurement variables, taking as a study case Nothofagus pumilio forests, growing in different site qualities and growth phases in Southern Patagonia. Data was collected from 717 harvested trees. Three models were fitted using multiple, non-lineal regression and generalized linear model, by stepwise methodology, iteratively reweighted least squares method for maximum likelihood estimation and Marquardt algorithm. The dependent variables were diameter at 1.30 m height (DBH), relative height (RH) and growth phase (GP). The statistic evaluation was made through the adjusted determinant coefficient (r2-adj), standard error of the estimation (SEE), mean absolute error and residual analysis. All models presented good fitness with a significant correlation with the growth phase. A decrease in the thickness was observed when the relative height increase. Moreover, a bark coefficient was made to calculate volume with and without bark of individual trees, where significant differences according to site quality of the stands and DBH class of the trees were observed. It can be concluded that the prediction of bark thickness and bark coefficient is possible using DBH, height, site quality and growth phase, common and easy measurement variables used in forest inventories. (Author) 23 refs.

  8. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  9. Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code

    International Nuclear Information System (INIS)

    Peixoto, Philippe N.B.; Salgado, Cesar M.

    2015-01-01

    The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)

  10. Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Philippe N.B.; Salgado, Cesar M., E-mail: phbelache@hotmail.com, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)

  11. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET.

    Science.gov (United States)

    Nordström, Jonny; Kero, Tanja; Harms, Hendrik Johannes; Widström, Charles; Flachskampf, Frank A; Sörensen, Jens; Lubberink, Mark

    2017-11-14

    Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). 15 O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard 15 O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B ) 15 O-water images and from first pass (FP) images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15 O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV) and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Using V B images, high correlations between PET and MRI ESV (r = 0.89, p  0.86, p dynamic 15 O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

  12. Fractional Diffusion in Gaussian Noisy Environment

    Directory of Open Access Journals (Sweden)

    Guannan Hu

    2015-03-01

    Full Text Available We study the fractional diffusion in a Gaussian noisy environment as described by the fractional order stochastic heat equations of the following form: \\(D_t^{(\\alpha} u(t, x=\\textit{B}u+u\\cdot \\dot W^H\\, where \\(D_t^{(\\alpha}\\ is the Caputo fractional derivative of order \\(\\alpha\\in (0,1\\ with respect to the time variable \\(t\\, \\(\\textit{B}\\ is a second order elliptic operator with respect to the space variable \\(x\\in\\mathbb{R}^d\\ and \\(\\dot W^H\\ a time homogeneous fractional Gaussian noise of Hurst parameter \\(H=(H_1, \\cdots, H_d\\. We obtain conditions satisfied by \\(\\alpha\\ and \\(H\\, so that the square integrable solution \\(u\\ exists uniquely.

  13. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites

    Science.gov (United States)

    Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.

    1990-01-01

    Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or siliconcarbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which considers process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.

  14. Semi solid metal processing: The fraction solid dilemma

    International Nuclear Information System (INIS)

    Nafisi, S.; Emadi, D.; Ghomashchi, R.

    2009-01-01

    One of the most challenging aspects in semi solid metal (SSM) processing is to determine the actual volume fraction of the solid at the processing temperature. The fraction has great impact on the SSM slurry viscosity and the subsequent filling of the mold in the casting stage. Three methods, namely quantitative metallography, thermodynamic calculation, and thermal analysis are employed to investigate and clarify the contradictory open literature reports about the real value of the volume fraction of primary particles. It is reported that the discrepancies between the results obtained by different methods are caused mainly by variations in cooling rates and by coarsening of the primaries during the quenching process

  15. Semi solid metal processing: The fraction solid dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Nafisi, S. [EVRAZ Inc. NA 100 Armour Road, Regina, SK, S4P 3C7 (Canada)], E-mail: Shahrooz.Nafisi@evrazincna.com; Emadi, D. [CEPG, CanmetENERGY, Natural Resources Canada, Ottawa, ON, K1A 1M1 (Canada); Ghomashchi, R. [Advanced Materials and Processing Research Institute, Suite 122, A7-1390 Major MacKenzie, ON, L4S 0A1 (Canada)

    2009-05-15

    One of the most challenging aspects in semi solid metal (SSM) processing is to determine the actual volume fraction of the solid at the processing temperature. The fraction has great impact on the SSM slurry viscosity and the subsequent filling of the mold in the casting stage. Three methods, namely quantitative metallography, thermodynamic calculation, and thermal analysis are employed to investigate and clarify the contradictory open literature reports about the real value of the volume fraction of primary particles. It is reported that the discrepancies between the results obtained by different methods are caused mainly by variations in cooling rates and by coarsening of the primaries during the quenching process.

  16. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET

    Directory of Open Access Journals (Sweden)

    Jonny Nordström

    2017-11-01

    Full Text Available Abstract Background Quantitative measurement of myocardial blood flow (MBF is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD. 15O-water positron emission tomography (PET is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV volumes and ejection fraction (EF is not possible from standard 15O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B 15O-water images and from first pass (FP images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV, end-diastolic volume (EDV, stroke volume (SV and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Results Using V B images, high correlations between PET and MRI ESV (r = 0.89, p  0.86, p < 0.001. Conclusion Calculation of LV volumes and LVEF from dynamic 15O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

  17. Mineralogy of the clay fraction of Alfisols in two slope curvatures: III - spatial variability

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2013-04-01

    Full Text Available A good knowledge of the spatial distribution of clay minerals in the landscape facilitates the understanding of the influence of relief on the content and crystallographic attributes of soil minerals such as goethite, hematite, kaolinite and gibbsite. This study aimed at describing the relationships between the mineral properties of the clay fraction and landscape shapes by determining the mineral properties of goethite, hematite, kaolinite and gibbsite, and assessing their dependence and spatial variability, in two slope curvatures. To this end, two 100 × 100 m grids were used to establish a total of 121 regularly spaced georeferenced sampling nodes 10 m apart. Samples were collected from the layer 0.0-0.2 m and analysed for iron oxides, and kaolinite and gibbsite in the clay fraction. Minerals in the clay fraction were characterized from their X-ray diffraction (XRD patterns, which were interpreted and used to calculate the width at half height (WHH and mean crystallite dimension (MCD of iron oxides, kaolinite, and gibbsite, as well as aluminium substitution and specific surface area (SSA in hematite and goethite. Additional calculations included the goethite and hematite contents, and the goethite/(goethite+hematite [Gt/(Gt+Hm] and kaolinite/(kaolinite+gibbsite [Kt/(Kt+Gb] ratios. Mineral properties were established by statistical analysis of the XRD data, and spatial dependence was assessed geostatistically. Mineralogical properties differed significantly between the convex area and concave area. The geostatistical analysis showed a greater number of mineralogical properties with spatial dependence and a higher range in the convex than in the concave area.

  18. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study).

    Science.gov (United States)

    Margossian, Renee; Schwartz, Marcy L; Prakash, Ashwin; Wruck, Lisa; Colan, Steven D; Atz, Andrew M; Bradley, Timothy J; Fogel, Mark A; Hurwitz, Lynne M; Marcus, Edward; Powell, Andrew J; Printz, Beth F; Puchalski, Michael D; Rychik, Jack; Shirali, Girish; Williams, Richard; Yoo, Shi-Joon; Geva, Tal

    2009-08-01

    Assessment of the size and function of a functional single ventricle (FSV) is a key element in the management of patients after the Fontan procedure. Measurement variability of ventricular mass, volume, and ejection fraction (EF) among observers by echocardiography and cardiac magnetic resonance imaging (CMR) and their reproducibility among readers in these patients have not been described. From the 546 patients enrolled in the Pediatric Heart Network Fontan Cross-Sectional Study (mean age 11.9 +/- 3.4 years), 100 echocardiograms and 50 CMR studies were assessed for measurement reproducibility; 124 subjects with paired studies were selected for comparison between modalities. Interobserver agreement for qualitative grading of ventricular function by echocardiography was modest for left ventricular (LV) morphology (kappa = 0.42) and weak for right ventricular (RV) morphology (kappa = 0.12). For quantitative assessment, high intraclass correlation coefficients were found for echocardiographic interobserver agreement (LV 0.87 to 0.92, RV 0.82 to 0.85) of systolic and diastolic volumes, respectively. In contrast, intraclass correlation coefficients for LV and RV mass were moderate (LV 0.78, RV 0.72). The corresponding intraclass correlation coefficients by CMR were high (LV 0.96, RV 0.85). Volumes by echocardiography averaged 70% of CMR values. Interobserver reproducibility for the EF was similar for the 2 modalities. Although the absolute mean difference between modalities for the EF was small (<2%), 95% limits of agreement were wide. In conclusion, agreement between observers of qualitative FSV function by echocardiography is modest. Measurements of FSV volume by 2-dimensional echocardiography underestimate CMR measurements, but their reproducibility is high. Echocardiographic and CMR measurements of FSV EF demonstrate similar interobserver reproducibility, whereas measurements of FSV mass and LV diastolic volume are more reproducible by CMR.

  19. Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Pedersen, Dorthe

    2005-01-01

    in four-dimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection......, and a texture model pruning strategy. Cross-validation carried out on clinical-quality scans of twelve volunteers indicates that ejection fraction and cardiac blood pool volumes can be estimated automatically and rapidly with accuracy on par with typical inter-observer variability....

  20. Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Wang, L.; Xue, Y.F.; Cheng, X.W.; Wang, Y.D.; Nie, Z.H.; Zhang, H.F.; Fu, H.M.; Ma, L.L.; Ren, Y.

    2013-01-01

    The mechanical properties of both as-cast and as-extruded Zr-based metallic glass reinforced with tungsten composites with 33, 28, and 21 vol. % of metallic glass were investigated under quasi-static compression at strain rates from 10 −4 s −1 to 10 −1 s −1 . These two types of composites exhibited a strain rate sensitivity exponent that increased with the increase of the tungsten volume fraction. Compared to the composites with 33 and 21 vol. % of the metallic glass, the two types of composites with 28 vol. % of the metallic glass phase exhibited superior fracture energies. The in-situ compression test on the as-cast composites using high-energy synchrotron X-ray diffraction (HEXRD) revealed that the yield stress of the tungsten phase increased with a decrease in the metallic glass volume fraction. The as-cast composite with 28 vol. % of the metallic glass exhibited relatively great mechanical properties compared to the composites that contained 33 and 21 vol. % of the metallic glass. This result was attributed to the great coupling of the load distribution between the two phases and the high lattice strain in the tungsten phase.

  1. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...

  2. Reference intervals for mean platelet volume and immature platelet fraction determined on a sysmex XE5000 hematology analyzer

    DEFF Research Database (Denmark)

    Jørgensen, Mikala Klok; Bathum, L.

    2016-01-01

    Background New parameters describing the platelet population of the blood are mean platelet volume (MPV), which is a crude estimate of thrombocyte reactivity, and immature platelet fraction (IPF), which reflects megakaryopoietic activity. This study aimed to define reference intervals for MPV...... and IPF and to investigate whether separate reference intervals according to smoking status, age or sex are necessary.Methods Blood samples were obtained from subjects participating in The Danish General Suburban Population Study. MPV and IPF measurements were performed by the use of the Sysmex XE-5000...

  3. Semi-infinite fractional programming

    CERN Document Server

    Verma, Ram U

    2017-01-01

    This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems.   In the current interdisciplinary supercomputer-oriented research envi...

  4. Applications of fractional calculus in physics

    CERN Document Server

    2000-01-01

    Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and co

  5. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET

    OpenAIRE

    Jonny Nordström; Tanja Kero; Hendrik Johannes Harms; Charles Widström; Frank A. Flachskampf; Jens Sörensen; Mark Lubberink

    2017-01-01

    BACKGROUND: Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). (15)O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard (15)O-water uptake images. The purpose of the present work was to investigate the possibility...

  6. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  7. Factors affecting accuracy of ventricular volume and ejection fraction measured by gated Tl-201 myocardial perfusion single photon emission computed tomography

    International Nuclear Information System (INIS)

    Pai, Moon Sun; Yang, You Jung; Im, Ki Chun; Hong, Il Ki; Yun, Sung Cheol; Kang, Duk Hyun; Song, Jae Kwan; Moon, Dae Hyuk

    2005-01-01

    Systemic errors in the gated single photon emission computed tomography (SPECT) measurement of left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) may occur. We evaluated whether patient-related factors affected the accuracy of EDV, ESV, and EF measured by electrocardiogram-gated Tl-201 SPECT. A total of 518 patients without perfusion defects on Tl-201 SPECT or coronary artery disease were studied. EDV, ESV, and EF were measured from echocardiography and adenosine stress/redistribution gated Tl-201 SPECT using commercially available software packages (QGS and 4D-MSPECT). We identified factors affecting the accuracy of gated SPECT via multiple linear regression analysis of the differences between echocardiography and gated SPECT. Gated SPECT analyzed with QGS underestimated EDV and ESV, and overestimated EF, but 4D-MSPECT overestimated all those values (p<0.001). Independent variables that increased the difference in EDV between echocardiography and gated SPECT were decreasing LV end-diastolic wall thickness, decreasing body surface area, female sex and increasing EDV (p< 0.001). Those for ESV were decreasing LV end-systolic wall thickness, female sex, and decreasing ESV (p<0.001). Increasing end-systolic wall thickness, male sex and decreasing age were independent determinants associated with an increased difference in EF (p< 0.001). Adenosine stress SPECT showed significantly higher EDV and ESV values and a lower EF than did redistribution SPECT (p< 0.001). In determination of EF, QGS demonstrated a smaller bias than did 4D-MSPECT. However, in men with LV hypertrophy, 4D-MSPECT was superior to QGS. Systemic error by gated Tl-201 SPECT is determined by individual patient-characteristics

  8. Variability of Gross Tumor Volume in Nasopharyngeal Carcinoma Using 11C-Choline and 18F-FDG PET/CT.

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    Full Text Available This study was conducted to evaluate the variability of gross tumor volume (GTV using 11C-Choline and 18F-FDG PET/CT images for nasopharyngeal carcinomas boundary definition. Assessment consisted of inter-observer and inter-modality variation analysis. Four radiation oncologists were invited to manually contour GTV by using PET/CT fusion obtained from a cohort of 12 patients with nasopharyngeal carcinoma (NPC and who underwent both 11C-Choline and 18F-FDG scans. Student's paired-sample t-test was performed for analyzing inter-observer and inter-modality variability. Semi-automatic segmentation methods, including thresholding and region growing, were also validated against the manual contouring of the two types of PET images. We observed no significant variation in the results obtained by different oncologists in terms of the same type of PET/CT volumes. Choline fusion volumes were significantly larger than the FDG volumes (p < 0.0001, mean ± SD = 18.21 ± 8.19. While significantly consistent results were obtained between the oncologists and the standard references in Choline volumes compared with those in FDG volumes (p = 0.0025. Simple semi-automatic delineation methods indicated that 11C-Choline PET images could provide better results than FDG volumes (p = 0.076, CI = [-0.29, 0.025]. 11C-Choline PET/CT may be more advantageous in GTV delineation for the radiotherapy of NPC than 18F-FDG. Phantom simulations and clinical trials should be conducted to prove the possible improvement of the treatment outcome.

  9. Exact statistical results for binary mixing and reaction in variable density turbulence

    Science.gov (United States)

    Ristorcelli, J. R.

    2017-02-01

    We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ ⁣2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ ⁣2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived

  10. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  11. Numerical study of different conduction models for Al_2O_3-water nanofluid with variable properties inside a trapezoidal enclosure

    International Nuclear Information System (INIS)

    Arani, Ali Akbar Abbasian; Azemati, Ali Akbar; Rezaee, Mohammad; Hadavand, Behzad Shirkavand

    2017-01-01

    Natural convection in enclosures containing nanofluids is important in physical and environmental applications. Different models for conduction have been developed because of the importance of this phenomenon in natural convection in enclosures. In this study, effects of conduction models of Chon, Corcione, Khanafer, and Koo and Kleinstreuer on the natural convection inside a trapezoidal enclosure with hot and cold walls are evaluated numerically. The enclosure contains Al_2O_3-water nanofluid with variable properties. Effects of the conduction models on fluid flow, natural convection, variations in volume fraction, and diameter of nanoparticles in the models, as well as the variations in the Rayleigh number, are examined. Results show that at Rayleigh numbers of 105 and 106, the maximum and minimum values of the average Nusselt number are obtained using the models of Khanafer and Chon, respectively. In all models, the average Nusselt number presents upward and downward trends when the volume fraction of nanoparticles increases but decreases when the di- ameter of the nanoparticles increases. At Ra = 105 in all models, as the volume fraction of nanoparticles increases, the nanofluid provides a higher average Nusselt number compared with the base fluid. By contrast, at Ra = 106, at volume fractions larger than 0.01 and using the model of Chon, the average Nusselt number of the nanofluid is lower compared with that of the base fluid.

  12. Definition of gross tumor volume in lung cancer: inter-observer variability

    International Nuclear Information System (INIS)

    Van de Steene, Jan; Linthout, Nadine; Mey, Johan de; Vinh-Hung, Vincent; Claassens, Cornelia; Noppen, Marc; Bel, Arjan; Storme, Guy

    2002-01-01

    Background and purpose: To determine the inter-observer variation in gross tumor volume (GTV) definition in lung cancer, and its clinical relevance. Material and methods: Five clinicians involved in lung cancer were asked to define GTV on the planning CT scan of eight patients. Resulting GTVs were compared on the base of geometric volume, dimensions and extensions. Judgement of invasion of lymph node (LN) regions was evaluated using the ATS/LCSG classification of LN. Clinical relevance of the variation was studied through 3D-dosimetry of standard conformal plans: volume of critical organs (heart, lungs, esophagus, spinal cord) irradiated at toxic doses, 95% isodose volumes of GTVs, normal tissue complication probabilities (NTCP) and tumor control probabilities (TCP) were compared for evaluation of observer variability. Results: Before evaluation of observer variability, critical review of planning CT scan led to up- (two cases) and downstaging (one case) of patients as compared to the respective diagnostic scans. The defined GTVs showed an inter-observer variation with a ratio up to more than 7 between maximum and minimum geometric content. The dimensions of the primary tumor had inter-observer ranges of 4.2 (transversal), 7.9 (cranio-caudal) and 5.4 (antero-posterior) cm. Extreme extensions of the GTVs (left, right, cranial, caudal, anterior and posterior) varied with ranges of 2.8-7.3 cm due to inter-observer variation. After common review, only 63% of involved lymph node regions were delineated by the clinicians (i.e. 37% are false negative). Twenty-two percent of drawn in lymph node regions were accepted to be false positive after review. In the conformal plans, inter-observer ranges of irradiated normal tissue volume were on average 12%, with a maximum of 66%. The probability (in the population of all conformal plans) of irradiating at least 95% of the GTV with at least 95% of the nominal treatment dose decreased from 96 to 88% when swapping the matched GTV

  13. Change in Seroma Volume During Whole-Breast Radiation Therapy

    International Nuclear Information System (INIS)

    Sharma, Rajiv; Spierer, Marnee; Mutyala, Subhakar; Thawani, Nitika; Cohen, Hillel W.; Hong, Linda; Garg, Madhur K.; Kalnicki, Shalom

    2009-01-01

    Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) or standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm 3 (SD, 50.5 cm 3 ) and 35.6 cm 3 (SD, 24.8 cm 3 ), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.

  14. Multi-variable optimization of PEMFC cathodes using an agglomerate model

    Energy Technology Data Exchange (ETDEWEB)

    Secanell, M.; Suleman, A.; Djilali, N. [Institute for Integrated Energy Systems and Department Mechanical Engineering, University of Victoria, PO Box 3055 STN CSC, Victoria, BC (Canada); Karan, K. [Queen' s-RMC Fuel Cell Research Centre and Department Chemical Engineering, Queen' s University, Kingston, Ont. (Canada)

    2007-06-30

    A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1 mg cm{sup -2}, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35 mg cm{sup -2} and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance. (author)

  15. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Olga eVoevodskaya

    2014-10-01

    Full Text Available In neurodegeneration research, normalization of regional volumes by intracranial volume (ICV is important to estimate the extent of disease-driven atrophy. There is little agreement as to whether raw volumes, volume-to-ICV fractions or regional volumes from which the ICV factor has been regressed out should be used for volumetric brain imaging studies. Using multiple regional cortical and subcortical volumetric measures generated by Freesurfer (51 in total, the main aim of this study was to elucidate the implications of these adjustment approaches. Magnetic resonance imaging (MRI data were analyzed from two large cohorts, the population-based PIVUS cohort (N=406, all subjects age 75 and the Alzheimer disease Neuroimaging Initiative (ADNI cohort (N=724. Further, we studied whether the chosen ICV normalization approach influenced the relationship between hippocampus and cognition in the three diagnostic groups of the ADNI cohort (Alzheimer’s disease, mild cognitive impairment and healthy individuals. The ability of raw vs adjusted hippocampal volumes to predict diagnostic status was also assessed. In both cohorts raw volumes correlate positively with ICV, but do not scale directly proportionally with it. The correlation direction is reversed for all volume-to-ICV fractions, except the lateral and third ventricles. Most grey matter fractions are larger in females, while lateral ventricle fractions are greater in males. Residual correction effectively eliminated the correlation between the regional volumes and ICV and removed gender differences. The association between hippocampal volumes and cognition was not altered by ICV normalization. Comparing prediction of diagnostic status using the different approaches, small but significant differences were found. The choice of normalization approach should be carefully considered when designing a volumetric brain imaging study.

  16. Fractional graph theory a rational approach to the theory of graphs

    CERN Document Server

    Scheinerman, Edward R

    2013-01-01

    A unified treatment of the most important results in the study of fractional graph concepts, this volume explores the various ways in which integer-valued concepts can be modified to derive nonintegral values. It begins with the general fractional theory of hypergraphs and presents in-depth coverage of fundamental and advanced topics. Subjects include fractional matching, fractional coloring, fractional edge coloring, fractional arboricity via matroid methods, and fractional isomorphism. The final chapter examines additional topics such as fractional domination, fractional intersection numbers

  17. Fractional charge search

    International Nuclear Information System (INIS)

    Innes, W.; Klein, S.; Perl, M.; Price, J.C.

    1982-06-01

    A device to search for fractional charge in matter is described. The sample is coupled to a low-noise amplifier by a periodically varying capacitor and the resulting signal is synchronously detected. The varying capacitor is constructed as a rapidly spinning wheel. Samples of any material in volumes of up to 0.05 ml may be searched in less than an hour

  18. Financial Planning with Fractional Goals

    OpenAIRE

    Goedhart, Marc; Spronk, Jaap

    1995-01-01

    textabstractWhen solving financial planning problems with multiple goals by means of multiple objective programming, the presence of fractional goals leads to technical difficulties. In this paper we present a straightforward interactive approach for solving such linear fractional programs with multiple goal variables. The approach is illustrated by means of an example in financial planning.

  19. Free-volume study of ethylene - vinyl alcohol copolymer evaluated through positronium lifetime measurement

    International Nuclear Information System (INIS)

    Ito, K.; Hong-ling Li; Ujihira, Y.; Nomura, K.; Saito, Y.; Yamamoto, T.; Nishihara, Y.

    2003-01-01

    The free-volume, of size ranging from 0.2 to 0.4 nm in radius, in an ethylene-vinyl alcohol copolymer was estimated using positronium lifetime measurement to elucidate the dependence of oxygen permeability on the free-volume size and fraction, on the ethylene content and on the crystallinity. The permeability and the free-volume fraction with varying the ethylene content were well related and the relation was interpreted based on the free-volume theory near below and above the glass transition temperature. On the other hand, the crystallinity significantly influenced the fraction of the amorphous region, where the free-volume hole exists, along with a slight change of the free-volume size. The variation of the permeability with the crystalline degree cannot be explained from the averaged free-volume fraction estimated by the whole volume of the polymer, but the permeability correlated with the free-volume size apparently. (author)

  20. Influence of the Metal Volume Fraction on the permanent dent depth and energy absorption of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  1. 2D and 3D milled surface roughness of high volume fraction SiCp/Al composites

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-06-01

    Full Text Available This paper presents a study on surface roughness generated by high speed milling of high volume fraction (65% silicon carbide particle-reinforced aluminum matrix (SiCp/Al composites. Typical 2D (Ra and Rz and 3D (Sa and Sq surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy. The 3D topography of the milled surface was studied as well. The results indicate that 3D parameters (Sa and Sq are more capable to describe the influence of the milling parameters on the surface quality, and among them Sq is preferable due to its good sensitivity. Sq decreases with milling speed and increases with feed rate. The influence of axial depth of cut (ADOC is negligible.

  2. Numerical study of different conduction models for Al{sub 2}O{sub 3}-water nanofluid with variable properties inside a trapezoidal enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Arani, Ali Akbar Abbasian; Azemati, Ali Akbar; Rezaee, Mohammad [University of Kashan, Kashan (Iran, Islamic Republic of); Hadavand, Behzad Shirkavand [Islamic Azad University, Abadan (Iran, Islamic Republic of)

    2017-05-15

    Natural convection in enclosures containing nanofluids is important in physical and environmental applications. Different models for conduction have been developed because of the importance of this phenomenon in natural convection in enclosures. In this study, effects of conduction models of Chon, Corcione, Khanafer, and Koo and Kleinstreuer on the natural convection inside a trapezoidal enclosure with hot and cold walls are evaluated numerically. The enclosure contains Al{sub 2}O{sub 3}-water nanofluid with variable properties. Effects of the conduction models on fluid flow, natural convection, variations in volume fraction, and diameter of nanoparticles in the models, as well as the variations in the Rayleigh number, are examined. Results show that at Rayleigh numbers of 105 and 106, the maximum and minimum values of the average Nusselt number are obtained using the models of Khanafer and Chon, respectively. In all models, the average Nusselt number presents upward and downward trends when the volume fraction of nanoparticles increases but decreases when the di- ameter of the nanoparticles increases. At Ra = 105 in all models, as the volume fraction of nanoparticles increases, the nanofluid provides a higher average Nusselt number compared with the base fluid. By contrast, at Ra = 106, at volume fractions larger than 0.01 and using the model of Chon, the average Nusselt number of the nanofluid is lower compared with that of the base fluid.

  3. Dosimetric Coverage of the Prostate, Normal Tissue Sparing, and Acute Toxicity with High-Dose-Rate Brachytherapy for Large Prostate Volumes

    Directory of Open Access Journals (Sweden)

    George Yang

    2015-06-01

    Full Text Available ABSTRACTPurposeTo evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes.Materials and MethodsOne hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL were treated with high-dose-rate (HDR brachytherapy ± intensity modulated radiation therapy (IMRT to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38% unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE version 4.ResultsMedian follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3% patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17% patients developed Grade 2 acute urinary retention. American Urological Association (AUA symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p=0.04. There was no ≥ Grade 3 acute toxicity.ConclusionsDosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes.

  4. Dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with high-dose-rate brachytherapy for large prostate volumes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, George; Strom, Tobin J.; Shrinath, Kushagra; Mellon, Eric A.; Fernandez, Daniel C.; Biagioli, Matthew C. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Wilder, Richard B., E-mail: mcbiagioli@yahoo.com [Cancer Treatment Centers of America, Newnan, GA (United States)

    2015-05-15

    Purpose: to evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes. Materials and methods: one hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL) were treated with high-dose-rate (HDR) brachytherapy ± intensity modulated radiation therapy (IMRT) to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38%) unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4. Results: median follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3%) patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17%) patients developed Grade 2 acute urinary retention. American Urological Association (AUA) symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p-0.04). There was no ≥ Grade 3 acute toxicity. Conclusions: dosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes. (author)

  5. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  6. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  7. Nelson's syndrome: single centre experience using the linear accelerator (LINAC) for stereotactic radiosurgery and fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Wilson, Peter J; Williams, Janet R; Smee, Robert I

    2014-09-01

    Nelson's syndrome is a unique clinical phenomenon of growth of a pituitary adenoma following bilateral adrenalectomies for the control of Cushing's disease. Primary management is surgical, with limited effective medical therapies available. We report our own institution's series of this pathology managed with radiation: prior to 1990, 12 patients were managed with conventional radiotherapy, and between 1990 and 2007, five patients underwent stereotactic radiosurgery (SRS) and two patients fractionated stereotactic radiotherapy (FSRT), both using the linear accelerator (LINAC). Tumour control was equivocal, with two of the five SRS patients having a reduction in tumour volume, one patient remaining unchanged, and two patients having an increase in volume. In the FSRT group, one patient had a decrease in tumour volume whilst the other had an increase in volume. Treatment related morbidity was low. Nelson's syndrome is a challenging clinical scenario, with a highly variable response to radiation in our series. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    Directory of Open Access Journals (Sweden)

    Małgorzata Tańska

    2016-01-01

    Full Text Available This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5 % of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough.

