EEG generator--a model of potentials in a volume conductor.
Avitan, Lilach; Teicher, Mina; Abeles, Moshe
2009-11-01
EEG generator-a model of potentials in a volume conductor. The potential recorded over the cortex electro-corticogram (ECoG) or over the scalp [electroencephalograph (EEG)] derives from the activity of many sources known as "EEG generators." The recorded amplitude is basically a function of the unitary potential of a generator and the statistical relationship between different EEG generators in the recorded population. In this study, we first suggest a new definition of the EEG generator. We use the theory of potentials in a volume conductor and model the contribution of a single synapse activated to the surface potential. We then model the contribution of the generator to the surface potential. Once the generator and its contribution are well defined, we can quantitatively assess the degree of synchronization among generators. The measures obtained by the model for a real life scenario of a group of generators organized in a specific statistical way were consistent with the expected values that were reported experimentally. The study sheds new light on macroscopic modeling approaches which make use of mean soma membrane potential. We showed major contribution of activity of superficial apical synapses to the ECoG signal recorded relative to lower somatic or basal synapses activity.
A model of the electrical volume conductor in the region of the eye in the ELF range.
Lindenblatt, G; Silny, J
2001-11-01
Electrical and magnetic phosphenes are irritations of the eye caused by electric currents or magnetic fields. These are well known effects initially investigated in the early 1900s. Available estimations of the current densities in the eye, based on the assumption of a homogeneous volume conductor, show low thresholds. These outdated thresholds are still an important cornerstone when justifying today's limit values for extremely low-frequency (ELF) fields specified by statutory regulations. In vitro measurements of the complex conductivity of cattle eye are carried out for the ELF range (5-2000 Hz) separated for the different tissues of the eyeball. They do not show peculiarities at 20 Hz which is the threshold minimum for the phosphene generation. The reported conductivity data of the eye region show variations of two orders of magnitude regarding the electrical conductivity of the individual tissue layers. Starting with these new data, a model of the orbita is introduced describing the eye and its periphery as an electrically inhomogeneous volume conductor. This model contains small-scale structures which are expected to behave as good electrical conductors yielding regions of higher field values within the eye. Therefore, earlier models assuming a homogeneous volume conductor can be regarded as oversimplistic.
Institute of Scientific and Technical Information of China (English)
Shou Guo-Fa; Xia Ling; Ma Ping; Tang Fa-Kuan; Dai Ling
2011-01-01
In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies.
Effects of volume conductor and source configuration on simulated magnetogastrograms
Energy Technology Data Exchange (ETDEWEB)
Komuro, Rie; Qiao Wenlian; Pullan, Andrew J; Cheng, Leo K, E-mail: l.cheng@auckland.ac.n [Auckland Bioengineering Institute, University of Auckland, Auckland (New Zealand)
2010-11-21
Recordings of the magnetic fields (MFs) arising from gastric electrical activity (GEA) have been shown to be able to distinguish between normal and certain abnormal GEA. Mathematical models provide a powerful tool for revealing the relationship between the underlying GEA and the resultant magnetogastrograms (MGGs). However, it remains uncertain the relative contributions that different volume conductor and dipole source models have on the resultant MFs. In this study, four volume conductor models (free space, sphere, half space and an anatomically realistic torso) and two dipole source configurations (containing 320 moving dipole sources and a single equivalent moving dipole source) were used to simulate the external MFs. The effects of different volume conductor models and dipole source configurations on the MF simulations were examined. The half space model provided the best approximation of the MFs produced by the torso model in the direction normal to the coronal plane. This was despite the fact that the half space model does not produce secondary sources, which have been shown to contribute up to 50% of the total MFs when an anatomically realistic torso model was used. We conclude that a realistic representation of the volume conductor and a detailed dipole source model are likely to be necessary when using a model-based approach for interpreting MGGs.
Comparison of three-shell and simplified volume conductor models in magnetoencephalography.
Stenroos, Matti; Hunold, Alexander; Haueisen, Jens
2014-07-01
Experimental MEG source imaging studies have typically been carried out with either a spherically symmetric head model or a single-shell boundary-element (BEM) model that is shaped according to the inner skull surface. The concepts and comparisons behind these simplified models have led to misunderstandings regarding the role of skull and scalp in MEG. In this work, we assess the forward-model errors due to different skull/scalp approximations and due to differences and errors in model geometries. We built five anatomical models of a volunteer using a set of T1-weighted MR scans and three common toolboxes. Three of the models represented typical models in experimental MEG, one was manually constructed, and one contained a major segmentation error at the skull base. For these anatomical models, we built forward models using four simplified approaches and a three-shell BEM approach that has been used as reference in previous studies. Our reference model contained in addition the skull fine-structure (spongy bone). We computed signal topographies for cortically constrained sources in the left hemisphere and compared the topographies using relative error and correlation metrics. The results show that the spongy bone has a minimal effect on MEG topographies, and thus the skull approximation of the three-shell model is justified. The three-shell model performed best, followed by the corrected-sphere and single-shell models, whereas the local-spheres and single-sphere models were clearly worse. The three-shell model was the most robust against the introduced segmentation error. In contrast to earlier claims, there was no noteworthy difference in the computation times between the realistically-shaped and sphere-based models, and the manual effort of building a three-shell model and a simplified model is comparable. We thus recommend the realistically-shaped three-shell model for experimental MEG work. In cases where this is not possible, we recommend a realistically
Huang, Yu; Parra, Lucas C; Haufe, Stefan
2016-10-15
In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms
Haufe, Stefan; Huang, Yu; Parra, Lucas C
2015-08-01
In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.
Directory of Open Access Journals (Sweden)
Ümit Aydin
Full Text Available To increase the reliability for the non-invasive determination of the irritative zone in presurgical epilepsy diagnosis, we introduce here a new experimental and methodological source analysis pipeline that combines the complementary information in EEG and MEG, and apply it to data from a patient, suffering from refractory focal epilepsy. Skull conductivity parameters in a six compartment finite element head model with brain anisotropy, constructed from individual MRI data, are estimated in a calibration procedure using somatosensory evoked potential (SEP and field (SEF data. These data are measured in a single run before acquisition of further runs of spontaneous epileptic activity. Our results show that even for single interictal spikes, volume conduction effects dominate over noise and need to be taken into account for accurate source analysis. While cerebrospinal fluid and brain anisotropy influence both modalities, only EEG is sensitive to skull conductivity and conductivity calibration significantly reduces the difference in especially depth localization of both modalities, emphasizing its importance for combining EEG and MEG source analysis. On the other hand, localization differences which are due to the distinct sensitivity profiles of EEG and MEG persist. In case of a moderate error in skull conductivity, combined source analysis results can still profit from the different sensitivity profiles of EEG and MEG to accurately determine location, orientation and strength of the underlying sources. On the other side, significant errors in skull modeling are reflected in EEG reconstruction errors and could reduce the goodness of fit to combined datasets. For combined EEG and MEG source analysis, we therefore recommend calibrating skull conductivity using additionally acquired SEP/SEF data.
Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor
DEFF Research Database (Denmark)
Henneberg, Kaj-åge; F.A., Roberge
1997-01-01
three-dimensional isotropic volume conductor. The current through the T system outlets at the sarcolemmal surface is comparable in magnitude to the sarcolemmal current density, but is of opposite polarity. When it is added to the sarcolemmal current, the resulting triphasic waveform has a 100% increase...... of the extracellular potential. Compared to an isolated fiber in a large volume of Ringer's solution, uniform propagation within a 2-mu m-thick volume conductor annulus is slowed down from 1.92 to 0.72 m/s, and the extracellular potential is increased from 1 to 108 mV peak to peak, in agreement with published...
Modelling the transient emission from a twin conductor cable
Directory of Open Access Journals (Sweden)
Ian Brook Darney
2016-03-01
Full Text Available Using the equations of transmission line theory, a programme is developed to simulate the response of an open-circuit line to a step pulse. This is compared with the observed response of a twin-conductor cable. It is deduced that not all of the current delivered to the send conductor arrives back via the return conductor. Some of it departs in the form of radiated emission. A virtual capacitor is used to simulate this, with limited success. However, by adding a second virtual capacitor to simulate transient current being delivered from the return conductor back to the send conductor, a fair correlation is achieved between theoretical and actual results. This analysis demonstrates that the return conductor plays an active role in propagating any signal along the cable. This study also demonstrates that a circuit model can be created to simulate the mechanisms involved in the radiation of interference from power supply cables. This is but one example of the use of circuit models to analyse electromagnetic interference (EMI. The key relationship between electromagnetic theory and circuit theory which enables this technique to be used to analyse any EMI problem is identified. A dramatic simplification in the mathematics can be achieved.
Random matrix model for disordered conductors
Indian Academy of Sciences (India)
Zafar Ahmed; Sudhir R Jain
2000-03-01
We present a random matrix ensemble where real, positive semi-deﬁnite matrix elements, , are log-normal distributed, $\\exp[-\\log^{2}(x)]$. We show that the level density varies with energy, , as 2/(1 + ) for large , in the unitary family, consistent with the expectation for disordered conductors. The two-level correlation function is studied for the unitary family and found to be largely of the universal form despite the fact that the level density has a non-compact support. The results are based on the method of orthogonal polynomials (the Stieltjes-Wigert polynomials here). An interesting random walk problem associated with the joint probability distribution of the ensuing ensemble is discussed and its connection with level dynamics is brought out. It is further proved that Dyson's Coulomb gas analogy breaks down whenever the conﬁning potential is given by a transcendental function for which there exist orthogonal polynomials.
Directory of Open Access Journals (Sweden)
José Gómez-Tames
2014-01-01
Full Text Available Volume conductor models with different geometric representations, such as the parallel layer model (PM, the cylindrical layer model (CM, or the anatomically based model (AM, have been employed during the implementation of bioelectrical models for electrical stimulation (FES. Evaluating their strengths and limitations to predict nerve activation is fundamental to achieve a good trade-off between accuracy and computation time. However, there are no studies aimed at clarifying the following questions. (1 Does the nerve activation differ between CM and PM? (2 How well do CM and PM approximate an AM? (3 What is the effect of the presence of blood vessels and nerve trunk on nerve activation prediction? Therefore, in this study, we addressed these questions by comparing nerve activation between CM, PM, and AM models by FES. The activation threshold was used to evaluate the models under different configurations of superficial electrodes (size and distance, nerve depths, and stimulation sites. Additionally, the influences of the sciatic nerve, femoral artery, and femoral vein were inspected for a human thigh. The results showed that the CM and PM had a high error rate, but the variation of the activation threshold followed the same tendency for electrode size and interelectrode distance variation as AM.
Low resistive trasparent conductors with metallic grids : modeling and experiments
Deelen, J. van; Rendering, H.; Mannetje, H.H 't; Klerk, L.; Hovestad, A.
2012-01-01
At present, transparent conducting oxides (TCOs) are still superior in performance to most other transparent conductors. Results on opto-electronic modeling and design optimization of TCOs are presented using a monolithically integrated CIGS cell configuration as case. For various cell dimensions an
Metallic grids for low resistive transparent conductors: modeling and experiments
Deelen, J. van; Rendering, H.; Mannetje, H. het; Klerk, L.; Hovestad, A.
2012-01-01
At present, transparent conducting oxides (TCOs) are still superior in performance to most other transparent conductors. Results on opto-electronic modeling and design optimization of TCOs are presented using a monolithically integrated CIGS cell configuration as case. For various cell dimensions an
Stenroos, Matti
2016-11-01
Boundary element methods (BEM) are used for forward computation of bioelectromagnetic fields in multi-compartment volume conductor models. Most BEM approaches assume that each compartment is in contact with at most one external compartment. In this work, I present a general surface integral equation and BEM discretization that remove this limitation and allow BEM modeling of general piecewise-homogeneous medium. The new integral equation allows positioning of field points at junctioned boundary of more than two compartments, enabling the use of linear collocation BEM in such a complex geometry. A modular BEM implementation is presented for linear collocation and Galerkin approaches, starting from the standard formulation. The approach and resulting solver are verified in four ways, including comparisons of volume and surface potentials to those obtained using the finite element method (FEM), and the effect of a hole in skull on electroencephalographic scalp potentials is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Irminger, Philip [ORNL; Starke, Michael R [ORNL; Dimitrovski, Aleksandar D [ORNL; Young II, Marcus Aaron [ORNL; Rizy, D Tom [ORNL; Stovall, John P [ORNL; Overholt, Philip N [U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (OE)
2014-01-01
Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess the performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.
Stenroos, Matti
2016-01-01
Boundary element methods (BEM) are used for forward computation of bioelectromagnetic fields in multi-compartment volume conductor models. Most BEM approaches assume that each compartment is in contact with at most one external compartment. In this work, I present a general surface integral equation and BEM discretization that remove this limitation and allow BEM modeling of general piecewise-homogeneous medium. The new integral equation allows positioning of field points at junctioned boundary of more than two compartments, enabling the use of linear collocation BEM in such a complex geometry. A modular BEM implementation is presented for linear collocation and Galerkin approaches, starting from standard formulation. The approach and resulting solver are verified in three ways, including comparison to finite element method (FEM). In a two-compartment split-sphere model with two spaced monopoles, the results obtained with high-resolution FEM and the BEMs were almost identical (relative difference < 0.003).
Energy Technology Data Exchange (ETDEWEB)
Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)
2016-09-15
The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.
Modelling and simulation of the ice melting process on a current-carrying conductor
Energy Technology Data Exchange (ETDEWEB)
Peter, Z.
2006-07-01
Mathematical models were developed to determine the current and energy requirements for thermal de-icing and ice prevention on overhead power transmission lines. The models were based on the Joule effect under various meteorological and current transmission conditions. The minimum current intensity required to inhibit ice formation on a single power line conductor was determined. Correction factors were then introduced for 3 specific aluminum conductors with steel reinforcement (ACSRs). Water runback on the conductor surface was considered as well as deviation of the water layer from the thermal equilibrium state. Model results were in good agreement with measurements taken in an icing research wind tunnel. The overall heat transfer coefficient (HTC) for stranded conductors was then assessed to complete the model. A computational model using finite differences was also developed to calculate the current and energy requirements for de-icing partially ice covered conductors. Joule heating by AC current and impulse current were the 2 heating techniques analyzed. Thermal conductivity of the ACSR conductor was also estimated. Experimentally validated analytical approaches were proposed to determine the shedding time and corresponding energy required to de-ice a completely ice covered conductor by heating with increased nominal AC current. It was concluded that ice accretion on a single power line can be prevented using the experimentally validated mathematical models that calculate the current and energy requirements of de-icing conductors.
Beyond the Beat: Modelling Intentions in a Virtual Conductor
Maat, ter Mark; Ebbers, Rob M.; Reidsma, Dennis; Nijholt, Anton
2008-01-01
We describe our research on designing and implementing a Virtual Conductor. That is, a virtual human (embodied agent) that acts like a human conductor in its interaction with a real, human orchestra. We reported previously on a first version that used a digital musical score to lead an orchestra. Th
Modelling the transient emission from a twin conductor cable
2016-01-01
Using the equations of transmission line theory, a programme is developed to simulate the response of an open-circuit line to a step pulse. This is compared with the observed response of a twin-conductor cable. It is deduced that not all of the current delivered to the send conductor arrives back via the return conductor. Some of it departs in the form of radiated emission. A virtual capacitor is used to simulate this, with limited success. However, by adding a second virtual capacitor to sim...
Energy Technology Data Exchange (ETDEWEB)
Duchateau, J.L.; Ciazynski, D.; Guerber, O.; Park, S.H.; Zani, L. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Fietz, W.H.; Ulbricht, A.; Zahn, G. [Association Euratom-FZK Forschungszentrum, Karlsruhe (Germany)
2003-07-01
In Phase II experiment of the International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) the operation limits of its 80 kA Nb{sub 3}Sn conductor were explored. To increase the magnetic field on the conductor, the TFMC was tested in presence of another large coil: the EURATOM-LCT coil. Under these conditions the maximum field reached on the conductor, was around 10 tesla. This exploration has been performed at constant current, by progressively increasing the coil temperature and monitoring the coil voltage drop in the current sharing regime. Such an operation was made possible thanks to the very high stability of the conductor. The aim of these tests was to compare the critical properties of the conductor with expectations and assess the ITER TF conductor design. These expectations are based on the documented critical field and temperature dependent properties of the 720 superconducting strands which compose the conductor. In addition the conductor properties are highly dependent on the strain, due to the compression appearing on Nb{sub 3}Sn during the heat treatment of the pancakes and related to the differential thermal compression between Nb{sub 3}Sn and the stainless steel jacket. No precise model exists to predict this strain, which is therefore the main information, which is expected from these tests. The method to deduce this strain from the different tests is presented, including a thermalhydraulic analysis to identify the temperature of the critical point and a careful estimation of the field map across the conductor. The measured strain has been estimated in the range -0.75% to -0.79 %. This information will be taken into account for ITER design and some adjustment of the ITER conductor design is under examination. (authors)
Energy Technology Data Exchange (ETDEWEB)
Hernandez, P. [Lawrence Berkeley Lab., CA (United States)
1995-02-01
This paper is an expansion of engineering notes prepared in 1961 to address the question of how to wind circular coils so as to obtain the maximum axial field with the minimum volume of conductor. At the time this was a germain question because of the advent of superconducting wires which were in very limited supply, and the rapid push for generation of very high fields, with little concern for uniformity.
DC ice-melting model for wet-growth icing conductor and its experimental investigation
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Icicles are often formed under the downside surface of conductor in the wet growth icing of overhead power line. When the ice deposit around overhead power line is molten by Joule heat produced by current, the pattern of heat transfer of ice deposit with icicles is dissimilar to that without icicle, so the ice-melting model for the columnar icing conductor cannot be applied to icicle-shaped icing conductor. According to the heat-transfer characteristic of the icicle-shaped icing conductor, this paper puts forward a DC ice-melting model for the icicle-shaped icing conductor. Because this full model includes three-dimensional heat-transfer and interface movement, which cannot be solved in closed form, a finite element scheme in space-domain and a finite difference scheme in time-domain are employed to discretize the governing equations. Firstly the whole ice-melting process on the icicle-shaped icing conductor is simulated by this model. Then the simulated results are validated by ice-melting experiments in the artificial chamber. The study from the model and the experiments shows that the size and length of icicle as well as the space between the adjacent icicles are factors to affect ice-melting. With the shorter icicle space, the bigger icicle size and the longer icicle-length, the surface of ice layer is enlarged and then more heat is taken away by the convection and radiation, so the ice melting time will get longer.
Fabrication and modeling of stretchable conductors for traumatic brain injury research
Cao, Wenzhe
gold conductors made on pre-strained PDMS changes less during stretching than that made on non-pre-strained PDMS substrate. We built a model of the electrical resistance in function of strain. The model is based on the topography of the thin gold film on PDMS. This model is a first attempt at predicting electrical resistance of stretchable thin gold film conductors. Lastly, we fabricated stretchable microelectrode arrays (SMEAs). They were utilized at Columbia University to study traumatic brain injury (TBI). Tissues cultured on SMEA remained viable for 19 days, and the electrodes were able to both stimulate and record neural tissue activity before, during and after stretching. Therefore SMEAs are able to bring together mechanical injury, electrophysiological recording and pharmacological studies. The SMEAs could serve as in vitro platforms for high throughput therapeutic screening and discovery for traumatic injury. The ability to reproducibly fabricate stretchable conductors using micro-fabrication technology will facilitate adoption by industry. The ability to understand the stretching mechanism will enable us to design more robust material systems. The SMEA prototypes demonstrate that stretchable conductors are practical, and their mechanical compatibility with biological systems also makes them candidates for use in biomedical devices.
