WorldWideScience

Sample records for volume flow production

  1. Product formulas for volumes of flow polytopes

    CERN Document Server

    Meszaros, Karola

    2011-01-01

    Intrigued by the product formula prod_{i=1}^{n-2} C_i for the volume of the Chan-Robbins-Yuen polytope CRY_n, where C_i is the ith Catalan number, we construct a family of polytopes P_{m,n}, whose volumes are given by the product \\prod_{i=m+1}^{m+n-2}\\frac{1}{2i+1}{{m+n+i} \\choose {2i}}. The Chan-Robbins-Yuen polytope CRY_n coincides with P_{0,n-1}. Our construction of the polytopes P_{m,n} is an application of a systematic method we develop for expressing volumes of a class of flow polytopes as the number of certain triangular arrays. This method can also be used as a heuristic technique for constructing polytopes with combinatorial volumes. As an illustration of this we construct polytopes whose volumes equal the number of r-ary trees on n internal nodes, \\frac{1}{(r-1)n+1} {{rn} \\choose n}. Using triangular arrays we also express the volumes of flow polytopes as constant terms of formal Laurent series.

  2. Unsteady flow volumes

    Energy Technology Data Exchange (ETDEWEB)

    Becker, B.G.; Lane, D.A.; Max, N.L.

    1995-03-01

    Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

  3. Control Volume Analysis, Entropy Balance and the Entropy Production in Flow Systems

    OpenAIRE

    Niven, Robert K.; Noack, Bernd R.

    2014-01-01

    This chapter concerns "control volume analysis", the standard engineering tool for the analysis of flow systems, and its application to entropy balance calculations. Firstly, the principles of control volume analysis are enunciated and applied to flows of conserved quantities (e.g. mass, momentum, energy) through a control volume, giving integral (Reynolds transport theorem) and differential forms of the conservation equations. Several definitions of steady state are discussed. The concept of...

  4. A MATHEMATICAL MODEL OF OPTIMIZATION OF THE VOLUME OF MATERIAL FLOWS IN GRAIN PROCESSING INTEGRATED PRODUCTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Baranovskaya T. P.

    2014-06-01

    Full Text Available The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of production, processing and sales of wheat (bread with the full technological cycle

  5. Operation and control of flow manufacturing based on constraints management for high-mix/low-volume production

    Institute of Scientific and Technical Information of China (English)

    Zailin GUAN; Yunfang PENG; Li MA; Chaoyong ZHANG; Peigen LI

    2008-01-01

    The existing technology of flow manufacturing, which is mainly appropriate for high volume and repetitive production, is proven difficult to be applied in high-mix/ low-volume environments. To adapt lean production into the latter, a new type of flow manufacturing is proposed based on flow path management technology. This paper first describes the general operation framework of the pro-posed new mode. The main idea is the dynamic formation of adaptable virtual production lines (called flow paths) corresponding to different product families. The applica-tion of different theories of constraints/drum-buffer-rope (TOC/DBR) control policies depends on the differences in scope of variety and scale of demand for these product families. The overall architecture of the proposed mech-anism of constraint management-based operation and con-trol is introduced. For the implementation, a mathematical programming method is suggested for the dynamic plan-ning of flow paths, and a TOC/DBR 'path-specific' mech-anism with group scheduling is used for the control over each flow path. We also study other critical issues including the identification and management of resource bottlenecks, and the setting of the buffer size in the deployment of the TOC/DBR mechanism.

  6. 40 CFR 791.48 - Production volume.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Production volume. 791.48 Section 791... (CONTINUED) DATA REIMBURSEMENT Basis for Proposed Order § 791.48 Production volume. (a) Production volume.... (b) For the purpose of determining fair reimbursement shares, production volume shall include amounts...

  7. Vector Volume Flow in Arteriovenous Fistulas

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Heerwagen, Søren; Pedersen, Mads Møller;

    2013-01-01

    , but is very challenging due to the angle dependency of the Doppler technique and the anatomy of the fistula. The angle independent vector ultrasound technique Transverse Oscillation provides a new and more intuitive way to measure volume flow in an arteriovenous fistula. In this paper the Transverse...

  8. Material flow of production process

    OpenAIRE

    Hanzelová Marcela

    2001-01-01

    This paper deals with material flow of the production process. We present the block diagram of material flow and capacities of engine in various plants each other. In this paper is used IPO (Input Process Output) diagram. IPO diagram described process with aspect to input and output. Production program regards string of precision, branch and paralel processes with aspect IPO diagram.Process is not important with aspect to events. We are looking on the process as a black box. For process is ...

  9. Material flow of production process

    Directory of Open Access Journals (Sweden)

    Hanzelová Marcela

    2001-12-01

    Full Text Available This paper deals with material flow of the production process. We present the block diagram of material flow and capacities of engine in various plants each other. In this paper is used IPO (Input – Process – Output diagram. IPO diagram described process with aspect to input and output. Production program regards string of precision, branch and paralel processes with aspect IPO diagram.Process is not important with aspect to events. We are looking on the process as a „black box“. For process is used different materials and raw materials. The foudation for material analysis is detailed model of production process with defined flow material, energy, waste etc.Material flow is organised move of mass (material, money, informations, people etc.. Material analysis is made against destination of material flow (i.e. from ending to beginning. Material analysis is performed on the detection demand of individual materials, stocks, forms, etc.For elementary materials and raw materials in which is based production program and which to create better part of production costs is mainly necessary to dedicate the remark. The fluency of material flow concentrates on the respect of the capacitive parameters for individual node from aspect to standardized qualitative parameters and allowed limits.

  10. Volume Flow in Arteriovenous Fistulas Using Vector Velocity Ultrasound

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Olesen, Jacob Bjerring; Pihl, Michael Johannes

    2014-01-01

    Volume flow in arteriovenous fistulas for hemodialysis was measured using the angle-independent ultrasound technique Vector Flow Imaging and compared with flow measurements using the ultrasound dilution technique during dialysis. Using an UltraView 800 ultrasound scanner (BK Medical, Herlev......, Denmark) with a linear transducer, 20 arteriovenous fistulas were scanned directly on the most superficial part of the fistula just before dialysis. Vector Flow Imaging volume flow was estimated with two different approaches, using the maximum and the average flow velocities detected in the fistula. Flow...

  11. Volume Flow in Arteriovenous Fistulas Using Vector Velocity Ultrasound

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Olesen, Jacob Bjerring; Pihl, Michael Johannes;

    2014-01-01

    Volume flow in arteriovenous fistulas for hemodialysis was measured using the angle-independent ultrasound technique Vector Flow Imaging and compared with flow measurements using the ultrasound dilution technique during dialysis. Using an UltraView 800 ultrasound scanner (BK Medical, Herlev......, Denmark) with a linear transducer, 20 arteriovenous fistulas were scanned directly on the most superficial part of the fistula just before dialysis. Vector Flow Imaging volume flow was estimated with two different approaches, using the maximum and the average flow velocities detected in the fistula. Flow...

  12. High Production Volume Information System (HPVIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The High Production Volume Information System (HPVIS) provides access to select health and environmental effect information on chemicals that are manufactured in...

  13. Production mask composition checking flow

    Science.gov (United States)

    Ma, Shou-Yuan; Yang, Chuen-Huei; Tsai, Joe; Wang, Alice; Lin, Roger; Lee, Rachel; Deng, Erwin; Lin, Ling-Chieh; Liao, Hung-Yueh; Tsai, Jenny; Bowhill, Amanda; Vu, Hien; Russell, Gordon

    2016-05-01

    The mask composition checking flow is an evolution of the traditional mask rule check (MRC). In order to differentiate the flow from MRC, we call it Mask Data Correctness Check (MDCC). The mask house does MRC only to identify process limitations including writing, etching, metrology, etc. There still exist many potential errors that could occur when the frame, main circuit and dummies all together form a whole reticle. The MDCC flow combines the design rule check (DRC) and MRC concepts to adapt to the complex patterns in today's wafer production technologies. Although photomask data has unique characteristics, the MRC tool in Calibre® MDP can easily achieve mask composition by using the Extended MEBES job deck (EJB) format. In EJB format, we can customize the combination of any input layers in an IC design layout format, such as OASIS. Calibre MDP provides section-based processing for many standard verification rule format (SVRF) commands that support DRC-like checks on mask data. Integrating DRC-like checking with EJB for layer composition, we actually perform reticle-level DRC, which is the essence of MDCC. The flow also provides an early review environment before the photomask pattern files are available. Furthermore, to incorporate the MDCC in our production flow, runtime is one of the most important indexes we consider. When the MDCC is included in the tape-out flow, the runtime impact is very limited. Calibre, with its multi-threaded processes and good scalability, is the key to achieving acceptable runtime. In this paper, we present real case runtime data for 28nm and 14nm technology nodes, and prove the practicability of placing MDCC into mass production.

  14. A liquid-independent volume flow measurement principle

    NARCIS (Netherlands)

    Geers, L.F.G.; Volker, A.W.F.; Hunter, T.P.M.

    2010-01-01

    A novel flow measurement principle is presented enabling non-intrusive volume flow measurements of liquids in the ml/min range. It is based on an opto-acoustical time-of-flight principle, where the time interval is recorded in which a thermal label travels a known distance through a flow channel. Bi

  15. Measurable inhomogeneities in stock trading volume flow

    Science.gov (United States)

    Cortines, A. A. G.; Riera, R.; Anteneodo, C.

    2008-08-01

    We investigate the statistics of volumes of shares traded in stock markets. We show that the stochastic process of trading volumes can be understood on the basis of a mixed Poisson process at the microscopic time level. The beta distribution of the second kind (also known as q-gamma distribution), that has been proposed to describe empirical volume histograms, naturally results from our analysis. In particular, the shape of the distribution at small volumes is governed by the degree of granularity in the trading process, while the exponent controlling the tail is a measure of the inhomogeneities in market activity. Furthermore, the present case furnishes empirical evidence of how power law probability distributions can arise as a consequence of a fluctuating intrinsic parameter.

  16. FINITE VOLUME METHOD OF MODELLING TRANSIENT GROUNDWATER FLOW

    Directory of Open Access Journals (Sweden)

    N. Muyinda

    2014-01-01

    Full Text Available In the field of computational fluid dynamics, the finite volume method is dominant over other numerical techniques like the finite difference and finite element methods because the underlying physical quantities are conserved at the discrete level. In the present study, the finite volume method is used to solve an isotropic transient groundwater flow model to obtain hydraulic heads and flow through an aquifer. The objective is to discuss the theory of finite volume method and its applications in groundwater flow modelling. To achieve this, an orthogonal grid with quadrilateral control volumes has been used to simulate the model using mixed boundary conditions from Bwaise III, a Kampala Surburb. Results show that flow occurs from regions of high hydraulic head to regions of low hydraulic head until a steady head value is achieved.

  17. High volume production of nanostructured materials

    Science.gov (United States)

    Ripley, Edward B.; Morrell, Jonathan S.; Seals, Roland D.; Ludtka, Gerard M.

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  18. Applications of texture mapping to volume and flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Becker, B.

    1995-05-01

    The authors describe six visualization methods which take advantage of hardware polygon scan conversion, texture mapping, and compositing, to give interactive viewing of 3D scalar fields, and motion for 3D flows. For volume rendering, these are splatting of an optimized 3D reconstruction filter, and tetrahedral cell projection using a texture map to provide the exponential per pixel necessary for accurate opacity calculation. For flows, these are the above tetrahedral projection method for rendering the ``flow volume`` dyed after passing through a dye releasing polygon, ``splatting`` of cycled anisotropic textures to provide flow direction and motion visualization, splatting motion blurred particles to indicate flow velocity, and advecting a texture directly to show the flow motion. All these techniques are tailored to take advantage of existing graphics pipelines to produce interactive visualization tools.

  19. Applications of texture mapping to volume and flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Becker, B.

    1995-05-01

    The authors describe six visualization methods which take advantage of hardware polygon scan conversion, texture mapping, and compositing, to give interactive viewing of 3D scalar fields, and motion for 3D flows. For volume rendering, these are splatting of an optimized 3D reconstruction filter, and tetrahedral cell projection using a texture map to provide the exponential per pixel necessary for accurate opacity calculation. For flows, these are the above tetrahedral projection method for rendering the ``flow volume`` dyed after passing through a dye releasing polygon, ``splatting`` of cycled anisotropic textures to provide flow direction and motion visualization, splatting motion blurred particles to indicate flow velocity, and advecting a texture directly to show the flow motion. All these techniques are tailored to take advantage of existing graphics pipelines to produce interactive visualization tools.

  20. Axially symmetric volume constrained anisotropic mean curvature flow

    CERN Document Server

    Palmer, Bennett

    2011-01-01

    We study the long time existence theory for a non local flow associated to a free boundary problem for a trapped non liquid drop. The drop has free boundary components on two horizontal plates and its free energy is anisotropic and axially symmetric. For axially symmetric initial surfaces with sufficiently large volume, we show that the flow exists for all time. Numerical simulations of the curvature flow are presented.

  1. Humans, animals, robots: handling volumic data flows

    Science.gov (United States)

    Petrov, Valery

    1999-08-01

    Human visual system is properly suited for reliable and adequate volumetric perception of natural environment. Volumetric data flows coming from the outer physical space are easily acquired, transferred and processed by eye-brain system in real time. This relates also to the animals which use different complicate mechanisms of optical volumetric data acquisition and can navigate safely at high speeds. On the contrary machine vision systems utilizing currently the stereoscopic effect in attempt to achieve volumetric data presentation are very slow, bulky and in a way inelegantly devised. The stereoscopy itself seems can hardly organize the adequate, real time volumetric robot vision.

  2. A volume-balance model for flow on porous media

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2015-11-01

    Volume-balance models are used by petroleum engineers for simulating multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Numerical tests for phase separation under gravity are presented for multiphase three dimensional flow in heterogeneous porous media. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER grant number 42536 (DGAJ-SPI-34-170412-217).

  3. Transcutaneous measurement of volume blood flow

    Science.gov (United States)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  4. Maximal expiratory flow volume curve in quarry workers.

    Science.gov (United States)

    Subhashini, Arcot Sadagopa; Satchidhanandam, Natesa

    2002-01-01

    Maximal Expiratory Flow Volume (MEFV) curves were recorded with a computerized Spirometer (Med Spiror). Forced Vital Capacity (FVC), Forced Expiratory Volumes (FEV), mean and maximal flow rates were obtained in 25 quarry workers who were free from respiratory disorders and 20 healthy control subjects. All the functional values are lower in quarry workers than in the control subject, the largest reduction in quarry workers with a work duration of over 15 years, especially for FEF75. The effects are probably due to smoking rather than dust exposure.

  5. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction......, and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...

  6. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  7. 7 CFR 1280.612 - Volume of production.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Volume of production. 1280.612 Section 1280.612... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.612 Volume of production. (a) For producers and seedstock producers, the term volume of production means the total number of live domestic...

  8. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...

  9. Microfluidic flow switching design using volume of fluid model.

    Science.gov (United States)

    Chein, Reiyu; Tsai, S H

    2004-03-01

    In this study, a volume of fluid (VOF) model was employed for microfluidic switch design. The VOF model validity in predicting the interface between fluid streams with different viscosities co-flowing in a microchannel was first verified by experimental observation. It was then extended to microfluidic flow switch design. Two specific flow switches, one with a guided fluid to one of five desired outlet ports, and another with a guided fluid flows into one, two, or three outlet ports equally distributed along the outlet channel of a Y-shaped channel. The flow switching was achieved by controlling the flow rate ratios between tested and buffer fluids. The numerical results showed that the VOF model could successfully predict the flow switching phenomena in these flow switches. The numerical results also showed that the flow rate ratio required for flow switching depends on the viscosity ratio between the tested and buffer fluids. The numerical simulation was verified by experimental study and the agreement was good.

  10. Internet traffic load balancing using dynamic hashing with flow volume

    Science.gov (United States)

    Jo, Ju-Yeon; Kim, Yoohwan; Chao, H. Jonathan; Merat, Francis L.

    2002-07-01

    Sending IP packets over multiple parallel links is in extensive use in today's Internet and its use is growing due to its scalability, reliability and cost-effectiveness. To maximize the efficiency of parallel links, load balancing is necessary among the links, but it may cause the problem of packet reordering. Since packet reordering impairs TCP performance, it is important to reduce the amount of reordering. Hashing offers a simple solution to keep the packet order by sending a flow over a unique link, but static hashing does not guarantee an even distribution of the traffic amount among the links, which could lead to packet loss under heavy load. Dynamic hashing offers some degree of load balancing but suffers from load fluctuations and excessive packet reordering. To overcome these shortcomings, we have enhanced the dynamic hashing algorithm to utilize the flow volume information in order to reassign only the appropriate flows. This new method, called dynamic hashing with flow volume (DHFV), eliminates unnecessary flow reassignments of small flows and achieves load balancing very quickly without load fluctuation by accurately predicting the amount of transferred load between the links. In this paper we provide the general framework of DHFV and address the challenges in implementing DHFV. We then introduce two algorithms of DHFV with different flow selection strategies and show their performances through simulation.

  11. DETERMINATION OF THE AGR-1 CAPSULE TO FPMS SPECTROMETER TRANSPORT VOLUMES FROM LEADOUT FLOW TEST DATA

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Hartwell; J. B. Walter; D. M. Scates; M. W. Drigert

    2007-05-01

    The AGR-1 experiment is a fueled multiple-capsule irradiation experiment being conducted in the Advanced Test Reactor (ATR) in support of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. A flow experiment conducted during the AGR-1 irradiation provided data that included the effect of flow rate changes on the decay of a short-lived radionuclide (23Ne). This data has been analyzed to determine the capsule-specific downstream transport volume through which the capsule effluents must pass before arrival at the fission product monitoring system spectrometers. These resultant transport volumes when coupled with capsule outlet flow rates determine the transport times from capsule-to-detector. In this work an analysis protocol is developed and applied in order to determine capsule-specific transport volumes to precisions of better than +/- 7%.

  12. Cost of heliostats in low volume production

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, K.; Williams, T. A.; Dilbeck, R. A.; Allison, G. S.

    1980-01-01

    This study indicates that in small volumes, heliostats can be produced at an installed cost of approximately 200 $/M/sup 2/ for a 49.053 m/sup 2/ heliostat. Initial one-time costs of $10 to $15 million would be required, although part of the one-time costs are recoverable. This study provides estimated costs of heliostats that are produced in a plant operating on a continuous basis for a period of four years at a production rate of 2,500 heliostats per year. This scenario was selected somewhat arbitrarily as a scenario that could lead to heliostat market of 5,000 to 10,000 units per year.

  13. Ciliary Blood Flow and Aqueous Humor Production

    Science.gov (United States)

    Kiel, J.W.; Hollingsworth, M.; Rao, R.; Chen, M.; Reitsamer, H.A.

    2010-01-01

    Aqueous humor production is a metabolically active process sustained by the delivery of oxygen and nutrients and removal of metabolic waste by the ciliary circulation. This article describes our investigations into the relationship between ciliary blood flow and aqueous humor production. The results presented indicate that there is a dynamic relationship between ciliary blood flow and aqueous humor production, with production being blood flow independent above a critical level of perfusion, and blood flow dependent below it. The results also show that the plateau portion of the relationship shifts up or down depending on the level of secretory stimulation or inhibition, and that oxygen is one critical factor provided by ciliary blood flow. Also presented is a theoretical model of ocular hydrodynamics incorporating these new findings. PMID:20801226

  14. Lagrangian Transport Through Surfaces in Volume-Preserving Flows

    CERN Document Server

    Karrasch, Daniel

    2015-01-01

    Advective transport of scalar quantities through surfaces is of fundamental importance in many scientific applications. From the Eulerian perspective of the surface it can be quantified by the well-known integral of the flux density. The recent development of highly accurate semi-Lagrangian methods for solving scalar conservation laws and of Lagrangian approaches to coherent structures in turbulent (geophysical) fluid flows necessitate a new approach to transport from the (Lagrangian) material perspective. We present a Lagrangian framework for calculating transport of conserved quantities through a given surface in $n$-dimensional, fully aperiodic, volume-preserving flows. Our approach does not involve any dynamical assumptions on the surface or its boundary.

  15. Motion by Volume Preserving Mean Curvature Flow Near Cylinders

    CERN Document Server

    Hartley, David

    2012-01-01

    Center manifold analysis can be used in order to investigate the stability of the stationary solutions of various PDEs. This can be done by considering the PDE as an ODE between certain Banach spaces and linearising about the stationary solution. Here we investigate the volume preserving mean curvature flow using such a technique. We will consider surfaces with boundary contained within two parallel planes such that the surface meets these planes orthogonally. With this set up the stationary solution is a cylinder. We will find that for initial surfaces that are sufficiently close to a cylinder the flow will exist for all time and converge to a cylinder exponentially. In particular, we show that there exists global solutions to the flow that converge to a cylinder, which are initially non-axially symmetric. A similar case where the initial surfaces are compact without boundary has previously been investigated by Escher and Simonett (1998).

  16. Reduction of Volume-preserving Flows on an n-dimensional Manifold

    Institute of Scientific and Technical Information of China (English)

    Yong-ai Zheng; De-bin Huang; Zeng-rong Liu

    2003-01-01

    A geometric reduction procedure for volume-preserving flows with a volume-preserving symmetry on an n-dimensional manifold is obtained. Instead of the coordinate-dependent theory and the concrete coordinate transformation, we show that a volume-preserving flow with a one-parameter volume-preserving symmetry on an n-dimensional manifold can be reduced to a volume-preserving flow on the corresponding (n - 1)-dimensional quotient space. More generally, if it admits an r-parameter volume-preserving commutable symmetry, then the reduced flow preserves the corresponding (n - r)-dimensional volume form.

  17. Thermodynamic Volume Product in Spherically Symmetric and Axisymmetric Spacetime

    CERN Document Server

    Pradhan, Parthapratim

    2016-01-01

    In this Letter, we compute particularly thermodynamic \\emph{volume product, volume sum, volume minus and volume division} for wide variety of spherically symmetric spacetime and axisymmetric spacetime in the frame work of \\emph{extended phase space}. We consider Einstein gravity as well as other than Einstein gravity i.e. \\emph{Ho\\v{r}ava Lifshitz} gravity. We speculate that for spherically symmetric black holes the volume product is mass-independent both in Einstein gravity as well as Ho\\v{r}ava Lifshitz gravity while the other combination is mass-dependent. For axisymmetric black hole spacetime in Einstein gravity all the combination is \\emph{mass-dependent}. There has been no chance to generate any combination of volume product is mass-independent. Interestingly, \\emph{only rotating BTZ black hole} in 3D provides the volume product formula is mass-independent i.e. \\emph{universal} and hence it is quantized.

  18. Dynamics of assembly production flow

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distr...

  19. The Yang-Mills gradient flow in finite volume

    CERN Document Server

    Fodor, Zoltan; Kuti, Julius; Nogradi, Daniel; Wong, Chik Him

    2012-01-01

    The Yang-Mills gradient flow is considered on the four dimensional torus T^4 for SU(N) gauge theory coupled to N_f flavors of massless fermions in arbitrary representations. The small volume dynamics is dominated by the constant gauge fields. The expectation value of the field strength tensor squared is calculated for positive flow time t by treating the non-zero gauge modes perturbatively and the zero modes exactly. The finite volume correction to the infinite volume result is found to contain both algebraic and exponential terms. The leading order result is then used to define a one parameter family of running coupling schemes in which the coupling runs with the linear size of the box. The new scheme is tested numerically in SU(3) gauge theory coupled to N_f = 4 flavors of massless fundamental fermions. The calculations are performed at several lattice spacings with a controlled continuum extrapolation. The continuum result agrees with the perturbative 2-loop prediction for small renormalized coupling as ex...

  20. Dynamics of assembly production flow

    Science.gov (United States)

    Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2015-06-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.

  1. MANAGING HIGH-END, HIGH-VOLUME INNOVATIVE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Gembong Baskoro

    2008-01-01

    Full Text Available This paper discuses the concept of managing high-end, high-volume innovative products. High-end, high-volume consumer products are products that have considerable influence to the way of life. Characteristic of High-end, high-volume consumer products are (1 short cycle time, (2 quick obsolete time, and (3 rapid price erosion. Beside the disadvantages that they are high risk for manufacturers, if manufacturers are able to understand precisely the consumer needs then they have the potential benefit or success to be the market leader. High innovation implies to high utilization of the user, therefore these products can influence indirectly to the way of people life. The objective of managing them is to achieve sustainability of the products development and innovation. This paper observes the behavior of these products in companies operated in high-end, high-volume consumer product.

  2. Application of vector finite volume method for electromagnetic flow simulation

    Energy Technology Data Exchange (ETDEWEB)

    Takata, T.; Murashige, R.; Matsumoto, T.; Yamaguchi, A. [Osaka Univ., Suita, Osaka (Japan)

    2011-07-01

    A vector finite volume method (VFVM) has been developed for an electromagnetic flow analysis. In the VFVM, the governing equations of magnetic flux density and electric field intensity are solved separately so as to reduce the computational cost caused by an iterative procedure that is required to satisfy the solenoidal condition. In the present paper, a suppression of temperature fluctuation of liquid sodium after a T-junction has also been investigated with a simplified two dimensional numerical analysis by adding an obstacle (turbulence promoter) or a magnetic field after the junction. (author)

  3. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  4. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  5. Environmental Assessment of Products, Volume 1

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Hauschild, Michael Zwicky; Alting, Leo

    A detailed introduction to the EDIP (Environmental Design of Industrial Products, Danish acronym: UMIP) methodology on life cycle assessment (LCA) including toolbox, introduction to the use of LCA in product development and five comprehensive case studies on electromechanical products.......A detailed introduction to the EDIP (Environmental Design of Industrial Products, Danish acronym: UMIP) methodology on life cycle assessment (LCA) including toolbox, introduction to the use of LCA in product development and five comprehensive case studies on electromechanical products....

  6. Predicting the probability and volume of postwildfire debris flows in the intermountain western United States

    Science.gov (United States)

    Cannon, S.H.; Gartner, J.E.; Rupert, M.G.; Michael, J.A.; Rea, A.H.; Parrett, C.

    2010-01-01

    Empirical models to estimate the probability of occurrence and volume of postwildfire debris flows can be quickly implemented in a geographic information system (GIS) to generate debris-flow hazard maps either before or immediately following wildfires. Models that can be used to calculate the probability of debris-flow production from individual drainage basins in response to a given storm were developed using logistic regression analyses of a database from 388 basins located in 15 burned areas located throughout the U.S. Intermountain West. The models describe debris-flow probability as a function of readily obtained measures of areal burned extent, soil properties, basin morphology, and rainfall from short-duration and low-recurrence-interval convective rainstorms. A model for estimating the volume of material that may issue from a basin mouth in response to a given storm was developed using multiple linear regression analysis of a database from 56 basins burned by eight fires. This model describes debris-flow volume as a function of the basin gradient, aerial burned extent, and storm rainfall. Applications of a probability model and the volume model for hazard assessments are illustrated using information from the 2003 Hot Creek fire in central Idaho. The predictive strength of the approach in this setting is evaluated using information on the response of this fire to a localized thunderstorm in August 2003. The mapping approach presented here identifies those basins that are most prone to the largest debris-flow events and thus provides information necessary to prioritize areas for postfire erosion mitigation, warnings, and prefire management efforts throughout the Intermountain West.

  7. Volume Displacement Effects in Bubble-laden Flows

    Science.gov (United States)

    Cihonski, Andrew; Finn, Justin; Apte, Sourabh

    2012-11-01

    When a few bubbles are entrained in a traveling vortex ring, it has been shown that even at extremely low volume loadings, their presence can significantly affect the structure of the vortex core (Sridhar & Katz 1999). A typical Euler-Lagrange point-particle model with two-way coupling for this dilute system, wherein the bubbles are assumed subgrid and momentum point-sources are used to model their effect on the flow, is shown to be unable to accurately capture the experimental trends of bubble settling location and vortex distortion for a range of bubble parameters and vortex strengths. The bubbles experience a significant amount of drag, lift, added mass, pressure, and gravity forces. However, these forces are in balance of each other, as the bubbles reach a mean settling location away from the vortex core. Accounting for fluid volume displacement due to bubble motion, using a model termed as volumetric coupling, experimental trends on vortex distortion and bubble settling location are well captured. The fluid displacement effects are studied by introducing a notion of a volumetric coupling force, the net force on the fluid due to volumetric coupling, which is found to be dominant even at the low volume loadings investigated here.

  8. Finite-volume WENO scheme for viscous compressible multicomponent flows

    Science.gov (United States)

    Coralic, Vedran; Colonius, Tim

    2014-01-01

    We develop a shock- and interface-capturing numerical method that is suitable for the simulation of multicomponent flows governed by the compressible Navier-Stokes equations. The numerical method is high-order accurate in smooth regions of the flow, discretely conserves the mass of each component, as well as the total momentum and energy, and is oscillation-free, i.e. it does not introduce spurious oscillations at the locations of shockwaves and/or material interfaces. The method is of Godunov-type and utilizes a fifth-order, finite-volume, weighted essentially non-oscillatory (WENO) scheme for the spatial reconstruction and a Harten-Lax-van Leer contact (HLLC) approximate Riemann solver to upwind the fluxes. A third-order total variation diminishing (TVD) Runge-Kutta (RK) algorithm is employed to march the solution in time. The derivation is generalized to three dimensions and nonuniform Cartesian grids. A two-point, fourth-order, Gaussian quadrature rule is utilized to build the spatial averages of the reconstructed variables inside the cells, as well as at cell boundaries. The algorithm is therefore fourth-order accurate in space and third-order accurate in time in smooth regions of the flow. We corroborate the properties of our numerical method by considering several challenging one-, two- and three-dimensional test cases, the most complex of which is the asymmetric collapse of an air bubble submerged in a cylindrical water cavity that is embedded in 10% gelatin. PMID:25110358

  9. Flow chemistry syntheses of natural products.

    Science.gov (United States)

    Pastre, Julio C; Browne, Duncan L; Ley, Steven V

    2013-12-07

    The development and application of continuous flow chemistry methods for synthesis is a rapidly growing area of research. In particular, natural products provide demanding challenges to this developing technology. This review highlights successes in the area with an emphasis on new opportunities and technological advances.

  10. Normal reference values for vertebral artery flow volume by color Doppler sonography in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyun Sook; Cha, Jang Gyu; Park, Seong Jin; Joh, Joon Hee; Park, Jai Soung; Kim, Dae Ho; Lee, Hae Kyung; Ahn, Hyun Cheol [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2003-09-15

    Vertebrobasilar ischemia has been attributed to a reduction of net vertebral artery flow volume. This study was to establish the reference values for the flow volume of the vertebral artery using color Doppler sonography in the normal Korea adults. Thirty five normal Korea adults without any underlying disease including hypertension, hyperlipidemia, diabetes, heart disease, obesity (body mas index>30), or carotid artery stenosis was included. There were 17 males and 18 females, age ranged from 20 to 53 years (average=32.86 years). Flow velocities and vessel diameters were recorded in the intertransverse (V2) segment, usually at C5-6 level, bilaterally. The flow volume (Q) was calculated. (Q=time averaged mean velocity x cross sectional area of vessel) A lower Flow velocity and smaller vessel diameter were measured on the right side compared to those of the left side, resulting in a lower flow volume. The calculated flow volumes using the equation were 77.0 +- 39.7 ml/min for the right side and 127.6 +- 71.0 ml/min for the left side (p=0.0001) while the net vertebral artery flow volume was 204.6 +- 81.8 ml/min. Decrease in the vertebral artery flow volume was statistically significant with advanced age. (r=-0.36, p=0.032). Vertebral artery blood flow volume was 191.20 +- 59.19 ml/min in male, and 217.28 +- 98.67 ml/min in female (p=0.6). The normal range for the net vertebral artery flow volume defined by the 5th to 95th percentiles was between 110.06 and 364.1 ml/min. The normal range for the net vertebral artery flow volume was between 110.06 and 364.1 ml/min. Vertebral artery flow volume decreased with the increase of age. However, gender did not affect the blood flow volume.

  11. Power flow in normal human voice production

    Science.gov (United States)

    Krane, Michael

    2016-11-01

    The principal mechanisms of energy utilization in voicing are quantified using a simplified model, in order to better define voice efficiency. A control volume analysis of energy utilization in phonation is presented to identify the energy transfer mechanisms in terms of their function. Conversion of subglottal airstream potential energy into useful work done (vocal fold vibration, flow work, sound radiation), and into heat (sound radiation absorbed by the lungs, glottal jet dissipation) are described. An approximate numerical model is used to compute the contributions of each of these mechanisms, as a function of subglottal pressure, for normal phonation. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  12. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang

    2017-01-01

    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  13. Finite volume methods for submarine debris flows and generated waves

    Science.gov (United States)

    Kim, Jihwan; Løvholt, Finn; Issler, Dieter

    2016-04-01

    Submarine landslides can impose great danger to the underwater structures and generate destructive tsunamis. Submarine debris flows often behave like visco-plastic materials, and the Herschel-Bulkley rheological model is known to be appropriate for describing the motion. In this work, we develop numerical schemes for the visco-plastic debris flows using finite volume methods in Eulerian coordinates with two horizontal dimensions. We provide parameter sensitivity analysis and demonstrate how common ad-hoc assumptions such as including a minimum shear layer depth influence the modeling of the landslide dynamics. Hydrodynamic resistance forces, hydroplaning, and remolding are all crucial terms for underwater landslides, and are hence added into the numerical formulation. The landslide deformation is coupled to the water column and simulated in the Clawpack framework. For the propagation of the tsunamis, the shallow water equations and the Boussinesq-type equations are employed to observe how important the wave dispersion is. Finally, two cases in central Norway, i.e. the subaerial quick clay landslide at Byneset in 2012, and the submerged tsunamigenic Statland landslide in 2014, are both presented for validation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  14. Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

  15. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo

    2016-01-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo...... than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p = 0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients....... This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel...

  16. High Volume Manufacturing and Field Stability of MEMS Products

    Science.gov (United States)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  17. Explicit volume-preserving and symplectic integrators for trigonometric polynomial flows

    CERN Document Server

    Quispel, G R W

    2003-01-01

    We introduce explicit volume-preserving and symplectic integrators for the case of generalized trigonometric polynomial flows. The method is demonstrated using the Arter flow, and computational trials are conducted using a 4-dimensional vector field.

  18. Combined effects of grain size, flow volume and channel width on geophysical flow mobility: three-dimensional discrete element modeling of dry and dense flows of angular rock fragments

    Science.gov (United States)

    Cagnoli, Bruno; Piersanti, Antonio

    2017-02-01

    We have carried out new three-dimensional numerical simulations by using a discrete element method (DEM) to study the mobility of dry granular flows of angular rock fragments. These simulations are relevant for geophysical flows such as rock avalanches and pyroclastic flows. The model is validated by previous laboratory experiments. We confirm that (1) the finer the grain size, the larger the mobility of the center of mass of granular flows; (2) the smaller the flow volume, the larger the mobility of the center of mass of granular flows and (3) the wider the channel, the larger the mobility of the center of mass of granular flows. The grain size effect is due to the fact that finer grain size flows dissipate intrinsically less energy. This volume effect is the opposite of that experienced by the flow fronts. The original contribution of this paper consists of providing a comparison of the mobility of granular flows in six channels with a different cross section each. This results in a new scaling parameter χ that has the product of grain size and the cubic root of flow volume as the numerator and the product of channel width and flow length as the denominator. The linear correlation between the reciprocal of mobility and parameter χ is statistically highly significant. Parameter χ confirms that the mobility of the center of mass of granular flows is an increasing function of the ratio of the number of fragments per unit of flow mass to the total number of fragments in the flow. These are two characteristic numbers of particles whose effect on mobility is scale invariant.

  19. Can flow-volume loops be used to diagnose exercise induced laryngeal obstructions?

    DEFF Research Database (Denmark)

    Christensen, Pernille M; Maltbæk, Niels; Jørgensen, Inger M

    2013-01-01

    BACKGROUND: Pre- and post-exercise flow-volume loops are often recommended as an easy non-invasive method for diagnosing or excluding exercise-induced laryngeal obstructions in patients with exercise-related respiratory symptoms. However, at present there is no evidence for this recommendation....... AIMS: To compare physician evaluated pre- and post-exercise flow-volume loops and flow data with laryngoscopic findings during exercise. METHODS: Data from 100 consecutive exercise tests with continuous laryngoscopy during the test were analysed. Laryngoscopic images were compared...... with the corresponding pre- and post-exercise flow-volume loops assessed by four separate physicians and with data from the loops (forced inspiratory flow (FIF) at 25% vs. FIF at 75% of forced inspiratory vital capacity (FIVC), forced expiratory flow at 50% of forced expiratory volume vs. FIF at 50% of FIVC, and FIVC vs...

  20. Accuracy and Sources of Error for an Angle Independent Volume Flow Estimator

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Hansen, Peter Møller

    2014-01-01

    This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estima tor’s accuracy is performed theoretically and investigated in vivo . Womersley’s model for pulsatile flow is used to simulate velo city profiles and calculate volume flow errors in c...... % underestimated volume flow according to the simulation. Volume flow estimates were corrected for the beam being off- axis, but was not able to significantly decrease the error rel ative to measurements with the reference method.......This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estima tor’s accuracy is performed theoretically and investigated in vivo . Womersley’s model for pulsatile flow is used to simulate velo city profiles and calculate volume flow errors....... A BK Medical UltraView 800 ultrasound scanner with a 9 MHz linear array transducer is used to obtain Vector Flow Imaging sequences of a superficial part of the fistulas. Cross-sectional diameters of each fistu la are measured on B-mode images by rotating the scan plane 90 degrees. The major axis...

  1. High-Volume Production of Lightweight Multijunction Solar Cells

    Science.gov (United States)

    Youtsey, Christopher

    2015-01-01

    MicroLink Devices, Inc., has transitioned its 6-inch epitaxial lift-off (ELO) solar cell fabrication process into a manufacturing platform capable of sustaining large-volume production. This Phase II project improves the ELO process by reducing cycle time and increasing the yield of large-area devices. In addition, all critical device fabrication processes have transitioned to 6-inch production tool sets designed for volume production. An emphasis on automated cassette-to-cassette and batch processes minimizes operator dependence and cell performance variability. MicroLink Devices established a pilot production line capable of at least 1,500 6-inch wafers per month at greater than 80 percent yield. The company also increased the yield and manufacturability of the 6-inch reclaim process, which is crucial to reducing the cost of the cells.

  2. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas.

    Science.gov (United States)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-08-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice.

  3. Cost-Efficient Low-Volume Production Through Additive Manufacturing

    OpenAIRE

    Solberg, Steffen

    2016-01-01

    Additive manufacturing, commonly known as 3D Printing, is a production method of rising popularity. The method works by adding layers of material, in contrast to subtracting, which is the dominating method today. The objective of this thesis has been to evaluate the cost-efficiency of producing relatively complex parts through additive manufacturing, compared to subtractive methods with production volumes less than 20 units. Initial findings narrow the additive methods down ...

  4. Cost-Efficient Low-Volume Production Through Additive Manufacturing

    OpenAIRE

    Solberg, Steffen

    2016-01-01

    Additive manufacturing, commonly known as 3D Printing, is a production method of rising popularity. The method works by adding layers of material, in contrast to subtracting, which is the dominating method today. The objective of this thesis has been to evaluate the cost-efficiency of producing relatively complex parts through additive manufacturing, compared to subtractive methods with production volumes less than 20 units. Initial findings narrow the additive methods down ...

  5. System Development of Estimated Figures of Volume Production Plan

    Science.gov (United States)

    Brazhnikov, Maksim A.; Khorina, Irina V.; Minina, Yulia I.; Kolyasnikova, Lyudmila V.; Streltsov, Aleksey V.

    2016-01-01

    The relevance of this problem is primarily determined by a necessity of improving production efficiency in conditions of innovative development of the economy and implementation of Import Substitution Program. The purpose of the article is development of set of criteria and procedures for the comparative assessment of alternative volume production…

  6. The SEA of the Future: Prioritizing Productivity. Volume 2

    Science.gov (United States)

    Gross, Betheny, Ed.; Jochim, Ashley, Ed.

    2013-01-01

    "The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This volume, the second in the…

  7. A Robust volume conservative divergence-free ISPH framework for free-surface flow problems

    Science.gov (United States)

    Pahar, Gourabananda; Dhar, Anirban

    2016-10-01

    This study presents a Volume Conservative approach for resolving volume conservation issue in divergence-free incompressible Smoothed Particle Hydrodynamics (ISPH). Irregular free surface deformation may introduce error in volume computation, which has a cascading effect over time. Proposed correction decreases this numerical compressibility to a minimal value. The correction is obtained directly by solving Navier-Stokes momentum equation. Consequently, the framework does not require any parametric study for mixed source/sink term or iterative solution of pressure Poisson equations. The correction is implemented on four different types of flow: (a) pressurized flow in a closed box, (b) dambreak flow, (c) flow through porous block, (d) lock-exchange flow of immiscible fluids (both free-surface and pressurized flow). All four scenarios are shown to have minimal error compared to pure divergence-free ISPH.

  8. The control of volume flow heating gases oh coke plant

    Directory of Open Access Journals (Sweden)

    Kostúr Karol

    2003-12-01

    Full Text Available The contribution deals with mixture and coke gases volume quantity determination for coke battery in term of their optimal redistribution at single blocks in consideration of accurate observance of corresponding technological temperature.

  9. Lung function in North American Indian children: reference standards for spirometry, maximal expiratory flow volume curves, and peak expiratory flow.

    Science.gov (United States)

    Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S

    1982-02-01

    Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.

  10. A calculation procedure for viscous flow in turbomachines, volume 2

    Science.gov (United States)

    Khalil, J.; Tabakoff, W.

    1980-01-01

    Turbulent flow within turbomachines having arbitrary blade geometries is examined. Effects of turbulence are modeled using two equations, one expressing the development of the turbulence kinetic energy and the other its dissipation rate. To account for complicated blade geometries, the flow equations are formulated in terms of a nonorthogonal boundary fitted coordinate system. The analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between the different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

  11. Miniaturized, High Flow, Low Dead Volume Preconcentrator for Trace Contaminants in Water under Microgravity Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. has demonstrated feasibility in Phase I and now proposes a Phase II effort to develop a miniaturized high flow, low dead-volume...

  12. Seals/Secondary Fluid Flows Workshop 1997; Volume I

    Science.gov (United States)

    Hendricks, Robert C. (Editor)

    2006-01-01

    The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery

  13. Two-Dimensional Turbulent Separated Flow. Volume 1

    Science.gov (United States)

    1985-06-01

    of detached turbulent boundary layers, even when the sign of U is changed to account for mean backflows. Thus, earlier researchers, such as Kuhn and...Turbulent Shear Layer," Third Symposium on Turbulent Shear Flows, pp. 16.23-16.29. Hillier, R., Latour , M.E.M.P., and Cherry, N.J. (1983), "Unsteady...344. Kuhn , G.D. and Nielsen, J.N. (1971), "An Analytical Method for Calculating Turbulent Separated Flows Due to Adverse Pressure Gradients

  14. A calculation procedure for viscous flow in turbomachines, volume 1

    Science.gov (United States)

    Khalil, I.; Tabakoff, W.

    1979-01-01

    A method for analyzing the nonadiabatic viscous flow through turbomachine rotors is presented. The field analysis is based upon the numerical integration of the full incompressible stream function vorticity form of the Navier-Stokes equations, together with the energy equation, over the rotor blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. A numerical scheme is used to carry out the necessary integration of the elliptic governing equations. The flow characteristics within the rotor of a radial inflow turbine are investigated over a wide range of operating conditions. The calculated results are compared to existing experimental data. The flow in a radial compressor is analyzed in order to study the behavior of viscous flow in diffusing cascades. The results are compared qualitatively to known experimental trends. The solution obtained provides insight into the flow phenomena in this type of turbomachine. It is concluded that the method of analysis is quite general and gives a good representation of the actual flow behavior within turbomachine passages.

  15. Production decline analysis for a multi-fractured horizontal well considering elliptical reservoir stimulated volumes in shale gas reservoirs

    Science.gov (United States)

    Wei, Mingqiang; Duan, Yonggang; Fang, Quantang; Zhang, Tiantian

    2016-06-01

    Multi-fractured horizontal wells (MFHWs) are an effective technique for developing shale gas reservoirs. After fracturing, stimulated reservoir volumes (SRVs) invariably exist around the wellbore. In this paper, a composite elliptical SRV model for each hydraulic fracturing stage is established, based on micro-seismic events. Both the SRV and the outer regions are assumed as single-porosity media with different formation physical parameters. Based on unstructured perpendicular bisection (PEBI) grids, a mathematical model considering Darcy flow, diffusion and adsorption/desorption in shale gas reservoirs is presented. The numerical solution is obtained by combining the control volume finite element method with the fully implicit method. The model is verified by a simplified model solution. The MFHW Blasingame production decline curves, which consider elliptical SRVs in shale gas reservoirs, are plotted by computer programming. The flow regions can be divided into five flow regimes: early formation linear flow, radial flow in the SRV region, transient flow, pseudo radial flow and boundary dominated flow. Finally, the effect of six related parameters, including the SRV area size, outer region permeability, SRV region permeability, Langmuir pressure, Langmuir volume and diffusion coefficient, are analyzed on type curves. The model presented in this paper can expand our understanding of MFHW production decline behaviors in shale gas reservoirs and can be applied to estimate reservoir properties, the SRV area, and reserves in these types of reservoirs by type curve matching.

  16. Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model

    CERN Document Server

    Hazan, Aurélien

    2016-01-01

    We show that a steady-state stock-flow consistent macroeconomic model can be represented as a Constraint Satisfaction Problem (CSP). The set of solutions is a polytope, which volume depends on the constraints applied and reveals the potential fragility of the economic circuit, with no need to specify the dynamics. Several methods to compute the volume are compared, inspired by operations research methods and the analysis of metabolic networks, both exact and approximate. We also introduce a random transaction matrix, and study the particular case of linear flows with respect to money stocks.