  9. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    Science.gov (United States)

    Tańska, Małgorzata; Rotkiewicz, Daniela; Piętak, Andrzej

    2016-01-01

    Summary This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5% of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough. PMID:27904407

  10. Clinical variability of target volume description and treatment plans in conformal radiotherapy in muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Logue, John P; Sharrock, Carole L; Cowan, Richard A.; Read, Graham; Marrs, Julie; Mott, David

    1996-01-01

    Purpose/Objective: The delineation of tumor and the production of a treatment plan to encompass this is the prime step in radiotherapy planning. Conformal radiotherapy is developing rapidly and although plentiful research has addressed the implementation of the radiotherapy prescription, scant attention has been made to the fundamental step of production, by the clinician, of an appropriate target volume. As part of an ongoing randomized trial of conformal radiotherapy, in bladder cancer, we have therefore assessed the interphysician variability of radiologists and radiation oncologists (RO) in assessing Gross Tumor Volume(GTV) (ICRU 50) and the adherence of the radiation oncologists to the study protocol of producing a Planning Target Volume (PTV). Materials and Methods: Four patients with T3 carcinoma of bladder who had been entered into the trial were identified. The clinical details, MR scans and CT scans were made available. Eight RO and 3 dedicated diagnostic oncology radiologists were invited to directly outline the GTV onto CT images on a planning computer consul. The RO in addition created a PTV following the trial protocol of 15mm margin around the GTV. Three RO sub-specialized in Urological radiotherapy; all RO had completed training. Volumes were produced, for each clinician, and comparison of these volumes and their isocenters were analyzed. In addition the margins allowed were measured and compared. Results: There was a maximum variation ratio (largest to smallest volume outlined) of the GTV in the four cases of 1.74 among radiologists and 3.74 among oncologists. There was a significant difference (p=0.01) in mean GTV between RO and the radiologists. The mean GTV of the RO exceeded the radiologists by a factor of 1.29 with a mean difference of 13.4 cm 3 The between observer variance within speciality comprised only 9.9% of the total variance in the data having accounted for case and observers speciality. The variation ratio in PTV among oncologists

  11. Fractional derivatives for physicists and engineers background and theory

    CERN Document Server

    Uchaikin, Vladimir V

    2013-01-01

    The first derivative of a particle coordinate means its velocity, the second means its acceleration, but what does a fractional order derivative mean? Where does it come from, how does it work, where does it lead to? The two-volume book written on high didactic level answers these questions. Fractional Derivatives for Physicists and Engineers— The first volume contains a clear introduction into such a modern branch of analysis as the fractional calculus. The second develops a wide panorama of applications of the fractional calculus to various physical problems. This book recovers new perspectives in front of the reader dealing with turbulence and semiconductors, plasma and thermodynamics, mechanics and quantum optics, nanophysics and astrophysics.  The book is addressed to students, engineers and physicists, specialists in theory of probability and statistics, in mathematical modeling and numerical simulations, to everybody who doesn't wish to stay apart from the new mathematical methods becoming more and ...

  12. Development, field testing and implementation of automated hydraulically controlled, variable volume loading systems for reciprocating compressors

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, Dwayne A. [ACI Services, Inc., Cambridge, OH (United States); Slupsky, John [Kvaerner Process Systems, Calgary, Alberta (Canada); Chrisman, Bruce M.; Hurley, Tom J. [Cooper Energy Services, Oklahoma City, OK (United States). Ajax Division

    2003-07-01

    Automated, variable volume unloaders provide the ability to smoothly load/unload reciprocating compressors to maintain ideal operations in ever-changing environments. Potential advantages provided by this load control system include: maximizing unit capacity, optimizing power economy, maintaining low exhaust emissions, and maintaining process suction and discharge pressures. Obstacles foreseen include: reliability, stability, serviceability and automation integration. Results desired include: increased productivity for the compressor and its operators, increased up time, and more stable process control. This presentation covers: system design features with descriptions of how different types of the devices were developed, initial test data, and how they can be effectively operated; three actual-case studies detailing the reasons why automated, hydraulically controlled, variable volume, head-end unloaders were chosen over other types of unloading devices; sophisticated software used in determining the device sizing and predicted performance; mechanical and field considerations; installation, serviceability and operating considerations; device control issues, including PC and PLC considerations; monitoring of actual performance and comparison of such with predicted performance; analysis of mechanical reliability and stability; and preliminary costs versus return on investment analysis. (author)

  13. Ergospirometry and Echocardiography in Early Stage of Heart Failure with Preserved Ejection Fraction and in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Eduardo Lima Garcia

    2015-01-01

    Full Text Available Abstract Background: Heart failure with preserved ejection fraction is a syndrome characterized by changes in diastolic function; it is more prevalent among the elderly, women, and individuals with systemic hypertension (SH and diabetes mellitus. However, in its early stages, there are no signs of congestion and it is identified in tests by adverse remodeling, decreased exercise capacity and diastolic dysfunction. Objective: To compare doppler, echocardiographic (Echo, and cardiopulmonary exercise test (CPET variables - ergospirometry variables - between two population samples: one of individuals in the early stage of this syndrome, and the other of healthy individuals. Methods: Twenty eight outpatients diagnosed with heart failure according to Framingham’s criteria, ejection fraction > 50% and diastolic dysfunction according to the european society of cardiology (ESC, and 24 healthy individuals underwent Echo and CPET. Results: The group of patients showed indexed atrial volume and left ventricular mass as well as E/E’ and ILAV/A´ ratios significantly higher, in addition to a significant reduction in peak oxygen consumption and increased VE/VCO2 slope, even having similar left ventricular sizes in comparison to those of the sample of healthy individuals. Conclusion: There are significant differences between the structural and functional variables analyzed by Echo and CPET when comparing two population samples: one of patients in the early stage of heart failure with ejection fraction greater than or equal to 50% and another of healthy individuals.

  14. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.

    Science.gov (United States)

    Jeon, Jae-Hyung; Metzler, Ralf

    2010-02-01

    Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.

  15. Calculation of left ventricular volume and ejection fraction from ECG-gated myocardial SPECT. Automatic detection of endocardial borders by threshold method

    International Nuclear Information System (INIS)

    Fukushi, Shoji; Teraoka, Satomi.

    1997-01-01

    A new method which calculate end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) of the left ventricle from myocardial short axis images of ECG-gated SPECT using 99m Tc myocardial perfusion tracer has been designed. Eight frames per cardiac cycle ECG-gated 180 degrees SPECT was performed. Threshold method was used to detect myocardial borders automatically. The optimal threshold was 45% by myocardial SPECT phantom. To determine if EDV, ESV and LVEF can also be calculated by this method, 12 patients were correlated ventriculography (LVG) for 10 days each. The correlation coefficient with LVG was 0.918 (EDV), 0.935 (ESV) and 0.900 (LVEF). This method is excellent at objectivity and reproductivity because of the automatic detection of myocardial borders. It also provides useful information on heart function in addition to myocardial perfusion. (author)

  16. The forgotten role of central volume in low frequency oscillations of heart rate variability.

    Directory of Open Access Journals (Sweden)

    Manuela Ferrario

    Full Text Available The hypothesis that central volume plays a key role in the source of low frequency (LF oscillations of heart rate variability (HRV was tested in a population of end stage renal disease patients undergoing conventional hemodialysis (HD treatment, and thus subject to large fluid shifts and sympathetic activation. Fluid overload (FO in 58 chronic HD patients was assessed by whole body bioimpedance measurements before the midweek HD session. Heart Rate Variability (HRV was measured using 24-hour Holter electrocardiogram recordings starting before the same HD treatment. Time domain and frequency domain analyses were performed on HRV signals. Patients were retrospectively classified in three groups according to tertiles of FO normalized to the extracellular water (FO/ECW%. These groups were also compared after stratification by diabetes mellitus. Patients with the low to medium hydration status before the treatment (i.e. 1st and 2nd FO/ECW% tertiles showed a significant increase in LF power during last 30 min of HD compared to dialysis begin, while no significant change in LF power was seen in the third group (i.e. those with high pre-treatment hydration values. In conclusion, several mechanisms can generate LF oscillations in the cardiovascular system, including baroreflex feedback loops and central oscillators. However, the current results emphasize the role played by the central volume in determining the power of LF oscillations.

  17. The forgotten role of central volume in low frequency oscillations of heart rate variability.

    Science.gov (United States)

    Ferrario, Manuela; Moissl, Ulrich; Garzotto, Francesco; Cruz, Dinna N; Tetta, Ciro; Signorini, Maria G; Ronco, Claudio; Grassmann, Aileen; Cerutti, Sergio; Guzzetti, Stefano

    2015-01-01

    The hypothesis that central volume plays a key role in the source of low frequency (LF) oscillations of heart rate variability (HRV) was tested in a population of end stage renal disease patients undergoing conventional hemodialysis (HD) treatment, and thus subject to large fluid shifts and sympathetic activation. Fluid overload (FO) in 58 chronic HD patients was assessed by whole body bioimpedance measurements before the midweek HD session. Heart Rate Variability (HRV) was measured using 24-hour Holter electrocardiogram recordings starting before the same HD treatment. Time domain and frequency domain analyses were performed on HRV signals. Patients were retrospectively classified in three groups according to tertiles of FO normalized to the extracellular water (FO/ECW%). These groups were also compared after stratification by diabetes mellitus. Patients with the low to medium hydration status before the treatment (i.e. 1st and 2nd FO/ECW% tertiles) showed a significant increase in LF power during last 30 min of HD compared to dialysis begin, while no significant change in LF power was seen in the third group (i.e. those with high pre-treatment hydration values). In conclusion, several mechanisms can generate LF oscillations in the cardiovascular system, including baroreflex feedback loops and central oscillators. However, the current results emphasize the role played by the central volume in determining the power of LF oscillations.

  18. 3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field.

    Science.gov (United States)

    Huber, Christian; Abert, Claas; Bruckner, Florian; Groenefeld, Martin; Schuschnigg, Stephan; Teliban, Iulian; Vogler, Christoph; Wautischer, Gregor; Windl, Roman; Suess, Dieter

    2017-08-25

    Additive manufacturing of polymer-bonded magnets is a recently developed technique, for single-unit production, and for structures that have been impossible to manufacture previously. Also, new possibilities to create a specific stray field around the magnet are triggered. The current work presents a method to 3D print polymer-bonded magnets with a variable magnetic compound fraction distribution. This means the saturation magnetization can be adjusted during the printing process to obtain a required external field of the manufactured magnets. A low-cost, end-user 3D printer with a mixing extruder is used to mix permanent magnetic filaments with pure polyamide (PA12) filaments. The magnetic filaments are compounded, extruded, and characterized for the printing process. To deduce the quality of the manufactured magnets with a variable magnetic compound fraction, an inverse stray field framework is developed. The effectiveness of the printing process and the simulation method is shown. It can also be used to manufacture magnets that produce a predefined stray field in a given region. This opens new possibilities for magnetic sensor applications. This setup and simulation framework allows the design and manufacturing of polymer-bonded permanent magnets, which are impossible to create with conventional methods.

  19. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    International Nuclear Information System (INIS)

    Damato, Antonio L.; Townamchai, Kanopkis; Albert, Michele; Bair, Ryan J.; Cormack, Robert A.; Jang, Joanne; Kovacs, Arpad; Lee, Larissa J.; Mak, Kimberley S.; Mirabeau-Beale, Kristina L.; Mouw, Kent W.; Phillips, John G.; Pretz, Jennifer L.; Russo, Andrea L.; Lewis, John H.; Viswanathan, Akila N.

    2014-01-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI gen ), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D 0.1cc and D 2cc was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD TOT ) was calculated. Results: The population mean ± 1 standard deviation of κ, CI gen , and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD TOT = 72 ± 64 Gy) for D 0.1cc and CV = 16% ± 10% (SD TOT = 9 ± 6 Gy) for D 2cc ; for rectum, CV = 11% ± 5% (SD TOT = 16 ± 17 Gy) for D 0.1cc and CV = 7% ± 2% (SD TOT = 4 ± 3 Gy) for D 2cc ; for sigmoid, CV = 39% ± 28% (SD TOT = 12 ± 18 Gy) for D 0.1cc and CV = 34% ± 19% (SD TOT = 4 ± 4 Gy) for D 2cc. Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D 0.1cc. Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with higher variability in the total brachytherapy dose but rather may be due to the

  20. Emergent Chemical Behavior in Variable-Volume Protocells

    Directory of Open Access Journals (Sweden)

    Ben Shirt-Ediss

    2015-01-01

    Full Text Available Artificial protocellular compartments and lipid vesicles have been used as model systems to understand the origins and requirements for early cells, as well as to design encapsulated reactors for biotechnology. One prominent feature of vesicles is the semi-permeable nature of their membranes, able to support passive diffusion of individual solute species into/out of the compartment, in addition to an osmotic water flow in the opposite direction to the net solute concentration gradient. Crucially, this water flow affects the internal aqueous volume of the vesicle in response to osmotic imbalances, in particular those created by ongoing reactions within the system. In this theoretical study, we pay attention to this often overlooked aspect and show, via the use of a simple semi-spatial vesicle reactor model, that a changing solvent volume introduces interesting non-linearities into an encapsulated chemistry. Focusing on bistability, we demonstrate how a changing volume compartment can degenerate existing bistable reactions, but also promote emergent bistability from very simple reactions, which are not bistable in bulk conditions. One particularly remarkable effect is that two or more chemically-independent reactions, with mutually exclusive reaction kinetics, are able to couple their dynamics through the variation of solvent volume inside the vesicle. Our results suggest that other chemical innovations should be expected when more realistic and active properties of protocellular compartments are taken into account.

  1. Theoretical Model for Volume Fraction of UC, 235U Enrichment, and Effective Density of Final U 10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2016-04-12

    The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U-10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U-10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U-10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content

  2. Acoustic neuromas: single dose vs fractionated therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M; Debus, J; Lohr, F; Engenhart-Cabillic, R; Wannenmacher, M

    1997-07-01

    Purpose: Radiosurgical treatment (RS) of acoustic neuromas is a well established treatment. However, few data are available concerning conformal fractionated radiotherapy (FT) of this tumor entity. We evaluated treatment outcome and toxicity for both treatment modalities in 41 patients treated at our institution between 1984 and 1997. Material and Methods: All treatments were performed using a specially adapted linear accelerator and circular collimators for convergent beam RS or multi-leaf collimators (leaf thickness 1 or 3mm) for multi-field RS or fractionated treatment. 22 patients (7 male, 15 female, median age 60 years, range 20-83 years) were treated radiosurgically with single doses between 7 and 28 Gray (median 15 Gy) prescribed to the 80% isodose line. Tumor volumes ranged from 0.7 to 10.5 ccm with a median volume of 3.4 ccm. The median number of isocenters was 2 (1-4 isocenters). One patient was treated by a multi-field technique (14 isocentric irregularly shaped noncoplanar fields). 19 patients (5 male, 14 female, median age 55 years, range 20-81 years) were treated with stereotactic conformal radiotherapy. Median dose was 60 Gray with a median daily fraction size of 2 Gy and a median of 3 (1-4) irregularly shaped isocentric fields. Tumor volumes ranged from 0.7 to 32.4 ccm (median 15 ccm). Median follow-up was 30 months (7-149 months) for radiosurgical and 30 months (2-88 months) for fractionated treatment. Seven patients who underwent fractionated treatment had previously undergone neurosurgical resection on the contralateral side. One had undergone radiosurgery on the opposite side before. Results: All tumors were locally controlled. A volume reduction of more than 20% was seen in 16% after RS and 18% following FT. Typical posttherapeutic central reduction of contrast media enhancement was found in 73% following RS after a median of 8 (3-12) months and in 63% following FT after a median of 6 (1-12) months. Temporary brainstem edema was diagnosed in 4

  3. Constituents from Maytenus ilicifolia leaves and bioguided fractionation for gastroprotective activity

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Joao Paulo V. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Bioquimica e Biologia Molecular; Braga, Fernao C.; Oliveira, Alaide B. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Dept. de Produtos Farmaceuticos; Romussi, Giovanni [Universita degli Studi di Genova (Italy). Dipt. di Chimica e Tecnologie Farmaceutiche; Persoli, Rita M.; Tabach, Ricardo; Carlini, Elisaldo A. [Universidade Federal de Sao Paulo (UNIFESP-EPM), SP (Brazil). Dept. de Psicobiologia

    2010-07-01

    Maytenus ilicifolia Mart. ex Reissek is traditionally used in Brazil for treatment of gastric ulcers. Here we report the phytochemical investigation of an ethanol extract of M. ilicifolia leaves (EEMIL) aiming at the isolation of constituents which were used as chemical markers to monitor an activity-guided fractionation of a lyophilized aqueous extract of M. ilicifolia leaves (LAEMIL). From EEMIL, four flavonoids were isolated, namely the tri-flavonoid glycosides mauritianin (1), trifolin, (2) hyperin (4), and epi-catechin (5). Fractionation of LAEMIL led to 5 fractions which afforded the tetra-glycoside kaempferol derivative (3), and galactitol (6). LAEMIL and its fractions were evaluated in rats for their effects on gastric secretion volume and pH. HPLC (High Performance Liquid Chromatography) analysis revealed that only fractions containing the tri- and tetra-flavonoid glycosides 1 and 3 caused significant increase of gastric volume and pH, thus indicating that these glycosides play an important role on the gastroprotective effect of M.ilicifolia leaves. (author)

  4. Constituents from Maytenus ilicifolia leaves and bioguided fractionation for gastroprotective activity

    International Nuclear Information System (INIS)

    Leite, Joao Paulo V.; Braga, Fernao C.; Oliveira, Alaide B.; Romussi, Giovanni; Persoli, Rita M.; Tabach, Ricardo; Carlini, Elisaldo A.

    2010-01-01

    Maytenus ilicifolia Mart. ex Reissek is traditionally used in Brazil for treatment of gastric ulcers. Here we report the phytochemical investigation of an ethanol extract of M. ilicifolia leaves (EEMIL) aiming at the isolation of constituents which were used as chemical markers to monitor an activity-guided fractionation of a lyophilized aqueous extract of M. ilicifolia leaves (LAEMIL). From EEMIL, four flavonoids were isolated, namely the tri-flavonoid glycosides mauritianin (1), trifolin, (2) hyperin (4), and epi-catechin (5). Fractionation of LAEMIL led to 5 fractions which afforded the tetra-glycoside kaempferol derivative (3), and galactitol (6). LAEMIL and its fractions were evaluated in rats for their effects on gastric secretion volume and pH. HPLC (High Performance Liquid Chromatography) analysis revealed that only fractions containing the tri- and tetra-flavonoid glycosides 1 and 3 caused significant increase of gastric volume and pH, thus indicating that these glycosides play an important role on the gastroprotective effect of M.ilicifolia leaves. (author)

  5. Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Volume 1, Analysis of experimental data

    International Nuclear Information System (INIS)

    1994-12-01

    This handbook contains (1) a systematic compilation of airborne release and respirable fraction experimental data for nonreactor nuclear facilities, (2) assessments of the data, and (3) values derived from assessing the data that may be used in safety analyses when the data are applicable. To assist in consistent and effective use of this information, the handbook provides: identification of a consequence determination methodology in which the information can be used; discussion of the applicability of the information and its general technical limits; identification of specific accident phenomena of interest for which the information is applicable; and examples of use of the consequence determination methodology and airborne release and respirable fraction information

  6. A hidden variable in shear transformation zone volume versus Poisson's ratio relation in metallic glasses

    Science.gov (United States)

    Kim, S. Y.; Oh, H. S.; Park, E. S.

    2017-10-01

    Herein, we elucidate a hidden variable in a shear transformation zone (STZ) volume (Ω) versus Poisson's ratio (ν) relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs). On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm) and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation) and macroscopic properties (plasticity) in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.

  7. Short interactive workshops reduce variability in contouring treatment volumes for spine stereotactic body radiation therapy: Experience with the ESTRO FALCON programme and EduCase™ training tool.

    Science.gov (United States)

    De Bari, Berardino; Dahele, Max; Palmu, Miika; Kaylor, Scott; Schiappacasse, Luis; Guckenberger, Matthias

    2017-11-20

    We report the results of 4, 2-h contouring workshops on target volume definition for spinal stereotactic radiotherapy. They combined traditional teaching methods with a web-based contouring/contour-analysis platform and led to a significant reduction in delineation variability. Short, interactive workshops can reduce interobserver variability in spine SBRT target volume delineation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Optimal Volume Fraction in Percutaneous Vertebroplasty Evaluated by Pain Relief, Cement Dispersion, and Cement Leakage: A Prospective Cohort Study of 130 Patients with Painful Osteoporotic Vertebral Compression Fracture in the Thoracolumbar Vertebra.

    Science.gov (United States)

    Sun, Hai-Bo; Jing, Xiao-Shan; Liu, Yu-Zeng; Qi, Ming; Wang, Xin-Kuan; Hai, Yong

    2018-06-01

    To probe the relationship among cement volume/fraction, imaging features of cement distribution, and pain relief and then to evaluate the optimal volume during percutaneous vertebroplasty. From January 2014 to January 2017, a total of 130 patients eligible for inclusion criteria were enrolled in this prospective cohort study. According to the different degrees of pain relief, cement leakage, and cement distribution, all patients were allocated to 2 groups. Clinical and radiologic characteristics were assessed to identify independent factors influencing pain relief, cement leakage, and cement distribution, including age, sex, fracture age, bone mineral density, operation time, fracture level, fracture type, modified semiquantitative severity grade, intravertebral cleft, cortical disruption in the vertebral wall, endplate disruption, type of nutrient foramen, fractured vertebral body volume, intravertebral cement volume, and volume fraction. A receiver operating characteristic curve was used to analyze the diagnostic value of the cement volume/fraction and then to obtain the optional cut-off value. The preoperative visual analog scale scores in the responders versus nonresponders patient groups were 7.37 ± 0.61 versus 7.87 ± 0.92 and the postoperative VAS scores in the responders versus nonresponders were 2.04 ± 0.61 versus 4.33 ± 0.49 at 1 week. There were no independent factors influencing pain relief. There were 95 (73.08%) patients who experienced cement leakage, and cortical disruption in the vertebral wall and cement fraction percentage were identified as independent risk factors by binary logistic regression analysis (adjusted odds ratio [OR] 2.935, 95% confidence interval [95% CI] 1.214-7.092, P = 0.017); (adjusted OR 1.134, 95% CI 1.026-1.254, P = 0.014). The area under the receiver-operating characteristic curve of volume fraction (VF%) was 0.658 (95% CI 0.549-0.768, P = 0.006 cement leakage was 21.545%, with a sensitivity of 69.50% and a

  9. Similarity Solutions for Multiterm Time-Fractional Diffusion Equation

    OpenAIRE

    Elsaid, A.; Abdel Latif, M. S.; Maneea, M.

    2016-01-01

    Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on ...

  10. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  11. The fractional scaling methodology (FSM) Part 1. methodology development

    International Nuclear Information System (INIS)

    Novak Zuber; Ivan Catton; Upendra S Rohatgi; Wolfgang Wulff

    2005-01-01

    Full text of publication follows: a quantitative methodology is developed, based on the concepts of hierarchy and synthesis, to integrate and organize information and data. The methodology uses scaling to synthesize experimental data and analytical results, and to provide quantitative criteria for evaluating the effects of various design and operating parameters that influence processes in a complex system such as a nuclear power plant or a related test facility. Synthesis and scaling are performed on three hierarchical levels: the process, component and system levels. Scaling on the process level determines the effect of a selected process on a particular state variable during a selected scenario. At the component level this scaling determines the effects various processes have on a state variable, and it ranks the processes according to their importance by the magnitude of the fractional change they cause on that state variable. At the system level the scaling determines the governing processes and corresponding components, ranking these in the order of importance according to their effect on the fractional change of system-wide state variables. The scaling methodology reveals on all levels the fractional change of state variables and is called therefore the Fractional Scaling Methodology (FSM). FSM synthesizes process parameters and assigns to each thermohydraulic process a dimensionless effect metric Ω = ωt, that is the product of the specific rate of fractional change ω and the characteristic time t. The rate of fractional change ω is the ratio of process transport rate over content of a preserved quantity in a component. The effect metric Ω quantifies the contribution of the process to the fractional change of a state variable in a given component. Ordering of a component effect metrics provides the hierarchy of processes in a component, then in all components and the system. FSM separates quantitatively dominant from minor processes and components and

  12. Software quality assurance plan for void fraction instrument

    International Nuclear Information System (INIS)

    Gimera, M.

    1994-01-01

    Waste Tank SY-101 has been the focus of extensive characterization work over the past few years. The waste continually generates gases, most notably hydrogen, which are periodically released from the waste. Gas can be trapped in tank waste in three forms: as void gas (bubbles), dissolved gas, or absorbed gas. Void fraction is the volume percentage of a given sample that is comprised of void gas. The void fraction instrument (VFI) acquires the data necessary to calculate void fraction. This document covers the product, Void Fraction Data Acquisition Software. The void fraction software being developed will have the ability to control the void fraction instrument hardware and acquire data necessary to calculate the void fraction in samples. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain void fraction data from Tank SY-101

  13. TU-A-12A-06: Intra-Observer Variability in Delineation of Target Volumes in Breast Radiotherapy and Its Effect On Accuracy of Deformation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, P; Harris, E [The Institute of Cancer Research, London (United Kingdom); Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Bonora, M [University of Milan, Milan (Italy); Evans, P [University of Surrey, Guildford (United Kingdom)

    2014-06-15

    Purpose: In breast radiotherapy, the target volume may change during treatment and need adaptation of the treatment plan. This is possible for both tumour bed (TB) and whole breast (WB) target volumes. Delineation of the target (to detect changes) is also subject to uncertainty due to intra- and inter-observer variability. This work measured the uncertainty, due to intraobserver variability, in the quantification of tissue deformation. Methods: Datasets consisting of paired prone and supine CT scans of three patients were used. Significant deformation in target volumes is expected between prone and supine patient positions. The selected cases had 1) no seroma, 2) some seroma, and 3) large seroma. The TB and WB were outlined on each dataset three times by one clinician. Delineation variability was defined as the standard deviations of the distances between observer outlines. For each target volume and each case, tissue deformation between prone and supine delineations was quantified using the Dice similarity coefficient (DSC) and the average surface distance (ASD). The uncertainty in the tissue deformation (due to delineation variability) was quantified by measuring the ranges of DSC and ASD using all combinations of pairs of outlines (9 pairs). Results: For the TB, the range of delineation variability was 0.44-1.16 mm. The deformation, DSC and ASD, (and uncertainty in measurement) of the TB between prone and supine position of the cases were: 1) 0.21 (0.17-0.28) and 12.4 mm (11.8-13 mm); 2) 0.54 (0.51-0.57) and 3.3 mm (3.1-3.5 mm); 3) 0.62 (0.61-0.64) and 4.9 mm (4.6-5.2 mm). WB deformation measurements were subject to less uncertainty due to delineation variability than TB deformation measurements. Conclusion: For the first time, the uncertainty, due to observer variability, in the measurement of the deformation of breast target volumes was investigated. Deformations in these ranges would be difficult to detect. This work was supported in part by Cancer Research

  14. Heart rate index: an indicator of left ventricular ejection fraction. Comparison of left ventricular ejection fraction and variables assessed by exercise test in patients studied early after acute myocardial infarction

    DEFF Research Database (Denmark)

    Haedersdal, C; Pedersen, F H; Svendsen, Jesper Hastrup

    1992-01-01

    The present study compares the variables assessed by standard exercise test with the left ventricular ejection fraction (LVEF) measured by multigated radionuclide angiocardiography (MUGA) in 77 patients early after myocardial infarction. The exercise test and MUGA were performed within two weeks...... at rest, 4) rise in systolic blood pressure, 5) rate pressure product at rest, 6) rise in rate pressure product, 7) ratio (rHR) between maximal rate pressure product and rate pressure product at rest, 8) total exercise time. The heart rate was corrected for effects caused by age (heart index (HR...

  15. Variable-energy positron annihilation study of subnanopores in SiOCH-based PECVD films

    International Nuclear Information System (INIS)

    Ito, Kenji; Oka, Toshitaka; Kobayashi, Yoshinori; Suzuki, Ryoichi; Ohdaira, Toshiyuki

    2007-01-01

    Subnanoporosity was introduced into SiOCH-based thin films by mixing tetraethyl orthosilicate with hexamethyldisiloxane (HMDSO) in the plasma enhanced chemical vapor deposition process, and was evaluated by the variable-energy positron annihilation lifetime technique. It was found that with increasing the HMDSO fraction both porosity and pore size were enhanced, as evidenced by the decreased refractive index and increased ortho-positronium lifetime. The lifetimes from 2.0 to 6.8 ns suggested the tunable pore volumes within a range of 0.1-0.7 nm 3

  16. Parareal algorithms with local time-integrators for time fractional differential equations

    Science.gov (United States)

    Wu, Shu-Lin; Zhou, Tao

    2018-04-01

    It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.