Ouyang, S; Maynard, D E
1997-03-01
Finite difference methods for the volume conductor problem have used a single coordinate system for the mesh and made approximations of Laplace's equation. This method is simple but has two major problems. Firstly, to deal with boundary conditions properly, the normal potential gradient at the boundary must be known. However it is complicated to compute at a curved surface point. Secondly, for an inverse solution the equation on a curved boundary is difficult to reverse since more than one inner mesh node appears in the approximation equation for each surface point. The new method developed in this paper is a dual coordinate system. One system serves as a frame mesh, the other is a sub-coordinate system in which surface points become mesh points (regular nodes). The equation at each surface point is then directly reversible since only one inner point appears in the equation. The forward solution is applied to both centric and eccentric bone models and uses the conventional successive over-relaxation (SOR) method. Noise is added to this solution for input to the inverse procedure which is a direct step-in non-iterative method. Low pass filtering was effective in reducing the effects of noise. In the examples given, only one coordinate subsystem is used but, for complex shape boundaries, multiple subsystems would be necessary.
Modelling ac ripple currents in HTS coated conductors
Xu, Zhihan; Grilli, Francesco
2015-10-01
Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc
Yu, Pengfei; Hu, Shuling; Shen, Shengping
2016-08-01
Recently, a new scanning probe microscopy approach, referred to as electrochemical strain microscopy (ESM), for probing local ionic flows and electrochemical reactions in solids based on the bias-strain coupling was proposed by Morozovska et al. Then, a series of theoretical papers for analyzing the image formation and spectroscopic mechanism of ESM were published within the framework of Fermi-Dirac statistics, the Vegard law, the direct flexoelectric coupling effect, the electrostriction effect, and so on. However, most of the models in these papers are limited to the partial coupling or particular process, and numerically solved by using decoupling approximation. In this paper, to model the ESM measurement with the coupling electrical-chemical-mechanical process, the chemical Gibbs function variational principle for the thermal electrical chemical mechanical fully coupling problem is proposed. The fully coupling governing equations are derived from the variational principle. When the tip concentrates the electric field within a small volume of the material, the inhomogeneous electric field is induced. So, both direct and inverse flexoelectric effects should be taken into account. Here, the bulk defect electrochemical reactions are also taken into account, which are usually omitted in the existing works. This theory can be used to deal with coupling problems in solids, including conductors, semiconductors, and piezoelectric and non-piezoelectric dielectrics. As an application of this work, a developed initial-boundary value problem is solved numerically in a mixed ion-electronic conductor. Numerical results show that it is meaningful and necessary to consider the bulk defect chemical reaction. Besides, the chemical reaction and the flexoelectric effect have an interactive influence on each other. This work can provide theoretical basis for the ESM as well as investigating the bulk chemical reaction process in solids.
Three-dimensional finite element modeling of a magnet array spinning above a conductor
Lorimer, W. L.; Lieu, D. K.; Hull, J. R.; Mulcahy, T. M.; Rossing, T. D.
Drag forces due to eddy currents induced by the relative motion of a conductor and a magnetic field occur in many practical devices: motors, brakes, magnetic bearings, and magnetically levitated vehicles. Recently, finite element codes have included solvers for three dimensional eddy current geometries and have the potential to be very useful in the design and analysis of these devices. In this paper, numerical results from three dimensional modeling of a magnet array spinning above a conductor are compared to experimental results in order to assess the capabilities of these codes.
Zhang, Huiming; Zhang, Min; Yuan, Weijia
2017-02-01
An efficient three dimensional (3D) finite element method numerical model is proposed for superconducting coated conductors. The model is based on the T-A formulation and can be used to tackle 3D computational challenges for superconductors with high aspect ratios. By assuming a sheet approximation for the conductors, the model can speed up the computational process. The model has been validated by established analytical solutions. Two examples with complex geometries, which can hardly be simulated by the 2D model, are given. The model could be used to characterise and design large-scale applications using superconducting coated conductors, such as high field magnets and other electrical devices.
Bremner, Paul G.; Vazquez, Gabriel; Christiano, Daniel J.; Trout, Dawn H.
2016-01-01
Prediction of the maximum expected electromagnetic pick-up of conductors inside a realistic shielding enclosure is an important canonical problem for system-level EMC design of space craft, launch vehicles, aircraft and automobiles. This paper introduces a simple statistical power balance model for prediction of the maximum expected current in a wire conductor inside an aperture enclosure. It calculates both the statistical mean and variance of the immission from the physical design parameters of the problem. Familiar probability density functions can then be used to predict the maximum expected immission for deign purposes. The statistical power balance model requires minimal EMC design information and solves orders of magnitude faster than existing numerical models, making it ultimately viable for scaled-up, full system-level modeling. Both experimental test results and full wave simulation results are used to validate the foundational model.
Model for impedance of an ionic conductor sandwiched between blocking electrodes
Energy Technology Data Exchange (ETDEWEB)
Wang, J.C.
1992-06-24
The simplest model for the impedance of an ionic conductor sandwiched between two blocking electrodes is a resistor in series with a capacitor (rc pair) representing the bulk material and the conductor-electrode interface, respectively, and a second capacitor parallel to the rc pair representing the electronic dielectric response of the system. In practice, to describe the experimental data satisfactorily, one needs to replace the interface capacitor with a constant-phase-angle (CPA) element and to add a non-Debye dielectric element parallel to the resistor to represent the local ionic movement. In this paper, some of the existing physical models for the CPA and non-Debye dielectric elements are discussed, and an example is presented for analyzing the impedance data using the resultant circuit model.
Energy Technology Data Exchange (ETDEWEB)
Wang, J.C.
1992-06-24
The simplest model for the impedance of an ionic conductor sandwiched between two blocking electrodes is a resistor in series with a capacitor (rc pair) representing the bulk material and the conductor-electrode interface, respectively, and a second capacitor parallel to the rc pair representing the electronic dielectric response of the system. In practice, to describe the experimental data satisfactorily, one needs to replace the interface capacitor with a constant-phase-angle (CPA) element and to add a non-Debye dielectric element parallel to the resistor to represent the local ionic movement. In this paper, some of the existing physical models for the CPA and non-Debye dielectric elements are discussed, and an example is presented for analyzing the impedance data using the resultant circuit model.
Global unsolvability of a nonlinear conductor model in the quasistationary approximation
Korpusov, M. O.; Yushkov, E. V.
2017-04-01
We study initial-boundary value problems for a model differential equation in a bounded region with a quadratic nonlinearity of a special type typical for the theory of conductors. Using the test function method, we show that such a nonlinearity can lead to global unsolvability with respect to time, which from the physical standpoint means an electrical breakdown of the conductor in a finite time. For the simplest test functions, we obtain sufficient conditions for the unsolvability of the model problems and estimates of the blowup rate and time. With concrete examples, we demonstrate the possibility of using the method for one-, two- and three-dimensional problems with classical and nonclassical boundary conditions. We separately consider the Neumann and Navier problems in bounded R N regions ( N ≥ 2).
Energy Technology Data Exchange (ETDEWEB)
Nolte, Guido [Human Motor Control Section, NINDS, NIH, Bethesda, MD (United States)
2003-11-21
The equation for the magnetic lead field for a given magnetoencephalography (MEG) channel is well known for arbitrary frequencies but is not directly applicable to MEG in the quasi-static approximation. In this paper we derive an equationstarting from the very definition of the lead field instead of using Helmholtz's reciprocity theorems. The results are (a) the transpose of the conductivity times the lead field is divergence-free, and (b) the lead field differs from the one in any other volume conductor by a gradient of a scalar function. Consequently, for a piecewise homogeneous and isotropic volume conductor, the lead field is always tangential at the outermost surface. Based on this theoretical result, we formulated a simple and fast method for the MEG forward calculation for one shell of arbitrary shape: we correct the corresponding lead field for a spherical volume conductor by a superposition of basis functions, gradients of harmonic functions constructed here from spherical harmonics, with coefficients fitted to the boundary conditions. The algorithm was tested for a prolate spheroid of realistic shape for which the analytical solution is known. For high order in the expansion, we found the solutions to be essentially exact and for reasonable accuracies much fewer multiplications are needed than in typical implementations of the boundary element methods. The generalization to more shells is straightforward.
On FDTD Modeling of Polarization of Conductors in a Uniform Electric Field
Baba, Y.; Rakov, V. A.
2009-12-01
Using the FDTD method for solving Maxwell's equations, we have examined the polarization process of a vertical conductor in a quasi-uniform external electric field. The objective was to model some basic processes possibly related to lightning initiation in thunderclouds. Lightning initiation may involve the creation of an elongated conducting region in the cloud ("lightning seed") by a high-energy cosmic-ray particle via the runaway breakdown mechanism that requires an order of magnitude lower electric fields than the conventional breakdown. This "lightning seed" would be polarized in the cloud electric field and serve to enhance the electric field near its extremities possibly to the values required for the conventional breakdown (Rakov, 2004). Solomon et al. (2001) estimated the conductivity of the "lightning seed" to be of the order of 10^-4 S/m. According to Gurevich et al. (2003), the formation of a "lightning seed" in the cloud by a cosmic-ray particle with energy of 10^16 eV via the runaway breakdown mechanism is associated with a current pulse having an amplitude of 100-200 A. Further, Gurevich and Zybin (2005) hypothesized that the compact intracloud discharges (CIDs) giving rise to narrow bipolar pulses also involved the runaway breakdown and were similar to the lightning initiation process, the difference between the two being related to generally higher altitudes (>10 km) at which CIDs occurred. CID currents are expected to be of the order of tens of kiloamperes. The quasi-uniform electric field was excited between two parallel plates, whose radius and spacing were each 500 m, by a uniform vertical electric-field source placed at the periphery of the cylindrical computational domain. The magnitude of excitation electric field was set to 100 kV/m. The length of conductor, located along the axis of the domain and equidistant from the plates, was set to 100 m, and its radius was set to 1 m. The following results were obtained. The peak of the polarization
Yao, Dezhong
2017-02-14
Currently, average reference is one of the most widely adopted references in EEG and ERP studies. The theoretical assumption is the surface potential integral of a volume conductor being zero, thus the average of scalp potential recordings might be an approximation of the theoretically desired zero reference. However, such a zero integral assumption has been proved only for a spherical surface. In this short communication, three counter-examples are given to show that the potential integral over the surface of a dipole in a volume conductor may not be zero. It depends on the shape of the conductor and the orientation of the dipole. This fact on one side means that average reference is not a theoretical 'gold standard' reference, and on the other side reminds us that the practical accuracy of average reference is not only determined by the well-known electrode array density and its coverage but also intrinsically by the head shape. It means that reference selection still is a fundamental problem to be fixed in various EEG and ERP studies.
Directory of Open Access Journals (Sweden)
Thomas Sandberg
2012-08-01
Full Text Available Molecular dynamics (MD simulations were performed on sterically hindered -conidendrin-based chiral 1,4-diols (LIGNOLs from the naturally occurring lignan hydroxymatairesinol (HMR using the GROMACS software. The aim of this study was to explore the conformational behaviour of the LIGNOLs in aqueous solution adopting the TIP4P model. The topologies of the LIGNOLs were constructed manually and they were modeled with the OPLS-AA force field implemented in GROMACS. The four most relevant torsional angles in the LIGNOLs were properly analyzed during the simulations. The determining property for the conformation preferred in aqueous solution was found to be the lowest energy in gas phase. The solvation effects on the LIGNOLs were also studied by quantum chemical calculations applying the COnductor-like Screening MOdel (COSMO. The hydration studies of the MD simulations showed that several of these LIGNOLs, produced from a renewable source, have a great potential of acting as chiral catalysts.
DEFF Research Database (Denmark)
Polat, Burak; Meincke, Peter
2004-01-01
A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...
With or without a conductor: Comparative analysis of leadership models in the musical ensemble
Directory of Open Access Journals (Sweden)
Kovačević Mia
2016-01-01
Full Text Available In search of innovative models of work organization and therefore the artistic process of one musical ensemble, in the last ten years musical ensembles have developed examples of non-traditional artistic-performing decisions and organizational practice. The paper is conceived as a research and analysis of the dominant models of leadership (i.e. organizing, conducting business applicable on the music ensembles and experiences of the musicians. The aim is to recognize and define leadership styles that encourage the increase of motivation and productivity of musicians within the musical ensemble. The paper will specifically investigate the relationship and differences between the two dominant models of leadership, leadership of conductor and collaborative leadership. At the same time, the paper describes and analyses an experiment that was conducted by the Ensemble Metamorphosis, which applied into their work two dominant models of leadership. In an effort to increase the motivation and productivity of musicians, Ensemble Metamorphosis also searched for a new management model of work organization and a new model of leadership. The aim of this paper was therefore to investigate the effects of leadership models that improve the artistic quality, motivation of the musicians, psychological climate and overall increase productivity of musical organization.
Method for making conductors for ferrite memory arrays. [from pre-formed metal conductors
Heckler, C. H.; Baba, P. D.; Bhiwandker, N. C. (Inventor)
1974-01-01
The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material.
Modeling AC ripple currents in HTS coated conductors by integral equations
Grilli, Francesco; Xu, Zhihan
2016-12-01
In several HTS applications, the superconducting tapes experience the simultaneous presence of DC and AC excitations. For example in high-current DC cables, where the transport current is not perfectly constant, but it exhibits some ripples at different frequencies introduced by the rectification process (AC-DC conversion). These ripples give rise to dissipation, whose magnitude and possible influence on the device's cooling requirements need to be evaluated. Here we report a study of the AC losses in a HTS coated conductor subjected to DC currents and AC ripples simultaneously. The modeling approach is based on an integral equation method for thin superconductors: the superconducting tape is modeled as a 1-D object with a non-linear resistivity, which includes the dependence of the critical current density Jc on the magnetic field. The model, implemented in a commercial finite-element program, runs very fast (the simulation of one AC cycle typically takes a few seconds on standard desktop workstation): this allows simulating a large number of cycles and estimating when the AC ripple losses stabilize to a constant value. The model is used to study the influence of the flux creep power index n on the stabilization speed and on the AC loss values, as well as the effect of using a field-dependent Jc instead of a constant one. The simulations confirm that the dissipation level should not be a practical concern in HTS DC cables. At the same time, however, they reveal a strong dependence of the results upon the power index n and the form of Jc , which spurs the question whether the power-law is the most suitable description of the superconductor's electrical behavior for this kind of analysis.
Theory of Superionic Conductors
1981-09-01
TYPE OF REPORT 6 PERIOO COVERED Final Technical )THEORY OF SUPERIONIC CONDUCTORS 9/30/76 to 9/30/81 SVIERFORMI- 4G ORG REPURT NUMBER AI I 1,701 ,- S...several mathematical models of ion and electron conduction in many-particle systems. . DD AN 1473 SECURIT "-CLASSIiCAt N OF THIS PAGE 1 (Wen D E / / A
Modelling natural electromagnetic interference in man-made conductors for space weather applications
Trichtchenko, Larisa
2016-04-01
Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.
Physics of superionic conductors
1979-01-01
Superionic conductors are solids whose ionic conductivities approach, and in some cases exceed, those of molten salts and electrolyte solutions. This implies an un usual state of matter in which some atoms have nearly liquidlike mobility while others retain their regular crystalline arrangement. This liquid-solid duality has much appeal to condensed matter physicists, and the coincident development of powerful new methods for studying disordered solids and interest in superionic conductors for technical applications has resulted in a new surge of activity in this venerable field. It is the purpose of this book to summarize the current re search in the physics of superionic conduction. with special emphasis on those aspects which set these materials apart from other solids. The volume is aimed to wards the materials community and will, we expect, stimulate further research on these potentially useful substances. The usual characterization of the superionic phase lists high ionic conductivity; low activat...
Kuechler, Erich R; Giese, Timothy J; York, Darrin M
2016-04-28
To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.
Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.
2016-04-01
To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.
Directory of Open Access Journals (Sweden)
Yuan Cao
2016-01-01
Full Text Available To directly obtain physical dimensions of parallel coupled microstrip lines with a floating ground-plane conductor (PCMLFGPC, an accurate synthesis model based on an artificial neural network (ANN is proposed. The synthesis model is validated by using the conformal mapping technique (CMT analysis contours. Using the synthesis model and the CMT analysis, the PCMLFGPC having equal even- and odd-mode phase velocities can be obtained by adjusting the width of the floating ground-plane conductor. Applying the method, a 7 dB coupler with the measured isolation better than 27 dB across a wide bandwidth (more than 120%, a 90° Schiffman phase shifter with phase deviation ±2.5° and return loss more than 17.5 dB covering 63.4% bandwidth, and a bandpass filter with completely eliminated second-order spurious band are implemented. The performances of the current designs are superior to those of the previous components configured with the PCMLFGPC.
Accurate 3D modeling of Cable in Conduit Conductor type superconductors by X-ray microtomography
Energy Technology Data Exchange (ETDEWEB)
Tiseanu, Ion, E-mail: tiseanu@infim.ro [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Bucharest-Magurele (Romania); Zani, Louis [CEA/Cadarache – Institut de Recherche sur la Fusion Magnetique, St Paul-lez-Durance Cedex (France); Tiseanu, Catalin-Stefan [University of Bucharest, Faculty of Mathematics and Computer Science (Romania); Craciunescu, Teddy; Dobrea, Cosmin [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Bucharest-Magurele (Romania)
2015-10-15
Graphical abstract: - Highlights: • Quality controls monitoring of Cable in Conduit Conductor (CICC) by X-ray tomography. • High resolution (≈40 μm) X-ray tomography images of CICC section up to 300 mm long. • Assignment of vast majority of strand trajectories over relevant section of CICC. • Non-invasive accurate measurements of local void fraction statistics. - Abstract: Operation and data acquisition of an X-ray microtomography developed at INFLPR are optimized to produce stacks of 2-D high-resolution tomographic sections of Cable in Conduit Conductor (CICC) type superconductors demanded in major fusion projects. High-resolution images for CCIC samples (486 NbTi&Cu strands of 0.81 mm diameter, jacketed in rectangular stainless steel pipes of 22 × 26 mm{sup 2}) are obtained by a combination of high energy/intensity and small focus spot X-ray source and high resolution/efficiency detector array. The stack of reconstructed slices is then used for quantitative analysis consisting of accurate strand positioning, determination of the local and global void fraction and 3D strand trajectory assignment for relevant fragments of cable (∼300 mm). The strand positioning algorithm is based on the application of Gabor Annular filtering followed by local maxima detection. The local void fraction is extensively mapped by employing local segmentation methods at a space resolution of about 50 sub-cells sized to be relevant to the triplet of triplet twisting pattern. For the strand trajectory assignment part we developed a global algorithm of the linear programing type which provides the vast majority of correct strand trajectories for most practical applications. For carefully manufactured benchmark CCIC samples over 99% of the trajectories are correctly assigned. For production samples the efficiency of the algorithm is around 90%. Trajectory assignment of a high proportion of the strands is a crucial factor for the derivation of statistical properties of the cable
Savoldi, L.; Zanino, R.