  17. Quantitative evaluation of myocardial function by a volume-normalized map generated from relative blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Fukami, Tadanori [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Sato, Hidenori [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Wu, Jin [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Lwin, Thet-Thet- [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Yuasa, Tetsuya [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kawano, Satoru [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Iida, Keiji [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Akatsuka, Takao [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Hontani, Hidekata [Department of Computer Science and Engineering, Nagoya Institute of Technology, Aichi 466-8555 (Japan); Takeda, Tohoru [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Tamura, Masao [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Yokota, Hiroshi [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan)

    2007-07-21

    Our study aimed to quantitatively evaluate blood flow in the left ventricle (LV) of apical hypertrophic cardiomyopathy (APH) by combining wall thickness obtained from cardiac magnetic resonance imaging (MRI) and myocardial perfusion from single-photon emission computed tomography (SPECT). In this study, we considered paired MRI and myocardial perfusion SPECT from ten patients with APH and ten normals. Myocardial walls were detected using a level set method, and blood flow per unit myocardial volume was calculated using 3D surface-based registration between the MRI and SPECT images. We defined relative blood flow based on the maximum in the whole myocardial region. Accuracies of wall detection and registration were around 2.50 mm and 2.95 mm, respectively. We finally created a bull's-eye map to evaluate wall thickness, blood flow (cardiac perfusion) and blood flow per unit myocardial volume. In patients with APH, their wall thicknesses were over 10 mm. Decreased blood flow per unit myocardial volume was detected in the cardiac apex by calculation using wall thickness from MRI and blood flow from SPECT. The relative unit blood flow of the APH group was 1/7 times that of the normals in the apex. This normalization by myocardial volume distinguishes cases of APH whose SPECT images resemble the distributions of normal cases.

  18. Surveillance for hemodialysis access stenosis: usefulness of ultrasound vector volume flow

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Jensen, Jonas; Hansen, Kristoffer L.

    2016-01-01

    Purpose: To investigate if ultrasound vector-flow imaging (VFI) is equal to the reference method ultrasound dilution technique (UDT) in estimating volume flow and changes over time in arteriovenous fistulas (AVFs) for hemodialysis. Materials and methods: From January 2014 to January 2015, patients......, and regression analysis. Repeated measurements and precision analysis were used for reproducibility determination. Results: Precision measurements for UDT and VFI were 32% and 20%, respectively (p = 0.33). Average volume flow measured with UDT and VFI were 1161 mL/min (±778 mL/min) and 1213 mL/min (±980 m...

  19. Volumetric flow rate comparisons for water and product on pasteurization systems.

    Science.gov (United States)

    Schlesser, J E; Stroup, W H; McKinstry, J A

    1994-04-01

    A flow calibration tube system was assembled to determine the volumetric flow rates for water and various dairy products through a holding tube, using three different flow promotion methods. With the homogenizer, the volumetric flow rates of water and reconstituted skim milk were within 1.5% of each other. With the positive displacement pump, the flow rate for reconstituted skim milk increased compared with that for water as the pressure increased or temperature decreased. The largest increase in flow rate was at 310-kPa gauge and 20 degrees C. On a magnetic flow meter system, the volumetric flow rates of water and reconstituted skim milk were within .5% of the flow rate measured from the volume collected in a calibrated tank. The flow rate of whole milk was similar to that of skim milk on the three flow promoters evaluated. Ice milk mix increased the flow rate of the positive displacement pump, but not the homogenizer and magnetic flow meter system.

  20. Hierarchicality of trade flow networks reveals complexity of products.

    Science.gov (United States)

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  1. Hierarchicality of trade flow networks reveals complexity of products.

    Directory of Open Access Journals (Sweden)

    Peiteng Shi

    Full Text Available With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  2. Giant Volume Change of Active Gels under Continuous Flow

    Science.gov (United States)

    2014-04-21

    communication17 of BZ droplets and chemical self-organiza- tion,18 the properties and potential of self-oscillating gels in a microfluidic system have yet to be...active gels driven by the Belousov−Zhabotinsky reaction. These results demon- strate that microfluidics offers a useful and facile experimental...soft materials and microfluidic systems. ■ INTRODUCTION This paper reports the use of a continuous reactant flow in a microfluidic system to achieve

  3. Comparison of vertebral artery velocity and flow volume measurements for diagnosis of vertebrobasilar insufficiency using color duplex sonography

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Murat [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey)]. E-mail: drmacar@hotmail.com; Degirmenci, Bumin [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey); Yucel, Aylin [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey); Albayrak, Ramazan [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey); Haktanir, Alpay [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey); Yaman, Mehmet [Department of Neurology, Faculty of Medicine, Afyon Kocatepe University, 03200 Afyon (Turkey)

    2005-05-01

    Introduction: The aim of this study was to compare the measurements of vertebral artery (VA) systolic flow velocity and flow volume for diagnosis of vertebrobasilar insufficiency (VBI). Material and methods: We examined 96 patients who were referred for evaluation of VBI. Net vertebral artery flow volume and mean systolic flow velocity were determined by using color duplex sonography. We had grouped the patients into three according to VA flow volume: group 1 was consisted of patients with severely damped VA flow volume (lower than 120 mL/min), group 2 was consisted of patients with moderately damped VA flow volume (120-200 mL/min), group 3 was consisted of patients with normal VA flow volume (>200 mL/min). The mean systolic flow velocities in each group were compared by one-way ANOVA. Results: Mean VA systolic flow velocities of groups 1, 2 and 3 were 32 {+-} 12, 42 {+-} 10 and 46 {+-} 8 cm/s, respectively. Mean VA systolic flow velocity in group 1 was significantly lower than that of group 2 (P = 0.001). However, there were no significant differences between VA systolic flow velocities in groups 2 and 3 (P = 0.2). Conclusions: According to our findings, measurement of volume in addition to velocity is more valuable in detection of moderately damped VA flow volumes in diagnosis of VBI.

  4. A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.

  5. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon [Hallym University College of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  6. Flow Visualization Techniques for CDF using Volume Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Crawfis, R.A.; Shen, H-W.; Max, N.

    2000-07-10

    As simulations have migrated towards three-dimensions, new tools for examining the resulting complex datasets have been required. Much progress has been achieved in the area of scientific visualization towards this goal. However, most of the research has focused on the representation and understanding of a single scalar field. Some nice results have been achieved for vector or flow fields. This paper reviews several of these techniques, organizes them by their approach and complexity and presents some observations on their benefits and limitations. Several example images are used to highlight the character of these techniques.

  7. Variability in venom volume, flow rate and duration in defensive stings of five scorpion species.

    Science.gov (United States)

    van der Meijden, Arie; Coelho, Pedro; Rasko, Mykola

    2015-06-15

    Scorpions have been shown to control their venom usage in defensive encounters, depending on the perceived threat. Potentially, the venom amount that is injected could be controlled by reducing the flow speed, the flow duration, or both. We here investigated these variables by allowing scorpions to sting into an oil-filled chamber, and recording the accreting venom droplets with high-speed video. The size of the spherical droplets on the video can then be used to calculate their volume. We recorded defensive stings of 20 specimens representing 5 species. Significant differences in the flow rate and total expelled volume were found between species. These differences are likely due to differences in overall size between the species. Large variation in both venom flow speed and duration are described between stinging events of single individuals. Both venom flow rate and flow duration correlate highly with the total expelled volume, indicating that scorpions may control both variables in order to achieve a desired end volume of venom during a sting.

  8. Continuous protein production in nanoporous, picolitre volume containers.

    Science.gov (United States)

    Siuti, Piro; Retterer, Scott T; Doktycz, Mitchel J

    2011-10-21

    The synthetic manufacture of functional proteins enables a bottom-up understanding of the workings of biological systems and opens new opportunities for the treatment of disease. Cell-free protein synthesis is a practical approach for enabling such manufacturing, however, it is typically carried out in fairly large volumes, when compared to a natural cell, leading to increases in cost and loss of efficiency. Here we demonstrate continuous cell free protein synthesis in arrays of cellular scale containers that continuously exchange energy and materials with their environment. A multiscale fabrication process allows the monolithic integration of nanoporous silicon containers within an addressable microfluidic network. Synthesis of enhanced green fluorescent protein (eGFP) in the containers continues beyond 24 h and yields more than twice the amount of protein, on a per volume basis, than conventional scale batch reactions. By mimicking the physical volume and controlled flux of a natural cell, the resulting "cell mimic" devices can enable fundamental studies of biological systems as well as serve applications related to the functional screening of proteins and the on-demand production of biologics.

  9. Acute extracellular fluid volume changes increase ileocolonic resistance to saline flow in anesthetized dogs

    Directory of Open Access Journals (Sweden)

    Santiago Jr. A.T.

    1997-01-01

    Full Text Available We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon, perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight and controlled hemorrhage (up to a 50% drop in mean arterial pressure. Mean ileocolonic flow (N = 6 was gradually and significantly decreased during the expansion (17.1%, P<0.05 and expanded (44.9%, P<0.05 periods while mean ileal flow (N = 7 was significantly decreased only during the expanded period (38%, P<0.05. Mean colonic flow (N = 7 was decreased during expansion (12%, P<0.05 but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6 was not significantly modified. Mean ileocolonic flow (N = 10 was also decreased after hemorrhage (retracted period by 17% (P<0.05, but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively. The expansion effect was blocked by atropine (0.5 mg/kg, iv both on the ileocolonic (N = 6 and ileal (N = 5 circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

  10. The calculation method of mixing volume in a products pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jing; Wang, Qim [China University of Petroleum, Beijing, (China); Wang, Weidongn [Sinopec South China Sales Company, (China); Guo, Yi [CNPC Oil and Gas pipeline control center, (China)

    2010-07-01

    This paper investigated calculation methods of mixing volume on a pipeline. A method of simulation was developed by combining the Austin-Palfrey empirical formula and field data. The field data were introduced to improve the accuracy of the Austin-Palfrey formula by including other factors such as the terrain, the structure of the pipeline, the characteristics of mixed oil products in pumping stations and the distribution of products along the pipeline. These other factors were collected from field data and analyzed statistically to deduce coefficients. The comparison with field results showed that the formula developed for contamination provided accurate values. The formula achieved more accurate results using the characteristics of the field pipeline. This formula could be used for field application.

  11. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 3: Product data

    Science.gov (United States)

    1978-01-01

    The feasibility of commercial manufacturing of pharmaceuticals in space is analyzed and the study results are presented. The chronology of the study process is discussed. The separation of serum proteins by the continuous flow electrophoresis process is investigated. The production requirements of twelve candidate products including antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin, and interferon are evaluated.

  12. Underground Test Area Subproject Phase I Data Analysis Task. Volume VI - Groundwater Flow Model Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-11-01

    Volume VI of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the groundwater flow model data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  13. Profiling river surface velocities and volume flow estimation with bistatic UHF RiverSonde radar

    Science.gov (United States)

    Barrick, D.; Teague, C.; Lilleboe, P.; Cheng, R.; Gartner, J.; ,

    2003-01-01

    From the velocity profiles across the river, estimates of total volume flow for the four methods were calculated based on a knowledge of the bottom depth vs position across the river. It was found that the flow comparisons for the American River were much closer, within 2% of each other among all of the methods. Sources of positional biases and anomalies in the RiverSonde measurement patterns along the river were identified and discussed.

  14. Control volume based modelling in one space dimension of oscillating, compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    We present an approach for modelling unsteady, primarily one-dimensional, compressible flow. The conservation laws for mass, energy, and momentum are applied to a staggered mesh of control volumes and loss mechanisms are included directly as extra terms. Heat transfer, flow friction......, and multidimensional effects are calculated using empirical correlations. Transformations of the conservation equations into new variables, artificial dissipation for dissipating acoustic phenomena, and an asymmetric interpolation method for minimising numerical diffusion and non physical temperature oscillations...

  15. Design of flow chamber with electronic cell volume capability and light detection optics for multilaser flow cytometry.

    Science.gov (United States)

    Schuette, W H; Shackney, S E; Plowman, F A; Tipton, H W; Smith, C A; MacCollum, M A

    1984-11-01

    A multibeam optical detection system has been developed with a high optical efficiency, achieved through a reduction in the number of optical interfaces employed in the system. This reduction is made possible by a combination of employing simple lenses, gluing the objective lens directly upon the face of the flow cuvette and the extraction of only one fluorescence signal from each laser beam. A modified flow chamber is also described that includes fluidic resistance elements for the elimination of most of the electric shielding normally associated with electronic cell volume measurements.

  16. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  17. End-of-life flows of multiple cycle consumer products.

    Science.gov (United States)

    Tsiliyannis, C A

    2011-11-01

    Explicit expressions for the end-of-life flows (EOL) of single and multiple cycle products (MCPs) are presented, including deterministic and stochastic EOL exit. The expressions are given in terms of the physical parameters (maximum lifetime, T, annual cycling frequency, f, number of cycles, N, and early discard or usage loss). EOL flows are also obtained for hi-tech products, which are rapidly renewed and thus may not attain steady state (e.g., electronic products, passenger cars). A ten-step recursive procedure for obtaining the dynamic EOL flow evolution is proposed. Applications of the EOL expressions and the ten-step procedure are given for electric household appliances, industrial machinery, tyres, vehicles and buildings, both for deterministic and stochastic EOL exit, (normal, Weibull and uniform exit distributions). The effect of the physical parameters and the stochastic characteristics on the EOL flow is investigated in the examples: it is shown that the EOL flow profile is determined primarily by the early discard dynamics; it also depends strongly on longevity and cycling frequency: higher lifetime or early discard/loss imply lower dynamic and steady state EOL flows. The stochastic exit shapes the overall EOL dynamic profile: Under symmetric EOL exit distribution, as the variance of the distribution increases (uniform to normal to deterministic) the initial EOL flow rise becomes steeper but the steady state or maximum EOL flow level is lower. The steepest EOL flow profile, featuring the highest steady state or maximum level, as well, corresponds to skew, earlier shifted EOL exit (e.g., Weibull). Since the EOL flow of returned products consists the sink of the reuse/remanufacturing cycle (sink to recycle) the results may be used in closed loop product lifecycle management operations for scheduling and sizing reverse manufacturing and for planning recycle logistics. Decoupling and quantification of both the full age EOL and of the early discard flows is

  18. Performance of the finite volume method in solving regularised Bingham flows: inertia effects in the lid-driven cavity flow

    CERN Document Server

    Syrakos, Alexandros; Alexandrou, Andreas N

    2016-01-01

    We extend our recent work on the creeping flow of a Bingham fluid in a lid-driven cavity, to the study of inertial effects, using a finite volume method and the Papanastasiou regularisation of the Bingham constitutive model [J. Rheology 31 (1987) 385-404]. The finite volume method used belongs to a very popular class of methods for solving Newtonian flow problems, which use the SIMPLE algorithm to solve the discretised set of equations, and have matured over the years. By regularising the Bingham constitutive equation it is easy to extend such a solver to Bingham flows since all that this requires is to modify the viscosity function. This is a tempting approach, since it requires minimum programming effort and makes available all the existing features of the mature finite volume solver. On the other hand, regularisation introduces a parameter which controls the error in addition to the grid spacing, and makes it difficult to locate the yield surfaces. Furthermore, the equations become stiffer and more difficu...

  19. Reverse flow catalytic membrane reactors for energy efficient syngas production

    NARCIS (Netherlands)

    Smit, Joris

    2006-01-01

    To improve the recuperative heat exchange, a Reverse Flow Catalytic Membrane Reactor (RFCMR) with porous membranes is proposed in this thesis, in which very efficient heat exchange between the feed and product streams is achieved by using the reverse flow concept (i.e. periodic alternation of the

  20. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    2012-01-01

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  1. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    2012-01-01

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  2. Fabric inlet stratifiers for solar tanks with different volume flow rates

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    in the centre of a glass tank (400 x 400 x 900 mm). The forced volume flow rate is in the range of 6 – 10 l/min, and water enters the stratification pipe from the bottom of the tank. The thermal behaviour of the stratification pipes is investigated for different realistic operation conditions...

  3. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  4. Chronic upper airway obstruction: value of the flow volume loop examination in assessment and management.

    Science.gov (United States)

    Brookes, G B; Fairfax, A J

    1982-06-01

    Chronic obstructive lesions of the upper airways such as post-traumatic strictures, bilateral vocal cord paralysis and chronic inflammatory foci are uncommon. The functional assessment of the severity and character of an obstruction is important both for diagnosis and management, and may also allow evaluation of the efficacy of medical and surgical treatment. There are limitations of simple spirometric pulmonary function tests, which are evident when assessing upper airways obstruction. The flow volume loop is a graphic recording of airflow during maximal respiration and expiration at different lung volumes, and may be affected in a characteristic way by alterations in the airway resistance. Three unusual cases of chronic upper airway obstruction are presented which illustrate the value of the flow volume loop examination in their management.

  5. An advective volume-balance model for flow in porous media

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2016-11-01

    Volume-balance models are used by petroleum engineers to simulate multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Preliminary numerical tests of phase separation due to gravity suggest the model reproduces qualitatively the physical phenomena. Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  6. Multiphase flow through porous media: an adaptive control volume finite element formulation

    Science.gov (United States)

    Mostaghimi, P.; Tollit, B.; Gorman, G.; Neethling, S.; Pain, C.

    2012-12-01

    Accurate modeling of multiphase flow in porous media is of great importance in a wide range of applications in science and engineering. We have developed a numerical scheme which employs an implicit pressure explicit saturation (IMPES) algorithm for the temporal discretization of the governing equations. The saturation equation is spatially discretized using a node centered control volume method on an unstructured finite element mesh. The face values are determined through an upwind scheme. The pressure equation is spatially discretized using a continuous control volume finite element method (CV-FEM) to achieve consistency with the discrete saturation equation. The numerical simulation is implemented in Fluidity, an open source and general purpose fluid simulator capable of solving a number of different governing equations for fluid flow and accompanying field equations on arbitrary unstructured meshes. The model is verified against the Buckley-Leverett problem where a quasi-analytical solution is available. We discuss the accuracy and the order of convergence of the scheme. We demonstrate the scheme for modeling multiphase flow in a synthetic heterogeneous porous medium along with the use of anisotropic mesh adaptivity to control local solution errors and increase computational efficiency. The adaptive method is also used to simulate two-phase flow in heap leaching, an industrial mining process, where the flow of the leaching solution is gravitationally dominated. Finally we describe the extension of the developed numerical scheme for simulation of flow in multiscale fractured porous media and its capability to model the multiscale characterization of flow in full scale.

  7. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    Science.gov (United States)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  8. A Mixed Finite Volume Element Method for Flow Calculations in Porous Media

    Science.gov (United States)

    Jones, Jim E.

    1996-01-01

    A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.

  9. Vital capacities in acute and chronic airway obstruction: dependence on flow and volume histories.

    Science.gov (United States)

    Brusasco, V; Pellegrino, R; Rodarte, J R

    1997-06-01

    The aim of this study was to investigate whether measurements of vital capacity (VC) are affected by the direction of the manoeuvre (inspiratory vs expiratory) and by the rate of expiratory flow. The study was performed on 25 individuals with chronic airway obstruction (CAO) and a forced expiratory volume in one second (FEV1) (expressed in standardized residuals (SR)) of -2.0+/-1.4 SD (CAO group), and 10 asthmatic subjects with methacholine (MCh)-induced bronchoconstriction (FEV1 -23+/-1.02 SR) (MCh group). VCs were measured during fast inspiration following both slow (FIVCse) and forced (FIVCfe) expiration from end-tidal inspiration to residual volume (RV), and during slow (EVC) or forced (FVC) expiration from total lung capacity (TLC). In the CAO group, FVC was the smallest volume (3.75+/-1.03 L) and significantly different from the other three estimates of VC; FIVCse (4.03+/-0.91 L) was the largest volume and significantly different from FVC and FIVCfe (3.83+/-0.98 L). In the MCh group, FVC (4.16+/-0.94 L) and EVC (4.19+/-0.89 L) were the largest volumes, although only the difference between FVC and FIVCfe (3.76+/-0.81 L) reached statistical significance. These data suggest that both flow and volume histories contribute to decreased vital capacities during bronchoconstriction. However, whereas increasing expiratory flow always tends to decrease vital capacity, the volume history of full inflation has different effects in chronic and acute bronchoconstriction, probably due to different effects on airway calibre. These results stress the importance of using standardized manoeuvres in order to obtain comparable values of vital capacity.

  10. Circular resource flows from algae production

    DEFF Research Database (Denmark)

    Seghetta, Michele; Manninen, Kaisa; Spilling, Kristian

    Algal biomass has been identifi ed as a promising substrate for energy production. Several lab scale experiments have been performed on diff erent species of both macroalgae and microalgae. The high content of carbohydrates makes both macroalgae and microalgae appealing feedstock for bioethanol...

  11. Unsteady Unidirectional Flow of Voigt Fluid through the Parallel Microgap Plates with Wall Slip and Given Inlet Volume Flow Rate Variations

    OpenAIRE

    Yinwei Lin; Chen, C. K.

    2015-01-01

    In order to solve the velocity profile and pressure gradient of the unsteady unidirectional slip flow of Voigt fluid, Laplace transform method is adopted in this research. Between the parallel microgap plates, the flow motion is induced by a prescribed arbitrary inlet volume flow rate which varies with time. The velocity slip condition on the wall and the flow conditions are known. In this paper, two basic flow situations are solved, which are a suddenly started and a constant acc...

  12. Muscular adaptations after two different volumes of blood flow-restricted training.

    Science.gov (United States)

    Martín-Hernández, J; Marín, P J; Menéndez, H; Ferrero, C; Loenneke, J P; Herrero, A J

    2013-03-01

    This study aimed to gain an insight into the adaptations of muscle strength and skeletal muscle thickness after two different volumes of blood flow restriction training (BFRT), and compare them with high-intensity training. The sample was divided into four groups: low-volume, low-intensity BFRT (BFRT LV); high-volume, low-intensity BFRT (BFRT HV); traditional high-intensity resistance training (HIT); and a control group, which maintained their routine activities (CON). Leg extension one repetition maximum (1RM), isokinetic peak knee extension, and flexion torques at 60°/s and 180°/s as well as muscle thickness of the rectus femoris (RF) and vastus lateralis (VL) were assessed at baseline and after 5 weeks of training BFRT LV (7.03%, P muscular size or strength. Although similar increases in muscle thickness were observed between training groups, HIT increased 1RM performance to a greater extent compared to either volume of BFRT.

  13. Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows

    Science.gov (United States)

    Schneider, T.; Botta, N.; Geratz, K. J.; Klein, R.

    1999-11-01

    When attempting to compute unsteady, variable density flows at very small or zero Mach number using a standard finite volume compressible flow solver one faces at least the following difficulties: (i) Spatial pressure variations vanish as the Mach number M→0, but they do affect the velocity field at leading order; (ii) the resulting spatial homogeneity of the leading order pressure implies an elliptic divergence constraint for the energy flux; (iii) violations of this constraint crucially affect the transport of mass, preventing a code to properly advect even a constant density distribution. We overcome these difficulties through a new algorithm for constructing numerical fluxes in the context of multi-dimensional finite volume methods in conservation form. The construction of numerical fluxes involves: (1) An explicit upwind step yielding predictions for the nonlinear convective flux components. (2) A first correction step that introduces pressure gradients which guarantee compliance of the convective fluxes with a divergence constraint. This step requires the solution of a first Poisson-type equation. (3) A second projection step which provides the yet unknown (non-convective) pressure contribution to the total flux of momentum. This second projection requires the solution of another Poisson-type equation and yields the cell centered velocity field at the new time. This velocity field exactly satisfies a divergence constraint consistent with the asymptotic limit. Step (1) can be done by any standard finite volume compressible flow solver. The input to steps (2) and (3) involves solely the fluxes from step (1) and is independent of how these were obtained. Thus, our approach allows any such solver to be extended to compute variable density incompressible flows.

  14. On a volume flexible production policy in a family production context

    Directory of Open Access Journals (Sweden)

    Sana Sankar Shib

    2006-01-01

    Full Text Available A mathematical model for a volume flexible manufacturing system is developed in a family production context, assuming that there exists a dedicated production facility as well as a separate management unit for each of the items. The possibility of machine breakdowns resulting in idle times of the respective management units is taken into account. The production rates are treated as decision variables. It is also assumed that there is a limitation on the capital available for total production. An optimal production policy is derived with maximization of profit as the criterion of optimality. The results are illustrated with a numerical example. Sensitivity of the optimal solution to changes in the values of some key parameters is also studied.

  15. Liver volume, portal vein flow, and clearance of indocyanine green and antipyrine in hyperthyroidism before and after antithyroid treatment

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Sonne, J; Court-Payen, M

    1999-01-01

    The aim of the study was to examine liver volume, portal vein flow, and indocyanine green (ICG) and antipyrine clearance in hyperthyroidism before and after antithyroid drug treatment.......The aim of the study was to examine liver volume, portal vein flow, and indocyanine green (ICG) and antipyrine clearance in hyperthyroidism before and after antithyroid drug treatment....

  16. Liver volume, portal vein flow, and clearance of indocyanine green and antipyrine in hyperthyroidism before and after antithyroid treatment

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Sonne, J; Court-Payen, M

    1999-01-01

    The aim of the study was to examine liver volume, portal vein flow, and indocyanine green (ICG) and antipyrine clearance in hyperthyroidism before and after antithyroid drug treatment.......The aim of the study was to examine liver volume, portal vein flow, and indocyanine green (ICG) and antipyrine clearance in hyperthyroidism before and after antithyroid drug treatment....

  17. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    Science.gov (United States)

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-06-24

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  18. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  19. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    Science.gov (United States)

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-02-20

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults.

  20. NPR hazards review: (Phase 1, Production only appendixes). Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.R.; Trumble, R.E.

    1962-08-15

    The NPR Hazards Review is being issued in a series of volumes. Volume 1, which has already been published, was of the nature of an expanded summary. It included the results of hazards analyses with some explanatory material to put the results in context. Volume 2 presents results of reviews made after the preparation of Volume 1. It also contains supporting material and details not included in Volume 1. Volumes 1 and 2 together provide a nearly complete ``Design Hazards Review of the NPR.`` However, certain remaining problems still exist and are to be the subject of a continuing R&D program. These problems and programs are discussed in Appendix H. Neither Volume 1 nor Volume 2 treat operational aspects of reactor hazards in detail. This area of concern will be the primary subject of a third volume of the NPR Hazards Review. This third volume, to be prepared and issued at a later date, may also contain information supplementing Volumes 1 and 2.

  1. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D' Ippolito, Giuseppe [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem]. E-mail: ar.leao@uol.com.br; Colleoni, Ramiro [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Gastroenterologia

    2008-09-15

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  2. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  3. Finite volume numerical solution to a blood flow problem in human artery

    Science.gov (United States)

    Wijayanti Budiawan, Inge; Mungkasi, Sudi

    2017-01-01

    In this paper, we solve a one dimensional blood flow model in human artery. This model is of a non-linear hyperbolic partial differential equation system which can generate either continuous or discontinuous solution. We use the Lax–Friedrichs finite volume method to solve this model. Particularly, we investigate how a pulse propagates in human artery. For this simulation, we give a single sine wave with a small time period as an impluse input on the left boundary. The finite volume method is successful in simulating how the pulse propagates in the artery. It detects the positions of the pulse for the whole time period.

  4. Assessment of the adequacy of bronchial stenting by flow-volume loops

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Clare A.; Roebuck, Derek J. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Pigott, Nick; Elliott, Martin J. [Great Ormond Street Hospital for Children, Cardiothoracic Unit, London (United Kingdom); Dunne, Catherine [Great Ormond Street Hospital for Children, Department of Physiotherapy, London (United Kingdom)

    2006-08-15

    Airway compression is a common problem in children with certain forms of congenital heart disease. Although various surgical approaches are available to overcome this form of airway obstruction, internal stenting is necessary in a minority of patients. It can be difficult to assess the success of stenting at the time of the procedure, and the interval to successful extubation is usually used as an outcome measure. Measurement of relevant parameters of respiratory physiology with flow-volume and volume-pressure loops permits immediate quantitative assessment of the adequacy of stenting. A 3-month-old infant who underwent bronchial stenting and physiological assessment at the time of the procedure is described. (orig.)

  5. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...

  6. Validation of a continuous penile blood-flow measurement by pulse-volume-plethysmography.

    Science.gov (United States)

    Lavoisier, P; Barbe, R; Gally, M

    2002-04-01

    Today, in the assessment of cavernous artery blood-flow, the most commonly used technique is Doppler ultrasound velocimetry (continuous, pulsed, color-coded or power), which is often considered as the gold standard. Plethysmographic techniques and radioactive tracers have been widely used for the assessment of global penis flow variations but are not adequate for continuous blood-flow measurement. A new pulse-volume plethysmographic (PVP) device using a water-filled penile cuff was employed to assess continuous blood-flow measurement in the penis. Simultaneously Doppler velocity was recorded and served as a gold standard. A penile water-cuff is connected through a pressure tube to a three-way tap. The pulse-volume changes in the penile water-cuff are measured by means of a latex membrane placed over one of the three-way taps. The displacements of the latex are recorded by a photoplethysmograph. The third tap is connected to a 5 l perfusion bag placed 30 cm above the penis so as to maintain constant pressure in the whole device whatever the penis volume. Twenty-four volunteers were tested. The Doppler velocity signal and pulse volume of cavernous arteries were measured simultaneously after PGE1 intra-cavernous injection. Blood-flow variations were induced by increasing penis artery compression with a second penile water-cuff used as a tourniquet fitted onto the penis root, and the pressure of which could be modified by a water-filled syringe. The amplitude of the plethysmographic pulse-volume signal and the area under the Doppler velocity signal were correlated. The inter-patient (n=24) correlation ranged from 0.455 to 0.904, with a mean correlation of 0.704 and P<0.0001. PVP measurement by a water-filled cuff was validated by ultrasound velocimetry. This new continuous, non-invasive and easy-to-use technique enables physiological and physiopathological flow-measurement during sleep, under visual sexual stimulation (VSS), or following artificial erection

  7. Circular resource flows from algae production

    DEFF Research Database (Denmark)

    Seghetta, Michele; Manninen, Kaisa; Spilling, Kristian

    Algal biomass has been identifi ed as a promising substrate for energy production. Several lab scale experiments have been performed on diff erent species of both macroalgae and microalgae. The high content of carbohydrates makes both macroalgae and microalgae appealing feedstock for bioethanol a...... will be compared and presented. Minimum feedstock requirement for a biorefi nery, minimum selling price and infl uence of transport of the raw material, provide useful information for system design....... evaluates diffi culties and constraints in the macroalgae and microalgae growth process though the utilization of the Life Cycle Assessment and an economic evaluation. In particular a case study of Saccharina latissima cultivation site in Limfjorden (Denmark) and a microalgae cultivation site in Finland...

  8. From discovery to production: scale-out of continuous flow meso reactors.

    Science.gov (United States)

    Styring, Peter; Parracho, Ana I R

    2009-06-09

    A continuous flow parallel reactor system has been developed to provide a rapid and seamless transition from the discovery phase and production phase of chemical synthesis, particularly in low volume-high value pharmaceuticals production. Using a single fixed bed catalytic meso reactor, reactions can be screened on a small discovery scale over short time scales. The intensified process produces sufficient material for a full analysis. By replication of the single reactor in parallel, the same chemistry can be achieved on a larger scale, on a small footprint and without the mass and heat transport limitations of reactor scale-out in batch.

  9. From discovery to production: Scale-out of continuous flow meso reactors

    Directory of Open Access Journals (Sweden)

    Peter Styring

    2009-06-01

    Full Text Available A continuous flow parallel reactor system has been developed to provide a rapid and seamless transition from the discovery phase and production phase of chemical synthesis, particularly in low volume-high value pharmaceuticals production. Using a single fixed bed catalytic meso reactor, reactions can be screened on a small discovery scale over short time scales. The intensified process produces sufficient material for a full analysis. By replication of the single reactor in parallel, the same chemistry can be achieved on a larger scale, on a small footprint and without the mass and heat transport limitations of reactor scale-out in batch.

  10. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki [Chiba Univ. (Japan). School of Medicine

    2000-10-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year ({delta}D) were significantly greater than in groups R and B (%TFV: 74.1{+-}0.07 vs 15.2{+-}0.03 vs 11.8{+-}0.04, p<0.01; {delta}D: 3.62{+-}0.82 vs 0 vs 0.58{+-}0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and {delta}D (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  11. Implementation of Logic Flow in Planning and Production Control

    Directory of Open Access Journals (Sweden)

    Ulewicz Robert

    2016-03-01

    Full Text Available The article presents the results of analysis, the use of continuous flow of logic at the stage of production planning and control of the company producing furniture. The concept of continuous flow tends to regulate the flow of materials in a manner that provides the shortest flow path without unnecessary activities (Muda is a Japanese word meaning waste, a constant takt and defined throughput at constant resource requirements for the so-called transfer of material through the whole process. In the study Glenday’d sieve method was used to identify the correct area, which requires the value stream mapping, and areas called excessive complexity, which do not provide added value. The use of Glenday’s sieve method made it possible to identify areas in which it must be improve production capacity.

  12. Four essays in international trade: Trade flows in food products

    OpenAIRE

    Straume, Hans-Martin

    2015-01-01

    This thesis consists of four essays within the field of international trade economics, as well as an introduction chapter. All four papers are empirical studies of trade flows in food products using transaction data. The first chapter introduces the data used in the papers, and provides a brief review of the general literature. During the last decades, the focus in international economics has shifted from studies of trade flows using aggregated data to studies of firm behavior. Historic...

  13. FINITE VOLUME METHOD FOR SIMULATION OF VISCOELASTIC FLOW THROUGH A EXPANSION CHANNEL

    Institute of Scientific and Technical Information of China (English)

    FU Chun-quan; JIANG Hai-mei; YIN Hong-jun; SU Yu-chi; ZENG Ye-ming

    2009-01-01

    A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential Upper-Convected Maxwell (UCM) fluid through an abrupt expansion has been chosen as a prototype example. The conservation and constitutive equations are solved using the Finite Volume Method (FVM) in a staggered grid with an upwind scheme for the viscoelastic stresses and a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a method for handling the source term in the momentum equations is employed. Improved accuracy is achieved by a special discretization of the boundary conditions. Stable solutions are obtained for higher Weissenberg number (We), further extending the range of simulations with the FVM. Numerical results show the viscoelasticity of polymer solutions is the main factor influencing the sweep efficiency.

  14. Crustal Heat Production and Mantle Heat Flow in Southeast China

    Institute of Scientific and Technical Information of China (English)

    胡圣标; 汪集旸

    1994-01-01

    The correlation between seismic velocity (vp) and radiogenic heat production (A) en-ables the distribution of crustal heat production to be evaluated,from which the mantle heat flow for 21seismic velocity-depth profiles located along the two continental geotraverses in Southeast China can bededuced.Several approaches have been proposed to special problems connected with the conversion ofseismic velocities into heat production in orogenic areas.The results show that the crustal heat flow inSoutheast China is quite inhomogeneous,varying between 17.8 and 46 mW·m-2,which can be attribut-ed to the complicated crustal structure related to overthrusting and overlapping in the upper crust.The re-markable regional variation in the mantle heat flow,ranging from 23.2 to 41.6 mW·m-2,correspondsto the large-scale tectonothermal evolution of the orogenic belts.

  15. Active flow control integrated diffuser (afcid) for increased energy efficiency in variable air volume systems

    Science.gov (United States)

    Van Der Schijff, Hermanus P.

    Variable air volume (VAV) air terminals are designed to save energy by reducing airflow into a given space based on occupancy and required load. Systems are typically designed to operate at peak load, however as load is reduced, performance is compromised due to inadequate throw. As a result, fans are installed to adjust for the losses, negating many of the energy savings. Additionally flow is vectored by the use of vanes, a basic passive type of flow control. An experimental investigation was performed to study the application of flow control on that of a HVAC diffuser using synthetic jets distributed evenly along the diffuser edge parallel to the flow field. The study was conducted on a 1:3 scale typical office space (150 ft2), which included a simulated scale HVAC system supplied by compressed air. Two different jet blowing ratios were investigated for system loads of 60% and 90%. The flow field was established using hot wire anemometry and Particle Image Velocimetry (PIV). This study demonstrates the effectiveness of synthetic jet based active flow control at controlling airflow, showing ability to affect throw parameters for changing flow rates within the test chamber. Vectoring of up to 20% and improvement in jet spread of 200% was demonstrated. The use of such devices has the potential to improve air quality and air distribution in building while simultaneously lowering energy demands of HVAC systems.

  16. Determination of micro-litre volumes with high accuracy for flow cytometric blood cell counting

    Science.gov (United States)

    Reitz, S.; Kummrow, A.; Kammel, M.; Neukammer, J.

    2010-07-01

    We have gravimetrically calibrated the volumes dispensed by 1 mL syringes in the range between 1 µL and 100 µL using ultra-pure water. Protocols are based on series of consecutive difference measurements of masses in order to precisely compensate for evaporation, being the most important disturbing quantity. We determined expanded uncertainties of volume measurements for glass syringes of typically 0.2% (expansion factor 2) when dispensing volumes of 10 µL. For polypropylene syringes, selected with respect to the manufacturer, expanded uncertainties of 0.25% (expansion factor 2) were observed. Calibrated syringes were applied for measuring concentrations of blood cells in a flow cytometer demonstrating the capability to determine reference measurement values. Since the direct interaction of blood cells and syringe walls may lead to cell adhesion, glass syringes as well as (disposable) polypropylene syringes were calibrated.

  17. A mathematical model relating cortical oxygenated and deoxygenated hemoglobin flows and volumes to neural activity

    Science.gov (United States)

    Cornelius, Nathan R.; Nishimura, Nozomi; Suh, Minah; Schwartz, Theodore H.; Doerschuk, Peter C.

    2015-08-01

    Objective. To describe a toolkit of components for mathematical models of the relationship between cortical neural activity and space-resolved and time-resolved flows and volumes of oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI). Approach. Both blood flow and blood volume and both oxygenated and deoxygenated hemoglobin and their interconversion are accounted for. Flow and volume are described by including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and deoxygenated hemoglobin and their interconversion are described by generalization of Kirchhoff's laws based on well-mixed compartments. Main results. Mathematical models built from this toolkit are able to reproduce experimental single-stimulus OISI results that are described in papers from other research groups and are able to describe the response to multiple-stimuli experiments as a sublinear superposition of responses to the individual stimuli. Significance. The same assembly of tools from the toolkit but with different parameter values is able to describe effects that are considered distinctive, such as the presence or absence of an initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be due to unique parameter values in a subject rather than different fundamental mechanisms.

  18. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  19. Experimental study of the structure of flow regions with negative turbulent kinetic energy production in confined three-dimensional shear flows with and without buoyancy

    Science.gov (United States)

    Liberzon, A.; Lüthi, B.; Guala, M.; Kinzelbach, W.; Tsinober, A.

    2005-09-01

    Regions of negative turbulent kinetic energy (TKE) production are observed and studied in two different flows, namely in turbulent thermal Rayleigh-Bénard convection in a cubic cell, and in a mechanically agitated shear flow in absence of buoyancy, with a main focus on the small scale structure of the flow. The experimental investigation is performed using three-dimensional (3D) particle tracking velocimetry, which allows for measuring the three velocity components and the full tensor of velocity derivatives in a finite 3D volume. The capability to compute the TKE production term in its complete form P =-⟨uiuj⟩Sij is crucial due to the three dimensionality of the flows. A comparative analysis of four different flow situations is performed in regions with positive and negative TKE production with and without buoyancy effects. In both, convective shear flow and shear flow without buoyancy, negative TKE production is associated with the unusual, more pronounced alignment of the velocity vector u with the first eigenvector λ1S of the mean rate-of-strain tensor, related to the stretching eigenvalue, Λ1S, in contrast to the positive TKE production associated with the alignment with the third eigenvector (i.e., related to the negative, compressing eigenvalue). In the negative TKE production region of convective flow we find (i) increased values for mean strain, (ii) increased values of the first contribution PΛ1 in the eigenframe of the mean rate-of-strain tensor, and decreased values of the vertical contribution to the production term in a fixed frame of reference, (iii) stronger anisotropy of u, (iv) higher levels of fluctuating strain s2 and enstrophy ω2, as well as (v) higher rates of their production, -sijsjkski and ωiωjsij, compared to the respective values in positive TKE production region. In the shear flow without buoyancy, all the mentioned quantities are lower in the negative TKE production region than in the positive TKE production region. From this

  20. Multiphase flow modelling using non orthogonal collocated finite volumes : application to fluid catalytical cracking and large scale geophysical flows.

    Science.gov (United States)

    Martin, R. M.; Nicolas, A. N.

    2003-04-01

    A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so

  1. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.

    Science.gov (United States)

    Hood, Renee R; DeVoe, Don L

    2015-11-18

    Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, making them impractical for large-scale nanoparticle synthesis. High aspect ratio microfluidic vertical flow focusing is investigated here as a new approach to overcoming the throughput limits of established microfluidic nanoparticle synthesis techniques. Here the vertical flow focusing technique is utilized to generate populations of small, unilamellar, and nearly monodisperse liposomal nanoparticles with exceptionally high production rates and remarkable sample homogeneity. By leveraging this platform, liposomes with modal diameters ranging from 80 to 200 nm are prepared at production rates as high as 1.6 mg min(-1) in a simple flow-through process.

  2. Cross-Diffusion Systems with Excluded-Volume Effects and Asymptotic Gradient Flow Structures

    Science.gov (United States)

    Bruna, Maria; Burger, Martin; Ranetbauer, Helene; Wolfram, Marie-Therese

    2017-04-01

    In this paper, we discuss the analysis of a cross-diffusion PDE system for a mixture of hard spheres, which was derived in Bruna and Chapman (J Chem Phys 137:204116-1-204116-16, 2012a) from a stochastic system of interacting Brownian particles using the method of matched asymptotic expansions. The resulting cross-diffusion system is valid in the limit of small volume fraction of particles. While the system has a gradient flow structure in the symmetric case of all particles having the same size and diffusivity, this is not valid in general. We discuss local stability and global existence for the symmetric case using the gradient flow structure and entropy variable techniques. For the general case, we introduce the concept of an asymptotic gradient flow structure and show how it can be used to study the behavior close to equilibrium. Finally, we illustrate the behavior of the model with various numerical simulations.

  3. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo

    2009-06-01

    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  4. Experimental Validation of Volume of Fluid Method for a Sluice Gate Flow

    Directory of Open Access Journals (Sweden)

    A. A. Oner

    2012-01-01

    Full Text Available Laboratory experiments are conducted for 2D turbulent free surface flow which interacts with a vertical sluice gate. The velocity field, on the centerline of the channel flow upstream of the gate is measured using the particle image velocimetry technique. The numerical simulation of the same flow is carried out by solving the governing equations, Reynolds-averaged continuity and Navier-Stokes equations, using finite element method. In the numerical solution of the governing equations, the standard k-ε turbulence closure model is used to define the turbulent viscosity. The measured horizontal velocity distribution at the inflow boundary of the solution domain is taken as the boundary condition. The volume of fluid (VOF method is used to determine the flow profile in the channel. Taking into account of the flow characteristics, the computational domain is divided into five subdomains, each having different mesh densities. Three different meshes with five subdomains are employed for the numerical model. A grid convergence analysis indicates that the discretization error in the predicted velocities on the fine mesh remains within 2%. The computational results are compared with the experimental data, and, the most suitable mesh in predicting the velocity field and the flow profile among the three meshes is selected.

  5. Finite volume simulation of 2-D steady square lid driven cavity flow at high reynolds numbers

    Directory of Open Access Journals (Sweden)

    K. Yapici

    2013-12-01

    Full Text Available In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe numbers. Furthermore, after Re > 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies.

  6. A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows

    Science.gov (United States)

    Brown-Dymkoski, Eric; Kasimov, Nurlybek; Vasilyev, Oleg V.

    2014-04-01

    In order to introduce solid obstacles into flows, several different methods are used, including volume penalization methods which prescribe appropriate boundary conditions by applying local forcing to the constitutive equations. One well known method is Brinkman penalization, which models solid obstacles as porous media. While it has been adapted for compressible, incompressible, viscous and inviscid flows, it is limited in the types of boundary conditions that it imposes, as are most volume penalization methods. Typically, approaches are limited to Dirichlet boundary conditions. In this paper, Brinkman penalization is extended for generalized Neumann and Robin boundary conditions by introducing hyperbolic penalization terms with characteristics pointing inward on solid obstacles. This Characteristic-Based Volume Penalization (CBVP) method is a comprehensive approach to conditions on immersed boundaries, providing for homogeneous and inhomogeneous Dirichlet, Neumann, and Robin boundary conditions on hyperbolic and parabolic equations. This CBVP method can be used to impose boundary conditions for both integrated and non-integrated variables in a systematic manner that parallels the prescription of exact boundary conditions. Furthermore, the method does not depend upon a physical model, as with porous media approach for Brinkman penalization, and is therefore flexible for various physical regimes and general evolutionary equations. Here, the method is applied to scalar diffusion and to direct numerical simulation of compressible, viscous flows. With the Navier-Stokes equations, both homogeneous and inhomogeneous Neumann boundary conditions are demonstrated through external flow around an adiabatic and heated cylinder. Theoretical and numerical examination shows that the error from penalized Neumann and Robin boundary conditions can be rigorously controlled through an a priori penalization parameter η. The error on a transient boundary is found to converge as O

  7. Debris-flow monitoring at the Rebaixader torrent, Central Pyrenees, Spain: results on initiation, volume and dynamic behaviour

    OpenAIRE

    Hurlimann Ziegler, Marcel; Abancó, Clàudia; Moya Sánchez, José

    2014-01-01

    The sophisticated monitoring system installed in the Rebaixader catchment incorporates a total of 6 different stations: four stations recording information on the initiation mechanisms (two meteorological stations and two infiltration stations), and two stations focussing on the debris flow detection and the dynamic behaviour of the flows. Between August 2009 and August 2013, seven debris flows and seventeen debris floods were detected. The volumes of the debris flows ranged from 2,100 to 16,...

  8. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S.

    Science.gov (United States)

    Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.