  17. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  18. On the ""early-time"" evolution of variables relevant to turbulence models for the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory

    2010-01-01

    We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant variables before fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of mixing between two interpenetrating fluids to define the initial profiles for the turbulence model variables. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted profiles for the turbulence model variables and profiles of the variables obtained from low Atwood number three dimensional simulations show reasonable agreement.

  19. Effect of Volume Fraction of Particle on Wear Resistance of Al2O3/Steel Composites at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    BAO Chong-gao; WANG En-ze; GAO Yi-min; XING Jian-dong

    2005-01-01

    Based on previous work,abrasive wear resistance of Al2 O3/steel composites with different Al2 O3 parti cle volume fraction (VOF) at 900 C was investigated.The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature.Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low,the Al2O3 particles are easily dug out by grits during wearing as well.When the particle VOF is 39%,the wear resistance of tested composites is excellent.

  20. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites

    International Nuclear Information System (INIS)

    Price, Richard D.; Jiang Fengchun; Kulin, Robb M.; Vecchio, Kenneth S.

    2011-01-01

    Research highlights: → Residual Al improves the mechanical properties of Ti-Al 3 Ti MIL composites. → Residual Al can eliminate intermetallic centerline delaminations in MILs. → Low levels of residual Al increase fracture toughness in MIL composites. → MIL stiffness, strength, and fracture toughness can be optimized at low Al levels. - Abstract: Metal-intermetallic laminate (MIL) composites consisting of alternating layers of Ti, Al, and the intermetallic Al 3 Ti have been fabricated by reactive foil sintering in open air. Six initially identical stacks of alternating Ti-3Al-2.5 V and 1100-Al foils were processed for different lengths of time, yielding specimens with different metal and intermetallic volume fractions. Their mechanical properties have been investigated with an emphasis on the effect of residual Al at the intermetallic centerline on composite strength and fracture toughness, as well as fracture and failure modes. Samples were cut from each composite plate (in layer orientations parallel and perpendicular to the intended load direction) for mechanical testing in compression and four-point bending under quasi-static and high-rate loading conditions. Examination of the damaged specimens and their fracture surfaces by optical and scanning electron microscopy was performed to establish a correlation between the failure mechanisms present, composite strength, and microstructure. Results indicated that regardless of loading direction, cracks always initiated in the intermetallic region, rarely at the centerline, and crack propagation and failure were heavily influenced by the thickness of the residual aluminum layers. There is an ideal residual aluminum volume fraction that represents the amount of ductile reinforcement that maximizes the combined properties of strength, toughness and stiffness.

  1. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  2. Oscillation of a class of fractional differential equations with damping term.

    Science.gov (United States)

    Qin, Huizeng; Zheng, Bin

    2013-01-01

    We investigate the oscillation of a class of fractional differential equations with damping term. Based on a certain variable transformation, the fractional differential equations are converted into another differential equations of integer order with respect to the new variable. Then, using Riccati transformation, inequality, and integration average technique, some new oscillatory criteria for the equations are established. As for applications, oscillation for two certain fractional differential equations with damping term is investigated by the use of the presented results.

  3. Use of a theoretical equation of state to interpret time-dependent free volume in polymer glasses

    International Nuclear Information System (INIS)

    Curro, J.G.; Lagasse, R.R.; Simha, R.

    1981-01-01

    Many physical properties of polymer glasses change spontaneously during isothermal aging by a process commonly modeled as collapse of free volume. The model has not been verified rigorously because free volume cannot be unambiguously measured. In the present investigation we tentatively identify the free-volume fraction with the fraction of empty sites in the equation of state of Simha and Somcynsky. With this theory, volume recovery measurements can be analyzed to yield directly the time-dependent, free-volume fraction. Using this approach, recent volume measurements on poly(methyl methacrylate) are analyzed. The resulting free-volume fractions are then used in the Doolittle equation to predict the shift in stress relaxation curves at 23 0 C. These predicted shift factors agree with the experimental measurements of Cizmecioglu et al. In addition, it is shown that previous assumptions concerning temperature dependence of free volume are inconsistent with the theory

  4. Studying the Variable Refrigerant Volume (VRV) System and Determining the Root Cause of its Problem in Building 37, Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Suhafizudin Zainal Anuar; Mohamad Suhaimi Yahaya; Jusnan Hasim; Suhilah Mohd Ali; Mohd Khafidz Shamsuddin

    2015-01-01

    Variable Refrigerant Volume (VRV) system is one of the Heating, Ventilation and Air Conditioning (HVAC) type in the building. VRV system is a multi-split type air conditioner that uses variable refrigerant flow control to provide customers with the ability to maintain individual zone control in each room and floor of a building. VRV used in Building 37 is made by Mitsubishi Heavy Industries that was completely installed in 2011 with two pipes system format. The objectives of this study are to understand the Variable Refrigerant Volume (VRV) system and also to study the root cause of its problem in Building 37, Agensi Nuklear Malaysia. The result of the study study suggests poor workmanship during installation process and insufficient electrical grounding are suspected as the causes of on-going and repeating problems occurred. Hence, Bahagian Kejuruteraan (BKJ) has worked out with the service contractor to identify the main problem and leaking area before proceeding with repair and commissioning activities. (author)

  5. Fractionation list: F0000000181 [jPOST repository metadata[Archive

    Lifescience Database Archive (English)

    Full Text Available ssected into small pieces and homogenized with 10 up-and-down, unrotated strokes in forty volumes of cold hypotonic buffer...s cytosol fraction. Each pellet was suspended in suspension buffer (10 mM Tris-HCl (pH 7.4), 50 mM sucrose),...ºC. The plasma membrane fraction was obtained from the resulting pellet, and resuspended in suspension buffer.

  6. Essential oil composition of different fractions of Piper guineense ...

    African Journals Online (AJOL)

    The oil fractions also showed variable contact toxicity on impregnated filter paper. All doses of the n-hexane fraction were very toxic to the test insect than the control, causing 100% mortality after five days of exposure. All the fractions produced a strong repellent activity against the test insect. These results suggest that P.

  7. Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling

    International Nuclear Information System (INIS)

    Prabhu, B.; Suryanarayana, C.; An, L.; Vaidyanathan, R.

    2006-01-01

    Al-Al 2 O 3 metal matrix composite (MMC) powders with volume fractions of 20, 30, and 50% Al 2 O 3 were synthesized by high-energy milling of the blended component powders. The particle sizes of Al 2 O 3 studied were 50 nm, 150 nm, and 5 μm. A uniform distribution of the Al 2 O 3 reinforcement in the Al matrix was successfully obtained after milling the powders for a period of 20 h at a ball-to-powder ratio of 10:1 in a SPEX mill. The uniform distribution of Al 2 O 3 in the Al matrix was confirmed by characterizing these nanocomposite powders by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray mapping, and X-ray diffraction (XRD) techniques

  8. Analytical solutions of time–space fractional, advection–dispersion

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 6 ... In this article, we study time–space fractional advection–dispersion (FADE) equation and ... Lahore University of Management Sciences, Lahore Cantt 54792, Pakistan ...

  9. Real-time three-dimensional echocardiographic left ventricular ejection fraction and volumes assessment: comparison with cardiac computed tomography; Comparacao entre a afericao da fracao de ejecao e dos volumes do ventriculo esquerdo, medidos com ecocardiografia tridimensional em tempo real e com tomografia computadorizada ultra-rapida

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Marcelo L.C.; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Cury, Alexandre; Passos, Rodrigo B.D.; Nobrega, Marcel V. da; Funari, Marcelo B.G.; Pfefermam, Abhaham; Makdisse, Marcia; Fischer, Claudio H.; Morhy, Samira S., E-mail: luiz766@terra.com.br [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil)

    2008-10-15

    Background and objective: Few studies addressed the comparison between real-time 3D echocardiography (RT3DE) and cardiac computed tomography (CCT) concerning left ventricular ejection fraction and volumes assessment. We sought to compare both techniques regarding left ventricle (LV) ejection fraction function and volumes analysis. Methods: we studied by RT3DE (Philips IE 33, And, MA, USA) and by CCT (Toshiba, 64-slice, Otawara, Japan) 41 consecutive patients (29 males, 58 ± 11 yrs). We analysed by both techniques LVEF, LVEDV, LVESV. RT3DE and CCT data were compared by coefficients of determination (r: Pearson), Bland and Altman test and linear regression, 95% CI. Results: RT3DE data: LVEF ranged from 56.7 to 78.9 % (65.3 + 5.7 ); LVEDV ranged from 49.6 to 178.2 (88 + 27.5) mL; LVESV from 11.4 to 78 ( 33.9 + 13.7) mL. CCT data: LVEF ranged from 53 to 86 % (67.3 + 7.9 ); LVEDV ranged from 51 to 186 (106.4 + 30.7) mL; LVESV from 7 to 72 ( 35.1 + 13.8) mL. Correlations relative to RT3DE and CCT were: LVEF (r: 0. 7877, p<0.0001, 95 % CI 0.6327 to 0.8853 ); LVEDV (r:0.7671, p<0.0001, 95 % CI 0.5974 to 0.8745); LVESV (r: 0.8121, p<0.0001, 95 % CI 0.6659 to 0.8957). Conclusions: it was observed adequate correlation between real-time 3D echocardiography and cardiac computed tomography concerning ejection fraction and volumes assessment. (author)

  10. Recalculation of dose for each fraction of treatment on TomoTherapy.

    Science.gov (United States)

    Thomas, Simon J; Romanchikova, Marina; Harrison, Karl; Parker, Michael A; Bates, Amy M; Scaife, Jessica E; Sutcliffe, Michael P F; Burnet, Neil G

    2016-01-01

    The VoxTox study, linking delivered dose to toxicity requires recalculation of typically 20-37 fractions per patient, for nearly 2000 patients. This requires a non-interactive interface permitting batch calculation with multiple computers. Data are extracted from the TomoTherapy(®) archive and processed using the computational task-management system GANGA. Doses are calculated for each fraction of radiotherapy using the daily megavoltage (MV) CT images. The calculated dose cube is saved as a digital imaging and communications in medicine RTDOSE object, which can then be read by utilities that calculate dose-volume histograms or dose surface maps. The rectum is delineated on daily MV images using an implementation of the Chan-Vese algorithm. On a cluster of up to 117 central processing units, dose cubes for all fractions of 151 patients took 12 days to calculate. Outlining the rectum on all slices and fractions on 151 patients took 7 h. We also present results of the Hounsfield unit (HU) calibration of TomoTherapy MV images, measured over an 8-year period, showing that the HU calibration has become less variable over time, with no large changes observed after 2011. We have developed a system for automatic dose recalculation of TomoTherapy dose distributions. This does not tie up the clinically needed planning system but can be run on a cluster of independent machines, enabling recalculation of delivered dose without user intervention. The use of a task management system for automation of dose calculation and outlining enables work to be scaled up to the level required for large studies.

  11. Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System

    Directory of Open Access Journals (Sweden)

    Zhenhua Hu

    2013-01-01

    Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.

  12. The Fractional Poisson Process and the Inverse Stable Subordinator

    OpenAIRE

    Meerschaert, Mark; Nane, Erkan; Vellaisamy, P.

    2011-01-01

    The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extend...

  13. Digestion kinetics of carbohydrate fractions of citrus by-products

    DEFF Research Database (Denmark)

    Lashkari, Saman; Taghizadeh, Akbar

    2015-01-01

    The present experiment was carried out to determine the digestion kinetics of carbohydrate fractions of citrus by-products. Grapefruit pulp (GP), lemon pulp (LE), lime pulp (LI) and orange pulp (OP) were the test feed. Digestion kinetic of whole citrus by-products and neutral detergent fiber (NDF......) fraction and acid detergent fiber (ADF) fractions of citrus by-products were measured using the in vitro gas production technique. Fermentation kinetics of the neutral detergent soluble carbohydrates (NDSC) fraction and hemicelluloses were calculated using a curve subtraction. The fermentation rate...... of whole was the highest for the LE (p by-products lag time was longer for hemicellulose than other carbohydrate fractions. There was no significant difference among potential gas production (A) volumes of whole test feeds (p

  14. Quality-assured evaluation of effective porosity using fit-for-purpose estimates of clay-mineral volume fraction

    Science.gov (United States)

    Worthington, Paul F.

    2010-05-01

    Reservoirs that contain dispersed clay minerals traditionally have been evaluated petrophysically using either the effective or the total porosity system. The major weakness of the former is its reliance on "shale" volume fraction ( Vsh) as a clay-mineral indicator in the determination of effective porosity from well logs. Downhole clay-mineral indicators have usually delivered overestimates of fractional clay-mineral volume ( Vcm) because they use as a reference nearby shale beds that are often assumed to comprise clay minerals exclusively, whereas those beds also include quartzitic silts and other detritus. For this reason, effective porosity is often underestimated significantly, and this shortfall transmits to computed hydrocarbons in place and thence to estimates of ultimate recovery. The problem is overcome here by using, as proxy groundtruths, core porosities that have been upscaled to match the spatial resolutions of porosity logs. Matrix and fluid properties are established over clean intervals in the usual way. Log-derived values of Vsh are tuned so that, on average, the resulting log-derived porosities match the corresponding core porosities over an evaluation interval. In this way, Vsh is rendered fit for purpose as an indicator of clay-mineral content Vcm for purposes of evaluating effective porosity. The method is conditioned to deliver a value of effective porosity that shows overall agreement with core porosity to within the limits of uncertainty of the laboratory measurements. This is achieved through function-, reservoir- and tool-specific Vsh reduction factors that can be applied to downhole estimates of clay-mineral content over uncored intervals of similar reservoir character. As expected, the reduction factors can also vary for different measurement conditions. The reduction factors lie in the range of 0.29-0.80, which means that in its raw form, log-derived Vsh can overestimate the clay-mineral content by more than a factor of three. This

  15. Generalized hydrodynamic correlations and fractional memory functions

    Science.gov (United States)

    Rodríguez, Rosalio F.; Fujioka, Jorge

    2015-12-01

    A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.

  16. Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction

    International Nuclear Information System (INIS)

    Navare, Sachin M.; Liu, Yi-Hwa; Wackers, Frans J.T.

    2003-01-01

    Electrocardiographic (ECG) gated single-photon emission tomography (SPET) allows for simultaneous assessment of myocardial perfusion and left ventricular (LV) function. Presently 8-frame per cardiac cycle ECG gating of SPET images is standard. The aim of this study was to compare the effect of 8-frame and 16-frame gated SPET on measurements of LV volumes and to evaluate the effects of the presence of myocardial perfusion defects and of radiotracer dose administered on the calculation of LV volumes. A total of 86 patients underwent technetium-99m SPET myocardial perfusion imaging using 16-frame per cardiac cycle acquisition. Eight-frame gated SPET images were generated by summation of contiguous frames. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated from the 16-frame and 8-frame data sets. The patients were divided into groups according to the administered dose of the radiotracer and the size of the perfusion defect. Results. Sixteen frame per cardiac cycle acquisition resulted in significantly larger EDV (122±72 ml vs 115±68 ml, P<0.0001), smaller ESV (64±58.6 ml vs 67.6±59.5 ml, P<0.0001), and higher LVEF (55.3%±18% vs 49%±17.4%, P<0.0001) as compared to 8-frame SPET imaging. This effect was seen regardless of whether a high or a low dose was administered and whether or not significant perfusion defects were present. This study shows that EDV, ESV and LVEF determined by 16-frame gated SPET are significantly different from those determined by 8-frame gated SPET. The radiotracer dose and perfusion defects do not affect estimation of LV parameters by 16-frame gated SPET. (orig.)

  17. Introduction to fractional and pseudo-differential equations with singular symbols

    CERN Document Server

    Umarov, Sabir

    2015-01-01

    The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.

  18. A fractional derivative approach to full creep regions in salt rock

    DEFF Research Database (Denmark)

    Zhou, H. W.; Wang, C. P.; Mishnaevsky, Leon

    2013-01-01

    Based on the definition of the constant-viscosity Abel dashpot, a new creep element, referred to as the variable-viscosity Abel dashpot, is proposed to characterize damage growth in salt rock samples during creep tests. Ultrasonic testing is employed to determine a formula of the variable viscosity...... coefficient, indicating that the change of the variable viscosity coefficient with the time meets a negative exponent law. In addition, by replacing the Newtonian dashpot in the classical Nishihara model with the variable-viscosity Abel dashpot, a damage-mechanism-based creep constitutive model is proposed...... on the basis of time-based fractional derivative. The analytic solution for the fractional-derivative creep constitutive model is presented. The parameters of the fractional derivative creep model are determined by the Levenberg–Marquardt method on the basis of the experimental results of creep tests on salt...

  19. Millijansky radio variability in SDSS stripe 82

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, J. A.; Becker, R. H. [University of California, 1 Shields Avenue, Davis, CA 95616 (United States); White, R. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Richards, G. T., E-mail: hodge@mpia.de [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)

    2013-06-01

    We report on a blind survey for extragalactic radio variability that was carried out by comparing two epochs of data from the Faint Images of the Radio Sky at Twenty centimeters survey with a third epoch from a new 1.4 GHz survey of SDSS Stripe 82. The three epochs are spaced seven years apart and have an overlapping area of 60 deg{sup 2}. We uncover 89 variable sources down to the millijansky level, 75 of which are newly identified, and we find no evidence for transient phenomena. This new sample of variable sources allows us to infer an upper limit to the mean characteristic timescale of active galactic nucleus radio variability of 14 yr. We find that only 1% of extragalactic sources have fractional variability f {sub var} > 3, while 44% of Galactic sources vary by this much. The variable sample contains a larger fraction of quasars than a comparable non-variable control sample, though the majority of the variable sources appear to be extended galaxies in the optical. This implies that either quasars are not the dominant contributor to the variability of the sample, or that the deep optical data allow us to detect the host galaxies of some low-z quasars. We use the new, higher resolution data to report on the morphology of the variable sources. Finally, we show that the fraction of sources that are variable remains constant or increases at low flux densities. This may imply that next generation radio surveys with telescopes like Australian Square Kilometer Array Pathfinder and MeerKAT will see a constant or even increasing fraction of variable sources down into the sub-millijansky regime.

  20. A Monte Carlo simulation study comparing linear regression, beta regression, variable-dispersion beta regression and fractional logit regression at recovering average difference measures in a two sample design.

    Science.gov (United States)

    Meaney, Christopher; Moineddin, Rahim

    2014-01-24

    In biomedical research, response variables are often encountered which have bounded support on the open unit interval--(0,1). Traditionally, researchers have attempted to estimate covariate effects on these types of response data using linear regression. Alternative modelling strategies may include: beta regression, variable-dispersion beta regression, and fractional logit regression models. This study employs a Monte Carlo simulation design to compare the statistical properties of the linear regression model to that of the more novel beta regression, variable-dispersion beta regression, and fractional logit regression models. In the Monte Carlo experiment we assume a simple two sample design. We assume observations are realizations of independent draws from their respective probability models. The randomly simulated draws from the various probability models are chosen to emulate average proportion/percentage/rate differences of pre-specified magnitudes. Following simulation of the experimental data we estimate average proportion/percentage/rate differences. We compare the estimators in terms of bias, variance, type-1 error and power. Estimates of Monte Carlo error associated with these quantities are provided. If response data are beta distributed with constant dispersion parameters across the two samples, then all models are unbiased and have reasonable type-1 error rates and power profiles. If the response data in the two samples have different dispersion parameters, then the simple beta regression model is biased. When the sample size is small (N0 = N1 = 25) linear regression has superior type-1 error rates compared to the other models. Small sample type-1 error rates can be improved in beta regression models using bias correction/reduction methods. In the power experiments, variable-dispersion beta regression and fractional logit regression models have slightly elevated power compared to linear regression models. Similar results were observed if the

  1. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Damato, Antonio L., E-mail: adamato@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Townamchai, Kanopkis [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Albert, Michele [Department of Radiation Oncology, Saint Anne' s Hospital Regional Cancer Center, Fall River, Massachusetts (United States); Bair, Ryan J. [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Cormack, Robert A. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Jang, Joanne [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Kovacs, Arpad [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Lee, Larissa J. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Mak, Kimberley S.; Mirabeau-Beale, Kristina L.; Mouw, Kent W.; Phillips, John G.; Pretz, Jennifer L.; Russo, Andrea L. [Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts (United States); Lewis, John H.; Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2014-07-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI{sub gen}), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D{sub 0.1cc} and D{sub 2cc} was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD{sup TOT}) was calculated. Results: The population mean ± 1 standard deviation of κ, CI{sub gen}, and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD{sup TOT} = 72 ± 64 Gy) for D{sub 0.1cc} and CV = 16% ± 10% (SD{sup TOT} = 9 ± 6 Gy) for D{sub 2cc}; for rectum, CV = 11% ± 5% (SD{sup TOT} = 16 ± 17 Gy) for D{sub 0.1cc} and CV = 7% ± 2% (SD{sup TOT} = 4 ± 3 Gy) for D{sub 2cc}; for sigmoid, CV = 39% ± 28% (SD{sup TOT} = 12 ± 18 Gy) for D{sub 0.1cc} and CV = 34% ± 19% (SD{sup TOT} = 4 ± 4 Gy) for D{sub 2cc.} Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D{sub 0.1cc.} Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with

  2. Similarity Solutions for Multiterm Time-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    A. Elsaid

    2016-01-01

    Full Text Available Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on the obtained results, we propose a definition for a multiterm error function with generalized coefficients.

  3. Interobserver variability in gross tumor volume delineation for hepatocellular carcinoma. Results of Korean Radiation Oncology Group 1207 study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk [Jeju National University School of Medicine, Department of Radiation Oncology, Jeju National University Hospital, Jeju (Korea, Republic of); Kim, Jun Won; Lee, Ik Jae [Yonsei University College of Medicine, Department of Radiation Oncology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Yoon, Won Sup [Korea University Medical Center, Department of Radiation Oncology, Ansan Hospital, Ansan (Korea, Republic of); Kang, Min Kyu [Kyungpook National University School of Medicine, Department of Radiation Oncology, Daegu (Korea, Republic of); Kim, Tae Hyun [National Cancer Center, Center for Liver Cancer, Goyang (Korea, Republic of); Kim, Jin Hee [Keimyung University School of Medicine, Department of Radiation Oncology, Dongsan Medical Center, Daegu (Korea, Republic of); Lee, Hyung-Sik [Dong-A University College of Medicine, Department of Radiation Oncology, Busan (Korea, Republic of); Park, Hee Chul [Sungkyunkwan University School of Medicine, Department of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of); Jang, Hong Seok; Kay, Chul Seung [The Catholic University of Korea College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of); Yoon, Sang Min [University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of); Kim, Mi-Sook [Korea Institute of Radiological and Medical Sciences, Department of Radiation Oncology, Seoul (Korea, Republic of); Seong, Jinsil [Yonsei University College of Medicine, Department of Radiation Oncology, Severance Hospital, Seodaemun-gu, Seoul (Korea, Republic of)

    2016-10-15

    There has been increasing use of external beam radiotherapy for localized treatment of hepatocellular carcinoma (HCC) with both palliative and curative intent. Quality control of target delineation in primary HCC is essential to deliver adequate doses of radiation to the primary tumor while preserving adjacent healthy organs. We analyzed interobserver variability in gross tumor volume (GTV) delineation for HCC. Twelve radiation oncologists specializing in liver malignancy participated in a multi-institutional contouring dummy-run study of nine HCC cases and independently delineated GTV on the same set of provided computed tomography images. Quantitative analysis was performed using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE) with kappa statistics calculating agreement between physicians. To quantify the interobserver variability of GTV delineations, the ratio of the actual delineated volume to the estimated consensus volume (STAPLE), the ratio of the common and encompassing volumes, and the coefficient of variation were calculated. The median kappa agreement level was 0.71 (range 0.28-0.86). The ratio of the actual delineated volume to the estimated consensus volume ranged from 0.19 to 1.93 (median 0.94) for all cases. The ratio of the common and encompassing volumes ranged from 0.001 to 0.56 (median 0.25). The coefficient of variation for GTV delineation ranged from 8 to 57 % (median 26 %). The interobserver variability in target delineation of HCC GTV in this study is noteworthy. Multi-institution studies involving radiotherapy for HCC require appropriate quality assurance programs for target delineation. (orig.) [German] Die externe kurative Strahlentherapie ist zunehmend bei der lokalisierten Behandlung hepatozellulaerer Karzinome (HCC) in palliativer und kurativer Absicht in Gebrauch. Eine Qualitaetskontrolle der Zielabgrenzung beim primaeren HCC ist entscheidend, um die passende Dosis fuer die

  4. The aluminosilicate fraction of North Pacific manganese nodules

    Science.gov (United States)

    Bischoff, J.L.; Piper, D.Z.; Leong, K.

    1981-01-01

    Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

  5. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    Science.gov (United States)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  6. Knowledge-based reconstruction for measurement of right ventricular volumes on cardiovascular magnetic resonance images in a mixed population.

    Science.gov (United States)

    Pieterman, Elise D; Budde, Ricardo P J; Robbers-Visser, Daniëlle; van Domburg, Ron T; Helbing, Willem A

    2017-09-01

    Follow-up of right ventricular performance is important for patients with congenital heart disease. Cardiac magnetic resonance imaging is optimal for this purpose. However, observer-dependency of manual analysis of right ventricular volumes limit its use. Knowledge-based reconstruction is a new semiautomatic analysis tool that uses a database including knowledge of right ventricular shape in various congenital heart diseases. We evaluated whether knowledge-based reconstruction is a good alternative for conventional analysis. To assess the inter- and intra-observer variability and agreement of knowledge-based versus conventional analysis of magnetic resonance right ventricular volumes, analysis was done by two observers in a mixed group of 22 patients with congenital heart disease affecting right ventricular loading conditions (dextro-transposition of the great arteries and right ventricle to pulmonary artery conduit) and a group of 17 healthy children. We used Bland-Altman analysis and coefficient of variation. Comparison between the conventional method and the knowledge-based method showed a systematically higher volume for the latter group. We found an overestimation for end-diastolic volume (bias -40 ± 24 mL, r = .956), end-systolic volume (bias -34 ± 24 mL, r = .943), stroke volume (bias -6 ± 17 mL, r = .735) and an underestimation of ejection fraction (bias 7 ± 7%, r = .671) by knowledge-based reconstruction. The intra-observer variability of knowledge-based reconstruction varied with a coefficient of variation of 9% for end-diastolic volume and 22% for stroke volume. The same trend was noted for inter-observer variability. A systematic difference (overestimation) was noted for right ventricular size as assessed with knowledge-based reconstruction compared with conventional methods for analysis. Observer variability for the new method was comparable to what has been reported for the right ventricle in children and congenital

  7. Nootropic Effects of Filipendula Vulgaris Moench Water Extract Fractions.

    Science.gov (United States)

    Shilova, I V; Suslov, N I; Amelchenko, V P

    2015-07-01

    Nootropic activity of water extract fractions from aerial parts of Filipendula vulgaris Moench was demonstrated on the models of hermetic volume hypoxia, conditioned passive avoidance response, open field test, and forced swimming with a load. The fractions stimulated hypoxic resistance, normalized orientation and exploratory behavior, improved conditioned response reproduction during testing after hypoxic injury, and increased exercise tolerance. Fractionation of the extract led to dissociation of the effect components, which suggests that individual constituents have specific characteristics. Ethylacetate fraction exhibited most pronounced nootropic activity and was superior to plant extract by some characteristics. The detected effects seemed to be caused by modulation of the hippocampus activity the under the effects of phenol and triterpene compounds.

  8. Momentum fractionation on superstrata

    International Nuclear Information System (INIS)

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-01-01

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS_3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  9. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    Science.gov (United States)

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Relapse May Serve as a Mediator Variable in Longitudinal Outcomes in Multiple Sclerosis.