2000-08-01
We present a first study of current sharing temperature ( Tcs) tests performed over the last few months in the Central Solenoid Model Coil (CSMC) experiment at JAERI, Naka, Japan. The CSMC is a superconducting magnet, layer-wound two-in-hand using 18 layers of Nb 3Sn two-channel cable-in-conduit conductors, which very recently reached a record 13 T at 46 kA DC operation. Here we apply the multi-conductor Mithrandir (M&M) code to a selected set of shots with different transport currents (30, 40, and 46 kA) and we concentrate on conductor 1A on the innermost (i.e., with highest magnetic field) layer. In the test, resistive heaters located upstream of layers 1 and 2 are used to progressively and quasi-steadily increase the supercritical helium inlet temperature in the coil. The Tcs is reached when a threshold of 0.5 mV resistive voltage is measured across the coil, after which the heaters are turned off and the coil current is dumped. Computed results are compared with experimental data, showing good agreement in the inlet and outlet temperatures of all four heated conductors, both as Tcs is reached (30, 40 kA) and during the whole hour-long transient from nominal conditions to Tcs reached (46 kA).
Kim, Ju H.; Han, S. Y.; Brooks, J. S.
1999-08-01
We investigate the phenomenon of magnetic breakdown in quasi-two-dimensional organic conductors such as α-(ET)2KHg(SCN)4 and κ-(ET)2Cu(NCS)2 by constructing a tight-binding model based on a realistic band structure which is derived from the crystallographic data. We solve the model numerically to compute the magnetic field dependence of the magnetization and show that the present model accounts naturally for the experimentally observed magnetization oscillation frequencies that are forbidden in the semiclassical picture. The computed values of the fundamental and magnetic breakdown frequencies with no adjustable parameters are close to the experimentally measured values. For completeness, we carry out the computation for both canonical (fixed number of particles) and grand canonical (fixed chemical potential) ensembles, and show that the forbidden frequencies appear in both cases. Hence, the appearance of anomalous frequencies in the de Haas-van Alphen effect has a quantum-mechanical origin and arises from the interplay of electronic states from two partially occupied bands near the Fermi energy as a function of magnetic field. We also compute the temperature dependence of the magnetization and apply ad hoc the Lifshitz-Kosevich analysis to the amplitudes of the Fourier components at moderately high temperatures. This yields effective mass values for α-(ET)2KHg(SCN)4 in good agreement with experimental values.
Composed Scattering Model for Direct Volume Rendering
Institute of Scientific and Technical Information of China (English)
蔡文立; 石教英
1996-01-01
Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.
Photoconduction in CDW conductors
Energy Technology Data Exchange (ETDEWEB)
Zaitsev-Zotov, S.V., E-mail: serzz@cplire.ru [Kotel' nikov IRE RAS, Mokhovaya 11, Bld. 7, 125009 Moscow (Russian Federation); Minakova, V.E.; Nasretdinova, V.F.; Zybtsev, S.G. [Kotel' nikov IRE RAS, Mokhovaya 11, Bld. 7, 125009 Moscow (Russian Federation)
2012-06-01
Photoconduction study of quasi-1D conductors allows to distinguish between the single-particle and collective linear conduction, investigate the effect of screening on collective transport and obtain interesting new details of the electronic energy structure of pure and doped CDW conductors. Here we present results of photoconduction study in quasi-1D conductors o-TaS{sub 3}, K{sub 0.3}MoO{sub 3}, and NbS{sub 3}(I).
Frequency Dependent Losses in Transmission Cable Conductors
DEFF Research Database (Denmark)
Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella
2011-01-01
, such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...
The average free volume model for liquids
Yu, Yang
2014-01-01
In this work, the molar volume thermal expansion coefficient of 59 room temperature ionic liquids is compared with their van der Waals volume Vw. Regular correlation can be discerned between the two quantities. An average free volume model, that considers the particles as hard core with attractive force, is proposed to explain the correlation in this study. A combination between free volume and Lennard-Jones potential is applied to explain the physical phenomena of liquids. Some typical simple liquids (inorganic, organic, metallic and salt) are introduced to verify this hypothesis. Good agreement from the theory prediction and experimental data can be obtained.
Critical current and cryogenic stability modelling of filamentary MgB2 conductors
DEFF Research Database (Denmark)
Glowacki, B.A.; Majoros, M.; Tanaka, K.
2006-01-01
(c) in range of electric fields E % 10 mu V/cm. The isothermal modelling with J(c) independent on magnetic field, case b), gave the results more close to the experimental ones. From the modelling of the heating effects we conclude that the cryogenic stability of the used Cu/SUS316/MgB(2), Fe/MgB(2) and Cu...
Rolando, G.; Hansheng, F.; Hongwei, L.; Lin, W.; Wu, W.; Foussat, A.; Ilin, Y.; Libeyre, P.; Nijhuis, A.
2014-01-01
The ITER correction coils (CC) system features shaking hands lap-type joints to interface the terminations of the conductors. The feasibility of operating plasma scenarios depends on the ability of the magnets to retain sufficient temperature and current margins. In this respect, the joints represen
DEFF Research Database (Denmark)
Dalslet, Bjarke Thomas
2008-01-01
The subject of this thesis is ceramic mixed ionic and electronic conductors (MIECs). MIECs have potential uses, such as solid oxygen permeation membranes, as catalysts, and as components in fuel cells. The MIECs examined in this thesis are all oxide ion conducting materials. This thesis describes...
Nijhuis, A.; Ilyin, Yu. A.; Kate, ten H.H.J.
2002-01-01
Non-uniformities in the paths of the currents in a cable-in-conduit conductor (CICC), resistive or inductive, will result into an unbalanced current distribution. The current nonuniformity may affect the performance of a magnet system and it is therefore essential to evaluate this phenomenon. The cu
Directory of Open Access Journals (Sweden)
V. V. Agashe
1960-07-01
Full Text Available Most of the semi-conductors are formed by addition of foreign substances in an insulator. This is called 'Doping'. These doped semi-conductors today are widely used in many electrical devices. Some of them are rectifiers, transistors, thermistors, oxides cathodes and photo-sensitive elements. This paper reviews the fundamental concept of impurity in semi-conductors and recent work on doping of the latter. Purification methods are described in the case of group IV elements and semi-conducting intermetallic compounds. Results of different physical measurements have been discussed in order to understand the role of 'doping'.
Ainslie, Mark D.; Rodriguez-Zermeno, Victor M.; Hong, Zhiyong; Yuan, Weijia; Flack, Timothy J.; Coombs, Timothy A.
2011-04-01
AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.
Pitel, Jozef; Melišek, Tibor; Tropeano, Matteo; Nardelli, Davide; Tumino, Andrea
2016-08-01
In this work, we present a mathematical model which enables to design cylindrical coils with a given central field, made of the superconducting conductor with isotropic Ic(B) characteristic. The model results in a computer code that enables to find out the coil dimensions, and to calculate the coil parameters such as critical current, maximum field in the winding and field non-uniformity on the coil axis. The Ic(B) characteristic of the conductor is represented by the set of data measured in discrete points. This approach allows us to express the Ic(B) as a function linearized in parts. Then, it is possible to involve the central field of the coil, coil dimensions, and parameters of the conductor, including its Ic(B) characteristic, in one equation which can be solved using ordinary numerical non-linear methods. Since the coil dimensions and conductor parameters are mutually linked in one equation with respect to a given coil central field, it is possible to analyze an influence of one parameter on the other one. The model was applied to three commercially available MgB2/Ni/Cu conductors produced by Columbus Superconductors. The results of simulations with the Ic(B) data at 20 K illustrate that there exists a set of winding geometries that generate a required central field, changing from a disc shape to long thin solenoid. Further, we analyze how the thickness of stabilizing copper influences the coil dimensions, overall conductor length, coil critical current, maximum field in the winding. An influence of the safety coefficient in operating current on coil dimensions and other above mentioned parameters is studied as well. Finally, we compare the coil dimensions, overall conductor length as well as coil critical current and maximum field in the winding if the value of required central field changes between 1 and 3 T.
Directory of Open Access Journals (Sweden)
Shinya Uji, Takehiko Mori and Toshihiro Takahashi
2009-01-01
Full Text Available Organic materials are usually thought of as electrical insulators. Progress in chemical synthesis, however, has brought us a rich variety of conducting organic materials, which can be classified into conducting polymers and molecular crystals. Researchers can realize highly conducting molecular crystals in charge-transfer complexes, where suitable combinations of organic electron donor or acceptor molecules with counter ions or other organic molecules provide charge carriers. By means of a kind of chemical doping, the charge-transfer complexes exhibit high electrical conductivity and, thanks to their highly crystalline nature, even superconductivity has been observed. This focus issue of Science and Technology of Advanced Materials is devoted to the research into such 'organic conductors'The first organic metal was (TTF(TCNQ, which was found in 1973 to have high conductivity at room temperature and a metal–insulator transition at low temperatures. The first organic superconductor was (TMTSF2PF6, whose superconductivity under high pressures was reported by J´erome in 1980. After these findings, the research on organic conductors exploded. Hundreds of organic conductors have been reported, among which more than one hundred exhibit superconductivity. Recently, a single-component organic conductor has been found with metallic conductivity down to low temperatures.In these organic conductors, in spite of their simple electronic structures, much new physics has arisen from the low dimensionality. Examples are charge and spin density waves, characteristic metal–insulator transitions, charge order, unconventional superconductivity, superconductor–insulator transitions, and zero-gap conductors with Dirac cones. The discovery of this new physics is undoubtedly derived from the development of many intriguing novel organic conductors. High quality single crystals are indispensable to the precise measurement of electronic states.This focus issue
Plasmonic transparent conductors
Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.
2016-09-01
Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.
F-15E Availability Model. Volume 1
1989-06-01
model output to actual field performance of the F-15C/1 MSIP aircraft. Volume I includes the background, scenarios, computer language, description...Improveamnt Program ( MS P) NMIS rate. However, spares which need to be increased to maintain the "normal" NMCS rate are documented and briefed with model...the basic F-15C MSIP capability for the air-to-air role; however, air-to-air performance characteristics may be limited by the increased basic aircraft
76 FR 69801 - Conductor Certification
2011-11-09
... definition of ``conductor'' is a fundamental element of the conductor certification regulation and FRA does... and 219. G. Vision and Hearing Acuity BLET/UTU commented that proposed Sec. 242.117(k) should...
The Conductor as a Transformational Leader.
Armstrong, Susan; Armstrong, Scott
1996-01-01
Identifies charisma and inspirational leadership as the most important characteristics of transformational leaders. Discusses how middle and secondary school music conductors can use the transformational leadership model. Summarizes key components of this model including positive modeling, sharing vision, and empowering others. Provides relevant…
Well Conductor Strain Monitoring
2014-05-06
comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE JUL 2014 2. REPORT TYPE 3. DATES...849,429; filed on June 26, 2013 by the inventor, Dr. Anthony Ruffa and entitled “ SUBSEA WELL CONDUCTOR STRAIN MONITORING”. STATEMENT OF
1988 DOE model conference proceedings: Volume 4
Energy Technology Data Exchange (ETDEWEB)
1988-01-01
These Proceedings of the October 3-7, 1988, DOE Model Conference are a compilation of the papers that were presented in the technical or poster sessions at the conference. Papers and posters not submitted for publication are not included in the Proceedings. The Table of Contents lists the titles of papers as well as the names of the presenters. These individuals are not, in all cases, the primary authors of the papers published. The actual title pages, appearing later with the papers, show the primary author(s) and all co-authors. The papers in all three volumes of the Proceedings appear as they were originally submitted for publication and have not been edited or changed in any way. Topics discussed in Volume 4 include site characterization and remediation projects, environmental monitoring and modeling; disposal site selection and facility design, risk assessment, safety and health issues, and site remediation technology.
Energy Technology Data Exchange (ETDEWEB)
Pitel, Jozef, E-mail: jozef.pitel@savba.sk [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava (Slovakia); Melišek, Tibor [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava (Slovakia); Tropeano, Matteo; Nardelli, Davide; Tumino, Andrea [Columbus Superconductors, Via delle Terre Rosse 30, I-16133 Genova (Italy)
2016-08-15
Highlights: • Influence of the winding geometry on central field of cylindrical coils is studied. • Procedure to determine dimensions of coils with a given central field is developed. • The model is applied to MgB{sub 2}/Ni/Cu conductors with isotropic I{sub c}(B) characteristic. • Influence of the thickness of stabilizing copper on coil parameters is analyzed. • Optimization with respect to coil operating current and wire length is discussed. - Abstract: In this work, we present a mathematical model which enables to design cylindrical coils with a given central field, made of the superconducting conductor with isotropic I{sub c}(B) characteristic. The model results in a computer code that enables to find out the coil dimensions, and to calculate the coil parameters such as critical current, maximum field in the winding and field non-uniformity on the coil axis. The I{sub c}(B) characteristic of the conductor is represented by the set of data measured in discrete points. This approach allows us to express the I{sub c}(B) as a function linearized in parts. Then, it is possible to involve the central field of the coil, coil dimensions, and parameters of the conductor, including its I{sub c}(B) characteristic, in one equation which can be solved using ordinary numerical non-linear methods. Since the coil dimensions and conductor parameters are mutually linked in one equation with respect to a given coil central field, it is possible to analyze an influence of one parameter on the other one. The model was applied to three commercially available MgB{sub 2}/Ni/Cu conductors produced by Columbus Superconductors. The results of simulations with the I{sub c}(B) data at 20 K illustrate that there exists a set of winding geometries that generate a required central field, changing from a disc shape to long thin solenoid. Further, we analyze how the thickness of stabilizing copper influences the coil dimensions, overall conductor length, coil critical current, maximum
1988 DOE model conference proceedings: Volume 1
Energy Technology Data Exchange (ETDEWEB)
1988-01-01
These Proceedings of the October 3-7, 1988, DOE Model Conference are a compilation of the papers that were presented in the technical or poster sessions at the conference. Papers and posters not submitted for publication are not included in the Proceedings. The Table of Contents lists the titles of papers as well as the names of the presenters. These individuals are not, in all cases, the primary authors of the papers published. The actual title pages, appearing later with the papers, show the primary author(s) and all co-authors. The papers in all three volumes of the Proceedings appear as they were originally submitted for publication and have not been edited or changed in any way. Topics included in Volume 1 are Environmental Data Management, Site characterization technology, Wastewater treatment, Waste management in foreign countries, Transuranic waste management, and Groundwater characterization and treatment.
1988 DOE model conference proceedings: Volume 5
Energy Technology Data Exchange (ETDEWEB)
1988-01-01
These Proceedings of the October 3--7, 1988 DOE Model Conference are a compilation of the papers that were presented in the technical or poster sessions at the conference papers and posters not submitted for publication are not included in the Proceedings. The Table of Contents lists the titles of papers as well as the names of the presenters. These individuals are not, in all cases, the primary authors of the papers published. The actual title pages, appearing later with the papers, show the primary author(s) and all co-authors. The papers in all three volumes of the Proceedings appear as they were originally submitted for publication and have not been edited or changed in any way. Topics discussed in Volume 5 include environmental assessments and program strategies, waste treatment technologies, and regulations and compliance studies.
1988 DOE model conference proceedings: Volume 3
Energy Technology Data Exchange (ETDEWEB)
1988-01-01
These Proceedings of the October 3 - 7, 1988, DOE Model Conference are a compilation of the papers that were presented in the technical or poster sessions at the conference. Papers and posters not submitted for publication are not included in the Proceedings. The Table of Contents lists the titles of papers as well as the names of the presenters. These individuals are not, in all cases, the primary authors of the papers published. The actual title pages, appearing later with the papers, show the primary author(s) and all co-authors. The papers in all three volumes of the proceedings appear as they were originally submitted for publication and have not been edited or changed in any way. Topics included in Volume 3 include treatment of soils, waste characterization and certification, waste minimization site remediation management plans and programs, and training programs.
Blau, Bertrand; Curé, B; Folch, R; Hervé, A; Horváth, I L; Kircher, F; Musenich, R; Neuenschwander, J; Riboni, P; Seeber, B; Tavares, S; Sgobba, Stefano; Smith, R P
2002-01-01
The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The magnetic field is achieved by means of a four-layer superconducting solenoid. The stored magnetic energy is 2.7 GJ at nominal current of 20 kA (at 4.5 K operating temperature). The coil is wound from a high purity aluminum- stabilized Rutherford type conductor. Unlike other existing Al- stabilized thin solenoids, the structural integrity of the CMS coil is ensured both by the Al-alloy reinforcement welded to the conductor and an external support cylinder. The flat NbTi cable is embedded in high purity aluminum by a continuous co-extrusion process. (7 refs).
Plasmonic Graphene Transparent Conductors
2012-01-01
www.MaterialsViews.com www.advopticalmat.de FU LL P A P ER Guowei Xu,* Jianwei Liu, Qian Wang , Rongqing Hui, Zhijun Chen, Victor A. Maroni, and Judy Wu Plasmonic...decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. UU...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS surface plasmon, graphene, transparent conductors Guowei Xu, Jianwei Liu, Qian
Horváth, I L; Marti, H P; Neuenschwander, J; Smith, R P; Fabbricatore, P; Musenich, R; Calvo, A; Campi, D; Curé, B; Desirelli, Alberto; Favre, G; Riboni, P L; Sgobba, Stefano; Tardy, T; Sequeira-Lopes-Tavares, S
2000-01-01
The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN, the design field of the CMS magnet is 4 T, the magnetic length is 13 m and the aperture is 6 m. This high magnetic field is achieved by means of a 4 layer, 5 modules superconducting coil. The coil is wound from an Al-stabilized Rutherford type conductor. The nominal current of the magnet is 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external former. In this paper the retained manufacturing process of the 50-km long reinforced conductor is described. In general the Rutherford type cable is surrounded by high purity aluminium in a continuous co-extrusion process to produce the Insert. Thereafter the reinforcement is joined by Electron Beam Welding to the pure Al of the insert, before being machined to the final dimensions. During the...
Alternative HTS coated conductors
Blaugher, R. D.; Bhattacharya, R. N.; Chen, J.; Padmanabhan, R.
2002-10-01
The availability of Bi-2223 high-temperature-superconductor (HTS) powder-in-tube (PIT) tape, with acceptable performance for long lengths, has provided the ability to construct a wide range of HTS electric power components. As a result, there are major worldwide projects in developing HTS electric power components for demonstration in a utility environment. Utility acceptance for superconducting power equipment will depend on several key factors: improved system performance, lower life-cycle costs, higher efficiency versus conventional technology, reliability and maintenance comparable to conventional power equipment, and a competitive installed cost. The latter is impacted by the current high cost of HTS conductors, which must be lowered to costs comparable to conventional Nb-Ti wire, i.e., $2-5/kAm. The present performance and cost of state-of-the-art Bi-2223 HTS tape, although acceptable for prototype construction, is viewed as a major deterrent that may compromise eventual commercialization for most of these electric power devices. The so-called second-generation coated conductor development, with emphasis on conductors employing HTS YBCO films, is viewed as the solution to this performance and cost issue. The potential for the Tl, Hg, and Bi-oxide superconductors for producing an HTS tape as alternatives to Bi-2223 PIT (and YBCO) will be discussed with some recent results on Bi-2212 “coated conductor” development.
Energy Technology Data Exchange (ETDEWEB)
Jewulski, J.R.; Osif, T.L.; Remick, R.J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
Modeling mitochondrial bioenergetics with integrated volume dynamics.