    2008-01-01

    Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in

  9. A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows

    Science.gov (United States)

    Xie, Bin; Xiao, Feng

    2016-12-01

    We proposed a multi-moment constrained finite volume method which can simulate incompressible flows of high Reynolds number in complex geometries. Following the underlying idea of the volume-average/point-value multi-moment (VPM) method (Xie et al. (2014) [71]), this formulation is developed on arbitrary unstructured hybrid grids by employing the point values (PV) at both cell vertex and barycenter as the prognostic variables. The cell center value is updated via an evolution equation derived from a constraint condition of finite volume form, which ensures the rigorous numerical conservativeness. Novel numerical formulations based on the local PVs over compact stencil are proposed to enhance the accuracy, robustness and efficiency of computations on unstructured meshes of hybrid and arbitrary elements. Numerical experiments demonstrate that the present numerical model has nearly 3-order convergence rate with numerical errors much smaller than the VPM method. The numerical dissipation has been significantly suppressed, which facilitates numerical simulations of high Reynolds number flows in complex geometries.

  10. Patient-specific coronary artery blood flow simulation using myocardial volume partitioning

    Science.gov (United States)

    Kim, Kyung Hwan; Kang, Dongwoo; Kang, Nahyup; Kim, Ji-Yeon; Lee, Hyong-Euk; Kim, James D. K.

    2013-03-01

    Using computational simulation, we can analyze cardiovascular disease in non-invasive and quantitative manners. More specifically, computational modeling and simulation technology has enabled us to analyze functional aspect such as blood flow, as well as anatomical aspect such as stenosis, from medical images without invasive measurements. Note that the simplest ways to perform blood flow simulation is to apply patient-specific coronary anatomy with other average-valued properties; in this case, however, such conditions cannot fully reflect accurate physiological properties of patients. To resolve this limitation, we present a new patient-specific coronary blood flow simulation method by myocardial volume partitioning considering artery/myocardium structural correspondence. We focus on that blood supply is closely related to the mass of each myocardial segment corresponding to the artery. Therefore, we applied this concept for setting-up simulation conditions in the way to consider many patient-specific features as possible from medical image: First, we segmented coronary arteries and myocardium separately from cardiac CT; then the myocardium is partitioned into multiple regions based on coronary vasculature. The myocardial mass and required blood mass for each artery are estimated by converting myocardial volume fraction. Finally, the required blood mass is used as boundary conditions for each artery outlet, with given average aortic blood flow rate and pressure. To show effectiveness of the proposed method, fractional flow reserve (FFR) by simulation using CT image has been compared with invasive FFR measurement of real patient data, and as a result, 77% of accuracy has been obtained.

  11. Miniaturized, High Flow, Low Dead Volume Pre-Concentrator for Trace Contaminants in Water under Microgravity Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high flow, low dead-volume pre-concentrator for monitoring trace levels of contaminants in water under...

  12. Volume preserving mean curvature flow of revolution hypersurfaces between two equidistants

    CERN Document Server

    Cabezas-Rivas, Esther

    2010-01-01

    In a rotationally symmetric space $\\oM$ around an axis A (whose precise definition includes all real space forms), we consider a domain $G$ limited by two equidistant hypersurfaces orthogonal to A. Let $M \\subset \\oM$ be a revolution hypersurface generated by a graph over A, with boundary in $\\partial G$ and orthogonal to it. We study the evolution $M_t$ of $M$ under the volume-preserving mean curvature flow requiring that the boundary of $M_t$ rests on $\\partial G$ and keeps orthogonal to it. We prove that: a) the generating curve of $M_t$ remains a graph; b) the flow exists while $M_t$ does not touch the axis of rotation; c) under a suitable hypothesis relating the enclosed volume and the area of $M$, the flow is defined for every $t\\in [0,\\infty[$ and a sequence of hypersurfaces $M_{t_n}$ converges to a revolution hypersurface of constant mean curvature. Some key points are: i) the results are true even for ambient spaces with positive curvature, ii) the averaged mean curvature does not need to be positive...

  13. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin......-blockade group vs. the control group, hormones, metabolites, VO(2), and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 +/- 0.12, ACE blockade; 1.59 +/- 0.18 l/min, control) decreased during moderate exercise (0.78 +/- 0.07, ACE...

  14. Simulation of viscous flows using a multigrid-control volume finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Hookey, N.A. [Memorial Univ., Newfoundland (Canada)

    1994-12-31

    This paper discusses a multigrid control volume finite element method (MG CVFEM) for the simulation of viscous fluid flows. The CVFEM is an equal-order primitive variables formulation that avoids spurious solution fields by incorporating an appropriate pressure gradient in the velocity interpolation functions. The resulting set of discretized equations is solved using a coupled equation line solver (CELS) that solves the discretized momentum and continuity equations simultaneously along lines in the calculation domain. The CVFEM has been implemented in the context of both FMV- and V-cycle multigrid algorithms, and preliminary results indicate a five to ten fold reduction in execution times.

  15. An hybrid finite volume finite element method for variable density incompressible flows

    Science.gov (United States)

    Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry

    2008-04-01

    This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.

  16. Review of the Technical Metrological Regulation for flow computers and volume converters

    Science.gov (United States)

    Almeida, R. O.; Aguiar Júnior, E. A.; Costa-Felix, R. P. B.

    2016-07-01

    With the publication of Inmetro's regulation n° 373/2014, Inmetro presented the proposal to review the regulation of flow computers and volume converters, whose scope now includes fiscal measurement, ownership, custody transfer, among others, of hydrocarbons liquids and natural gas. This new proposal provides improvements to the legal metrological control of these instruments in Brazil, while also broaden the scope from the previous regulation, the Inmetro's regulation n° 64/2003. The purpose of this paper is to present these changes from a metrological point of view, and also clarify the transitional rules for the process.

  17. THE FINITE VOLUME PROJECTION METHOD WITH HYBRID UNSTRUCTURED TRIANGULAR COLLOCATED GRIDS FOR INCOMPRESSIBLE FLOWS

    Institute of Scientific and Technical Information of China (English)

    GAO Wei; DUAN Ya-li; LIU Ru-xun

    2009-01-01

    In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.

  18. Suitable image parameters and analytical method for quantitatively measuring cerebral blood flow volume with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Handa H

    1999-02-01

    Full Text Available The aim of this study was to determine suitable image parameters and an analytical method for phase-contrast magnetic resonance imaging (PC-MRI as a means of measuring cerebral blood flow volume. This was done by constructing an experimental model and applying the results to a clinical application. The experimental model was constructed from the aorta of a bull and circulating isotonic saline. The image parameters of PC-MRI (repetition time, flip angle, matrix, velocity rate encoding, and the use of square pixels were studied with percent flow volume (the ratio of actual flow volume to measured flow volume. The most suitable image parameters for accurate blood flow measurement were as follows: repetition time, 50 msec; flip angle, 20 degrees; and a 512 x 256 matrix without square pixels. Furthermore, velocity rate encoding should be set ranging from the maximum flow velocity in the vessel to five times this value. The correction in measuring blood flow was done with the intensity of the region of interest established in the background. With these parameters for PC-MRI, percent flow volume was greater than 90%. Using the image parameters for PC-MRI and the analytical method described above, we evaluated cerebral blood flow volume in 12 patients with occlusive disease of the major cervical arteries. The results were compared with conventional xenon computed tomography. The values found with both methods showed good correlation. Thus, we concluded that PC-MRI was a noninvasive method for evaluating cerebral blood flow in patients with occlusive disease of the major cervical arteries.

  19. Finite volume - space-time discontinuous Galerkin method for the solution of compressible turbulent flow

    Directory of Open Access Journals (Sweden)

    Česenek Jan

    2016-01-01

    Full Text Available In this article we deal with numerical simulation of the non-stationary compressible turbulent flow. Compressible turbulent flow is described by the Reynolds-Averaged Navier-Stokes (RANS equations. This RANS system is equipped with two-equation k-omega turbulence model. These two systems of equations are solved separately. Discretization of the RANS system is carried out by the space-time discontinuous Galerkin method which is based on piecewise polynomial discontinuous approximation of the sought solution in space and in time. Discretization of the two-equation k-omega turbulence model is carried out by the implicit finite volume method, which is based on piecewise constant approximation of the sought solution. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.

  20. Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows

    Science.gov (United States)

    Marrone, S.; Di Mascio, A.; Le Touzé, D.

    2016-04-01

    A new algorithm for the solution of free surface flows with large front deformation and fragmentation is presented. The algorithm is obtained by coupling a classical Finite Volume (FV) approach, that discretizes the Navier-Stokes equations on a block structured Eulerian grid, with an approach based on the Smoothed Particle Hydrodynamics (SPH) method, implemented in a Lagrangian framework. The coupling procedure is formulated in such a way that each solver is applied in the region where its intrinsic characteristics can be exploited in the most efficient and accurate way: the FV solver is used to resolve the bulk flow and the wall regions, whereas the SPH solver is implemented in the free surface region to capture details of the front evolution. The reported results clearly prove that the combined use of the two solvers is convenient from the point of view of both accuracy and computing time.

  1. Methods to Increase the Robustness of Finite-Volume Flow Models in Thermodynamic Systems

    Directory of Open Access Journals (Sweden)

    Sylvain Quoilin

    2014-03-01

    Full Text Available This paper addresses the issues linked to simulation failures during integration in finite-volume flow models, especially those involving a two-phase state. This kind of model is particularly useful when modeling 1D heat exchangers or piping, e.g., in thermodynamic cycles involving a phase change. Issues, such as chattering or stiff systems, can lead to low simulation speed, instabilities and simulation failures. In the particular case of two-phase flow models, they are usually linked to a discontinuity in the density derivative between the liquid and two-phase zones. In this work, several methods to tackle numerical problems are developed, described, implemented and compared. In addition, methods available in the literature are also implemented and compared to the proposed approaches. Results suggest that the robustness of the models can be significantly increased with these different methods, at the price of a small increase of the error in the mass and energy balances.

  2. MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2016-06-01

    Full Text Available In this study we analyzed the momentum and heat transfer behavior of MHD nanofluid embedded with conducting dust particles past a stretching surface in the presence of volume fraction of dust particles. The governing equations of the flow and heat transfer are transformed into nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Runge–Kutta based shooting technique. The effect of non-dimensional governing parameters on velocity and temperature profiles of the flow are discussed and presented through graphs. Additionally friction factor and the Nusselt number have also been computed. Under some special conditions, numerical results obtained by the present study were compared with the existed studies. The result of the present study proves to be highly satisfactory. The results indicate that an increase in the interaction between the fluid and particle phase enhances the heat transfer rate and reduces the friction factor.

  3. Fluid structure interaction solver coupled with volume of fluid method for two-phase flow simulations

    Science.gov (United States)

    Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.

    2016-06-01

    In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.

  4. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale

    Science.gov (United States)

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2016-02-01

    Based on the Darcy-Brinkman-Forchheimer equation, a finite-volume computational model with lattice Boltzmann flux scheme is proposed for incompressible porous media flow in this paper. The fluxes across the cell interface are calculated by reconstructing the local solution of the generalized lattice Boltzmann equation for porous media flow. The time-scaled midpoint integration rule is adopted to discretize the governing equation, which makes the time step become limited by the Courant-Friedricks-Lewy condition. The force term which evaluates the effect of the porous medium is added to the discretized governing equation directly. The numerical simulations of the steady Poiseuille flow, the unsteady Womersley flow, the circular Couette flow, and the lid-driven flow are carried out to verify the present computational model. The obtained results show good agreement with the analytical, finite-difference, and/or previously published solutions.

  5. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Science.gov (United States)

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    Background The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. Methods The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Results Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05). Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05). Conclusion Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance. PMID:25540580

  6. Maximal expiratory and inspiratory flow-volume curves in Parkinson's disease.

    Science.gov (United States)

    Bogaard, J M; Hovestadt, A; Meerwaldt, J; vd Meché, F G; Stigt, J

    1989-03-01

    In order to investigate the type and degree of upper airway obstruction (UAO) in a group of patients with Parkinson's disease in different stages of the disease, we obtained maximal expiratory and inspiratory flow-volume (MEFV and MIFV) curves and maximal static mouth pressures. The clinical disability was indicated by a Hoehn-Yahr (H-Y) scale, ranging from III to V, and a more continuous Northwestern University Disability Scale (NUDS), ranging from zero to 50. Twelve patients were in H-Y Group III, and eleven and eight were in Groups IV and V, respectively. The pattern of the flow-volume curves was classified as either normal, or with superimposed regular or irregular oscillations (A), or with rounded-off and delayed expiratory peak appearance (B). Mean MEFV curves in Groups III and IV were not appreciably different from reference. In Group V, the mean curve showed a lower peak expiratory flow (PEF) and a more convex tail. Only the effort-dependent variables PEF, peak inspiratory flow (PIF), and maximal mouth pressures at RV and TLC (PmTLC and PmRV) appeared to be significantly correlated with the NUDS index and decreased with increasing clinical disability. The mean values of those variables were also significantly different between the H-Y groups. The number of normal curves decreased from H-Y Group III to Group V. The contribution of A and B curves was relatively equal in the groups, with only a small number of A curves.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Production inventory policy under a discounted cash flow

    Directory of Open Access Journals (Sweden)

    Su Chao-Ton

    2005-01-01

    Full Text Available This paper presents an extended production inventory model in which the production rate at any instant depends on the demand and the inventory level. The effects of the time value of money are incorporated into the model. The demand rate is a linear function of time for the scheduling period. The proposed model can assist managers in economically controlling production systems under the condition of considering a discounted cash flow. A simple algorithm computing the optimal production-scheduling period is developed. Several particular cases of the model are briefly discussed. Through numerical example, sensitive analyses are carried out to examine the effect of the parameters. Results show that the discount rate parameter and the inventory holding cost have a significant impact on the proposed model.

  8. Development of ultrasonic velocity profile method for flow rate measurements of power plant (effect of measurement volume on turbulent flow measurement)

    Energy Technology Data Exchange (ETDEWEB)

    Hiroshige, Kikura; Gentaro, Yamanaka; Tsuyoshi, Taishi; Masanori, Aritomi [Tokyo Institute of Technology, Tokyo (Japan); Yasushi, Takeda [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Michitsugu, Mori [Tokyo Electric Power Co., Inc. (Japan)

    2001-07-01

    Ultrasonic Velocity Profile method has many advantages for flow rate measurement of power plant over the conventional flow measurement methods, such as measurement of the instantaneous velocity profile along the measuring line and its applicability to opaque liquids. Furthermore, the method has an advantage of being non-intrusive. Hence, it is applicable to various flow conditions, although it requires a relatively large measurement volume. In this paper, the effects of the measurement volume on the mean velocity profile for flow rate measurements of power plant and the Reynolds stress measurement have been investigated for fully developed turbulent pipe flows in a vertical pipe. The results are then compared with data obtained by Direct Numerical Simulation (DNS). (authors)

  9. Regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE).

    Science.gov (United States)

    Gückel, Friedemann J; Brix, Gunnar; Hennerici, Michael; Lucht, Robert; Ueltzhöffer, Christine; Neff, Wolfgang

    2007-10-01

    The aim of the present study was a detailed analysis of the regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE) by means of functional magnetic resonance imaging (MRI). A group of 26 patients with SAE and a group of 16 age-matched healthy volunteers were examined. Using a well-established dynamic susceptibility contrast-enhanced MRI method, the regional cerebral blood flow (rCBF) and blood volume (rCBV) were quantified for each subject in 12 different regions in the brain parenchyma. As compared to healthy volunteers, patients with SAE showed significantly reduced rCBF and rCBV values in white matter regions and in the occipital cortex. Regions containing predominantly grey matter show almost normal rCBF and rCBV values. In conclusion, quantitative analysis of rCBF and rCBV values demonstrates clearly that SAE is a disease that is associated with a reduced microcirculation predominantly in white matter.

  10. Comparing volume of fluid and level set methods for evaporating liquid-gas flows

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2016-11-01

    This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.

  11. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance

    Directory of Open Access Journals (Sweden)

    Berteau C

    2015-11-01

    Full Text Available Cecile Berteau,1 Orchidée Filipe-Santos,1 Tao Wang,2 Humberto E Rojas,2 Corinne Granger,1 Florence Schwarzenbach1 1Becton-Dickinson Medical Pharmaceutical Systems, Le Pont de Claix, France; 2Eli Lilly and Company, Indianapolis, IN, USA Aim: The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC injection pain tolerance. Methods: The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP combined with two different injection flow rates (0.02 and 0.3 mL/s. All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS (0 mm/no pain, 100 mm/extreme pain. The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results: Viscosity levels had significant impact on perceived injection pain (P=0.0003. Specifically, less pain was associated with high viscosity (VAS =12.6 mm than medium (VAS =16.6 mm or low (VAS =22.1 mm viscosities, with a significant difference between high and low viscosities (P=0.0002. Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89. Slow (0.02 mL/s or fast (0.30 mL/s injection rates also showed no significant impact on perceived pain during SC injection (P=0.79. In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion: The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High

  12. Market projections of cellulose nanomaterial-enabled products-- Part 2: Volume estimates

    Science.gov (United States)

    John Cowie; E.M. (Ted) Bilek; Theodore H. Wegner; Jo Anne Shatkin

    2014-01-01

    Nanocellulose has enormous potential to provide an important materials platform in numerous product sectors. This study builds on previous work by the same authors in which likely high-volume, low-volume, and novel applications for cellulosic nanomaterials were identified. In particular, this study creates a transparent methodology and estimates the potential annual...

  13. A lean production control system for high-variety/low-volume environments : a case study implementation

    NARCIS (Netherlands)

    Slomp, J.; Bokhorst, J.A.C.; Germs, R.

    2009-01-01

    Due to the success of lean manufacturing, many companies are interested in implementing a lean production control system. Lean production control principles include the levelling of production, the use of pull mechanisms and takt time control. These principles have mainly been applied in high volume

  14. A lean production control system for high-variety/low-volume environments : a case study implementation

    NARCIS (Netherlands)

    Slomp, J.; Bokhorst, J.A.C.; Germs, R.

    2009-01-01

    Due to the success of lean manufacturing, many companies are interested in implementing a lean production control system. Lean production control principles include the levelling of production, the use of pull mechanisms and takt time control. These principles have mainly been applied in high volume

  15. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

    Directory of Open Access Journals (Sweden)

    Donald P Bernstein

    2010-01-01

    Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2

  16. Optical oximetry of volume-oscillating vascular compartments: contributions from oscillatory blood flow

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Fantini, Sergio

    2016-10-01

    We present a quantitative analysis of dynamic diffuse optical measurements to obtain oxygen saturation of hemoglobin in volume oscillating compartments. We used a phasor representation of oscillatory hemodynamics at the heart rate and respiration frequency to separate the oscillations of tissue concentrations of oxyhemoglobin (O) and deoxyhemoglobin (D) into components due to blood volume (subscript V) and blood flow (subscript F): O=OV+OF, D=DV+DF. This is achieved by setting the phase angle Arg(OF)-Arg(O), which can be estimated by a hemodynamic model that we recently developed. We found this angle to be -72 deg for the cardiac pulsation at 1 Hz, and -7 deg for paced breathing at 0.1 Hz. Setting this angle, we can obtain the oxygen saturation of hemoglobin of the volume-oscillating vascular compartment, SV=|OV|/(|OV|+|DV|). We demonstrate this approach with cerebral near-infrared spectroscopy measurements on healthy volunteers at rest (n=4) and during 0.1 Hz paced breathing (n=3) with a 24-channel system. Rest data at the cardiac frequency were used to calculate the arterial saturation, S(a); over all subjects and channels, we found ==0.96±0.02. In the case of paced breathing, we found =0.66±0.14, which reflects venous-dominated hemodynamics at the respiratory frequency.

  17. Treating network junctions in finite volume solution of transient gas flow models

    Science.gov (United States)

    Bermúdez, Alfredo; López, Xián; Vázquez-Cendón, M. Elena

    2017-09-01

    A finite volume scheme for the numerical solution of a non-isothermal non-adiabatic compressible flow model for gas transportation networks on non-flat topography is introduced. Unlike standard Euler equations, the model takes into account wall friction, variable height and heat transfer between the pipe and the environment which are source terms. The case of one single pipe was considered in a previous reference by the authors, [8], where a finite volume method with upwind discretization of the flux and source terms has been proposed in order to get a well-balanced scheme. The main goal of the present paper is to go a step further by considering a network of pipes. The main issue is the treatment of junctions for which container-like 2D finite volumes are introduced. The couplings between pipes (1D) and containers (2D) are carefully described and the conservation properties are analyzed. Numerical tests including real gas networks are solved showing the performance of the proposed methodology.

  18. Determination of volume fractions in two-phase flows from sound speed measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Anirban [Los Alamos National Laboratory; Sinha, Dipen N. [Los Alamos National Laboratory; Osterhoudt, Curtis F. [University of Alaska

    2012-08-15

    Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.

  19. Volume changes of extremely large and giant intracranial aneurysms after treatment with flow diverter stents

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Angelo; Byrne, James V. [ohn Radcliffe Hospital, Oxford Neurovascular and Neuroradiology Research Unit, Nuffield Department of Surgical Sciences, Oxford (United Kingdom); Rane, Neil; Kueker, Wilhelm; Cellerini, Martino; Corkill, Rufus [John Radcliffe Hospital, Department of Neuroradiology, Oxford (United Kingdom)

    2014-01-15

    This study assessed volume changes of unruptured large and giant aneurysms (greatest diameter >20 mm) after treatment with flow diverter (FD) stents. Clinical audit of the cases treated in a single institution, over a 5-year period. Demographic and clinical data were retrospectively collected from the hospital records. Aneurysm volumes were measured by manual outlining at sequential slices using computerised tomography (CT) or magnetic resonance (MR) angiography data. The audit included eight patients (seven females) with eight aneurysms. Four aneurysms involved the cavernous segment of the internal carotid artery (ICA), three the supraclinoid ICA and one the basilar artery. Seven patients presented with signs and symptoms of mass effect and one with seizures. All but one aneurysm was treated with a single FD stent; six aneurysms were also coiled (either before or simultaneously with FD placement). Minimum follow-up time was 6 months (mean 20 months). At follow-up, three aneurysms decreased in size, three were unchanged and two increased. Both aneurysms that increased in size showed persistent endosaccular flow at follow-up MR; in one case, failure was attributed to suboptimal position of the stent; in the other case, it was attributed to persistence of a side branch originating from the aneurysm (similar to the endoleak phenomenon of aortic aneurysms). At follow-up, five aneurysms were completely occluded; none of these increased in volume. Complete occlusion of the aneurysms leads, in most cases, to its shrinkage. In cases of late aneurysm growth or regrowth, consideration should be given to possible endoleak as the cause. (orig.)

  20. Monte Carlo method with heuristic adjustment for irregularly shaped food product volume measurement.

    Science.gov (United States)

    Siswantoro, Joko; Prabuwono, Anton Satria; Abdullah, Azizi; Idrus, Bahari

    2014-01-01

    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.

  1. Automation in semiconductor production minienvironments, flexibility and information flow

    Science.gov (United States)

    Dudde, Ralf; Staudt-Fischbach, Peter; Herzog, Olaf

    1995-09-01

    The productivity of semiconductor fabs can be improved significantly by the combined action of several measures: Usage of expensive resources only at the point of use, like limiting the generation of a particlefree clean room environment to the immediate surrounding of wafers and wafer processed by usage of mini-environments and SMIF-wafer capsulation. Improvement of the logistic and material flow by an appropriate computer control system in the production line especially for a flexible IC- production. With its new Institute of Silicon Technology (ISiT) in Itzehoe the Fraunhofer-Society for applied research is now realizing an advanced CMOS pilot-line starting with a 0.5 (mu) process that is dedicated from the very beginning for an optimum in flexibility, productivity and lowest running costs. The complete concept for mini- environments, SMIF upgrade of the equipment and production control software was developed in a cooperation between the Fraunhofer institutes for Silicon Technology (ISiT) and Production automation (IPA). The Jenoptic, Jena, was chosen as supplier of SMIF components, mini-environments and identification software. The Line-Information- System, which operates as a low-cost manufacturing execution system, has been developed by the Fraunhofer-IPA using a central database system and client applications to access it. It tracks the actual work in progress in the fab, maintains equipment and lot history and allows production and cost monitoring and optimization.

  2. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly.

    Science.gov (United States)

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m(2)) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, -26.5±4.2 mmHg versus -17.9±4.7 mmHg; diastolic blood pressure, -13.8±4.9 mmHg versus -7.7±5 mmHg, Pexercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance.

  3. Transport volume in regions of the Czech Republic in relation to the production of waste

    OpenAIRE

    Pojkarová, Kateřina; Hruška, Roman

    2010-01-01

    The article deals with the transport volume in regions of the Czech Republic in relation to the production of waste. On the basis of waste statistics and transport statistics is researched the greatness of the relation between the transport volume and the production of waste in regions of the Czech Republic. The relation is illustrated graphically too. We have many kinds of waste which we can monitor. The most important kinds of waste are municipal waste, industrial waste, construction ...

  4. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Science.gov (United States)

    Xin, Y. B.; Sun, B.; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J.

    2016-07-01

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  5. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J. [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  6. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    Science.gov (United States)

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  7. HIGH-RESOLUTION DEBRIS FLOW VOLUME MAPPING WITH UNMANNED AERIAL SYSTEMS (UAS AND PHOTOGRAMMETRIC TECHNIQUES

    Directory of Open Access Journals (Sweden)

    M. S. Adams

    2016-06-01

    Full Text Available Debris flows cause an average € 30 million damages and 1-2 fatalities every year in Austria. Detailed documentation of their extent and magnitude is essential for understanding, preventing and mitigating these natural hazard events. The recent development of unmanned aerial systems (UAS has provided a new possibility for on-demand high-resolution monitoring and mapping. Here, we present a study, where the spatial extent and volume of a large debris flow event were mapped with different UAS, fitted with commercial off-the-shelf sensors. Orthophotos and digital terrain models (DTM were calculated using structure-from-motion photogrammetry software. Terrain height differences caused by the debris flow in the catchment and valley floor were derived by subtracting the pre-event airborne laser scanning (ALS DTM from a post-event UAS-DTM. The analysis of the volumetric sediment budget showed, that approximately 265,000 m³ material was mobilised in the catchment, of which 45,000 m³ settled there; of the material, which reached the valley floor, 120,000 m³ was deposited, while another 10,000 m³ was eroded from there. The UAS-results were validated against ALS data and imagery from a traditional manned-aircraft photogrammetry campaign. In conclusion, the UAS-data can reach an accuracy and precision comparable to manned aircraft data, but with the added benefits of higher flexibility, easier repeatability, less operational constraints and higher spatial resolution.

  8. Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation

    Science.gov (United States)

    Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo

    2015-10-01

    The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.

  9. A New Efficient Finite Volume Modeling of Small Amplitude Free Surface Flows with Unstructured Grid

    Institute of Scientific and Technical Information of China (English)

    L(U) Biao

    2013-01-01

    A staggered finite-volume technique for non-hydrostatic,small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time.The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and,while it has the attractive property of being conservative.The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy.A conservative scalar transport algorithm is also applied to discretize k-ε equations in this model.The eddy viscosity is calculated from the k-ε turbulent model.The resulting model is mass and momentum conservative.The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field,and then applied to simulate the tidal flow in the Bohai Sea.

  10. Solitons and production of defects in flow-aligning nematic liquid crystals under simple shear flow

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The production of defects in flow-aligning nematic liquid crystals under simple shear flow is analyzed by linear stability analysis based on Leslie-Ericksen theory. It is pointed out that the equation of motion of the nematic director under simple shear flow conforms to the driven over-damped sine-Gordon equation and has a soliton solution of amplitude π. It has also been shown that the stationary state with the director uniformly oriented at a Leslie angle is only a metastable state and that the potential, which governs the motion of the director, has infinite numbers of stable stationary states. Therefore, the defects, appearing as a stable solitary solution, can be nucleated from a uniformly aligned flow-aligning type of nematic liquid crystal by shear flow. On the other hand, the bands with long axis parallel to the vorticity axis, appearing as an unstable solution, can be observed as transient patterns at low shear rate and low shear strain value. The theoretical predictions are compared with previous experimental observations.

  11. Optimal velocity encoding during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography

    Institute of Scientific and Technical Information of China (English)

    Gang Guo; Yonggui Yang; Weiqun Yang

    2011-01-01

    This study investigated the effect of velocity encoding on measurement of brain blood flow and blood volume of inflow and outflow using phase-contrast magnetic resonance angiography. A single two-dimensional phase-contrast magnetic resonance angiography slice was applied perpendicular to the internal carotid artery and the vertebral artery at C2 level. For each subject, the velocity encoding was set from 30 to 90 cm/s with an interval of 10 cm/s for a total of seven settings. Various velocity encodings greatly affected blood flow volume, maximal blood flow velocity and mean blood flow velocity in the internal carotid artery, but did not significantly affect vertebral arteries and jugular veins. When velocity encoding was 60-80 cm/s, the inflow blood volume was 655 ± 118 mL/min, and the outflow volume was 506 ± 186 mL/min. The ratio of outflow/inflow was steady at 0.78-0.83, and there was no aliasing in any of the images. These findings suggest that velocity encodings of 60-80 cm/s should be selected during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography.

  12. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance.

    Science.gov (United States)

    Berteau, Cecile; Filipe-Santos, Orchidée; Wang, Tao; Rojas, Humberto E; Granger, Corinne; Schwarzenbach, Florence

    2015-01-01

    The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC) injection pain tolerance. The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8-10, and 15-20 cP) combined with two different injection flow rates (0.02 and 0.3 mL/s). All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS) (0 mm/no pain, 100 mm/extreme pain). The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Viscosity levels had significant impact on perceived injection pain (P=0.0003). Specifically, less pain was associated with high viscosity (VAS =12.6 mm) than medium (VAS =16.6 mm) or low (VAS =22.1 mm) viscosities, with a significant difference between high and low viscosities (P=0.0002). Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89). Slow (0.02 mL/s) or fast (0.30 mL/s) injection rates also showed no significant impact on perceived pain during SC injection (P=0.79). In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. The results of this study suggest that solutions of up to 3 mL and up to 15-20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High viscosity injections were shown to be the most tolerated, whereas injection volume and flow rates did not impact perceived pain.

  13. Role of Doppler ultrasonography evaluation of superior mesenteric artery flow volume in the assessment of Crohn's disease activity

    Directory of Open Access Journals (Sweden)

    Fabiana Paiva Martins

    2013-09-01

    Full Text Available Objective To investigate superior mesenteric artery flow measurement by Doppler ultrasonography as a means of characterizing inflammatory activity in Crohn's disease. Materials and Methods Forty patients were examined and divided into two groups – disease activity and remission – according to their Crohn's disease activity index score. Mean superior mesenteric artery flow volume was calculated for each group and correlated with Crohn's disease activity index score. Results The mean superior mesenteric artery flow volume was significantly greater in the patients with active disease (626 ml/min ± 236 × 376 ml/min ± 190; p = 0.001. As a cut off corresponding to 500 ml/min was utilized, the superior mesenteric artery flow volume demonstrated sensitivity of 83% and specificity of 82% for the diagnosis of Crohn's disease activity. Conclusion The present results suggest that patients with active Crohn's disease have increased superior mesenteric artery flow volume as compared with patients in remission. Superior mesenteric artery flow measurement had a good performance in the assessment of disease activity in this study sample.

  14. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Directory of Open Access Journals (Sweden)

    Brito AF

    2014-12-01

    Full Text Available Aline de Freitas Brito,1 Caio Victor Coutinho de Oliveira,2 Maria do Socorro Brasileiro-Santos,1 Amilton da Cruz Santos1 1Physical Education Department, 2Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Brazil Background: The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects.Methods: The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2 subjected to three experimental sessions, ie, a control session, exercise with a set (S1, and exercise with three sets (S3. For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention in the supine position.Results: Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05. Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05.Conclusion: Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular

  15. A new numerical framework to simulate viscoelastic free-surface flows with the finite-volume method

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    A new method for the simulation of 2D viscoelastic flow is presented. Numerical stability is obtained by the logarithmic-conformation change of variable, and a fully-implicit pure-streamfunction flow formulation, without use of any artificial diffusion. As opposed to other simulation results, our...... calculations predict a hydrodynamic instability in the 4:1 contraction geometry at a Weissenberg number of order 4. This new result is in qualitative agreement with the prediction of a non-linear subcritical elastic instability in Poiseuille flow. Our viscoelastic flow solver is coupled with a volume...

  16. A new numerical framework to simulate viscoelastic free-surface flows with the finite-volume method

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2015-01-01

    A new method for the simulation of 2D viscoelastic flow is presented. Numerical stability is obtained by the logarithmic-conformation change of variable, and a fully-implicit pure-streamfunction flow formulation, without use of any artificial diffusion. As opposed to other simulation results, our...... calculations predict a hydrodynamic instability in the 4:1 contraction geometry at a Weissenberg number of order 4. This new result is in qualitative agreement with the prediction of a non-linear subcritical elastic instability in Poiseuille flow. Our viscoelastic flow solver is coupled with a volume...

  17. Finite volume methods for submarine debris flow with Herschel-Bulkley rheology

    Science.gov (United States)

    Kim, Jihwan; Issler, Dieter

    2015-04-01

    Submarine landslides can impose great danger to the underwater structures and generate destructive waves. The Herschel-Bulkley rheological model is known to be appropriate for describing the nonlinear viscoplastic behavior of the debris flow. The numerical implementation of the depth-averaged Herschel-Bulkley models such as BING has so-far been limited to the 1-dimensional Lagrangian coordinate system. In this work, we develop numerical schemes with the finite volume methods in the Eulerian coordinates. We provide parameter sensitivity analysis and demonstrate how common ad-hoc assumptions such as including a minimum shear layer depth influence the modeling of the landslide dynamics. The possibility of adding hydrodynamic resistance forces, hydroplaning, and remolding into this Eulerian framework is also discussed. Finally, the possible extension to a two-dimensional operational model for coupling towards operational tsunami models is discussed.

  18. Control theory based airfoil design for potential flow and a finite volume discretization

    Science.gov (United States)

    Reuther, J.; Jameson, A.

    1994-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. The goal of our present work is to develop a method which does not depend on conformal mapping, so that it can be extended to treat three-dimensional problems. Therefore, we have developed a method which can address arbitrary geometric shapes through the use of a finite volume method to discretize the potential flow equation. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented, where both target speed distributions and minimum drag are used as objective functions.

  19. Second-order accurate finite volume method for well-driven flows

    CERN Document Server

    Dotlić, Milan; Pokorni, Boris; Pušić, Milenko; Dimkić, Milan

    2013-01-01

    We consider a finite volume method for a well-driven fluid flow in a porous medium. Due to the singularity of the well, modeling in the near-well region with standard numerical schemes results in a completely wrong total well flux and an inaccurate hydraulic head. Local grid refinement can help, but it comes at computational cost. In this article we propose two methods to address well singularity. In the first method the flux through well faces is corrected using a logarithmic function, in a way related to the Peaceman correction. Coupling this correction with a second-order accurate two-point scheme gives a greatly improved total well flux, but the resulting scheme is still not even first order accurate on coarse grids. In the second method fluxes in the near-well region are corrected by representing the hydraulic head as a sum of a logarithmic and a linear function. This scheme is second-order accurate.

  20. Classification of pulmonary system diseases patterns using flow-volume curve.

    Science.gov (United States)

    Arabalibeik, Hossein; Jafari, Samaneh; Agin, Khosro

    2011-01-01

    Spirometry is the most common pulmonary function test. It provides useful information for early detection of respiratory system abnormalities. While decision support systems use normally calculated parameters such as FEV1, FVC, and FEV1% to diagnose the pattern of respiratory system diseases, expert physicians pay close attention to the pattern of the flow-volume curve as well. Fisher discriminant analysis shows that coefficients of a simple polynomial function fitted to the curve, can capture the information about the disease patterns much better than the familiar single point parameters. A neural network then can classify the abnormality pattern as restrictive, obstructive, mixed, or normal. Using the data from 205 adult volunteers, total accuracy, sensitivity and specificity for four categories are 97.6%, 97.5% and 98.8% respectively.

  1. Hybrid, explicit-implicit, finite-volume schemes on unstructured grids for unsteady compressible flows

    Science.gov (United States)

    Timofeev, Evgeny; Norouzi, Farhang

    2016-06-01

    The motivation for using hybrid, explicit-implicit, schemes rather than fully implicit or explicit methods for some unsteady high-speed compressible flows with shocks is firstly discussed. A number of such schemes proposed in the past are briefly overviewed. A recently proposed hybridization approach is then introduced and used for the development of a hybrid, explicit-implicit, TVD (Total Variation Diminishing) scheme of the second order in space and time on smooth solutions in both, explicit and implicit, modes for the linear advection equation. Further generalizations of this finite-volume method for the Burgers, Euler and Navier-Stokes equations discretized on unstructured grids are mentioned in the concluding remarks.

  2. A time-of-flight flow sensor for the volume measurement of trace amount of interstitial fluid

    Science.gov (United States)

    Yu, H.; Li, D.; Roberts, R. C.; Xu, K.; Tien, N. C.

    2012-05-01

    Transdermal extraction of interstitial fluid (ISF) offers an attractive method for noninvasive blood glucose monitoring. The existing macroscale systems are not suitable for ISF collection, mainly because of the minute volume of the transdermally extracted ISF which scatters on the skin surface. Human skin's low permeability to glucose and its varying permeability exemplify the crucial need to make precise ISF volume measurements in order to calculate blood glucose concentrations accurately. In this paper, we present a novel time-of-flight flow sensor consisting of four electrode pairs fabricated directly into the channel of a polydimethylsiloxane (PDMS) microfluidic device designed to accurately measure the volume of transdermally extracted ISF. As fluid traverses the channel, it bridges each electrode pair and changes its resistance. By measuring the time difference in resistance change between each electrode pair, a precise fluid volume can be measured. In order to verify the suitability of the sensor for biological applications, experiments were conducted using a normal saline solution which is similar to ISF. The stability of the sensor was tested using a fixed volume, and the coefficient of variation for 20 tests was determined to be 0.0041. The consistency of the sensor for varied volume measurements was shown by the high correlation coefficient (R2 = 0.9992) between the tested volume and the volume measured by a commercial micro syringe. The excellent functionality of the flow sensor can be extended toward the measurement of conductive chemical and biochemical buffers and reagents.

  3. Multicriteria optimization of gluconic acid production using net flow.

    Science.gov (United States)

    Halsall-Whitney, H; Taylor, D; Thibault, J

    2003-03-01

    The biochemical process industry is often confronted with the challenge of making decisions in an atmosphere of multiple and conflicting objectives. Recent innovations in the field of operations research and systems science have yielded rigorous multicriteria optimization techniques that can be successfully applied to the field of biochemical engineering. These techniques incorporate the expert's experience into the optimization routine and provide valuable information about the zone of possible solutions. This paper presents a multicriteria optimization strategy that generates a Pareto domain, given a set of conflicting objective criteria, and determines the optimal operating region for the production of gluconic acid using the net flow method (NFM). The objective criteria include maximizing the productivity and concentration of gluconic acid, while minimizing the residual substrate. Three optimization strategies are considered. The first two strategies identify the optimal operating region for the process inputs. The results yielded an acceptable compromise between productivity, gluconic acid concentration and residual substrate concentration. Fixing the process inputs representing the batch time, initial substrate concentration and initial biomass equal to their optimal values, the remaining simulations were used to study the sensitivity of the optimum operating region to changes in the oxygen mass transfer coefficient, K(L) a, by utilizing a multi-level K(L) a strategy. The results show that controlling K(L) a during the reaction reduced the production of biomass, which in turn resulted in increased productivity and concentration of gluconic acid above that of a fixed K(L) a.

  4. Design requirements for SRB production control system. Volume 4: Implementation

    Science.gov (United States)

    1981-01-01

    The implementation plan which is presented was developed to provide the means for the successful implementation of the automated production control system. There are three factors which the implementation plan encompasses: detailed planning; phased implementation; and user involvement. The plan is detailed to the task level in terms of necessary activities as the system is developed, refined, installed, and tested. These tasks are scheduled, on a preliminary basis, over a two-and-one-half-year time frame.

  5. Volume of Fluid (VOF) type advection methods in two-phase flow: a comparative study

    CERN Document Server

    Aniszewski, Wojciech; Marek, Maciej

    2014-01-01

    In this paper, four distinct approaches to Volume of Fluid (VOF) computational method are compared. Two of the methods are the 'simplified' VOF formulations, in that they do not require geometrical interface reconstruction. The assessment is made possible by implementing all four approaches into the same code as a switchable options. This allows to rule out possible influence of other parts of numerical scheme, be it the discretisation of Navier-Stokes equations or chosen approximation of curvature, so that we are left with conclusive arguments because only one factor differs the compared methods. The comparison is done in the framework of CLSVOF (Coupled Level Set Volume of Fluid), so that all four methods are coupled with Level Set interface, which is used to compute pressure jump via the GFM (Ghost-Fluid Method). Results presented include static advections, full N-S solutions in laminar and turbulent flows. The paper is aimed at research groups who are implementing VOF methods in their computations or inte...

  6. Flux-splitting finite volume method for turbine flow and heat transfer analysis

    Science.gov (United States)

    Xu, C.; Amano, R. S.

    A novel numerical method was developed to deal with the flow and heat transfer in a turbine cascade at both design and off-design conditions. The Navier-Stokes equations are discretized and integrated in a coupled manner. In the present method a time-marching scheme was employed along with the time-integration approach. The flux terms are discretized based on a cell finite volume formulation as well as a flux-difference splitting. The flux-difference splitting makes the scheme rapid convergence and the finite volume technique ensure the governing equations for the conservation of mass, momentum and energy. A hybrid difference scheme for quasi-three-dimensional procedure based on the discretized and integrated Navier-Stokes equations was incorporated in the code. The numerical method possesses the positive features of the explicit and implicit algorithms which provide a rapid convergence process and have a less stability constraint. The computed results were compared with other numerical studies and experimental data. The comparisons showed fairly good agreement with experiments.

  7. The Einstein flow with positive cosmological constant on product manifolds

    CERN Document Server

    Fajman, David

    2016-01-01

    We consider the vacuum Einstein flow with a positive cosmological constant on spatial manifolds of product form. In spatial dimension at least four we show the existence of continuous families of recollapsing models whenever at least one of the factors or admits a Riemannian Einstein metric with positive Einstein constant. We moreover show that these families belong to larger continuous families with models that have two complete time directions, i.e. do not recollapse. Complementarily, we show that whenever no factor has positive curvature, then any model in the product class expands in one time direction and collapses in the other. In particular, positive curvature of one factor is a necessary criterion for recollapse within this class. Finally, we relate our results to the instability of the Nariai solution in three spatial dimensions and point out why a similar construction of recollapsing models in that dimension fails. The present results imply that there exist different classes of initial data which ex...

  8. Finite volume approximation of the three-dimensional flow equation in axisymmetric, heterogeneous porous media based on local analytical solution

    KAUST Repository

    Salama, Amgad

    2013-09-01

    In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.

  9. The volumes and value of non-timber forest products harvested in the United States

    Science.gov (United States)

    James L. Chamberlain

    2015-01-01

    Non-timber forest products [NTFPs] originate from plants and fungi that are harvested from natural, manipulated or disturbed forests. NTFPs may include fungi, moss, lichen, herbs, vines, shrubs, or trees. People harvest the products for many reasons, including personal, recreational and spiritual uses, as well as commercial gain. The assessment of volumes and values is...

  10. Smooth reference equations for slow vital capacity and flow-volume curve indexes.

    Science.gov (United States)

    Pistelli, F; Bottai, M; Viegi, G; Di Pede, F; Carrozzi, L; Baldacci, S; Pedreschi, M; Giuntini, C

    2000-03-01

    We derived reference values for slow vital capacity (VC) and flow-volume curve indexes (FVC, FEV(1), and flows) from the 1,185 tracings provided by 1,039 "normal" subjects who participated in one or both cross-sectional surveys of the Po River Delta study in 1980-1982 and in 1988-1991. Definition of "normal" was based on negative answers to questions on respiratory symptoms/diseases or recent infections, current/past tobacco smoking, and work exposure to noxious agents. Reference equations were derived separately by sex as linear regressions of body mass index (BMI = weight/height(2)), BMI-squared, height, height-squared, and age. Age entered all the models by natural cubic splines using two break points, except for the ratios FEV(1)/VC and FEV(1)/FVC. Random effects models were applied to adjust for the potential intrasubject correlation. BMI, along with height and age, appeared to be an important predictor, which was significantly associated with VC, FEV(1), FVC, FEV(1)/FVC, and PEF in both sexes, and with FEV(1)/VC and FEF(25-75) in females. Natural cubic splines provided smooth reference equation curves (no "jumps" or "angled points") over the entire age span, differently from the conventional reference equations. Thus, we recommend the use of smooth continuous equations for predicting lung function indexes, along with the inclusion of BMI in the equations.

  11. Quantitative measurements of cerebral blood flow in volume imaging PET scanners

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.J.; Shao, L.; Freifelder, R.; Karp, J.S.; Ragland, J.D. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-08-01

    Quantitative measurements of Cerebral Blood Flow (CBF) are performed in a volume imaging PET Scanner by means of moderate activity infusions. In equilibrium infusions, activations are measured by scanning over 10 minutes with 16 minute activations. Typical measured whole brain CBF values are 37{+-}8 ml/min/100g, close to the value of 42 ml/min/100g reported by other groups using this method. For ramped infusions, scanning over 4 minutes with 5 minute activations results in whole brain CBFs of 49 {+-} 9 ml/min/100g, close to the Kety and Schmidt value of 50 ml/min/100g. Both equilibrium and ramped infusion methods have been used to study face and word memory in human subjects. Both methods were able to detect significant activations in regions implicated in human memory. The authors conclude that precise quantitation of regional CBF is achieved using both methods, and that ramped infusions also provide accurate measures of CBF. In addition a simplified protocol for ramped infusion studies has been developed. In this method the whole brain tissue time activity curve generated from dynamic scanning is replaced by an appropriately scaled camera coincidence countrate curve. The resulting whole brain CBF values are only 7% different from the dynamic scan and fit results. Regional CBFs (rCBF) may then be generated from the summed image (4.25 minutes) using a count density vs flow lookup table.