    Science.gov (United States)

    Stone, Lael Anne; Cutter, Gary Raymond; Fisher, Elizabeth; Richert, Nancy; McCartin, Jennifer; Ohayon, Joan; Bash, Craig; McFarland, Henry

    2016-05-01

    Contrast-enhancing lesions (CEL) on magnetic resonance imaging (MRI) are believed to represent inflammatory disease activity in multiple sclerosis (MS), but their relationship to subsequent long-term disability and progression is unclear, particularly at longer time periods such as 8-10 years. Between 1989 and 1994, 111 MS patients were seen at the National Institutes of Health for clinical evaluations and 3 monthly contrast-enhanced MRI scans. Of these, 94 patients were re-evaluated a mean of 8 years later (range 6.1-10.5 years) with a single MRI scan and clinical evaluation. CEL number and volume were determined at baseline and follow-up. The number of relapses was ascertained over the follow-up period and annualized relapse rates were calculated. Other MRI parameters, such as T2 hyperintensity volume, T1 volume, and brain parenchymal fraction, were also calculated. While there was no direct correlation between CEL number or volume at baseline and disability status at follow-up, CEL measures at baseline did correlate with number of relapses observed in the subsequent years, and the number of relapses in turn correlated with subsequent disability as well as transition to progressive MS. While number and volume of CEL at baseline do not directly correlate with disability in the longer term in MS, our data suggest that 1 route to disability involves relapses as a mediator variable in the causal sequence of MS progression from CEL to disability. Further studies using relapse as a mediator variable in a larger data set may be warranted. Copyright © 2015 by the American Society of Neuroimaging.

  11. An exploration of diffusion tensor eigenvector variability within human calf muscles.

    Science.gov (United States)

    Rockel, Conrad; Noseworthy, Michael D

    2016-01-01

    To explore the effect of diffusion tensor imaging (DTI) acquisition parameters on principal and minor eigenvector stability within human lower leg skeletal muscles. Lower leg muscles were evaluated in seven healthy subjects at 3T using an 8-channel transmit/receive coil. Diffusion-encoding was performed with nine signal averages (NSA) using 6, 15, and 25 directions (NDD). Individual DTI volumes were combined into aggregate volumes of 3, 2, and 1 NSA according to number of directions. Tensor eigenvalues (λ1 , λ2 , λ3 ), eigenvectors (ε1 , ε2 , ε3 ), and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) were calculated for each combination of NSA and NDD. Spatial maps of signal-to-noise ratio (SNR), λ3 :λ2 ratio, and zenith angle were also calculated for region of interest (ROI) analysis of vector orientation consistency. ε1 variability was only moderately related to ε2 variability (r = 0.4045). Variation of ε1 was affected by NDD, not NSA (P < 0.0002), while variation of ε2 was affected by NSA, not NDD (P < 0.0003). In terms of tensor shape, vector variability was weakly related to FA (ε1 :r = -0.1854, ε2 : ns), but had a stronger relation to the λ3 :λ2 ratio (ε1 :r = -0.5221, ε2 :r = -0.1771). Vector variability was also weakly related to SNR (ε1 :r = -0.2873, ε2 :r = -0.3483). Zenith angle was found to be strongly associated with variability of ε1 (r = 0.8048) but only weakly with that of ε2 (r = 0.2135). The second eigenvector (ε2 ) displayed higher directional variability relative to ε1 , and was only marginally affected by experimental conditions that impacted ε1 variability. © 2015 Wiley Periodicals, Inc.

  12. The Fractional Ornstein-Uhlenbeck Process

    DEFF Research Database (Denmark)

    Høg, Esben; Frederiksen, Per H.

    The paper revisits dynamic term structure models (DTSMs) and proposes a new way in dealing with the limitation of the classical affine models. In particular, this paper expands the flexibility of the DTSMs by applying a fractional Brownian motion as the governing force of the state variable inste...... of the bond is recovered by solving a fractional version of the fundamental bond pricing equation. Besides this theoretical contribution, the paper proposes an estimation methodology based on the Kalman filter approach, which is applied to the US term structure of interest rates....

  13. Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading

    International Nuclear Information System (INIS)

    Young, M.L.; Wagner, M.F.-X.; Frenzel, J.; Schmahl, W.W.; Eggeler, G.

    2010-01-01

    An ultrafine-grained pseudoelastic NiTi shape-memory alloy wire with 50.9 at.% Ni was examined using synchrotron X-ray diffraction during in situ uniaxial tensile loading (up to 1 GPa) and unloading. Both macroscopic stress-strain measurements and volume-averaged lattice strains are reported and discussed. The loading behavior is described in terms of elasto-plastic deformation of austenite, emergence of R phase, stress-induced martensitic transformation, and elasto-plastic deformation, grain reorientation and detwinning of martensite. The unloading behavior is described in terms of stress relaxation and reverse plasticity of martensite, reverse transformation of martensite to austenite due to stress relaxation, and stress relaxation of austenite. Microscopically, lattice strains in various crystallographic directions in the austenitic B2, martensitic R, and martensitic B19' phases are examined during loading and unloading. It is shown that the phase transformation occurs in a localized manner along the gage length at the plateau stress. Phase volume fractions and lattice strains in various crystallographic reflections in the austenite and martensite phases are examined over two transition regions between austenite and martensite, which have a width on the order of the wire diameter. Anisotropic effects observed in various crystallographic reflections of the austenitic phase are also discussed. The results contribute to a better understanding of the tensile loading behavior, both macroscopically and microscopically, of NiTi shape-memory alloys.

  14. Dependence of stability of metastable superconductors on copper fraction

    International Nuclear Information System (INIS)

    Elrod, S.A.; Lue, J.W.; Miller, J.R.; Dresner, L.

    1980-12-01

    The stability of composite superconductors operating in the metastable regime depends upon such factors as matrix resistivity, cooled surface dimensions, fraction of critical current, and volume fraction of stabilizer. By assuming constant thermophysical properties, we developed analytic expressions for the energy and voltage of the minimum propagating zone (MPZ). With other factors held constant, these expressions have been used to predict composite superconductor stability as a function of copper fraction: lower copper fractions lead to higher MPZ energies. MPZ voltages have been measured for three NbTi/Cu composites having different copper fractions and different critical current densities for several magnetic fields and transport currents. Experimental MPZ voltages have been used to calculate an effective heat transfer coefficient, which is subsequently used to calculate the MPZ energy. The experimental MPZ energies support the theoretical expectation that lower copper fractions lead to higher stability in the metastable regime

  15. The co registration of initial PET on the CT-radiotherapy reduces significantly the variabilities of anatomo-clinical target volume in the child hodgkin disease

    International Nuclear Information System (INIS)

    Metwally, H.; Blouet, A.; David, I.; Rives, M.; Izar, F.; Courbon, F.; Filleron, T.; Laprie, A.; Plat, G.; Vial, J.

    2009-01-01

    It exists a great interobserver variability for the anatomo-clinical target volume (C.T.V.) definition in children suffering of Hodgkin disease. In this study, the co-registration of the PET with F.D.G. on the planning computed tomography has significantly lead to a greater coherence in the clinical target volume definition. (N.C.)

  16. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    Science.gov (United States)

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  17. Multicomponent diffusivities from the free volume theory

    NARCIS (Netherlands)

    Wesselingh, J.A; Bollen, A.M

    In this paper the free volume theory of diffusion is extended to multicomponent mixtures. The free volume is taken to be accessible for any component according to its surface. fraction. The resulting equations predict multicomponent (Maxwell-Stefan) diffusivities in simple liquid mixtures from pure

  18. The Effect of Type and Volume Fraction (Vf) of Steel Fiber on the Mechanical Properties of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Ghanbarpour, S.; Mazaheripour, H.; Mirmoradi, S. H.

    2010-01-01

    is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self-compacting concrete (SFRSCC). Design/methodology/approach – For this purpose, Micro wire and Wave type steel fibers......Purpose – Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their propagation, and improve several characteristics and properties of the SCC. The purpose of this paper...... – It was found that, inclusion of steel fibers significantly affect the split tensile and flexural strength of SCC accordance with type and vf. Besides, mathematical expressions were developed to estimate the flexural, modulus of elasticity and split tensile strength of SFRSCCs regarding of compressive strength...

  19. Tcp and NTCP radiobiological models: conventional and hypo fractionated treatments in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo V, A.; Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Resendiz G, G.; Posadas V, A. [Hospital Angeles Lomas, Av. Vialidad de la Barranca s/n, Col. Valle de las Palmas, 52763 Huixquilucan de Degallado, Estado de Mexico (Mexico); Mitsoura, E. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan, Esq. Jesus Carranza s/n, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico (Mexico); Rodriguez L, A.; Flores C, J. M., E-mail: armando.astudillo@inin.gob.mx [Hospital Medica Sur, Puente de Piedra 150, Col. Toriello Guerra, 14050 Tlalpan, Mexico D. F. (Mexico)

    2015-10-15

    The hypo and conventional fractionated schedules performance were compared in terms of the tumor control and the normal tissue complications. From the records of ten patients, treated for adenocarcinoma and without mastectomy, the dose-volume histogram was used. Using radiobiological models the probabilities for tumor control and normal tissue complications were calculated. For both schedules the tumor control was approximately the same. However, the damage in the normal tissue was larger in conventional fractionated schedule. This is important because patients assistance time to their fractions (15 fractions/25 fractions) can be optimized. Thus, the hypo fractionated schedule has suitable characteristics to be implemented. (Author)

  20. Tcp and NTCP radiobiological models: conventional and hypo fractionated treatments in radiotherapy

    International Nuclear Information System (INIS)

    Astudillo V, A.; Paredes G, L.; Resendiz G, G.; Posadas V, A.; Mitsoura, E.; Rodriguez L, A.; Flores C, J. M.

    2015-10-01

    The hypo and conventional fractionated schedules performance were compared in terms of the tumor control and the normal tissue complications. From the records of ten patients, treated for adenocarcinoma and without mastectomy, the dose-volume histogram was used. Using radiobiological models the probabilities for tumor control and normal tissue complications were calculated. For both schedules the tumor control was approximately the same. However, the damage in the normal tissue was larger in conventional fractionated schedule. This is important because patients assistance time to their fractions (15 fractions/25 fractions) can be optimized. Thus, the hypo fractionated schedule has suitable characteristics to be implemented. (Author)

  1. Lyapunov Functions to Caputo Fractional Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Ravi Agarwal

    2018-05-01

    Full Text Available One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable. In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.

  2. On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grünvald-Letnikov fractional difference (differential) equations.

    Science.gov (United States)

    Edelman, Mark

    2015-07-01

    In this paper, we consider a simple general form of a deterministic system with power-law memory whose state can be described by one variable and evolution by a generating function. A new value of the system's variable is a total (a convolution) of the generating functions of all previous values of the variable with weights, which are powers of the time passed. In discrete cases, these systems can be described by difference equations in which a fractional difference on the left hand side is equal to a total (also a convolution) of the generating functions of all previous values of the system's variable with the fractional Eulerian number weights on the right hand side. In the continuous limit, the considered systems can be described by the Grünvald-Letnikov fractional differential equations, which are equivalent to the Volterra integral equations of the second kind. New properties of the fractional Eulerian numbers and possible applications of the results are discussed.

  3. Experimental enhancement of fuzzy fractional order PI+I controller of grid connected variable speed wind energy conversion system

    International Nuclear Information System (INIS)

    Beddar, Antar; Bouzekri, Hacene; Babes, Badreddine; Afghoul, Hamza

    2016-01-01

    Highlights: • Fuzzy fractional order PI+I for wind energy conversion system is developed. • Investigation of the control methods performances under wind and load variations. • PSO algorithm with frequency method are used for parameters tuning. • Experimental results are presented. - Abstract: In this paper, fuzzy fractional order PI+I (FFOPI+I) controller for grid connected Variable Speed Wind Energy Conversion System (VS-WECS) is proposed. The FFOPI+I controller is applied to control a Permanent Magnet Synchronous Generator (PMSG) connected to the grid and nonlinear load through a back-to-back AC-DC-AC PWM converter. The control strategy of the Machine Side Converter (MSC) aims, at first, to extract a maximum power under fluctuating wind speed. Then, the Grid Side Converter (GSC) is controlled to improve the power quality and ensure sinusoidal current in the grid side. The FFOPI+I controller implements a Fuzzy Logic Controller (FLC) in parallel with Fractional Order PI (FOPI) and conventional PI controllers by having a commune proportional gain. The FLC changes the integral gains at runtime. The initial parameters of the FFOPI+I controller were calculated using a frequency method to create a search space then the PSO algorithm is used to select the optimal parameters. To evaluate the performance of the proposed controller in steady and transient states, an experimental test bench has been built in laboratory using dSPACE1104 card. The experimental results demonstrate the effectiveness and feasibility of the FFOPI+I over FOPI and conventional PI controllers by realizing maximum power extraction and improving the grid-side power factor for a wide range of wind speed.

  4. Acoustic neuromas: single dose vs fractionated therapy

    International Nuclear Information System (INIS)

    Fuss, M.; Debus, J.; Lohr, F.; Engenhart-Cabillic, R.; Wannenmacher, M.

    1997-01-01

    Purpose: Radiosurgical treatment (RS) of acoustic neuromas is a well established treatment. However, few data are available concerning conformal fractionated radiotherapy (FT) of this tumor entity. We evaluated treatment outcome and toxicity for both treatment modalities in 41 patients treated at our institution between 1984 and 1997. Material and Methods: All treatments were performed using a specially adapted linear accelerator and circular collimators for convergent beam RS or multi-leaf collimators (leaf thickness 1 or 3mm) for multi-field RS or fractionated treatment. 22 patients (7 male, 15 female, median age 60 years, range 20-83 years) were treated radiosurgically with single doses between 7 and 28 Gray (median 15 Gy) prescribed to the 80% isodose line. Tumor volumes ranged from 0.7 to 10.5 ccm with a median volume of 3.4 ccm. The median number of isocenters was 2 (1-4 isocenters). One patient was treated by a multi-field technique (14 isocentric irregularly shaped noncoplanar fields). 19 patients (5 male, 14 female, median age 55 years, range 20-81 years) were treated with stereotactic conformal radiotherapy. Median dose was 60 Gray with a median daily fraction size of 2 Gy and a median of 3 (1-4) irregularly shaped isocentric fields. Tumor volumes ranged from 0.7 to 32.4 ccm (median 15 ccm). Median follow-up was 30 months (7-149 months) for radiosurgical and 30 months (2-88 months) for fractionated treatment. Seven patients who underwent fractionated treatment had previously undergone neurosurgical resection on the contralateral side. One had undergone radiosurgery on the opposite side before. Results: All tumors were locally controlled. A volume reduction of more than 20% was seen in 16% after RS and 18% following FT. Typical posttherapeutic central reduction of contrast media enhancement was found in 73% following RS after a median of 8 (3-12) months and in 63% following FT after a median of 6 (1-12) months. Temporary brainstem edema was diagnosed in 4

  5. Enlarged thalamic volumes and increased fractional anisotropy in the thalamic radiations in Veterans with suicide behaviors

    Directory of Open Access Journals (Sweden)

    Melissa eLopez-Larson

    2013-08-01

    Full Text Available Post-mortem studies have suggested a link between the thalamus, psychiatric disorders, and suicide. We evaluated the thalamus and anterior thalamic radiations (ATR in a group of Veterans with and without a history of suicidal behavior (SB to determine if thalamic abnormalities were associated with an increased risk of SB. Forty Veterans with mild traumatic brain injury (TBI and no SB (TBI-SB, 19 Veterans with mild TBI and a history of SB (TB+SB and 15 healthy controls (HC underwent MRI scanning including a structural and diffusion tensor imaging scan. Suicidal behaviors were evaluated utilizing the Columbia Suicide Rating Scale and impulsivity was measured using the Barratt Impulsiveness Scale (BIS. Differences in thalamic volumes and ATR fractional anisotropy (FA were examined between 1 TBI+SB versus HC and 2 TBI+SB versus combined HC and TBI-SB and 2 between TBI+SB and TBI-SB. Left and right thalamic volumes were significantly increased in those with TBI+SB compared to the HC, TBI-SB and the combined group. Veterans with TBI+SB had increased FA bilaterally compared to the HC, HC and TBI-SB group, and the TBI-SB only group. Significant positive associations were found for bilateral ATR and BIS in the TBI+SB group. Our findings of thalamic enlargement and increased FA in individuals with TBI+SB suggest that this region may be a biomarker for suicide risk. Our findings are consistent with previous evidence indicating that suicide may be associated with behavioral disinhibition and frontal-thalamic-limbic dysfunction and suggest a neurobiologic mechanism that may increase vulnerability to suicide.

  6. A modified variable physical properties model, for analyzing nanofluids flow and heat transfer over nonlinearly stretching sheet

    Directory of Open Access Journals (Sweden)

    Pooria Akbarzadeh

    2017-07-01

    Full Text Available In this paper, the problem of laminar nanofluid flow which results from the nonlinear stretching of a flat sheet is investigated numerically. In this paper, a modified variable physical properties model for analyzing nanofluids flow and heat transfer is introduced. In this model, the effective viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids which are commonly utilized in the homogenous single-phase model, are locally combined with the prevalent single-phase model. A numerical similarity solution is considered which depends on the local Prandtl number, local Brownian motion number, local Lewis number, and local thermophoresis number. The results are compared to the prevalent single-phase model. This comparison depicts that the prevalent single-phase model has a considerable deviation for predicting the behavior of nanofluids flow especially in dimensionless temperature and nanoparticle volume fraction. In addition the effect of the governing parameters such as Prandtl number, the Brownian motion number, the thermophoresis parameter, the Lewis number, and etc. on the velocity, temperature, and volume fraction distribution and the dimensionless heat and mass transfer rates are examined.

  7. X-ray volume imaging in bladder radiotherapy verification

    International Nuclear Information System (INIS)

    Henry, Ann M.; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-01-01

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology

  8. Sustained volume expansion and [Na,K]ATPase inhibition in chronic renal failure.

    Science.gov (United States)

    Glatter, K A; Graves, S W; Hollenberg, N K; Soszynski, P A; Tao, Q F; Frem, G J; Williams, G H; Lazarus, J M

    1994-11-01

    Hypotheses regarding the pathogenesis of volume-dependent hypertension have invoked an endogenous sodium pump inhibitor or digitalis-like factor (DLF) to link altered sodium homeostasis to the rise in blood pressure. Our goal was to develop a clinical protocol that achieved predictable, sustained volume expansion, with the premise that renal failure patients on peritoneal dialysis would increase intravascular volume, gain weight, and raise blood pressure (BP) in relation to measured increases in DLF. In a 5-day protocol, dialysis was kept constant but dietary NaCl and fluids were modified in 7 patients. DLF was measured as inhibition of [Na,K]ATPase. Likewise, the first 2 L of daily peritoneal dialysate (PD) was processed on HPLC and the eluate analyzed for DLF. The group achieved significant weight gain (WT) by day 3 (delta WT = 4.1 +/- 1.2 kg, P < .05). Likewise, mean arterial pressure (MAP) and plasma DLF activity increased significantly. All variables were highly correlated (DLF v WT: R = 0.88, P = .004; MAP v DLF: R = 0.82, P = .01; MAP v WT: R = 0.90, P = .003). Although a number of HPLC fractions contained agents that interacted with the assay, only one PD HPLC fraction (at 19.5 min) contained DLF activity that correlated with changes in MAP (R = 0.60, P = .002), and body weight (R = 0.67, P = .0003). We conclude that candidate DLF responds to sustained volume expansion and the relationship suggests that it could influence blood pressure. Moreover, the application of stringent criteria to the confusing array of factors in plasma that may affect assays for DLF appears to reduce the field dramatically, to a single candidate in this setting.

  9. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    Science.gov (United States)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  10. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina [Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195-6043 (United States); Yartsev, Slav [London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario 46A 4L6 (Canada)

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained

  11. Measurement of Mechanical Coherency Temperature and Solid Volume Fraction in Al-Zn Alloys Using In Situ X-ray Diffraction During Casting

    Science.gov (United States)

    Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael

    2015-09-01

    During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.

  12. PENGARUH PERLAKUAN ALKALI, FRAKSI VOLUME SERAT, DAN PANJANG SERAT TERHADAP KEKUATAN TARIK KOMPOSIT SERAT SABUT KELAPA - POLYESTER

    Directory of Open Access Journals (Sweden)

    Yudha Yoga Pratama

    2014-06-01

    Full Text Available Production of wood in Indonesia is no longer able to meet their need, which is opening an opportunity for study in material alternatives. Coconut fiber is very potential material for wood replacement composite, since its availability is abundant and its utilization is still low. Meanwhile, some factors have been studied as single affecting variable for natural fiber composite. The objective of this study is to evaluate the influence factors of alkali treatment, fiber length, fiber volume fraction and interaction between factors on the tensile strenght of coco-fiber polyester composite. 108 pieces of composites have been prepared as speciments of tensile test which comply ASTM D 638 standard. The testing result was processed using completely randomized full factorial experiment. The experiment showed significant difference for all three factors. The highest value of tensile strenght is 22.57 MPa for 2 hours alkali treatment, 10 mm fiber length and fiber volume fraction of 35%. This value has met the standard minimum tensile strength of hardboard according to ANSI A135.4 2004.

  13. PENGARUH PERLAKUAN ALKALI, FRAKSI VOLUME SERAT, DAN PANJANG SERAT TERHADAP KEKUATAN TARIK KOMPOSIT SERAT SABUT KELAPA - POLYESTER

    Directory of Open Access Journals (Sweden)

    Yudha Yoga Pratama

    2014-06-01

    Full Text Available Production of wood in Indonesia is no longer able to meet their need, which is opening an opportunity for study in material alternatives. Coconut fiber is very potential material for wood replacement composite, since its availability is abundant and its utilization is still low. Meanwhile, some factors have been studied as single affecting variable for natural fiber composite. The objective of this study is to evaluate the influence factors of alkali treatment, fiber length, fiber volume fraction and interaction between factors on the tensile strenght of coco-fiber polyester composite. 108 pieces of composites have been prepared as speciments of tensile test which comply ASTM D 638 standard. The testing result was processed using  completely randomized full  factorial experiment. The experiment showed significant difference for all three factors. The highest value of tensile strenght is 22.57 MPa for 2 hours alkali treatment, 10 mm fiber length and fiber volume fraction of 35%. This value has met the standard minimum tensile strength of hardboard according to ANSI A135.4 2004.

  14. Interface detection in poly-ethylene terephthalate-metal laminates using variable energy positron annihilation

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Schut, H.; Veen, A. van; Rastogi, R.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    Thin coatings of poly-ethylene terephthalate (PET) on metal ('laminates') have been studied with a variable energy positron annihilation technique. A correlation between PET crystallinity and the positron annihilation parameter S related to the free volume in the polymer is found. It is shown that buried interfaces in these systems may be detected provided the S parameter of the polymer coating is lower than that of the substrate and higher than that of the surface. Also it is found that large positron diffusion lengths in the substrate favour interface detection. Further, changes in S parameter of PET-metal laminates were measured during uniaxial deformation and shown to be in qualitative accordance with a very simple model description that accounts for changes in free volume in PET during plastic deformation as well as the area fraction of cracks occurring in the PET

  15. On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects

    International Nuclear Information System (INIS)

    Horas, Jorge A; Olguin, Osvaldo R; Rizzotto, Marcos G

    2005-01-01

    We model the heterogeneous response to radiation of multicellular tumour spheroids assuming position- and volume-dependent radiosensitivity. We propose a method to calculate the overall radiosensitivity parameters to obtain the surviving fraction of tumours. A mathematical model of a spherical tumour with a hypoxic core and a viable rim which is a caricature of a real tumour is constructed. The model is embedded in a two-compartment linear-quadratic (LQ) model, assuming a mixed bivariated Gaussian distribution to attain the radiosensitivity parameters. Ergodicity, i.e., the equivalence between ensemble and volumetric averages is used to obtain the overall radiosensitivities for the two compartments. We obtain expressions for the overall radiosensitivity parameters resulting from the use of both a linear and a nonlinear dependence of the local radiosensitivity with position. The model's results are compared with experimental data of surviving fraction (SF) for multicellular spheroids of different sizes. We make one fit using only the smallest spheroid data and we are able to predict the SF for the larger spheroids. These predictions are acceptable particularly using bounded sensitivities. We conclude with the importance of taking into account the contribution of clonogenic hypoxic cells to radiosensitivity and with the convenience of using bounded local sensitivities to predict overall radiosensitivity parameters

  16. An Operational Matrix Technique for Solving Variable Order Fractional Differential-Integral Equation Based on the Second Kind of Chebyshev Polynomials

    Directory of Open Access Journals (Sweden)

    Jianping Liu

    2016-01-01

    Full Text Available An operational matrix technique is proposed to solve variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials in this paper. The differential operational matrix and integral operational matrix are derived based on the second kind of Chebyshev polynomials. Using two types of operational matrixes, the original equation is transformed into the arithmetic product of several dependent matrixes, which can be viewed as an algebraic system after adopting the collocation points. Further, numerical solution of original equation is obtained by solving the algebraic system. Finally, several examples show that the numerical algorithm is computationally efficient.

  17. The effect of sintering conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites

    International Nuclear Information System (INIS)

    Lee, Dongju; Umer, Malik Adeel; Shin, Yoochul; Jeon, Seokwoo; Hong, Soonhyung

    2012-01-01

    Highlights: ► Effect of sintering conditions on properties of W composites was investigated. ► Effect of ZrN volume fraction on properties of W composites was investigated. ► The grain size and relative density increased with increasing sintering temperature. ► ZrN particles led to an increase in strength of W and a decrease in grain size. ► Highest flexural strength was obtained for 10 vol.% W/ZrN with lowest agglomeration. - Abstract: In an effort to improve the room temperature mechanical properties of tungsten, W/ZrN composites were fabricated by high energy ball milling followed by spark plasma sintering at temperatures in a range of 1200–1700 °C under a pressure of 50 MPa. The effects of sintering conditions and ZrN volume fraction on the mechanical properties of the W/ZrN composites were studied and the results were compared to the properties of monolithic tungsten. The grain size of monolith tungsten and W/ZrN composites was found to increase with an increase in sintering temperature and time. In the case of the W/ZrN composites, ZrN particles led to an increase in the compressive strength of tungsten and a decrease in grain size. The increase in compressive strength of the composites was attributed to a reinforcement effect of ZrN particles as well as grain size refinement according to the Hall–Petch relation. Compressive strength of the composites increased with increasing ZrN content while the flexural strength decreased for samples with ZrN content exceeding 10 vol.%. This was attributed to the effects of ZrN agglomeration within the tungsten matrix.

  18. Gas permeation measurement under defined humidity via constant volume/variable pressure method

    KAUST Repository

    Jan Roman, Pauls

    2012-02-01

    Many industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water vapour on gas permeability through polymeric membranes is essential for materials design and optimization of these membrane applications. In particular, for amine-based CO 2 selective facilitated transport membranes, water vapour is necessary for carrier-complex formation (Matsuyama et al., 1996; Deng and Hägg, 2010; Liu et al., 2008; Shishatskiy et al., 2010) [1-4]. But also conventional polymeric membrane materials can vary their permeation behaviour due to water-induced swelling (Potreck, 2009) [5]. Here we describe a simple approach to gas permeability measurement in the presence of water vapour, in the form of a modified constant volume/variable pressure method (pressure increase method). © 2011 Elsevier B.V.

  19. Application of fractional derivative with exponential law to bi-fractional-order wave equation with frictional memory kernel

    Science.gov (United States)

    Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-12-01

    Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.

  20. Numerical Investigation of a Two-Phase Nanofluid Model for Boundary Layer Flow Past a Variable Thickness Sheet

    Science.gov (United States)

    Liu, Chunyan; Zheng, Liancun; Lin, Ping; Pan, Mingyang; Liu, Fawang

    2018-02-01

    This paper investigates heat and mass transfer of nanofluid over a stretching sheet with variable thickness. The techniques of similarity transformation and homotopy analysis method are used to find solutions. Velocity, temperature, and concentration fields are examined with the variations of governing parameters. Local Nusselt number and Sherwood number are compared for different values of variable thickness parameter. The results show that there exists a critical value of thickness parameter βc (βc≈0.7) where the Sherwood number achieves its maximum at the critical value βc. For β>βc, the distribution of nanoparticle volume fraction decreases near the surface but exhibits an opposite trend far from the surface.

  1. Quality assurance in fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Warrington, A.P.; Laing, R.W.; Brada, M.

    1994-01-01

    The recent development of fractionated stereotactic radiotherapy (SRT), which utilises the relocatable Gill-Thomas-Cosman frame (GTC 'repeat localiser'), requires comprehensive quality assurance (QA). This paper focuses on those QA procedures particularly relevant to fractionated SRT treatments, and which have been derived from the technique used at the Royal Marsden Hospital. They primarily relate to the following: (i) GTC frame fitting, initially in the mould room, and then at each imaging session and treatment fraction; (ii) checking of the linear accelerator beam geometry and alignment lasers; and (iii) setting up of the patient for each fraction of treatment. The precision of the fractionated technique therefore depends on monitoring the GTC frame relocation at each fitting, checking the accuracy of the radiation isocentre of the treatment unit, its coincidence with the patient alignment lasers and the adjustments required to set the patient up accurately. The results of our quality control checks show that setting up to a mean radiation isocentre using precisely set-up alignment lasers can be achievable to within 1 mm accuracy. When this is combined with a mean GTC frame relocatability of 1 mm on the patient, a 2-mm allowance between the prescribed isodose surface and the defined target volume is a realistic safety margin for this technique

  2. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  3. Probability calculus of fractional order and fractional Taylor's series application to Fokker-Planck equation and information of non-random functions

    International Nuclear Information System (INIS)

    Jumarie, Guy

    2009-01-01

    A probability distribution of fractional (or fractal) order is defined by the measure μ{dx} = p(x)(dx) α , 0 α (D x α h α )f(x) provided by the modified Riemann Liouville definition, one can expand a probability calculus parallel to the standard one. A Fourier's transform of fractional order using the Mittag-Leffler function is introduced, together with its inversion formula; and it provides a suitable generalization of the characteristic function of fractal random variables. It appears that the state moments of fractional order are more especially relevant. The main properties of this fractional probability calculus are outlined, it is shown that it provides a sound approach to Fokker-Planck equation which are fractional in both space and time, and it provides new results in the information theory of non-random functions.