Directory of Open Access Journals (Sweden)
Jason N Bazil
2010-01-01
Full Text Available Mathematical models of mitochondrial bioenergetics provide powerful analytical tools to help interpret experimental data and facilitate experimental design for elucidating the supporting biochemical and physical processes. As a next step towards constructing a complete physiologically faithful mitochondrial bioenergetics model, a mathematical model was developed targeting the cardiac mitochondrial bioenergetic based upon previous efforts, and corroborated using both transient and steady state data. The model consists of several modified rate functions of mitochondrial bioenergetics, integrated calcium dynamics and a detailed description of the K(+-cycle and its effect on mitochondrial bioenergetics and matrix volume regulation. Model simulations were used to fit 42 adjustable parameters to four independent experimental data sets consisting of 32 data curves. During the model development, a certain network topology had to be in place and some assumptions about uncertain or unobserved experimental factors and conditions were explicitly constrained in order to faithfully reproduce all the data sets. These realizations are discussed, and their necessity helps contribute to the collective understanding of the mitochondrial bioenergetics.
Modeling mitochondrial bioenergetics with integrated volume dynamics.
Bazil, Jason N; Buzzard, Gregery T; Rundell, Ann E
2010-01-01
Mathematical models of mitochondrial bioenergetics provide powerful analytical tools to help interpret experimental data and facilitate experimental design for elucidating the supporting biochemical and physical processes. As a next step towards constructing a complete physiologically faithful mitochondrial bioenergetics model, a mathematical model was developed targeting the cardiac mitochondrial bioenergetic based upon previous efforts, and corroborated using both transient and steady state data. The model consists of several modified rate functions of mitochondrial bioenergetics, integrated calcium dynamics and a detailed description of the K(+)-cycle and its effect on mitochondrial bioenergetics and matrix volume regulation. Model simulations were used to fit 42 adjustable parameters to four independent experimental data sets consisting of 32 data curves. During the model development, a certain network topology had to be in place and some assumptions about uncertain or unobserved experimental factors and conditions were explicitly constrained in order to faithfully reproduce all the data sets. These realizations are discussed, and their necessity helps contribute to the collective understanding of the mitochondrial bioenergetics.
Conditioning flat conductors for flat conductor cable production
1968-01-01
Apparatus can straighten, anneal, clean, and a tension to stretch a cable one percent to assure uniform cross-sectional area. A conductor passes through temperature controlled distilled water and through a toroid coil. As The conductor enters the water, steam performs the cleaning action. Quenching and annealing also take place.
Directory of Open Access Journals (Sweden)
Stephen J Skinner
2003-03-01
A very interesting subgroup of this class of materials are the oxides that display oxygen ion conductivity. As well as the intrinsic interest in these materials, there has been a continued drive for their development because of the promise of important technological devices such as the solid oxide fuel cell (SOFC, oxygen separation membranes, and membranes for the conversion of methane to syngas1. All of these devices offer the potential of enormous commercial and ecological benefits provided suitable high performance materials can be developed. In this article we will review the materials currently under development for application in such devices with particular reference to some of the newly discovered oxide ion conductors.
Floating insulated conductors for heating subsurface formations
Burns, David; Goodwin, Charles R.
2014-07-29
A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.
ELECTRODYNAMIC STABILITY COMPUTATIONS FOR FLEXIBLE CONDUCTORS OF THE AERIAL LINES
Directory of Open Access Journals (Sweden)
I. I. Sergey
2015-01-01
Full Text Available In aerial transmission lines aluminium multiwire conductors are in use. Owing to their flexible design the electrodynamic effect of short circuit currents may lead to intolerable mutual rendezvous and even cross-whipping of the phase conductors. The increasing motion of the conductors caused by effect of the short-circuit electrodynamic force impulse is accompanied by the dynamic load impact affecting the conductors, insulating and supporting constructions of the aerial lines. Intensity of the short-circuit currents electrodynamic impact on the flexible conductors depends on the short circuit current magnitude. For research into electrodynamic endurance of the conductors of the aerial lines located at the vertices of arbitrary triangle with spans of a large length, the authors assume the conductor analytical model in the form of a flexible tensile thread whose mass is distributed evenly lengthwise the conductor. With this analytical model, by the action of the imposed forces the conductor assumes the form conditioned by the diagram of applied external forces, and resists neither bending nor torsion. The initial conditions calculation task reduces to solving the flexible thread statics equations. The law of motion of the conductor marginal points comes out of the conjoint solution of dynamic equations of the conductor and structural components of the areal electric power lines. Based on the proposed algorithm, the researchers of the Chair of the Electric Power Stations of BNTU developed a software program LINEDYS+, which in its characteristics yields to no foreign analogs, e. g. SAMSEF. To calculate the initial conditions they modified a software program computing the flexible conductor mechanics named MR 21. The conductor short-circuit electrodynamic interaction estimation considers structural elements of the areal lines, ice and wind loads, objective parameters of the short circuit. The software programs are accommodated with the simple and
77 FR 6482 - Conductor Certification
2012-02-08
... TRANSPORTATION Federal Railroad Administration 49 CFR Part 242 Conductor Certification AGENCY: Federal Railroad..., published on November 9, 2011, which prescribed regulations for certification of conductors as required by... Certification, U.S. Department of Transportation, Federal Railroad Administration, Mail Stop-25, Room...
New resistivity for high-mobility quantum Hall conductors
Mceuen, P. L.; Szafer, A.; Richter, C. A.; Alphenaar, B. W.; Jain, J. K.
1990-01-01
Measurements showing dramatic nonlocal behavior in the four-terminal resistances of a high-mobility quantum Hall conductor are presented. These measurements illustrate that the standard definition of the resistivity tensor is inappropriate, but they are in excellent agreement with a new model of the conductor that treats the edge and bulk conducting pathways independently. This model uses a single intensive parameter, analogous to a local resistivity for the bulk channel only, to characterize the system.
Understanding core conductor fabrics
Energy Technology Data Exchange (ETDEWEB)
Swenson, D E, E-mail: deswenson@affinity-esd.com [Affinity Static Control Consulting, LLC 2609 Quanah Drive, Round Rock, Texas, 78681 (United States)
2011-06-23
ESD Association standard test method ANSI/ESD STM2.1 - Garments (STM2.1), provides electrical resistance test procedures that are applicable for materials and garments that have surface conductive or surface dissipative properties. As has been reported in other papers over the past several years{sup 1} fabrics are now used in many industries for electrostatic control purposes that do not have surface conductive properties and therefore cannot be evaluated using the procedures in STM2.1{sup 2}. A study was conducted to compare surface conductive fabrics with samples of core conductor fibre based fabrics in order to determine differences and similarities with regards to various electrostatic properties. This work will be used to establish a new work item proposal within WG-2, Garments, in the ESD Association Standards Committee in the USA.
Conductors for commercial MRI magnets beyond NbTi: requirements and challenges
Parizh, Michael; Lvovsky, Yuri; Sumption, Michael
2017-01-01
Magnetic resonance imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS/MgB2 conductor into commercial MRI magnets. These
A microstructure continuum approach to electromagneto-elastic conductors
Romeo, Maurizio
2016-11-01
A micromorphic continuum model of a deformable electromagnetic conductor is established introducing microdensities of bound and free charges. The conductive part of electric current consists of contributions due to free charges and microdeformation. Beside the conservation of charge, we derive suitable evolution equations for electric multipoles which are exploited to obtain the macroscopic form of Maxwell's equations. A constitutive model for electromagneto-elastic conductors is considered which allows for a natural characterization of perfect conductors independently on the form of the constitutive equation for the conduction current. A generalized Ohm's law is also derived for not ideal conductors which accounts for relaxation effects. The consequences of the linearized Ohm's law on the classic magnetic transport equation are shown.
Takahashi, Toshihiro; Suzumura, Yoshikazu
2008-02-01
The International Symposium on Molecular Conductors 2008 (ISMC2008) was held as the second international symposium of the project entitled `Novel Functions of Molecular Conductors under Extreme Conditions', which was supported by the Grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology in Japan. The project lasted from September 2003 to March 2008, and was completed by this symposium held at Okazaki Conference Center, Institute for Molecular Science, Okazaki, Japan (23-25 July 2008), which about 100 scientists attended. During the symposium, five project teams gave summary talks and exciting talks were given on the topics developed recently not only by the members of the project but also by other scientists including invited speakers from abroad, who are doing active research on molecular conductors. It is expected that papers presented in the symposium will give valuable hints for the next step in the research of this field. Therefore the organizers of this symposium decided to publish this proceedings in order to demonstrate these activities, not only for the local community of the project, but also for the broad society of international scientists who are interested in molecular conductors. The editors, who are also the organizers of this symposium, believe that this proceedings provides a significant and relevant contribution to the field of molecular conductors since it is the first time we have published such a proceedings as an electronic journal. We note that all papers published in this volume of Journal of Physics: Conference Series have been peer reviewed by expert referees. Editors made every effort to satisfy the criterion of a proceedings journal published by IOP Publishing. Toshihiro Takahashi and Yoshikazu Suzumura Editors: Toshihiro Takahashi (Gakushuin University) (Chairman) Kazushi Kanoda (University of Tokyo) Seiichi Kagoshima (University of Tokyo) Takehiko Mori (Tokyo
Trabant, Dennis C.
1999-01-01
The volume of four of the largest glaciers on Iliamna Volcano was estimated using the volume model developed for evaluating glacier volumes on Redoubt Volcano. The volume model is controlled by simulated valley cross sections that are constructed by fitting third-order polynomials to the shape of the valley walls exposed above the glacier surface. Critical cross sections were field checked by sounding with ice-penetrating radar during July 1998. The estimated volumes of perennial snow and glacier ice for Tuxedni, Lateral, Red, and Umbrella Glaciers are 8.6, 0.85, 4.7, and 0.60 cubic kilometers respectively. The estimated volume of snow and ice on the upper 1,000 meters of the volcano is about 1 cubic kilometer. The volume estimates are thought to have errors of no more than ?25 percent. The volumes estimated for the four largest glaciers are more than three times the total volume of snow and ice on Mount Rainier and about 82 times the total volume of snow and ice that was on Mount St. Helens before its May 18, 1980 eruption. Volcanoes mantled by substantial snow and ice covers have produced the largest and most catastrophic lahars and floods. Therefore, it is prudent to expect that, during an eruptive episode, flooding and lahars threaten all of the drainages heading on Iliamna Volcano. On the other hand, debris avalanches can happen any time. Fortunately, their influence is generally limited to the area within a few kilometers of the summit.
Flat conductor cable commercialization project
Hogarth, P.; Wadsworth, E.
1977-01-01
An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.
33 CFR 183.425 - Conductors: General.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors: General. 183.425... Conductors: General. (a) Each conductor must be insulated, stranded copper. (b) Except for intermittent surges each conductor must not carry a current greater than that specified in Table 5 for the...
30 CFR 56.12004 - Electrical conductors.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical conductors. 56.12004 Section 56....12004 Electrical conductors. Electrical conductors shall be of a sufficient size and current-carrying... insulating materials. Electrical conductors exposed to mechanical damage shall be protected....
30 CFR 57.12004 - Electrical conductors.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage...
33 CFR 183.445 - Conductors: Protection.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors: Protection. 183.445 Section 183.445 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Conductors: Protection. (a) Each conductor or group of conductors that passes through a bulkhead,...
1980-03-01
TESI CHART NATIONAI RUREAt (F ANDA[)Rt 1V4 A NATIONAL. AVIATION ~ FUEL SCENARIO.. ANALYSIS PROGRAM 49!! VOLUM I: MODEL DESCRIA~v 4<C VOLUME II: tr)ER...executes post processor which translates results of the graphics program to machine readable code used by the pen plotter) cr (depressing the carriage
Directory of Open Access Journals (Sweden)
Jordi Casanovas
2005-11-01
Full Text Available Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de la química cuántica para predecir la estructura molecular y electrónica de polímeros conductores. Concretamente, se discute la aplicabilidad de estas herramientas computacionales al estudio de diferentes aspectos del politiofeno y sus derivados: geometría molecular y planaridad, cambios estructurales producidos por el dopado, propiedades electrónicas y desarrollo de nuevos materiales conductores.The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.
Electromagnetism of rotating conductors revisited
Energy Technology Data Exchange (ETDEWEB)
Redzic, Dragan V. [Faculty of Physics, University of Belgrade, Belgrade (Yugoslavia)]. E-mail: redzic@ff.bg.ac.yu
2002-03-01
The charge distribution and electromagnetic fields in a rotating, charged conductor under stationary conditions are investigated, assuming that the electrons are at rest relative to the conductor. The basic equations are found, referred to the inertial rest frame of the rotational axis, in the relativistic case, and applied to the case of a cylindrical conductor. The results obtained are compared with those of Groen and Voeyenli (Groen Oe and Voeyenli K 1982 Eur. J. Phys. 3 210-4) who considered the same problem but without taking into account the relative permittivity of the rotating conductor. It is found that the E- and B-fields do not depend on {epsilon}{sub r} and coincide with those calculated by Groen and Voeyenli; the space and surface charge densities, however, depend on {epsilon}{sub r}. (author)
Graphene, a promising transparent conductor
National Research Council Canada - National Science Library
Wassei, Jonathan K; Kaner, Richard B
2010-01-01
New electronic devices such as touch screens, flexible displays, printable electronics, solid-state lighting and thin film photovoltaics have led to a rapidly growing market for flexible transparent conductors...
Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S
2011-07-01
In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.
Bonnard, Charles-Henri; Sirois, Frédéric; Lacroix, Christian; Didier, Gaëtan
2017-01-01
In order to plan the integration of superconducting fault current limiters (SFCLs) in power systems, accurate models of SFCLs must be made available in commercial power system transient simulators. In this context, we developed such a model for the EMTP-RV software package, a power system transient simulator widely used by power utilities. The model can be used with any resistive-type SFCL (rSFCL) made of high temperature superconductor (HTS) tapes, which are discretized in ‘electro-thermal elements’. Those elements consist solely of electric circuit components, and are used to represent portions of tape of various sizes and dimensions (a ‘multi-scale’ approach). Both the electrical and thermal behaviors of the tape are modeled, including interfacial effects, nonlinear properties of materials and heat transfer to the surrounding environment. Such a multi-scale model can simulate accurately both the local quench dynamics of HTS tapes (microscopic scale) and the global impact of the rSFCL on the power system (macroscopic/system scale). In this paper, the model is used to compute phenomena such as propagation velocity of a hot spot and heat diffusion through the thickness of the tape. Results were verified by comparing EMTP-RV results with finite element simulations. In addition to the development of the multi-scale model itself, which is the major contribution of this paper, the use of the model allowed us to determine the conditions of validity of the commonly used ‘homogenization’ of the thermal properties across the tape thickness. Indeed, when the current flowing into the rSFCL is slightly above its critical current I c (and up to 2{I}{{c}}), very important errors in the power waveforms arise, leading to potentially wrong decisions of protection systems. Homogenized thermal models should thus be used with great care in practice.
A lithium superionic conductor.
Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio
2011-07-31
Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).
A phase-space model for Pleistocene ice volume
Imbrie, John Z; Lisiecki, Lorraine E
2011-01-01
We present a phase-space model that simulates Pleistocene ice volume changes based on Earth's orbital parameters. Terminations in the model are triggered by a combination of ice volume and orbital forcing and agree well with age estimates for Late Pleistocene terminations. The average phase at which model terminations begin is approximately 90 +/- 90 degrees before the maxima in all three orbital cycles. The large variability in phase is likely caused by interactions between the three cycles and ice volume. Unlike previous ice volume models, this model produces an orbitally driven increase in 100-kyr power during the mid-Pleistocene transition without any change in model parameters. This supports the hypothesis that Pleistocene variations in the 100-kyr power of glacial cycles could be caused, at least in part, by changes in Earth's orbital parameters, such as amplitude modulation of the 100-kyr eccentricity cycle, rather than changes within the climate system.
Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor
DEFF Research Database (Denmark)
Tønnesen, Ole; Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa;
1999-01-01
One important issue in the design and optimization of a superconducting cable conductor is the control of the current distribution between single tapes and layers. This presentation is based on a number of experiments performed on a 4-layer three meter long prototype superconducting cable conductor......-losses are measured as a function of transport current and a given current distribution and compared with the monoblock model. Recommendations for design of future cable conductor prototypes are given....
Scattering by a perfect electromagnetic conductor (PEMC) plate embedded in lossy medium
Ahmed, Saeed; Khalid Khan, Muhammad; Rehman, Atta Ur
2016-07-01
In this article, we develop an analytic theory for a perfect electromagnetic conductor (PEMC) plate embedded in lossy medium. The duality transformation introduced by Lindell and Sihvola is applied to study the electromagnetic wave scattering by a PEMC plate. Perfect electric conductor and perfect magnetic conductor are the limiting cases of PEMC media. Here, we study monoscattering by PEMC plate embedded in four different soil models. Numerical results are discussed and compared with the available literature.
1987 Oak Ridge model conference: Proceedings: Volume 2, Environmental protection
Energy Technology Data Exchange (ETDEWEB)
1987-01-01
See the abstract for Volume I for general information on the conference. Topics discussed in Volume II include data management techiques for environmental protection efforts, the use of models in environmental auditing, in emergency plans, chemical accident emergency response, risk assessment, monitoring of waste sites, air and water monitoring of waste sites, and in training programs. (TEM)
Disc volume reduction with percutaneous nucleoplasty in an animal model.
Directory of Open Access Journals (Sweden)
Richard Kasch
Full Text Available STUDY DESIGN: We assessed volume following nucleoplasty disc decompression in lower lumbar spines from cadaveric pigs using 7.1Tesla magnetic resonance imaging (MRI. PURPOSE: To investigate coblation-induced volume reductions as a possible mechanism underlying nucleoplasty. METHODS: We assessed volume following nucleoplastic disc decompression in pig spines using 7.1-Tesla MRI. Volumetry was performed in lumbar discs of 21 postmortem pigs. A preoperative image data set was obtained, volume was determined, and either disc decompression or placebo therapy was performed in a randomized manner. Group 1 (nucleoplasty group was treated according to the usual nucleoplasty protocol with coblation current applied to 6 channels for 10 seconds each in an application field of 360°; in group 2 (placebo group the same procedure was performed but without coblation current. After the procedure, a second data set was generated and volumes calculated and matched with the preoperative measurements in a blinded manner. To analyze the effectiveness of nucleoplasty, volumes between treatment and placebo groups were compared. RESULTS: The average preoperative nucleus volume was 0.994 ml (SD: 0.298 ml. In the nucleoplasty group (n = 21 volume was reduced by an average of 0.087 ml (SD: 0.110 ml or 7.14%. In the placebo group (n = 21 volume was increased by an average of 0.075 ml (SD: 0.075 ml or 8.94%. The average nucleoplasty-induced volume reduction was 0.162 ml (SD: 0.124 ml or 16.08%. Volume reduction in lumbar discs was significant in favor of the nucleoplasty group (p<0.0001. CONCLUSIONS: Our study demonstrates that nucleoplasty has a volume-reducing effect on the lumbar nucleus pulposus in an animal model. Furthermore, we show the volume reduction to be a coblation effect of nucleoplasty in porcine discs.
Modeling Mitochondrial Bioenergetics with Integrated Volume Dynamics
Bazil, Jason N.; Buzzard, Gregery T.; Ann E Rundell
2010-01-01
Author Summary Mathematically modeling biological systems challenges our current understanding of the physical and biochemical events contributing to the observed dynamics. It requires careful consideration of hypothesized mechanisms, model development assumptions and details regarding the experimental conditions. We have adopted a modeling approach to translate these factors that explicitly considers the thermodynamic constraints, biochemical states and reaction mechanisms during model devel...
Quartz antenna with hollow conductor
Leung, Ka-Ngo; Benabou, Elie
2002-01-01
A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.