  12. The Einstein-Λ flow on product manifolds

    Science.gov (United States)

    Fajman, David; Kröncke, Klaus

    2016-12-01

    We consider the vacuum Einstein flow with a positive cosmological constant {{Λ }} on spatial manifolds of product form M={M}1× {M}2. In dimensions n=\\dim M≥slant 4 we show the existence of continuous families of recollapsing models whenever at least one of the factors M 1 or M 2 admits a Riemannian Einstein metric with positive Einstein constant. We moreover show that these families belong to larger continuous families with models that have two complete time directions, i.e. do not recollapse. Complementarily, we show that whenever no factor has positive curvature, then any model in the product class expands in one time direction and collapses in the other. In particular, positive curvature of one factor is a necessary criterion for recollapse within this class. Finally, we relate our results to the instability of the Nariai solution in three spatial dimensions and point out why a similar construction of recollapsing models in that dimension fails. The present results imply that there exist different classes of initial data which exhibit fundamentally different types of long-time behavior under the Einstein-{{Λ }} flow whenever the spatial dimension is strictly larger than three. Moreover, this behavior is related to the spatial topology through the existence of Riemannian Einstein metrics of positive curvature.

  13. A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.

  14. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  15. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Science.gov (United States)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.

    2017-06-01

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  16. 1D and 2D Numerical Modeling for Solving Dam-Break Flow Problems Using Finite Volume Method

    Directory of Open Access Journals (Sweden)

    Szu-Hsien Peng

    2012-01-01

    Full Text Available The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.

  17. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images

    Science.gov (United States)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2015-09-01

    We study capillary trapping in porous media using direct pore-scale simulation of two-phase flow on micro-CT images of a Berea sandstone and a sandpack. The trapped non-wetting phase saturations are predicted by solving the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework to simulate primary drainage followed by water injection. Using these simulations, we analyse the effects of initial non-wetting-phase saturation, capillary number and flow direction on the residual saturation. The predictions from our numerical method are in agreement with published experimental measurements of capillary trapping curves. This shows that our direct simulation method can be used to elucidate the effect of pore structure and flow pattern of capillary trapping and provides a platform to study the physics of multiphase flow at the pore scale.

  18. Towards facilitating circular product life-cycle information flow via remanufacturing

    OpenAIRE

    Kurilova-Palisaitiene, Jelena; Lindkvist, Louise; Sundin, Erik

    2015-01-01

    In order to achieve a sustainable development, circular economy approaches and circular material flows are explored in industry. However, circular information flows remain essentially unestablished. The aim of this paper is to: 1) explore categories and types of product life-cycle information available for remanufacturing; 2) identify constraints for efficient product life-cycle information flow via remanufacturing; and 3) propose initiatives to facilitate product life-cycle information flow ...

  19. Managing complexity of product mix and production flow in configure-to-order production systems

    DEFF Research Database (Denmark)

    Myrodia, Anna; Bonev, Martin; Hvam, Lars

    2014-01-01

    In designing configure-to-order production systems for a growing product variety, companies are challenged with an increased complexity for obtaining high productivity levels and cost-effectiveness. In academia several optimization methods and conceptual frameworks for substituting components......, or increasing lot sizes and storage capacity have been proposed. Our study presents a practical framework for quantifying the impact of a two-way substitution at different production stages and its impact on storage and machinery utilization. In a case study we quantify the relation between substitution, lot...... sizing and capacity utilization, while maintaining the production capacity as well as the external product variety....

  20. Fabrics, Facies And Flow Through A Large-Volume Ignimbrite: Pampa De Oxaya, Chile.

    Science.gov (United States)

    Platzman, Ellen; Cooper, Frances

    2016-04-01

    Large volume pyroclastic currents form during some of the most destructive volcanic eruptions on the planet, yet because they are underrepresented in the geological record they remain poorly understood. The Miocene Oxaya ignimbrites, exposed along the western Andean slopes in northern Chile, form one of the largest ignimbrite provinces on earth. We use anisotropy of magnetic susceptibility (AMS) in conjunction with rock magnetic measurements to investigate flow behavior and depositional processes in one of the largest members of the Oxaya succession, the Cardones ignimbrite. Despite its prominence the location of the source caldera remains unknown and fundamental processes remain poorly constrained. During 2012 nearly 8km (7,773m) of core was recovered from the early Miocene ignimbrites in 11 holes at elevations ranging from 2336m to 3805m along the Andean escarpment east of Arica, Chile. The drill cores are remarkable in that they penetrate through the entirety of the ignimbrite sequence and into the basement below. Samples for this study were collected from a > 1 km long core drilled at an altitude 3692m. The core sampled 981 m of Cardones ignimbrite and 15 m of underlying sediments and volcaniclastics before penetrating 148 m of basement. Detailed measurements of the variation in bulk magnetic properties including natural remanent magnetization (NRM), susceptibility, ARM, and IRM, were used to monitor changes in concentration, composition and grainsize of the magnetic components though the ignimbrite. AMS in conjunction with detailed rock magnetic measurements were used to constrain flow processes. The data reveal a well-defined flow direction and systematic variations in flow processes with depth. Low field bulk magnetic susceptibility averages 3.2x10-3 SI. Rock magnetic studies and petrographic examination indicate that magnetite is likely to be the dominant magnetic phase although paramagnetic mineral phases also contribute to the magnetic fabric. The degree

  1. Radiofrequency and 2.45 GHz electron cyclotron resonance H- volume production ion sources

    Science.gov (United States)

    Tarvainen, O.; Peng, S. X.

    2016-10-01

    The volume production of negative hydrogen ions ({{{H}}}-) in plasma ion sources is based on dissociative electron attachment (DEA) to rovibrationally excited hydrogen molecules (H2), which is a two-step process requiring both, hot electrons for ionization, and vibrational excitation of the H2 and cold electrons for the {{{H}}}- formation through DEA. Traditionally {{{H}}}- ion sources relying on the volume production have been tandem-type arc discharge sources equipped with biased filament cathodes sustaining the plasma by thermionic electron emission and with a magnetic filter separating the main discharge from the {{{H}}}- formation volume. The main motivation to develop ion sources based on radiofrequency (RF) or electron cyclotron resonance (ECR) plasma discharges is to eliminate the apparent limitation of the cathode lifetime. In this paper we summarize the principles of {{{H}}}- volume production dictating the ion source design and highlight the differences between the arc discharge and RF/ECR ion sources from both, physics and technology point-of-view. Furthermore, we introduce the state-of-the-art RF and ECR {{{H}}}- volume production ion sources and review the challenges and future prospects of these yet developing technologies.

  2. Noninvasive blood flow measurement and quantification of shunt volume by cine magnetic resonance in congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Sieverding, L.; Apitz, J. (Tuebingen Univ. (Germany). Abt. fuer Paediatrische Kardiologie); Jung, W.I. (Tuebingen Univ. (Germany). Abt. fuer Paediatrische Kardiologie Tuebingen Univ. (Germany). Physikalisches Inst.); Klose, U. (Tuebingen Univ. (Germany). Medizinisches Strahleninstitut und Roentgenabteilung)

    1992-04-01

    Based on the phase difference method as described by Nayler et al. we developed a gradient-echo sequence, which refocuses flow related phase shifts even for infants with their higher peak velocity, higher acceleration and faster heart rates. A repetition time (TR) of 15 ms provides a high temporal resolution for dynamic studies. Modification of the flow-rephasing gradient-echo sequence in slice select direction leads to a defined phase shift and the resultant phase difference images allow blood flow measurements in the great arteries and the calculation of blood volume per heart cycle (flow volume) to assess left and right ventricular stroke volume. This can also be achieved by calculation of the ventricular volume from contiguous slices of the whole heart, but, this in excessive measuring times. Both methods were applied in 6 examinations of children with congenital heart diseases (1 pulmonary sling, 1 coarctation of the aorta, 1 ventricular septal defect, 3 atrial septal defects). The age of the patients ranged from 3 months to 13.4 years (mean age 4.9 years). The regression analyses of both methods show a high correlation for systemic flow (y=-0.98+1.08 x, r=0.99, SEE=2.59 ml) and for pulmonary flow (y=-1.40+0.96 x, r=0.99, SEE=4.70 ml). The comparison of flow calculated Qp:Qs ratio and chamber size calculated Qp:Qs ratio with data obtained by heart catheterization show also a regression line close to the line of identity (y=-0.01+1.04 x, r=0.98, SEE=0.15 and y=0.28+0.96 x, r=0.81, SEE=0.47, respectively). (orig.).

  3. FORMALIZING PRODUCT COST DISTORTION: The Impact of Volume-Related Allocation Bases on Cost Information

    Directory of Open Access Journals (Sweden)

    Johnny Jermias

    2003-09-01

    Full Text Available The purpose o f this study is to formally analyze product cost distortions resulting from the process of allocating costs to products based on Activity-Based Costing (ABC and the conventional product costing systems. The model developed in this paper rigorously shows the impact of treating costs that are not volume related as if they are. The model demonstrates that the source of product cost distortion is the difference between the proportion of driver used by each product in ABC and the proportion of the base used by the same product in the conventional costing systems. The difference arises because the conventional costing systems ignore the existence of batch-related and product-related costs. The model predicts a positive association between volume and size diversity with product cost distortions. When interaction between volume and size diversity exists, the distortion is either mitigated or exacerbated. The magnitude of the distortion is jointly determined by the size of the differences and the size of the total indirect costs.

  4. Estimation of the Lateral Ventricles Volumes from a 2D Image and Its Relationship with Cerebrospinal Fluid Flow

    Directory of Open Access Journals (Sweden)

    Chaarani Bader

    2013-01-01

    Full Text Available Purpose. This work suggests a fast estimation method of the lateral ventricles volume from a 2D image and then determines if this volume is correlated with the cerebrospinal fluid flow at the aqueductal and cerebral levels in neurodegenerative diseases. Materials and Methods. FForty-five elderly patients suffering from Alzheimer’s disease (19, normal pressure hydrocephalus (13, and vascular dementia (13 were involved and underwent anatomical and phase contrast MRI scans. Lateral ventricles and stroke volumes were assessed on anatomical and phase contrast scans, respectively. A common reference plane was used to calculate the lateral ventricles’ area on 2D images. Results. The largest volumes were observed in hydrocephalus patients. The linear regression between volumes and areas was computed, and a strong positive correlation was detected (R2=0.9. A derived equation was determined to represent the volumes for any given area. On the other hand, no significant correlations were detected between ventricles and stroke volumes (R2≤0.15. Conclusion. Lateral ventricles volumes are significantly proportional to the 2D reference section area and could be used for patients’ follow-up even if 3D images are unavailable. The cerebrospinal fluid fluctuations in brain disorders may depend on many physiological parameters other than the ventricular morphology.

  5. Hybrid finite volume scheme for a two-phase flow in heterogeneous porous media*

    Directory of Open Access Journals (Sweden)

    Brenner Konstantin

    2012-04-01

    Full Text Available We propose a finite volume method on general meshes for the numerical simulation of an incompressible and immiscible two-phase flow in porous media. We consider the case that can be written as a coupled system involving a degenerate parabolic convection-diffusion equation for the saturation together with a uniformly elliptic equation for the global pressure. The numerical scheme, which is implicit in time, allows computations in the case of a heterogeneous and anisotropic permeability tensor. The convective fluxes, which are non monotone with respect to the unknown saturation and discontinuous with respect to the space variables, are discretized by means of a special Godunov scheme. We prove the existence of a discrete solution which converges, along a subsequence, to a solution of the continuous problem. We present a number of numerical results in space dimension two, which confirm the efficiency of the numerical method. Nous proposons un schéma de volumes finis hybrides pour la discrétisation d’un problème d’écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d’une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d’un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l’on s’appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l’existence d’une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.

  6. Two-dimensional finite volume method for dam-break flow simulation

    Institute of Scientific and Technical Information of China (English)

    M.ALIPARAST

    2009-01-01

    A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan).

  7. Rheological Characterisation of the Flow Behaviour of Wood Plastic Composites in Consideration of Different Volume Fractions of Wood

    Science.gov (United States)

    Laufer, N.; Hansmann, H.; Koch, M.

    2017-01-01

    In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.

  8. Changes of Blood Flow Volume in the Superior Mesenteric Artery and Brachial Artery with Abdominal Thermal Stimulation

    Directory of Open Access Journals (Sweden)

    Shin Takayama

    2011-01-01

    Full Text Available In traditional Chinese medicine, moxibustion is a local thermal therapy that is used for several conditions. Quantifying the effects of moxibustion therapy has been difficult because the treatment temperature depends on the physician's experience, and the temperature distribution in the target area is not uniform. This prospective observational study aims to quantify the effect of local thermal stimulation to the abdomen. We developed a heat transfer control device (HTCD for local thermal stimulation. Twenty-four healthy subjects were enrolled and they underwent abdominal thermal stimulation to the para-umbilical region with the device for 20 min. Blood flow volume in the superior mesenteric artery (SMA and brachial artery (BA, the heart rate and the blood pressure were measured at rest, 15 min after starting thermal stimulation and 10, 20, 30 and 40 min after completing thermal stimulation. Blood flow parameters were measured by high-resolution ultrasound. In the SMA, blood flow volume was significantly increased during thermal stimulation (, as well as at 10 min ( and 20 min ( after stimulation. In the BA, blood flow volume decreased at 40 min after stimulation (. In conclusion we could quantify the effect of local thermal stimulation with an HTCD and high-resolution ultrasound. Thermal stimulation of the para-umbilical region increased blood flow in the SMA 20 min after stimulation in healthy subjects.

  9. Experimental Evaluation of the Applicability of Capacitive and Optical Measurement Methods for the Determination of Liquid Hydrogen Volume Flow

    Directory of Open Access Journals (Sweden)

    Gert HOLLER

    2009-08-01

    Full Text Available This paper presents a capacitive and a vision-based method for measuring the velocity of cryogenic hydrogen flows. The capacitive sensing principle exploits the spatial frequency signature of perturbations moving through a multi-electrode structure. This setup increases the sensitivity to dielectric permittivity variations compared to a simple two-electrode structure while preserving the ability to detect small perturbations. The vision-based method relies on a high-speed camera system that monitors the liquid hydrogen flow through an optical window yielding the flow velocity by cross-correlating subsequent images of the flow. Although a comprehensive analysis of the obtainable measurement uncertainty was not performed yet, current measurement results show the applicability of both principles for the non-invasive measurement of the volume flow of cryogenic fuels inside conveyor pipes.

  10. An adaptive control volume finite element method for simulation of multi-scale flow in heterogeneous porous media

    Science.gov (United States)

    Mostaghimi, P.; Percival, J. R.; Pavlidis, D.; Gorman, G.; Jackson, M.; Neethling, S.; Pain, C. C.

    2013-12-01

    Numerical simulation of multiphase flow in porous media is of importance in a wide range of applications in science and engineering. We present a novel control volume finite element method (CVFEM) to solve for multi-scale flow in heterogeneous geological formations. It employs a node centred control volume approach to discretize the saturation equation, while a control volume finite element method is applied for the pressure equation. We embed the discrete continuity equation into the pressure equation and assure that the continuity is exactly enforced. Anisotropic mesh adaptivity is used to accurately model the fine grained features of multiphase flow. The adaptive algorithm uses a metric tensor field based on solution error estimates to locally control the size and shape of elements in the metric. Moreover, it uses metric advection between adaptive meshes in order to predict the future required density of mesh thereby reducing numerical dispersion at the saturation front. The scheme is capable of capturing multi-scale heterogeneity such as those in fractured porous media through the use of several constraints on the element size in different regions of porous media. We show the application of our method for simulation of flow in some challenging benchmark problems. For flow in fractured reservoirs, the scheme adapts the mesh as the flow penetrates through the fracture and the matrix. The constraints for the element size within the fracture are smaller by several orders of magnitude than the generated mesh within the matrix. We show that the scheme captures the key multi-scale features of flow while preserving the geometry. We demonstrate that mesh adaptation can be used to accurately simulate flow in heterogeneous porous media at low computational cost.

  11. Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method

    CERN Document Server

    Syrakos, Alexandros; Alexandrou, Andreas N

    2016-01-01

    We investigate the performance of the finite volume method in solving viscoplastic flows. The creeping square lid-driven cavity flow of a Bingham plastic is chosen as the test case and the constitutive equation is regularised as proposed by Papanastasiou [J. Rheol. 31 (1987) 385-404]. It is shown that the convergence rate of the standard SIMPLE pressure-correction algorithm, which is used to solve the algebraic equation system that is produced by the finite volume discretisation, severely deteriorates as the Bingham number increases, with a corresponding increase in the non-linearity of the equations. It is shown that using the SIMPLE algorithm in a multigrid context dramatically improves convergence, although the multigrid convergence rates are much worse than for Newtonian flows. The numerical results obtained for Bingham numbers as high as 1000 compare favourably with reported results of other methods.

  12. Probability and volume of potential postwildfire debris flows in the 2012 Waldo Canyon Burn Area near Colorado Springs, Colorado

    Science.gov (United States)

    Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.

    2012-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 Waldo Canyon fire near Colorado Springs in El Paso County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and potential volume of debris flows along the drainage network of the burned area and to estimate the same for 22 selected drainage basins along U.S. Highway 24 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (29 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (42 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (48 millimeters). Estimated debris-flow probabilities at the pour points of the the drainage basins of interest ranged from less than 1 to 54 percent in response to the 2-year storm; from less than 1 to 74 percent in response to the 10-year storm; and from less than 1 to 82 percent in response to the 25-year storm. Basins and drainage networks with the highest probabilities tended to be those on the southern and southeastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Nine of the 22 drainage basins of interest have greater than a 40-percent probability of producing a debris flow in response to the 10-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 1,500 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce

  13. Variable thickness transient ground-water flow model. Volume 3. Program listings

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.

  14. Tensor product decomposition methods applied to complex flow data

    Science.gov (United States)

    von Larcher, Thomas; Klein, Rupert; Schneider, Reinhold; Wolf, Sebastian; Huber, Benjamin

    2017-04-01

    Low-rank multilevel approximation methods are an important tool in numerical analysis and in scientific computing. Those methods are often suited to attack high-dimensional problems successfully and allow very compact representations of large data sets. Specifically, hierarchical tensor product decomposition methods emerge as an promising approach for application to data that are concerned with cascade-of-scales problems as, e.g., in turbulent fluid dynamics. We focus on two particular objectives, that is representing turbulent data in an appropriate compact form and, secondly and as a long-term goal, finding self-similar vortex structures in multiscale problems. The question here is whether tensor product methods can support the development of improved understanding of the multiscale behavior and whether they are an improved starting point in the development of compact storage schemes for solutions of such problems relative to linear ansatz spaces. We present the reconstruction capabilities of a tensor decomposition based modeling approach tested against 3D turbulent channel flow data.

  15. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 1: Executive summary

    Science.gov (United States)

    1978-01-01

    The feasibility of the commercial manufacturing of pharmaceuticals in space is examined. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is presented. Antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon were studied. Production mass balances for antihemophilic factor, beta cells, and erythropoietin were compared for space verus ground operation.

  16. Gas productivity related to cleat volumes derived from focused resistivity tools in coalbed methane (CBM) fields

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.H.; Peeters, M.; Cloud, T.A.; Van Kirk, C.W. [Kerr McGee Rocky Mountain Corporation, Denver, CO (United States)

    2006-06-15

    Cleats are critical for coal-bed methane (CBM) production, but operators usually lack a viable method to determine productivity except for costly well tests. Wireline logs, run over the CBM deposits of the Drunkards Wash Unit located in the Uinta Basin of Utah, were used to develop a new method to relate productivity to the cleat volume. The latter is derived from a focused resistivity log and the wellbore-fluid resistivity. Induction tools are unsuitable for this method, because they are dominated by borehole effects in high resistivity coals and low resistivity mud. Moreover, they read too deep to be significantly affected by the substitution of formation fluid by borehole fluid in the cleats on which the method is based. The method was demonstrated by relating cleat volume to CBM gas productivity in 24 wells, an exercise that clearly separated good from poor producers.

  17. Intention to Purchase Products under Volume Discount Scheme: A Conceptual Model and Research Propositions

    Directory of Open Access Journals (Sweden)

    Mohammad Iranmanesh

    2014-12-01

    Full Text Available Many standard brands sell products under the volume discount scheme (VDS as more and more consumers are fond of purchasing products under this scheme. Despite volume discount being commonly practiced, there is a dearth of research, both conceptual and empirical, focusing on purchase characteristics factors and consumer internal evaluation concerning the purchase of products under VDS. To attempt to fill this void, this article develops a conceptual model on VDS with the intention of delineating the influence of the purchase characteristics factors on the consumer intention to purchase products under VDS and provides an explanation of their effects through consumer internal evaluation. Finally, the authors discuss the managerial implications of their research and offer guidelines for future empirical research.

  18. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 2: Technical analysis

    Science.gov (United States)

    1978-01-01

    A technical analysis on the feasibility of commercial manufacturing of pharmaceuticals in space is presented. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is described. The candidate products are antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon. Production mass balances for antihemophelic factor, beta cells, and erythropoietin were compared for space versus ground operation. A conceptual description of a multiproduct processing system for space operation is discussed. Production requirements for epidermal growth factor of alpha-1-antitrypsin and interferon are presented.

  19. Lean Production Control at a High-Variety, Low-Volume Parts Manufacturer

    NARCIS (Netherlands)

    Bokhorst, Jos A. C.; Slomp, Jannes

    2010-01-01

    Eaton Electric General Supplies, a parts manufacturing unit that supplies parts for Eaton's electrical business unit, implemented several lean control elements in its high-variety, low-volume production units. These control elements include a constant work-in-process mechanism to limit and control

  20. The SEA of the Future: Building the Productivity Infrastructure. Volume 3

    Science.gov (United States)

    Gross, Betheny, Ed.; Jochim, Ashley, Ed.

    2014-01-01

    "The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This volume, the third in the…

  1. The SEA of the Future: Uncovering the Productivity Promise of Rural Education. Volume 4

    Science.gov (United States)

    Gross, Betheny, Ed.; Jochim, Ashley, Ed.

    2015-01-01

    "The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This is the fourth volume in the…

  2. Lean Production Control at a High-Variety, Low-Volume Parts Manufacturer

    NARCIS (Netherlands)

    Bokhorst, Jos A. C.; Slomp, Jannes

    2010-01-01

    Eaton Electric General Supplies, a parts manufacturing unit that supplies parts for Eaton's electrical business unit, implemented several lean control elements in its high-variety, low-volume production units. These control elements include a constant work-in-process mechanism to limit and control t

  3. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method.

    Science.gov (United States)

    Brunette, J; Mongrain, R; Laurier, J; Galaz, R; Tardif, J C

    2008-11-01

    Blood flow dynamics has an important role in atherosclerosis initiation, progression, plaque rupture and thrombosis eventually causing myocardial infarction. In particular, shear stress is involved in platelet activation, endothelium function and secondary flows have been proposed as possible variables in plaque erosion. In order to investigate these three-dimensional flow characteristics in the context of a mild stenotic coronary artery, a whole volume PIV method has been developed and applied to a scaled-up transparent phantom. Experimental three-dimensional velocity data was processed to estimate the 3D shear stress distributions and secondary flows within the flow volume. The results show that shear stress reaches values out of the normal and atheroprotective range at an early stage of the obstructive pathology and that important secondary flows are also initiated at an early stage of the disease. The results also support the concept of a vena contracta associated with the jet in the context of a coronary artery stenosis with the consequence of higher shear stresses in the post-stenotic region in the blood domain than at the vascular wall.

  4. A reliable and consistent production technology for high volume compacted graphite iron castings

    Institute of Scientific and Technical Information of China (English)

    Liu Jincheng

    2014-01-01

    The demands for improved engine performance, fuel economy, durability, and lower emissions provide a continual chalenge for engine designers. The use of Compacted Graphite Iron (CGI) has been established for successful high volume series production in the passenger vehicle, commercial vehicle and industrial power sectors over the last decade. The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes, in China and globaly. The production window range for stable CGI is narrow and constantly moving. Therefore, any one step single addition of magnesium aloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings. The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity, without risking the formation of lfake graphite. The technology is currently being used in high volume Chinese foundry production. The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.

  5. Probability and volume of potential postwildfire debris flows in the 2012 High Park Burn Area near Fort Collins, Colorado

    Science.gov (United States)

    Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.

    2012-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 High Park fire near Fort Collins in Larimer County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and to estimate the same for 44 selected drainage basins along State Highway 14 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall (25 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall (43 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall (51 millimeters). Estimated debris-flow probabilities along the drainage network and throughout the drainage basins of interest ranged from 1 to 84 percent in response to the 2-year-recurrence, 1-hour-duration rainfall; from 2 to 95 percent in response to the 10-year-recurrence, 1-hour-duration rainfall; and from 3 to 97 in response to the 25-year-recurrence, 1-hour-duration rainfall. Basins and drainage networks with the highest probabilities tended to be those on the eastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Estimated debris-flow volumes range from a low of 1,600 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, roads, bridges, and culverts located both within and

  6. Simulation of combustion products flow in the Laval nozzle in the software package SIFIN

    Science.gov (United States)

    Alhussan, K. A.; Teterev, A. V.

    2017-07-01

    Developed specialized multifunctional software package SIFIN (Simulation of Internal Flow In the Nozzle) designed for the numerical simulation of the flow of products of combustion in a Laval nozzle. It allows to design the different profiles of the nozzles, to simulate flow of multicomponent media based energy release by burning, to study the effect of swirling flow of products of combustion at the nozzle settings, to investigate the nature of the expiry of the gas jet with varying degrees of pressure ratio.

  7. Origin and emplacement of the andesite of Burroughs Mountain, a zoned, large-volume lava flow at Mount Rainier, Washington, USA

    Science.gov (United States)

    Stockstill, Karen R.; Vogel, Thomas A.; Sisson, Thomas W.

    2003-01-01

    Burroughs Mountain, situated at the northeast foot of Mount Rainier, WA, exposes a large-volume (3.4 km 3) andesitic lava flow, up to 350 m thick and extending 11 km in length. Two sampling traverses from flow base to eroded top, over vertical sections of 245 and 300 m, show that the flow consists of a felsic lower unit (100 m thick) overlain sharply by a more mafic upper unit. The mafic upper unit is chemically zoned, becoming slightly more evolved upward; the lower unit is heterogeneous and unzoned. The lower unit is also more phenocryst-rich and locally contains inclusions of quenched basaltic andesite magma that are absent from the upper unit. Widespread, vuggy, gabbronorite-to-diorite inclusions may be fragments of shallow cumulates, exhumed from the Mount Rainier magmatic system. Chemically heterogeneous block-and-ash-flow deposits that conformably underlie the lava flow were the earliest products of the eruptive episode. The felsic-mafic-felsic progression in lava composition resulted from partial evacuation of a vertically-zoned magma reservoir, in which either (1) average depth of withdrawal increased, then decreased, during eruption, perhaps due to variations in effusion rate, or (2) magmatic recharge stimulated ascent of a plume that brought less evolved magma to shallow levels at an intermediate stage of the eruption. Pre-eruptive zonation resulted from combined crystallization-differentiation and intrusion(s) of less evolved magma into the partly crystallized resident magma body. The zoned lava flow at Burroughs Mountain shows that, at times, Mount Rainier's magmatic system has developed relatively large, shallow reservoirs that, despite complex recharge events, were capable of developing a felsic-upward compositional zonation similar to that inferred from large ash-flow sheets and other zoned lava flows.

  8. Estimation of volume flow in curved tubes based on analytical and computational analysis of axial velocity profiles

    Science.gov (United States)

    Verkaik, A. C.; Beulen, B. W. A. M. M.; Bogaerds, A. C. B.; Rutten, M. C. M.; van de Vosse, F. N.

    2009-02-01

    To monitor biomechanical parameters related to cardiovascular disease, it is necessary to perform correct volume flow estimations of blood flow in arteries based on local blood velocity measurements. In clinical practice, estimates of flow are currently made using a straight-tube assumption, which may lead to inaccuracies since most arteries are curved. Therefore, this study will focus on the effect of curvature on the axial velocity profile for flow in a curved tube in order to find a new volume flow estimation method. The study is restricted to steady flow, enabling the use of analytical methods. First, analytical approximation methods for steady flow in curved tubes at low Dean numbers (Dn) and low curvature ratios (δ) are investigated. From the results a novel volume flow estimation method, the cos θ-method, is derived. Simulations for curved tube flow in the physiological range (1≤Dn≤1000 and 0.01≤δ≤0.16) are performed with a computational fluid dynamics (CFD) model. The asymmetric axial velocity profiles of the analytical approximation methods are compared with the velocity profiles of the CFD model. Next, the cos θ-method is validated and compared with the currently used Poiseuille method by using the CFD results as input. Comparison of the axial velocity profiles of the CFD model with the approximations derived by Topakoglu [J. Math. Mech. 16, 1321 (1967)] and Siggers and Waters [Phys. Fluids 17, 077102 (2005)] shows that the derived velocity profiles agree very well for Dn≤50 and are fair for 50100), no analytical approximation method exists. In the position of the maximum axial velocity, a shift toward the inside of the curve is observed for low Dean numbers, while for high Dean numbers, the position of the maximum velocity is located at the outer curve. When the position of the maximum velocity of the axial velocity profile is given as a function of the Reynolds number, a "zero-shift point" is found at Re=21.3. At this point the shift in

  9. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.m [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Apartado Postal 55-535, Mexico D.F. 09340 (Mexico)

    2010-05-15

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  10. Comparison of two flow-based imaging methods to measure individual red blood cell area and volume.

    Science.gov (United States)

    Tomaiuolo, Giovanna; Rossi, Domenico; Caserta, Sergio; Cesarelli, Mario; Guido, Stefano

    2012-12-01

    The red blood cells (RBCs) population is characterized by a high heterogeneity in membrane area, cellular volume, and mechanical properties, mainly due to the variety of mechanical and chemical stresses that a red cell undergoes in its entire life span. Here, we provide the first simultaneous area and volume measurements of RBCs flowing in microcapillaries, by using high-speed video microscopy imaging and quantitative data processing based on image analysis techniques. Both confined and unbounded flow conditions (depending on the relative size of RBCs and microcapillary diameter) are investigated. The results are compared with micropipette experiments from the literature and data from Coulter counter routine clinical blood tests. Good agreement is found for RBC volume, especially in the case of confined flow conditions. Surface area measurements, which are lacking in the routine clinical test, are of special interest being a potential diagnostic parameter of altered cell deformability and aggregability. Overall, our results provide a novel flow methodology suitable for high-throughput measurements of RBC geometrical parameters, allowing one to overcome the limits of classical static methods, such as micropipette aspiration, which are not suitable for handling a large number of cells.

  11. [National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  12. A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes

    Directory of Open Access Journals (Sweden)

    Florian G. Strobl

    2015-02-01

    Full Text Available Static conditions represent an important shortcoming of many in vitro experiments on the cellular uptake of nanoparticles. Here, we present a versatile microfluidic device based on acoustic streaming induced by surface acoustic waves (SAWs. The device offers a convenient method for introducing fluid motion in standard cell culture chambers and for mimicking capillary blood flow. We show that shear rates over the whole physiological range in sample volumes as small as 200 μL can be achieved. A precise characterization method for the induced flow profile is presented and the influence of flow on the uptake of Pt-decorated CeO2 particles by endothelial cells (HMEC-1 is demonstrated. Under physiological flow conditions the particle uptake rates for this system are significantly lower than at low shear conditions. This underlines the vital importance of the fluidic environment for cellular uptake mechanisms.

  13. A 2D finite volume model for bebris flow and its application to events occurred in the Eastern Pyrenees

    Institute of Scientific and Technical Information of China (English)

    V.MEDINA; A.BATEMAN; M.H(U)RLIMANN

    2008-01-01

    FLATModel is a 2D finite volume code that contains several original approaches to improve debris-flow simulation.Firstly,FLATModel incorporates a "stop-and-go" technique in each cell to allow continuous collapses and remobilizations of the debris-flow mass.Secondly,flow velocity and consequently yield stress is directly associated with the type of rheology to improve boundary accuracy.Thirdly,a simple approach for entrainment is also included in the model to analyse the effect of basal erosion of debris flows.FLATMODEL was tested at several events that occurred in the Eastern Pyrenees and simulation results indicated that the model can represent rather well the different characteristics observed in the field.

  14. Wood Volume Production and Use of 10 Woody Species in Semiarid Zones of Northeastern Mexico

    Directory of Open Access Journals (Sweden)

    Rahim Foroughbakhch

    2012-01-01

    Full Text Available A research strategy was established to analyze the structure of timber trees in terms of forest productivity (volume and wood density of 10 species. The native species Acacia farnesiana, Acacia schaffneri, Bumelia celastrina, Cercidium macrun, Condalia hookeri, Ebenopsis ebano, Helietta parvifolia, and Prosopis laevigata and the exotic species Eucalyptus camaldulensis and Leucaena leucocephala were chosen due to their ecological and economic importance to the rural villages of northeastern Mexico. Measurements of different growth parameters and volume of trees were evaluated. The introduced species E. camaldulensis and L. leucocephala showed the best performance in wood volume production per tree and per hectare when compared to the native species. Likewise, among the native species, E. ebano, P. laevigata, C. hookeri, and A. farnesiana tended to show better characteristics in terms of wood volume production in comparison to H. parvifolia, A. schaffneri, C. macrum, and B. celastrina. Results showed a high diversity on the properties studied. The high biomass produced by most of the species considered in this study revealed their great energetic potential when used as wood and firewood or vegetal charcoal.

  15. Simultaneous visualization of anatomical and functional 3D data by combining volume rendering and flow visualization

    Science.gov (United States)

    Schafhitzel, Tobias; Rößler, Friedemann; Weiskopf, Daniel; Ertl, Thomas

    2007-03-01

    Modern medical imaging provides a variety of techniques for the acquisition of multi-modality data. A typical example is the combination of functional and anatomical data from functional Magnetic Resonance Imaging (fMRI) and anatomical MRI measurements. Usually, the data resulting from each of these two methods is transformed to 3D scalar-field representations to facilitate visualization. A common method for the visualization of anatomical/functional multi-modalities combines semi-transparent isosurfaces (SSD, surface shaded display) with other scalar visualization techniques like direct volume rendering (DVR). However, partial occlusion and visual clutter that typically result from the overlay of these traditional 3D scalar-field visualization techniques make it difficult for the user to perceive and recognize visual structures. This paper addresses these perceptual issues by a new visualization approach for anatomical/functional multi-modalities. The idea is to reduce the occlusion effects of an isosurface by replacing its surface representation by a sparser line representation. Those lines are chosen along the principal curvature directions of the isosurface and rendered by a flow visualization method called line integral convolution (LIC). Applying the LIC algorithm results in fine line structures that improve the perception of the isosurface's shape in a way that it is possible to render it with small opacity values. An interactive visualization is achieved by executing the algorithm completely on the graphics processing unit (GPU) of modern graphics hardware. Furthermore, several illumination techniques and image compositing strategies are discussed for emphasizing the isosurface structure. We demonstrate our method for the example of fMRI/MRI measurements, visualizing the spatial relationship between brain activation and brain tissue.

  16. Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods

    Science.gov (United States)

    Bilger, C.; Aboukhedr, M.; Vogiatzaki, K.; Cant, R. S.

    2017-09-01

    Two principal methods have been used to simulate the evolution of two-phase immiscible flows of liquid and gas separated by an interface. These are the Level-Set (LS) method and the Volume of Fluid (VoF) method. Both methods attempt to represent the very sharp interface between the phases and to deal with the large jumps in physical properties associated with it. Both methods have their own strengths and weaknesses. For example, the VoF method is known to be prone to excessive numerical diffusion, while the basic LS method has some difficulty in conserving mass. Major progress has been made in remedying these deficiencies, and both methods have now reached a high level of physical accuracy. Nevertheless, there remains an issue, in that each of these methods has been developed by different research groups, using different codes and most importantly the implementations have been fine tuned to tackle different applications. Thus, it remains unclear what are the remaining advantages and drawbacks of each method relative to the other, and what might be the optimal way to unify them. In this paper, we address this gap by performing a direct comparison of two current state-of-the-art variations of these methods (LS: RCLSFoam and VoF: interPore) and implemented in the same code (OpenFoam). We subject both methods to a pair of benchmark test cases while using the same numerical meshes to examine a) the accuracy of curvature representation, b) the effect of tuning parameters, c) the ability to minimise spurious velocities and d) the ability to tackle fluids with very different densities. For each method, one of the test cases is chosen to be fairly benign while the other test case is expected to present a greater challenge. The results indicate that both methods can be made to work well on both test cases, while displaying different sensitivity to the relevant parameters.

  17. Numerical study of cesium effects on negative ion production in volume sources

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasa, Osamu; Niitani, Eiji [Yamaguchi Univ., Ube (Japan). Faculty of Engineering

    1997-02-01

    Effects of cesium vapor injection of H{sup -} production in a tandem negative ion source are studied numerically as a function of plasma parameters. Model calculation is done by solving a set of particle balance equations in a steady-state hydrogen discharge plasmas. Here, the results which focus on gas pressure and electron temperature dependences of H{sup -} volume production are presented and discussed. With including H{sup -} surface production processes caused by both H atoms and positive hydrogen ions, enhancement of H{sup -} production and pressure dependence of H{sup -} production observed experimentally are well reproduced in the model. To enhance H{sup -} production, however, so-called electron cooling is not so effective if plasma parameters are initially optimized with the use of magnetic filter. (author)

  18. Small airway dysfunction and flow and volume bronchodilator responsiveness in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Pisi R

    2015-06-01

    Full Text Available Roberta Pisi,1 Marina Aiello,1 Andrea Zanini,2 Panagiota Tzani,1 Davide Paleari,3 Emilio Marangio,1 Antonio Spanevello,2,4 Gabriele Nicolini,5 Alfredo Chetta1 1Department of Clinical and Experimental Medicine, University of Parma, Parma, 2Division of Pneumology, IRCCS Rehabilitation Institute of Tradate, Salvatore Maugeri Foundation, Tradate, 3Medical Department, Chiesi Farmaceutici SpA, Parma, 4Department of Clinical and Experimental Medicine, University of Insubria, Varese, 5Corporate Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy Background: We investigated whether a relationship between small airways dysfunction and bronchodilator responsiveness exists in patients with chronic obstructive pulmonary disease (COPD.Methods: We studied 100 (20 female; mean age: 68±10 years patients with COPD (forced expiratory volume in 1 second [FEV1]: 55% pred ±21%; FEV1/forced vital capacity [FVC]: 53%±10% by impulse oscillometry system. Resistance at 5 Hz and 20 Hz (R5 and R20, in kPa·s·L-1 and the fall in resistance from 5 Hz to 20 Hz (R5 – R20 were used as indices of total, proximal, and peripheral airway resistance; reactance at 5 Hz (X5, in kPa·s·L-1 was also measured. Significant response to bronchodilator (salbutamol 400 µg was expressed as absolute (≥0.2 L and percentage (≥12% change relative to the prebronchodilator value of FEV1 (flow responders, FRs and FVC (volume responders, VRs.Results: Eighty out of 100 participants had R5 – R20 >0.03 kPa·s·L-1 (> upper normal limit and, compared to patients with R5 – R20 ≤0.030 kPa·s·L-1, showed a poorer health status, lower values of FEV1, FVC, FEV1/FVC, and X5, along with higher values of residual volume/total lung capacity and R5 (P<0.05 for all comparisons. Compared to the 69 nonresponders and the 8 FRs, the 16 VRs had significantly higher R5 and R5 – R20 values (P<0.05, lower X5 values (P<0.05, and greater airflow obstruction and lung

  19. Volume Measurement Algorithm for Food Product with Irregular Shape using Computer Vision based on Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-11-01

    Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.

  20. Analysis of poultry meat production volume in Serbia from 1984. to 2009

    Directory of Open Access Journals (Sweden)

    Glamočlija Nataša

    2013-01-01

    Full Text Available Poultry meat production has doubled in past 40 years in the world, with the tendency of constant growth, and its production volume exceeds beef, but is behind pork production. For poultry meat production it is typical that its annual increase exceeds pork as well as beef production. The biggest producers of poultry meat are Asia, North and South America and Europe. The most significant category of poultry is meat of young chicken (broilers. Cobb, Ross and Hubbard broiler provenance are most common in Serbia. The objective of this investigation was to analyse poultry meat production volume in Serbia, observed during three six-years periods - A (1984-1989, B (1994-1999 i C (2004-2009. For data processing there were used the data obtained from Statistical Yearbooks of Serbia from 1984. to 2009. It was found out that average poultry meat production in period A was 108,33 ± 7,00 thousand tonnes, than it statistically significantly decreased and in period B it was 76,67±5,54 thousand tonnes, and finally in period C it was 72,17± 5,78 thousand tonnes. [Projekat Ministarstva nauke Republike Srbije, br. TR 31034

  1. Building block style recipes for productivity improvement in OPC, RET and ILT flows

    Science.gov (United States)

    Wu, Linghui; Kwa, Denny; Wan, Jinyin; Wang, Tom; St. John, Matt; Deeth, Steven; Chen, Xiaohui; Cecil, Tom; Meng, Xiaodong; Lucas, Kevin

    2016-03-01

    Traditional model-based Optical Proximity Correction (OPC) and rule-based Resolution Enhancement Technology (RET) methods have been the workhorse mask synthesis methods in volume production for logic and memory devices for more than 15 years. Rule-based OPC methods have been in standard use for over 20 years now. With continuous technical enhancements, these methods have proven themselves robust, flexible and fast enough to meet many of the technical needs of even the most advanced nodes. Inverse Lithography Technology (ILT) methods are well known to have strong benefits in finding flexible mask pattern solutions to improve process window for the most advanced design locations where traditional methods are not sufficient. However, OPC/RET requirements at each node have changed radically in the last 20 years beyond just technical requirements. The volume of engineering work to be done has also skyrocketed. The number of device layers which need OPC/RET can be 10X higher than in earlier nodes. Additionally, the number of mask layers per device layer is often 2X or more times higher with multiple patterning. Finally, the number of features to correct per mask increases ~2X with each node. These factors led to a large increase in the number of OPC engineers needed to develop the complex new OPC/RET recipes for advanced nodes. In this paper, we describe new developments which significantly improve the productivity of OPC engineers to deploy Rule Based OPC (RBOPC), Model Based OPC (MBOPC), AF, and ILT recipes in modern manufacturing flows. In addition to technical improvements such as novel multiple segment hotspot fixing solvers and ILT hot-spot fixing necessary to support correction needs, we have re-architected the entire flow based on how OPC engineers now develop and maintain OPC/RET recipes. The re-architecture of the flow takes advantages of more recent developments in modular and structured programming methods which are known to benefit ease engineering software

  2. Large volume production of large size GaAs substrates and epitaxial wafers for microwave devices

    OpenAIRE

    Otoki, Y.; Kamogawa, H.; Ohnishi, M.; Inada, T.; Kashiwa, M.; Sakaguchi, H.

    1999-01-01

    Recent mass production techniques for LEC substrates and MOVPE wafers for microwave devices are described. Huge GaAs semi-insulating ingots (150mm diam., 310mm long) was obtained by Multi-hot-zone very large size pullar. Three step boule annealing and fully-automated process enabled mass production of the large size substrates. Epitaxiial wafers with abrupt hetero interface, excellent uniformity and reproducibility are producing largely by face down horizontal flow type MOVPE system, which ca...

  3. 77 FR 28281 - Withdrawal of Revocation of TSCA Section 4 Testing Requirements for One High Production Volume...

    Science.gov (United States)

    2012-05-14

    ... issue of March 16, 2012 (77 FR 15609) (FRL-9335-6). If you have questions regarding the applicability of... One High Production Volume Chemical Substance AGENCY: Environmental Protection Agency (EPA). ACTION... production volume chemicals (HPV1). * * * * * (j) * * * Table 2--Chemical Substances and Testing...

  4. 40 CFR Appendix III to Part 86 - Constant Volume Sampler Flow Calibration

    Science.gov (United States)

    2010-07-01

    ... monoxide is poisonous!). Critical flow orifice devices can also be used for constant flow metering. 2... fittings on the intake side of sample transfer pumps on both the CVS and analyzer console....

  5. Variant of a volume-of-fluid method for surface tension-dominant two-phase flows

    Indian Academy of Sciences (India)

    G Biswas

    2013-12-01

    The capabilities of the volume-of-fluid method for the calculation of surface tension-dominant two-phase flows are explained. The accurate calculation of the interface remains a problem for the volume-of-fluid method if the density ratios of the fluids in different phases are high. The simulations of bubble growth is performed in water at near critical pressure for different degrees of superheat using combined levelset and volume-of fluid (CLSVOF) method. The effect of superheat on the frequency of bubble formation was analyzed. A deviation from the periodic bubble release is observed in the case of superheat of 20 K in water. The vapor-jet-like columnar structure is observed. Effect of heat flux on the slender vapor column has also been explained.

  6. Capabilities for managing high-volume production of electric engineering equipment at the Electrochemical Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Podlednev, V.M.

    1996-04-01

    The Electromechanical Production Plant is essentially a research center with experimental facilities and power full testing base. Major products of the plant today include heat pipes and devices of their basis of different functions and power from high temperature ranges to cryogenics. This report describes work on porous titanium and carbon-graphite current collectors, electrocatalyst synthesis, and electrocatalyst applications.

  7. Sparsest cuts and concurrent flows in product graphs

    NARCIS (Netherlands)

    Bonsma, Paul

    2004-01-01

    A cut [S.S] is a sparsest cut of a graph G if its cut value [S][S]/[S.S] is maximum (this is the reciprocal of the well-known edge-density of the cut). In the (undirected) uniform concurrent flow problem on G, between every vertex pair of G flow paths with a total flow of 1 have to be established. T

  8. Cerebral blood volume and blood flow at varying arterial carbon dioxide tension levels in rabbits during propofol anesthesia.

    Science.gov (United States)

    Cenic, A; Craen, R A; Howard-Lech, V L; Lee, T Y; Gelb, A W

    2000-06-01

    There are little data on the effects of propofol on cerebral blood volume (CBV). We studied the effects of changes in PaCO(2) on CBV and cerebral blood flow (CBF) during propofol anesthesia in eight New Zealand white rabbits. We also investigated the effects of propofol over time on CBV and CBF during normocapnia (control group). At normocapnia, the mean (+/- SD) CBV and CBF values were 2.41 +/- 0.68 mL/100 g and 56 +/- 28 mL/100 g/min, respectively,. When PaCO(2) was reduced from 41 to 27 mm Hg, no significant change in either CBV or CBF was observed (P > 0.10). However, increasing PaCO(2) from 41 to 58 mm Hg resulted in a 30% increase in CBV (3.08 +/- 0.86 mL/100 g, P 0.10) during 2 h of propofol anesthesia. These results indicate that, during propofol anesthesia, cerebrovascular reactivity of blood flow and blood volume is maintained during hypercapnia but is markedly diminished during hypocapnia. During propofol anesthesia in rabbits with normal brains, a reduction in the arterial carbon dioxide level may not always be accompanied by a reduction in brain blood flow and blood volume.