  4. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions

    International Nuclear Information System (INIS)

    Mariano-Goulart, D.; Collet, H.; Kotzki, P.-O.; Zanca, M.; Rossi, M.

    1998-01-01

    significantly different (P = 0.42). The interoperator variability with TMUGA was 6.7% for the right ventricle. Thus, the watershed algorithm proposed is an efficient segmentation tool for the semi-automatic analysis of right and left ventricular ejection fractions by TMUGA. Further studies are necessary to check whether this procedure can be used to evaluate ventricular volumes and cardiac outflow. (orig.)

  5. Role of fractionated radiotherapy in patients with hemangioma of the cavernous sinus

    International Nuclear Information System (INIS)

    Park, Sun Min; Yoon, Sang Min; Lee, Su Min; Park, Jin Hong; Song, Si Yeol; Lee, Sang Wook; Ahn, Seung Do; Kim, Jong Hoon; Choi, Eun Kyung

    2017-01-01

    We performed this retrospective study to investigate the outcomes of patients with hemangioma of the cavernous sinus after fractionated radiotherapy. We analyzed 10 patients with hemangioma of the cavernous sinus who were treated with conventional radiotherapy between January 2000 and December 2016. The median patient age was 54 years (range, 31–65 years), and 8 patients (80.0%) were female. The mean hemangioma volume was 34.1 cm"3 (range, 6.8–83.2 cm"3), and fractionated radiation was administered to a total dose of 50–54 Gy with a daily dose of 2 Gy. The median follow-up period was 6.8 years (range, 2.2–8.8 years). At last follow-up, the volume of the tumor had decreased in all patients. The average tumor volume reduction rate from the initial volume was 72.9% (range, 18.9–95.3%). All 10 of the cranial neuropathies observed before radiation therapy had improved, with complete symptomatic remission in 9 cases (90%) and partial remission in 1 case (10%). No new acute neurologic impairments were reported after radiotherapy. One probable compressive optic neuropathy was observed at 1 year after radiotherapy. Fractionated radiotherapy achieves both symptomatic and radiologic improvements. It is a well-tolerated treatment modality for hemangiomas of the cavernous sinus

  6. Role of fractionated radiotherapy in patients with hemangioma of the cavernous sinus

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Min; Yoon, Sang Min; Lee, Su Min; Park, Jin Hong; Song, Si Yeol; Lee, Sang Wook; Ahn, Seung Do; Kim, Jong Hoon; Choi, Eun Kyung [Dept. of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2017-09-15

    We performed this retrospective study to investigate the outcomes of patients with hemangioma of the cavernous sinus after fractionated radiotherapy. We analyzed 10 patients with hemangioma of the cavernous sinus who were treated with conventional radiotherapy between January 2000 and December 2016. The median patient age was 54 years (range, 31–65 years), and 8 patients (80.0%) were female. The mean hemangioma volume was 34.1 cm{sup 3} (range, 6.8–83.2 cm{sup 3}), and fractionated radiation was administered to a total dose of 50–54 Gy with a daily dose of 2 Gy. The median follow-up period was 6.8 years (range, 2.2–8.8 years). At last follow-up, the volume of the tumor had decreased in all patients. The average tumor volume reduction rate from the initial volume was 72.9% (range, 18.9–95.3%). All 10 of the cranial neuropathies observed before radiation therapy had improved, with complete symptomatic remission in 9 cases (90%) and partial remission in 1 case (10%). No new acute neurologic impairments were reported after radiotherapy. One probable compressive optic neuropathy was observed at 1 year after radiotherapy. Fractionated radiotherapy achieves both symptomatic and radiologic improvements. It is a well-tolerated treatment modality for hemangiomas of the cavernous sinus.

  7. Long memory and tail dependence in trading volume and volatility

    DEFF Research Database (Denmark)

    Rossi, Eduardo; Santucci de Magistris, Paolo

    2013-01-01

    We investigate the relationship between volatility, measured by realized volatility, and trading volume for 25 NYSE stocks. We show that volume and volatility are long memory but not fractionally cointegrated in most cases. We also find right tail dependence in the volatility and volume innovations...

  8. Analysis of end-systolic pressure-volume relation by gated radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Adachi, Haruhiko; Sugihara, Horoki; Katsume, Hiroshi; Ijichi, Hamao; Miyanaga, Hajime

    1982-01-01

    Left ventricular end-systolic pressure-volume relation has been proved experimentally to b e an useful index of left ventricular contractility relatively independent of preload or afterload. But less clinical application has been reported because of its invasive nature, and we evaluated this relationship non-invasively using gated radionuclide angiocardiography as volume determination and cuff sphyngomanometer in the arm as pressure measurement. Gated equilibrium blood pool scintigrams were obtained at rest and during intravenous infusion of angiotensin or nitrate. Ventricular volumes were derived from ventricular activity and peripheral blood volume and activity. The peak systolic pressure (PSP) by cuff method to end-systolic volume index (ESVI) relations showed good linearity (r gt .930 in 84% of consecutive 50 cases) and were gentler in the groups with more impaired left ventricular function. Emax was related exponentially to ejection fraction (EF) and hyperbolically to end-diastolic volume index. The dead volume (VoI) was unfixed and fell into positive or negative value, and was not related to EF under control condition. PSP/ESVI in each loading condition was less variable with the alteration of blood pressure than EF. The linear relation was found between PSP/ESVI under control condition and Emax (PSP/ESVI = 0.651.Emax + 0.958, r = 0.841, p lt .001). Thus in measuring ventricular volume, gated radionuclide angiocardiography is a non-invasive method less affected by the geometry of the left ventricle. Non-invasive determination of end-systolic pressure-volume relation using the volume by radionuclide and the blood pressure by cuff method is clinically useful in the assessment of left ventricular contractility. (author)

  9. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    Science.gov (United States)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  10. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  11. Methane productivity of manure, straw and solid fractions of manure

    DEFF Research Database (Denmark)

    Møller, H.B.; Sommer, S.G.; Ahring, Birgitte Kiær

    2004-01-01

    are in the same range (282-301 m(3) CH4 LU-1). Pre-treatment of manure by separation is a way of making fractions of the manure that have a higher gas potential per volume. Theoretical methane potential and biodegradability of three types of fractions deriving from manure separation were tested. The volumetric...... methane yield of straw was found to be higher than the yield from total manure and the solid fractions of manure, due to the higher VS content, and hence the use of straw as bedding material will increase the volumetric as well as the livestock-based methane productivity....

  12. Two-dimensional phase fraction charts

    International Nuclear Information System (INIS)

    Morral, J.E.

    1984-01-01

    A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams

  13. Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases. A single centre study

    Energy Technology Data Exchange (ETDEWEB)

    Wiggenraad, R.; Verbeek-de Kanter, A.; Mast, M. [Radiotherapy Centre West, The Hague (Netherlands); Molenaar, R. [Diaconessenhuis, Leiden (Netherlands). Dept. of Neurology; Lycklama a Nijeholt, G. [Medical Centre Haagladen, The Hague (Netherlands). Dept. of Radiology; Vecht, C. [Medical Centre Haagladen, The Hague (Netherlands). Dept. of Neurology; Struikmans, H. [Radiotherapy Centre West, The Hague (Netherlands); Leiden Univ. Medical Centre (Netherlands). Dept. of Radiotherapy; Kal, H.B.

    2012-08-15

    Purpose: The 1-year local control rates after single-fraction stereotactic radiotherapy (SRT) for brain metastases > 3 cm diameter are less than 70%, but with fractionated SRT (FSRT) higher local control rates have been reported. The purpose of this study was to compare our treatment results with SRT and FSRT for large brain metastases. Materials and methods: In two consecutive periods, 41 patients with 46 brain metastases received SRT with 1 fraction of 15 Gy, while 51 patients with 65 brain metastases received FSRT with 3 fractions of 8 Gy. We included patients with brain metastases with a planning target volume of > 13 cm{sup 3} or metastases in the brainstem. Results: The minimum follow-up of patients still alive was 22 months. Comparing 1 fraction of 15 Gy with 3 fractions of 8 Gy, the 1-year rates of freedom from any local progression (54% and 61%, p = 0.93) and pseudo progression (85% and 75%, p = 0.25) were not significantly different. Overall survival rates were also not different. Conclusion: The 1-year local progression and pseudo progression rates after 1 fraction of 15 Gy or 3 fractions of 8 Gy for large brain metastases and metastases in the brainstem are similar. For better local control rates, FSRT schemes with a higher biological equivalent dose may be necessary. (orig.)

  14. Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases. A single centre study

    International Nuclear Information System (INIS)

    Wiggenraad, R.; Verbeek-de Kanter, A.; Mast, M.; Molenaar, R.; Lycklama a Nijeholt, G.; Vecht, C.; Struikmans, H.; Leiden Univ. Medical Centre; Kal, H.B.

    2012-01-01

    Purpose: The 1-year local control rates after single-fraction stereotactic radiotherapy (SRT) for brain metastases > 3 cm diameter are less than 70%, but with fractionated SRT (FSRT) higher local control rates have been reported. The purpose of this study was to compare our treatment results with SRT and FSRT for large brain metastases. Materials and methods: In two consecutive periods, 41 patients with 46 brain metastases received SRT with 1 fraction of 15 Gy, while 51 patients with 65 brain metastases received FSRT with 3 fractions of 8 Gy. We included patients with brain metastases with a planning target volume of > 13 cm 3 or metastases in the brainstem. Results: The minimum follow-up of patients still alive was 22 months. Comparing 1 fraction of 15 Gy with 3 fractions of 8 Gy, the 1-year rates of freedom from any local progression (54% and 61%, p = 0.93) and pseudo progression (85% and 75%, p = 0.25) were not significantly different. Overall survival rates were also not different. Conclusion: The 1-year local progression and pseudo progression rates after 1 fraction of 15 Gy or 3 fractions of 8 Gy for large brain metastases and metastases in the brainstem are similar. For better local control rates, FSRT schemes with a higher biological equivalent dose may be necessary. (orig.)

  15. Early Life Stress-Related Elevations in Reaction Time Variability Are Associated with Brain Volume Reductions in HIV+ Adults

    Directory of Open Access Journals (Sweden)

    Uraina S. Clark

    2018-01-01

    Full Text Available There is burgeoning evidence that, among HIV+ adults, exposure to high levels of early life stress (ELS is associated with increased cognitive impairment as well as brain volume abnormalities and elevated neuropsychiatric symptoms. Currently, we have a limited understanding of the degree to which cognitive difficulties observed in HIV+ High-ELS samples reflect underlying neural abnormalities rather than increases in neuropsychiatric symptoms. Here, we utilized a behavioral marker of cognitive function, reaction time intra-individual variability (RT-IIV, which is sensitive to both brain volume reductions and neuropsychiatric symptoms, to elucidate the unique contributions of brain volume abnormalities and neuropsychiatric symptoms to cognitive difficulties in HIV+ High-ELS adults. We assessed the relation of RT-IIV to neuropsychiatric symptom levels and total gray and white matter volumes in 44 HIV+ adults (26 with high ELS. RT-IIV was examined during a working memory task. Self-report measures assessed current neuropsychiatric symptoms (depression, stress, post-traumatic stress disorder. Magnetic resonance imaging was used to quantify total gray and white matter volumes. Compared to Low-ELS participants, High-ELS participants exhibited elevated RT-IIV, elevated neuropsychiatric symptoms, and reduced gray and white matter volumes. Across the entire sample, RT-IIV was significantly associated with gray and white matter volumes, whereas significant associations with neuropsychiatric symptoms were not observed. In the High-ELS group, despite the presence of elevated neuropsychiatric symptom levels, brain volume reductions explained more than 13% of the variance in RT-IIV, whereas neuropsychiatric symptoms explained less than 1%. Collectively, these data provide evidence that, in HIV+ High-ELS adults, ELS-related cognitive difficulties (as indexed by RT-IIV exhibit strong associations with global brain volumes, whereas ELS-related elevations in

  16. Postoperative volume balance

    DEFF Research Database (Denmark)

    Frost, H; Mortensen, C.R.; Secher, Niels H.

    2017-01-01

    In healthy humans, stroke volume (SV) and cardiac output (CO) do not increase with expansion of the central blood volume by head-down tilt or administration of fluid. Here, we exposed 85 patients to Trendelenburg's position about one hour after surgery while cardiovascular variables were determin...

  17. Water dynamics in different biochar fractions.

    Science.gov (United States)

    Conte, Pellegrino; Nestle, Nikolaus

    2015-09-01

    Biochar is a carbonaceous porous material deliberately applied to soil to improve its fertility. The mechanisms through which biochar acts on fertility are still poorly understood. The effect of biochar texture size on water dynamics was investigated here in order to provide information to address future research on nutrient mobility towards plant roots as biochar is applied as soil amendment. A poplar biochar has been stainless steel fractionated in three different textured fractions (1.0-2.0 mm, 0.3-1.0 mm and <0.3 mm, respectively). Water-saturated fractions were analyzed by fast field cycling (FFC) NMR relaxometry. Results proved that 3D exchange between bound and bulk water predominantly occurred in the coarsest fraction. However, as porosity decreased, water motion was mainly associated to a restricted 2D diffusion among the surface-site pores and the bulk-site ones. The X-ray μ-CT imaging analyses on the dry fractions revealed the lowest surface/volume ratio for the coarsest fraction, thereby corroborating the 3D water exchange mechanism hypothesized by FFC NMR relaxometry. However, multi-micrometer porosity was evidenced in all the samples. The latter finding suggested that the 3D exchange mechanism cannot even be neglected in the finest fraction as previously excluded only on the basis of NMR relaxometry results. X-ray μ-CT imaging showed heterogeneous distribution of inorganic materials inside all the fractions. The mineral components may contribute to the water relaxation mechanisms by FFC NMR relaxometry. Further studies are needed to understand the role of the inorganic particles on water dynamics. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Left ventricular volume analysis as a basic tool to describe cardiac function.

    Science.gov (United States)

    Kerkhof, Peter L M; Kuznetsova, Tatiana; Ali, Rania; Handly, Neal

    2018-03-01

    The heart is often regarded as a compression pump. Therefore, determination of pressure and volume is essential for cardiac function analysis. Traditionally, ventricular performance was described in terms of the Starling curve, i.e., output related to input. This view is based on two variables (namely, stroke volume and end-diastolic volume), often studied in the isolated (i.e., denervated) heart, and has dominated the interpretation of cardiac mechanics over the last century. The ratio of the prevailing coordinates within that paradigm is termed ejection fraction (EF), which is the popular metric routinely used in the clinic. Here we present an insightful alternative approach while describing volume regulation by relating end-systolic volume (ESV) to end-diastolic volume. This route obviates the undesired use of metrics derived from differences or ratios, as employed in previous models. We illustrate basic principles concerning ventricular volume regulation by data obtained from intact animal experiments and collected in healthy humans. Special attention is given to sex-specific differences. The method can be applied to the dynamics of a single heart and to an ensemble of individuals. Group analysis allows for stratification regarding sex, age, medication, and additional clinically relevant covariates. A straightforward procedure derives the relationship between EF and ESV and describes myocardial oxygen consumption in terms of ESV. This representation enhances insight and reduces the impact of the metric EF, in favor of the end-systolic elastance concept advanced 4 decades ago.

  19. Quantification of the recovered oil and water fractions during water flooding laboratory experiments

    DEFF Research Database (Denmark)

    Katika, Konstantina; Halim, Amalia Yunita; Shapiro, Alexander

    2015-01-01

    the volume might be less than a few microliters. In this study, we approach the determination of the oil volumes in flooding effluents using predetermined amounts of the North Sea oil with synthetic seawater. The UV/visible spectroscopy method and low-field NMR spectrometry are compared...... for this determination, and an account of advantages and disadvantages of each method is given. Both methods are reproducible with high accuracy. The NMR method was capable of direct quantification of both oil and water fractions, while the UV/visible spectroscopy quantifies only the oil fraction using a standard curve....

  20. Bioassay-guided fractionation of extracts from Easter lily (Lilium longiflorum) flowers reveals unprecedented structural variability of steroidal glycoalkaloids.

    Science.gov (United States)

    Uhlig, Silvio; Hussain, Fozia; Wisløff, Helene

    2014-12-15

    Several Lilium species are nephrotoxic in cats (Felis silvestris catus), among them Easter lilies (Lilium longiflorum). Although clinical trials have been carried out, the causative toxic phytochemicals have not yet been identified. We thus aimed to determine the toxic constituents of Easter lily flowers applying a bioassay-guided approach based on a feline kidney cell line model. The bioassay-guided fractionation traced the observed cytotoxicity to a complex mixture of compounds that were tentatively identified as steroidal glycoalkaloids of the solasodine-type, based on multiple-fragmentation ion trap and high-resolution mass spectrometry. The glycoalkaloids in the active fraction possessed trisaccharide chains, and at least 16 different congeners could be separated using liquid chromatography-mass spectrometry. The two principal compounds were solasodine trisaccharides containing two hexose and one deoxy-hexose unit. In the remaining 14 analogues, one or two of the hydroxyl groups of the second hexose from the aglycone were acetylated. In addition, some of the analogues appeared to be carbonate esters. Esterification of steroidal glycoalkaloids in plants has only been reported once and was in accordance with higher antifungal activity of the acetylated versus the parent congener. Our pilot study shows that esterification of steroidal glycoalkaloids in Lilium species might be common resulting in an array of different analogues with largely unexplored structural variability and bioactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Radiographic determination of urinary bladder volume and residual urine volume

    International Nuclear Information System (INIS)

    Klumair, J.

    1977-01-01

    In the course of a long study the author has tested most of the methods for determination of urinary bladder volume. A radiographic method which can state bladder volume exactly in cc's is attainable only with great time and effort. In the author's experience, however, it is possible, by means of a pattern in connection with a IVP, to estimate residual urine volume from a post-void picture of the bladder with sufficient accuracy for practical purposes. An account is given of the production of this pattern and of two relatively simple calculations for residual volume based on AP and lateral views of circular- and ellipsoid-shaped bladders. Also discussed is the radiation exposure which varies with the radiographic methods used. In male patients, the radiation exposure appears to be negligible, especially when the testicles are protected by a radiation shield. In female patients - which make up only a small fraction of all patients -, radiation exposure is higher but must be accepted. (orig./MG) [de

  2. Longitudinal variability of phosphorus fractions in sediments of a canyon reservoir due to cascade dam construction: a case study in Lancang River, China.

    Directory of Open Access Journals (Sweden)

    Qi Liu

    Full Text Available Dam construction causes the accumulation of phosphorus in the sediments of reservoirs and increases the release rate of internal phosphorus (P loading. This study investigated the longitudinal variability of phosphorus fractions in sediments and the relationship between the contents of phosphorus fractions and its influencing factors of the Manwan Reservoir, Lancang River, Yunnan Province, China. Five sedimentary phosphorus fractions were quantified separately: loosely bound P (ex-P; reductant soluble P (BD-P; metal oxide-bound P (NaOH-P; calcium-bound P (HCl-P, and residual-P. The results showed that the total phosphorus contents ranged from 623 to 899 µg/g and were correlated positively with iron content in the sediments of the reservoir. The rank order of P fractions in sediments of the mainstream was HCl-P>NaOH-P>residual-P>BD-P>ex-P, while it was residual-P>HCl-P>NaOH-P>BD-P>ex-P in those of the tributaries. The contents of bio-available phosphorus in the tributaries, including ex-P, BD-P and NaOH-P, were significantly lower than those in the mainstream. The contents of ex-P, BD-P, NaOH-P showed a similar increasing trend from the tail to the head of the Manwan Reservoir, which contributed to the relatively higher content of bio-available phosphorus, and represents a high bio-available phosphorus releasing risk within a distance of 10 km from Manwan Dam. Correlation and redundancy analyses showed that distance to Manwan Dam and the silt/clay fraction of sediments were related closely to the spatial variation of bio-available phosphorus.

  3. A SUB-GRID VOLUME-OF-FLUIDS (VOF) MODEL FOR MIXING IN RESOLVED SCALE AND IN UNRESOLVED SCALE COMPUTATIONS

    International Nuclear Information System (INIS)

    Vold, Erik L.; Scannapieco, Tony J.

    2007-01-01

    A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, ρ i u di = ρ i (u i -u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.

  4. Boundary value problems for multi-term fractional differential equations

    Science.gov (United States)

    Daftardar-Gejji, Varsha; Bhalekar, Sachin

    2008-09-01

    Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.

  5. A new fractionator principle with varying sampling fractions: exemplified by estimation of synapse number using electron microscopy

    DEFF Research Database (Denmark)

    Witgen, Brent Marvin; Grady, M. Sean; Nyengaard, Jens Randel

    2006-01-01

    The quantification of ultrastructure has been permanently improved by the application of new stereological principles. Both precision and efficiency have been enhanced. Here we report for the first time a fractionator method that can be applied at the electron microscopy level. This new design...... the total object number using section sampling fractions based on the average thickness of sections of variable thicknesses. As an alternative, this approach estimates the correct particle section sampling probability based on an estimator of the Horvitz-Thompson type, resulting in a theoretically more...

  6. Prediction of acute cardiac rejection by changes in left ventricular volumes

    International Nuclear Information System (INIS)

    Novitzky, D.; Cooper, D.K.; Boniaszczuk, J.

    1988-01-01

    Sixteen patients underwent heart transplantation (11 orthotopic, five heterotopic). Monitoring for acute rejection was by both endomyocardial biopsy (EMB) and multigated equilibrium blood pool scanning with technetium 99m-labelled red blood cells. From the scans information was obtained on left ventricular volumes (stroke, end-diastolic, and end-systolic), ejection fraction, and heart rate. Studies (208) were made in the 16 patients. There was a highly significant correlation between the reduction in stroke volume and end-diastolic volume (and a less significant correlation in end-systolic volume) and increasing acute rejection seen on EMB. Heart rate and ejection fraction did not correlate with the development of acute rejection. Correlation of a combination of changes in stroke volume and end-diastolic volume with EMB showed a sensitivity of 85% and a specificity of 96%. Radionuclide scanning is therefore a useful noninvasive tool for monitoring acute rejection

  7. Provider volume and outcomes for oncological procedures.

    LENUS (Irish Health Repository)

    Killeen, S D

    2012-02-03

    BACKGROUND: Oncological procedures may have better outcomes if performed by high-volume providers. METHODS: A review of the English language literature incorporating searches of the Medline, Embase and Cochrane collaboration databases was performed. Studies were included if they involved a patient cohort from 1984 onwards, were community or population based, and assessed health outcome as a dependent variable and volume as an independent variable. The studies were also scored quantifiably to assess generalizability with respect to any observed volume-outcome relationship and analysed according to organ system; numbers needed to treat were estimated where possible. RESULTS: Sixty-eight relevant studies were identified and a total of 41 were included, of which 13 were based on clinical data. All showed either an inverse relationship, of variable magnitude, between provider volume and mortality, or no volume-outcome effect. All but two clinical reports revealed a statistically significant positive relationship between volume and outcome; none demonstrated the opposite. CONCLUSION: High-volume providers have a significantly better outcome for complex cancer surgery, specifically for pancreatectomy, oesphagectomy, gastrectomy and rectal resection.

  8. On a higher order multi-term time-fractional partial differential equation involving Caputo-Fabrizio derivative

    OpenAIRE

    Pirnapasov, Sardor; Karimov, Erkinjon

    2017-01-01

    In the present work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. We investigate a boundary value problem for fractional heat equation involving higher order Caputo-Fabrizio derivatives in time-variable. Using method of separation of variables and integration by parts, we reduce fractional order PDE to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  9. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  10. Radiobiological restrictions and tolerance doses of repeated single-fraction hdr-irradiation of intersecting small liver volumes for recurrent hepatic metastases

    Directory of Open Access Journals (Sweden)

    Wust Peter

    2010-05-01

    Full Text Available Abstract Background To assess radiobiological restrictions and tolerance doses as well as other toxic effects derived from repeated applications of single-fraction high dose rate irradiation of small liver volumes in clinical practice. Methods Twenty patients with liver metastases were treated repeatedly (2 - 4 times at identical or intersecting locations by CT-guided interstitial brachytherapy with varying time intervals. Magnetic resonance imaging using the hepatocyte selective contrast media Gd-BOPTA was performed before and after treatment to determine the volume of hepatocyte function loss (called pseudolesion, and the last acquired MRI data set was merged with the dose distributions of all administered brachytherapies. We calculated the BED (biologically equivalent dose for a single dose d = 2 Gy for different α/β values (2, 3, 10, 20, 100 based on the linear-quadratic model and estimated the tolerance dose for liver parenchyma D90 as the BED exposing 90% of the pseudolesion in MRI. Results The tolerance doses D90 after repeated brachytherapy sessions were found between 22 - 24 Gy and proved only slightly dependent on α/β in the clinically relevant range of α/β = 2 - 10 Gy. Variance analysis showed a significant dependency of D90 with respect to the intervals between the first irradiation and the MRI control (p 90 and the pseudolesion's volume. No symptoms of liver dysfunction or other toxic effects such as abscess formation occurred during the follow-up time, neither acute nor on the long-term. Conclusions Inactivation of liver parenchyma occurs at a BED of approx. 22 - 24 Gy corresponding to a single dose of ~10 Gy (α/β ~ 5 Gy. This tolerance dose is consistent with the large potential to treat oligotopic and/or recurrent liver metastases by CT-guided HDR brachytherapy without radiation-induced liver disease (RILD. Repeated small volume irradiation may be applied safely within the limits of this study.

  11. Determination of left ventricular volume using gated blood pool tomography comparison with contrast ventriculography

    International Nuclear Information System (INIS)

    Lu Ping; Mo Lijun; Liu Xiujie

    1992-01-01

    48 patients with cardiac disease were studied with gated blood pool tomography to determine left ventricular volume at end diastole, end-systole and ejection fraction. The volumes were calculated from serial short-axis tomograms by multiplying the number of pixels and the known volume of each pixel. Excellent correlation was found between blood pool tomography and contrast ventriculographic volume. At end-diastole, r = 0.91 (P < 0.01); at end-systole, r = 0.95 (P < 0.01); for left ventricular ejection fraction, r 0.90 (P < 0.01). The results suggest that gated blood pool tomography is a promising noninvasive and direct method for measuring left ventricular volume

  12. Optimal core acquisition and remanufacturing policies under uncertain core quality fractions

    NARCIS (Netherlands)

    Teunter, R.H.; Flapper, S.D.P.

    2011-01-01

    Cores acquired by a remanufacturer are typically highly variable in quality. Even if the expected fractions of the various quality levels are known, then the exact fractions when acquiring cores are still uncertain. Our model incorporates this uncertainty in determining optimal acquisition decisions

  13. Nonlinear Conservation Laws and Finite Volume Methods

    Science.gov (United States)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  14. An improved distance-to-dose correlation for predicting bladder and rectum dose-volumes in knowledge-based VMAT planning for prostate cancer

    Science.gov (United States)

    Wall, Phillip D. H.; Carver, Robert L.; Fontenot, Jonas D.

    2018-01-01

    The overlap volume histogram (OVH) is an anatomical metric commonly used to quantify the geometric relationship between an organ at risk (OAR) and target volume when predicting expected dose-volumes in knowledge-based planning (KBP). This work investigated the influence of additional variables contributing to variations in the assumed linear DVH-OVH correlation for the bladder and rectum in VMAT plans of prostate patients, with the goal of increasing prediction accuracy and achievability of knowledge-based planning methods. VMAT plans were retrospectively generated for 124 prostate patients using multi-criteria optimization. DVHs quantified patient dosimetric data while OVHs quantified patient anatomical information. The DVH-OVH correlations were calculated for fractional bladder and rectum volumes of 30, 50, 65, and 80%. Correlations between potential influencing factors and dose were quantified using the Pearson product-moment correlation coefficient (R). Factors analyzed included the derivative of the OVH, prescribed dose, PTV volume, bladder volume, rectum volume, and in-field OAR volume. Out of the selected factors, only the in-field bladder volume (mean R  =  0.86) showed a strong correlation with bladder doses. Similarly, only the in-field rectal volume (mean R  =  0.76) showed a strong correlation with rectal doses. Therefore, an OVH formalism accounting for in-field OAR volumes was developed to determine the extent to which it improved the DVH-OVH correlation. Including the in-field factor improved the DVH-OVH correlation, with the mean R values over the fractional volumes studied improving from  -0.79 to  -0.85 and  -0.82 to  -0.86 for the bladder and rectum, respectively. A re-planning study was performed on 31 randomly selected database patients to verify the increased accuracy of KBP dose predictions by accounting for bladder and rectum volume within treatment fields. The in-field OVH led to significantly more precise

  15. A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model

    Science.gov (United States)

    Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen

    2017-06-01

    A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.