Graphene, a promising transparent conductor
Directory of Open Access Journals (Sweden)
Jonathan K. Wassei
2010-03-01
Full Text Available New electronic devices such as touch screens, flexible displays, printable electronics, solid-state lighting and thin film photovoltaics have led to a rapidly growing market for flexible transparent conductors. Standard indium tin oxide films are unlikely to satisfy future needs due to losses in conductivity on bending and the escalating cost of indium which is in limited supply. Recent advances in the synthesis and characterization of graphene indicate that it may be suitable for many electronic applications including as a transparent conductor. Graphene hybrids with, for example, carbon nanotubes, may prove to be especially interesting.
Study on galloping behavior of iced eight bundle conductor transmission lines
Zhou, Linshu; Yan, Bo; Zhang, Liang; Zhou, Song
2016-02-01
Wind tunnel test was carried out to obtain the aerodynamic coefficients of an eight bundle conductor accreted with crescent-shaped ice. A user-defined cable element with torsional degree of freedom is developed in ABAQUS software to capture the torsional deformation of the iced conductors during galloping. By means of the user-defined cable element, different damping ratios in in-plane, out-of-plane and torsional directions of the conductors can be defined and the aerodynamic forces varying with their motion status can be exerted on the conductors conveniently when ABAQUS is used to simulate galloping of transmission lines. A wind tunnel test to model galloping of an iced eight bundle conductor segment was carried out, and the validity of the numerical simulation method is demonstrated by the agreement of the galloping orbit of the bundle conductor segment model recorded in the test and that by the numerical simulation. Furthermore, galloping behavior, including dynamic responses, galloping orbits, frequencies, vibration modes and amplitudes, of typical iced eight bundle conductor transmission lines in the cases of different span lengths, initial tensions in sub-conductors, wind velocities, angles of wind attack and damping ratios is studied, and the galloping behavior of the lines with internal resonance conditions is discussed. The obtained results may provide a fundamental tool for the development of anti-galloping techniques of eight bundle conductor transmission lines.
Improving YBCO Coated Conductors for Applications (Postprint)
2012-02-01
AFRL-RZ-WP-TP-2012-0123 IMPROVING YBCO COATED CONDUCTORS FOR APPLICATIONS (POSTPRINT) P.N. Barnes, B.C. Harrison, J.W. Kell, and G.A...SUBTITLE IMPROVING YBCO COATED CONDUCTORS FOR APPLICATIONS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...are lighter in weight and smaller in size than their conventional counterparts. The YBCO coated conductor is expected to be the premiere HTS conductor
FINITE VOLUME METHOD OF MODELLING TRANSIENT GROUNDWATER FLOW
Directory of Open Access Journals (Sweden)
N. Muyinda
2014-01-01
Full Text Available In the field of computational fluid dynamics, the finite volume method is dominant over other numerical techniques like the finite difference and finite element methods because the underlying physical quantities are conserved at the discrete level. In the present study, the finite volume method is used to solve an isotropic transient groundwater flow model to obtain hydraulic heads and flow through an aquifer. The objective is to discuss the theory of finite volume method and its applications in groundwater flow modelling. To achieve this, an orthogonal grid with quadrilateral control volumes has been used to simulate the model using mixed boundary conditions from Bwaise III, a Kampala Surburb. Results show that flow occurs from regions of high hydraulic head to regions of low hydraulic head until a steady head value is achieved.
Optimized volume models of earthquake-triggered landslides.
Xu, Chong; Xu, Xiwei; Shen, Lingling; Yao, Qi; Tan, Xibin; Kang, Wenjun; Ma, Siyuan; Wu, Xiyan; Cai, Juntao; Gao, Mingxing; Li, Kang
2016-07-12
In this study, we proposed three optimized models for calculating the total volume of landslides triggered by the 2008 Wenchuan, China Mw 7.9 earthquake. First, we calculated the volume of each deposit of 1,415 landslides triggered by the quake based on pre- and post-quake DEMs in 20 m resolution. The samples were used to fit the conventional landslide "volume-area" power law relationship and the 3 optimized models we proposed, respectively. Two data fitting methods, i.e. log-transformed-based linear and original data-based nonlinear least square, were employed to the 4 models. Results show that original data-based nonlinear least square combining with an optimized model considering length, width, height, lithology, slope, peak ground acceleration, and slope aspect shows the best performance. This model was subsequently applied to the database of landslides triggered by the quake except for two largest ones with known volumes. It indicates that the total volume of the 196,007 landslides is about 1.2 × 10(10) m(3) in deposit materials and 1 × 10(10) m(3) in source areas, respectively. The result from the relationship of quake magnitude and entire landslide volume related to individual earthquake is much less than that from this study, which reminds us the necessity to update the power-law relationship.
46 CFR 111.15-20 - Conductors.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Conductors. 111.15-20 Section 111.15-20 Shipping COAST... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-20 Conductors. (a) Each conductor penetration to a battery room must be made watertight. (b) The termination of each...
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors. 159.73 Section 159.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.73 Conductors. Current carrying conductors must...
75 FR 69165 - Conductor Certification
2010-11-10
... From the Federal Register Online via the Government Publishing Office ] Part II Department of Transportation Federal Railroad Administration 49 CFR Part 242 Conductor Certification; Proposed Rule #0;#0;Federal Register / Vol. 75, No. 217 / Wednesday, November 10, 2010 / Proposed Rules#0;#0; ] DEPARTMENT...
Conductive Mechanism of Organic Conductor
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Organic conductor is a kind of organic compound which has special electronic and magnetic properties. The research of the organic compounds has received considerable attention because of their potential applications in many areas. The molecular conductive units are theoretically investigated as well as their energy gap and charge distribution. The relationship of conductivity and micro-mechanism is discussed.
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-02-26
The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.
Spatial Economics Model Predicting Transport Volume
Directory of Open Access Journals (Sweden)
Lu Bo
2016-10-01
Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.
Morphological modeling of terrains and volume data
Comic, Lidija; Magillo, Paola; Iuricich, Federico
2014-01-01
This book describes the mathematical background behind discrete approaches to morphological analysis of scalar fields, with a focus on Morse theory and on the discrete theories due to Banchoff and Forman. The algorithms and data structures presented are used for terrain modeling and analysis, molecular shape analysis, and for analysis or visualization of sensor and simulation 3D data sets. It covers a variety of application domains including geography, geology, environmental sciences, medicine and biology. The authors classify the different approaches to morphological analysis which are all ba
3D Finite Volume Modeling of ENDE Using Electromagnetic T-Formulation
Directory of Open Access Journals (Sweden)
Yue Li
2012-01-01
Full Text Available An improved method which can analyze the eddy current density in conductor materials using finite volume method is proposed on the basis of Maxwell equations and T-formulation. The algorithm is applied to solve 3D electromagnetic nondestructive evaluation (E’NDE benchmark problems. The computing code is applied to study an Inconel 600 work piece with holes or cracks. The impedance change due to the presence of the crack is evaluated and compared with the experimental data of benchmark problems No. 1 and No. 2. The results show a good agreement between both calculated and measured data.
Loss and Inductance Investigation in Superconducting Cable Conductors
DEFF Research Database (Denmark)
Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten
1999-01-01
An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of the layers are therefore studied theoretically. The current distribution between the superconducting layers is monitored as a function of transport current, and the results are compared with the expected current distribution given by our electrical circuit model.The AC-losses are measured as a function...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC...
The importance of volume exclusion in modelling cellular migration.
Dyson, Louise; Baker, Ruth E
2015-09-01
The modelling of collective migration has traditionally been undertaken in a continuous framework, with little reference to the individual-level mechanisms that give rise to such a concerted movement. One factor whose importance is now coming to light is that the individuals themselves occupy space in the domain, thus obstructing others from moving past them (volume exclusion). In this work, we systematically derive continuous descriptions of cellular migration with volume exclusion for a wide range of individual-based mechanisms and in one, two and three dimensions. We also consider subpopulations of migrating individuals, which may have different characteristics, such as differing sizes and speeds of migration. We demonstrate that volume exclusion is of particular importance when biased movement is included, and thus conclude that volume exclusion may have its greatest effect when considering directed migratory mechanisms such as chemotaxis.
Temperature limited heater utilizing non-ferromagnetic conductor
Energy Technology Data Exchange (ETDEWEB)
Vinegar,; Harold J. (Bellaire, TX), Harris; Kelvin, Christopher [Houston, TX
2012-07-17
A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.
An operator calculus for surface and volume modeling
Gordon, W. J.
1984-01-01
The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.
A modeling technique for STOVL ejector and volume dynamics
Drummond, C. K.; Barankiewicz, W. S.
1990-01-01
New models for thrust augmenting ejector performance prediction and feeder duct dynamic analysis are presented and applied to a proposed Short Take Off and Vertical Landing (STOVL) aircraft configuration. Central to the analysis is the nontraditional treatment of the time-dependent volume integrals in the otherwise conventional control-volume approach. In the case of the thrust augmenting ejector, the analysis required a new relationship for transfer of kinetic energy from the primary flow to the secondary flow. Extraction of the required empirical corrections from current steady-state experimental data is discussed; a possible approach for modeling insight through Computational Fluid Dynamics (CFD) is presented.
Composite conductor containing superconductive wires
Energy Technology Data Exchange (ETDEWEB)
Larson, W.L.; Wong, J.
1974-03-26
A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.
Threee—Dimensional Volume Datafield Reconstruction from Physical Model
Institute of Scientific and Technical Information of China (English)
董峰; 蔡文立; 等
1997-01-01
This paper focuses on entirety interpretation,representation and reconstruction of three-dimensional volume data sets based on the physical model of the data.The data model is represented by three-dimensional geometric model The surfaces inside the datafield are extracted and matched to the model surfaces in order to reconstruct the new datafield based on the model.A conclusion is drawn that physical modeling provides a good basis and approach to interpret and represent the data sets.This paper also presents a subdivision algorithm to fast trace B-spline curve and the contrary algorithms is adopted to extract the geometry feature of the curve.
A volume-balance model for flow on porous media
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2015-11-01
Volume-balance models are used by petroleum engineers for simulating multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Numerical tests for phase separation under gravity are presented for multiphase three dimensional flow in heterogeneous porous media. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER grant number 42536 (DGAJ-SPI-34-170412-217).
The Data Model Resource Book Volume 3 Universal Patterns for Data Modeling
Silverston, Len
2011-01-01
This third volume of the best-selling "Data Model Resource Book" series revolutionizes the data modeling discipline by answering the question "How can you save significant time while improving the quality of any type of data modeling effort?" In contrast to the first two volumes, this new volume focuses on the fundamental, underlying patterns that affect over 50 percent of most data modeling efforts. These patterns can be used to considerably reduce modeling time and cost, to jump-start data modeling efforts, as standards and guidelines to increase data model consistency and quality, and as an
The infinite volume limit of Ford's alpha model
Stefansson, Sigurdur Orn
2009-01-01
We prove the existence of a limit of the finite volume probability measures generated by tree growth rules in Ford's alpha model of phylogenetic trees. The limiting measure is shown to be concentrated on the set of trees consisting of exactly one infinite spine with finite, identically and independently distributed outgrowths.
Current Sharing Temperature Test and Simulation with GANDALF Code for ITER PF2 Conductor Sample
Li, Shaolei; Wu, Yu; Liu, Bo; Weng, Peide
2011-10-01
Cable-in-conduit conductor (CICC) conductor sample of the PF2 coil for ITER was tested in the SULTAN facility. According to the test results, the CICC conductor sample exhibited a stable performance regarding the current sharing temperature. Under the typical operational conditions of a current of 45 kA, a magnetic field of 4 T and a temperature of 5 K for PF2, the test result for the conductor current sharing temperature is 6.71 K, with a temperature margin of 1.71 K. For a comparison thermal-hydraulic analysis of the PF2 conductor was carried out using GANDALF code in a 1-D model, and the result is consistent with the test one.
Current distribution and stability of LTS/HTS hybrid superconducting conductors
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Current distribution and stability of a hybrid LTS/HTS superconductor, consisting of multifilamentary NbTi/Cu and Bi2223/Ag tapes, were numerically analyzed according to power-law models. The results showed that most of current passed through the LTS and the current increased in the HTS with temperature rise when the transport current was below the critical current of the hybrid conductor. The quench propagation velocity of the hybrid conductor was smaller but its minimum quench energy was larger than those of LTS conductors, indicating that the stability of the hybrid superconducting conductor was effectively improved and a high engineering current density was simultaneously achieved. Finally, a hybrid sample, made by soldering Bi2223/Ag tape onto NbTi/Cu conductor, was prepared and tested successfully at helium temperature. The experimental results qualitatively agreed with the simulated ones.
Reconciling transport models across scales: The role of volume exclusion
Taylor, P. R.; Yates, C. A.; Simpson, M. J.; Baker, R. E.
2015-10-01
Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.
Particle multiplicities and particle ratios in excluded volume model
Mishra, M
2008-01-01
One of the most surprising results is to find that a consistent description of all the experimental results on particle multiplicities and particle ratios obtained from the lowest AGS to the highest RHIC energies is possible within the framework of a thermal statistical model. We propose here a thermodynamically consistent excluded-volume model involving an interacting multi-component hadron gas. We find that the energy dependence of the total multiplicities of strange and non-strange hadrons obtained in this model agrees closely with the experimental results. It indicates that the freeze out volume of the fireball is uniformly the same for all the particles. We have also compared the variation of the particle ratios such as $/, /, K^{-}/K^{+}, \\bar{p}/p, \\bar{\\Lambda}/\\Lambda, \\bar{\\Xi}/\\Xi, \\bar{\\Omega}/\\Omega, /, /, /$ and $/$ with respect to the center-of-mass energy as predicted by our model with the recent experimental data.
46 CFR 111.05-31 - Grounding conductors for systems.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Grounding conductors for systems. 111.05-31 Section 111... Grounding conductors for systems. (a) A conductor for grounding a direct-current system must be the larger of: (1) The largest conductor supplying the system; or (2) No. 8 AWG (8.4mm2). (b) A conductor...
Control volume based modelling of compressible flow in reciprocating machines
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik
2004-01-01
conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction......, and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...
A volume flexible inventory model with trapezoidal demand under inflation
Directory of Open Access Journals (Sweden)
kapil mehrotra
2014-02-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Abstract This article experiment. Further, the effects of different parameters are analysed by performing sensitivity analyses on the optimal policy. explores an economic production quantity model (EPQ model for deteriorating items with time-dependent demand following trapezoidal pattern taking the volume flexibility into account. We have also considered the inflation and time value of money. The solution of the model aims at determining the optimal production run-time in order to maximize the profit. The model is also illustrated by means of numerical
A volume flexible inventory model with trapezoidal demand under inflation
Directory of Open Access Journals (Sweden)
kapil mehrotra
2014-02-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Abstract This article experiment. Further, the effects of different parameters are analysed by performing sensitivity analyses on the optimal policy. explores an economic production quantity model (EPQ model for deteriorating items with time-dependent demand following trapezoidal pattern taking the volume flexibility into account. We have also considered the inflation and time value of money. The solution of the model aims at determining the optimal production run-time in order to maximize the profit. The model is also illustrated by means of numerical
Frequency Dependent Losses in Transmission Cable Conductors
DEFF Research Database (Denmark)
Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella
2011-01-01
Denmark is taking on the exciting project of undergrounding the electricity transmission grid. In 2009 it was decided by the Danish government to underground large parts of the 400 kV and the entire 132-150 kV transmission network before the end of 2030. For ensuring network stability...... and economical gain, such severe network changes necessitate correct estimation and optimisation of load conditions in the cable grid. Both IEC and IEEE have published standards for rating transmission cables' current carrying capacity. These standards are based on assumptions of a number of parameters...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...
Skadsem, Julie A.
1997-01-01
Examines the effects of conductor verbalization, dynamic markings, conductor gesture, and choir dynamic level on individual singers' dynamic responses. Indicates that verbal instructions from the conductor elicited significantly stronger dynamic performance responses than did the other instructional conditions. Suggests that additional research…
Modeling of composite piezoelectric structures with the finite volume method.
Bolborici, Valentin; Dawson, Francis P; Pugh, Mary C
2012-01-01
Piezoelectric devices, such as piezoelectric traveling- wave rotary ultrasonic motors, have composite piezoelectric structures. A composite piezoelectric structure consists of a combination of two or more bonded materials, at least one of which is a piezoelectric transducer. Piezoelectric structures have mainly been numerically modeled using the finite element method. An alternative approach based on the finite volume method offers the following advantages: 1) the ordinary differential equations resulting from the discretization process can be interpreted directly as corresponding circuits; and 2) phenomena occurring at boundaries can be treated exactly. This paper presents a method for implementing the boundary conditions between the bonded materials in composite piezoelectric structures modeled with the finite volume method. The paper concludes with a modeling example of a unimorph structure.
Responsabilidad penal del conductor ebrio
Gamboa Mosquera, Mauricio
2012-01-01
Mediante el presente artículo se busca mostrar cómo la Corte Suprema de Justicia, en aplicación de la teoría citada ut supra: determinación optativa o alternativa , ha debido aplicar por favorabilidad la condena del conductor a título de homicidio culposo, como quiera que con los mismos elementos de juicio utilizados para concluir que se actuó con dolo eventual, se ha podido arribar al delito imprudente, esto es, al comportamiento culposo.
Institute of Scientific and Technical Information of China (English)
1996-01-01
BORN in a musical family in Beijing, Guo Shuang began to show her talent for music when she was nine years old and began to learn piano from her mother. At the primary and then the secondary school attached to the Central Conservatory of Music, Guo Shuang studied piano, musical theory and composing. Later, she enrolled in the Conservatory to study conducting and piano under the famous conductors Zheng Xiaoying and Xu Xin, piano professors Wu Ying and Xie Huazhen. In 1989, she went to Germany
Exact solutions to model surface and volume charge distributions
Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, P.; Jash, A.; Bhattacharya, D. S.
2016-10-01
Many important problems in several branches of science and technology deal with charges distributed along a line, over a surface and within a volume. Recently, we have made use of new exact analytic solutions of surface charge distributions to develop the nearly exact Boundary Element Method (neBEM) toolkit. This 3D solver has been successful in removing some of the major drawbacks of the otherwise elegant Green's function approach and has been found to be very accurate throughout the computational domain, including near- and far-field regions. Use of truly distributed singularities (in contrast to nodally concentrated ones) on rectangular and right-triangular elements used for discretizing any three-dimensional geometry has essentially removed many of the numerical and physical singularities associated with the conventional BEM. In this work, we will present this toolkit and the development of several numerical models of space charge based on exact closed-form expressions. In one of the models, Particles on Surface (ParSur), the space charge inside a small elemental volume of any arbitrary shape is represented as being smeared on several surfaces representing the volume. From the studies, it can be concluded that the ParSur model is successful in getting the estimates close to those obtained using the first-principles, especially close to and within the cell. In the paper, we will show initial applications of ParSur and other models in problems related to high energy physics.
Excluded volume effect enhances the homology pairing of model chromosomes
Takamiya, Kazunori; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori
2015-01-01
To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.
Excluded volume effect enhances the homology pairing of model chromosomes
Takamiya, Kazunori; Yamamoto, Keisuke; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori
To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.
Critical area computation for real defects and arbitrary conductor shapes
Institute of Scientific and Technical Information of China (English)
Wang Jun-Ping; Hao Yue
2006-01-01
In current critical area models, it is generally assumed the defect outlines are circular and the conductors to be rectangle or the merger of rectangles. However, real defects and conductors associated with optimal layout design exhibit a great variety of shapes. Based on mathematical morphology, a new critical area model is presented, which can be used to estimate the critical area of short circuit, open circuit and pinhole. Based on the new model, the efficient validity check algorithms are explored to extract critical areas of short circuit, open circuit and pinhole from layouts.The results of experiment on an approximate layout of 4 × 4 shifts register show that the new model predicts the critical areas accurately. These results suggest that the proposed model and algorithm could provide new approaches for yield prediction.