  9. A hybrid vertex-centered finite volume/element method for viscous incompressible flows on non-staggered unstructured meshes

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Ru-Xun Liu; Hong Li

    2012-01-01

    This paper proposes a hybrid vertex-centered finite volume/finite element method for sol ution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.

  10. A Full Automatic Device for Sampling Small Solution Volumes in Photometric Titration Procedure Based on Multicommuted Flow System

    Science.gov (United States)

    Borges, Sivanildo S.; Vieira, Gláucia P.; Reis, Boaventura F.

    2007-01-01

    In this work, an automatic device to deliver titrant solution into a titration chamber with the ability to determine the dispensed volume of solution, with good precision independent of both elapsed time and flow rate, is proposed. A glass tube maintained at the vertical position was employed as a container for the titrant solution. Electronic devices were coupled to the glass tube in order to control its filling with titrant solution, as well as the stepwise solution delivering into the titration chamber. The detection of the titration end point was performed employing a photometer designed using a green LED (λ=545 nm) and a phototransistor. The titration flow system comprised three-way solenoid valves, which were assembled to allow that the steps comprising the solution container loading and the titration run were carried out automatically. The device for the solution volume determination was designed employing an infrared LED (λ=930 nm) and a photodiode. When solution volume delivered from proposed device was within the range of 5 to 105 μl, a linear relationship (R = 0.999) between the delivered volumes and the generated potential difference was achieved. The usefulness of the proposed device was proved performing photometric titration of hydrochloric acid solution with a standardized sodium hydroxide solution and using phenolphthalein as an external indicator. The achieved results presented relative standard deviation of 1.5%. PMID:18317510

  11. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  12. Recovery of Navy distillate fuel from reclaimed product. Volume I. Technical discussion

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). The first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 referenvces and abstracts. This appendix, because of its volume, has been published separately as Volume 2. 18 figures, 4 tables.

  13. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  14. An abbreviated repeat dose and reproductive/developmental toxicity test for high production volume chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.A.; Bevan, C.; Beyer, B.K. (Exxon Biomedical Sciences, Inc., East Millstone, NJ (United States))

    1992-08-01

    A novel protocol is described for obtaining preliminary data on repeated dose systemic effects and reproductive/developmental toxicity. The test protocol was developed by a group of experts at the request of the U.S. Environmental Protection Agency (EPA) for use as part of a Screening Information Data Set on high production volume chemicals. Interest in this protocol is shared by several regulatory agencies, including the Organization for Economic Cooperation, the European Community, and the EPA. To validate the study protocol, ethylene glycol monomethyl ether (EGME) was used. After a dosing period of approximately 6 weeks, EGME showed both systemic and reproductive/developmental effects similar to those previously reported using standard protocols. Thus, this test protocol may be used as a screening tool for high production volume chemicals.

  15. Wood Volume Production and Use of 10 Woody Species in Semiarid Zones of Northeastern Mexico

    OpenAIRE

    Rahim Foroughbakhch; Artemio Carrillo Parra; Jorge Luis Hernández Piñero; Marco Antonio Alvarado Vázquez; Alejandra Rocha Estrada; Ma Luisa Cardenas

    2012-01-01

    A research strategy was established to analyze the structure of timber trees in terms of forest productivity (volume and wood density) of 10 species. The native species Acacia farnesiana, Acacia schaffneri, Bumelia celastrina, Cercidium macrun, Condalia hookeri, Ebenopsis ebano, Helietta parvifolia, and Prosopis laevigata and the exotic species Eucalyptus camaldulensis and Leucaena leucocephala were chosen due to their ecological and economic importance to the rural villages of northeastern M...

  16. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation

    Science.gov (United States)

    Jägermeyr, Jonas; Pastor, Amandine; Biemans, Hester; Gerten, Dieter

    2017-07-01

    Safeguarding river ecosystems is a precondition for attaining the UN Sustainable Development Goals (SDGs) related to water and the environment, while rigid implementation of such policies may hamper achievement of food security. River ecosystems provide life-supporting functions that depend on maintaining environmental flow requirements (EFRs). Here we establish gridded process-based estimates of EFRs and their violation through human water withdrawals. Results indicate that 41% of current global irrigation water use (997 km3 per year) occurs at the expense of EFRs. If these volumes were to be reallocated to the ecosystems, half of globally irrigated cropland would face production losses of >=10%, with losses of ~20-30% of total country production especially in Central and South Asia. However, we explicitly show that improvement of irrigation practices can widely compensate for such losses on a sustainable basis. Integration with rainwater management can even achieve a 10% global net gain. Such management interventions are highlighted to act as a pivotal target in supporting the implementation of the ambitious and seemingly conflicting SDG agenda.

  17. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    Energy Technology Data Exchange (ETDEWEB)

    Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  18. HTGR accident initiation and progression analysis status report. Volume V. AIPA fission product source terms

    Energy Technology Data Exchange (ETDEWEB)

    Alberstein, D.; Apperson, C.E. Jr.; Hanson, D.L.; Myers, B.F.; Pfeiffer, W.W.

    1976-02-01

    The primary objective of the Accident Initiation and Progression Analysis (AIPA) Program is to provide guidance for high-temperature gas-cooled reactor (HTGR) safety research and development. Among the parameters considered in estimating the uncertainties in site boundary doses are uncertainties in fission product source terms generated under normal operating conditions, i.e., fuel body inventories, circulating coolant activity, total plateout activity in the primary circuit, and plateout distributions. The volume presented documents the analyses of these source term uncertainties. The results are used for the detailed consequence evaluations, and they provide the basis for evaluation of fission products important for HTGR maintenance and shielding.

  19. Product specification documentation standard and Data Item Descriptions (DID). Volume of the information system life-cycle and documentation standards, volume 3

    Science.gov (United States)

    Callender, E. David; Steinbacher, Jody

    1989-01-01

    This is the third of five volumes on Information System Life-Cycle and Documentation Standards which present a well organized, easily used standard for providing technical information needed for developing information systems, components, and related processes. This volume states the Software Management and Assurance Program documentation standard for a product specification document and for data item descriptions. The framework can be applied to any NASA information system, software, hardware, operational procedures components, and related processes.

  20. Waste-aware fluid volume assignment for flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Schneider, Alexander Rüdiger; Pop, Paul; Madsen, Jan

    2017-01-01

    the fluid volume assignment for each operation of the application, such that the FUs volume requirements are satisfied, while over- and underflow are avoided and the total volume of fluid used is minimized. We propose an algorithm for this fluid assignment problem. Compared to previous work, our method...... is able to minimize the fluid consumption through optimal fluid assignment and reuse of fluid waste. Due to the algorithm's low complexity, fluid requirements can also be calculated during runtime for error recovery or statically unknown cases....

  1. Semi-automatic simulation model generation of virtual dynamic networks for production flow planning

    Science.gov (United States)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2016-08-01

    Computer modelling, simulation and visualization of production flow allowing to increase the efficiency of production planning process in dynamic manufacturing networks. The use of the semi-automatic model generation concept based on parametric approach supporting processes of production planning is presented. The presented approach allows the use of simulation and visualization for verification of production plans and alternative topologies of manufacturing network configurations as well as with automatic generation of a series of production flow scenarios. Computational examples with the application of Enterprise Dynamics simulation software comprising the steps of production planning and control for manufacturing network have been also presented.

  2. How to achieve synergy between volume replacement and filling products for global facial rejuvenation.

    Science.gov (United States)

    Raspaldo, Hervé; Aziza, Richard; Belhaouari, Lakhdar; Berros, Philippe; Body, Sylvie; Galatoire, Olivier; Le Louarn, Claude; Michaud, Thierry; Niforos, François; Rousseaux, Isabelle; Runge, Marc; Taieb, Maryna

    2011-04-01

    The objective of this paper is to provide an expert consensus regarding facial rejuvenation using a combination of volume replacement (Juvéderm(®) VOLUMA(®)), filling products (Juvéderm(®) Ultra product line) and botulinum toxin. The Juvéderm product line exploits innovative 3-D technology, producing a range of cohesive, homogenous gels that produce predictable, long-lasting and natural results. The products are easy to use by practitioners and are well-tolerated by patients, and used in combination can provide additional benefits not achieved with one product alone. An assessment of facial anatomy and consideration of the aging process, as well as available treatment options, are also addressed in determining the best combination of products to use. Outcomes from a questionnaire and workshop sessions focusing on specific aspects of use of the Juvéderm product line and botulinum toxin in daily clinical practice are discussed, and recommendations for product use following debate amongst the experts are provided.

  3. PRODUCTION OF SOUND BY UNSTEADY THROTTLING OF FLOW INTO A RESONANT CAVITY, WITH APPLICATION TO VOICED SPEECH.

    Science.gov (United States)

    Howe, M S; McGowan, R S

    2011-04-01

    An analysis is made of the sound generated by the time-dependent throttling of a nominally steady stream of air through a small orifice into a flow-through resonant cavity. This is exemplified by the production of voiced speech, where air from the lungs enters the vocal tract through the glottis at a time variable volume flow rate Q(t) controlled by oscillations of the glottis cross-section. Voicing theory has hitherto determined Q from a heuristic, reduced complexity 'Fant' differential equation (G. Fant, Acoustic Theory of Speech Production, 1960). A new self-consistent, integro-differential form of this equation is derived in this paper using the theory of aerodynamic sound, with full account taken of the back-reaction of the resonant tract on the glottal flux Q. The theory involves an aeroacoustic Green's function (G) for flow-surface interactions in a time-dependent glottis, so making the problem non-self-adjoint. In complex problems of this type it is not usually possible to obtain G in an explicit analytic form. The principal objective of the paper is to show how the Fant equation can still be derived in such cases from a consideration of the equation of aerodynamic sound and from the adjoint of the equation governing G in the neighbourhood of the 'throttle'. The theory is illustrated by application to the canonical problem of throttled flow into a Helmholtz resonator.

  4. A σ-coordinate model for 3D free-surface flows using an unstructured finite-volume technique

    Science.gov (United States)

    Uh Zapata, Miguel

    2016-11-01

    The aim of this work is to develop a numerical solution of three-dimensional free-surface flows using a σ-coordinate model, a projection method and an unstructured finite-volume technique. The coordinate transformation is used in order to overcome difficulties arising from free surface elevation and irregular geometry. The projection method consists to combine the momentum and continuity equations in order to establish a Poisson-type equation for the non-hydrostatic pressure. A cell-centered finite volume method with a triangular mesh in the horizontal direction is used to simulate the flows with free-surfaces, in which the average values of conserved variables are stored at the centre of each element. A parallel algorithm is also presented for the finite volume discretization of the 3D Navier-Stokes equations. The proposed parallel method is formulated by using a multi-color SOR method, a block domain decomposition and interprocessor data communication techniques with Message Passing Interface. The model has been validated by several benchmarks which numerical simulations are in good agreement with the corresponding analytical and existing experimental results.

  5. Indication of BOLD-specific venous flow-volume changes from precisely controlled hyperoxic vs. hypercapnic calibration.

    Science.gov (United States)

    Mark, Clarisse I; Pike, G Bruce

    2012-04-01

    Deriving cerebral metabolic rate of oxygen consumption (CMRO(2)) from blood oxygenation level-dependent (BOLD) signals involves a flow-volume parameter (α), reflecting total cerebral blood volume changes, and a calibration constant (M). Traditionally, the former is assumed a fixed value and the latter is measured under alterations in fixed inspired fractional concentrations of carbon dioxide. We recently reported on reductions in M-variability via precise control of end-tidal pressures of both hypercapnic (HC) and hyperoxic (HO) gases. In light of these findings, our aim was to apply the improved calibration alternatives to neuronal activation, making use of their distinct vasoactive natures to evaluate the α-value. Nine healthy volunteers were imaged at 3 T while simultaneously measuring BOLD and arterial spin-labeling signals during controlled, graded, HC, and HO, followed by visual (VC) and sensorimotor cortices (SMC) activation. On the basis of low M- and CMRO(2)-variability, the comparison of these calibration alternatives accurately highlighted a reduced venous flow-volume relationship (α=0.16±0.02, with α(VC)=0.12±0.04, and α(SMC)=0.20±0.02), as appropriate for BOLD modeling.

  6. Dynamic noise correction for IVUS quantitative volume blood flow: methods and numerical validation.

    NARCIS (Netherlands)

    Lupotti, F.A.; Korte, C.L. de; Mastik, F.; Steen, A.F.W. van der

    2002-01-01

    In recent years, a new method to measure transverse blood flow based on the decorrelation of the radio-frequency (RF) signals, has been developed. Transverse blood flow estimation may be influenced by noise. In this paper, we investigated a new correlation-based method for noise correction. The deco

  7. A calculation procedure for viscous flow in turbomachines, volume 3. [computer programs

    Science.gov (United States)

    Khalil, I.; Sheoran, Y.; Tabakoff, W.

    1980-01-01

    A method for analyzing the nonadiabatic viscous flow through turbomachine blade passages was developed. The field analysis is based upon the numerical integration of the full incompressible Navier-Stokes equations, together with the energy equation on the blade-to-blade surface. A FORTRAN IV computer program was written based on this method. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The flow may be axial, radial or mixed and there may be a change in stream channel thickness in the through-flow direction. The inputs required for two FORTRAN IV programs are presented. The first program considers laminar flows and the second can handle turbulent flows. Numerical examples are included to illustrate the use of the program, and to show the results that are obtained.

  8. Tracking chemicals in products around the world: introduction of a dynamic substance flow analysis model and application to PCBs.

    Science.gov (United States)

    Li, Li; Wania, Frank

    2016-09-01

    Dynamically tracking flows and stocks of problematic chemicals in products (CiPs) in the global anthroposphere is essential to understanding their environmental fates and risks. The complex behavior of CiPs during production, use and waste disposal makes this a challenging task. Here we introduce and describe a dynamic substance flow model, named Chemicals in Products - Comprehensive Anthropospheric Fate Estimation (CiP-CAFE), which facilitates the quantification of time-variant flows and stocks of CiPs within and between seven interconnected world regions and the generation of global scale emission estimates. We applied CiP-CAFE to polychlorinated biphenyls (PCBs), first to evaluate its ability to reproduce previously reported global-scale atmospheric emission inventories and second to illustrate its potential applications and merits. CiP-CAFE quantifies the pathways of PCBs during production, use and waste disposal stages, thereby deducing the temporal evolution of in-use and waste stocks and identifying their long-term final sinks. Time-variant estimates of PCB emissions into air, water and soil can be attributed to different processes and be fed directly into a global fate and transport model. By capturing the international movement of PCBs as technical chemicals, and in products and waste, CiP-CAFE reveals that the extent of global dispersal caused by humans is larger than that occurring in the natural environment. Sensitivity analysis indicates that the model output is most sensitive to the PCB production volume and the lifetime of PCB-containing products, suggesting that a shortening of that lifetime is key to reducing future PCB emissions.

  9. A Three-Dimensional, Immersed Boundary, Finite Volume Method for the Simulation of Incompressible Heat Transfer Flows around Complex Geometries

    Directory of Open Access Journals (Sweden)

    Hassan Badreddine

    2017-01-01

    Full Text Available The current work focuses on the development and application of a new finite volume immersed boundary method (IBM to simulate three-dimensional fluid flows and heat transfer around complex geometries. First, the discretization of the governing equations based on the second-order finite volume method on Cartesian, structured, staggered grid is outlined, followed by the description of modifications which have to be applied to the discretized system once a body is immersed into the grid. To validate the new approach, the heat conduction equation with a source term is solved inside a cavity with an immersed body. The approach is then tested for a natural convection flow in a square cavity with and without circular cylinder for different Rayleigh numbers. The results computed with the present approach compare very well with the benchmark solutions. As a next step in the validation procedure, the method is tested for Direct Numerical Simulation (DNS of a turbulent flow around a surface-mounted matrix of cubes. The results computed with the present method compare very well with Laser Doppler Anemometry (LDA measurements of the same case, showing that the method can be used for scale-resolving simulations of turbulence as well.

  10. Adaptive Mesh Refinement for a Finite Volume Method for Flow and Transport of Radionuclides in Heterogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Amaziane Brahim

    2014-07-01

    Full Text Available In this paper, we consider adaptive numerical simulation of miscible displacement problems in porous media, which are modeled by single phase flow equations. A vertex-centred finite volume method is employed to discretize the coupled system: the Darcy flow equation and the diffusion-convection concentration equation. The convection term is approximated with a Godunov scheme over the dual finite volume mesh, whereas the diffusion-dispersion term is discretized by piecewise linear conforming finite elements. We introduce two kinds of indicators, both of them of residual type. The first one is related to time discretization and is local with respect to the time discretization: thus, at each time, it provides an appropriate information for the choice of the next time step. The second is related to space discretization and is local with respect to both the time and space variable and the idea is that at each time it is an efficient tool for mesh adaptivity. An error estimation procedure evaluates where additional refinement is needed and grid generation procedures dynamically create or remove fine-grid patches as resolution requirements change. The method was implemented in the software MELODIE, developed by the French Institute for Radiological Protection and Nuclear Safety (IRSN, Institut de Radioprotection et de Sûreté Nucléaire. The algorithm is then used to simulate the evolution of radionuclide migration from the waste packages through a heterogeneous disposal, demonstrating its capability to capture complex behavior of the resulting flow.

  11. Performance Characterization of the Production Facility Prototype Helium Flow System

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  12. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions.

  13. High production volume chemical Amine Oxide [C8-C20] category environmental risk assessment

    DEFF Research Database (Denmark)

    Sanderson, Hans; Tibazarwa, Caritas; Greggs, William

    2009-01-01

    An environmental assessment of amine oxides has been conducted under the OECD SIDS High Production Volume (HPV) Program via the Global International Council of Chemical Associations (ICCA) Amine Oxides Consortium. Amine oxides are primarily used in conjunction with surfactants in cleaning...... and personal care products. Given the lack of persistence or bioaccumulation, and the low likelihood of these chemicals partitioning to soil, the focus of the environmental assessment is on the aquatic environment. In the United States, the E-FAST model is used to estimate effluent concentrations in the United...... States from manufacturing facilities and from municipal facilities resulting from consumer product uses. Reasonable worst-case ratios of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) range from 0.04 to 0.003, demonstrating that these chemicals are a low risk...

  14. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 4; Cold Flow Analyses and CFD Analysis Capability Development

    Science.gov (United States)

    1995-01-01

    An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.

  15. Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Marques Salgado, Cesar [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil)], E-mail: otero@ien.gov.br; Brandao, Luis E.B. [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil); Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE-DNC/EE-CT, Rio de Janeiro, CEP.: 21941-972-Caixa Postal 68509 (Brazil); Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil); Silva, Ademir Xavier da [Universidade Federal do Rio de Janeiro, PEN/COPPE-DNC/EE-CT, Rio de Janeiro, CEP.: 21941-972-Caixa Postal 68509 (Brazil); Ramos, Robson [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil)

    2009-10-15

    This work presents methodology based on nuclear technique and artificial neural network for volume fraction predictions in annular, stratified and homogeneous oil-water-gas regimes. Using principles of gamma-ray absorption and scattering together with an appropriate geometry, comprised of three detectors and a dual-energy gamma-ray source, it was possible to obtain data, which could be adequately correlated to the volume fractions of each phase by means of neural network. The MCNP-X code was used in order to provide the training data for the network.

  16. The Institute for Mathematics and its Applications. Volume 68, Flow Control,

    Science.gov (United States)

    1994-01-01

    Avner FriedIT0a1, Volume 17: Applicatio:n_ ol’ Couiibinatorics and Graph ThEor, to the Biological and Social Scit-nc’es Editor: Frcd Rc,herts Volume 18...Foundation and Office of Naval Ec•careh whose financial support made the workshop poss)h!e. Avner l’¥iedman Willard Miller. Jr. i xi PRErACE This...interested in models and methodologies which treat trait- " The research of KI.1B. was supported in pprt bv the Air Force Office .f Scientifie Research

  17. Numerical study of impeller-driven von Karman flows via a volume penalization method

    CERN Document Server

    Kreuzahler, Sebastian; Homann, Holger; Ponty, Yannick; Grauer, Rainer

    2013-01-01

    Simulations of impeller-driven flows in cylindrical geometry are performed via direct numerical simulations (DNS) and compared to flows obtained in the von Karman flow experiments. The geometry of rotating impellers assembled of several basic geometric objects is modeled via a penalization method and implemented in a massive parallel pseudo-spectral Navier-Stokes solver. We performed simulations of impellers with different curvature of blades, especially one resembling the so-called TM28 configuration used in water experiments. The decomposition into poloidal, toroidal components and the mean velocity fields from our simulations are quantitatively in agreement with experimental results. We analyzed the flow structure close to the impeller blades and found different vortex topologies.

  18. Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line

    Directory of Open Access Journals (Sweden)

    Tan Chan Sin

    2015-01-01

    Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.

  19. A consistent method for finite volume discretization of body forces on collocated grids applied to flow through an actuator disk

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Niels N.; Réthoré, Pierre-Elouan;

    2015-01-01

    This paper describes a consistent algorithm for eliminating the numerical wiggles appearing when solving the finite volume discretized Navier-Stokes equations with discrete body forces in a collocated grid arrangement. The proposed method is a modification of the Rhie-Chow algorithm where the force...... in a cell is spread on neighboring cells by applying equivalent pressure jumps at the cell faces. The method shows excellent results when applied for simulating the flow through an actuator disk, which is relevant for wind turbine wake simulations. (c) 2015 Elsevier Ltd. All rights reserved....

  20. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2011-04-01

    Full Text Available Abstract Background Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Methods Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Results Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Conclusion Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking

  1. Mapping ENM from consumer products in solid waste flows in Denmark

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    To address the challenges regarding management of waste from ENM-enabled consumer products, we mapped the flow of these products available online in Denmark and the EU. To do this, we used the Nanodatabase (www.nanodb.dk). A representative sample of products from the database was analyzed...... of managing nanowaste....

  2. Implicit Finite Volume and Discontinuous Galerkin Methods for Multicomponent Flow in Unstructured 3D Fractured Porous Media

    CERN Document Server

    Moortgat, Joachim; Soltanian, Mohamad Reza

    2016-01-01

    We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of mag...

  3. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET

    DEFF Research Database (Denmark)

    Iida, H; Law, I; Pakkenberg, B

    2000-01-01

    formulated four mathematical models that describe the dynamic behavior of a freely diffusible tracer (H215O) in a region of interest (ROI) incorporating estimates of regional tissue flow that are independent of PVE. The current study was intended to evaluate the feasibility of these models and to establish...... a methodology to accurately quantify regional cerebral blood flow (CBF) corrected for PVE in cortical gray matter regions. Five monkeys were studied with PET after IV H2(15)O two times (n = 3) or three times (n = 2) in a row. Two ROIs were drawn on structural magnetic resonance imaging (MRI) scans and projected...... onto the PET images in which regional CBF values and the water perfusable tissue fraction for the cortical gray matter tissue (hence the volume of gray matter) were estimated. After the PET study, the animals were killed and stereologic analysis was performed to assess the gray matter mass...

  4. Evaluation of volume vascularization index and flow index: a phantom study.

    NARCIS (Netherlands)

    Schulten-Wijman, M.J.; Struijk, P.C.; Brezinka, C.; Jong, N De; Steegers, E.A.P.

    2008-01-01

    OBJECTIVES: Three-dimensional (3D) power Doppler ultrasonography provides indices to quantify moving blood within a volume of interest (e.g. ovary, endometrium, tumor or placenta). The purpose of this study was to determine the influence of ultrasound instrument settings on vascularization index (VI

  5. Evaluation of volume vascularization index and flow index: A phantom study

    NARCIS (Netherlands)

    M.J.N.C. Schulten-Wijman; P.C. Struijk (Pieter); C.A. Brezinka (Christoph); N. de Jong (Nico); R.P.M. Steegers-Theunissen (Régine)

    2008-01-01

    textabstractObjectives Three-dimensional (3D) power Doppler ultrasonography provides indices to quantify moving blood within a volume of interest (e.g. ovary, endometrium, tumor or placenta). The purpose of this study was to determine the influence of ultrasound instrument settings on vascularizatio

  6. RBC volume deficiency in patients with excessive orthostatic decrease in cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Chun-Jen Lin

    2014-04-01

    Conclusion: The results of our study indicated that low RBC volume may play an important role in the pathophysiology of OI in this group of patients. Moreover, its role seems even more relevant in patients with POTS than in those without. Further studies for mechanistic evaluation are needed in the future.

  7. New Approach to Purging Monitoring Wells: Lower Flow Rates Reduce Required Purging Volumes and Sample Turbidity

    Science.gov (United States)

    It is generally accepted that monitoring wells must be purged to access formation water to obtain “representative” ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water...

  8. Dissociation of Blood Volume and Flow in Regulation of Salt and Water Balance in Burn Patients,

    Science.gov (United States)

    1991-09-01

    arterial capacity, which is underfilled at sites of lower than in the patients in the present study (276 versus hormone control. 286 mosm/kg). The serum...well as looking at given ability to concentrate their urine and lower their voiding volume 02 consumption measured by indirect calorimetry. at night, I

  9. Environmental effects of energy production and utilization in the U. S. Volume 2. Public health effects

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W. (comp.)

    1976-06-01

    While health hazards from air pollution are observed there is little documenting research for specific toxicity levels. This volume is an attempt to compile all relevant information in one place as a data bank of information that will aid in the required cost-benefit analysis for an energy production or utilization project. Sources include textbooks, journal articles, technical reports, memoranda, letters, and personal communications. The compilation is organized into air pollution, water pollution and land use considerations and cover both radioactive and chemical pollutants. (PCS)

  10. On turbulent energy production in wall bounded flows

    Science.gov (United States)

    Gurka, R.; Hetsroni, G.; Liberzon, A.; Nikitin, N.; Tsinober, A.

    2004-07-01

    The main point of this Brief Communication is that the turbulent energy production is due to the compressing of material elements rather than stretching. This is understood in the sense that the positiveness of the turbulent energy production is due to the contribution of the term associated with the compressive (negative) eigenvalue/eigenvector of the mean strain.

  11. Customized Pull Systems for Single-Product Flow Lines

    NARCIS (Netherlands)

    Gaury, E.G.A.; Kleijnen, J.P.C.; Pierreval, H.

    1998-01-01

    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage

  12. Analysis of production flow process with lean manufacturing approach

    Science.gov (United States)

    Siregar, Ikhsan; Arif Nasution, Abdillah; Prasetio, Aji; Fadillah, Kharis

    2017-09-01

    This research was conducted on the company engaged in the production of Fast Moving Consumer Goods (FMCG). The production process in the company are still exists several activities that cause waste. Non value added activity (NVA) in the implementation is still widely found, so the cycle time generated to make the product will be longer. A form of improvement on the production line is by applying lean manufacturing method to identify waste along the value stream to find non value added activities. Non value added activity can be eliminated and reduced by utilizing value stream mapping and identifying it with activity mapping process. According to the results obtained that there are 26% of value-added activities and 74% non value added activity. The results obtained through the current state map of the production process of process lead time value of 678.11 minutes and processing time of 173.94 minutes. While the results obtained from the research proposal is the percentage of value added time of 41% of production process activities while non value added time of the production process of 59%. While the results obtained through the future state map of the production process of process lead time value of 426.69 minutes and processing time of 173.89 minutes.

  13. Customized Pull Systems for Single-Product Flow Lines

    NARCIS (Netherlands)

    Gaury, E.G.A.; Kleijnen, J.P.C.; Pierreval, H.

    1998-01-01

    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage

  14. Nonassociative Star Product Deformations for D-Brane World-Volumes in Curved Backgrounds

    Science.gov (United States)

    Cornalba, Lorenzo; Schiappa, Ricardo

    We investigate the deformation of D-brane world-volumes in curved backgrounds. We calculate the leading corrections to the boundary conformal field theory involving the background fields, and in particular we study the correlation functions of the resulting system. This allows us to obtain the world-volume deformation, identifying the open string metric and the noncommutative deformation parameter. The picture that unfolds is the following: when the gauge invariant combination ω=B+F is constant one obtains the standard Moyal deformation of the brane world-volume. Similarly, when dω= 0 one obtains the noncommutative Kontsevich deformation, physically corresponding to a curved brane in a flat background. When the background is curved, H=dω≠ 0, we find that the relevant algebraic structure is still based on the Kontsevich expansion, which now defines a nonassociative star product with an A∞ homotopy associative algebraic structure. We then recover, within this formalism, some known results of Matrix theory in curved backgrounds. In particular, we show how the effective action obtained in this framework describes, as expected, the dielectric effect of D-branes. The polarized branes are interpreted as a soliton, associated to the condensation of the brane gauge field.

  15. Nonassociative star product deformations for D-Brane world-volumes in curved backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cornalba, L. [Lab. de Physique Theorique, Ecole Normale Superieure, Paris (France); Schiappa, R. [Harvard Univ., Cambridge, MA (United States). Dept. of Physics

    2002-01-01

    We investigate the deformation of D-brane world-volumes in curved backgrounds. We calculate the leading corrections to the boundary conformal field theory involving the background fields, and in particular we study the correlation functions of the resulting system. This allows us to obtain the world-volume deformation, identifying the open string metric and the noncommutative deformation parameter. The picture that unfolds is the following: when the gauge invariant combination {omega}=B+F is constant one obtains the standard Moyal deformation of the brane world-volume. Similarly, when d{omega}=0 one obtains the noncommutative Kontsevich deformation, physically corresponding to a curved brane in a flat background. When the background is curved, H=d{omega}{ne}0, we find that the relevant algebraic structure is still based on the Kontsevich expansion, which now defines a nonassociative star product with an A{sub {infinity}} homotopy associative algebraic structure. We then recover, within this formalism, some known results of Matrix theory in curved backgrounds. In particular, we show how the effective action obtained in this framework describes, as expected, the dielectric effect of D-branes. The polarized branes are interpreted as a soliton, associated to the condensation of the brane gauge field. (orig.)

  16. CFD analysis and flow model reduction for surfactant production in helix reactor

    NARCIS (Netherlands)

    Nikačević, N.M.; Thielen, L.; Twerda, A.; Hof, P.M.J. van den

    2014-01-01

    Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR) were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD) simulations. Non-reactive flow is simul

  17. Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI

    DEFF Research Database (Denmark)

    Gideon, P; Ståhlberg, F; Thomsen, C

    1994-01-01

    An interleaved velocity-sensitised fast low-angle shot pulse sequence was used to study cerebrospinal fluid (CSF) flow in the cerebral aqueduct, and supratentorial CSF production in 9 patients with normal pressure hydrocephalus (NPH) and 9 healthy volunteers. The peak aqueduct CSF flow, both caudal...

  18. An analytical model to predict the volume of sand during drilling and production

    Directory of Open Access Journals (Sweden)

    Raoof Gholami

    2016-08-01

    Full Text Available Sand production is an undesired phenomenon occurring in unconsolidated formations due to shear failure and hydrodynamic forces. There have been many approaches developed to predict sand production and prevent it by changing drilling or production strategies. However, assumptions involved in these approaches have limited their applications to very specific scenarios. In this paper, an elliptical model based on the borehole shape is presented to predict the volume of sand produced during the drilling and depletion stages of oil and gas reservoirs. A shape factor parameter is introduced to estimate the changes in the geometry of the borehole as a result of shear failure. A carbonate reservoir from the south of Iran with a solid production history is used to show the application of the developed methodology. Deriving mathematical equations for determination of the shape factor based on different failure criteria indicate that the effect of the intermediate principal stress should be taken into account to achieve an accurate result. However, it should be noticed that the methodology presented can only be used when geomechanical parameters are accurately estimated prior to the production stage when using wells and field data.

  19. An analytical model to predict the volume of sand during drilling and production

    Institute of Scientific and Technical Information of China (English)

    Raoof Gholami; Bernt Aadnoy; Vamegh Rasouli; Nikoo Fakhari

    2016-01-01

    Sand production is an undesired phenomenon occurring in unconsolidated formations due to shear failure and hydrodynamic forces. There have been many approaches developed to predict sand pro-duction and prevent it by changing drilling or production strategies. However, assumptions involved in these approaches have limited their applications to very specific scenarios. In this paper, an elliptical model based on the borehole shape is presented to predict the volume of sand produced during the drilling and depletion stages of oil and gas reservoirs. A shape factor parameter is introduced to estimate the changes in the geometry of the borehole as a result of shear failure. A carbonate reservoir from the south of Iran with a solid production history is used to show the application of the developed meth-odology. Deriving mathematical equations for determination of the shape factor based on different failure criteria indicate that the effect of the intermediate principal stress should be taken into account to achieve an accurate result. However, it should be noticed that the methodology presented can only be used when geomechanical parameters are accurately estimated prior to the production stage when using wells and field data.

  20. Golden Dragon’s Copper Tube Production Volume will Reach 210,000 tons in 2008

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>Li Changjie,general manager of Golden Dragon Precise Copper Tube Group Inc.,said at the end of November that the company’s copper tube production volume in 2008 will reach 210,000 tons,and its sales income is ex- pected to reach about 16 billion yuan,with a tax revenue of 500-600 million yuan.Origi- nally,the company had planned to produce 250,000 tons of copper tube,and achieve a sales income of 20 billion yuan.In October, when the company’s production should have entered the peak season,the copper price had a sharp slump,and so did the copper demand,

  1. Two-warehouse production policy for different demands under volume flexibility

    Directory of Open Access Journals (Sweden)

    Sanjay Sharma

    2013-10-01

    Full Text Available In this paper, an inventory model of two-warehouse is considered, which evaluates the impact of a reduction rate in the selling price with volume flexibility. In real life, there are many products, which may decay or deteriorate or become obsolete. Therefore, one alternative is to clear the stock by selling a large amount of items at reduced prices. Taking this concept into account, this paper considers a fixed demand rate at the beginning of planning until the certain time point occurs, while demand is assumed to follow the pattern of nonlinear and non-decreasing power function of the reduction rate. The total cost function includes warehouse and rented warehouse holding costs, set up cost and the production cost. Numerical illustrations are given to exemplify the model and the proposed model is solved using a Genetic Algorithm (GA with sensitivity analysis.

  2. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    Science.gov (United States)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  3. Controlled release fertilizer and container volumes in the production of Parapiptadenia rigida (Benth. Brenan seedlings

    Directory of Open Access Journals (Sweden)

    Ezequiel Gasparin

    2015-10-01

    Full Text Available Growing demand for native tree seedlings will require improvements in quality standards of production processes through the use of more efficient cultivation techniques. This study evaluated the effects of different doses of controlled release fertilizer (CRF and different container volumes in the production of Parapiptadenia rigida seedlings. We examined the effects of five different concentrations (0, 3, 6, 9 and 12 g L-1 substrate of CRF (18-5-9 NPK and three different container volumes (50, 110 and 180 cm3 on seedling height (H and collar diameter (CD measured monthly for seven months and then calculated H/CD ratios. After 210 days of growth, the dry masses of the aerial portions, root systems, and total masses were determined, as well as the concentrations of macro- and micronutrients in the aerial portions of the seedlings. In general, the dose 9 g L-1 substrate combined with the 180 cm3 cultivation tubes demonstrated the best results in terms of the morphological variables analyzed, resulting in consistent quality seedlings for field planting.

  4. Enhancing economic competiveness of dish Stirling technology through production volume and localization: Case study for Morocco

    Science.gov (United States)

    Larchet, Kevin; Guédez, Rafael; Topel, Monika; Gustavsson, Lars; Machirant, Andrew; Hedlund, Maria-Lina; Laumert, Björn

    2017-06-01

    The present study quantifies the reduction in the levelized cost of electricity (LCoE) and capital expenditure (CAPEX) of a dish Stirling power plant (DSPP) through an increase in localization and unit production volume. Furthermore, the localization value of the plant is examined to determine how much investment is brought into the local economy. Ouarzazate, Morocco, was chosen as the location of the study due to the country's favorable regulatory framework with regards to solar power technologies and its established industry in the concentrating solar power (CSP) field. A detailed techno-economic model of a DSPP was developed using KTH's in-house modelling tool DYESOPT, which allows power plant evaluation by means of technical and economic performance indicators. Results on the basis of LCoE and CAPEX were compared between two different cases of production volume, examining both a minimum and maximum level of localization. Thereafter, the DSPP LCoE and localization value were compared against competing solar technologies to evaluate its competitiveness. In addition, a sensitivity analysis was conducted around key design parameters. The study confirms that the LCoE of a DSPP can be reduced to values similar to solar photovoltaic (PV) and lower than other CSP technologies. Furthermore, the investment in the local economy is far greater when compared to PV and of the same magnitude to other CSP technologies. The competiveness of a DSPP has the potential to increase further when coupled with thermal energy storage (TES), which is currently under development.

  5. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Science.gov (United States)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  6. A volume-amending method to improve mass conservation of level set approach for incompressible two-phase flows

    Institute of Scientific and Technical Information of China (English)

    LI XiangYang; WANG YueFa; YU GengZhi; YANG Chao; MAO ZaiSha

    2008-01-01

    A volume-amending method is developed both to keep the level set function as an algebraic distance function and to preserve the bubble mass in a level set approach for incompressible two-phase flows with the significantly deformed free interface. After the traditional reinitialization procedure, a vol-ume-amending method is added for correcting the position of the interface according to mass loss/gain error until the mass error falls in the allowable range designated in advance. The level set approach with this volume-amending method incorporated has been validated by three test cases: the motion of a single axisymmetrical bubble or drop in liquid, the motion of a two-dimensional water drop falling through the air into a water pool, and the interactional motion of two buoyancy-driven three-dimensional deformable bubbles. The computational results with this volume-amending method in-corporated are in good agreement with the reported experimental data and the mass is well preserved in all cases.

  7. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio.

    Science.gov (United States)

    Winston, Ryan J; Dorsey, Jay D; Hunt, William F

    2016-05-15

    Green infrastructure aims to restore watershed hydrologic function by more closely mimicking pre-development groundwater recharge and evapotranspiration (ET). Bioretention has become a popular stormwater control due to its ability to reduce runoff volume through these pathways. Three bioretention cells constructed in low permeability soils in northeast Ohio were monitored for non-winter quantification of inflow, drainage, ET, and exfiltration. The inclusion of an internal water storage (IWS) zone allowed the three cells to reduce runoff by 59%, 42%, and 36% over the monitoring period, in spite of the tight underlying soils. The exfiltration rate and the IWS zone thickness were the primary determinants of volume reduction performance. Post-construction measured drawdown rates were higher than pre-construction soil vertical hydraulic conductivity tests in all cases, due to lateral exfiltration from the IWS zones and ET, which are not typically accounted for in pre-construction soil testing. The minimum rainfall depths required to produce outflow for the three cells were 5.5, 7.4, and 13.8mm. During events with 1-year design rainfall intensities, peak flow reduction varied from 24 to 96%, with the best mitigation during events where peak rainfall rate occurred before the centroid of the rainfall volume, when adequate bowl storage was available to limit overflow.

  8. A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2014-06-28

    We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.

  9. A volume-amending method to improve mass conservation of level set approach for incompressible two-phase flows

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A volume-amending method is developed both to keep the level set function as an algebraic distance function and to preserve the bubble mass in a level set approach for incompressible two-phase flows with the significantly deformed free interface. After the traditional reinitialization procedure, a vol-ume-amending method is added for correcting the position of the interface according to mass loss/gain error until the mass error falls in the allowable range designated in advance. The level set approach with this volume-amending method incorporated has been validated by three test cases: the motion of a single axisymmetrical bubble or drop in liquid, the motion of a two-dimensional water drop falling through the air into a water pool, and the interactional motion of two buoyancy-driven three- dimensional deformable bubbles. The computational results with this volume-amending method in-corporated are in good agreement with the reported experimental data and the mass is well preserved in all cases.

  10. Forearm skin tissue dielectric constant measured at 300 MHz: effect of changes in skin vascular volume and blood flow.

    Science.gov (United States)

    Mayrovitz, Harvey N; Guo, Xiaoran; Salmon, Mark; Uhde, Matt

    2013-01-01

    Skin tissue dielectric constant (TDC) values measured via the open-ended coaxial probe method are useful non-invasive indices of local skin tissue water. However, the effect of skin blood flow (SBF) or skin blood volume (SBV) on TDC values is unknown. To determine the magnitude of such effects, we decreased forearm SBV via vertical arm raising for 5 min (test 1) and increased SBV by bicep cuff compression to 50 mmHg for 5 min (test 2) in 20 healthy supine subjects (10 men). TDC values were measured to a depth of 1·5 mm on anterior forearm, and SBF was measured with laser-Doppler system simultaneously on forearm and finger. Results indicate that decreasing vascular volume (test 1) was associated with a small but statistically significant reduction in TDC (3·0 ± 4·3%, P = 0·003) and increasing vascular volume (test 2) was associated with a slight but statistically significant increase in TDC (3·5 ± 3·0%, PTDC values (3·0-3·5%) over the wide range of induced SBV and SBF changes suggest a minor effect on clinically determined TDC values because of SBV or SBF changes or differences when comparing TDC longitudinally over time or among individuals of different groups in a research setting.

  11. Transition and Continuance in Science Production: Authorship Flow in Chemistry

    OpenAIRE

    Mahsa Nikzad; Nadjla Hariri; Fahime Babolhavaeji; Fatemeh Nooshinfard

    2016-01-01

    The aim of this article is to study authorship flow in Iranian ISI articles in the field of chemistry based on Price’s model. Price divided authors in each given period in any field into four groups including newcomers, transients, continuants, and terminators. He maintained that actuarial statistics could be applied to authorship to calculate death rate and birth rate in scientific fields. A total 25,573 articles written by 59,661 Iranian chemistry authors between 1973 and 2012 were do...

  12. Determination of blood leukocyte concentration with constant volume acquisition on a flow cytometer is comparable to individualized single platform testing with beads as internal reference standard

    DEFF Research Database (Denmark)

    Hansen, Susan; Dahl, Ronald; Hoffmann, Hans Jürgen

    2008-01-01

    Flow cytometers have a constant flow rate. This enables flow cytometers to measure leukocyte concentrations in a determined volume by acquiring data at a fixed rate over a fixed time and is called constant volume acquisition (CVA). The volume aspirated by a FACS Calibur flow cytometer in 4 min...... at a high rate has a median of 163 microl (IQR 156-170) with TruCount tubes. Leukocyte concentrations of 26 healthy volunteers were measured twice on up to four occasions with a Bürker-Türk chamber, by single platform technology (SPT) with TruCount tubes and on the same data set using CVA. Total leukocyte...... concentrations determined by CVA correlated better with measurements in a Bürker-Türk (BT) chamber than with SPT. Concentrations determined with CVA were 1.86% higher than with BT whereas SPT data were 5.35% higher than BT (pCVA (p

  13. Global production, use, and emission volumes of short-chain chlorinated paraffins - A minimum scenario.

    Science.gov (United States)

    Glüge, Juliane; Wang, Zhanyun; Bogdal, Christian; Scheringer, Martin; Hungerbühler, Konrad

    2016-12-15

    Short-chain chlorinated paraffins (SCCPs) show high persistence, bioaccumulation potential, and toxicity (PBT properties). Consequently, restrictions on production and use have been enforced in several countries/regions. The Stockholm Convention on Persistent Organic Pollutants recognized the PBT properties and long-range transport potential of SCCPs in 2015 and is now evaluating a possible global phase-out or restrictions. In this context, it is relevant to know which countries are producing/using SCCPs and in which amounts, and which applications contribute most to their environmental emissions. To provide a first comprehensive overview, we review and integrate all publicly available data on the global production and use of both chlorinated paraffins (CPs) as a whole and specifically SCCPs. Considerable amount of data on production/use of CPs and SCCPs are missing. Based on the available data and reported emission factors, we estimate the past and current worldwide SCCP emissions from individual applications. Using the available data as a minimum scenario, we conclude: (i) SCCP production and use is increasing, with the current worldwide production volume being 165,000t/year at least, whereas the global production of total CPs exceeds 1milliont/year. (ii) The worldwide release of SCCPs from their production and use to air, surface water, and soil between 1935 and 2012 has been in the range of 1690-41,400t, 1660-105,000t, and 9460-81,000t, respectively. (iii) The SCCP manufacture and use in PVC, the use in metal working applications and sealants/adhesives, and the use in plastics and rubber contribute most to the emissions to air, surface water, and soil. Thus, the decrease in the environmental emissions of SCCPs requires reduction of SCCP use in (almost) all applications. (iv) Emissions due to the disposal of waste SCCPs cannot be accurately estimated, because relevant information is missing. Instead, we conduct a scenario analysis to provide some insights into

  14. Leveraging Understanding of Flow of Variable Complex Fluid to Design Better Absorbent Hygiene Products

    Science.gov (United States)

    Krautkramer, C.; Rend, R. R.

    2014-12-01

    Menstrual flow, which is a result of shedding of uterus endometrium, occurs periodically in sync with a women's hormonal cycle. Management of this flow while allowing women to pursue their normal daily lives is the purpose of many commercial products. Some of these products, e.g. feminine hygiene pads and tampons, utilize porous materials in achieving their goal. In this paper we will demonstrate different phenomena that have been observed in flow of menstrual fluid through these porous materials, share some of the advances made in experimental and analytical study of these phenomena, and also present some of the unsolved challenges and difficulties encountered while studying this kind of flow. Menstrual fluid is generally composed of four main components: blood plasma, blood cells, cervical mucus, and tissue debris. This non-homogeneous, multiphase fluid displays very complex rheological behavior, e. g., yield stress, thixotropy, and visco-elasticity, that varies throughout and between menstrual cycles and among women due to various factors. Flow rates are also highly variable during menstruation and across the population and the rheological properties of the fluid change during the flow into and through the product. In addition to these phenomena, changes to the structure of the porous medium within the product can also be seen due to fouling and/or swelling of the material. This paper will, also, share how the fluid components impact the flow and the consequences for computer simulation, the creation of a simulant fluid and testing methods, and for designing products that best meet consumer needs. We hope to bring to light the challenges of managing this complex flow to meet a basic need of women all over the world. An opportunity exists to apply learnings from research in other disciplines to improve the scientific knowledge related to the flow of this complex fluid through the porous medium that is a sanitary product.