  16. Solution of Moving Boundary Space-Time Fractional Burger’s Equation

    Directory of Open Access Journals (Sweden)

    E. A.-B. Abdel-Salam

    2014-01-01

    Full Text Available The fractional Riccati expansion method is used to solve fractional differential equations with variable coefficients. To illustrate the effectiveness of the method, the moving boundary space-time fractional Burger’s equation is studied. The obtained solutions include generalized trigonometric and hyperbolic function solutions. Among these solutions, some are found for the first time. The linear and periodic moving boundaries for the kink solution of the Burger’s equation are presented graphically and discussed.

  17. Cooperative rearranging region size and free volume in As-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saiter, A; Saiter, J-M [Laboratoire PBM, UMR 6522, LECAP, Institut des Materiaux de Rouen, Universite de Rouen, Faculte des Sciences, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Golovchak, R; Shpotyuk, M; Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska street, Lviv, UA-79031 (Ukraine)

    2009-02-18

    Glasses of the As-Se system have been used as model objects of the covalent disordered inorganic polymers to investigate the correlation between the cooperative rearranging region (CRR) size determined at the glass transition temperature and the free volume fraction in the glassy state. The CRR size has been determined using temperature modulated differential scanning calorimetry data according to Donth's approach, while the free volume fraction in the investigated materials has been estimated using positron annihilation lifetime spectroscopy data. The obtained results testify that the appearance of open-volume defects greater than 80 A{sup 3} leads to a significant decrease in the CRR size.

  18. Cooperative rearranging region size and free volume in As-Se glasses

    International Nuclear Information System (INIS)

    Saiter, A; Saiter, J-M; Golovchak, R; Shpotyuk, M; Shpotyuk, O

    2009-01-01

    Glasses of the As-Se system have been used as model objects of the covalent disordered inorganic polymers to investigate the correlation between the cooperative rearranging region (CRR) size determined at the glass transition temperature and the free volume fraction in the glassy state. The CRR size has been determined using temperature modulated differential scanning calorimetry data according to Donth's approach, while the free volume fraction in the investigated materials has been estimated using positron annihilation lifetime spectroscopy data. The obtained results testify that the appearance of open-volume defects greater than 80 A 3 leads to a significant decrease in the CRR size.

  19. Isolation and characterization of biochar-derived organic matter fractions and their phenanthrene sorption.

    Science.gov (United States)

    Jin, Jie; Sun, Ke; Liu, Wei; Li, Shiwei; Peng, Xianqiang; Yang, Yan; Han, Lanfang; Du, Ziwen; Wang, Xiangke

    2018-05-01

    Chemical composition and pollutant sorption of biochar-derived organic matter fractions (BDOMs) are critical for understanding the long-term environmental significance of biochar. Phenanthrene (PHE) sorption by the humic acid-like (HAL) fractions isolated from plant straw- (PLABs) and animal manure-based (ANIBs) biochars, and the residue materials (RES) after HAL extraction was investigated. The HAL fraction comprised approximately 50% of organic carbon (OC) of the original biochars. Results of XPS and 13 C NMR demonstrated that the biochar-derived HAL fractions mainly consisted of aromatic clusters substituted by carboxylic groups. The CO 2 cumulative surface area of BDOMs excluding PLAB-derived RES fractions was obviously lower than that of corresponding biochars. The sorption nonlinearity of PHE by the fresh biochars was significantly stronger than that of the BDOM fractions, implying that the BDOM fractions were more chemically homogeneous. The BDOMs generally exhibited comparable or higher OC-normalized distribution coefficients (K oc ) of PHE than the original biochars. The PHE logK oc values of the fresh biochars correlated negatively with the micropore volumes due to steric hindrance effect. In contrast, a positive relationship between the sorption coefficients (K d ) of BDOMs and the micropore volumes was observed in this study, suggesting that pore filling could dominate PHE sorption by the BDOMs. The positive correlation between the PHE logK oc values of the HAL fractions and the aromatic C contents indicates that PHE sorption by the HAL fractions was regulated by aromatic domains. The findings of this study improve our knowledge of the evolution of biochar properties after application and its potential environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Cellwise conservative unsplit advection for the volume of fluid method

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2015-01-01

    We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced......-overlapping donating regions and pre-images with conforming edges to their neighbors, resulting in the conservativeness and the boundedness (liquid volume fraction inside the interval [0, 1]) of the CCU advection scheme. Finally, the update of the liquid volume fractions is computed from the intersections of the pre......-image polygons with the reconstructed interfaces. The CCU scheme is tested on several benchmark tests for the VOF advection, together with the standard piecewise linear interface calculation (PLIC). The geometrical errors of the CCU compare favorably with other unsplit VOF-PLIC schemes. Finally, potential...

  1. Prediction of mechanical properties of trabecular bone using quantitative MRI

    International Nuclear Information System (INIS)

    Lammentausta, E; Hakulinen, M A; Jurvelin, J S; Nieminen, M T

    2006-01-01

    Techniques for quantitative magnetic resonance imaging (MRI) have been developed for non-invasive estimation of the mineral density and structure of trabecular bone. The R* 2 relaxation rate (i.e. 1/T* 2 ) is sensitive to bone mineral density (BMD) via susceptibility differences between trabeculae and bone marrow, and by binarizing MRI images, structural variables, such as apparent bone volume fraction, can be assessed. In the present study, trabecular bone samples of human patellae were investigated in vitro at 1.5 T to determine the ability of MRI-derived variables (R* 2 and bone volume fraction) to predict the mechanical properties (Young's modulus, yield stress and ultimate strength). Further, the MRI variables were correlated with reference measurements of volumetric BMD and bone area fraction as determined with a clinical pQCT system. The MRI variables correlated significantly (p 2 and MRI-derived bone volume fraction further improved the prediction of yield stress and ultimate strength. Although pQCT showed a trend towards better prediction of the mechanical properties, current results demonstrate the feasibility of combined MR imaging of marrow susceptibility and bone volume fraction in predicting the mechanical strength of trabecular bone and bone mineral density

  2. Mittag-Leffler functions as solutions of relaxation-oscillation and diffusion-wave fractional order equation

    International Nuclear Information System (INIS)

    Sandev, D. Trivche

    2010-01-01

    The fractional calculus basis, Mittag-Leffler functions, various relaxation-oscillation and diffusion-wave fractional order equation and systems of fractional order equations are considered in this thesis. To solve these fractional order equations analytical methods, such as the Laplace transform method and method of separation of variables are employed. Some applications of the fractional calculus are considered, particularly physical system with anomalous diffusive behavior. (Author)

  3. Stochastic calculus for fractional Brownian motion and related processes

    CERN Document Server

    Mishura, Yuliya S

    2008-01-01

    The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0fractional Brownian SDE. The author develops optimal filtering of mixed models including linear case, and studies financial applications and statistical inference with hypotheses testing and parameter estimation. She proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional mark...

  4. Mechanical properties of a co-extruded Metallic Glass/Alloy (MeGA) rod-Effect of the metallic glass volume fraction

    International Nuclear Information System (INIS)

    Gravier, S.; Blandin, J.J.; Suery, M.

    2010-01-01

    A Metallic Glass/Alloy (MeGA) rod with a core in zirconium-based bulk metallic glass and a sleeve in aluminium alloy has been successfully elaborated by co-extrusion. SEM observations of the cross-section of the rod show that the interface between the glass and the alloy is defect-free. Compression tests are carried out at room temperature on the MeGA rods containing various glass volume fractions. The yield stress is well described by the rule of mixtures which combines the strength of the glass and that of the alloy, suggesting isostrain behaviour as could be expected. During compression, a good mechanical bonding is observed in the MeGA-rod even after the first fracture of the metallic glass. Finally, push-out tests are performed to evaluate the bonding quality between the two materials. Large values of the shear strength are measured which confirms that co-extrusion leads to good bonding between the glass and the aluminium alloy.

  5. Spatiotemporal Fractionation Schemes for Irradiating Large Cerebral Arteriovenous Malformations

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Bussière, Marc R. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Chapman, Paul H. [Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Loeffler, Jay S.; Shih, Helen A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-07-01

    Purpose: To optimally exploit fractionation effects in the context of radiosurgery treatments of large cerebral arteriovenous malformations (AVMs). In current practice, fractionated treatments divide the dose evenly into several fractions, which generally leads to low obliteration rates. In this work, we investigate the potential benefit of delivering distinct dose distributions in different fractions. Methods and Materials: Five patients with large cerebral AVMs were reviewed and replanned for intensity modulated arc therapy delivered with conventional photon beams. Treatment plans allowing for different dose distributions in all fractions were obtained by performing treatment plan optimization based on the cumulative biologically effective dose delivered at the end of treatment. Results: We show that distinct treatment plans can be designed for different fractions, such that high single-fraction doses are delivered to complementary parts of the AVM. All plans create a similar dose bath in the surrounding normal brain and thereby exploit the fractionation effect. This partial hypofractionation in the AVM along with fractionation in normal brain achieves a net improvement of the therapeutic ratio. We show that a biological dose reduction of approximately 10% in the healthy brain can be achieved compared with reference treatment schedules that deliver the same dose distribution in all fractions. Conclusions: Boosting complementary parts of the target volume in different fractions may provide a therapeutic advantage in fractionated radiosurgery treatments of large cerebral AVMs. The strategy allows for a mean dose reduction in normal brain that may be valuable for a patient population with an otherwise normal life expectancy.

  6. Convergence criterion for branched contіnued fractions of the special form with positive elements

    Directory of Open Access Journals (Sweden)

    D. I. Bodnar

    2017-07-01

    Full Text Available In this paper the problem of convergence of the important type of a multidimensional generalization of continued fractions, the branched continued fractions with independent variables, is considered. This fractions are an efficient apparatus for the approximation of multivariable functions, which are represented by multiple power series. When variables are fixed these fractions are called the branched continued fractions of the special form. Their structure is much simpler then the structure of general branched continued fractions. It has given a possibility to establish the necessary and sufficient conditions of convergence of branched continued fractions of the special form with the positive elements. The received result is the multidimensional analog of Seidel's criterion for the continued fractions. The condition of convergence of investigated fractions is the divergence of series, whose elements are continued fractions. Therefore, the sufficient condition of the convergence of this fraction which has been formulated by the divergence of series composed of partial denominators of this fraction, is established. Using the established criterion and Stieltjes-Vitali Theorem the parabolic theorems of branched continued fractions of the special form with complex elements convergence, is investigated. The sufficient conditions gave a possibility to make the condition of convergence of the branched continued fractions of the special form, whose elements lie in parabolic domains.

  7. Evaluation of uneven fractionation radiotherapy of cervical lymph node-metastases by linear quadratic model

    International Nuclear Information System (INIS)

    Sasaki, Takehito; Kamata, Rikisaburo; Urahashi, Shingo; Yamaguchi, Tetsuji.

    1993-01-01

    One hundred and sixty-nine cervical lymph node-metastases from head and neck squamous cell carcinomas treated with either even fractionation or uneven fractionation regimens were analyzed in the present investigation. Logistic multivariate regression analysis indicated that: type of fractionation (even vs uneven), size of metastases, T value of primary tumors, and total dose are independent variables out of 18 variables that significantly influenced the rate of tumor clearance. The data, with statistical bias corrected by the regression equation, indicated that the uneven fractionation scheme significantly improved the rate of tumor clearance for the same size of metastases, total dose, and overall time compared to the even fractionation scheme. Further analysis by a linear-quadratic cell survival model indicated that the clinical improvement by uneven fractionation might not be explained entirely by a larger dose per fraction. It is suggested that tumor cells irradiated with an uneven fractionation regimen might repopulate more slowly, or they might be either less hypoxic or redistributed in a more radiosensitive phase in the cell cycle than those irradiated with even fractionation. This conclusion is clearly not definite, but it is suitable, pending the results of further investigation. (author)

  8. The nebular variables

    CERN Document Server

    Glasby, John S

    1974-01-01

    The Nebular Variables focuses on the nebular variables and their characteristics. Discussions are organized by type of nebular variable, namely, RW Aurigae stars, T Orionis stars, T Tauri stars, and peculiar nebular objects. Topics range from light variations of the stars to their spectroscopic and physical characteristics, spatial distribution, interaction with nebulosity, and evolutionary features. This volume is divided into four sections and consists of 25 chapters, the first of which provides general information on nebular variables, including their stellar associations and their classifi

  9. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  10. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  11. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.

    2015-01-07

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  12. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.; Al-Juhani, Amnah

    2015-01-01

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  13. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  14. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    International Nuclear Information System (INIS)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre; Le, Lisa W.; Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John; Bezjak, Andrea

    2012-01-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors ≥5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  15. Removal of transuranics from Johnston Island soil by fractional classification

    International Nuclear Information System (INIS)

    Sunderland, N.R.

    1987-01-01

    The following conclusions were reached as a result of the research conducted with the TRUclean process on Johnston Island: Processed materials will have a total TRU activity of less than 500 Bq/Kg. Approximately 90% of the TRU activity in coral/soil is removed by a single pass through the fractional classification process. A volume reduction of greater than 90% of the original contaminated volume can be achieved with the returned ''clean'' volume less than or equal to the cleanup criteria. Reprocessing or multiple staging of the process units will yield overall efficiencies of greater than 90%. Continued testing at Nevada Test Site confirmed these conclusions

  16. The design of cermet fuel phase fraction and fuel particle diameter

    International Nuclear Information System (INIS)

    Tian Sheng.

    1986-01-01

    UO 2 -Zr-2 is an ideal cermet fuel. As an exemplification with this fuel, this paper emphatically elucidates the irradiation theory of cermet fuel and its application in the design of cermet fuel phase fraction and of fuel particle diameter. From the point of view of the irradiation theory and the consideration for sandwich rolling, the suitable volume fraction of UO 2 phase of 25% and diameter of UO 2 particle of 100 +- 15 μm are selected

  17. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  18. Effect of fluid loading with normal saline and 6% hydroxyethyl starch on stroke volume variability and left ventricular volume

    Directory of Open Access Journals (Sweden)

    Kanda H

    2015-09-01

    Full Text Available Hirotsugu Kanda,1 Yuji Hirasaki,2 Takafumi Iida,1 Megumi Kanao,1 Yuki Toyama,1 Takayuki Kunisawa,1 Hiroshi Iwasaki,11Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, 2Department of Anatomy, The Jikei University Graduate School of Medicine, Tokyo, JapanPurpose: The aim of this clinical trial was to investigate changes in stroke volume variability (SVV and left ventricular end-diastolic volume (LVEDV after a fluid bolus of crystalloid or colloid using real-time three-dimensional transesophageal echocardiography (3D-TEE and the Vigileo-FloTrac™ system.Materials and methods: After obtaining Institutional Review Board approval, and informed consent from the research participants, 22 patients undergoing scheduled peripheral vascular bypass surgery were enrolled in the study. The patients were randomly assigned to receive 500 mL of hydroxyethyl starch (HES; HES group, n=11 or normal saline (Saline group, n=11 for fluid replacement therapy. SVV was measured using the Vigileo-FloTrac system. LVEDV, stroke volume, and cardiac output were measured by 3D-TEE. The measurements were performed over 30 minutes before and after the fluid bolus in both groups.Results: SVV significantly decreased after fluid bolus in both groups (HES group, 14.7%±2.6% to 6.9%±2.7%, P<0.001; Saline group, 14.3%±3.9% to 8.8%±3.1%, P<0.001. LVEDV significantly increased after fluid loading in the HES group (87.1±24.0 mL to 99.9±27.2 mL, P<0.001, whereas no significant change was detected in the Saline group (88.8±17.3 mL to 91.4±17.6 mL, P>0.05. Stroke volume significantly increased after infusion in the HES group (50.6±12.5 mL to 61.6±19.1 mL, P<0.01 but not in the Saline group (51.6±13.4 mL to 54.1±12.8 mL, P>0.05. Cardiac output measured by 3D-TEE significantly increased in the HES group (3.5±1.1 L/min to 3.9±1.3 L/min, P<0.05, whereas no significant change was seen in the Saline group (3.4±1.1 L/min to 3.3±1.0 L

  19. Tunable electromechanical coupling of a carbon nanotube-reinforced variable cross-section nanoswitch with a piezoelectric effect

    International Nuclear Information System (INIS)

    Yang, W D; Li, Y D; Wang, X

    2016-01-01

    An analytical method is presented to investigate the pull-in instability of a carbon nanotube (CNT)-reinforced variable cross-section nanoswitch with a piezoelectric effect. Governing equations with variable coefficients are derived based on the nonlocal beam model with geometrical nonlinearity and are solved using the shooting method. All the nonlinear effects of the piezoelectric voltage, van der Waals force, Casimir force, CNT volume fraction, nonlocal parameters and width ratio on the pull-in instability are investigated. The pull-in electrostatic voltage increases with the increment of nonlocal parameters, which exhibits the significant scale-dependent behavior of nanostructures. The results show that the variable cross-section improves the flexural rigidity of the cantilever-type nanoswitch effectively, and that the piezoelectric effect of the piezoelectric layer is utilized to control the electrostatic force induced by the voltage exerted on the elastic layer, owing to piezoelectric materials’ advantages of rapid response, light weight and low energy consumption. (paper)

  20. Genetic Algorithm-Based Identification of Fractional-Order Systems

    Directory of Open Access Journals (Sweden)

    Shengxi Zhou

    2013-05-01

    Full Text Available Fractional calculus has become an increasingly popular tool for modeling the complex behaviors of physical systems from diverse domains. One of the key issues to apply fractional calculus to engineering problems is to achieve the parameter identification of fractional-order systems. A time-domain identification algorithm based on a genetic algorithm (GA is proposed in this paper. The multi-variable parameter identification is converted into a parameter optimization by applying GA to the identification of fractional-order systems. To evaluate the identification accuracy and stability, the time-domain output error considering the condition variation is designed as the fitness function for parameter optimization. The identification process is established under various noise levels and excitation levels. The effects of external excitation and the noise level on the identification accuracy are analyzed in detail. The simulation results show that the proposed method could identify the parameters of both commensurate rate and non-commensurate rate fractional-order systems from the data with noise. It is also observed that excitation signal is an important factor influencing the identification accuracy of fractional-order systems.

  1. Intra and interobserver variability of renal allograft ultrasound volume and resistive index measurements

    International Nuclear Information System (INIS)

    Mancini, Marcello; Liuzzi, Raffaele; Daniele, Stefania; Raffio, Teresa; Salvatore, Marco; Sabbatini, Massimo; Cianciaruso, Bruno; Ferrara, Liberato Aldo

    2005-01-01

    Purpose: Aim of the presents study was to evaluate the repeatability and reproducibility of the Doppler Resistive Index (R.I.) and the Ultrasound renal volume measurement in renal transplants. Materials and methods: Twenty -six consecutive patients (18 men, 8 women) mean age of 42,8±12,4 years (M±SD)(range 22-65 years) were studied twice by each of two trained sonographers using a color Doppler ultrasound scanner. Twelve of them had a normal allograft function (defined as stable serum creatinine levels ≤123,76 μmol/L), whilst the remaining 14 had decreased allograft function (serum creatinine 132.6-265.2 μmol/L). Results were given as mean of 6 measurements performed at upper, middle and lower pole of the kidney. Intra- and interobserver variability was assessed by the repeatability coefficient and coefficient of variation (CV). Results: Regarding Resistive Index measurement, repeatability coefficient was between 0.04 and 0.06 and the coefficient of variation was [it

  2. Variable discrete ordinates method for radiation transfer in plane-parallel semi-transparent media with variable refractive index

    Science.gov (United States)

    Sarvari, S. M. Hosseini

    2017-09-01

    The traditional form of discrete ordinates method is applied to solve the radiative transfer equation in plane-parallel semi-transparent media with variable refractive index through using the variable discrete ordinate directions and the concept of refracted radiative intensity. The refractive index are taken as constant in each control volume, such that the direction cosines of radiative rays remain non-variant through each control volume, and then, the directions of discrete ordinates are changed locally by passing each control volume, according to the Snell's law of refraction. The results are compared by the previous studies in this field. Despite simplicity, the results show that the variable discrete ordinate method has a good accuracy in solving the radiative transfer equation in the semi-transparent media with arbitrary distribution of refractive index.

  3. Importance of Non-invasive Right and Left Ventricular Variables on Exercise Capacity in Patients with Tetralogy of Fallot Hemodynamics.

    Science.gov (United States)

    Meierhofer, Christian; Tavakkoli, Timon; Kühn, Andreas; Ulm, Kurt; Hager, Alfred; Müller, Jan; Martinoff, Stefan; Ewert, Peter; Stern, Heiko

    2017-12-01

    Good quality of life correlates with a good exercise capacity in daily life in patients with tetralogy of Fallot (ToF). Patients after correction of ToF usually develop residual defects such as pulmonary regurgitation or stenosis of variable severity. However, the importance of different hemodynamic parameters and their impact on exercise capacity is unclear. We investigated several hemodynamic parameters measured by cardiovascular magnetic resonance (CMR) and echocardiography and evaluated which parameter has the most pronounced effect on maximal exercise capacity determined by cardiopulmonary exercise testing (CPET). 132 patients with ToF-like hemodynamics were tested during routine follow-up with CMR, echocardiography and CPET. Right and left ventricular volume data, ventricular ejection fraction and pulmonary regurgitation were evaluated by CMR. Echocardiographic pressure gradients in the right ventricular outflow tract and through the tricuspid valve were measured. All data were classified and correlated with the results of CPET evaluations of these patients. The analysis was performed using the Random Forest model. In this way, we calculated the importance of the different hemodynamic variables related to the maximal oxygen uptake in CPET (VO 2 %predicted). Right ventricular pressure showed the most important influence on maximal oxygen uptake, whereas pulmonary regurgitation and right ventricular enddiastolic volume were not important hemodynamic variables to predict maximal oxygen uptake in CPET. Maximal exercise capacity was only very weakly influenced by right ventricular enddiastolic volume and not at all by pulmonary regurgitation in patients with ToF. The variable with the most pronounced influence was the right ventricular pressure.

  4. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  5. Variable thickness transient ground-water flow model. Volume 3. Program listings

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow

  6. Assessment of a simplified set of momentum closure relations for low volume fraction regimes in STAR-CCM+ and OpenFOAM

    International Nuclear Information System (INIS)

    Sugrue, Rosemary; Magolan, Ben; Lubchenko, Nazar; Baglietto, Emilio

    2017-01-01

    Highlights: •A simplified set of momentum closures – Bubbly And Moderate void Fraction (BAMF) – is proposed. •BAMF model is assessed by simulation of 12 cases from the Liu and Bankoff experimental database. •Portability between STAR-CCM+ and OpenFOAM CFD softwares is demonstrated. •Both CFD softwares yield mean flow predictions in close agreement with experimental results. -- Abstract: Multiphase computational fluid dynamics (M-CFD) modeling approaches provide three-dimensional resolution of complex two-phase flow and boiling heat transfer phenomena, which makes them an invaluable tool for nuclear reactor design applications. By virtue of the Eulerian-Eulerian spatial and temporal averaging framework, additional terms manifest in the phase momentum equations that require closure through prescription of interfacial forces in the stream-wise and lateral flow directions, as well as in the near-wall region. These momentum closures are critical to M-CFD prediction of mean flow profiles, including velocity and volume fraction distributions, and yet while an overwhelming number of them has been developed, no consensus exists on how to assemble them to achieve a simplified set of closures that is numerically robust and extensible to a wide array of flow configurations; further, no consistent demonstration has been shown of the cross-code portability of these closures between CFD softwares. To address these challenges, we propose in this work a simplified set of momentum closures for stream-wise drag and lateral redistribution mechanisms—collectively referred to as the Bubbly And Moderate void Fraction (BAMF) model—and assess its performance by simulation of 12 cases from the Liu and Bankoff experimental database using STAR-CCM+ and OpenFOAM. Both CFD softwares yield mean flow predictions that are in close agreement with the experimental results, and also in close agreement with each other. These results confirm the effectiveness of the BAMF model and its

  7. Uranium release from different size fractions of sediments in Hanford 300 area, Washington, USA

    International Nuclear Information System (INIS)

    Du Jiangkun; Bao Jianguo; Hu Qinhong; Ewing, Robert P.

    2012-01-01

    Stirred-flow cell tests were carried out to investigate uranium (U) release from different size fractions of sediments from the U.S. Department of Energy’s Hanford 300 Area in Washington, USA. Results show that the measured concentration of U release varies with different size fractions, with the fine-grained mass fractions (<75 μm, 75–500 μm, and 500–2000 μm) being the main U carriers. However, because the sediment is mainly composed of gravel (2000–8000 μm) materials, the gravel fraction is a non-negligible U pool. Our elution experiments give a value of 8.7% of the total U being in the gravel fraction, significantly reducing the current uncertainty in evaluating U inventory. A log–log plot of released U concentration vs. elution volume (i.e., elution time) shows a power-law relationship for all size fractions, with identical exponents for the three fine size fractions (−0.875). For the <2000 μm mass fraction, comparing our eluted U values with reported total U concentrations, we estimate that a lower bound value 8.6% of the total uranium is labile. This compares well with the previously published value of 11.8% labile U after extraction with a dilute extractant for three weeks. - Highlights: ► Stirred-flow cells were used to study U release in Hanford 300 Area sediment. ► Fine-grained size fractions have higher U concentrations. ► U in coarse fraction is less studied, but its 8.7–9.3% of total U is non-negligible. ► A power-law relationship is observed between released U and elution volume. ► About 8.6% of U in the <2 mm sediment is labile.

  8. Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media

    KAUST Repository

    El-Amin, Mohamed; Radwan, Ahmed G.; Sun, Shuyu

    2017-01-01

    In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.

  9. Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media

    KAUST Repository

    El-Amin, Mohamed

    2017-07-06

    In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.

  10. Phase behaviour of heavy petroleum fractions in pure propane and n-butane and with methanol as co-solvent

    International Nuclear Information System (INIS)

    Canziani, D.; Ndiaye, P.M.; Franceschi, Elton; Corazza, Marcos L.; Vladimir Oliveira, J.

    2009-01-01

    This work reports phase equilibrium experimental results for heavy petroleum fractions in pure propane and n-butane as primary solvents and using methanol as co-solvent. Three kinds of oils were investigated from Marlim petroleum: a relatively light fraction coming from the first distillation of crude petroleum at atmospheric pressure (GOP - heavy gas oil of petroleum), the residue of such distillation (RAT) and the crude petroleum sample. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method, over the temperature range of 323 K to 393 K, pressures up to 10 MPa and overall compositions of heavy component varying from 1 wt% to 40 wt%. Transition pressures for low methanol and oil concentrations were very close for GOP, RAT, and crude Marlim when using propane as the primary solvent. Close to propane critical temperature, two and three-phase transitions were observed for GOP and Marlim when methanol was increased. When n-butane was used as primary solvent, all transitions observed were of (vapour + liquid) type with transition pressure values smaller than those obtained for propane.