Energy Technology Data Exchange (ETDEWEB)
Remick, R.J.; Jewulski, J.; Osif, T.
1989-01-01
Work on this project is divided into three tasks. In the first, a comprehensive literature review was performed for the purpose of collecting data on solid proton conductors. The data was then analyzed with the goal of correlating physical and chemical characteristics with protonic conductivity in order to gain a better understanding of the phenomenon. In the second task, the results of the correlation study were used to choose an electrolyte system in which to work and to aid in the formulation of new candidate proton conductors. Under the third task, a universal test stand was constructed which can measure both electronic and protonic conductivity and which can be converted to use as a solid state fuel cell test stand. Samples of doped SrCe{sub 0.95}Yb{sub 0.05}O{sub 3} have been coated with palladium electrodes and the mechanism responsible for ionic conductivity through this material is currently under study. 6 refs., 1 fig.
Assessment of sodium conductor distribution cable
Energy Technology Data Exchange (ETDEWEB)
None
1979-06-01
The study assesses the barriers and incentives for using sodium conductor distribution cable. The assessment considers environmental, safety, energy conservation, electrical performance and economic factors. Along with all of these factors considered in the assessment, the sodium distribution cable system is compared to the present day alternative - an aluminum conductor system. (TFD)
Doped LZO buffer layers for laminated conductors
Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA
2010-03-23
A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-02-24
The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).
A Computational Model of Hydraulic Volume Displacement Drive
Directory of Open Access Journals (Sweden)
V. N. Pil'gunov
2014-01-01
Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy
Design of the HTS Fusion Conductors for TF and CS Coils
Bykovsky, Nikolay; Uglietti, Davide; Wesche, Rainer; Bruzzone, Pierluigi
2016-01-01
The main electrical and mechanical requirements for the LTS fusion conductors of DEMO are retained as a starting point for the development of HTS fusion cables. Based on the HTS coated conductor technology, a flat cable design was proposed by CRPP Swiss Plasma Center (SPC) using the strands made of twisted stack of tapes soldered into copper profiles. Analytical modeling of the cable geometry is developed and presented in this work. The model was used to estimate various properties of cable. ...
Finite element modeling for volume phantom in Electrical Impedance Tomography
Directory of Open Access Journals (Sweden)
I. O. Rybina
2011-10-01
Full Text Available Using surface phantom, "shadows" of currents, which flow below and under surface tomographic lays, include on this lay, that is cause of adding errors in reconstruction image. For processing modeling in studied object volume isotropic finite elements should be used. Cube is chosen for finite element modeling in this work. Cube is modeled as sum of six rectangular (in the base pyramids, each pyramid consists of four triangular pyramids (with rectangular triangle in the base and hypotenuse, which is equal to cube rib to provide its uniformity and electrical definition. In the case of modeling on frequencies higher than 100 kHz biological tissue resistivities are complex. In this case weight coefficient k will be complex in received cube electrical model (inverse conductivity matrix of the cube finite element.
Tominaka, Toshiharu
2009-12-01
The current distributions within a power transmission cable composed of helically wound long tape superconductors have been studied by solving the circuit equation with the inductance matrix among divided segments within a tape conductor under the Bean model. The self- and mutual inductances of helical thin tape conductors are calculated from the analytical expressions in the form of an infinite series. In addition, it is shown that the distinction between the right-handed and left-handed helixes is generally necessary in the mutual inductance between two long coaxial helical conductors.
Energy Technology Data Exchange (ETDEWEB)
Tominaka, Toshiharu, E-mail: tominaka@mext.go.j, E-mail: tominaka@riken.j [Ministry of Education, Culture, Sports, Science and Technology (MEXT), 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan); RIKEN - Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2009-12-15
The current distributions within a power transmission cable composed of helically wound long tape superconductors have been studied by solving the circuit equation with the inductance matrix among divided segments within a tape conductor under the Bean model. The self- and mutual inductances of helical thin tape conductors are calculated from the analytical expressions in the form of an infinite series. In addition, it is shown that the distinction between the right-handed and left-handed helixes is generally necessary in the mutual inductance between two long coaxial helical conductors.
Alberts, B.A.; Rutten, Wim; Wallinga, W.; Boom, H.B.K.
1988-01-01
Extracellular action potentials of a single active muscle fibre in a surrounding of passive muscle tissue were calculated, using a microscopic volume conductor model which accounts for the travelling aspect of the source, the structure of skeletal muscle tissue and the electrical properties at the
Ogata, M
2003-01-01
A two-dimensional t-J model on a frustrating lattice is studied using mean-field variational theories with Gutzwiller approximation. We find that a superconducting state with broken time-reversal symmetry (d+id state) is realized in the parameter region close to the triangular lattice. The frustration enlarges the region of superconductivity when t 0 for electron doping. We also discuss SU(2) degeneracy at half-filling. The d + id state probably corresponds to the spin gap state at half-filling.
Parameterization of small intestinal water volume using PBPK modeling.
Maharaj, Anil; Fotaki, Nikoletta; Edginton, Andrea
2015-01-25
To facilitate accurate predictions of oral drug disposition, mechanistic absorption models require optimal parameterization. Furthermore, parameters should maintain a biological basis to establish confidence in model predictions. This study will serve to calculate an optimal parameter value for small intestinal water volume (SIWV) using a model-based approach. To evaluate physiologic fidelity, derived volume estimates will be compared to experimentally-based SIWV determinations. A compartmental absorption and transit (CAT) model, created in Matlab-Simulink®, was integrated with a whole-body PBPK model, developed in PK-SIM 5.2®, to provide predictions of systemic drug disposition. SIWV within the CAT model was varied between 52.5mL and 420mL. Simulations incorporating specific SIWV values were compared to pharmacokinetic data from compounds exhibiting solubility induced non-proportional changes in absorption using absolute average fold-error. Correspondingly, data pertaining to oral administration of acyclovir and chlorothiazide were utilized to derive estimates of SIWV. At 400mg, a SIWV of 116mL provided the best estimates of acyclovir plasma concentrations. A similar SIWV was found to best depict the urinary excretion pattern of chlorothiazide at a dose of 100mg. In comparison, experimentally-based estimates of SIWV within adults denote a central tendency between 86 and 167mL. The derived SIWV (116mL) represents the optimal parameter value within the context of the developed CAT model. This result demonstrates the biological basis of the widely utilized CAT model as in vivo SIWV determinations correspond with model-based estimates.
History of crystalline organic conductor
Murata, Keizo
2017-05-01
A brief view of crystalline organic conductor is presented. Since the discovery of TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) in the mid 1970’s, pressure has been an indispensable tool to develop the physics of this field. From the aspect of charge transfer salt, TTF-TCNQ and its family was specified with partial charge transfer, two chain one-dimensional (1D) system, charge density wave (CDW) and commensurability. On the other hand, in (TMTSF)2X family (TMTSF: tetramethyltetraselenafulvalene, X: electron acceptor such as PF6, ClO4), complete charge transfer, one chain system, spin density wave (SDW), field-induced SDW, quantum Hall effect, superconductivity were discussed. Further, together with pressure itself, cooling rate was noticed to be important for low temperature properties. Recently, coming back to TTF-TCNQ family, i.e., HMTSF-TCNQ, whether or not field-induced CDW, instead of field-induced SDW, and quantum Hall effect is present was discussed (HMTSF: hexamethylene-tetraselenafulvalene). Whether or not the Fermiology in (TMTTF)2X under pressure is similar to that of (TMTSF)2X is discussed as well. In (BEDT-TTF)2X, new aspect of macroscopic polarization of α-(BEDT-TTF)2I3 related to charge order is described. At the end, in contrast to the charge transfer salts, non-charge transfer salt, that is, single component conductor is presented as a new possible example of Dirac cone, which was deeply studied by many researchers in α-(BEDT-TTF)2I3, together with the theoretical calculation of its magnetic susceptibility (BEDT-TTF: bisethylenedithia-tetrathiafulvalene).
Health effects of electromagnetic field generated by lightning current pulses near down conductors
Tamus, Z. Á.; Novák, B.; Szücs, L.; Kiss, I.
2011-06-01
The lightning current generates a time varying magnetic field near down conductors, when lightning strikes the connected Franklin-rod. The down conductors are mounted on the wall of buildings, where residential places can be situated. It is well known that the rapidly changing magnetic fields could generate dangerous eddy currents in the human body. If the duration and the gradient of the magnetic field were high enough, the peripheral nerves are excited. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near a down conductor with the human body. The interaction model has two parts: estimation of the magnetic fields surrounding the down conductor and evaluation of health effects of rapid changing magnetic fields on the human body.
Analytical performance models for geologic repositories. Volume 2
Energy Technology Data Exchange (ETDEWEB)
Chambre, P.L.; Pigford, T.H.; Fujita, A.; Kanki, T.; Kobayashi, A.; Lung, H.; Ting, D.; Sato, Y.; Zavoshy, S.J.
1982-10-01
This report presents analytical solutions of the dissolution and hydrogeologic transport of radionuclides in geologic repositories. Numerical examples are presented to demonstrate the equations resulting from these analyses. The subjects treated in this report are: solubility-limited transport with transverse dispersion (chapter 2); transport of a radionuclide chain with nonequilibrium chemical reactions (chapter 3); advective transport in a two-dimensional flow field (chapter 4); radionuclide transport in fractured media (chapter 5); a mathematical model for EPA's analysis of generic repositories (chapter 6); and dissolution of radionuclides from solid waste (chapter 7). Volume 2 contains chapters 5, 6, and 7.
33 CFR 159.71 - Electrical controls and conductors.
2010-07-01
... conductors. 159.71 Section 159.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors...
30 CFR 56.12011 - High-potential electrical conductors.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 56.12011... § 56.12011 High-potential electrical conductors. High-potential electrical conductors shall be covered, insulated, or placed to prevent contact with low potential conductors....
30 CFR 57.12011 - High-potential electrical conductors.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 57.12011... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical conductors shall be covered, insulated, or placed to prevent contact with low potential conductors....
30 CFR 57.12080 - Bare conductor guards.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bare conductor guards. 57.12080 Section 57... Underground Only § 57.12080 Bare conductor guards. Trolley wires and bare power conductors shall be guarded at... conductors are less than 7 feet above the rail, they shall be guarded at all points where persons work...
46 CFR 111.60-4 - Minimum cable conductor size.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-4 Minimum cable conductor size. Each cable conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must...
An Exploratory Comparison of Novice, Intermediate, and Expert Orchestral Conductors
Bergee, Martin J.
2005-01-01
This study compared novice, "intermediate" (graduate student), and expert orchestral conductors. Two novice conductors, one graduate student in orchestral conducting, and one expert conductor led a university symphony orchestra in part of the first movement of Brahms's Symphony No. 2. Wired for sound, conductors attempted to verbalize their…
46 CFR 111.50-3 - Protection of conductors.
2010-10-01
... conductor must be protected in accordance with its current carrying capacity, except a conductor for the..., Subpart 111.30. (c) Fuses and circuitbreakers. If the allowable current-carrying capacity of the conductor... current-carrying capacity of the conductor; and (2) The effect of temperature on the operation of...
Poly(alkylene biguanides) as proton conductors for high-temperature PEMFCs
Energy Technology Data Exchange (ETDEWEB)
Britz, Jochen; Meyer, Wolfgang H.; Wegner, Gerhard [Max Planck Institute for Polymer Research, Mainz (Germany)
2010-02-23
Poly(alkylene biguanides) are novel high-temperature proton conductors. This long-known class of polymers is presented as surprisingly stable high-temperature proton-conducting materials in the form of water-free HCl conjugates. Proton conductivity is dominated by free volume relaxation. Application in the context of fuel-cell membranes is discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Analysis of Cable-in-Conduit Conductors' DC Performance in Light of Strand's Experimental Properties
Institute of Scientific and Technical Information of China (English)
TAN Yunfei; WENG Peide; LIU Fang; LI Shaolei
2007-01-01
Conductor qualification will be carried out with four Cable-in-Conduit Conductor (CICC) samples made of superconducting strands. The direct current (DC) performance of these samples will be tested in the SULTAN facility. The critical current densities of the strands can be well simulated by empirical equations. In this paper, a model is illustrated to predict the DC behaviour of the cable in light of the single strand's experimental properties. The simulation results were compared with experimental results.
Materiales conductores mediante funcionalización de polímeros con nanomateriales conductores
Gutierrez, Manuel; Llobera, Andreu; Fernández Sánchez, César; Jiménez Jorquera, Cecilia; Mendoza Gómez, Ernest
2010-01-01
La presente invención se refiere un material conductor que comprende un polímero funcionalizado y a un nanomaterial conductor unidos mediante enlace covalente. La invención también se refiere a un procedimiento de obtención del material conductor sin modificar las propiedades ópticas del polímero y a su uso para la fabricación de sensores o electrodos.
Materiales conductores mediante funcionalización de polímeros con nanomateriales conductores
Gutierrez, Manuel; Llobera, Andreu; Fernández Sánchez, César; Jiménez Jorquera, Cecilia; Mendoza Gómez, Ernest
2010-01-01
La presente invención se refiere un material conductor que comprende un polímero funcionalizado y a un nanomaterial conductor unidos mediante enlace covalente. La invención también se refiere a un procedimiento de obtención del material conductor sin modificar las propiedades ópticas del polímero y a su uso para la fabricación de sensores o electrodos.
A finite-volume scheme for a kidney nephron model
Directory of Open Access Journals (Sweden)
Seguin Nicolas
2012-04-01
Full Text Available We present a finite volume type scheme to solve a transport nephron model. The model consists in a system of transport equations with specific boundary conditions. The transport velocity is driven by another equation that can undergo sign changes during the transient regime. This is the main difficulty for the numerical resolution. The scheme we propose is based on an explicit resolution and is stable under a CFL condition which does not depend on the stiffness of source terms. Nous présentons un schéma numérique de type volume fini que l’on applique à un modèle de transport dans le néphron. Ce modèle consiste en un système d’équations de transport, avec des conditions aux bords spécifiques. La vitesse du transport est la solution d’un autre système d’équation et peut changer de signe au cours du régime transitoire. Ceci constitue la principale difficulté pour la résolution numérique. Le schéma proposé, basé sur une résolution explicite, est stable sous une condition CFL non restrictive.
Failure Mechanism of Reflow Conductor Roll of Electroplating Tinning Line
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The surface roughness of reflow conductor roll was checked on membrane sample. The surface morphology of conductor roll was observed by microscope, and the composition of adhered layer on conductor roll surface was analyzed by X-ray spectroscope. The results show that tin adhesion is the main reason for failure of conductor roll, and the failure of conductor roll is accelerated by wear. The measures to decrease tin adhesion and improve wear resistance were put forward.
Application of protonic conductors in metallurgy
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Two types of disposable EMF hydrogen sensors for measurements of solute contents of liquid metals in situ in metal-refining processes and their general principles are introduced. The way to design new electrochemical sensors and the direction to develop new protonic conductors as new electrochemical sensors are discussed. The feasibility of protonic conductors worked as hydrogen pump in non-ferrous metal refining processes is discussed as well.
Controlled Electronic Transport through Branched Molecular Conductors
2008-01-01
Abstract The conductance through a branched conductor placed between two electrodes is analyzed using the Landauer transport formulation within the framework of the single electron, and the tight binding approximations. Terminal side chains are expressed as self energy terms which map the branched conductor onto an effective linear chain Hamiltonian. The effect of uniform side branches on resonant zero-bias conductance is shown to be analytically solvable and particularly simple, w...
Integrating model of the Project Independence Evaluation System. Volume IV. Model documentation
Energy Technology Data Exchange (ETDEWEB)
Shaw, M L; Allen, B J; Gale, J E; Lutz, M S; O& #x27; Hara, N E; Wood, R K
1979-02-01
This volume is the fourth in a series of seven documenting the PIES Integrating Model. It contains detailed descriptions of the basic assumptions behind each of the components of PIES and how they interact with one another. Chapter II of this volume presents the methodology used to integrate supply and demand. It includes a discussion of both the interface between the Demand Model and the equilibrating mechanism and the various supply models via the equilibrating algorithm used by PIES. Chapters III through IX describe each supply submodel in turn: coal, oil, and natural gas supply, utilities, refineries, advanced technologies, and transportation. Code and data documentation are covered elsewhere in this series (Volumes V and VI respectively). PIES is an evolving system. As this document was being prepared, many parts of the model were being modified. This document describes the PIES Integrating Model as of January 1, 1978.
Analysis and application of transmission line conductors
Laney, Orin
Skin effect is usually a concern reserved for radio frequency design and for high current conductors used in utility power distribution. Proximity effect between adjacent conductors has traditionally been a concern for the design of magnetic windings and other applications involving wire bundles. The rise in the ubiquity of high speed bit streams and other signals of very wide bandwidth has broadened the range of applicable contexts and increased the need to account for such effects. This is especially true for transmission lines used to interconnect critical signal paths in applications ranging from microelectronic devices to the signal integrity of printed circuit traces and implementation of system cabling. Optimal conductor design is obviously fundamental to transmission line performance. Researchers have paid considerable attention to the topic but the results are scattered throughout the literature. This thesis collected information on extant conductor designs, and the theoretical considerations behind each solution. A detailed analysis of current flow in a conducting half-space was included as a foundation. The conductor types discussed were solid cylindrical, rectangular, ribbonoid, bimetallic, tubular, laminated, litz, and stranded constructions. Discussions of the performance of stranded shields and conductor roughness e¤ects were included for completeness of understanding.
Energy Technology Data Exchange (ETDEWEB)
Moore, James [U.S. Army Corps of Engineers - New York District 26 Federal Plaza, New York, New York 10278 (United States); Hays, David [U.S. Army Corps of Engineers - Kansas City District 601 E. 12th Street, Kansas City, Missouri 64106 (United States); Quinn, John; Johnson, Robert; Durham, Lisa [Argonne National Laboratory, Environmental Science Division 9700 S. Cass Ave., Argonne, Illinois 60439 (United States)
2013-07-01
As part of the ongoing remediation process at the Maywood Formerly Utilized Sites Remedial Action Program (FUSRAP) properties, Argonne National Laboratory (Argonne) assisted the U.S. Army Corps of Engineers (USACE) New York District by providing contaminated soil volume estimates for the main site area, much of which is fully or partially remediated. As part of the volume estimation process, an initial conceptual site model (ICSM) was prepared for the entire site that captured existing information (with the exception of soil sampling results) pertinent to the possible location of surface and subsurface contamination above cleanup requirements. This ICSM was based on historical anecdotal information, aerial photographs, and the logs from several hundred soil cores that identified the depth of fill material and the depth to bedrock under the site. Specialized geostatistical software developed by Argonne was used to update the ICSM with historical sampling results and down-hole gamma survey information for hundreds of soil core locations. The updating process yielded both a best guess estimate of contamination volumes and a conservative upper bound on the volume estimate that reflected the estimate's uncertainty. Comparison of model results to actual removed soil volumes was conducted on a parcel-by-parcel basis. Where sampling data density was adequate, the actual volume matched the model's average or best guess results. Where contamination was un-characterized and unknown to the model, the actual volume exceeded the model's conservative estimate. Factors affecting volume estimation were identified to assist in planning further excavations. (authors)
Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)
Energy Technology Data Exchange (ETDEWEB)
Maekawa, Ryuji
1995-10-31
The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region
Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)
Energy Technology Data Exchange (ETDEWEB)
Maekawa, Ryuji
1995-10-31
The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region
Stability measurements on the 50 kA SMES conductor
Pfotenhauer, M. J.