  15. Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media

    Science.gov (United States)

    Moortgat, Joachim; Amooie, Mohammad Amin; Soltanian, Mohamad Reza

    2016-10-01

    We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of magnitude as compared to IMPEC, which has a time-step constraint proportional to the pore volume of discrete fracture grid cells. However, when lowest-order Euler time-discretizations are used, numerical errors increase linearly with the larger implicit time-steps, resulting in high numerical dispersion. Second-order Crank-Nicolson implicit MHFE-DG and MHFE-FV are therefore presented as well. Convergence analyses show twice the convergence rate for the DG methods as compared to FV, resulting in two to three orders of magnitude higher computational efficiency. Numerical experiments demonstrate the efficiency and robustness in modeling compressible multicomponent flow on irregular and fractured 2D and 3D grids, even in the presence of fingering instabilities.

  16. Complex Granular Flow Dynamics in Fruit Powder Production Lines

    OpenAIRE

    Bakhshinejad, Ali, 1984-

    2013-01-01

    One of the most important parts in every industry, is packaging which is located at the last part of the product line. In fruit powder product line lots of studies applied to study the complex dynamics of the powders in response to the vertical vibration. In this study cyclone collector condition was simulate with a rectangular throw out bin and the dynamics of the powders in response to the horizontal vibration studied. An ADXL345 accelerometer does employed in order to observe the accel...

  17. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    Science.gov (United States)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  18. Automatic CD-SEM offline recipe creation in a high volume production fab

    Science.gov (United States)

    Girol-Gunia, Stefanie; Roling, Stefan; Menadeva, Ovadya; Levitzky, Dan; Costa, Adi; Fischer, Daniel

    2008-03-01

    CAD based recipe creation paves the way for complete recipe automation and minimizes the need for human intervention. A high volume production environment presents its own unique challenges for automatic CAD based metrology. In our work we describe the approach of automatic offline CD-SEM recipe creation for production using the Applied Materials OPC Check application. In addition, the study includes a comprehensive analysis of success rates for recipe creation, pattern recognition and measurement. The stability of automatically created recipes was evaluated against process variations for a number of test structures which are typically used for production control. Data was collected for various layers on multiple lots and the performance was compared to that of recipes created directly on the tool. All offline recipes for production were generated waferless from design data with success rates of 100%. They showed pattern recognition success rates and measurement success rates at the same level or better than the rates typically reached by recipes created directly on the tool by an experienced CD-SEM engineer.

  19. CD uniformity optimization at volume ramp up stage for new product introduction

    Science.gov (United States)

    Kim, Jin-Soo; Ma, Won-Kwang; Kim, Young-Sik; Kim, Myoung-Soo; Kwon, Won-Taik; Park, Sung-Ki; Nikolsky, Peter; Otter, Marian; Marun, Maryana Escalante; Anunciado, Roy; Sun, Kyu-Tae; Storms, Greet; van West, Ewould

    2014-04-01

    In this paper we describe the joint development and optimization of the critical dimension uniformity (CDU) at an advanced 300 mm ArFi semiconductor facility of SK Hynix in the high volume device. As the ITRS CDU specification shrinks, semiconductor companies still need to maintain high wafer yield and high performance (hence market value) even during the introduction phase of a new product. This cannot be achieved without continuous improvement of the on-product CDU as one of the main drivers for yield improvement. ASML Imaging Optimizer is one of the most efficient tools to reach this goal. This paper presents experimental results of post-etch CDU improvement by ASML imaging optimizer for immature photolithography and etch processes on critical features of 20nm node. We will show that CDU improvement potential and measured CDU strongly depend on CD fingerprint stability through wafers, lots and time. However, significant CDU optimization can still be achieved, even for variable CD fingerprints. In this paper we will review point-to-point correlation of CD fingerprints as one of the main indicators for CDU improvement potential. We will demonstrate the value of this indicator by comparing CD correlation between wafers used for Imaging Optimizer dose recipe development, predicted and measured CDU for wafers and lots exposed with various delays ranging from a few days to a month. This approach to CDU optimization helps to achieve higher yield earlier in the new product introduction cycle, enables faster technology ramps and thereby improves product time to market.

  20. Cerebral lactate production and blood flow in acute stroke

    DEFF Research Database (Denmark)

    Henriksen, O; Gideon, P; Sperling, B

    1992-01-01

    that follows reperfusion. The amount of lactate present in the acute phase reflects the severity of ischemia in the affected region. The lactate level was still above normal in the subacute phase with hyperemia, suggesting lactate production through aerobic glycolysis. Thus, the lactate level in the subacute...... phase probably does not reflect the degree of anaerobic glycolysis in hypoxic neuronal tissue....

  1. Flow-Structure-Acoustic Interaction Computational Modeling of Voice Production inside an Entire Airway

    Science.gov (United States)

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2015-11-01

    Human voice quality is directly determined by the interplay of dynamic behavior of glottal flow, vibratory characteristics of VFs and acoustic characteristics of upper airway. These multiphysics constituents are tightly coupled together and precisely coordinate to produce understandable sound. Despite many years' research effort, the direct relationships among the detailed flow features, VF vibration and aeroacoustics still remains elusive. This study utilizes a first-principle based, flow-structure-acoustics interaction computational modeling approach to study the process of voice production inside an entire human airway. In the current approach, a sharp interface immersed boundary method based incompressible flow solver is utilized to model the glottal flow; A finite element based solid mechanics solver is utilized to model the vocal vibration; A high-order immersed boundary method based acoustics solver is utilized to directly compute sound. These three solvers are fully coupled to mimic the complex flow-structure-acoustic interaction during voice production. The geometry of airway is reconstructed based on the in-vivo MRI measurement reported by Story et al. (1995) and a three-layer continuum based vocal fold model is taken from Titze and Talkin (1979). Results from these simulations will be presented and further analyzed to get new insight into the complex flow-structure-acoustic interaction during voice production. This study is expected to improve the understanding of fundamental physical mechanism of voice production and to help to build direct cause-effect relationship between biomechanics and voice sound.

  2. A control-volume method for analysis of unsteady thrust augmenting ejector flows

    Science.gov (United States)

    Drummond, Colin K.

    1988-01-01

    A method for predicting transient thrust augmenting ejector characteristics is presented. The analysis blends classic self-similar turbulent jet descriptions with a control volume mixing region discretization to solicit transient effects in a new way. Division of the ejector into an inlet, diffuser, and mixing region corresponds with the assumption of viscous-dominated phenomenon in the latter. Inlet and diffuser analyses are simplified by a quasi-steady analysis, justified by the assumptions that pressure is the forcing function in those regions. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.

  3. Verification of a binary fluid solidification model in the finite-volume flow solver

    CERN Document Server

    Waclawczyk, Tomasz

    2015-01-01

    The aim of this paper is to verify the new numerical implementation of a binary fluid, heat conduction dominated solidification model. First, we extend a semi-analytical solution to the heat diffusion equation, next, the range of its applicability is investigated. It was found that the linearization introduced to the heat diffusion equation negatively affects the ability to predict solidus and liquidus lines positions whenever the magnitude of latent heat of fusion exceeds a certain value. Next, a binary fluid solidification model is coupled with a flow solver, and is used in a numerical study of Al-4.1%Cu alloy solidification in a two-dimensional rectangular cavity. An accurate coupling between the solidification model and the flow solver is crucial for the correct forecast of solidification front positions and macrosegregation patterns.

  4. Investigation of the free flow electrophoretic process. Volume 2: Technical analysis

    Science.gov (United States)

    Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.

    1979-01-01

    The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.

  5. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 2; RSRM Full Scale Motor Analyses

    Science.gov (United States)

    1995-01-01

    The purpose of the RSRM Nozzle Slag Ejection Precursor Test is to investigate the effect that slag ejection from the RSRM nozzle has on the chamber pressure and trust of the SRB's. In past firings of the Reusable Solid Rocket Motor (RSRM) both static test and flight motors have shown small pressure perturbations occurring primarily between 65 and 80 seconds. A joint NASA/Thiokol team investigation concluded that the cause of the pressure perturbations was the periodic ingestion and ejection of molten aluminum oxide slag from the cavity around the submerged nozzle nose which tends to trap and collect individual aluminum oxide droplets from the approach flow. The conclusions of the team were supported by numerous data and observations from special tests including high speed photographic films, real time radiography, plume calorimeters, accelerometers, strain gauges, nozzle TVC system force gauges, and motor pressure and thrust data. A simplistic slag ballistics model was formulated to relate a given pressure perturbation to a required slag quantity. Also, a cold flow model using air and water was developed to provide data on the relationship between the slag flow rate and the chamber pressure increase. Both the motor and the cold flow model exhibited low frequency oscillations in conjunction with periods of slag ejection. Motor and model frequencies were related to scaling parameters. The data indicate that there is a periodicity to the slag entrainment and ejection phenomena which is possibly related to organized oscillations from instabilities in the dividing streamline shear layer which impinges on the underneath surface of the nozzle.

  6. ASSESSMENT OF A CENTRAL DIFFERENCE FINITE VOLUME SCHEME FOR MODELING OF CAVITATING FLOWS USING PRECONDITIONED MULTIPHASE EULER EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    HEJRANFAR Kazem; FATTAH-HESARY Kasra

    2011-01-01

    A numerical treatment for the prediction of cavitating flows is presented and assessed.The algorithm uses the preconditioned multiphase Euler equations with appropriate mass transfer terms.A central difference finite volume scheme with suitable dissipation terms to account for density jumps across the cavity interface is shown to yield an effective method for solving the multiphase Euler equations.The Euler equations are utilized herein for the cavitation modeling, because some certain characteristics of cavitating flows can be obtained using the solution of this system of equations with relative low computational effort.In addition, the Euler equations are appropriate for the assessment of the numerical method used, because of the sensitivity of the solution to the numerical instabilities.For this reason, a sensitivity study is conducted to evaluate the effects of various parameters, such as numerical dissipation coefficients and grid size, on the accuracy and performance of the solution.The computations are performed for steady cavitating flows around the NACA 0012 and NACA 66 (MOD) hydrofoils and also an axisymmetric hemispherical fore-body under different conditions and the results are compared with the available numerical and experimental data.The solution procedure presented is shown to be accurate and efficient for predicting steady sheet- and super-cavitation for 2D/axisymmetric geometries.

  7. Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis.

    Science.gov (United States)

    McHale, Glen; Hardacre, Chris; Ge, Rile; Doy, Nicola; Allen, Ray W K; MacInnes, Jordan M; Bown, Mark R; Newton, Michael I

    2008-08-01

    Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.

  8. Information flow and work productivity through integrated information technology

    Science.gov (United States)

    Wigand, R. T.

    1985-01-01

    The work environment surrounding integrated office systems is reviewed. The known effects of automated office technologies is synthesized and their known impact on work efficiency is reviewed. These effects are explored with regard to their impact on networks, work flow/processes, as well as organizational structure and power. Particular emphasis is given to structural changes due to the introduction of newer information technologies in organizations. The new information technologies have restructed the average organization's middle banks and, as a consequence, they have shrunk drastically. Organizational pyramids have flattened with fewer levels since executives have realized that they can get ahold of the needed information via the new technologies quicker and directly and do not have to rely on middle-level managers. Power shifts are typically accompanied with the introduction of these technologies resulting in the generation of a new form of organizational power.

  9. A finite-volume module for simulating global all-scale atmospheric flows

    Science.gov (United States)

    Smolarkiewicz, Piotr K.; Deconinck, Willem; Hamrud, Mats; Kühnlein, Christian; Mozdzynski, George; Szmelter, Joanna; Wedi, Nils P.

    2016-06-01

    The paper documents the development of a global nonhydrostatic finite-volume module designed to enhance an established spectral-transform based numerical weather prediction (NWP) model. The module adheres to NWP standards, with formulation of the governing equations based on the classical meteorological latitude-longitude spherical framework. In the horizontal, a bespoke unstructured mesh with finite-volumes built about the reduced Gaussian grid of the existing NWP model circumvents the notorious stiffness in the polar regions of the spherical framework. All dependent variables are co-located, accommodating both spectral-transform and grid-point solutions at the same physical locations. In the vertical, a uniform finite-difference discretisation facilitates the solution of intricate elliptic problems in thin spherical shells, while the pliancy of the physical vertical coordinate is delegated to generalised continuous transformations between computational and physical space. The newly developed module assumes the compressible Euler equations as default, but includes reduced soundproof PDEs as an option. Furthermore, it employs semi-implicit forward-in-time integrators of the governing PDE systems, akin to but more general than those used in the NWP model. The module shares the equal regions parallelisation scheme with the NWP model, with multiple layers of parallelism hybridising MPI tasks and OpenMP threads. The efficacy of the developed nonhydrostatic module is illustrated with benchmarks of idealised global weather.

  10. Design requirements for SRB production control system. Volume 2: System requirements and conceptual description

    Science.gov (United States)

    1981-01-01

    In the development of the business system for the SRB automated production control system, special attention had to be paid to the unique environment posed by the space shuttle. The issues posed by this environment, and the means by which they were addressed, are reviewed. The change in management philosphy which will be required as NASA switches from one-of-a-kind launches to multiple launches is discussed. The implications of the assembly process on the business system are described. These issues include multiple missions, multiple locations and facilities, maintenance and refurbishment, multiple sources, and multiple contractors. The implications of these aspects on the automated production control system are reviewed including an assessment of the six major subsystems, as well as four other subsystem. Some general system requirements which flow through the entire business system are described.

  11. Wind farm electrical power production model for load flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel [Institute for Energy Engineering, Universidad Politecnica de Valencia, Camino de Vera, s/n, edificio 8E, escalera F, 2a planta, 46022 Valencia (Spain)

    2011-03-15

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  12. Programming heterogeneous MPSoCs tool flows to close the software productivity gap

    CERN Document Server

    Castrillón Mazo, Jerónimo

    2014-01-01

    This book provides embedded software developers with techniques for programmingheterogeneous Multi-Processor Systems-on-Chip (MPSoCs), capable of executing multiple applications simultaneously. It describes a set of algorithms and methodologies to narrow the software productivity gap, as well as an in-depth description of the underlying problems and challenges of today’s programming practices. The authors present four different tool flows: A parallelism extraction flow for applications writtenusing the C programming language, a mapping and scheduling flow for parallel applications, a special mapping flow for baseband applications in the context of Software Defined Radio (SDR) and a final flow for analyzing multiple applications at design time. The tool flows are evaluated on Virtual Platforms (VPs), which mimic different characteristics of state-of-the-art heterogeneous MPSoCs.   • Provides a novel set of algorithms and methodologies for programming heterogeneous Multi-Processor Systems-on-Chip (MPSoCs)...

  13. The production, storage, and flow of carbon in Amazonian forests

    Science.gov (United States)

    Malhi, Yadvinder; Saatchi, Sassan; Girardin, Cecile; Aragão, Luiz E. O. C.

    The carbon stores and dynamics of tropical forests are the subject of major international scientific and policy attention. Research associated with the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) has generated substantial advances in our understanding of the cycling of carbon at selected forest sites in Brazilian Amazonia and generated new insights into how these processes may vary across the wider Amazonian region. Here we report on aspects of this new understanding. We present, in particular, a comprehensive synthesis of carbon cycling in three focal LBA sites (Manaus, Tapajõs, and Caxiuanã), drawing on studies of productivity, litterfall, respiration, physiology, and ecosystem fluxes. These studies are placed in the context of the wider Amazonian region by utilizing the results of the Amazon Forest Inventory Network (RAINFOR) and other forest plots. We discuss the basin-wide distribution of forest biomass derived by combining these plots and a suite of satellite data, and examine the dynamics of carbon cycling in the context of regional carbon stores in the forest. Particular attention is drawn to the strong relationship between forest productivity and turnover, which suggests that higher levels of forest productivity increase forest dynamism rather than forest biomass. We conclude by discussing what the scientific priorities should be for a synthetic region-wide understanding of the carbon dynamics and stores of Amazonian forests.

  14. Blood flow and blood volume in the femoral heads of healthy adults according to age. Measurement with positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshikazu; Kimori, Kokuto; Nakamura, Fuminori; Inoue, Shigehiro; Fujioka, Mikihiro; Ueshima, Keiichiro; Hirasawa, Yasusuke; Ushijima, Yo; Nishimura, Tsunehiko [Kyoto Prefectural Univ. of Medicine (Japan)

    2001-06-01

    To deepen understanding of hemodynamics in the femoral head, i.e., the essential factor in clarifying pathogenesis of hip disorders, this study examined blood flow and blood volume in the femoral heads of healthy adults, and their changes with age, by using positron emission tomography (PET). In 16 healthy adult males (age: 20-78 years old, mean age: 42 years), blood flow was measured by means of the H{sub 2}{sup 15}O dynamic study method, and blood volume was measured by means of the {sup 15}O-labeled carbon monoxide bolus inhalation method. Blood flow was 1.68-6.47 ml/min/100 g (mean {+-}SD: 3.52{+-}1.2), and blood volume was 1.67-6.03 ml/100 g (mean {+-}SD: 3.00{+-}1.27). Blood flow significantly decreased (p<0.01) with age, and blood volume significantly increased (P<0.05). PET was useful in the measurement of blood flow and blood volume in the femoral heads. With age, physiological hemodynamic changes also increased in femoral heads. (author)

  15. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    Science.gov (United States)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W.

    2017-04-01

    The production of liquid fuel products via electrochemical reduction of CO2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O2) from reaching the cathode. Ion-conducting membranes have been applied in CO2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.

  16. Nitrogen flows in the food production chain of Hungary over the period 1961–2010

    NARCIS (Netherlands)

    Hou, Yong; Ma, Lin; Sárdi, Katalin; Sisák, István; Ma, Wenqi

    2015-01-01

    Nitrogen (N) emissions from food production can cause serious environmental problems. Mitigation strategies require insights of N cycles in this complex system. A substance flow analysis for N in the Hungary food production and processing chain over the period 1961–2010 was conducted. Our results

  17. The Physical Flow of Materials and the Associated Costs in the Production Process of a Rolling Mill

    Directory of Open Access Journals (Sweden)

    Holisz-Burzyńska, J.

    2007-01-01

    Full Text Available Efficiency of resources use is, in a large extent, determined by the organization of production flow and the way of their control. The optimization of materials flow in the production process requires the identification of physical flows of goods and it cost. In the article the physical flow process of materials stream in the production process in one of Polish rolling mill and also its logistics analysis and cost analysis are presented.

  18. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  19. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  20. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  1. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  2. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  3. Recurrence-time statistics in non-Hamiltonian volume preserving maps and flows

    CERN Document Server

    da Silva, Rafael M; Manchein, Cesar

    2015-01-01

    We analyze the recurrence-time statistics (RTS) in three-dimensional non-Hamiltonian volume preserving systems (VPS): an extended standard map, and a fluid model. The extended map is a standard map weakly coupled to an extra-dimension which contains a deterministic regular, mixed (regular and chaotic) or chaotic motion. The extra-dimension strongly enhances the trapping times inducing plateaus and distinct algebraic and exponential decays in the RTS plots. The combined analysis of the RTS with the classification of ordered and chaotic regimes and scaling properties, allows us to describe the intricate way trajectories penetrate the before impenetrable regular islands from the uncoupled case. Essentially the plateaus found in the RTS are related to trajectories that stay long times inside trapping tubes, not allowing recurrences, and then penetrates diffusively the islands (from the uncoupled case) by a diffusive motion along such tubes in the extra-dimension. All asymptotic exponential decays for the RTS are ...

  4. Transition and Continuance in Science Production: Authorship Flow in Chemistry

    Directory of Open Access Journals (Sweden)

    Mahsa Nikzad

    2016-03-01

    Full Text Available The aim of this article is to study authorship flow in Iranian ISI articles in the field of chemistry based on Price’s model. Price divided authors in each given period in any field into four groups including newcomers, transients, continuants, and terminators. He maintained that actuarial statistics could be applied to authorship to calculate death rate and birth rate in scientific fields. A total 25,573 articles written by 59,661 Iranian chemistry authors between 1973 and 2012 were downloaded from Web of Science and were subjected to statistical analysis. The average birth rate was 66.7%, the average death rate was 19.4%, infant mortality rate was 51.2%, average natural increase was 47.3%, the average life expectancy was 1.98 years and the longest scientific age was 22 years. The results show that although a large number of people start their scientific activity, the number of those who terminate their activity in the same year as they start (infant death rate is also large and little continuity exist in publishing activities of Iranian chemists. The overall labor force in the field of chemistry in Iran was not satisfactory as the majority of authors in each period are transients. Policy makers need to take measures to improve the situation.

  5. Enhanced volume production of negative ions in the post discharge of a multicusp hydrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, M.B.; Bacal, M.; Graham, W.G. (Laboratoire de Physique des Milieux Ionises, Laboratoire du C.N.R.S., Ecole Polytechnique, 91128 Palaiseau Cedex (France))

    1991-08-15

    In this paper we demonstrate a new concept in the production of negative hydrogen ions in a low-pressure multicusp discharge. The discharge voltage is modulated to produce a non-Maxwellian, hot-electron plasma during the current pulse, followed by a cool Maxwellian electron plasma in the post discharge. This procedure, of separating in time the required hot and cold electron plasmas required for volume H{sup {minus}} production, is called a temporal filter. The time evolution of the electron energy distribution function is measured using the time-resolved second derivative of a Langmuir probe characteristic. Time-resolved measurements of the negative ion density are made using laser photodetachment. The measurements show that the negative ion density in the center of the source, at a gas pressure of 0.07 Pa, increases by a factor of 2 when the discharge is switched off. At this low pressure the average H{sup {minus}} beam current extracted from the source, when operated with a discharge current of 1 A in the pulse modulated mode exceeds the H{sup {minus}} beam current from a 5 A continuously operated source. The increase in efficiency of the pulsed source is explained in terms of a two-step H{sup {minus}} production mechanism.

  6. Entropy Production and the Pressure-Volume Curve of the Lung

    Directory of Open Access Journals (Sweden)

    Cláudio Lucas Oliveira

    2016-03-01

    Full Text Available We investigate analytically the production of entropy during a breathing cycle in healthy and diseased lungs. First, we calculate entropy production in healthy lungs by applying the laws of thermodynamics to the well-known transpulmonary pressure-volume (P-V curves of the lung under the assumption that lung tissue behaves as an entropy spring-like rubber. The bulk modulus, $B$, of the lung is also derived from these calculations. Second, we extend this approach to elastic recoil disorders of the lung such as occur in pulmonary fibrosis and emphysema. These diseases are characterized by particular alterations in the P-V relationship. For example, in fibrotic lungs B increases monotonically with disease progression, while in emphysema the opposite occurs. These diseases can thus be mimicked simply by making appropriate adjustments to the parameters of the P-V curve. Using Clausius's formalism, we show that entropy production, Delta_S, is related to the hysteresis area, Delta_A, enclosed by the P-V curve during a breathing cycle, namely, Delta_S = Delta_A/T, where T is the body temperature. Although Delta_A is highly dependent on the disease, such formula applies to healthy as well as diseased lungs, regardless of the disease stage. Finally, we use ansatzs to predict analytically the entropy produced by the fibrotic and emphysematous lungs.

  7. Entropy Production and the Pressure-Volume Curve of the Lung

    CERN Document Server

    Oliveira, Cláudio L N; Bates, Jason H T; Andrade, José S; Suki, Béla

    2015-01-01

    We investigate analytically the production of entropy during a breathing cycle in healthy and diseased lungs. First, we calculate entropy production in healthy lungs by applying the laws of thermodynamics to the well-known transpulmonary pressure-volume ($P-V$) curves of the lung under the assumption that lung tissue behaves as an entropy spring-like rubber. The bulk modulus, $B$, of the lung is also derived from these calculations. Second, we extend this approach to elastic recoil disorders of the lung such as occur in pulmonary fibrosis and emphysema. These diseases are characterized by particular alterations in the $P-V$ relationship. For example, in fibrotic lungs $B$ increases monotonically with disease progression, while in emphysema the opposite occurs. These diseases can thus be mimicked simply by making appropriate adjustments to the parameters of the $P-V$ curve. Using Clausius's formalism, we show that entropy production, $\\Delta S$, is related to the hysteresis area, $\\Delta A$, enclosed by the $P...

  8. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  9. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

    Science.gov (United States)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

    2016-12-01

    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated

  10. Studies on plasma production in a large volume system using multiple compact ECR plasma sources

    Science.gov (United States)

    Tarey, R. D.; Ganguli, A.; Sahu, D.; Narayanan, R.; Arora, N.

    2017-01-01

    This paper presents a scheme for large volume plasma production using multiple highly portable compact ECR plasma sources (CEPS) (Ganguli et al 2016 Plasma Source Sci. Technol. 25 025026). The large volume plasma system (LVPS) described in the paper is a scalable, cylindrical vessel of diameter  ≈1 m, consisting of source and spacer sections with multiple CEPS mounted symmetrically on the periphery of the source sections. Scaling is achieved by altering the number of source sections/the number of sources in a source section or changing the number of spacer sections for adjusting the spacing between the source sections. A series of plasma characterization experiments using argon gas were conducted on the LVPS under different configurations of CEPS, source and spacer sections, for an operating pressure in the range 0.5-20 mTorr, and a microwave power level in the range 400-500 W per source. Using Langmuir probes (LP), it was possible to show that the plasma density (~1  -  2  ×  1011 cm-3) remains fairly uniform inside the system and decreases marginally close to the chamber wall, and this uniformity increases with an increase in the number of sources. It was seen that a warm electron population (60-80 eV) is always present and is about 0.1% of the bulk plasma density. The mechanism of plasma production is discussed in light of the results obtained for a single CEPS (Ganguli et al 2016 Plasma Source Sci. Technol. 25 025026).

  11. Environmental effects of energy production and utilization in the U. S. Volume I. Sources, trends, and costs of control

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W. (comp.)

    1976-05-01

    Volume I deals with sources (what the emissions are and where they come from), trends (quantities of emissions and their dispersion with time), and costs of control (what it takes in time, energy, and money to meet minimum standards). Volume II concerns itself with the public health effects of energy production and utilization. Volume III summarizes the various techniques for controlling emissions, technological as well as economic, social, and political. (For abstracts of Vols. II and III, see ERDA Energy Research Abstracts, Vol. 2, Absts. 5764 and 5670, respectively) Each volume is divided into sections dealing with the atmosphere, water, land, and social activities--each division indicating a particular sphere of man's environment affected by energy production and use. The sources of information that were used in this study included textbooks, journal articles, technical reports, memoranda, letters, and personal communications. These are cited in the text at the end of each subsection and on the applicable tables and figures.

  12. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values

    DEFF Research Database (Denmark)

    Østergaard, Leif; Smith, D F; Vestergaard-Poulsen, Peter;

    1998-01-01

    The authors determined cerebral blood flow (CBF) with magnetic resonance imaging (MRI) of contrast agent bolus passage and compared the results with those obtained by O-15 labeled water (H215O) and positron emission tomography (PET). Six pigs were examined by MRI and PET under normo......- and hypercapnic conditions. After dose normalization and introduction of an empirical constant phi Gd, absolute regional CBF was calculated from MRI. The spatial resolution and the signal-to-noise ratio of CBF measurements by MRI were better than by the H215O-PET protocol. Magnetic resonance imaging cerebral...... blood volume (CBV) estimates obtained using this normalization constant correlated well with values obtained by O-15 labeled carbonmonooxide (C15O) PET. However, PET CBV values were approximately 2.5 times larger than absolute MRI CBV values, supporting the hypothesized sensitivity of MRI to small...

  13. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    Science.gov (United States)

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  14. Reference values of Forced Expiratory Volumes and pulmonary flows in 3–6 year children: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Cordola Giorgio

    2007-02-01

    Full Text Available Abstract Background The aims of this study were to verify the feasibility of respiratory function tests and to assess their validity in the diagnosis of respiratory disorders in young children. Methods We performed spirometry and collected information on health and parents' lifestyle on a sample of 960 children aged 3–6. Results The cooperation rate was 95.3%. Among the valid tests, 3 or more acceptable curves were present in 93% of cases. The variability was 5% within subjects in 90.8% of cases in all the parameters. We propose regression equations for FVC (Forced Vital Capacity, FEV1, FEV0.5, FEV0.75 (Forced Expiratory Volume in one second, in half a second and in 3/4 of a second, and for Maximum Expiratory Flows at different lung volume levels (MEF75, 50, 25. All parameters are consistent with the main reference values reported in literature. The discriminating ability of respiratory parameters versus symptoms always shows a high specificity (>95% and a low sensitivity ( Conclusion Our study confirms the feasibility of spirometry in young children; however some of the current standards are not well suited to this age group. Moreover, in this restricted age group the various reference values have similar behaviour.

  15. Optical flow based deformable volume registration using a novel second-order regularization prior

    Science.gov (United States)

    Grbić, Saša; Urschler, Martin; Pock, Thomas; Bischof, Horst

    2010-03-01

    Nonlinear image registration is an initial step for a large number of medical image analysis applications. Optical flow based intensity registration is often used for dealing with intra-modality applications involving motion differences. In this work we present an energy functional which uses a novel, second-order regularization prior of the displacement field. Compared to other methods our scheme is robust to non-Gaussian noise and does not penalize locally affine deformation fields in homogeneous areas. We propose an efficient and stable numerical scheme to find the minimizer of the presented energy. We implemented our algorithm using modern consumer graphics processing units and thereby increased the execution performance dramatically. We further show experimental evaluations on clinical CT thorax data sets at different breathing states and on dynamic 4D CT cardiac data sets.

  16. Effects of CO2 pneumoperitoneum on blood flow vol-ume of abdominal organs of rabbits with controlled hem-orrhagic shock and liver impact injuries

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lian-yang; ZHAO Song; LI Yong; MA Xiao-lin

    2009-01-01

    Objective: To investigate the effects of CO2 pneumo-peritoneum on blood flow volume of abdominal organs of rabbits with controlled hemorrhagic shock model and liver impact injuries.Methods: After controlled hemorrhagic shock and liver impact injuries, the rabbit model was established. Eighteen rabbits subjected to hemorrhagic shock and liver impact inju-ries were divided into 3 groups randomly according to the volume of lost blood: light hemorrhagic shock (blood loss volume was 10%, 6 ml/kg), moderate hemorrhagic shock (20%, 12 ml/kg) and severe hemorrhagic shock (40%, 22 ml/kg). Intraabdominal pressures of CO2 pneumoperitoneum was 10 mmHg. Color-labeled microspheres were used to mea-sure the blood flow volume of the liver, kidney and stomach before pneumoperitoneum at 30 minutes and 2 hours after pneumoperitoneum and 30 minutes after deflation. And the mortality and hepatic traumatic condition of rabbits were recorded.Results: Of the 18 rabbits, there were 9 with liver impact injuries at Grade Ⅰ, 8 at Grade Ⅱ and Ⅰ at Grade Ⅲ (according to AIS-2005). The mortality rate in light hemorrhagic shock group was 33.33%, and that in moderate or severe hemor-rhagic shock group was 100% within 30 minutes and 2 hours after pneumoperitoneum, respectively. The blood flow vol-ume in the organs detected decreased at 30 minutes under pneumoperitoneum in light and moderate hemorrhagic shock groups. At the same time, the blood flow volume of the liver in moderate hemorrhagic shock group decreased more sig-nificantly than that in light hemorrhagic shock group.Conclusions: The blood flow volume of abdominal organs in rabbits is decreased obviously under CO2 pneumoperitoneum, with fairly high mortality rate. It is be-lieved that CO2 pneumoperitoneum should cautiously be used in abdominal injury accompanied with hemorrhagic shock, especially under non-resuscitation conditions.

  17. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Gopala Krishna Alaparthi

    2016-01-01

    Full Text Available Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC, Forced Expiratory Volume in the first second (FEV1, Peak Expiratory Flow Rate (PEFR, and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p<0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p<0.001 but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p<0.05 as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of

  18. Recurrence-time statistics in non-Hamiltonian volume-preserving maps and flows

    Science.gov (United States)

    da Silva, Rafael M.; Beims, Marcus W.; Manchein, Cesar

    2015-08-01

    We analyze the recurrence-time statistics (RTS) in three-dimensional non-Hamiltonian volume-preserving systems (VPS): an extended standard map and a fluid model. The extended map is a standard map weakly coupled to an extra dimension which contains a deterministic regular, mixed (regular and chaotic), or chaotic motion. The extra dimension strongly enhances the trapping times inducing plateaus and distinct algebraic and exponential decays in the RTS plots. The combined analysis of the RTS with the classification of ordered and chaotic regimes and scaling properties allows us to describe the intricate way trajectories penetrate the previously impenetrable regular islands from the uncoupled case. Essentially the plateaus found in the RTS are related to trajectories that stay for long times inside trapping tubes, not allowing recurrences, and then penetrate diffusively the islands (from the uncoupled case) by a diffusive motion along such tubes in the extra dimension. All asymptotic exponential decays for the RTS are related to an ordered regime (quasiregular motion), and a mixing dynamics is conjectured for the model. These results are compared to the RTS of the standard map with dissipation or noise, showing the peculiarities obtained by using three-dimensional VPS. We also analyze the RTS for a fluid model and show remarkable similarities to the RTS in the extended standard map problem.

  19. Acu-TENS and Postexercise Expiratory Flow Volume in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Shirley P. C. Ngai

    2011-01-01

    Full Text Available Transcutaneous Electrical Nerve Stimulation over acupoints (Acu-TENS facilitates recovery of resting heart rate after treadmill exercise in healthy subjects. Its effect on postexercise respiratory indices has not been reported. This study investigates the effect of Acu-TENS on forced expiratory volume in 1 second (FEV1 and forced vital capacity (FVC in healthy subjects after a submaximal exercise. Eleven male subjects were invited to the laboratory twice, two weeks apart, to receive in random order either Acu-TENS or Placebo-TENS (no electrical output from the TENS unit over bilateral Lieque (LU7 and Dingchuan (EX-B1 for 45 minutes, before undergoing exercise following the Bruce protocol. Exercise duration, rate of perceived exertion (RPE, and peak heart rate (PHR were recorded. Between-group FEV1 and FVC, before, immediately after, at 15, 30, and 45minutes postexercise, were compared. While no between-group differences in PHR, RPE, and FVC were found, Acu-TENS was associated with a longer exercise duration (0.9 min (P=.026 and a higher percentage increase in FEV1 at 15 and 45 minutes postexercise (3.3 ± 3.7% (P=.013 and 5.1 ± 7.5% (P=.047, resp. compared to Placebo-TENS. We concluded that Acu-TENS was associated with a higher postexercise FEV1 and a prolongation of submaximal exercise.

  20. Analysis of triangular C-grid finite volume scheme for shallow water flows

    Science.gov (United States)

    Shirkhani, Hamidreza; Mohammadian, Abdolmajid; Seidou, Ousmane; Qiblawey, Hazim

    2015-08-01

    In this paper, a dispersion relation analysis is employed to investigate the finite volume triangular C-grid formulation for two-dimensional shallow-water equations. In addition, two proposed combinations of time-stepping methods with the C-grid spatial discretization are investigated. In the first part of this study, the C-grid spatial discretization scheme is assessed, and in the second part, fully discrete schemes are analyzed. Analysis of the semi-discretized scheme (i.e. only spatial discretization) shows that there is no damping associated with the spatial C-grid scheme, and its phase speed behavior is also acceptable for long and intermediate waves. The analytical dispersion analysis after considering the effect of time discretization shows that the Leap-Frog time stepping technique can improve the phase speed behavior of the numerical method; however it could not damp the shorter decelerated waves. The Adams-Bashforth technique leads to slower propagation of short and intermediate waves and it damps those waves with a slower propagating speed. The numerical solutions of various test problems also conform and are in good agreement with the analytical dispersion analysis. They also indicate that the Adams-Bashforth scheme exhibits faster convergence and more accurate results, respectively, when the spatial and temporal step size decreases. However, the Leap-Frog scheme is more stable with higher CFL numbers.

  1. New scale of turbulent flow characteristics and its use in aspects of reservoir and production engineering

    Energy Technology Data Exchange (ETDEWEB)

    Deghmoum, A.H.; Hamaz, H. [Sonatrach/AMT/CRD, Alger (Algeria)

    2004-07-01

    Fluid flow through a porous medium in turbulent flow regime was examined through laboratory experiments and numerical analysis. The study presented production and core data from thousands of core samples from six reservoirs in Algeria. The core samples were analyzed under unsteady state flow conditions. New concepts of non-Darcian flow characteristics for reservoir characterization and well performance were presented. A universal scale of turbulent factor versus permeability was developed to classify reservoirs in terms of homogeneity and heterogeneity. The new scale also established an isoturbulence map for enhancing reservoir development in terms of localization of good zones to drill new wells and to improve well productivity. This paper also presented a methodology for choosing the best perforation characteristics. 9 refs., 11 figs.

  2. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution

    Science.gov (United States)

    Seymour, Roger S.; Bosiocic, Vanya; Snelling, Edward P.

    2016-08-01

    The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.

  3. A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow with Cure of Pathological Behaviors

    Science.gov (United States)

    Loh, Ching Y.; Jorgenson, Philip C. E.

    2007-01-01

    A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.

  4. Finite volume - space-time discontinuous Galerkin method for the numerical simulation of compressible turbulent flow in time dependent domains

    Science.gov (United States)

    Česenek, Jan

    The article is concerned with the numerical simulation of the compressible turbulent flow in time dependent domains. The mathematical model of flow is represented by the system of non-stationary Reynolds- Averaged Navier-Stokes (RANS) equations. The motion of the domain occupied by the fluid is taken into account with the aid of the ALE (Arbitrary Lagrangian-Eulerian) formulation of the RANS equations. This RANS system is equipped with two-equation k - ω turbulence model. These two systems of equations are solved separately. Discretization of the RANS system is carried out by the space-time discontinuous Galerkin method which is based on piecewise polynomial discontinuous approximation of the sought solution in space and in time. Discretization of the two-equation k - ω turbulence model is carried out by the implicit finite volume method, which is based on piecewise constant approximation of the sought solution. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.

  5. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    Science.gov (United States)

    Friedel, M.J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study. ?? 2011.

  6. Impacts of changes in flow in glacier fed river in Nepal on hydropower production.

    Science.gov (United States)

    Khadka Mishra, S.

    2014-12-01

    Variability of water flow in rivers due to change in temperature, precipitation and melting of glacier translates to change in water availability for agriculture, biodiversity conservation, and hydropower production impacting 1.5 billion people living downstream in India and Nepal. Previous studies ranked hydropower sector as the highest priority sector considering the urgency and severity of impacts in countries such as Nepal where hydropower shares 96 percentage of electricity production. In India, 45 per cent of hydroelectricity is generated from glacier fed rivers and hydropower shares 17 per cent of power generation. This study developed a framework to estimate the change in river flow attributed to global climate change and quantify its impact on hydropower generation in South Asian Mountains. The framework is applied on one of the major rivers Koshi River in Nepal with existing and proposed hydropower plants. The integrated assessment approach involved estimation of the change in flow in the river in the first part. Model was developed to estimate the change in flow that uses time series data on precipitation, temperature, remote sensing imagery on snow accumulation and ablation, and slope and surface hydrology. In the second part, another model was developed to investigate the impact of change in flow on hydropower production in various types of hydropower production plants. Data on flow, characteristics of hydropower plants and hydropower produced monthly from power plants in and outside of the river basin were used to model the flow and power generation from various categories of power plants. We will further discuss the results of the integrated assessments of potential changes in hydropower generation in various categories of hydropower plants based on Koshi River under various expected changes in flow and the implications for hydropower generation from other river systems in Nepal and India.

  7. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields.

    Directory of Open Access Journals (Sweden)

    Shannon Heuberger

    Full Text Available BACKGROUND: Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt cotton is planted on millions of hectares annually and is a potential source of transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L. seed production fields (some transgenic for herbicide resistance, some not for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. CONCLUSIONS/SIGNIFICANCE: A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow.

  8. Virtual and Embedded Nutrient Flows from Soybean Production in Mato Grosso, Brazil

    Science.gov (United States)

    Lathuilliere, M. J.; Couto, E. G.; Johnson, M. S.

    2012-12-01

    The increase in international trade of agricultural products has enabled consumers to take advantage of distant resources to secure their provision of food. However, such a relationship has also distanced consumers from producers, resulting in environmental footprints often externalized to distant countries. For example, half of all soybeans grown in the state of Mato Grosso, the largest Brazilian soybean producer this past decade, were exported to China and Europe in 2009. This study looks at nitrogen (N), phosphorous (P) and potassium (K) use related to Mato Grosso soybean production and exports to China and Europe in the 2000-2009 period. More specifically we look at 'virtual' and 'embedded' NPK flows to China and Europe, where 'virtual' represents NPK inputs associated with soybean production but not actually embedded in the exported soybeans, and 'embedded' represents the NPK contained within the soybeans. Both virtual and embedded NPK export flows more than doubled between 2000 and 2009, with embedded NPK flows up to 18 times larger than virtual flows on an annual basis. We also quantify nutrient balances resulting from the soybean trade including imported and domestically produced fertilizer. Initial results suggest that the majority of embedded N may cause an issue for importing countries, while virtual P is mostly externalized to Mato Grosso which must rely on limited national production and fertilizer imports to meet P needs. This study contributes towards a more comprehensive understanding of the use of nutrients in soybean production as a component of a more complete environmental impact assessment of this agricultural product.

  9. Low parameter model to monitor bottom hole pressure in vertical multiphase flow in oil production wells

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-09-01

    Full Text Available The importance of the flow patterns through petroleum production wells proved for upstream experts to provide robust production schemes based on the knowledge about flow behavior. To provide accurate flow pattern distribution through production wells, accurate prediction/representation of bottom hole pressure (BHP for determining pressure drop from bottom to surface play important and vital role. Nevertheless enormous efforts have been made to develop mechanistic approach, most of the mechanistic and conventional models or correlations unable to estimate or represent the BHP with high accuracy and low uncertainty. To defeat the mentioned hurdle and monitor BHP in vertical multiphase flow through petroleum production wells, inventive intelligent based solution like as least square support vector machine (LSSVM method was utilized. The evolved first-break approach is examined by applying precise real field data illustrated in open previous surveys. Thanks to the statistical criteria gained from the outcomes obtained from LSSVM approach, the proposed least support vector machine (LSSVM model has high integrity and performance. Moreover, very low relative deviation between the model estimations and the relevant actual BHP data is figured out to be less than 6%. The output gained from LSSVM model are closed the BHP while other mechanistic models fails to predict BHP through petroleum production wells. Provided solutions of this study explicated that implies of LSSVM in monitoring bottom-hole pressure can indicate more accurate monitoring of the referred target which can lead to robust design with high level of reliability for oil and gas production operation facilities.

  10. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    Science.gov (United States)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  11. A Method of Flow-Shop Re-Scheduling Dealing with Variation of Productive Capacity

    Directory of Open Access Journals (Sweden)

    Kenzo KURIHARA

    2005-02-01

    Full Text Available We can make optimum scheduling results using various methods that are proposed by many researchers. However, it is very difficult to process the works on time without delaying the schedule. There are two major causes that disturb the planned optimum schedules; they are (1the variation of productive capacity, and (2the variation of products' quantities themselves. In this paper, we deal with the former variation, or productive capacities, at flow-shop works. When production machines in a shop go out of order at flow-shops, we cannot continue to operate the productions and we have to stop the production line. To the contrary, we can continue to operate the shops even if some workers absent themselves. Of course, in this case, the production capacities become lower, because workers need to move from a machine to another to overcome the shortage of workers and some shops cannot be operated because of the worker shortage. We developed a new re-scheduling method based on Branch-and Bound method. We proposed an equation for calculating the lower bound for our Branch-and Bound method in a practical time. Some evaluation experiments are done using practical data of real flow-shop works. We compared our results with those of another simple scheduling method, and we confirmed the total production time of our result is shorter than that of another method by 4%.

  12. (Anti-)deuteron production and anisotropic flow measured with ALICE at the LHC

    CERN Document Server

    Lea, Ramona

    2016-01-01

    The high abundance of (anti-)deuterons in the statistics gathered in Run 1 of the LHC and the excellent performance of the ALICE setup allow for the simultaneous measurement of the elliptic flow and the deuteron production rates with a large transverse momentum ($p_{\\rm T}$) reach. The (anti-) deuterons are identified using the specific energy loss in the time projection chamber and the velocity information in the time-of-flight detector. The elliptic flow of (anti-)deuterons can provide insight into the production mechanisms of particles in heavy-ion collisions. Quark coalescence is one of the approaches to describe the elliptic flow of hadrons, while the production of light nuclei can be also depicted as a coalescence of nucleons. In these proceedings, the measured $v_{2}$ of deuterons produced in Pb--Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}$=2.76TeV will be compared to expectations from coalescence and hydrodynamic models.

  13. Innovative cross-flow membrane system for volume reduction of mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Greene, W. [SpinTek Membrane Systems, Huntington Beach, CA (United States)

    1997-10-01

    In this task, SpinTek Membrane Systems, Inc., and the Institute of Gas Technology are completing engineering development leading to a full-scale demonstration of the SpinTek ST-II High Shear Rotary Membrane Filtration System (ST-II) under a Program Research and Development Agreement (PRDA) with the Federal Energy Technology Center-Morgantown. The SpinTek ST-II technology will be scaled-up, and a two-stage ST-II system will be designed, constructed, and operated on both surrogate and actual feed at the Los Alamos National Laboratory (LANL) Liquid Radioactive Waste Treatment Facility (LRWTF). Results from these studies on both surrogate and actual wastewater streams will also be used by LANL personnel to produce a model for determining the applicability and economics of the SpinTek ST-II system to other DOE waste and process streams. The ST-II is a unique, compact cross-flow membrane system having several advantages in performance and cost compared to currently available systems. Staff at LANL have performed pilot-scale testing with the SpinTek technology to evaluate its feasibility for enhanced radionuclide removal from wastewater at its 5- to 8-million-gallon-per-year LRWTF. Recent data have shown the system`s capabilities to remove radionuclides from the waste stream at concentration factors greater than 2000:1, and performance has exceeded both conventional and all other advanced technologies examined.

  14. SRM Internal Flow Test and Computational Fluid Dynamic Analysis. Volume 1; Major Task Summaries

    Science.gov (United States)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.