  11. Planning Target Volume D95 and Mean Dose Should Be Considered for Optimal Local Control for Stereotactic Ablative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lina [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhou, Shouhao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Balter, Peter [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shen, Chan [Department of Health Service Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gomez, Daniel R.; Welsh, James D.; Lin, Steve H. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-07-15

    Purpose: To identify the optimal dose parameters predictive for local/lobar control after stereotactic ablative radiation therapy (SABR) in early-stage non-small cell lung cancer (NSCLC). Methods and Materials: This study encompassed a total of 1092 patients (1200 lesions) with NSCLC of clinical stage T1-T2 N0M0 who were treated with SABR of 50 Gy in 4 fractions or 70 Gy in 10 fractions, depending on tumor location/size, using computed tomography-based heterogeneity corrections and a convolution superposition calculation algorithm. Patients were monitored by chest CT or positron emission tomography/CT and/or biopsy after SABR. Factors predicting local/lobar recurrence (LR) were determined by competing risk multivariate analysis. Continuous variables were divided into 2 subgroups at cutoff values identified by receiver operating characteristic curves. Results: At a median follow-up time of 31.7 months (interquartile range, 14.8-51.3 months), the 5-year time to local recurrence within the same lobe and overall survival rates were 93.8% and 44.8%, respectively. Total cumulative number of patients experiencing LR was 40 (3.7%), occurring at a median time of 14.4 months (range, 4.8-46 months). Using multivariate competing risk analysis, independent predictive factors for LR after SABR were minimum biologically effective dose (BED{sub 10}) to 95% of planning target volume (PTVD95 BED{sub 10}) ≤86 Gy (corresponding to PTV D95 physics dose of 42 Gy in 4 fractions or 55 Gy in 10 fractions) and gross tumor volume ≥8.3 cm{sup 3}. The PTVmean BED{sub 10} was highly correlated with PTVD95 BED{sub 10.} In univariate analysis, a cutoff of 130 Gy for PTVmean BED{sub 10} (corresponding to PTVmean physics dose of 55 Gy in 4 fractions or 75 Gy in 10 fractions) was also significantly associated with LR. Conclusions: In addition to gross tumor volume, higher radiation dose delivered to the PTV predicts for better local/lobar control. We recommend that both PTVD95 BED

  12. PENGARUH FRAKSI VOLUME PENGUAT TERHADAP KEKUATAN LENTUR GREEN COMPOSITE UNTUK APLIKASI PADA BODI KENDARAAN

    Directory of Open Access Journals (Sweden)

    Mastariyanto Perdana

    2016-07-01

    Full Text Available Composites are one of material be used in engineering field. This is due the composites has light weight and relatively strong properties. The synthesis fiber-based composites reduces to obtain environmental friendly properties. This research use hybrid fiber which consist of calcium carbonate (CaCO3 powder and bagasse fiber. Matrix used is resin polyester. Variation of volume fraction between bagasse and calcium carbonate powder are 10:20, 15:15 and 20:10 respectively. Volume fraction of hybrid fiber and polyester is 30:70. This study aims to determine mechanical properties of hybrid composites for each variation of volume fraction. Test results showed. Bending strength of bagasse-based hybrid composites and powder of calcium carbonate with a variation of volume fraction of 10%: 20%, 15%: 15% and 20%: 10% are 53.77 MPa, 54.90 MPa and 59.76 MPa. Hybrid composites with volume fraction 20% bagasse and 10% calcium carbonate powder has highest of bending strength. Green composite based bagasse and calcium carbonate powder can use on application of vehicle body.Komposit merupakan salah satu material yang banyak digunakan pada bidang keteknikan. Ini dikarenakan komposit memiliki sifat ringan dan relatif kuat. Untuk mendapakatkan sifat yang ramah lingkungan, penggunaan komposit yang berbasis serat sintesis dikurangi penggunaannya. Penelitian ini menggunakan serat hibrid yaitu penggabungan antara serbuk kalsium karbonat (CaCO3 dan serat ampas tebu (bagasse. Matrix yang digunakan adalah resin polyester.Variasi fraksi volume antara bagasse dan serbuk kalsium karbonat masing-masing adalah 10:20, 15:15 dan 20:10. Fraksi volume antara serat hibrid dan resin polyester adalah 30:70. Penelitian ini bertujuan untuk mengetahui sifat mekanik dari komposit hibrid berbasis bagasse dan serbuk kalsium karbonat untuk masing-masing variasi fraksi volume. Hasil pengujian menunjukkan bahwakekuatan bending tertinggi komposit hibrid berbasis bagasse dan serbuk kalsium

  13. Assessment of ejection fraction of the right and left ventricles in patients with acute myocardial infarction by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zhang, Youyi; Imai, Kamon; Araki, Yasushi; Nishino, Yukari; Saito, Satoshi; Ozawa, Yukio; Yasugi, Tadao

    1993-01-01

    Right and left ventricular function in acute myocardial infarction (AMI) was assessed by ECG-gated magnetic resonance imaging (MRI) in 64 patients and 8 volunteers. Five short axis images for intrinsic cardiac long-axis of the left ventricle were obtained at 9 msec and 309 msec after the R wave as end-diastole and end-systole. Right and left ventricular volumes were measured by Simpson's rule. The intraobserver variabilities in right and left ventricular ejection fraction (RVEF: r=0.94, LVEF: 0.89) were excellent. The interobserver variabilities in RVEF (r=0.61) and LVEF (r=0.77) were fair. LVEF, but not RVEF, was significantly reduced in patients with AMI. Among left ventricular dysfunction (LVEF≤40%) patients, 50% exhibited right ventricular dysfunction (RVEF≤40%). Among patients without left ventricular dysfunction, only 12% exhibited right ventricular dysfunction. In left ventricular and biventricular dysfunction compared with control, the left ventricular end-diastolic volume index increased (65±10 ml/m 2 , 68±12 ml/m 2 vs 54±8 ml/m 2 ), the end-systolic volume index increased (40±16 ml/m 2 , 43±7 ml/m 2 vs 18±1 ml/m 2 ), and the right ventricular end-diastolic volume index decreased (52±13 ml/m 2 , 53±20 ml/m 2 vs 65±8 ml/m 2 ). MRI can thus be used to assess ventricular systolic function. Since patients with left ventricular dysfunction revealed a high incidence of right ventricular dysfunction, an interaction between the left and right ventricles may occur in ventricular dysfunction. (author)

  14. Age, gender, and interracial variability of normal lacrimal gland volume using MRI.

    Science.gov (United States)

    Bukhari, Amal A; Basheer, Naushad A; Joharjy, Heba I

    2014-01-01

    Aimed to evaluate normal volume of the lacrimal gland in patients of different age groups and race. All MRI studies of the brain that were done between June 2012 and April 2013 were examined. Lacrimal glands were identified using fat-saturated fluid-attenuated inversion recovery (FLAIR) images, and the volumes were calculated using TeraRecon iNtuition viewer. Volumes for the right and left lacrimal glands were recorded for persons of different age groups and race, and the results were compared with those of a randomly selected group of patients who had undergone the same calculation method using CT of the brain, orbit, or paranasal sinuses. The authors included 998 lacrimal glands of 499 patients. The mean volumes for the right and left lacrimal glands were 0.770 and 0.684 cm, respectively. Lacrimal glands were larger in women; the largest volumes were observed during the second decade of life. Mean volumes also varied with race: 0.840 cm in Asians, 0.790 cm in Africans, 0.760 cm in Indians, and 0.710 cm in Middle Easterners. The consultant neuroradiologist and the intern showed excellent agreement for measurements of lacrimal gland volume. No significant difference was observed between lacrimal gland measurements method on MRI and CT. Lacrimal gland volume varies according to age, gender, race, and laterality. Measurements with MRI using fat-saturated FLAIR images and TeraRecon iNtuition viewer software are reliable, accurate, and can be used by junior staff with less radiation exposure to patients.

  15. Fractional Fokker-Planck equation and oscillatory behavior of cumulant moments

    International Nuclear Information System (INIS)

    Suzuki, N.; Biyajima, M.

    2002-01-01

    The Fokker-Planck equation is considered, which is connected to the birth and death process with immigration by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck equation in order to investigate an origin of oscillatory behavior of cumulant moments. From its solution (the probability density function), the generating function (GF) for the corresponding probability distribution is derived. We consider the case when the GF reduces to that of the negative binomial distribution (NBD), if the fractional derivative is replaced to the ordinary one. The H j moment derived from the GF of the NBD decreases monotonically as the rank j increases. However, the H j moment derived in our approach oscillates, which is contrasted with the case of the NBD. Calculated H j moments are compared with those of charged multiplicities observed in pp-bar, e + e - , and e + p collisions. A phenomenological meaning of introducing the fractional derivative in time variable is discussed

  16. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    International Nuclear Information System (INIS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-01-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained

  17. Linear fractional diffusion-wave equation for scientists and engineers

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...

  18. Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    1998-01-01

    This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.

  19. Initialization, conceptualization, and application in the generalized (fractional) calculus.

    Science.gov (United States)

    Lorenzo, Carl F; Hartley, Tom T

    2007-01-01

    This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.

  20. Decreased right heart blood volume determined by magnetic resonance imaging: evidence of central underfilling in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Søndergaard, L; Møgelvang, J

    1995-01-01

    mL, NS), and left atrial volume (70 vs. 57 mL, P = .08) were normal or slightly increased. The right ejection fraction (68% vs. 53%, P fraction was slightly reduced (61% vs. 69%, NS). The central and arterial blood volume (CBV), assessed......Whether the central blood volume is reduced or expanded in cirrhosis is still under debate. Accordingly, the current study was undertaken to assess the volume of the heart cavities. Ten cirrhotic patients and matched controls had their right and left ventricular end-diastolic volumes (RVDV and LVDV...... as the cardiac output (CO) multiplied by the central circulation time, was significantly decreased (1.47 vs. 1.81 L, P blood volume (4.43 vs. 3.64 L, P

  1. Factors influencing the variations of ejection fraction during exercise in chronic aortic regurgitation

    International Nuclear Information System (INIS)

    Bassand, J.P.; Faivre, R.; Berthout, P.; Maurat, J.P.; Cardot, J.C.; Verdenet, J.; Bidet, R.

    1987-01-01

    The influence of left ventricular volume variations and regurgitant fraction variations upon left ventricular ejection fraction during exercise was examined using equilibrium radionuclide angiography in patients suffering from aortic regurgitation. Ejection fraction (EF), regurgitant fraction (RF), end diastolic volume (EDV) and end systolic volume (ESV) variations from rest to peak exercise were determined in 44 patients suffering from chronic aortic regurgitation (AR) and in 8 healthy volunteers (C). In C, EF increased (+0.10±0.03, P<0.01) and ESV decreased significantly (-23%±12%, P<0.01), RF and EDV did not vary significantly. In AR patients, EF, EDV and ESV did not vary significantly because of important scattering of individual values. Changes in EF and ESV were inversely correlated (r=-0.79, P<0.01) and RF decreased significantly (-0.12±0.10, P<0.01). Volumes and EF changes during exercise occurred in three different ways. In a 1st subgroup of 7 patients, EF increased (+0.09±0.03, P<0.05) in conjunction with a reduction of ESV (-24%±12%, P<0.05) without a significant change in EDV. In a 2nd group of 22 patients, EF decreased (-0.04±0.07, P<0.01) in association with an increase in ESV (+17%±16%, P<0.01) and no changes in EDV. In a 3rd subgroup of 15 patients, EF decreased (-0.02±0.06, P<0.01) despite a reduction in ESV (-7%±6%, P<0.01) because of a dramatic EDV decrease (-10%±6%, P<0.05). In this subgroup, changes in EF were inversely correlated with changes in ESV (r=-0.55, P<0.01) and positively related to EDV variations (r=0.42, P=0.02). EDV changes were weakly, but significantly, correlated to RF decrease (r=0.39, P<0.05). We conclude that changes in left ventricular ejection fraction during exercise in patients with chronic aortic regurgitation are significantly related in some patients to changes in ventricular loading conditions as well as contractile state. (orig./MG)

  2. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: In vivo whole tumor assessment using volumetric perfusion computed tomography

    International Nuclear Information System (INIS)

    Ng, Q.-S.; Goh, Vicky; Milner, Jessica; Padhani, Anwar R.; Saunders, Michele I.; Hoskin, Peter J.

    2007-01-01

    Purpose: To quantitatively assess the in vivo acute vascular effects of fractionated radiotherapy for human non-small-cell lung cancer using volumetric perfusion computed tomography (CT). Methods and Materials: Sixteen patients with advanced non-small-cell lung cancer, undergoing palliative radiotherapy delivering 27 Gy in 6 fractions over 3 weeks, were scanned before treatment, and after the second (9 Gy), fourth (18 Gy), and sixth (27 Gy) radiation fraction. Using 16-detector CT, multiple sequential volumetric acquisitions were acquired after intravenous contrast agent injection. Measurements of vascular blood volume and permeability for the whole tumor volume were obtained. Vascular changes at the tumor periphery and center were also measured. Results: At baseline, lung tumor vascularity was spatially heterogeneous with the tumor rim showing a higher vascular blood volume and permeability than the center. After the second, fourth, and sixth fractions of radiotherapy, vascular blood volume increased by 31.6% (paired t test, p = 0.10), 49.3% (p = 0.034), and 44.6% (p = 0.0012) respectively at the tumor rim, and 16.4% (p = 0.29), 19.9% (p = 0.029), and 4.0% (p = 0.0050) respectively at the center of the tumor. After the second, fourth, and sixth fractions of radiotherapy, vessel permeability increased by 18.4% (p = 0.022), 44.8% (p = 0.0048), and 20.5% (p = 0.25) at the tumor rim. The increase in permeability at the tumor center was not significant after radiotherapy. Conclusion: Fractionated radiotherapy increases tumor vascular blood volume and permeability in human non-small-cell lung cancer. We have established the spatial distribution of vascular changes after radiotherapy; greater vascular changes were demonstrated at the tumor rim compared with the center

  3. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Magdalena Rose Osburn

    2016-08-01

    Full Text Available Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen –protium and deuterium –that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism.

  5. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.

    Science.gov (United States)

    Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

  6. Developing Methods for Fraction Cover Estimation Toward Global Mapping of Ecosystem Composition

    Science.gov (United States)

    Roberts, D. A.; Thompson, D. R.; Dennison, P. E.; Green, R. O.; Kokaly, R. F.; Pavlick, R.; Schimel, D.; Stavros, E. N.

    2016-12-01

    Terrestrial vegetation seldom covers an entire pixel due to spatial mixing at many scales. Estimating the fractional contributions of photosynthetic green vegetation (GV), non-photosynthetic vegetation (NPV), and substrate (soil, rock, etc.) to mixed spectra can significantly improve quantitative remote measurement of terrestrial ecosystems. Traditional methods for estimating fractional vegetation cover rely on vegetation indices that are sensitive to variable substrate brightness, NPV and sun-sensor geometry. Spectral mixture analysis (SMA) is an alternate framework that provides estimates of fractional cover. However, simple SMA, in which the same set of endmembers is used for an entire image, fails to account for natural spectral variability within a cover class. Multiple Endmember Spectral Mixture Analysis (MESMA) is a variant of SMA that allows the number and types of pure spectra to vary on a per-pixel basis, thereby accounting for endmember variability and generating more accurate cover estimates, but at a higher computational cost. Routine generation and delivery of GV, NPV, and substrate (S) fractions using MESMA is currently in development for large, diverse datasets acquired by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). We present initial results, including our methodology for ensuring consistency and generalizability of fractional cover estimates across a wide range of regions, seasons, and biomes. We also assess uncertainty and provide a strategy for validation. GV, NPV, and S fractions are an important precursor for deriving consistent measurements of ecosystem parameters such as plant stress and mortality, functional trait assessment, disturbance susceptibility and recovery, and biomass and carbon stock assessment. Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.

  7. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation

    International Nuclear Information System (INIS)

    Prokopiou, Sotiris; Moros, Eduardo G.; Poleszczuk, Jan; Caudell, Jimmy; Torres-Roca, Javier F.; Latifi, Kujtim; Lee, Jae K.; Myerson, Robert; Harrison, Louis B.; Enderling, Heiko

    2015-01-01

    Although altered protocols that challenge conventional radiation fractionation have been tested in prospective clinical trials, we still have limited understanding of how to select the most appropriate fractionation schedule for individual patients. Currently, the prescription of definitive radiotherapy is based on the primary site and stage, without regard to patient-specific tumor or host factors that may influence outcome. We hypothesize that the proportion of radiosensitive proliferating cells is dependent on the saturation of the tumor carrying capacity. This may serve as a prognostic factor for personalized radiotherapy (RT) fractionation. We introduce a proliferation saturation index (PSI), which is defined as the ratio of tumor volume to the host-influenced tumor carrying capacity. Carrying capacity is as a conceptual measure of the maximum volume that can be supported by the current tumor environment including oxygen and nutrient availability, immune surveillance and acidity. PSI is estimated from two temporally separated routine pre-radiotherapy computed tomography scans and a deterministic logistic tumor growth model. We introduce the patient-specific pre-treatment PSI into a model of tumor growth and radiotherapy response, and fit the model to retrospective data of four non-small cell lung cancer patients treated exclusively with standard fractionation. We then simulate both a clinical trial hyperfractionation protocol and daily fractionations, with equal biologically effective dose, to compare tumor volume reduction as a function of pretreatment PSI. With tumor doubling time and radiosensitivity assumed constant across patients, a patient-specific pretreatment PSI is sufficient to fit individual patient response data (R 2 = 0.98). PSI varies greatly between patients (coefficient of variation >128 %) and correlates inversely with radiotherapy response. For this study, our simulations suggest that only patients with intermediate PSI (0.45–0.9) are

  8. Effects of Low Volume Fraction of Polyvinyl Alcohol Fibers on the Mechanical Properties of Oil Palm Shell Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Ming Kun Yew

    2015-01-01

    Full Text Available This paper presents the effects of low volume fraction (Vf of polyvinyl alcohol (PVA fibers on the mechanical properties of oil palm shell (OPS high strength lightweight concrete mixtures. The slump, density, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity under various curing conditions have been measured and evaluated. The results indicate that an increase in PVA fibers decreases the workability of the concrete and decreases the density slightly. The 28-day compressive strength of oil palm shell fiber-reinforced concrete (OPSFRC high strength lightweight concrete (HSLWC subject to continuous moist curing was within the range of 43–49 MPa. The average modulus of elasticity (E value is found to be 16.1 GPa for all mixes, which is higher than that reported in previous studies and is within the range of normal weight concrete. Hence, the findings of this study revealed that the PVA fibers can be used as an alternative material to enhance the properties of OPS HSLWC for building and construction applications.

  9. An analytical model to calculate absorbed fractions for internal dosimetry with alpha, beta and gamma emitters

    OpenAIRE

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2014-01-01

    We developed a general model for the calculation of absorbed fractions in ellipsoidal volumes of soft tissue uniformly filled with alpha, beta and gamma emitting radionuclides. The approach exploited Monte Carlo simulations with the Geant4 code to determine absorbed fractions in ellipsoids characterized by a wide range of dimensions and ellipticities, for monoenergetic emissions of each radiation type. The so-obtained absorbed fractions were put in an analytical relationship with the 'general...

  10. Fractional virus epidemic model on financial networks

    Directory of Open Access Journals (Sweden)

    Balci Mehmet Ali

    2016-01-01

    Full Text Available In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain the solution of incommensurate system of fractional differential equations. Our findings are confirmed and complemented by the data set of the relevant stock markets between 2006 and 2016. Rather than the hypothetical values, we use the Hurst Exponent of each time series to approximate the fraction size and graph theoretical concepts to obtain the variables.

  11. Fractional order nonlinear variable speed and current regulation of a permanent magnet synchronous generator wind turbine system

    Directory of Open Access Journals (Sweden)

    Anitha Karthikeyan

    2018-03-01

    Full Text Available In this paper we derived the fractional order model of the Permanent Magnet Synchronous Generator (PMSG from its integer model. The PMSG was employing a shaft sensor for the speed sensing and control. But this sensor would increase the hardware complexity as well as the cost of the system. Hence we have developed a Fractional order Nonlinear adaptive control method for speed and current tracking of the PMSG. The objective of an adaptive controller is to first define a virtual control state and force it to become a stabilizing function in accordance with a corresponding error dynamics. In order to study the Lyapunov exponents of the fractional order controller, we proposed a new method which would remove the complexity of finding the sign of the Lyapunov first derivative. The Fractional order control scheme is implemented in LabVIEW for simulation results. The simulation results indicated that the estimated rotor position and speed correspond to their actual values well. Keywords: Chaos suppression, Fractional order systems, Permanent magnet synchronous generator, Speed and current control, Lyapunov stability

  12. Geometry of lengths, areas, and volumes two-dimensional spaces, volume 1

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the first of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The first volume begins with length measurement as dominated by the Pythagorean Theorem (three proofs) with application to number theory; areas measured by slicing and scaling, where Archimedes uses the physical weights and balances to calculate spherical volume and is led to the invention of calculus; areas by cut and paste, leading to the Bolyai-Gerwien theorem on squaring polygons; areas by counting, leading to the theory of continued fractions, the efficient rational approximation of real numbers, and Minkowski's theorem on convex bodies; straight-edge and compass constructions, giving c...

  13. An analytical model to calculate absorbed fractions for internal dosimetry with alpha, beta and gamma emitters

    Directory of Open Access Journals (Sweden)

    Ernesto Amato

    2014-03-01

    Full Text Available We developed a general model for the calculation of absorbed fractions in ellipsoidal volumes of soft tissue uniformly filled with alpha, beta and gamma emitting radionuclides. The approach exploited Monte Carlo simulations with the Geant4 code to determine absorbed fractions in ellipsoids characterized by a wide range of dimensions and ellipticities, for monoenergetic emissions of each radiation type. The so-obtained absorbed fractions were put in an analytical relationship with the 'generalized radius', calculated as 3V/S, where V is the ellipsoid volume and S its surface. Radiation-specific parametric functions were obtained in order to calculate the absorbed fraction of a given radiation in a generic ellipsoidal volume. The dose from a generic radionuclide can be calculated through a process of summation and integration over the whole radionuclide emission spectrum, profitably implemented in an electronic spreadsheet. We compared the results of our analytical calculation approach with those obtained from the OLINDA/EXM computer software, finding a good agreement in a wide range of sphere radii, for the high-energy pure beta emitter 90Y, the commonly employed beta-gamma emitter 131I, and the pure alpha emitter 213Po. The generality of our approach makes it useful an easy to implement in clinical dosimetry calculations as well as in radiation safety estimations when doses from internal radionuclide uptake are to be taken into account.

  14. Investigation of Heat Transfer Enhancement or Deterioration of Variable Properties Al2O3-EG-water Nanofluid in Buoyancy Driven Convection

    Directory of Open Access Journals (Sweden)

    H. Khorasanizadeh

    2014-01-01

    Full Text Available In this study, the natural convection heat transfer of variable properties Al2O3-EG-water nanofluid in a differentially heated rectangular cavity has been investigated numerically. The governing equations, for a Newtonian fluid, have been solved numerically with a finite volume approach. The influences of the pertinent parameters such as Ra in the range of 103-107 and volume fraction of nanoparticles from 0 to 0.04 on heat transfer characteristics have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra=103, for which conduction heat transfer is dominant, the average Nusselt number increases as volume fraction of nanoparticles increases, but for higher Ra numbers in contradiction with the constant properties cases it decreases. This reduction, which is associated with increased viscosity, is more severe at Ra of 104 compared to higher Ra numbers such that the least deterioration in heat transfer occurs for Ra=107. This is due to the fact that as Ra increases, the Brownian motion enhances; thus conductivity improves and becomes more important than viscosity increase. An scale analysis, performed to clarify the contradictory reports in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, showed that different kinds of evaluating the base fluid Rayleigh number has led to such a difference.

  15. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  16. Fractional diffusion models of nonlocal transport

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del

    2006-01-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments

  17. Time varying, multivariate volume data reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, James P [Los Alamos National Laboratory; Fout, Nathaniel [UC DAVIS; Ma, Kwan - Liu [UC DAVIS

    2010-01-01

    Large-scale supercomputing is revolutionizing the way science is conducted. A growing challenge, however, is understanding the massive quantities of data produced by large-scale simulations. The data, typically time-varying, multivariate, and volumetric, can occupy from hundreds of gigabytes to several terabytes of storage space. Transferring and processing volume data of such sizes is prohibitively expensive and resource intensive. Although it may not be possible to entirely alleviate these problems, data compression should be considered as part of a viable solution, especially when the primary means of data analysis is volume rendering. In this paper we present our study of multivariate compression, which exploits correlations among related variables, for volume rendering. Two configurations for multidimensional compression based on vector quantization are examined. We emphasize quality reconstruction and interactive rendering, which leads us to a solution using graphics hardware to perform on-the-fly decompression during rendering. In this paper we present a solution which addresses the need for data reduction in large supercomputing environments where data resulting from simulations occupies tremendous amounts of storage. Our solution employs a lossy encoding scheme to acrueve data reduction with several options in terms of rate-distortion behavior. We focus on encoding of multiple variables together, with optional compression in space and time. The compressed volumes can be rendered directly with commodity graphics cards at interactive frame rates and rendering quality similar to that of static volume renderers. Compression results using a multivariate time-varying data set indicate that encoding multiple variables results in acceptable performance in the case of spatial and temporal encoding as compared to independent compression of variables. The relative performance of spatial vs. temporal compression is data dependent, although temporal compression has the

  18. Polarized training has greater impact on key endurance variables than threshold, high intensity or high volume training

    Directory of Open Access Journals (Sweden)

    Thomas eStöggl

    2014-02-01

    Full Text Available Endurance athletes integrate four conditioning concepts in their training programs: high-volume training (HVT, ‘threshold-training’ (THR, high-intensity interval training (HIIT and a combination of these aforementioned concepts known as polarized training (POL. The purpose of this study was to explore which of these four training concepts provides the greatest response on key components of endurance performance in well-trained endurance athletes. Methods: Forty eight runners, cyclists, triathletes and cross-country skiers (peak oxygen uptake: (VO2peak: 62.6±7.1 mL∙min-1∙kg-1 were randomly assigned to one of four groups performing over nine weeks. An incremental test, work economy and a VO2peak tests were performed. Training intensity was heart rate controlled. Results: POL demonstrated the greatest increase in VO2peak (+6.8 ml∙min∙kg-1 or 11.7%, P0.05. Conclusion: POL resulted in the greatest improvements in most key variables of endurance performance in well-trained endurance athletes. THR or HVT did not lead to further improvements in performance related variables.

  19. Stereological estimates of nuclear volume and other quantitative variables in supratentorial brain tumors. Practical technique and use in prognostic evaluation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Braendgaard, H; Chistiansen, A O

    1991-01-01

    The use of morphometry and modern stereology in malignancy grading of brain tumors is only poorly investigated. The aim of this study was to present these quantitative methods. A retrospective feasibility study of 46 patients with supratentorial brain tumors was carried out to demonstrate...... the practical technique. The continuous variables were correlated with the subjective, qualitative WHO classification of brain tumors, and the prognostic value of the parameters was assessed. Well differentiated astrocytomas (n = 14) had smaller estimates of the volume-weighted mean nuclear volume and mean...... nuclear profile area, than those of anaplastic astrocytomas (n = 13) (2p = 3.1.10(-3) and 2p = 4.8.10(-3), respectively). No differences were seen between the latter type of tumor and glioblastomas (n = 19). The nuclear index was of the same magnitude in all three tumor types, whereas the mitotic index...

  20. High-order fractional partial differential equation transform for molecular surface construction.

    Science.gov (United States)

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model

  1. In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Streitparth, Florian; Pech, Maciej; Boehmig, Michael; Ruehl, Ricarda; Peters, Nils; Wieners, Gero; Steinberg, Johannes; Lopez-Haenninen, Enrique; Felix, Roland; Wust, Peter; Ricke, Jens

    2006-01-01

    Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical data derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D 1ml ) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D 1ml of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D 1ml of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data

  2. Evaluation of energy savings potential of variable refrigerant flow (VRF from variable air volume (VAV in the U.S. climate locations

    Directory of Open Access Journals (Sweden)

    Dongsu Kim

    2017-11-01

    Full Text Available Variable refrigerant flow (VRF systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE, is used to assess the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.

  3. Measurement of hepatic volume and effective blood flow with radioactive colloids: Evaluation of development in liver diseases

    International Nuclear Information System (INIS)

    Fujii, M.; Uchino, H.; Kyoto Univ.

    1982-01-01

    Changes in hepatic volume and the blood flow effectively perfusing the liver parenchyma were studied as an assessment of the severity of liver diseases. Hepatic effective blood flow was estimated as the hepatic fractional clearance of radioactive colloids, obtained from the disappearance rate multiplied by the fraction of injected dose taken up by the liver. The hepatic fractional clearance was normal or not markedly decreased in patients with acute hepatitis which had developed favorably, but was severely decreased in patients with fulminant hepatitis. In liver diseases, the ratio of hepatic volume to fractional clearance was found to increase as the clearance decreased. In subjects with normal clearance, hepatic fractional clearance was correlated significantly with liver volume, indicating that hepatic effective blood flow is proportional to parenchymal volume in an unanesthetized, resting state. In biopsied cases changes in volume and blood flow accorded well with changes indicated by morphological criteria. In chronic persistent hepatitis, effective hepatic blood flow is not diminished. However, hepatic blood flow were observed between the cirrhosis or chronic aggressive hepatitis, and normal control groups. Extension of chronic inflammatory infiltration into the parenchyma distinguishes chronic aggressive hepatitis from chronic persistent hepatitis. Architecture is often disturbed in the former. These changes should be accompanied by disturbance of microcirculation. The present study indicates that the decrease in effective hepatic blood flow in chronic hepatitis and cirrhosis has two aspects: one is a summation of microcirculatory disturbances, and the other is a decrease in liver cell mass. (orig.)