Stability measurements have been made on a large aluminium stabilized conductor designed for use in a superconducting magnetic energy storage (SMES) coil. The conductor has been built to carry 50 kA at 1.8 K and in 4.6 T field. It consists of a 25.4 mm diameter, high purity aluminium stabilizer with eight superconducting strands of 2.8 mm diameter each, composed of 60% Cu, 40% NbTi. The strands are set in eight helical grooves, evenly spaced around the outer diameter of the aluminium. The conductor is designed for use in full scale SMES units and has been tested in the 1 m diameter, three-turn test coil of the University of Wisconsin proof of principle experiment (POPE). The POPE facility includes the test coil, a 4 T background magnet, a dewar for a 1.8 K, 1 atm environment and a 100 kA d.c. power supply. Test results demonstrate good agreement with a new dynamic stability model. The balance of time-dependent heat generation during current diffusion and time-dependent cooling to the helium produces three new features of stability: 1, a threshold current for propagation; 2, large propagation velocities; and 3, a finite length travelling normal zone. POPE measurements verify all three features of the dynamic stability model.
Institute of Scientific and Technical Information of China (English)
李少磊; 武玉; 刘勃; 翁佩德
2011-01-01
Cable-in-conduit conductor （CICC） conductor sample of the PF2 coil for ITER was tested in the SULTAN facility. According to the test results, the CICC conductor sample exhibited a stable performance regarding the current sharing temperature. Under the typical operational conditions of a current of 45 kA, a magnetic field of 4 T and a temperature of 5 K for PF2, the test result for the conductor current sharing temperature is 6.71 K, with a temperature margin of 1.71 K. For a comparison thermal-hydraulic analysis of the PF2 conductor was carried out using GANDALF code in a 1-D model, and the result is consistent with the test one.
INTRA/Mod3.2. Manual and Code Description. Volume I - Physical Modelling
Energy Technology Data Exchange (ETDEWEB)
Andersson, Jenny; Edlund, O.; Hermann, J.; Johansson, Lise-Lotte
1999-01-01
The INTRA Manual consists of two volumes. Volume I of the manual is a thorough description of the code INTRA, the Physical modelling of INTRA and the ruling numerical methods and volume II, the User`s Manual is an input description. This document, the Physical modelling of INTRA, contains code characteristics, integration methods and applications
Energy Technology Data Exchange (ETDEWEB)
1981-10-29
This volume contains a description of the software comprising the National Utility Financial Statement Model (NUFS). This is the third of three volumes describing NUFS provided by ICF Incorporated under contract DEAC-01-79EI-10579. The three volumes are entitled: model overview and description, user's guide, and software guide.
Phenomenological Model for Grown of Volumes Digital Data
Makarenko, Andrey V
2011-01-01
Currently, experts from IT industry are closely monitoring the soaring total volume of digital data. Moreover the problem is not purely technical, it directly affects human civilization as a whole. The growth rate of the all increasing and is already very large. Began is actively appear apocalyptic scenarios of development IT technology, and humanity as a whole. In this paper we propose a constructive alternative to these emotional ideas. Invited to consider the digital industry as a complete system that is developing in close connection with human civilization. Moreover, system self-organizing and essentially nonlinear in its behavior. To study this system is applied system-cybernetic approach. The mathematical model is developed, shows that in the future rate of production of digital data is stabilize at 13.2 ZB per year.
Murray, K. E.
2016-12-01
Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.
Integrating model of the Project Independence Evaluation System. Volume 1. Executive summary
Energy Technology Data Exchange (ETDEWEB)
Shaw, M.L.; Hutzler, M.J.
1979-04-01
This report is Volume I of a six-volume series documenting the Integrating Model of the Project Independence Evaluation System (PIES) as it existed on January 1, 1978. It offers a review of entire PIES system, including the basic components of the Integrating Model, which are described in detail in Volume IV of this series. In particular, this volume addresses the problem that PIES solves and the major features and applications of PIES.
Nápoles, Jessica; Silvey, Brian A.
2017-01-01
The purpose of this study was to examine participants' (college band and choral musicians, N = 143) perceptions of conductor clarity and expressivity after viewing band and choral directors conducting with or without a baton. One band and one choral conductor each prepared and conducted two excerpts of Guy Forbes's "O Nata Lux", a piece…
Measurements of the transverse resistance and eddy current losses in a cable-in-conduit conductor
Keilin, V. E.; Kovalev, I. A.; Kruglov, S. L.; Lelekhov, S. A.; Il'in, A. A.; Naumov, A. V.; Shcherbakov, V. I.; Shutov, K. A.
2015-11-01
In the case of plasma current interruption in tokamaks, the conductor of toroidial field (TF) coils experiences the action of a pulsed decreasing magnetic field (PDMF) parallel to the conductor's axis. To estimate the stability of a cable-in-conduit conductor against the PDMF, a new experimental method to study different types of losses is applied. This method exploits a high sensitivity of temperature and gas pressure to input energy in a closed volume. It allows one to measure hysteresis losses with a rather high accuracy (provided that the rate of change of the PDMF is low) and a sum of hysteresis losses and eddy current losses (when the rate of change of the PDMF is high). An experimental setup to measure the transverse (circumferential) resistance and losses has been developed at the National Research Centre Kurchatov Institute. A Russianmade Nb3Sn conductor intended for the TF coils of the International Thermonuclear Experimental Reactor is subjected to a PDMF with different amplitudes and characteristic times. The electromagnetic time constant and the transverse resistivity of the conductor are experimentally determined. The maximum temperature of strands under the action of the PDMF is calculated.
Conductor fatigue-life research. Final report
Energy Technology Data Exchange (ETDEWEB)
Ramey, G.E.
1981-07-01
This is the final report of Research Project RP 1278-1 sponsored by the Electric Power Research Institute and carried out at the Civil Engineering Department of Auburn University (Auburn, Alabama). The objective of this study was to evaluate the effects of reducing vibration amplitudes of ACSR conductors which had been minimally damaged by aeolian vibration. The aeolian vibration was simulated by mechanical means in a controlled laboratory situation and the reduction in vibration amplitudes was a simulation of the addition of amplitude limiting devices (dampers). Conductors were vibrated at high amplitudes until a predetermined number of strand breaks occurred, after which the vibration was continued at reduced amplitudes. Three different ACSB conductors were tested: 795 KCM 26/7, 795 KCM 45/7, and 397.5 KCM 26/7. These conductors were chosen to establish the effects of conductor size and stranding on the amplitude reduction tests. Two different amplitude reductions were used to establish a threshold value for a maximum reduced amplitude. Previous preliminary research by others indicated that amplitude reductions extended the working life of conductors. This research expanded the amplitude reduction values and conductor sizes and strandings tested. For each set of parameters, four duplicative tests were performed to give statistical credence to the data. The results of the investigation indicated that amplitude reductions arrested fatigue strand breakage in each case. Electric utilities can utilize the results of this EPRI project in assessing the fatigue life of minimally damaged transmisson lines and in evaluating techniques for mitigating fatigue damage.
Powder-in-tube (PIT) $Nb_{3}Sn$ conductors for high-field magnets
Lindenhovius, J L H; den Ouden, A; Wessel, W A J; ten Kate, H H J
2000-01-01
New Nb/sub 3/Sn conductors, based on the powder-in-tube (PIT) process, have been developed for application in accelerator magnets and high-field solenoids. For application in accelerator magnets, SMI has developed a binary 504 filament PIT conductor by optimizing the manufacturing process and adjustment of the conductor lay-out. It uniquely combines a non-copper current density of 2680 A/mm/sup 2/@10 T with an effective filament diameter of about 20 mu m. This binary conductor may be used in a 10 T, wide bore model separator dipole magnet for the LHC, which is being developed by a collaboration of the University of Twente and CERN. A ternary (Nb/7.5wt%Ta)/sub 3/Sn conductor containing 37 filaments is particularly suited for application in extremely high-field superconducting solenoids. This wire features a copper content of 43%, a non-copper current density of 217 A/mm/sup 2/@20 T and a B/sub c2/ of 25.6 T. The main issues and the experimental results of the development program of PIT Nb/sub 3/Sn conductors a...
Microfluidic flow switching design using volume of fluid model.
Chein, Reiyu; Tsai, S H
2004-03-01
In this study, a volume of fluid (VOF) model was employed for microfluidic switch design. The VOF model validity in predicting the interface between fluid streams with different viscosities co-flowing in a microchannel was first verified by experimental observation. It was then extended to microfluidic flow switch design. Two specific flow switches, one with a guided fluid to one of five desired outlet ports, and another with a guided fluid flows into one, two, or three outlet ports equally distributed along the outlet channel of a Y-shaped channel. The flow switching was achieved by controlling the flow rate ratios between tested and buffer fluids. The numerical results showed that the VOF model could successfully predict the flow switching phenomena in these flow switches. The numerical results also showed that the flow rate ratio required for flow switching depends on the viscosity ratio between the tested and buffer fluids. The numerical simulation was verified by experimental study and the agreement was good.
Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6
Energy Technology Data Exchange (ETDEWEB)
Townley, L.R.; Trefry, M.G.; Barr, A.D. [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S. [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M. [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan)] [and others
1992-12-31
This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling
A dynamical system of deposit and loan volumes based on the Lotka-Volterra model
Sumarti, N.; Nurfitriyana, R.; Nurwenda, W.
2014-02-01
In this research, we proposed a dynamical system of deposit and loan volumes of a bank using a predator-prey paradigm, where the predator is loan volumes, and the prey is deposit volumes. The existence of loan depends on the existence of deposit because the bank will allocate the loan volume from a portion of the deposit volume. The dynamical systems have been constructed are a simple model, a model with Michaelis-Menten Response and a model with the Reserve Requirement. Equilibria of the systems are analysed whether they are stable or unstable based on their linearised system.
Internally heated convection beneath a poor conductor
Goluskin, David
2016-01-01
We consider convection in an internally heated layer of fluid that is bounded below by a perfect insulator and above by a poor conductor. The poorly conducting boundary is modelled by a fixed heat flux. Using solely analytical methods, we find linear and energy stability thresholds for the static state, and we construct a lower bound on the mean temperature that applies to all flows. The linear stability analysis yields a Rayleigh number above which the static state is linearly unstable ($R_L$), and the energy analysis yields a Rayleigh number below which it is globally stable ($R_E$). For various boundary conditions on the velocity, exact expressions for $R_L$ and $R_E$ are found using long-wavelength asymptotics. Each $R_E$ is strictly smaller than the corresponding $R_L$ but is within 1%. The lower bound on the mean temperature is proven for no-slip velocity boundary conditions using the background method. The bound guarantees that the mean temperature of the fluid, relative to that of the top boundary, gr...
The effect of fiber orientation on volume measurement using conductance catheter techniques.
Thaijiam, C; Gale, T J
2006-01-01
Estimation of parallel conductance using the impedance electrode technique is usually done assuming isotropic conditions. This may not be the best solution since the myocardium is an anisotropic material. This paper exposes the effect of fiber orientation for volume measurement using a conductor model with asymmetrical source electrodes. Simulation results show calculated volumes between surrounding materials with and without myocardial fiber orientation included in the model. We plan to extend these study results to the real heart for developing conductance catheter techniques for use in blood volume measurements in the right ventricle.
Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-01-01
This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.
Endo Atmospheric-Exo Atmospheric Radar Modeling. Volume II. Part I. Computer Program Documentation.
1976-06-01
dimension of the clutter volume in degrees AZO00 0 F Clutter volume starting azimuth angle. MM 0 1 Number of clutter volume azimuth increments. ELEXT 0 F...DELAZ - AZEXT/MM DELEL Elevation increment between clutter scatterers. DELEL = ELEXT /NN ICFLG This parameter is set to 1 if the clutter model has been
Tunable Broadband Printed Carbon Transparent Conductor
Xu, Yue; Wan, Jiayu
Transparent conductors have been widely applied in solar cells, transparent smart skins, and sensing/imaging antennas, etc. Carbon-based transparent conductor has attracted great attention for its low cost and broad range transparency. Ion intercalation has been known to highly dope graphitic materials, thereby tuning materials' optoelectronic properties. For the first time, we successfully tune the optical transmittance of a reduced graphene oxide (RGO)/CNT network from mid-IR range to visible range by means of Li-ion intercalation/deintercalation. We also observed a simultaneous increase of the electrical conductivity with the Li-ion intercalation. This printed carbon hybrid thin film was prepared through all solution processes and was easily scalable. This study demonstrates the possibility of using ion intercalation for low cost, tunable broadband transparent conductors.
Properties and applications of perovskite proton conductors
Directory of Open Access Journals (Sweden)
Eduardo Caetano Camilo de Souza
2010-09-01
Full Text Available A brief overview is given of the main types and principles of solid-state proton conductors with perovskite structure. Their properties are summarized in terms of the defect chemistry, proton transport and chemical stability. A good understanding of these subjects allows the manufacturing of compounds with the desired electrical properties, for application in renewable and sustainable energy devices. A few trends and highlights of the scientific advances are given for some classes of protonic conductors. Recent results and future prospect about these compounds are also evaluated. The high proton conductivity of barium cerate and zirconate based electrolytes lately reported in the literature has taken these compounds to a highlight position among the most studied conductor ceramic materials.
Limits to the critical current in Bi2Sr2Ca2Cu3Ox tape conductors: The parallel path model
van der Laan, D.C.; Schwartz, J.; ten Haken, Bernard; Dhalle, M.; van Eck, H.J.N.
2008-01-01
An extensive overview of a model that describes current flow and dissipation in high-quality Bi2Sr2Ca2Cu3Ox superconducting tapes is provided. The parallel path model is based on a superconducting current running in two distinct parallel paths. One of the current paths is formed by grains that are
Amemiya, Naoyuki; Miyahara, Hidetoshi; Ogitsu, Toru; Kurusu, Tsutomu
By using differential geometry, we modeled the three-dimensional shapes of the coil ends of cosine-theta magnets while considering local edge-wise bend, local flat-wise bend, and torsion of coated conductors. We focus on the feasibility of winding coil ends against the stress caused by bending. We discussed the feasibility of winding based on two assumptions to form coil ends: all turns of coated conductors are free from edge-wise bend; faces of all turns of coated conductors are completely parallel. Using the first assumption, we designed a cosine-theta dipole magnet wound with coated conductors.
Energy Technology Data Exchange (ETDEWEB)
McCright, R D
1998-06-30
This Engineered Materials Characterization Report (EMCR), Volume 3, discusses in considerable detail the work of the past 18 months on testing the candidate materials proposed for the waste-package (WP) container and on modeling the performance of those materials in the Yucca Mountain (YM) repository setting This report was prepared as an update of information and serves as one of the supporting documents to the Viability Assessment (VA) of the Yucca Mountain Project. Previous versions of the EMCR have provided a history and background of container-materials selection and evaluation (Volume I), a compilation of physical and mechanical properties for the WP design effort (Volume 2), and corrosion-test data and performance-modeling activities (Volume 3). Because the information in Volumes 1 and 2 is still largely current, those volumes are not being revised. As new information becomes available in the testing and modeling efforts, Volume 3 is periodically updated to include that information.
Measuring the Magnetic Force on a Current-Carrying Conductor.
Herreman, W.; Huysentruyt, R.
1995-01-01
Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)
Institute of Scientific and Technical Information of China (English)
GAO TIAN-LING; LIU QIANG; Ma Fu-ming
2012-01-01
This paper is concerned with the electromagnetic scattering by a nonperfectly conductor obstacle in chiral environment.A two-dimensional mathematical model is established.The existence and uniqueness of the problem are discussed by potential theory.
A COMPATIBLE ESTIMATION MODEL OF STEM VOLUME AND TAPER FOR Acacia mangium Willd. PLANTATIONS
Directory of Open Access Journals (Sweden)
Haruni Krisnawati
2016-04-01
Full Text Available This study describes the establishment of a compatible volume estimation model for Acacia mangium Willd on the basis of 279 felled sample trees collected from the A. mangium plantation stands in South Sumatra, Indonesia. The model comprises of a total volume model and a stem taper model, which is compatible in the sense of the total volume obtained by integration of the taper model being equal to that computed by the total volume model. Several well-known total volume functions were evaluated including constant form factor, combined variable, generalized combine variable, logarithmic, generalized logarithmic and Honer transformed variables. A logarithmic model was determined to be the best and was then used as the basis for deriving the taper model. Appropriate statistical procedures were used in model fitting to account for the problems of heteroscedasticity and autocorrelation that are associated with the construction of volume and taper functions. The simultaneous fitting method of the Seemingly Unrelated Regression (SUR improved the parameter estimates and goodness-of-fit statistics while ensuring numeric consistency among the component models and reducing the total squared error obtained by an independent fitting method. The developed model can be used to estimate total stem volume, merchantable volume to any merchantability diameter limit at any height, and (possibly height of any diameter based on only easily measurable parameters such as diameter at breast height and total tree height for the species analysed.
Malroy, Eric T.
2007-01-01
The programs, arrays and logic structure were developed to enable the dynamic update of conductors in thermal desktop. The MatLab program FMHTPRE.m processes the Thermal Desktop conductors and sets up the arrays. The user needs to manually copy portions of the output to different input regions in Thermal Desktop. Also, Fortran subroutines are provided that perform the actual updates to the conductors. The subroutines are setup for helium gas, but the equations can be modified for other gases. The maximum number of free molecular conductors allowed is 10,000 for a given radiation task. Additional radiation tasks for FMHT can be generated to account for more conductors. Modifications to the Fortran subroutines may be warranted, when the mode of heat transfer is in the mixed or continuum mode. The FMHT Thermal Desktop model should be activated by using the "Case Set Manager" once the model is setup. Careful setup of the model is needed to avoid excessive solve times.
30 CFR 56.12048 - Communication conductors on power poles.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Communication conductors on power poles. 56... Electricity § 56.12048 Communication conductors on power poles. Telegraph, telephone, or signal wires shall not be installed on the same crossarm with power conductors. When carried on poles...
30 CFR 75.513-1 - Electric conductor; size.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductor; size. 75.513-1 Section 75.513-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... Electric conductor; size. An electric conductor is not of sufficient size to have adequate...
46 CFR 120.372 - Equipment and conductor grounding.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Equipment and conductor grounding. 120.372 Section 120... INSTALLATION Power Sources and Distribution Systems § 120.372 Equipment and conductor grounding. (a) All... together to a common ground by a normally non-current carrying conductor. Metallic cases of instruments...
21 CFR 868.1920 - Esophageal stethoscope with electrical conductors.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Esophageal stethoscope with electrical conductors... stethoscope with electrical conductors. (a) Identification. An esophageal stethoscope with electrical conductors is a device that is inserted into the esophagus to listen to a patient's heart and breath...
30 CFR 57.12048 - Communication conductors on power poles.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Communication conductors on power poles. 57... MINES Electricity Surface and Underground § 57.12048 Communication conductors on power poles. Telegraph, telephone, or signal wires shall not be installed on the same crossarm with power conductors. When...
46 CFR 183.372 - Equipment and conductor grounding.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Equipment and conductor grounding. 183.372 Section 183... conductor grounding. (a) All metallic enclosures and frames of electrical equipment must be permanently... equipment must be bonded together to a common ground by a normally non-current carrying conductor....