    1995-01-01

    During the four year period of performance for NASA contract, NASB-39095, ERC has performed a wide variety of tasks to support the design and continued development of new and existing solid rocket motors and the resolution of operational problems associated with existing solid rocket motor's at NASA MSFC. This report summarizes the support provided to NASA MSFC during the contractual period of performance. The report is divided into three main sections. The first section presents summaries for the major tasks performed. These tasks are grouped into three major categories: full scale motor analysis, subscale motor analysis and cold flow analysis. The second section includes summaries describing the computational fluid dynamics (CFD) tasks performed. The third section, the appendices of the report, presents detailed descriptions of the analysis efforts as well as published papers, memoranda and final reports associated with specific tasks. These appendices are referenced in the summaries. The subsection numbers for the three sections correspond to the same topics for direct cross referencing.

  15. Should measurement of maximum urinary flow rate and residual urine volume be a part of a "minimal care" assessment programme in female incontinence?

    DEFF Research Database (Denmark)

    Sander, Pia; Mouritsen, L; Andersen, J Thorup

    2002-01-01

    OBJECTIVE: The aim of this study was to evaluate the value of routine measurements of urinary flow rate and residual urine volume as a part of a "minimal care" assessment programme for women with urinary incontinence in detecting clinical significant bladder emptying problems. MATERIAL AND METHOD...... female urinary incontinence. Thus, primary health care providers can assess women based on simple guidelines without expensive equipment for assessment of urine flow rate and residual urine....

  16. Applications of on-product diffraction-based focus metrology in logic high volume manufacturing

    Science.gov (United States)

    Noyes, Ben F.; Mokaberi, Babak; Bolton, David; Li, Chen; Palande, Ashwin; Park, Kevin; Noot, Marc; Kea, Marc

    2016-03-01

    The integration of on-product diffraction-based focus (DBF) capability into the majority of immersion lithography layers in leading edge logic manufacturing has enabled new applications targeted towards improving cycle time and yield. A CD-based detection method is the process of record (POR) for excursion detection. The drawback of this method is increased cycle time and limited sampling due to CD-SEM metrology capacity constraints. The DBFbased method allows the addition of focus metrology samples to the existing overlay measurements on the integrated metrology (IM) system. The result enables the addition of measured focus to the SPC system, allowing a faster excursion detection method. For focus targeting, the current method involves using a dedicated focus-exposure matrix (FEM) on all scanners, resulting in lengthy analysis times and uncertainty in the best focus. The DBF method allows the measurement to occur on the IM system, on a regular production wafer, and at the same time as the exposure. This results in a cycle time gain as well as a less subjective determination of best focus. A third application aims to use the novel onproduct focus metrology data in order to apply per-exposure focus corrections to the scanner. These corrections are particularly effective at the edge of the wafer, where systematic layer-dependent effects can be removed using DBFbased scanner feedback. This paper will discuss the development of a methodology to accomplish each of these applications in a high-volume production environment. The new focus metrology method, sampling schemes, feedback mechanisms and analysis methods lead to improved focus control, as well as earlier detection of failures.

  17. Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B.L.; Gardner, M.C.; Koenig, J.B.

    1981-08-01

    The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Western Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 55) COLLECTIVE FLOW AND QGP PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    BASS,S.ESUMI,S.HEINZ,U.KOLB,P.SHURYAK,E.XU,N.

    2003-11-17

    The first three years of RHIC physics, with Au/Au collisions induced at 65, 130 and 200 GeV per nucleon pair, produced dramatic results, particularly with respect to collective observables such as transverse flow and anisotropies in transverse momentum spectra. It has become clear that the data show very strong rescattering at very early times of the reaction, strong enough in fact to be described by the hydrodynamic limit. Therefore, with today's experiments, we are able to investigate the equation of state of hot quark gluon matter, discuss its thermodynamic properties and relate them to experimental observables. At this workshop we came together to discuss our latest efforts both in the theoretical description of heavy ion collisions as well as most recent experimental results that ultimately allow us to extract information on the properties of RHIC matter. About 50 participants registered for the workshop, but many more dropped in from the offices at BNL. The workshop lasted for three days, of which each day was assigned a special topic on which the talks focused. On the first day we dealt with the more general question what the strong collective phenomena observed in RHIC collisions tell us about the properties and the dynamics of RHIC matter. The second day covered all different aspects of momentum anisotropies, and interesting new experimental results were presented for the first time. On the third day, we focused on the late fireball dynamics and the breakdown of the assumption of thermalization. New experimental observables were discussed, which will deliver more information of how the expanding fireball breaks up, once the frequent interaction ceases.

  19. Pulmonary intravascular blood volume changes through the cardiac cycle in healthy volunteers studied by cardiovascular magnetic resonance measurements of arterial and venous flow

    Directory of Open Access Journals (Sweden)

    Arheden Hakan

    2009-10-01

    Full Text Available Abstract Background This study aims to present a novel method for using cardiovascular magnetic resonance (CMR to non-invasively quantify the variation in pulmonary blood volume throughout the cardiac cycle in humans. Methods 10 healthy volunteers (7 males, 3 female, age range 21-32 years were studied. The blood flow in the pulmonary artery and all pulmonary veins was quantified during free breathing using phase contrast velocity encoded CMR. The difference in flow between the pulmonary artery and the pulmonary veins was integrated to calculate the change in pulmonary blood volume throughout the cardiac cycle. Results The stroke volumes in the pulmonary artery and the sum of the pulmonary veins were (mean ± SEM 103 ± 6 ml and 95 ± 6 ml, respectively. The pulmonary blood volume variation (PBVV was 48 ± 5 ml, and the PBVV expressed as percent of the pulmonary artery stroke volume was 46 ± 3%. The maximum increase in pulmonary blood volume occurred 310 ± 12 ms after the R-wave from the ECG (32 ± 2% of the cardiac cycle. PBVV did not correlate to change in cross-sectional area in the pulmonary artery (R2 = 0.03, p = 0.66. Conclusion It is feasible to non-invasively quantify the change in pulmonary blood volume during the cardiac cycle in humans using CMR. The average pulmonary blood volume variation in healthy volunteers was approximately 50 ml and this was approximately 50% of the stroke volume. Further studies are needed to assess the utility of the pulmonary blood volume variation as a measure for identifying cardiac and pulmonary vascular disease.

  20. Practical application of game theory based production flow planning method in virtual manufacturing networks

    Science.gov (United States)

    Olender, M.; Krenczyk, D.

    2016-08-01

    Modern enterprises have to react quickly to dynamic changes in the market, due to changing customer requirements and expectations. One of the key area of production management, that must continuously evolve by searching for new methods and tools for increasing the efficiency of manufacturing systems is the area of production flow planning and control. These aspects are closely connected with the ability to implement the concept of Virtual Enterprises (VE) and Virtual Manufacturing Network (VMN) in which integrated infrastructure of flexible resources are created. In the proposed approach, the players role perform the objects associated with the objective functions, allowing to solve the multiobjective production flow planning problems based on the game theory, which is based on the theory of the strategic situation. For defined production system and production order models ways of solving the problem of production route planning in VMN on computational examples for different variants of production flow is presented. Possible decision strategy to use together with an analysis of calculation results is shown.

  1. Local Entropy Production in Turbulent Shear Flows: A Tool for Evaluating Heat Transfer Performance

    Institute of Scientific and Technical Information of China (English)

    H. HERWIG; F. KOCK

    2006-01-01

    Performance evaluation of heat transfer devices can be based on the overall entropy production in these devices.In our study we therefore provide equations for the systematic and detailed determination of local entropy production due to dissipation of mechanical energy and due to heat conduction, both in turbulent flows. After turbulence modeling has been incorporated for the fluctuating parts the overall entropy production can be determined by integration with respect to the whole flow domain. Since, however, entropy production rates show very steep gradients close to the wall, numerical solutions are far more effective with wall functions for the entropy production terms. These wall functions are mandatory when high Reynolds number turbulence models are used. For turbulent flow in a pipe with an inserted twisted tape as heat transfer promoter it is shown that based on the overall entropy production rate a clear statement from a thermodynamic point of view is possible. For a certain range of twist strength there is a decrease in overall entropy production compared to the case without insert. Also, the optimum twist strength can be determined. This information is unavailable when only pressure drop and heat transfer data are given.

  2. Elliptic flow as a probe for $\\psi(2S)$ production mechanism in relativistic heavy ion collisions

    CERN Document Server

    Chen, Baoyi

    2016-01-01

    I discuss the elliptic flows of $\\psi(2S)$ with different production mechanisms in the middle $p_T$ bin in $\\sqrt{s_{NN}}=2.76$ TeV Pb-Pb collisions. If the final $\\psi(2S)$s are mainly from the recombination of uncorrelated charm and anticharm quarks at $T\\approx T_c$, charm and anticharm quarks will carry large collective flows of the bulk medium, which will be inherited to the regenerated $\\psi(2S)$s. This indicates a larger elliptic flow of $\\psi(2S)$ than that of $J/\\psi$ which can be regenerated at $T\\ge T_c$, $v_2^{\\psi(2S)}>v_2^{J/\\psi}$. However, if the final $\\psi(2S)$s are mainly from the transitions of $J/\\psi\\rightarrow \\psi(2S)$ caused by the color screening of QGP, its elliptic flow should be close to the elliptic flow of $J/\\psi$, $v_2^{\\psi(2S)}\\lesssim v_2^{J/\\psi}$. Therefore, $\\psi(2S)$ elliptic flow is a sensitive probe for its production mechanisms in relativistic heavy ion collisions.

  3. Imaging Velocimetry Measurements for Entropy Production in a Rotational Magnetic Stirring Tank and Parallel Channel Flow

    Directory of Open Access Journals (Sweden)

    Greg F. Naterer

    2009-07-01

    Full Text Available An experimental design is presented for an optical method of measuring spatial variations of flow irreversibilities in laminar viscous fluid motion. Pulsed laser measurements of fluid velocity with PIV (Particle Image Velocimetry are post-processed to determine the local flow irreversibilities. The experimental technique yields whole-field measurements of instantaneous entropy production with a non-intrusive, optical method. Unlike point-wise methods that give measured velocities at single points in space, the PIV method is used to measure spatial velocity gradients over the entire problem domain. When combined with local temperatures and thermal irreversibilities, these velocity gradients can be used to find local losses of energy availability and exergy destruction. This article focuses on the frictional portion of entropy production, which leads to irreversible dissipation of mechanical energy to internal energy through friction. Such effects are significant in various technological applications, ranging from power turbines to internal duct flows and turbomachinery. Specific problems of a rotational stirring tank and channel flow are examined in this paper. By tracking the local flow irreversibilities, designers can focus on problem areas of highest entropy production to make local component modifications, thereby improving the overall energy efficiency of the system.

  4. Entropy production in a cell and reversal of entropy flow as an anticancer therapy

    Institute of Scientific and Technical Information of China (English)

    Liao-fu LUO

    2009-01-01

    The entropy production rate of cancer cells is always higher than healthy cells in the case where no external field is applied. Different entropy production between two kinds of cells determines the direction of entropy flow among cells. The entropy flow is the carrier of information flow. The entropy flow from cancerous cells to healthy cells takes along the harmful information of cancerous cells, propagating its toxic action to healthy tissues. We demonstrate that a low-frequency and low- intensity electromagnetic field or ultrasound irradiation may increase the entropy production rate of a cell in normal tissue than that in cancer and consequently re- verse the direction of entropy current between two kinds of cells. The modification of the PH value of cells may also cause the reversal of the direction of entropy flow between healthy and cancerous cells. Therefore, the bio- logical tissue under the irradiation of an electromagnetic field or ultrasound or under the appropriate change of cell acidity can avoid the propagation of harmful infor- marion from cancer cells. We suggest that this entropy mechanism possibly provides a basis for a novel approach to anticancer therapy.

  5. Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    1999-12-01

    Full Text Available Global freshwater assessments have not addressed the linkages among water vapor flows, agricultural food production, and terrestrial ecosystem services. We perform the first bottom-up estimate of continental water vapor flows, subdivided into the major terrestrial biomes, and arrive at a total continental water vapor flow of 70,000 km3/yr (ranging from 56,000 to 84,000 km3/yr. Of this flow, 90% is attributed to forests, including woodlands (40,000 km3/yr, wetlands (1400 km3/yr, grasslands (15,100 km3/yr, and croplands (6800 km3/yr. These terrestrial biomes sustain society with essential welfare-supporting ecosystem services, including food production. By analyzing the freshwater requirements of an increasing demand for food in the year 2025, we discover a critical trade-off between flows of water vapor for food production and for other welfare-supporting ecosystem services. To reduce the risk of unintentional welfare losses, this trade-off must become embedded in intentional ecohydrological landscape management.

  6. Effects of methylprednisolone on concanavalin A-induced human lymphocyte blastogenesis: a comparative analysis by flow cytometry, volume determination and /sup 3/H-thymidine incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Marder, P.; Schmidtke, J.R.

    1983-08-01

    The inhibition of concanavalin A-induced human peripheral blood lymphocyte blastogenesis by methylprednisolone (MP) was studied by using flow cytometry and tritiated thymidine (/sup 3/H-TdR) incorporation. Flow cytometric determinations of volume, low angle forward light scatter, and nucleic acid showed MP to be a potent inhibitor of blastogenesis. The effects were concentration-dependent and correlated with /sup 3/H-TdR uptake. By using the single cell analytic capability of flow cytometry, the target stages of the cell cycle where MP affects lymphocyte activation were determined. Evidence is presented that steroids can block both early and late phases of this process.

  7. Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Sogne, Vanessa; Meier, Florian; Klein, Thorsten; Contado, Catia

    2017-09-15

    The dimensional characterization of insoluble, inorganic particles, such as zinc oxide ZnO, dispersed in cosmetic or pharmaceutical formulations, is of great interest considering the current need of declaring the possible presence of nanomaterials on the label of commercial products. This work compares the separation abilities of Centrifugal- and Asymmetrical Flow Field-Flow Fractionation techniques (CF3 and AF4, respectively), equipped with UV-vis, MALS and DLS detectors, in size sorting ZnO particles, both as pristine powders and after their extraction from cosmetic matrices. ZnO particles, bare and superficially modified with triethoxycaprylyl silane, were used as test materials. To identify the most suitable procedure necessary to isolate the ZnO particles from the cosmetic matrix, two O/W and two W/O emulsions were formulated on purpose. The suspensions, containing the extracted particles ZnO, were separated by both Field-Flow Fractionation (FFF) techniques to establish a common analysis protocol, applicable for the analysis of ZnO particles extracted from three commercial products, sold in Europe for the baby skin care. Key aspects of this study were the selection of an appropriate dispersing agent enabling the particles to stay in stable suspensions (>24h)and the use of multiple detectors (UV-vis, MALS and DLS) coupled on-line with the FFF channels, to determine the particle dimensions without using the retention parameters. Between the two FFF techniques, CF3 revealed to be the most robust one, able to sort all suspensions created in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Numerical Simulation of Particle Mixing in Dispersed Gas-Liquid-Solid Flows using a Combined Volume of Fluid and Discrete Particle Approach

    NARCIS (Netherlands)

    Deen, Niels G.; Sint Annaland, van Martin; Kuipers, J.A.M.

    2007-01-01

    In this paper a hybrid model is presented for the numerical simulation of gas-liquid-solid flows using a combined Volume Of Fluid (VOF) and Discrete Particle (DP) approach applied for respectively dispersed gas bubbles and solid particles present in the continuous liquid phase. The hard sphere DP mo

  9. Direct numerical simulation of particle mixing in dispersed gas-liquid-solid flows using a combined volume of fluid and discrete particle approach

    NARCIS (Netherlands)

    Deen, Niels G.; Sint Annaland, van Martin; Kuipers, J.A.M.

    2006-01-01

    In this paper a hybrid model is presented for the numerical simulation of gas-liquid-solid flows using a combined Volume Of Fluid (VOF) and Discrete Particle (DP) approach applied for respectively dispersed gas bubbles and solid particles present in the continuous liquid phase. The hard sphere DP mo

  10. Effect of hysteroscopic adhesiolysis combined with growth hormone on endometrial blood flow and volume as well as Smad2/3 expression

    Institute of Scientific and Technical Information of China (English)

    Xing-Chan Li; Cui-Xia Liang; Jing Li; Pei-Feng Li; Yu Zhao

    2016-01-01

    Objective:To study the effect of hysteroscopic adhesiolysis combined with growth hormone on endometrial blood flow and volume as well as Smad2/3 expression.Methods: A total of 64 patients with moderate or severe intrauterine adhesions who received hysteroscopic adhesiolysis in our hospital from May 2013 to October 2015 were selected as the research subjects and randomly divided into two groups who received different postoperative drug treatment, observation group received postoperative manual cycle intervention combined with growth hormone treatment and control group only received manual cycle intervention. Transvaginal ultrasonography was conducted after treatment to assess endometrial thickness, volume and blood flow, and endometrium was collected to determine Smad2, Smad3 and TGF-β1 levels.Results:After treatment, endometrial blood flow signal of observation group was more abundant than that of control group, ultrasound parameters RI and PI were significantly lower than those of control group, and VI, FI and VFI as well as endometrial thickness and endometrial cavity volume were significantly higher than those of control group; Smad2, Smad3 and TGF-β1 levels in endometrial tissue of observation group after treatment were significantly lower than those of control group.Conclusions:Hysteroscopic adhesiolysis combined with growth hormone therapy can promote endometrial repair and growth, increase endometrial blood flow and volume and also suppress the expression of Smad2/3 and TGF-β1 in patients with intrauterine adhesions.

  11. H- ion production in electron cyclotron resonance driven multicusp volume source

    Science.gov (United States)

    Ivanov, A. A.; Rouillé, C.; Bacal, M.; Arnal, Y.; Béchu, S.; Pelletier, J.

    2004-05-01

    We have used the existing magnetic multicusp configuration of the large volume H- source Camembert III to confine the plasma created by seven elementary multidipolar electron cyclotron resonance (ECR) sources, operating at 2.45 GHz. We varied the pressure from 1 to 4 mTorr, while the total power of the microwave generator was varied between 500 W and 1 kW. We studied the plasma created by this system and measured the various plasma parameters, including the density and temperature of the negative hydrogen ions which are compared to the data obtained in a chamber with elementary ECR sources without multicusp magnetic confinement. The electron temperature is lower than that obtained with similar elementary sources in the absence of the magnetic multicusp field. We found that at pressures in the range from 2 to 4 mTorr and microwave power of up to 1 kW, the electron temperature is optimal for H- ion production (0.6-0.8 eV). This could indicate that the multicusp configuration effectively traps the fast electrons produced by the ECR discharge.

  12. Exporting large volumes of municipal sewage sludge through turfgrass sod production.

    Science.gov (United States)

    Tesfamariam, Eyob H; Annandale, John G; Steyn, Joachim M; Stirzaker, Richard J

    2009-01-01

    The nutrient content of sludge produced by municipal water treatment works often far exceeds the requirements of nearby crops. Transporting sludge further afield is not always economically viable. This study reports on the potential to export large volumes of anaerobically digested municipal sewage sludge through turfgrass sod production. Hypotheses examined are that sludge loading rates far above recommendations based on crop nutrient removal (i) are possible without reducing turf growth and quality, (ii) do not cause an accumulation of N and P below the active root zone, (iii) can minimize soil loss through sod harvesting, and (iv) do not cause unacceptably high nitrate and salt leaching. An 8 Mg ha(-1) sludge control (the recommended limit) was compared with sludge rates of 0, 33, 67, and 100 Mg ha(-1) on a loamy, kaolinitic, mesic, Typic Eutrustox soil near Johannesburg, South Africa. Sludge application rates up to 67 Mg ha(-1) significantly improved turfgrass establishment rate and color. The ability of sods to remain intact during handling and transport improved as the sludge application rate increased to 33 Mg ha(-1) but deteriorated at higher rates. A sludge application rate of 100 Mg ha(-1) was needed to eliminate soil loss, but this rate was associated with unacceptably high N leaching losses. All our hypotheses were accepted for application rates not exceeding 33 Mg ha(-1) on the proviso that some soil loss was acceptable and that the leaching fraction was carefully managed during the first 2 mo after sludge application.

  13. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    CERN Document Server

    Chonis, Taylor S; Hill, Gary J; Clemens, J Christopher; Lee, Hanshin; Tuttle, Sarah E; Adams, Joshua J; Marshall, J L; DePoy, D L; Prochaska, Travis

    2014-01-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350-550 nm. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wav...

  14. One-Dimension Nonisentropic Model for the Flow of Aluminized Explosive Products

    Directory of Open Access Journals (Sweden)

    Ji Duan

    2017-01-01

    Full Text Available A new analytic model of aluminized explosive products based on the method of characteristics for planar isentropic flow is proposed herein. The contribution of Al oxidation in the explosion products is investigated analytically. The flow behind the detonation front cannot be treated as isentropic due to the Al oxidation in the products. To solve the nonisentropic flow field of aluminized explosives products analytically, the assumption of local isentropic process is proposed. Based on this assumption, the flow field behind the detonation front of aluminized explosive is a function of only the reacted aluminum mass fraction in each time range. The metal plate test was conducted with the metal plate driven by RDX/Al/wax (76/20/4 and RDX/LiF/wax (76/20/4. The reacted aluminum mass can be obtained indirectly from the experiment results. The reacted aluminum mass was then applied to the analytic model, and the velocity of metal plate driven by RDX/Al/wax (76/20/4 and RDX/LiF/wax (76/20/4 was calculated. The final velocity of the metal plate driven by RDX/Al/wax was 7.8% higher than that driven by RDX/LiF/wax.

  15. Wind Tunnel Evaluation of Vegetative Buffer Effects on Air Flow near Swine Production Facilities

    Science.gov (United States)

    Increasing concerns about generation and transport of swine odor constituents have substantiated wind tunnel simulation studies on air flow dynamics near swine production facilities. A possible odor mitigation strategy is a forest vegetative buffer as a windbreak barrier near swine facilities becaus...

  16. Effect of gas field production and CO2 injection on brine flow and salt precipitation

    NARCIS (Netherlands)

    Loeve, D.; Tambach, T.J.; Hofstee, C.; Plug, W.J.; Maas, J.

    2012-01-01

    This paper reports modeling of gas field produc-tion and CO2 injection from a theoretical reser-voir based on characteristics of the P18 gas field in the Dutch offshore, which consists of four geological deposits with different petrophysical properties. We especially focus on the brine flow during

  17. Effect of CO2 injection on brine flow and salt precipitation after gas field production

    NARCIS (Netherlands)

    Tambach, T.J.; Loeve, D.; Hofstee, C.; Plug, W.J.; Maas, J.G.

    2014-01-01

    This paper reports modeling of gas field production and CO2 injection in a theoretical reservoir based on characteristics of the P18 gas field in the Dutch offshore, which consists of four geological deposits with different petrophysical properties. We especially focus on the brine flow during and

  18. Development of production methods of volume source by the resinous solution which has hardening

    CERN Document Server

    Motoki, R

    2002-01-01

    Volume sources is used for standard sources by radioactive measurement using Ge semiconductor detector of environmental sample, e.g. water, soil and etc. that require large volume. The commercial volume source used in measurement of the water sample is made of agar-agar, and that used in measurement of the soil sample is made of alumina powder. When the plastic receptacles of this two kinds of volume sources were damaged, the leakage contents cause contamination. Moreover, if hermetically sealing performance of volume source made of agar-agar fell, volume decrease due to an evaporation off moisture gives an error to radioactive measurement. Therefore, we developed the two type methods using unsaturated polyester resin, vinilester resin, their hardening agent and acrylicresin. The first type is due to dispersing the hydrochloric acid solution included the radioisotopes uniformly in each resin and hardening the resin. The second is due to dispersing the alumina powder absorbed the radioisotopes in each resin an...

  19. Accounting emergy flows to determine the best production model of a coffee plantation

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, B.F.; Ogura, Y.; Bonilla, S.H. [Universidade Paulista, Programa de Pos Graduacao em Engenharia de Producao, R. Dr. Bacelar, 1212 Sao Paulo SP (Brazil); Almeida, C.M.V.B., E-mail: cmvbag@terra.com.br [Universidade Paulista, Programa de Pos Graduacao em Engenharia de Producao, R. Dr. Bacelar, 1212 Sao Paulo SP (Brazil)

    2011-11-15

    Cerrado, a savannah region, is Brazil's second largest ecosystem after the Amazon rainforest and is also threatened with imminent destruction. In the present study emergy synthesis was applied to assess the environmental performance of a coffee farm located in Coromandel, Minas Gerais, in the Brazilian Cerrado. The effects of land use on sustainability were evaluated by comparing the emergy indices along ten years in order to assess the energy flows driving the production process, and to determine the best production model combining productivity and environmental performance. The emergy indices are presented as a function of the annual crop. Results show that Santo Inacio farm should produce approximately 20 bags of green coffee per hectare to accomplish its best performance regarding both the production efficiency and the environment. The evaluation of coffee trade complements those obtained by contrasting productivity and environmental performance, and despite of the market prices variation, the optimum interval for Santo Inacio's farm is between 10 and 25 coffee bags/ha. - Highlights: > Emergy synthesis is used to assess the environmental performance of a coffee farm in Brazil. > The effects of land use on sustainability were evaluated along ten years. > The energy flows driving the production process were assessed. > The best production model combining productivity and environmental performance was determined.

  20. Physically-Based One-Dimensional Distributed Rainfall-Runoff Model Using the Finite Volume Method and Grid Network Flow Analysis

    Directory of Open Access Journals (Sweden)

    Yun Seok Choi

    2014-01-01

    Full Text Available This work develops a grid based rainfall-runoff model (GRM, which is a physically based and spatially distributed model. Surface flow was analyzed using a kinematic wave model with the governing equations discretized using the finite volume method (FVM. This paper suggests a grid network flow analysis technique using variable rainfall intensity according to the flow directions to analyze one-dimensional flows between the grids. The model was evaluated by applying it to the Wuicheon watershed, a tributary of the Nakdonggang (Riv., in Korea. The results showed that the grid-based, one-dimensional kinematic wave model adopted the FVM and the grid network flow analysis technique well. The simulation results showed good agreement with the observed hydrographs and the initial soil saturation ratio was most sensitive to the modeling results.

  1. Measurement of oil volume fraction and velocity distributions in vertical oil-in-water flows using ERT and a local probe

    Institute of Scientific and Technical Information of China (English)

    LI Hua; WANG Mi; WU Ying-xiang; MA Yi-xin; WILLIAMS Richard

    2005-01-01

    This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%.A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT technique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.

  2. A non-statistical regularization approach and a tensor product decomposition method applied to complex flow data

    Science.gov (United States)

    von Larcher, Thomas; Blome, Therese; Klein, Rupert; Schneider, Reinhold; Wolf, Sebastian; Huber, Benjamin

    2016-04-01

    Handling high-dimensional data sets like they occur e.g. in turbulent flows or in multiscale behaviour of certain types in Geosciences are one of the big challenges in numerical analysis and scientific computing. A suitable solution is to represent those large data sets in an appropriate compact form. In this context, tensor product decomposition methods currently emerge as an important tool. One reason is that these methods often enable one to attack high-dimensional problems successfully, another that they allow for very compact representations of large data sets. We follow the novel Tensor-Train (TT) decomposition method to support the development of improved understanding of the multiscale behavior and the development of compact storage schemes for solutions of such problems. One long-term goal of the project is the construction of a self-consistent closure for Large Eddy Simulations (LES) of turbulent flows that explicitly exploits the tensor product approach's capability of capturing self-similar structures. Secondly, we focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES) codes. Advanced methods of time series analysis for the databased construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach [1], [2], [4]. Here, we present the reconstruction capabilities of the two modeling approaches tested against 3D turbulent channel flow data computed by direct numerical simulation (DNS) for an incompressible, isothermal fluid at Reynolds number Reτ = 590 (computed by [3]). References [1] I

  3. Voxel-wise relationships between distribution volume ratio and cerebral blood flow: implications for analysis of β-amyloid images

    Science.gov (United States)

    Sojkova, Jitka; Goh, Joshua; Bilgel, Murat; Landman, Bennett; Yang, Xue; Zhou, Yun; An, Yang; Beason-Held, Lori L.; Kraut, Michael A.; Wong, Dean F.; Resnick, Susan M.

    2017-01-01

    Quantification of β-amyloid (Aβ) in vivo is often accomplished using the distribution volume ratio (DVR), based on a simplified reference tissue model. We investigated the local relationships between DVR and cerebral blood flow (CBF), as well as relative blood flow (R1), in nondemented older adults. Methods Fifty-five nondemented participants (mean age 78.5 years) in the Baltimore Longitudinal Study of Aging underwent 15O-H2O PET CBF and dynamic 11C-PiB-PET. 15O-H2O PET images were normalized and smoothed using SPM. A simplified reference tissue model with linear regression and spatial constraints was used to generate parametric DVR images. The DVR images were regressed on CBF images on a voxel-by-voxel basis using robust Biological Parametric Mapping, adjusting for age and sex (FDR p=0.05, k=50). DVR images were also regressed on R1 images, a measure of the transport rate constant from vascular space to tissue. All analyses were performed in the entire sample, and in high and low tertiles of mean cortical DVR. Results Voxel-based analyses showed that increased DVR is associated with increased CBF in frontal, parietal, temporal, and occipital cortices. However, this association appears to spare regions that typically show early β-amyloid (Aβ) deposition. A more robust relationship between DVR and CBF was observed in the lowest tertile of DVR, i.e., negligible cortical Aβ load, compared to the highest tertile of cortical DVR and Aβ load. Spatial distributions of the DVR-CBF and DVR-R1 correlations showed similar patterns. No reliable negative voxel-wise relationships between DVR and CBF or R1 were observed. Conclusion Robust associations between DVR and CBF at negligible Aβ levels, together with similar spatial distributions of DVR-CBF and DVR-R1 correlations, suggest that regional distribution of DVR reflects blood flow and tracer influx rather than pattern of Aβ deposition in those with minimal Aβ load. DVR-CBF associations in individuals with higher DVR

  4. Roles of myocardial blood volume and flow in coronary artery disease: an experimental MRI study at rest and during hyperemia

    Energy Technology Data Exchange (ETDEWEB)

    McCommis, Kyle S.; Goldstein, Thomas A.; Pilgram, Thomas [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Abendschein, Dana R. [Washington University School of Medicine, Center for Cardiovascular Research, St. Louis, MO (United States); Misselwitz, Bernd [Bayer Schering Pharma AG, Berlin (Germany); Gropler, Robert J. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Washington University School of Medicine, Center for Cardiovascular Research, St. Louis, MO (United States); Zheng, Jie [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Cardiovascular Imaging Lab, St. Louis, MO (United States)

    2010-08-15

    To validate fast perfusion mapping techniques in a setting of coronary artery stenosis, and to further assess the relationship of absolute myocardial blood volume (MBV) and blood flow (MBF) to global myocardial oxygen demand. A group of 27 mongrel dogs were divided into 10 controls and 17 with acute coronary stenosis. On 1.5-T MRI, first-pass perfusion imaging with a bolus injection of a blood-pool contrast agent was performed to determine myocardial perfusion both at rest and during either dipyridamole-induced vasodilation or dobutamine-induced stress. Regional values of MBF and MBV were quantified by using a fast mapping technique. Color microspheres and {sup 99m}Tc-labeled red blood cells were injected to obtain respective gold standards. Microsphere-measured MBF and {sup 99m}Tc-measured MBV reference values correlated well with the MR results. Given the same changes in MBF, changes in MBV are twofold greater with dobutamine than with dipyridamole. Under dobutamine stress, MBV shows better association with total myocardial oxygen demand than MBF. Coronary stenosis progressively reduced this association in the presence of increased stenosis severity. MR first-pass perfusion can rapidly estimate regional MBF and MBV. Absolute quantification of MBV may add additional information on stenosis severity and myocardial viability compared with standard qualitative clinical evaluations of myocardial perfusion. (orig.)

  5. Maximal expiratory flow-volume types in young subjects with past history of nasal allergy and bronchial asthma.

    Directory of Open Access Journals (Sweden)

    Meguro,Tadamichi

    1991-02-01

    Full Text Available Pulmonary function tests were performed on 252 healthy young subjects free from respiratory and allergic symptoms, and 80 young subjects with past history of nasal allergy (PNA and 10 subjects with past history of bronchial asthma (PBA. All the subjects were non-smokers. Maximal expiratory flow-volume (MEFV curves were visually classified into five types (A-E. The percent distribution of type A in healthy subjects was significantly higher than in the PNA group, while the total sum of percentage of types B, C, and D in the PNA group was significantly higher than in the healthy subjects. The percent distribution of type E in the PNA group was similar to that in the healthy subjects. The percent distribution of MEFV types were significantly different between healthy males and healthy females. The percent distribution of types A, B and E were the highest in healthy subjects, PNA and PBA groups, respectively. Conclusively, the difference in the percent distributions of MEFV types was recognized among healthy subjects, PNA and PBA groups.

  6. Relationship between flow volume curve and CT findings in non-smoking patients with long histories of bronchial asthma

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, Hitoshi; Kambe, Masayuki; Yamagata, Mitsunori; Nakajima, Hidekatsu [Hiroshima Univ. (Japan). School of Medicine; Yamane, Kousuke; Kuraoka, Toshihiko; Miyamura, Isao

    2001-08-01

    This study was conducted to verify whether bronchial asthma (BA) alone causes pulmonary emphysema (PE), and to examine the computed tomography (CT) findings in non-smokers with BA demonstrating the flow volume curve (FV curve) characteristic of PE. Non-smoking patients with a history of BA for more than 20 years were divided into 2 groups: the dogleg pattern group (n=5), with an FV curve characteristic of PE, and the concave pattern group (n=16) with an FV curve characteristic of BA. CT scans was performed using CT values (level, 900 H.U.; width, 400 H.U.) that facilitate detection of a low attenuation area (LAA), and using conventional CT values (level, 700 H.U.; width, 1,300 H.U.). LAA (including air trapping), thickness of the bronchial wall, and partial atelectasis were compared between the 2 groups. PE was not detected, although air trapping was found in all subjects. The thickness of the airway was greater in the dogleg pattern than in the concave pattern. The incidences of air trapping and partial atelectasis were higher in the former than in the latter. BA alone may not cause PE. Some BA patients without PE show the FV curve characteristic of PE, reflecting an increase in the thickness of the airway wall and a decrease in the pulmonary ventilation probably due to the air trapping and the partial atelectasis. (author)

  7. DNS of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction

    CERN Document Server

    Kidanemariam, Aman G; Doychev, Todor; Uhlmann, Markus

    2013-01-01

    We have performed direct numerical simulation of turbulent open channel flow over a smooth horizontal wall in the presence of finite-size, heavy particles. The spherical particles have a diameter of approximately 7 wall units, a density of 1.7 times the fluid density and a solid volume fraction of 0.0005. The value of the Galileo number is set to 16.5, while the Shields parameter measures approximately 0.2. Under these conditions, the particles are predominantly located in the vicinity of the bottom wall, where they exhibit strong preferential concentration which we quantify by means of Voronoi analysis and by computing the particle-conditioned concentration field. As observed in previous studies with similar parameter values, the mean streamwise particle velocity is smaller than that of the fluid. We propose a new definition of the fluid velocity "seen" by finite-size particles based on an average over a spherical surface segment, from which we deduce in the present case that the particles are instantaneousl...

  8. Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach.

    Science.gov (United States)

    Wei, Hua-Liang; Zheng, Ying; Pan, Yi; Coca, Daniel; Li, Liang-Min; Mayhew, J E W; Billings, Stephen A

    2009-06-01

    It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.

  9. A totally Eulerian Finite Volume solver for multi-material fluid flows: Enhanced Natural Interface Positioning (ENIP)

    CERN Document Server

    Loubère, Raphaël; Ghidaglia, Jean-Michel

    2010-01-01

    This work concerns the simulation of compressible multi-material fluid flows and follows the method FVCF-NIP described in the former paper Braeunig et al (Eur. J. Mech. B/Fluids, 2009). This Cell-centered Finite Volume method is totally Eulerian since the mesh is not moving and a sharp interface, separating two materials, evolves through the grid. A sliding boundary condition is enforced at the interface and mass, momentum and total energy are conserved. Although this former method performs well on 1D test cases, the interface reconstruction suffers of poor accuracy in conserving shapes for instance in linear advection. This situation leads to spurious instabilities of the interface. The method Enhanced-NIP presented in the present paper cures an inconsistency in the former NIP method that improves strikingly the results. It takes advantage of a more consistent description of the interface in the numerical scheme. Results for linear advection and compressible Euler equations for inviscid fluids are presented ...

  10. The flow past a circular patch of vegetation with a low submergence depth and low solid volume fractions

    Science.gov (United States)

    Kirkil, Gokhan

    2016-11-01

    The effect of the Solid Volume Fraction (SVF) on the flow structure within and past a circular array of surface-mounted cylinders that extends over 75% of the water depth, h is investigated using Detached Eddy Simulation (DES). This set up mimics the case of a submerged patch of rigid vegetation in a channel. The diameter of the cylinders in the array is d = 0.02D, where D is the diameter of the circular array. The channel Reynolds number is close to 20,000 and the Reynolds number defined with D is around 24,000. DES is conducted for SVF = 10% and 25%. It is found that as the SVF increases, fairly strong horseshoe vortex system forms around the upstream face of the vegetation patch, the strength of the separated shear layers on the sides of the vegetation patch increases and the length of the recirculation region behind the patch decreases. While an increase of the SVF results in a large increase of the turbulent kinetic energy in the wake, the opposite is observed within the porous vegetation patch.

  11. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: bridging the gap between high-throughput experimentation and extensive product evaluation.

    Science.gov (United States)

    Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2013-12-01

    Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  12. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    Directory of Open Access Journals (Sweden)

    Fernanda R. Roque

    2011-01-01

    Full Text Available OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C and trained (T. An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05. RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 59- nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion.

  13. Flow regime effects on mature Populus fremontii (Fremont cottonwood) productivity on two contrasting dryland river floodplains

    Science.gov (United States)

    Andersen, Douglas C.

    2016-01-01

    I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.

  14. The Supply Chain Triangle: How Synchronisation, Stability, and Productivity of Material Flows Interact

    Directory of Open Access Journals (Sweden)

    Florian Klug

    2013-01-01

    Full Text Available Empirical evidence created a commonly accepted understanding that synchronisation and stability of material flows impact its productivity. This crucial link between synchronous and stable material flows by time and quantity to create a supply chain with the highest throughput rates is at the heart of lean thinking. Although this supply chain triangle has generally been acknowledged over many years, it is necessary to reach a finer understanding of these dynamics. Therefore, we will develop and study supply chains with the help of fluid dynamics. A multistage, continuous material flow is modelled through a conservation law for material density. Unlike similar approaches, our model is not based on some quasi steady-state assumptions about the stochastic behaviour of the involved supply chain but rather on a simple deterministic rule for material flow density. These models allow us to take into account the nonlinear, dynamical interactions of different supply chain echelons and to test synchronised and stable flow with respect to its potential impacts. Numerical simulations verify that the model is able to simulate transient supply chain phenomena. Moreover, a quantification method relating to the fundamental link between synchronisation, stability, and productivity of supply chains has been found.

  15. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    Science.gov (United States)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

  16. Impact of Alternative Environmental Flow Prescriptions on Hydropower Production and Fish Habitat Suitability

    Science.gov (United States)

    Castellarin, A.; Ceola, S.; Pugliese, A.; Galeati, G. A.

    2015-12-01

    Anthropogenic activities along streams and rivers are increasingly recognized to be a major concern for fluvial ecosystems. The management of water resources, by means of e.g. flow diversions and dams, for industrial, agricultural, water-supply, hydropower production and flood protection purposes induces significant changes to the natural streamflow regime of a river. Indeed, the river flow regime is known to be a major abiotic factor influencing fluvial ecosystems. An established approach aimed at preserving the behaviour and distribution of fluvial species relies on the definition of minimum streamflow requirements (i.e., environmental flows) downstream of dams and diversion structures. Such environmental flows are normally identified through methodologies that have an empirical nature and may not be representative of local ecological and hydraulic conditions. While the effect of imposing a minimum discharge release is easily predictable in terms of e.g. loss of hydropower production, the advantages in terms of species preferences are often poorly understood and seldom assessed. To analyze the interactions between flow releases and the behaviour and distribution of fluvial species (i.e., from periphyton, to benthic invertebrate and fish), one may use a habitat suitability curve, which is a fundamental tool capable of describing species preferences influenced by any generic environmental variable. The outcomes of a real case study applied to several Italian rivers, located in the Marche administrative district in Central Italy (∽10000km2), in which we quantitatively assess the effects of alternative environmental flow scenarios on the existing hydropower network and on two fish species that are quite abundant in the study area (i.e., Leuciscus cephalus cabeda and Barbus barbus plebejus), will be presented and discussed. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the

  17. Information Flow Scheduling in Concurrent Multi-Product Development Based on DSM

    Science.gov (United States)

    Sun, Qing-Chao; Huang, Wei-Qiang; Jiang, Ying-Jie; Sun, Wei

    2017-09-01

    Multi-product collaborative development is adopted widely in manufacturing enterprise, while the present multi-project planning models don't take technical/data interactions of multiple products into account. To decrease the influence of technical/data interactions on project progresses, the information flow scheduling models based on the extended DSM is presented. Firstly, information dependencies are divided into four types: series, parallel, coupling and similar. Secondly, different types of dependencies are expressed as DSM units, and the extended DSM model is brought forward, described as a block matrix. Furthermore, the information flow scheduling methods is proposed, which involves four types of operations, where partitioning and clustering algorithm are modified from DSM for ensuring progress of high-priority project, merging and converting is the specific computation of the extended DSM. Finally, the information flow scheduling of two machine tools development is analyzed with example, and different project priorities correspond to different task sequences and total coordination cost. The proposed methodology provides a detailed instruction for information flow scheduling in multi-product development, with specially concerning technical/data interactions.

  18. New digital measurement methods for left ventricular volume using real-time three-dimensional echocardiography: comparison with electromagnetic flow method and magnetic resonance imaging

    Science.gov (United States)

    Qin, J. J.; Jones, M.; Shiota, T.; Greenberg, N. L.; Firstenberg, M. S.; Tsujino, H.; Zetts, A. D.; Sun, J. P.; Cardon, L. A.; Odabashian, J. A.; Flamm, S. D.; White, R. D.; Panza, J. A.; Thomas, J. D.

    2000-01-01

    AIM: The aim of this study was to investigate the feasibility and accuracy of using symmetrically rotated apical long axis planes for the determination of left ventricular (LV) volumes with real-time three-dimensional echocardiography (3DE). METHODS AND RESULTS: Real-time 3DE was performed in six sheep during 24 haemodynamic conditions with electromagnetic flow measurements (EM), and in 29 patients with magnetic resonance imaging measurements (MRI). LV volumes were calculated by Simpson's rule with five 3DE methods (i.e. apical biplane, four-plane, six-plane, nine-plane (in which the angle between each long axis plane was 90 degrees, 45 degrees, 30 degrees or 20 degrees, respectively) and standard short axis views (SAX)). Real-time 3DE correlated well with EM for LV stroke volumes in animals (r=0.68-0.95) and with MRI for absolute volumes in patients (r-values=0.93-0.98). However, agreement between MRI and apical nine-plane, six-plane, and SAX methods in patients was better than those with apical four-plane and bi-plane methods (mean difference = -15, -18, -13, vs. -31 and -48 ml for end-diastolic volume, respectively, Pmeasurement methods of real-time 3DE correlated well with reference standards for calculating LV volumes. Balancing accuracy and required time for these LV volume measurements, the apical six-plane method is recommended for clinical use.

  19. Cross-Border Flows of People, Technology Diffusion and Aggregate Productivity

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Andersen, Thomas Barnebeck

    A number of empirical studies have investigated the hypothesis that cross-border flows of goods (international trade) and capital (FDI) lead to international technology diffusion. The contribution of the present paper consists in examining an as yet neglected vehicle for technology diffusion: cro......-border flows of people. We find that increasing the intensity of international travel, for the purpose of business and otherwise, by 1% increases the level of aggregate total factor productivity and GDP per worker by roughly 0.2%....

  20. Cross-Border Flows of People, Technology Diffusion and Aggregate Productivity

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Andersen, Thomas Barnebeck

    A number of empirical studies have investigated the hypothesis that cross-border flows of goods (international trade) and capital (FDI) lead to international technology diffusion. The contribution of the present paper consists in examining an as yet neglected vehicle for technology diffusion: cro......-border flows of people. We find that increasing the intensity of international travel, for the purpose of business and otherwise, by 1% increases the level of aggregate total factor productivity and GDP per worker by roughly 0.2%....

  1. Effective management of patients with acute ischemic stroke based on lean production on thrombolytic flow optimization.

    Science.gov (United States)

    Liang, Zhuoyuan; Ren, Lijie; Wang, Ting; Hu, Huoyou; Li, Weiping; Wang, Yaping; Liu, Dehong; Lie, Yi

    2016-12-01

    The efficacy of thrombolytic therapy for acute ischemic stroke (AIS) decreases when the administration of tissue plasminogen activator (tPA) is delayed. Derived from Toyota Production System, lean production aims to create top-quality products with high-efficiency procedures, a concept that easily applies to emergency medicine. In this study, we aimed to determine whether applying lean principles to flow optimization could hasten the initiation of thrombolysis. A multidisciplinary team (Stroke Team) was organized to implement an ongoing, continuous loop of lean production that contained the following steps: decomposition, recognition, intervention, reengineering and assessment. The door-to-needle time (DNT) and the percentage of patients with DNT ≤ 60 min before and after the adoption of lean principles were used to evaluate the efficiency of our flow optimization. Thirteen patients with AIS in the pre-lean period and 43 patients with AIS in the lean period (23 in lean period I and 20 patients in lean period II) were consecutively enrolled in our study. After flow optimization, we reduced DNT from 90 to 47 min (p management of AIS.