  4. Blood volume studies in chronic renal failure using radioactive 51Cr

    International Nuclear Information System (INIS)

    Chadda, V.S.; Mehta, S.R.; Mathur, D.

    1975-01-01

    Estimation of blood volume was carried out in 20 healthy subjects and in 25 patients suffering from chronic renal failure using radioactive 51 Cr. A detailed history, physical examination and investigations were also undertaken. On statistical evaluation, the red cell volume was diminished significantly in males and females but rise in blood volume was insignificant. Plasma volume was raised significantly in females but was insignificant in males. The reduction in red cell volume is due to reduced red cell mass because of chronic renal disease. Plasma volume may be elevated in order to compensate for decreased red cell volume. The variability in these two parameters results in variable blood volume. (author)

  5. An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics.

    Directory of Open Access Journals (Sweden)

    Jamshad Ahmad

    Full Text Available In this paper, a fractional complex transform (FCT is used to convert the given fractional partial differential equations (FPDEs into corresponding partial differential equations (PDEs and subsequently Reduced Differential Transform Method (RDTM is applied on the transformed system of linear and nonlinear time-fractional PDEs. The results so obtained are re-stated by making use of inverse transformation which yields it in terms of original variables. It is observed that the proposed algorithm is highly efficient and appropriate for fractional PDEs and hence can be extended to other complex problems of diversified nonlinear nature.

  6. Neuroendocrine and renal effects of intravascular volume expansion in compensated heart failure

    DEFF Research Database (Denmark)

    Gabrielsen, A; Bie, P; Holstein-Rathlou, N H

    2001-01-01

    To examine if the neuroendocrine link between volume sensing and renal function is preserved in compensated chronic heart failure [HF, ejection fraction 0.29 +/- 0.03 (mean +/- SE)] we tested the hypothesis that intravascular and central blood volume expansion by 3 h of water immersion (WI) elicits...... sustained angiotensin-converting enzyme inhibitor therapy, n = 9) absolute and fractional sodium excretion increased (P Renal free water clearance increased during WI in control subjects but not in HF......, albeit plasma vasopressin concentrations were similar in the two groups. In conclusion, the neuroendocrine link between volume sensing and renal sodium excretion is preserved in compensated HF. The natriuresis of WI is, however, modulated by the prevailing ANG II and Aldo concentrations. In contrast...

  7. Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions

    International Nuclear Information System (INIS)

    Rouhani, S.Z.; Axelsson, E.

    1968-10-01

    The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm 2 with many different subcoolings and mass velocities. The agreement is generally very good

  8. Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z; Axelsson, E

    1968-10-15

    The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm{sup 2} with many different subcoolings and mass velocities. The agreement is generally very good.

  9. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  10. PENGARUH FRAKSI VOLUME PENGUAT TERHADAP KEKUATAN LENTUR GREEN COMPOSITE UNTUK APLIKASI PADA BODI KENDARAAN

    OpenAIRE

    Perdana, Mastariyanto

    2016-01-01

    Composites are one of material be used in engineering field. This is due the composites has light weight and relatively strong properties. The synthesis fiber-based composites reduces to obtain environmental friendly properties. This research use hybrid fiber which consist of calcium carbonate (CaCO3) powder and bagasse fiber. Matrix used is resin polyester. Variation of volume fraction between bagasse and calcium carbonate powder are 10:20, 15:15 and 20:10 respectively. Volume fraction of hy...

  11. Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite

    Science.gov (United States)

    Joseph, Aswin K.; Anand, K. B.

    2018-02-01

    This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.

  12. Exploratory assessment of left ventricular strain–volume loops in severe aortic valve diseases

    Science.gov (United States)

    Hulshof, Hugo G.; van Dijk, Arie P.; George, Keith P.; Hopman, Maria T. E.; Thijssen, Dick H. J.

    2017-01-01

    Key points Severe aortic valve diseases are common cardiac abnormalities that are associated with poor long‐term survival.Before any reduction in left ventricular (LV) function, the left ventricle undergoes structural remodelling under the influence of changing haemodynamic conditions.In this study, we combined temporal changes in LV structure (volume) with alterations in LV functional characteristics (strain, ԑ) into a ԑ–volume loop, in order to provide novel insight into the haemodynamic cardiac consequences of aortic valve diseases in those with preserved LV ejection fraction.We showed that our novel ԑ–volume loop and the specific loop characteristics provide additional insight into the functional and mechanical haemodynamic consequences of severe aortic valve diseases (with preserved LV ejection fraction).Finally, we showed that the ԑ–volume loop characteristics provide discriminative capacity compared with conventional measures of LV function. Abstract The purpose of this study was to examine left ventricular (LV) strain (ԑ)–volume loops to provide novel insight into the haemodynamic cardiac consequences of aortic valve stenosis (AS) and aortic valve regurgitation (AR). Twenty‐seven participants were retrospectively recruited: AR (n = 7), AS (n = 10) and control subjects (n = 10). Standard transthoracic echocardiography was used to obtain apical four‐chamber images to construct ԑ–volume relationships, which were assessed using the following parameters: early systolic ԑ (ԑ_ES); slope of ԑ–volume relationship during systole (Sslope); end‐systolic peak ԑ (peak ԑ); and diastolic uncoupling (systolic ԑ–diastolic ԑ at same volume) during early diastole (UNCOUP_ED) and late diastole (UNCOUP_LD). Receiver operating characteristic curves were used to determine the ability to detect impaired LV function. Although LV ejection fraction was comparable between groups, longitudinal peak ԑ was reduced compared with control subjects

  13. Exploratory assessment of left ventricular strain-volume loops in severe aortic valve diseases.

    Science.gov (United States)

    Hulshof, Hugo G; van Dijk, Arie P; George, Keith P; Hopman, Maria T E; Thijssen, Dick H J; Oxborough, David L

    2017-06-15

    Severe aortic valve diseases are common cardiac abnormalities that are associated with poor long-term survival. Before any reduction in left ventricular (LV) function, the left ventricle undergoes structural remodelling under the influence of changing haemodynamic conditions. In this study, we combined temporal changes in LV structure (volume) with alterations in LV functional characteristics (strain, ԑ) into a ԑ-volume loop, in order to provide novel insight into the haemodynamic cardiac consequences of aortic valve diseases in those with preserved LV ejection fraction. We showed that our novel ԑ-volume loop and the specific loop characteristics provide additional insight into the functional and mechanical haemodynamic consequences of severe aortic valve diseases (with preserved LV ejection fraction). Finally, we showed that the ԑ-volume loop characteristics provide discriminative capacity compared with conventional measures of LV function. The purpose of this study was to examine left ventricular (LV) strain (ԑ)-volume loops to provide novel insight into the haemodynamic cardiac consequences of aortic valve stenosis (AS) and aortic valve regurgitation (AR). Twenty-seven participants were retrospectively recruited: AR (n = 7), AS (n = 10) and control subjects (n = 10). Standard transthoracic echocardiography was used to obtain apical four-chamber images to construct ԑ-volume relationships, which were assessed using the following parameters: early systolic ԑ (ԑ_ES); slope of ԑ-volume relationship during systole (Sslope); end-systolic peak ԑ (peak ԑ); and diastolic uncoupling (systolic ԑ-diastolic ԑ at same volume) during early diastole (UNCOUP_ED) and late diastole (UNCOUP_LD). Receiver operating characteristic curves were used to determine the ability to detect impaired LV function. Although LV ejection fraction was comparable between groups, longitudinal peak ԑ was reduced compared with control subjects. In contrast, ԑ_ES and Sslope were

  14. Bidisperse and polydisperse suspension rheology at large solid fraction

    Energy Technology Data Exchange (ETDEWEB)

    Pednekar, Sidhant [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031; Chun, Jaehun [Pacific Northwest National Laboratory, Richland, Washington 99352; Morris, Jeffrey F. [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031

    2018-03-01

    At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study of bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.

  15. The fractional coupled KdV equations: Exact solutions and white noise functional approach

    International Nuclear Information System (INIS)

    Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah

    2013-01-01

    Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)

  16. Is 16-frame really superior to 8-frame gated SPECT for the assessment of left ventricular volumes and ejection fraction? Comparison of two simultaneously acquired gated SPECT studies

    International Nuclear Information System (INIS)

    Montelatici, Giulia; Sciagra, Roberto; Passeri, Alessandro; Dona, Manjola; Pupi, Alberto

    2008-01-01

    Conflicting data exist about the difference between 8- and 16-frame gated single-photon emission computed tomography (SPECT) left ventricular volumes and ejection fraction (EF); moreover, the influence of framing on detection of stress-induced functional changes is unknown. In 133 patients, two separate gated SPECT studies, one with 8 and one with 16 frames, were simultaneously acquired during a single gantry orbit using dedicated software. In 33 of 133 patients, two additional studies (with 8 and 16 frames, respectively) were acquired using arrhythmia rejection. Left ventricular EF and volumes were calculated using the QGS software. Stress-induced ischemia was identified on summed perfusion images. Arrhythmia-rejection did not influence volumes and EF independently of framing rate. Using data without arrhythmia-rejection, there was a significant difference in volumes and EF between 8 and 16 frames both in resting and post-stress gated SPECT. However, the difference was small: 2.6% for resting and 2.8% for post-stress EF. Both using 8 and 16 frames, there were significantly larger volumes and lower EF in patients with than without stress-induced ischemia. A stress-induced decrease >5 EF units was observed in 26 of 133 patients using 8 and in 23 of 133 using 16 frames, respectively, with finding agreement in 19 patients. Comparing two simultaneously acquired studies, the use of 16 instead of 8 frames has minor and predictable influence on functional data. Furthermore, there are no differences in the detection of stress-induced functional changes. The advantage of 16 over 8 frames in the daily clinical practice appears questionable. (orig.)

  17. Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization.

    Directory of Open Access Journals (Sweden)

    Jan Karbowski

    2015-10-01

    Full Text Available The structure and quantitative composition of the cerebral cortex are interrelated with its computational capacity. Empirical data analyzed here indicate a certain hierarchy in local cortical composition. Specifically, neural wire, i.e., axons and dendrites take each about 1/3 of cortical space, spines and glia/astrocytes occupy each about (1/3(2, and capillaries around (1/3(4. Moreover, data analysis across species reveals that these fractions are roughly brain size independent, which suggests that they could be in some sense optimal and thus important for brain function. Is there any principle that sets them in this invariant way? This study first builds a model of local circuit in which neural wire, spines, astrocytes, and capillaries are mutually coupled elements and are treated within a single mathematical framework. Next, various forms of wire minimization rule (wire length, surface area, volume, or conduction delays are analyzed, of which, only minimization of wire volume provides realistic results that are very close to the empirical cortical fractions. As an alternative, a new principle called "spine economy maximization" is proposed and investigated, which is associated with maximization of spine proportion in the cortex per spine size that yields equally good but more robust results. Additionally, a combination of wire cost and spine economy notions is considered as a meta-principle, and it is found that this proposition gives only marginally better results than either pure wire volume minimization or pure spine economy maximization, but only if spine economy component dominates. However, such a combined meta-principle yields much better results than the constraints related solely to minimization of wire length, wire surface area, and conduction delays. Interestingly, the type of spine size distribution also plays a role, and better agreement with the data is achieved for distributions with long tails. In sum, these results suggest

  18. Evaluation of left atrial function by multidetector computed tomography before left atrial radiofrequency-catheter ablation: Comparison of a manual and automated 3D volume segmentation method

    International Nuclear Information System (INIS)

    Wolf, Florian; Ourednicek, Petr; Loewe, Christian; Richter, Bernhard; Goessinger, Heinz David; Gwechenberger, Marianne; Plank, Christina; Schernthaner, Ruediger Egbert; Toepker, Michael; Lammer, Johannes; Feuchtner, Gudrun M.

    2010-01-01

    Introduction: The purpose of this study was to compare a manual and automated 3D volume segmentation tool for evaluation of left atrial (LA) function by 64-slice multidetector-CT (MDCT). Methods and materials: In 33 patients with paroxysmal atrial fibrillation a MDCT scan was performed before radiofrequency-catheter ablation. Atrial function (minimal volume (LAmin), maximal volume (LAmax), stroke volume (SV), ejection fraction (EF)) was evaluated by two readers using a manual and an automatic tool and measurement time was evaluated. Results: Automated LA volume segmentation failed in one patient due to low LA enhancement (103HU). Mean LAmax, LAmin, SV and EF were 127.7 ml, 93 ml, 34.7 ml, 27.1% by the automated, and 122.7 ml, 89.9 ml, 32.8 ml, 26.3% by the manual method with no significant difference (p > 0.05) and high Pearsons correlation coefficients (r = 0.94, r = 0.94, r = 0.82 and r = 0.85, p < 0.0001), respectively. The automated method was significantly faster (p < 0.001). Interobserver variability was low for both methods with Pearson's correlation coefficients between 0.98 and 0.99 (p < 0.0001). Conclusions: Evaluation of LA volume and function with 64-slice MDCT is feasible with a very low interobserver variability. The automatic method is as accurate as the manual method but significantly less time consuming permitting a routine use in clinical practice before RF-catheter ablation.

  19. Evaluation of left atrial function by multidetector computed tomography before left atrial radiofrequency-catheter ablation: Comparison of a manual and automated 3D volume segmentation method

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Florian, E-mail: florian.wolf@meduniwien.ac.a [Department of Radiology, Medical University of Vienna, Vienna (Austria); Ourednicek, Petr [Philips Medical Systems, Prague (Czech Republic); Loewe, Christian [Department of Radiology, Medical University of Vienna, Vienna (Austria); Richter, Bernhard; Goessinger, Heinz David; Gwechenberger, Marianne [Department of Cardiology, Medical University of Vienna, Vienna (Austria); Plank, Christina; Schernthaner, Ruediger Egbert; Toepker, Michael; Lammer, Johannes [Department of Radiology, Medical University of Vienna, Vienna (Austria); Feuchtner, Gudrun M. [Department of Radiology, Innsbruck Medical University, Innsbruck (Austria); Institute of Diagnostic Radiology, University Hospital Zurich (Switzerland)

    2010-08-15

    Introduction: The purpose of this study was to compare a manual and automated 3D volume segmentation tool for evaluation of left atrial (LA) function by 64-slice multidetector-CT (MDCT). Methods and materials: In 33 patients with paroxysmal atrial fibrillation a MDCT scan was performed before radiofrequency-catheter ablation. Atrial function (minimal volume (LAmin), maximal volume (LAmax), stroke volume (SV), ejection fraction (EF)) was evaluated by two readers using a manual and an automatic tool and measurement time was evaluated. Results: Automated LA volume segmentation failed in one patient due to low LA enhancement (103HU). Mean LAmax, LAmin, SV and EF were 127.7 ml, 93 ml, 34.7 ml, 27.1% by the automated, and 122.7 ml, 89.9 ml, 32.8 ml, 26.3% by the manual method with no significant difference (p > 0.05) and high Pearsons correlation coefficients (r = 0.94, r = 0.94, r = 0.82 and r = 0.85, p < 0.0001), respectively. The automated method was significantly faster (p < 0.001). Interobserver variability was low for both methods with Pearson's correlation coefficients between 0.98 and 0.99 (p < 0.0001). Conclusions: Evaluation of LA volume and function with 64-slice MDCT is feasible with a very low interobserver variability. The automatic method is as accurate as the manual method but significantly less time consuming permitting a routine use in clinical practice before RF-catheter ablation.

  20. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation.

    Science.gov (United States)

    Miller, Wayne L; Mullan, Brian P

    2014-06-01

    This study sought to quantitate total blood volume (TBV) in patients hospitalized for decompensated chronic heart failure (DCHF) and to determine the extent of volume overload, and the magnitude and distribution of blood volume and body water changes following diuretic therapy. The accurate assessment and management of volume overload in patients with DCHF remains problematic. TBV was measured by a radiolabeled-albumin dilution technique with intravascular volume, pre-to-post-diuretic therapy, evaluated at hospital admission and at discharge. Change in body weight in relation to quantitated TBV was used to determine interstitial volume contribution to total fluid loss. Twenty-six patients were prospectively evaluated. Two patients had normal TBV at admission. Twenty-four patients were hypervolemic with TBV (7.4 ± 1.6 liters) increased by +39 ± 22% (range, +9.5% to +107%) above the expected normal volume. With diuresis, TBV decreased marginally (+30 ± 16%). Body weight declined by 6.9 ± 5.2 kg, and fluid intake/fluid output was a net negative 8.4 ± 5.2 liters. Interstitial compartment fluid loss was calculated at 6.2 ± 4.0 liters, accounting for 85 ± 15% of the total fluid reduction. TBV analysis demonstrated a wide range in the extent of intravascular overload. Dismissal measurements revealed marginally reduced intravascular volume post-diuretic therapy despite large reductions in body weight. Mobilization of interstitial fluid to the intravascular compartment with diuresis accounted for this disparity. Intravascular volume, however, remained increased at dismissal. The extent, composition, and distribution of volume overload are highly variable in DCHF, and this variability needs to be taken into account in the approach to individualized therapy. TBV quantitation, particularly serial measurements, can facilitate informed volume management with respect to a goal of treating to euvolemia. Copyright © 2014 American College of Cardiology Foundation. Published

  1. Fractional vector calculus for fractional advection dispersion

    Science.gov (United States)

    Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.

    2006-07-01

    We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.

  2. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability

    Science.gov (United States)

    Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar

    2018-07-01

    Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and 3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.

  3. Noninvasive in vivo plasma volume and hematocrit in humans: observing long-term baseline behavior to establish homeostasis for intravascular volume and composition

    Science.gov (United States)

    Dent, Paul; Deng, Bin; Goodisman, Jerry; Peterson, Charles M.; Narsipur, Sriram; Chaiken, J.

    2016-04-01

    A new device incorporating a new algorithm and measurement process allows simultaneous noninvasive in vivo monitoring of intravascular plasma volume and red blood cell volume. The purely optical technique involves probing fingertip skin with near infrared laser light and collecting the wavelength shifted light, that is, the inelastic emission (IE) which includes the unresolved Raman and fluorescence, and the un-shifted emission, that is, the elastic emission (EE) which includes both the Rayleigh and Mie scattered light. Our excitation and detection geometry is designed so that from these two simultaneous measurements we can calculate two parameters within the single scattering regime using radiation transfer theory, the intravascular plasma volume fraction and the red blood cell volume fraction. Previously calibrated against a gold standard FDA approved device, 2 hour monitoring sessions on three separate occasions over a three week span for a specific, motionless, and mostly sleeping individual produced 3 records containing a total of 5706 paired measurements of hematocrit and plasma volume. The average over the three runs, relative to the initial plasma volume taken as 100%, of the plasma volume±1σ was 97.56+/-0.55 or 0.56%.For the same three runs, the average relative hematocrit (Hct), referenced to an assumed initial value of 28.35 was 29.37+/-0.12 or stable to +/-0.4%.We observe local deterministic circulation effects apparently associated with the pressure applied by the finger probe as well as longer timescale behavior due to normal ebb and flow of internal fluids due to posture changes and tilt table induced gravity gradients.

  4. Curvature computation in volume-of-fluid method based on point-cloud sampling

    Science.gov (United States)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  5. An evaluation of FIA's stand age variable

    Science.gov (United States)

    John D. Shaw

    2015-01-01

    The Forest Inventory and Analysis Database (FIADB) includes a large number of measured and computed variables. The definitions of measured variables are usually well-documented in FIA field and database manuals. Some computed variables, such as live basal area of the condition, are equally straightforward. Other computed variables, such as individual tree volume,...

  6. Assessment of left atrial volume and function: a comparative study between echocardiography, magnetic resonance imaging and multi slice computed tomography.

    Science.gov (United States)

    Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas; Andersen, Mads J; Vejlstrup, Niels; Kelbæk, Henning; Engstrøm, Thomas; Møller, Jacob E; Kofoed, Klaus F

    2012-06-01

    Measurement of left atrial (LA) maximal volume (LA(max)) using two-dimensional transthoracic echocardiography (TTE) provides prognostic information in several cardiac diseases. However, the relationship between LA(max) and LA function is poorly understood and TTE is less well suited for measuring dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir volume) and pump function (left atrial ejection fraction-LAEF) were derived using CMR and MSCT. Left atrial fractional change and left atrial ejection fraction (LAEF) determined with CMR and MSCT were unrelated to LA(max) enlargement by echocardiography (P = NS). There was an overall good agreement between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P fractional change and LAEF is not significantly related to LA(max) measured by TTE. TTE systematically underestimated LA volumes, whereas there are good agreements between MSCT and CMR for volumetric and functional properties.

  7. Intra-fraction motion of the prostate is a random walk

    Science.gov (United States)

    Ballhausen, H.; Li, M.; Hegemann, N.-S.; Ganswindt, U.; Belka, C.

    2015-01-01

    A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey-Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski-Phillips-Schmidt-Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92  ±  0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski-Phillips-Schmidt-Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r2 = 0.9  ±  0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to drift away from the isocenter during a fraction, and

  8. Intra-fraction motion of the prostate is a random walk

    International Nuclear Information System (INIS)

    Ballhausen, H; Li, M; Hegemann, N-S; Ganswindt, U; Belka, C

    2015-01-01

    A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey–Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski–Phillips–Schmidt–Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92  ±  0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p < 0.001). The Dickey–Fuller test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski–Phillips–Schmidt–Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r 2 = 0.9  ±  0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to

  9. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  10. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-05-05

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO{sub 3}{sup −}, or SO{sub 4}{sup 2−}. • Cl{sup −} significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  11. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO_3"−, or SO_4"2"−. • Cl"− significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  12. The partial molar volume of BeSO4 in aqueous solutions

    International Nuclear Information System (INIS)

    Kuschel, F.; Seidel, J.

    1981-01-01

    The density of aqueous solutions of BeSO 4 has been measured as a function of the mole fraction in the range of 0.02487 x 10 -2 to 6.3082 x 10 -2 . From the results obtained the molar volume and partial molar volume have been calculated and the limiting value of the partial molar volume for Be 2+ was extrapolated in accordance with the Debye-Hueckel law

  13. Higher order multi-term time-fractional partial differential equations involving Caputo-Fabrizio derivative

    OpenAIRE

    Erkinjon Karimov; Sardor Pirnafasov

    2017-01-01

    In this work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  14. Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions.

    Science.gov (United States)

    Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Monteil, Julien; Anton, Marc; Leal-Calderon, Fernando

    2010-06-15

    Water-in-oil-in-water (W/O/W) double emulsions were prepared and the kinetics of release of magnesium ions from the internal to the external water phase was investigated as a function of the formulation and the globule volume fraction. All the emulsions were formulated using the same surface-active species (polyglycerol polyricinoleate and sodium caseinate). Also, the internal droplet and oil globule diameters were almost identical for all the systems. Two types of W/O/W emulsions were prepared based either on a synthetic oil (miglyol) or on an edible oil (olive oil). The globule volume fraction varied from 11% to 72%. At constant temperature (T=25 degrees C) and irrespective of the oil type, the percentage of magnesium released was lowered by increasing the globule fraction. In all cases, magnesium leakage occurred without film rupturing (no coalescence). Thus, the experimental data were interpreted within the frame of a model based on diffusion. The rate of release was determined by the permeation coefficient of magnesium across the oil phase and by the binding (chelation) of magnesium by caseinate molecules. The data could be adequately fitted by considering a time-dependant permeation coefficient. The better retention of magnesium at high globule fractions could account for two distinct phenomena: (i) the reduction of the relative volume of the outer phase, and (ii) the attenuation of the permeation coefficient over time induced by interfacial magnesium binding, all the more important than the globule fraction increased. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Liquid-Vapor Argon Isotope Fractionation from the Triple Point to the Critical Point

    DEFF Research Database (Denmark)

    Phillips, J. T.; Linderstrøm-Lang, C. U.; Bigeleisen, J.

    1972-01-01

    are compared at the same molar volume. The isotope fractionation factor α for 36Ar∕40Ar between liquid and vapor has been measured from the triple point to the critical temperature. The results are compared with previous vapor pressure data, which cover the range 84–102°K. Although the agreement is within....... The fractionation factor approaches zero at the critical temperature with a nonclassical critical index equal to 0.42±0.02.〈∇2Uc〉/ρc in liquid argon is derived from the experimental fractionation data and calculations of 〈∇2Ug〉/ρg for a number of potential functions for gaseous argon....

  16. The convergence of the order sequence and the solution function sequence on fractional partial differential equation

    Science.gov (United States)

    Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.

    2018-03-01

    One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).

  17. Composting of sewage sludge with solid fraction of digested pulp from agricultural biogas plant

    Science.gov (United States)

    Czekała, Wojciech; Dach, Jacek; Przybył, Jacek; Mazurwiekiwcz, Jakub; Janczak, Damian; Lewicki, Andrzej; Smurzyńska, Anna; Kozłowski, Kamil

    2018-02-01

    Sewage sludge management is an important element of environmental protection. Composting and anaerobic digestion are the biological conversion methods for sewage sludge management. Mass and volume reduction is a result of a properly composted process. Solid fraction of digested pulp can be use as co-substrate, because it is good structural material. The aim of the study was to determine the possibility of composting sewage sludge with a solid fraction of digestate. The compost mix consisted of 25 kilograms of sewage sludge and 20 kilograms solid fraction of digestate in fresh mass. The experiment was carried out in laboratory conditions. Bioreactors of 165 dm3 volume were used. The experiment included two stages. Stage I took place in bioreactors and lasted until the cooling phase of the compost was complete. Stage II included compost maturation for a period of eight months (to 287 day of composting). The reduction of mass obtained at the end of Stage I amounted 30.2%. At the end of Stage II, it was 86.7% relative to the initial weight of the compost. The maximum value of temperature was 75.1°C. Studies have shown that sludge with a solid fraction of digestate can be a suitable substrate for composting with sewage sludge.

  18. Measurement of local void fraction in a ribbed annulus

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1992-01-01

    The computer code FLOWTRAN-TF is used to analyze hypothetical hydraulic accidents for the nuclear reactor at the Savannah River Site. During a hypothetical Large Break Loss-of-Coolant Accident (LOCA), reactor assemblies would contain a two-phase mixture of air and water which flows downward. Reactor assemblies consist of nested, ribbed annuli. Longitudinal ribs divide each annulus into four subchannels. For accident conditions, air and water can flow past ribs from one subchannel to another. For FLOWTRAN-TF to compute the size of those flows, it is necessary to know the local void fraction in the region of the rib. Measurements have previously been made of length-average void fraction in a ribbed annulus. However, no direct measurements were available of local void fraction. Due to the lack of data, a test was designed to measure local void fraction at the rib. One question addressed by the test was whether void fraction at the rib is solely a function of azimuthal-average void fraction or a function of additional variables such as pressure boundary conditions. This report provides a discussion of this test

  19. Fractional vector calculus and fractional Maxwell's equations

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2008-01-01

    The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered

  20. Quantitative assessment of fatty infiltration and muscle volume of the rotator cuff muscles using 3-dimensional 2-point Dixon magnetic resonance imaging.

    Science.gov (United States)

    Matsumura, Noboru; Oguro, Sota; Okuda, Shigeo; Jinzaki, Masahiro; Matsumoto, Morio; Nakamura, Masaya; Nagura, Takeo

    2017-10-01

    In patients with rotator cuff tears, muscle degeneration is known to be a predictor of irreparable tears and poor outcomes after surgical repair. Fatty infiltration and volume of the whole muscles constituting the rotator cuff were quantitatively assessed using 3-dimensional 2-point Dixon magnetic resonance imaging. Ten shoulders with a partial-thickness tear, 10 shoulders with an isolated supraspinatus tear, and 10 shoulders with a massive tear involving supraspinatus and infraspinatus were compared with 10 control shoulders after matching age and sex. With segmentation of muscle boundaries, the fat fraction value and the volume of the whole rotator cuff muscles were computed. After reliabilities were determined, differences in fat fraction, muscle volume, and fat-free muscle volume were evaluated. Intra-rater and inter-rater reliabilities were regarded as excellent for fat fraction and muscle volume. Tendon rupture adversely increased the fat fraction value of the respective rotator cuff muscle (P tear group, muscle volume was significantly decreased in the infraspinatus (P = .035) and increased in the teres minor (P = .039). With subtraction of fat volume, a significant decrease of fat-free volume of the supraspinatus muscle became apparent with a massive tear (P = .003). Three-dimensional measurement could evaluate fatty infiltration and muscular volume with excellent reliabilities. The present study showed that chronic rupture of the tendon adversely increases the fat fraction of the respective muscle and indicates that the residual capacity of the rotator cuff muscles might be overestimated in patients with severe fatty infiltration. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.