  2. Virtual water flows in the international trade of agricultural products of China.

    Science.gov (United States)

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Discriminant analysis of bronchial asthma by linear discriminant function with parameters of flow-volumes: discriminant analysis of bronchial asthma in young male non-smokers

    Directory of Open Access Journals (Sweden)

    Meguro,Tadamichi

    1978-10-01

    Full Text Available With the parameters of a flow-volume and a volume-time curve, the discriminant analysis of bronchial asthma is described. The subjects were classified into three groups (healthy adults, mild asthmatic patients and moderates ones. The difference of the mean vectors of the parameters of the three groups was made clear by the selection methods of the discriminant analysis between any two of the groups both with 6 parameters (%FVC, FEV1.0%, peak flow rate (PF, flow rate at 50% of FVC (V50, flow rate at 25% of FVC (V25, and V50/V25 and with 8 (6 parameters mentioned above and V75, V10. Forced expiratory volume in 1 second percent (FEV1.0% or V50 was selected at the first step with 6 parameters, and V75 was selected at the first step with 8 parameters. Probabilities of misclassification with 8 parameters were lower than those with 6 ones and the probability of misclassification at the discriminant analysis between healthy adults and mild asthmatic patients with 8 parameters was 15.75% at the final step.

  4. A Production Planning Model for Make-to-Order Foundry Flow Shop with Capacity Constraint

    Directory of Open Access Journals (Sweden)

    Xixing Li

    2017-01-01

    Full Text Available The mode of production in the modern manufacturing enterprise mainly prefers to MTO (Make-to-Order; how to reasonably arrange the production plan has become a very common and urgent problem for enterprises’ managers to improve inner production reformation in the competitive market environment. In this paper, a mathematical model of production planning is proposed to maximize the profit with capacity constraint. Four kinds of cost factors (material cost, process cost, delay cost, and facility occupy cost are considered in the proposed model. Different factors not only result in different profit but also result in different satisfaction degrees of customers. Particularly, the delay cost and facility occupy cost cannot reach the minimum at the same time; the two objectives are interactional. This paper presents a mathematical model based on the actual production process of a foundry flow shop. An improved genetic algorithm (IGA is proposed to solve the biobjective problem of the model. Also, the gene encoding and decoding, the definition of fitness function, and genetic operators have been illustrated. In addition, the proposed algorithm is used to solve the production planning problem of a foundry flow shop in a casting enterprise. And comparisons with other recently published algorithms show the efficiency and effectiveness of the proposed algorithm.

  5. Relation Between Pressure and Volume Unloading During Ramp Testing in Patients Supported with a Continuous-Flow Left Ventricular Assist Device

    DEFF Research Database (Denmark)

    Jung, Mette H; Hassager, Christian; Balling, Louise;

    2015-01-01

    Pulmonary capillary wedge pressure (PCWP) is the key to describing left ventricular (LV) unloading, however, the relation between pressure and the echocardiography-derived surrogate of LV volume (left ventricular end-diastolic diameter (LVEDD)) as a function of pump speed (RPM) in continuous......-flow left ventricular assist device (CF-LVAD) patients is unknown. In this study the pressure-volume relationship as a function of RPM during ramp testing was investigated by simultaneously measuring PCWP by Swan-Ganz catheter and LVEDD by echocardiography. The ramp protocol started at usual pump setting...

  6. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    CERN Document Server

    Pushkarev, Andrey V; Nazarenko, Sergey V

    2012-01-01

    Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of a turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model which contains the drift-wave/zonal-flow feedback loop prototypical of the LH transition in plasma devices.

  7. CONWIP card setting in a flow-shop system with a batch production machine

    Directory of Open Access Journals (Sweden)

    Marcello Braglia

    2011-01-01

    Full Text Available This paper presents an analytical technique to determine the optimum number of cards to control material release in a CONWIP system. The work focuses on the card setting problem for a flow-shop system characterised by the presence of a batch processing machine (e.g. a kiln for long heat treatment. To control production, two different static approaches are developed: the first one is used when the bottleneck coincides with the batch processing machine and the second one is proposed when the bottleneck is another machine of the flow shop. In both contexts, by means of the appropriate model, one can optimize the performance of the flow-shop by maximizing the throughput and keeping the work in process at a minimum level. Numerical examples are also included in the paper to confirm the validity of the models and to demonstrate their practical utility.

  8. Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor.

    Science.gov (United States)

    Shavel, Alexey; Cadavid, Doris; Ibáñez, Maria; Carrete, Alex; Cabot, Andreu

    2012-01-25

    A procedure for the continuous production of Cu(2)ZnSnS(4) (CZTS) nanoparticles with controlled composition is presented. CZTS nanoparticles were prepared through the reaction of the metals' amino complexes with elemental sulfur in a continuous-flow reactor at moderate temperatures (300-330 °C). High-resolution transmission electron microscopy and X-ray diffraction analysis showed the nanocrystals to have a crystallographic structure compatible with that of the kesterite. Chemical characterization of the materials showed the presence of the four elements in each individual nanocrystal. Composition control was achieved by adjusting the solution flow rate through the reactor and the proper choice of the nominal precursor concentration within the flowing solution. Single-particle analysis revealed a composition distribution within each sample, which was optimized at the highest synthesis temperatures used.

  9. Large-Scale Production of CdSe Nanocrystal by a Continuous Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, Manabu, E-mail: 508532@cc.m-kagaku.co.jp; Morii, Hidekazu; Ioku, Atau; Saita, Soichiro [MCC-Group Science and Technology Research Center, Mitsubishi Chemical Corporation (Japan); Okuyama, Kikuo [Hiroshima University, Department of Chemical Engineering, Graduate School of Engineering (Japan)

    2003-04-15

    Organically capped CdSe nanocrystals were successfully produced by a continuous flow reactor in 13 g/h rate as isolated CdSe nanocrystal, using trioctylphosphine oxide (TOPO) both as the capping organic reagent and the high-temperature reaction solvent. Relatively high reaction temperature (e.g. 350 deg. C) was necessary for matured crystal growth. The quality of TOPO (i.e. impurity composition such like phosphonic acids) was also influential on the quality of the resulting CdSe nanocrystal. The continuous flow reactor was able to produce highly-luminescence, monodispersed CdSe nanocrystals, confirmed by transmission electron microscope observation. The production rate was stable at least 1 h to allow over 10 g production.

  10. Research of products of high temperature synthesis flowing in the rotation conditions

    Science.gov (United States)

    Ksandopulo, G.; Baideldinova, A.; Riabikin, Y.; Mukhina, L.; Ponomareva, E.; Vasilieva, N.

    2017-02-01

    The method of production of materials by out-furnace process of self-propagating high temperature synthesis (SHS), flowing in the conditions of action of centrifugal force, is developed presently. The primary purpose of working is achievement high level of generating of energy and use of it for forming of steady meta-stable crystalline phases with an uncommon set of physical and chemical properties.

  11. The flow synthesis of heterocycles for natural product and medicinal chemistry applications.

    Science.gov (United States)

    Baumann, Marcus; Baxendale, Ian R; Ley, Steven V

    2011-08-01

    This article represents an overview of recent research from the Innovative Technology Centre in the field of flow chemistry which was presented at the FROST2 meeting in Budapest in October 2009. After a short introduction of this rapidly expanding field, we discuss some of our results with a main focus on the synthesis of heterocyclic compounds which we use in various natural product and medicinal chemistry programmes.

  12. Flow of products of thermal decomposition of oil shale through porous skeleton

    Science.gov (United States)

    Knyazeva, A. G.; Maslov, A. L.

    2016-11-01

    Oil shale is sedimentary rock formed by the accumulation of pelagic sediments, minerals and their further transformation. Experimental investigation of shale decomposition is very complex and expensive. The model of underground oil shale retorting is formulated in this paper. Model takes into account the reactions in solid phase and in fluid, mass and heat exchange, gaseous product flow in pores. Example of the numerical solution of the developed system of equations for the particular problem is shown.

  13. Size Effects on the Entropy Production in Oscillatory Flow between Parallel Plates

    Directory of Open Access Journals (Sweden)

    Sac Medina

    2011-02-01

    Full Text Available The heat transfer problem of a zero-mean oscillatory flow of a Maxwell fluid between infinite parallel plates with boundary conditions of the third kind is considered. The local and global time-averaged entropy production are computed, and the consequences of convective cooling of the plates are also assessed. It is found that the global entropy production is a minimum for certain suitable combination of the physical parameters and a discrete set of values of the separation between the parallel plates. The transferred heat at the plates also shows minima in the same discrete set of values of the plates separation.

  14. CFD analysis and flow model reduction for surfactant production in helix reactor

    Directory of Open Access Journals (Sweden)

    Nikačević N.M.

    2015-01-01

    Full Text Available Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD simulations. Non-reactive flow is simulated, though viscosity is treated as variable in the direction of flow, as it increases during the reaction. The design and operating parameters (reactor diameter, number of coils and inlet velocity are varied in CFD simulations, in order to examine the effects on the flow pattern. Given that 3D simulations are not practical for fast computations needed for optimization, scale-up and control, CFD flow model is reduced to one-dimensional axial dispersion (AD model with spatially variable dispersion coefficient. Dimensionless dispersion coefficient (Pe is estimated under different conditions and results are analyzed. Finally, correlation which relates Pe number with Reynolds number and number of coils from the reactor entrance is proposed for the particular reactor application and conditions.

  15. Effect of water flow rate and feed training on "pacamã" (Siluriforme: Pseudopimelodidae juvenile production

    Directory of Open Access Journals (Sweden)

    R.K. Luz

    2011-08-01

    Full Text Available The effects of different water flow rates and feed training on the production of "pacamã" Lophiosilurus alexandri juveniles were evaluated. In the first experiment, nine day post-hatch larvae (n= 2,400 were stocked at a density of 5 larvae/L. Different water flow (F rates were tested: F1 = 180; F2 = 600; F3 = 1,300; and F4 = 2,600mL/min. Artemia nauplii were offered as food during the first 15 days of active feeding. In the second experiment for feed training, 720 juveniles (total length of 22.2mm were stocked at a density of 1.5 juveniles/L. A water flow rate similar to F1 was used. The use of extruded dry diet was tested, and feed training was done with and without other enhanced flavors (Artemia nauplii or Scott emulsion. The water flow rates did not influence the survival or growth of L. alexandri. Cannibalism occurred during feed training. The worst survival, specific growth rate and high mortality were found with the use of extruded dry diet, while similar values were registered with the different feed training diets used. Reduced water flow rate can be used to lower water consumption during larviculture and feed training of L. alexandri.

  16. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  17. Numerical Simulation of Planar 4:1 Contraction Flow of a Viscoelastic Fluid Using a Higher-order Upwind Finite Volume Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New form of the constitutive equations for the Oldroyd-B model, which have physical meaning, is developed to facilitate theoretical analysis. The new equations are used to simulate planar 4∶1 contraction flow of a Maxwell fluid using a third-order upwind finite volume method. The numerical results compare well with the theoretical solutions and the results of other references to show the effectiveness of the numerical method. Numerical experiments suggest that the present method not only converges fairly rapidly, but can also generate a highly resolved approximation to an Oldroyd-B fluid flow at a high Weissenberg number.

  18. Normal Expiratory Flow Rate and Lung Volumes in Patients with Combined Emphysema and Interstitial Lung Disease: A Case Series and Literature Review

    Directory of Open Access Journals (Sweden)

    Karen L Heathcote

    2011-01-01

    Full Text Available Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  19. Comparative Simulation Study of Production Scheduling in the Hybrid and the Parallel Flow

    Directory of Open Access Journals (Sweden)

    Varela Maria L.R.

    2017-06-01

    Full Text Available Scheduling is one of the most important decisions in production control. An approach is proposed for supporting users to solve scheduling problems, by choosing the combination of physical manufacturing system configuration and the material handling system settings. The approach considers two alternative manufacturing scheduling configurations in a two stage product oriented manufacturing system, exploring the hybrid flow shop (HFS and the parallel flow shop (PFS environments. For illustrating the application of the proposed approach an industrial case from the automotive components industry is studied. The main aim of this research to compare results of study of production scheduling in the hybrid and the parallel flow, taking into account the makespan minimization criterion. Thus the HFS and the PFS performance is compared and analyzed, mainly in terms of the makespan, as the transportation times vary. The study shows that the performance HFS is clearly better when the work stations’ processing times are unbalanced, either in nature or as a consequence of the addition of transport times just to one of the work station processing time but loses advantage, becoming worse than the performance of the PFS configuration when the work stations’ processing times are balanced, either in nature or as a consequence of the addition of transport times added on the work stations’ processing times. This means that physical layout configurations along with the way transport time are including the work stations’ processing times should be carefully taken into consideration due to its influence on the performance reached by both HFS and PFS configurations.

  20. A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations

    CERN Document Server

    Afkhami, Shahriar

    2013-01-01

    We present a computational framework to address the flow of two immiscible viscous liquids which co-flow into a shallow rectangular container at one side, and flow out into a holding container at the opposite side. Assumptions based on the shallow depth of the domain are used to reduce the governing equations to one of Hele-Shaw type. The distinctive feature of the numerical method is the accurate modeling of the capillary effects. A continuum approach coupled with a volume-of-fluid formulation for computing the interface motion and for modeling the interfacial tension in Hele-Shaw flows is formulated and implemented. The interface is reconstructed with a height-function algorithm. The combination of these algorithms is a novel development for the investigation of Hele-Shaw flows. The order of accuracy and convergence properties of the method are discussed with benchmark simulations. A microfluidic flow of a ribbon of fluid which co-flows with a second liquid is simulated. We show that for small capillary num...

  1. Material and energy flow analysis (MEFA – first step in eco-innovation approach to assessment of steel production

    Directory of Open Access Journals (Sweden)

    J. Korol

    2016-10-01

    Full Text Available The main goal of the study was to evaluate material and energy flow analysis (MEFA of steel production. The application of umberto universal software to devise MEFA for the steel production was presented. The material and energy flow analysis of steel production includes a range of technologies through each unit process in integrated steelmaking route in Poland. Modelling MEFA helps a high level of technology to be reached through the effective use of resources and energy.

  2. Enhancement of H{sup -}/D{sup -} volume production in a double plasma type negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasa, Osamu; Nishimura, Hideki; Sakiyama, Satoshi [Yamaguchi Univ., Ube (Japan). Faculty of Engineering

    1997-02-01

    H{sup -}/D{sup -} production in a pure volume source has been studied. In our double plasma type negative ion source, both energy and density of fast electrons are well controlled. With the use of this source, the enhancement of H{sup -}/D{sup -} production has been observed. Namely, under the same discharge power, the extracted H{sup -}/D{sup -} current in the double plasma operation is higher than that in the single plasma operation. At the same time, measurements of plasma parameters have been made in the source and the extractor regions for these two cases. (author)

  3. Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity

    Science.gov (United States)

    Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.

    2016-09-01

    A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.

  4. Numerical Simulation of Muzzle Flow Field Based on Calculation of Combustion Productions in Bore

    Institute of Scientific and Technical Information of China (English)

    Liang Wang∗,Houqian Xu,Wei Wu; Rui Xue

    2015-01-01

    To improve the accuracy of numerical simulation of muzzle chemical flow field, and study the gunpowder combustion productions, the muzzle flow field is simulated coupled with the calculation of combustion productions in bore. The calculation in bore uses the gibbs free⁃energy minimization method and the classical interior ballistics model. The simulation of the muzzle flow field employs the multi⁃component ALE ( Arbitrary Lagrange⁃Euler ) equations. Computations are performed for a 12�7 mm gun. From 2�48 ms to 3�14 ms, the projectile moves in the gun barrel. CO and H2 O masses decrease by 3�37% and 6�51%, and H2 and CO2 masses increase by 11�11% and 10�58%. The changes conform to the fact that the water⁃gas equilibrium reaction of all reactions plays a dominant role in this phase. After the projectile leaves the barrel, the masses of H2 and CO decrease, and the masses of H2 O and CO2 increase. When it moves to 80d away from the muzzle, the decreases are 12�75% and 8�05%, and the increases are 12�76% and 36�26%, which tallies with the existence of muzzle flame. Further, CO and H2 burn more and more fiercely with the muzzle pressure pg increasing, and burn more and more weakly with the altitude rising. When two projectiles launch in series, the combustion of the second projectile muzzle flow field is fiercer than the first projectile. Analysis results have shown that the proposed method is effective for simulating the muzzle flow filed.

  5. Flowering phenology, pollen flow and fruit production in the andean shrub Befaria resinosa.

    Science.gov (United States)

    Melampy, M N

    1987-09-01

    In the eastern Andes of Colombia, the shrub Befaria resinosa (Ericaceae) has peaks of flowering that are separated by extended periods of low flower production. The effect that these fluctuations in flower production have on pollen flow was investigated by using fluorescent dye as a pollen analog. Dye applied to open flowers was dispersed over long distances more often during low flower production than during high flower production. Whether enhanced pollen dispersal during flowering lows is of benefit to individual plants is not clear. The proportion of flowers that set fruit is positively correlated with flower abundance, negating the possibility that increased pollen dispersal results in a higher rate of fruit production due to outbreeding effects. It is also difficult to attribute the pattern of fruit production to changes in pollinator visitation rates, which are negatively correlated with flower abundance in the case of hummingbirds and not correlated at all with flower abundance in the case of insects. An opportunistic, large-bodied hummingbird (Colibri coruscans) visits B. resinosa during high flowering and may be a particularly effective pollinator, accounting for some of the increase in the proportion of flowers setting fruit. Rainfall is positively correlated with flower production and may be an important factor in shaping flowering phenology, but it is not significantly correlated with the proportion of flowers setting fruits. The possibility that low-level flowering may counteract inbreeding that results from peak flowering is discussed.

  6. Study of the value of information and the effect on value of intermediary organizations, timeliness of services and products, and comprehensiveness of the EDB. Volume 1, Volume 2, and Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    King, D.W.; Griffiths, J.M.; Sweet, E.A.; Wiederkehr, R.R.V.; Roderer, N.K.

    1984-09-01

    A previous study demonstrated that energy information has substantial value when considered from the standpoints of amount of use, purposes of use, and value measured by what users are willing to pay for the information and the savings in labor, equipment, etc., derived from use of the information. Furthermore, energy information services and products derived from the Energy Data Base clearly contribute greatly to the value of energy information by making it more accessible and, therefore, more usable. The purpose of this study was to determine what contribution intermediary information transfer organizations such as libraries and information analysis centers make to the value of information. Also, other factors such as timeliness of primary publishing and distribution and comprehensiveness of the Energy Data Base were considered to be important as well. The results are presented in 3 sections (volumes). Volume 1 gives an analysis of the value of the services provided by libraries. The library study estimated the value of library services (in terms of willingness to pay and savings). It also provided the relationships of the use of library services and factors such as performance attributes (i.e., quality and timeliness of services), distance to the library, awareness of services and economics of library use. Volume 2 gives results of a study of two software Information Analysis Centers and the value of software that is attributable to the centers. Volume 3 provides an analysis of the value of the timeliness and comprehensiveness of the Energy Data Base. Separate abstracts have been prepared for each section for inclusion in the Energy Data Base. (DMC)

  7. Environmental-Economic Assessment Of Generation, Flow And Efficiency Of Use Of Production And Consumption Waste

    Science.gov (United States)

    Mikhailov, V. G.; Golofastova, N. N.; Galanina, T. V.; Koroleva, T. G.; Mikhailova, Ya S.

    2017-01-01

    The article deals with the issues of environmental and economic analysis of industrial and economic activities of an enterprise to assess the generation, flow and efficiency of production and consumption waste. The purpose of research is the analysis and the development of theoretical propositions for the functioning of the system of environmental and economic indicators for the effective management of production and consumption waste in the enterprise. The analysis of the existing systems of environmental and economic indicators taking into consideration the industry characteristics and the types of negative impacts is carried out. The main result of the study is the development of the system of environmental and economic indicators of production and consumption waste, adapted to the modern requirements. The results of the study can be recommended to support the effective management decision-making concerning waste management and the establishment of appropriate infrastructure.

  8. Production of marine trematode cercariae: a potentially overlooked path of energy flow in benthic systems

    DEFF Research Database (Denmark)

    Thieltges, David W.; de Montaudouin, Xavier; Fredensborg, Brian

    2008-01-01

    reported for free-living invertebrates inhabiting benthic ecosystems. These estimates would be much higher if they included all trematode species in an ecosystem, and not just single-species values. Overall, results suggest that trematode cercariae represent potentially important paths of energy flow....... We use published data on rates at which trematodes produce free-swimming infective larvae (cercariae) that are released from their gastropod intermediate hosts to investigate patterns in cercarial output as a function of different variables, and to calculate the annual production of cercariae...... of cercariae, and was influenced by the type of downstream host sought by cercariae, being highest when this host was a vertebrate. Our estimates of annual cercarial production (kJ m-2 yr-1), which take into account the density of infected snails in the habitat, were within the range of production values...

  9. Energy and materials flows in the production of liquid and gaseous oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  10. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors.

    Science.gov (United States)

    Ren, N Q; Chua, H; Chan, S Y; Tsang, Y F; Wang, Y J; Sin, N

    2007-07-01

    In this study, the optimal fermentation type and the operating conditions of anaerobic process in continuous-flow acidogenic reactors was investigated for the maximization of bio-hydrogen production using mixed cultures. Butyric acid type fermentation occurred at pH>6, propionic acid type fermentation occurred at pH about 5.5 with E(h) (redox potential) >-278mV, and ethanol-type fermentation occurred at pHhydrogen production capacities between the fermentation types, which remained stable when the organic loading rate (OLR) reached the highest OLR at 86.1kgCOD/m(3)d. The maximum hydrogen production reached up to 14.99L/d.

  11. Projections for the Production of Bulk Volume Bio-Based Polymers in Europe and Environmental Implications

    NARCIS (Netherlands)

    Patel, M.K.; Crank, M.

    2007-01-01

    In this paper we provide an overview of the most important emerging groups of bio-based polymers for bulk volume applications and we discuss market projections for these types of bio-based polymers in the EU, thereby distinguishing between three scenarios. Bio-based polymers are projected to reach a

  12. UPIOM: a new tool of MFA and its application to the flow of iron and steel associated with car production.

    Science.gov (United States)

    Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya

    2011-02-01

    Identification of the flow of materials and substances associated with a product system provides useful information for Life Cycle Analysis (LCA), and contributes to extending the scope of complementarity between LCA and Materials Flow Analysis/Substances Flow Analysis (MFA/SFA), the two major tools of industrial ecology. This paper proposes a new methodology based on input-output analysis for identifying the physical input-output flow of individual materials that is associated with the production of a unit of given product, the unit physical input-output by materials (UPIOM). While the Sankey diagram has been a standard tool for the visualization of MFA/SFA, with an increase in the complexity of the flows under consideration, which will be the case when economy-wide intersectoral flows of materials are involved, the Sankey diagram may become too complex for effective visualization. An alternative way to visually represent material flows is proposed which makes use of triangulation of the flow matrix based on degrees of fabrication. The proposed methodology is applied to the flow of pig iron and iron and steel scrap that are associated with the production of a passenger car in Japan. Its usefulness to identify a specific MFA pattern from the original IO table is demonstrated.

  13. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  14. Hydrogen production from coal gasification in supercritical water with a continuous flowing system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongliang; Guo, Liejin; Zhang, Ximin; Jin, Hui; Lu, Youjun [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-04-15

    The technology of supercritical water gasification can convert coal to hydrogen-rich gaseous product efficiently and cleanly. A novel continuous-flow system for coal gasification in supercritical water was developed successfully in State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF). The experimental device was designed for the temperature up to 800 C and the pressure up to 30 MPa. The gasification characteristics of coal were investigated within the experimental condition range of temperature at 650-800 C, pressure at 23-27 MPa and flow rate from 3 kg h{sup -1} to 7 kg h{sup -1}. K{sub 2}CO{sub 3} and Raney-Ni were used as catalyst and H{sub 2}O{sub 2} as oxidant. The effects of main operation parameters (temperature, pressure, flow rate, catalyst, oxidant, concentration of coal slurry) upon gasification were carried out. The slurry of 16 wt% coal + 1.5 wt% CMC was successfully transported into the reactor and continuously gasified in supercritical water in the system. The hydrogen fraction reached up to 72.85%. The experimental results demonstrate the bright future of efficient and clean conversion of coal. (author)

  15. How log-normal is your country? An analysis of the statistical distribution of the exported volumes of products

    Science.gov (United States)

    Annunziata, Mario Alberto; Petri, Alberto; Pontuale, Giorgio; Zaccaria, Andrea

    2016-10-01

    We have considered the statistical distributions of the volumes of 1131 products exported by 148 countries. We have found that the form of these distributions is not unique but heavily depends on the level of development of the nation, as expressed by macroeconomic indicators like GDP, GDP per capita, total export and a recently introduced measure for countries' economic complexity called fitness. We have identified three major classes: a) an incomplete log-normal shape, truncated on the left side, for the less developed countries, b) a complete log-normal, with a wider range of volumes, for nations characterized by intermediate economy, and c) a strongly asymmetric shape for countries with a high degree of development. Finally, the log-normality hypothesis has been checked for the distributions of all the 148 countries through different tests, Kolmogorov-Smirnov and Cramér-Von Mises, confirming that it cannot be rejected only for the countries of intermediate economy.

  16. Approximate solutions for Forchheimer flow during water injection and water production in an unconfined aquifer

    Science.gov (United States)

    Mathias, Simon A.; Moutsopoulos, Konstantinos N.

    2016-07-01

    Understanding the hydraulics around injection and production wells in unconfined aquifers associated with rainwater and reclaimed water aquifer storage schemes is an issue of increasing importance. Much work has been done previously to understand the mathematics associated with Darcy's law in this context. However, groundwater flow velocities around injection and production wells are likely to be sufficiently large such as to induce significant non-Darcy effects. This article presents a mathematical analysis to look at Forchheimer's equation in the context of water injection and water production in unconfined aquifers. Three different approximate solutions are derived using quasi-steady-state assumptions and the method of matched asymptotic expansion. The resulting approximate solutions are shown to be accurate for a wide range of practical scenarios by comparison with a finite difference solution to the full problem of concern. The approximate solutions have led to an improved understanding of the flow dynamics. They can also be used as verification tools for future numerical models in this context.

  17. Numerical Study of Water Production from Compressible Moist-Air Flow

    Directory of Open Access Journals (Sweden)

    sabah hamidi

    2016-01-01

    Full Text Available In this research a numerical study of water production from compressible moist-air flow by condensing of the vapor component of the atmospheric air through a converging-diverging nozzle is performed. The atmospheric air can be sucked by a vacuum compressor. The geographical conditions represent a hot and humid region, for example Bandar Abbas, Iran, with coordinates, 270 11 ’ N and 560 16’ E and summer climate conditions of about 40℃and relative humidity above 80%. Parametric studies are performed for the atmospheric-air temperature between, 40℃ to 50℃, and relative humidity between49.6% to 100.%. For these ranges of operating conditions and a nozzle with the area ratio of 1.17, the liquid mass flow rates falls in the range 0.272 to 0.376 kg/s. The results show that, the energy consumed by the compressor for production 1 kg of water will be 1.279 kWh. The price of 1 kWh is 372 Rials, therefore the price for the production of 1 kg liquid water will be 475.8 Rials, therefore, the scheme is economically suitable.

  18. Identifying ways of closing the metal flow loop in the global mobile phone product system : A system dynamics modeling approach

    OpenAIRE

    Sinha, Rajib; Laurenti, Rafael; Singh, Jagdeep; Malmström, Maria E.; Frostell, Björn

    2016-01-01

    In the past few decades, e-waste has emerged as one of the fastest growing and increasingly complex waste flows world-wide. Within e-waste, the life cycle of the mobile phone product system is particularly important because of: (1) the increasing quantities of mobile phones in this waste flow; and (2) the sustainability challenges associated with the emerging economies of reuse, refurbishment, and export of used mobile phones. This study examined the possibilities of closing the material flow...

  19. Estimation of Resource Productivity and Efficiency: An Extended Evaluation of Sustainability Related to Material Flow

    Directory of Open Access Journals (Sweden)

    Pin-Chih Wang

    2014-09-01

    Full Text Available This study is intended to conduct an extended evaluation of sustainability based on the material flow analysis of resource productivity. We first present updated information on the material flow analysis (MFA database in Taiwan. Essential indicators are selected to quantify resource productivity associated with the economy-wide MFA of Taiwan. The study also applies the IPAT (impact-population-affluence-technology master equation to measure trends of material use efficiency in Taiwan and to compare them with those of other Asia-Pacific countries. An extended evaluation of efficiency, in comparison with selected economies by applying data envelopment analysis (DEA, is conducted accordingly. The Malmquist Productivity Index (MPI is thereby adopted to quantify the patterns and the associated changes of efficiency. Observations and summaries can be described as follows. Based on the MFA of the Taiwanese economy, the average growth rates of domestic material input (DMI; 2.83% and domestic material consumption (DMC; 2.13% in the past two decades were both less than that of gross domestic product (GDP; 4.95%. The decoupling of environmental pressures from economic growth can be observed. In terms of the decomposition analysis of the IPAT equation and in comparison with 38 other economies, the material use efficiency of Taiwan did not perform as well as its economic growth. The DEA comparisons of resource productivity show that Denmark, Germany, Luxembourg, Malta, Netherlands, United Kingdom and Japan performed the best in 2008. Since the MPI consists of technological change (frontier-shift or innovation and efficiency change (catch-up, the change in efficiency (catch-up of Taiwan has not been accomplished as expected in spite of the increase in its technological efficiency.

  20. SMALL-VOLUME BASALTIC VOLCANOES: ERUPTIVE PRODUCTS AND PROCESSES, AND POST-ERUPTIVE GEOMORPHIC EVOLUTION IN CRATER FLAT (PLEISTOCENE), SOUTHERN NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Valentine; F.V. Perry; D. Krier; G.N. Keating; R.E. Kelley; A.H. Cogbill

    2006-04-04

    Five Pleistocene basaltic volcanoes in Crater Flat (southern Nevada) demonstrate the complexity of eruption processes associated with small-volume basalts and the effects of initial emplacement characteristics on post-eruptive geomorphic evolution of the volcanic surfaces. The volcanoes record eruptive processes in their pyroclastic facies ranging from ''classical'' Strombolian mechanisms to, potentially, violent Strombolian mechanisms. Cone growth was accompanied, and sometimes disrupted, by effusion of lavas from the bases of cones. Pyroclastic cones were built upon a gently southward-sloping surface and were prone to failure of their down-slope (southern) flanks. Early lavas flowed primarily southward and, at Red and Black Cone volcanoes, carried abundant rafts of cone material on the tops of the flows. These resulting early lava fields eventually built platforms such that later flows erupted from the eastern (at Red Cone) and northern (at Black Cone) bases of the cones. Three major surface features--scoria cones, lava fields with abundant rafts of pyroclastic material, and lava fields with little or no pyroclastic material--experienced different post-eruptive surficial processes. Contrary to previous interpretations, we argue that the Pleistocene Crater Flat volcanoes are monogenetic, each having formed in a single eruptive episode lasting months to a few years, and with all eruptive products having emanated from the area of the volcanoes main cones rather than from scattered vents. Geochemical variations within the volcanoes must be interpreted within a monogenetic framework, which implies preservation of magma source heterogeneities through ascent and eruption of the magmas.

  1. Ricci Flow of Warped Product Metrics with Positive Isotropic Curvature on $S^{p+1}× S^1$

    Indian Academy of Sciences (India)

    H A Gururaja

    2012-11-01

    We study the asymptotic behaviour of the ODE associated to the evolution of curvature operator in the Ricci flow of a doubly warped product metric on $S^{p+1}× S^1$ with positive isotropic curvature.

  2. Wearable Flow: investigation of materiality in the production of contemporary body/artist

    Directory of Open Access Journals (Sweden)

    Carolina de Paula Diniz

    2017-05-01

    Full Text Available This study deals with the body in relation to the costume within the context of the contemporary performing arts. We aim to analyze how the body relates directly to the elements that are part of it. We examine the specificity of the body in the creative process, which components are organized in a procedural and concomitant way. We problematize the costume in its action as coauthor in the process. The practice called Wearable Flow is presented, focused on the exploration of the materiality based on the relationship between body, movement, and what is worn in the performing production and development of the artist.

  3. Optimal Research and Numerical Simulation for Scheduling No-Wait Flow Shop in Steel Production

    Directory of Open Access Journals (Sweden)

    Huawei Yuan

    2013-01-01

    Full Text Available This paper considers the m-machine flow shop scheduling problem with the no-wait constraint to minimize total completion time which is the typical model in steel production. First, the asymptotic optimality of the Shortest Processing Time (SPT first rule is proven for this problem. To further evaluate the performance of the algorithm, a new lower bound with performance guarantee is designed. At the end of the paper, numerical simulations show the effectiveness of the proposed algorithm and lower bound.

  4. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-05-01

    Full Text Available of the gas has a noteworthy effect on predicted pressure loads in liquid–gas flow in certain instances. With the aim of providing a more accurate numerical representation of dynamic two-fluid flow, the solver is subsequently extended to account for variations...

  5. Changes in plasma volume, in transcapillary escape rate of albumin and in subcutaneous blood flow during hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hilsted, J; Bonde-Petersen, F; Madsbad, S

    1985-01-01

    and transcapillary escape rate increased significantly during hypoglycaemia. Skin temperature and local subcutaneous adipose tissue blood flow were measured in four different regions. Both tended to decrease during hypoglycaemia and decreased significantly 2 h after hypoglycaemia. There was no correlation between...... changes in the two measurements, suggesting that there is no simple relationship between subcutaneous blood flow and skin temperature during hypoglycaemia....

  6. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress

    NARCIS (Netherlands)

    Harms, M.P.M.; Wesseling, K.H.; Pott, F.; Jenstrup, M.; Goudoever, J. van; Secher, N.H.; Lieshout, J.J. van

    1999-01-01

    The relationship between aortic flow and pressure is described by a three-element model of the arterial input impedance, including continuous correction for variations in the diameter and the compliance of the aorta (Modelflow). We computed the aortic flow from arterial pressure by this model, and

  7. Introduction to Poultry Production. Instructor Guide [and] Student Reference. Volume 31, Number 3 [and] Number 4.

    Science.gov (United States)

    Raphael, Katherine

    This packet contains both teacher and student materials for a unit on poultry production in vocational agriculture courses and covers the following lessons: (1) overview of the poultry industry; (2) selection and evaluation; (3) production; (4) reproduction; (5) health issues; and (6) processing and marketing. The lessons include the following…

  8. Army Library Institute V: Product/Marketing/Service - Volume 2, Supplementary Data

    Science.gov (United States)

    1981-11-01

    TRALINET (TRADOC Library Information Network) The Library’s Product In the Marketing Mix Session 3, Wednesday, 20 May 1981 General Lecture—Anglo-American...Redstone Scientific Information Center (RSIC) Automated System, J. Cooney F TRADOC Regulation 1-2 G The Library’s Product in the Marketing Mix , H

  9. Introduction to Poultry Production. Instructor Guide [and] Student Reference. Volume 31, Number 3 [and] Number 4.

    Science.gov (United States)

    Raphael, Katherine

    This packet contains both teacher and student materials for a unit on poultry production in vocational agriculture courses and covers the following lessons: (1) overview of the poultry industry; (2) selection and evaluation; (3) production; (4) reproduction; (5) health issues; and (6) processing and marketing. The lessons include the following…

  10. Viscoelastic Effects on the Entropy Production in Oscillatory Flow between Parallel Plates with Convective Cooling

    Directory of Open Access Journals (Sweden)

    Federico Vázquez

    2008-12-01

    Full Text Available The heat transfer problem of a zero-mean oscillatory flow of a Maxwell fluid between infinite parallel plates with boundary conditions of the third kind is considered. With these conditions, the amount of heat entering or leaving the system depends on the external temperature as well as on the convective heat transfer coefficient. The local and global time-averaged entropy production are computed, and the consequences of convective cooling of the plates are also assessed. It is found that the global entropy production is a minimum for certain suitable combination of the physical parameters. For a discrete set of values of the oscillatory Reynolds number, the extracted heat from one of the plates shows maxima.

  11. Fission product transport and behavior during two postulated loss of flow transients in the air

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.P.; Carboneau, M.L.

    1991-01-01

    This document discusses fission product behavior during two postulated loss-of-flow accidents (leading to high- and low-pressure core degradation, respectively) in the Advanced Test Reactor (ATR). These transients are designated ATR Transient LCPI5 (high-pressure) and LPP9 (low-pressure). Normally, transients of this nature would be easily mitigated using existing safety systems and procedures. In these analyses, failure of these safety systems was assumed so that core degradation and fission product release could be analyzed. A probabilistic risk assessment indicated that the probability of occurrence for these two transients is of the order of 10{sup {minus}5 }and 10{sup {minus}7} per reactor year for LCP15 and LPP9, respectively.

  12. Fission product transport and behavior during two postulated loss of flow transients in the air

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.P.; Carboneau, M.L.

    1991-12-31

    This document discusses fission product behavior during two postulated loss-of-flow accidents (leading to high- and low-pressure core degradation, respectively) in the Advanced Test Reactor (ATR). These transients are designated ATR Transient LCPI5 (high-pressure) and LPP9 (low-pressure). Normally, transients of this nature would be easily mitigated using existing safety systems and procedures. In these analyses, failure of these safety systems was assumed so that core degradation and fission product release could be analyzed. A probabilistic risk assessment indicated that the probability of occurrence for these two transients is of the order of 10{sup {minus}5 }and 10{sup {minus}7} per reactor year for LCP15 and LPP9, respectively.

  13. Patty's toxicology. Volume 1: toxicology issues, inorganic particulates, dusts, products of biological origin and pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, E.; Cohrssen, B; Powell, C.H. (eds.) [University of Cincinnati, Cincinnati, OH (US). Kettering Laboratory

    2001-07-01

    This book discusses toxic agents and pathogens in the workplace and its adverse health effects on workers. This volume includes discussions on industrial toxicology, measuring exposure to toxic substances, occupational chemical carcinogenesis, non-cancer risk assessment, gene-environment interaction, regulations and guidelines in the workplace, toxic chemical information sources, chemical safety, silica and silica compounds, asbestos, talc, rock wool and refractory ceramic fibres, fibreglass, coal, wood dust, cotton and other textile dusts, bioaerosols and disease, bloodborne pathogens in the workplace, tuberculosis and other mycobacteria and petroleum, coal tar and its related products.

  14. Impact of Expanded North Slope of Alaska Crude Oil Production on Crude Oil Flows in the Contiguous United States

    Energy Technology Data Exchange (ETDEWEB)

    DeRosa, Sean E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Tatiana Paz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The National Transportation Fuels Model was used to simulate a hypothetical increase in North Slope of Alaska crude oil production. The results show that the magnitude of production utilized depends in part on the ability of crude oil and refined products infrastructure in the contiguous United States to absorb and adjust to the additional supply. Decisions about expanding North Slope production can use the National Transportation Fuels Model take into account the effects on crude oil flows in the contiguous United States.

  15. Hydrodynamical numerical simulation of wind production from black hole hot accretion flows at very large radii

    CERN Document Server

    Bu, De-Fu; Gan, Zhao-Ming; Yang, Xiao-hong

    2015-01-01

    In previous works, it has been shown that strong winds exist in hot accretion flows around black holes. Those works focus only on the region close to the black hole thus it is unknown whether or where the wind production stops at large radii. In this paper, we investigate this problem based on hydrodynamical numerical simulations. For this aim, we have taken into account the gravity of both the central black hole and the nuclear star clusters. When calculating the latter, we assume that the velocity dispersion of stars is a constant and the gravitational potential of the nuclear star cluster $\\propto \\sigma^2 \\ln (r)$, where $\\sigma$ is the velocity dispersion of stars and $r$ is the distance from the center of the galaxy. Different from previous works, we focus on the region where the gravitational potential is dominated by the star cluster. We find that, same as the accretion flow at small radii, the mass inflow rate decreases inward and the flow is convectively unstable. However, trajectory analysis has sh...

  16. Analysis of dispatching rules application on scheduling problem in flexible-flow shop production

    Directory of Open Access Journals (Sweden)

    Rakićević Zoran M.

    2014-01-01

    Full Text Available In this paper we analyzed a group of simple heuristic methods, which are used for solving the scheduling problem in manufacturing and services. The analysis was performed on the scheduling problem in a flexible-flow shop production, which is known by the English term - Flexible-Flow Shop (FFS. The task is to determine the schedule of processing multiple products on multiple machines, where all the products have the same sequence of processing and for each process there are multiple machines available. For this FFS problem we present the corresponding mathematical model of mixed integer programming. Among potential methods for solving the set task, we consider simple heuristics because the original scheduling problem is NP-hard and finding the exact optimal solution would require unacceptably long computing time. Heuristic methods are based on priority rules that are performed based on the relations of importance between products and their processing time on individual machines. Heuristic methods are widely used for solving practical problems, which was the motivation for the analysis performed in this paper. The aim of the analysis is to identify those priority rules, from a set of considered, which provide a good solution to a hypothetical scheduling problem example, where the evaluation of solution is performed using different criteria functions. The analysis that is presented in the paper was obtained by using the computer program LEKIN. The main results of the analysis indicated that priority rules give different solutions to the problem of FFS and that each of these solutions is a significantly good result in terms of some of the considered criteria functions.

  17. Negative hydrogen ion production in multicusp volume source with a pulsed discharge (abstract)a)

    Science.gov (United States)

    Bacal, M.; Belchenko, Yu. I.

    1996-03-01

    The pulsed operation of a negative ion volume source has been investigated, both with a magnetic filter present and without it, under conditions of full-scale acceleration of the extracted negative hydrogen ion beam. We report the observation of three afterglow negative ion peaks. As the negative ion current during the discharge pulse, each of the afterglow peaks can be optimized by varying the pressure, the plasma electrode bias and the extraction voltage. Under optimum conditions, the negative ion current during the discharge pulse exceeds the afterglow peaks.

  18. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel

    Directory of Open Access Journals (Sweden)

    Omid Ali Akbari

    2015-11-01

    Full Text Available This article aims to study the impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. To this aim, compulsory convection heat transfer of water–aluminum oxide nanofluid in a rib-roughened microchannel has been numerically studied. The results of this simulation for rib-roughened three-dimensional microchannel have been evaluated in contrast to the smooth (unribbed three-dimensional microchannel with identical geometrical and heat–fluid boundary conditions. Numerical simulation is performed for different nanoparticle volume fractions for Reynolds numbers of 10 and 100. Cold fluid entering the microchannel is heated in order to apply constant flux to external surface of the microchannel walls and then leaves it. Given the results, the fluid has a higher heat transfer with a hot wall in surfaces with ribs rather than in smooth ones. As Reynolds number, number of ribs, and nanoparticle volume fractions increase, more temperature increase happens in fluid in exit intersection of the microchannel. By investigating Nusselt number and friction factor, it is observed that increase in nanoparticle volume fractions causes nanofluid heat transfer properties to have a higher heat transfer and friction factor compared to the base fluid used in cooling due to an increase in viscosity.

  19. Lung volumes, ventricular function and pulmonary arterial flow in children operated on for left-sided congenital diaphragmatic hernia: long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Abolmaali, Nasreddin; Koch, Arne [Dresden University of Technology, OncoRay - Molecular and Biological Imaging, Medical Faculty Carl Gustav Carus, Dresden (Germany); Goetzelt, Knut; Vogelberg, Christian [University Clinics Carl Gustav Carus, Dresden University of Technology, Clinic and Policlinic for Pediatrics - Pediatric Pulmonology, Dresden (Germany); Hahn, Gabriele [University Clinics Carl Gustav Carus, Dresden University of Technology, Institute and Policlinic for Radiology - Pediatric Radiology, Dresden (Germany); Fitze, Guido [University Clinics Carl Gustav Carus, Dresden University of Technology, Clinic and Policlinic for Pediatric Surgery, Dresden (Germany)

    2010-07-15

    To compare MRI-based functional pulmonary and cardiac measurements in the long-term follow-up of children operated on for left-sided congenital diaphragmatic hernia (CDH) with age- and body size-matched healthy controls. Twelve children who received immediate postnatal surgery for closure of isolated left-sided CDH were included and received basic medical examinations, pulmonary function testing and echocardiography. MRI included measurement of lung volume, ventricular function assessment and velocity-encoded imaging of the pulmonary arteries and was compared with the data for 12 healthy children matched for age and body size. While patients' clinical test results were not suspicious, comparison between the MRI data for patients and those for healthy controls revealed significant differences. In patients, the volumes of the left lungs were increased and the tidal volume was larger on the right side. While the stroke volumes of both ventricles were reduced, heart rate and ejection fraction were increased. Flow, acceleration time and cross-sectional area of the left pulmonary artery were reduced. Functional MRI detected pulmonary and cardiac findings in the late follow-up of CDH children which may be missed by standard clinical methods and might be relevant for decisions regarding late outcome and treatment. (orig.)

  20. Determination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry

    Science.gov (United States)

    Bánáti, Hajnalka; Darvas, Béla; Fehér-Tóth, Szilvia; Czéh, Árpád; Székács, András

    2017-01-01

    Levels of mycotoxins produced by Fusarium species in genetically modified (GM) and near-isogenic maize, were determined using multi-analyte, microbead-based flow immunocytometry with fluorescence detection, for the parallel quantitative determination of fumonisin B1, deoxynivalenol, zearalenone, T-2, ochratoxin A, and aflatoxin B1. Maize varieties included the genetic events MON 810 and DAS-59122-7, and their isogenic counterparts. Cobs were artificially infested by F. verticillioides and F. proliferatum conidia, and contained F. graminearum and F. sporotrichoides natural infestation. The production of fumonisin B1 and deoxynivalenol was substantially affected in GM maize lines: F. verticillioides, with the addition of F. graminearum and F. sporotrichoides, produced significantly lower levels of fumonisin B1 (~300 mg·kg−1) in DAS-59122-7 than in its isogenic line (~580 mg·kg−1), while F. proliferatum, in addition to F. graminearum and F. sporotrichoides, produced significantly higher levels of deoxynivalenol (~18 mg·kg−1) in MON 810 than in its isogenic line (~5 mg·kg−1). Fusarium verticillioides, with F. graminearum and F. sporotrichoides, produced lower amounts of deoxynivalenol and zearalenone than F. proliferatum, with F. graminearum and F. sporotrichoides. T-2 toxin production remained unchanged when considering the maize variety. The results demonstrate the utility of the Fungi-Plex™ quantitative flow immunocytometry method, applied for the high throughput parallel determination of the target mycotoxins. PMID:28241411