30 CFR 77.503 - Electric conductors; capacity and insulation.
2010-07-01
... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors; capacity and...
30 CFR 75.513 - Electric conductor; capacity and insulation.
2010-07-01
... § 75.513 Electric conductor; capacity and insulation. All electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such construction that a rise in temperature... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductor; capacity and insulation....
Broadband dielectric spectroscopy of inhomogeneous and composite weak conductors
Petzelt, J.; Nuzhnyy, D.
2016-08-01
In this paper, we discuss broadband dielectric spectroscopy from mHz up to the infrared range mainly for materials with inhomogeneous weak conductivity, including conductor-dielectric nanocomposites. Our discussion is based on the effective medium approximation (EMA) and experiments modeled by this approach are reviewed. We discuss core-shell composites modeled by coated-spheres (Hashin-Shtrikman model) and normal composites with a possible percolation of the conductor component resulting in sharp or smeared percolation threshold of the DC conductivity and diverging static permittivity in the former case. The sharp percolation threshold is modeled by the Bruggeman EMA or by general EMA with arbitrary percolation threshold and arbitrary critical exponents of the DC conductivity and static permittivity. For the case of smeared percolation threshold in the case of complex topologies, we use the Lichtenecker model allowing for partial percolation of both the components. Finally, numerous papers reporting negative permittivity in weakly conducting materials are criticized and concluded to be due to spurious effects.
High Temperature Protonic Conductors by Melt Growth
2006-11-21
A.R. de Arellano-López, A. Sayir. “Microestructura y Comportamiento Plástico de Perovsquitas Conductoras Protónicas de Alta Temperatura ”. Bol. Soc...Conductores Protónicos de Alta Temperatura Crecidos por Fusión de Zona Flotante”. VII Reunión Nacional y VI Conferencia Iberoamericana (Electrocerámica
High-temperature superconducting conductors and cables
Energy Technology Data Exchange (ETDEWEB)
Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.
1996-09-01
This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.
DEFF Research Database (Denmark)
Ainslie, Mark D; Rodriguez Zermeno, Victor Manuel; Hong, Zhiyong
2011-01-01
AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils...... Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings...... on the performance of the motor are discussed....
Takaishi, Tetsuya; Chen, Ting Ting
2016-08-01
We examine the relationship between trading volumes, number of transactions, and volatility using daily stock data of the Tokyo Stock Exchange. Following the mixture of distributions hypothesis, we use trading volumes and the number of transactions as proxy for the rate of information arrivals affecting stock volatility. The impact of trading volumes or number of transactions on volatility is measured using the generalized autoregressive conditional heteroscedasticity (GARCH) model. We find that the GARCH effects, that is, persistence of volatility, is not always removed by adding trading volumes or number of transactions, indicating that trading volumes and number of transactions do not adequately represent the rate of information arrivals.
Classical and recent free-volume models for polymer solutions: A comparative evaluation
DEFF Research Database (Denmark)
Radfarnia, H.R.; Kontogeorgis, Georgios; Ghotbi, C.
2007-01-01
to improve the performance of a recent model, the so-called Freed-FV First, we propose a modification of the Freed-FV model accounting for the anomalous free-volume behavior of aqueous systems (unlike the other solvents, water has a lower free-volume percentage than polymers). The results predicted...
Applying ARIMA model for annual volume time series of the Magdalena River
Directory of Open Access Journals (Sweden)
Gloria Amaris
2017-04-01
Conclusions: The simulated results obtained with the ARIMA model compared to the observed data showed a fairly good adjustment of the minimum and maximum magnitudes. This allows concluding that it is a good tool for estimating minimum and maximum volumes, even though this model is not capable of simulating the exact behaviour of an annual volume time series.
Algorithm for detection of the broken phase conductor in the radial networks
Directory of Open Access Journals (Sweden)
Ostojić Mladen M.
2016-01-01
Full Text Available The paper presents an algorithm for a directional relay to be used for a detection of the broken phase conductor in the radial networks. The algorithm would use synchronized voltages, measured at the beginning and at the end of the line, as input signals. During the process, the measured voltages would be phase-compared. On the basis of the normalized energy, the direction of the phase conductor, with a broken point, would be detected. Software tool Matlab/Simulink package has developed a radial network model which simulates the broken phase conductor. The simulations generated required input signals by which the algorithm was tested. Development of the algorithm along with the formation of the simulation model and the test results of the proposed algorithm are presented in this paper.
Energy Technology Data Exchange (ETDEWEB)
Cho, Jeong Yeon; Lee, Hak Jong; Kim, Sung Hyun [Samsung Seoul Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Seung Hyup [Seoul National University College of Medicine, Seoul (Korea, Republic of)
2002-03-15
To evaluate the accuracy of measuring the volume of the prostate using the prolate ellipsoid volume calculation method (antero-posterior (AP) diameter X length X width X {pi}6) when the antero-posterior diameter of the prostate was measured on midsagittal (sagittal volume) and axial plane (axial volume).The devil's tongue jelly was used for the creation of ultrasound model of the prostate (volume: 15-40 cc) by cutting and shaping the surface. The volume in 10 prostatic models and 30 patients was measured and calculated. First, the AP diameter and length of the prostate models in midsagittal plane, and the height and width of the models in axial plane were measured for 3 times. The volume was calculated in two ways, one using the AP diameter an midsagittal plane and the other using the AP diameter in axial plane. The true volume of the model was measured using mess cylinder. The calculated volume and true volume were compared, and the accuracy of two method of measuring the prostatic volume was evaluated by Friedman test. The intraobserver variation was evaluated by General Linear Model, Repeated Measure. The reproducibility was evaluated by Cronbach's {alpha}. In vivo study was also performed in 30 patients. The prostate volume was calculated in the same manner. These volume data were analyzed by statistical method, and the intraobeserver variation was evaluated. While there was a statistically significant difference between the sagittal and true volume of the models, there was no statistical significant difference between the axial and true volumes. There was no significant intraobserver variation between both methods. The reproducibility was high in both methods with Cronbach's {alpha} of 0.977 and 0.942. The sagittal volume was larger than the axial volume in 30 patients with a statistically significant difference. There was no significant intraobserver variation in both methods. The reproducibility was high in both methods Cronbach's {alpha
Institute of Scientific and Technical Information of China (English)
ZHANG; Gang(张刚); CAO; Zhiliang(曹志良); DUAN; Wenhui(段文晖); GU; Binglin(顾秉林)
2002-01-01
We introduce local density of states in normal-conductor-superconductor compound systems and injectivity, emissivity to describe the transmission properties in these systems. Then we study the admittance of a one-channel conductor which contains a scattering region and Andreev reflection with the discrete potential model and efiective scattering approach.
National Research Council Canada - National Science Library
Zhou, Annan; Sheng, Daichao
2009-01-01
The model recently presented by Sheng, Fredlund, and Gens, known as the SFG model, provides a consistent explanation of yield stress, shear strength, and volume change behaviour of unsaturated soils...
Energy Technology Data Exchange (ETDEWEB)
Dib, Ramzi [Fachhochschule Giessen-Friedberg (Germany). Fachbereich IEM; Sassmannshausen, Achim [DB Energie GmbH, Frankfurt am Main (Germany). Energieerzeugungs- und Uebertragungssysteme; Scheel, Joerg
2010-11-15
The DB installed its fi rst high-temperature conductor in its 110 kV network in 2002. The line was designed using the standard calculation methods for the sags. In the future high-temperature conductors will be used increasingly in high-voltage grids. When operating such conductors at high currents, more precise models for calculating the sags are recommended. The method presented hereafter uses a bilinear model for representing the behaviour of bimetallic conductors at high temperatures and determines the transition point above which the steel core alone carries the mechanical load. Above the transition point the tensile force is reduced to a lower extent than by standard calculations. The sag above the transition point will be determined more precisely. (orig.)
Molecular mobility with respect to accessible volume in Monte Carlo lattice model for polymers
Diani, J.; Gilormini, P.
2017-02-01
A three-dimensional cubic Monte Carlo lattice model is considered to test the impact of volume on the molecular mobility of amorphous polymers. Assuming classic polymer chain dynamics, the concept of locked volume limiting the accessible volume around the polymer chains is introduced. The polymer mobility is assessed by its ability to explore the entire lattice thanks to reptation motions. When recording the polymer mobility with respect to the lattice accessible volume, a sharp mobility transition is observed as witnessed during glass transition. The model ability to reproduce known actual trends in terms of glass transition with respect to material parameters, is also tested.
An in vitro model of skeletal muscle volume regulation.
Directory of Open Access Journals (Sweden)
Anna Wibberley
Full Text Available Hypertonic media causes cells to shrink due to water loss through aquaporin channels. After acute shrinkage, cells either regulate their volume or, alternatively, undergo a number of metabolic changes which ultimately lead to cell death. In many cell types, hypertonic shrinkage is followed by apoptosis. Due to the complex 3D morphology of skeletal muscle and the difficulty in obtaining isolated human tissue, we have begun skeletal muscle volume regulation studies using the human skeletal muscle cell line TE671RD. In this study we investigated whether hypertonic challenge of the human skeletal muscle cell line TE671RD triggered cell death or evoked a cell volume recovery response.The cellular volume of TE671RD cells was calculated from the 2D surface area. Cell death was assessed by both the trypan blue live/dead assay and the TUNEL assay.Medium osmolality was increased by addition of up to 200 mM sucrose. Addition of 200 mM sucrose resulted in mean cell shrinkage of 44±1% after 30 mins. At later time points (2 and 4 hrs two separate cell subpopulations with differing mean cell volume became apparent. The first subpopulation (15±2% of the total cell number continued to shrink whereas the second subpopulation had an increased cell volume. Cell death was observed in a small proportion of cells (approximately 6-8%.We have established that a substantial proportion of TE671RD cells respond to hypertonic challenge with RVI, but that these cells are resistant to hypertonicity triggered cell death.
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorate (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
RELAP5/MOD3 code manual. Volume 4, Models and correlations
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-08-01
The RELAP5 code has been developed for best-estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I presents modeling theory and associated numerical schemes; Volume II details instructions for code application and input data preparation; Volume III presents the results of developmental assessment cases that demonstrate and verify the models used in the code; Volume IV discusses in detail RELAP5 models and correlations; Volume V presents guidelines that have evolved over the past several years through the use of the RELAP5 code; Volume VI discusses the numerical scheme used in RELAP5; and Volume VII presents a collection of independent assessment calculations.
Diameter structure modeling and the calculation of plantation volume of black poplar clones
Directory of Open Access Journals (Sweden)
Andrašev Siniša
2004-01-01
Full Text Available A method of diameter structure modeling was applied in the calculation of plantation (stand volume of two black poplar clones in the section Aigeiros (Duby: 618 (Lux and S1-8. Diameter structure modeling by Weibull function makes it possible to calculate the plantation volume by volume line. Based on the comparison of the proposed method with the existing methods, the obtained error of plantation volume was less than 2%. Diameter structure modeling and the calculation of plantation volume by diameter structure model, by the regularity of diameter distribution, enables a better analysis of the production level and assortment structure and it can be used in the construction of yield and increment tables.
Control volume based modelling of compressible flow in reciprocating machines
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik
2004-01-01
, and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...
EDITORIAL: Coated conductors and their applications Coated conductors and their applications
Freyhardt, Herbert C.; Lee, Dominic; Izumi, Teruo
2010-01-01
The attractive perspectives offered by coated conductors, known as the 2nd generation of high temperature superconductors (2G-HTS), have triggered broad and fruitful R&D efforts to make them ready for the marketplace. The anisotropic features of YBCO and its weak-link behavior require the processing of almost single crystalline thin films into flat tapes of coated conductors by basically two different methods: RABiTS—rolling-assisted biaxially textured substrates; and IBAD—ion-beam assisted deposition. Reliable processing technologies are now at hand, and critical current carrying capacities can be raised to almost 10-20% of the theoretically possible limit by optimizing current transfer through grain boundaries as well as flux pinning through control and design of the microstructural landscapes. The optimization of the in-field properties of the 2G-HTS wires, as well as the manufacturing of coated conductors with low ac losses and of assembled conductors for high current application remain active development areas. Cost reduction and more economic processing are still an issue. However, coated conductors are now beginning to penetrate the market, particularly for power and electrical applications, where savings in energy are essential and where the unique features of high temperature superconducting materials can be utilized. Major international conferences have followed up the progress in this exciting realm, and important workshops and discussion meetings have been held on this topic. Nonetheless, it was felt that a concise and up-to-date issue of Superconductor Science and Technology would be most welcome to summarize and collect the latest developments in processing and characterizing coated conductors, as well as drawing attention to the most innovative applications. The Guest Editors of this focus issue owe great thanks to those colleagues who were willing to contribute with their most recent findings to this issue on 'Coated conductors and their
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter.
Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-01-01
This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.
Volume-area scaling approach versus flowline model in glacier volume projections
Radic, V.; Hock, Regine; Oerlemans, J.
2007-01-01
Volume–area scaling provides a practical alternative to ice-flow modelling to account for glacier size changes when modelling the future evolution of glaciers; however, uncertainties remain as to the validity of this approach under non-steady conditions. We address these uncertainties by deriving sc
Superconducting homopolar motor and conductor development
Gubser, Donald U.
1996-10-01
The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.
Local noise in a diffusive conductor
Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.
2016-07-01
The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.
Films of Carbon Nanomaterials for Transparent Conductors
Directory of Open Access Journals (Sweden)
Jun Wei
2013-05-01
Full Text Available The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance.
Local noise in a diffusive conductor
Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.
2016-01-01
The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes. PMID:27466216
Local noise in a diffusive conductor.
Tikhonov, E S; Shovkun, D V; Ercolani, D; Rossella, F; Rocci, M; Sorba, L; Roddaro, S; Khrapai, V S
2016-07-28
The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.
Tension optimization of the conductor-and-support cable elements during stranding process
Directory of Open Access Journals (Sweden)
I.M. Chayun
2016-12-01
Full Text Available Steel lifting ropes, cables and other similar products are rod statically undeterminable prestressed structures. Preliminary deformations of their elements (wires are caused by their manufacturing technology. Wires suffer stretching, bending with torsion in a stage of elastoplastic deformation. In this work the mechanic-mathematical model of residual forces determination in the wires of polymetallic conductor-and-support cable is offered. Aim: The aim of the work is studying of the mechanical and mathematical model defining residual forces in the wires of conductor-and-support cable and also the optimization of parameters of a twist by the criterion of residual forces lack after production process finishing. Materials and methods: The method developed by the authors earlier to the study the strain-stressed state of twisted wire products off-loading from technological internal forces has been applied to assess the impact of the approximate value of the longitudinal stiffness of the product. In this paper, each wire is considered as an element of the product individually. This is necessary to investigate the impact of uneven wire tensions on defects of conductor-and-support cable (out-of-straight in a free state and stripping-down. Results: On the basis of the conducted deformation studies of conductor-and-support cable during off-loading process from twist tension of its elements the dependencies of residual forces on the level and interrelation of elements tension has been determined. The condition of ensuring of zero residual forces in the wires of conductor-and-support cable after production is formulated. It was found that calculated values of residual forces are almost identical when using of the approximate and exact values of longitudinal stiffness of conductor-and-support cable.
Ray class fields of conductor p
Stadnik, Maria
2012-01-01
We prove that (under the assumption of the generalized Riemann hypothesis) a totally real multiquadratic number field K has a positive density of primes p for which the ray class field of conductor p has an explicit description as the Hilbert class field H of K adjoin the real number \\zeta_p + \\zeta_p^{-1} if and only if K contains a unit of norm -1.
A Review of Coated Conductor Development
Institute of Scientific and Technical Information of China (English)
徐永利; 时东陆
2003-01-01
The developments of coated conductor technology have been reviewed. It is shown that the critical current density of high-Tc wires can begreatly enhanced by using three-fold approaches: grain alignment, grain boundary doping, and optimization of the grain architecture. Major advances have been made in the last16 years mainly in three aspects: substrates, buffer layers and the YBCO layer. Cost is still the main concern for scale up, especially for the approach through vapor depositions, such as the PLD method. TFA-MOD or other CSD methods may be the trend to overcome cost and speed consideration during the scale up. However, high reliability and reproducibility will be the new focus for these techniques. Ni-alloy tapes seem to have advantages over pure Ni in terms of mechanicalstrength and oxidation resistance. Depositing a pure Ni layer on top of Ni-based alloys (such as Ni-Cr and Ni-W alloys) solves the problem of low strength ofNi and poor texture of Ni alloys. The RABiTS and IBAD are the two robust approaches for the texture generation. But the buffer materials and architectures being investigated remain unclear, though CeO2/YSZ/CeO2 and MgO are commonly used buffer layers for RABiTS and IBAD respectively. For the case where a buffer layer isunavoidable, a non-vacuum process would be suitable for low cost and scale up. However, none of the buffer layer fabrication processes through CSD has been demonstrated results good enough for long length coated conductor applications. While, a high Jc superconducting layer can be produced by TFA-MOD, which brings a bright future for coated conductors. Clearly, there are still many scientific and technological barriers to be overcome before any long length of high Jc coated conductor be produced commercially. But theoretical analyses and technological progress show the potential for the practical application of coatedconductor wires in the near future.
AA, inner conductor of a magnetic horn
CERN PhotoLab
1981-01-01
At the start-up of the AA and during its initial operation, magnetic horns focused the antiprotons emanating from the production target. These "current-sheet lenses" had a thin inner conductor (for minimum absorption of antiprotons), machined from aluminium to wall thicknesses of 0.7 or 1 mm. The half-sine pulses rose to 150 kA in 8 microsec. The angular acceptance was 50 mrad.
Current-Induced Effects in Nanoscale Conductors
2005-01-01
We present an overview of current-induced effects in nanoscale conductors with emphasis on their description at the atomic level. In particular, we discuss steady-state current fluctuations, current-induced forces, inelastic scattering and local heating. All of these properties are calculated in terms of single-particle wavefunctions computed using a scattering approach within the static density-functional theory of many-electron systems. Examples of current-induced effects in atomic and mole...
Hall effect in organic layered conductors
Directory of Open Access Journals (Sweden)
R.A.Hasan
2006-01-01
Full Text Available The Hall effect in organic layered conductors with a multisheeted Fermi surfaces was considered. It is shown that the experimental study of Hall effect and magnetoresistance anisotropy at different orientations of current and a quantizing magnetic field relative to the layers makes it possible to determine the contribution of various charge carriers groups to the conductivity, and to find out the character of Fermi surface anisotropy in the plane of layers.
Plasmastatic model of toroidal trap “Galatea-belt”
Brushlinskii, K. V.; Goldich, A. S.
2017-01-01
Magnetic galatea-traps for thermonuclear plasma confinement with current carrying conductors immersed into the plasma volume, are represented by an example of the toroidal trap “The Belt” with two circular conductors. Numerical models of equilibrium plasma and field configurations are investigated in straightened into cylinder analogues of some toroidal galateas in a series of works by the authors. This paper presents a plasmastatic model of configurations in the toroidal variant of “The Belt” in terms of a boundary problem with the Grad-Shafranov equation. Distinctions of their geometry and quantitative characteristics from the cylindrical analogues and their dependence of parameters are determined in computation.
Directory of Open Access Journals (Sweden)
Francisco J. Martos
2012-01-01
Full Text Available Dos mil cinco conductores, 1204 hombres y 801 mujeres, una muestra representativa de la población española de conductores, fueron nuevamente examinados utilizando un cuestionario que reproducía fielmente un examen de conducir realizado por la Dirección General de Tráfico (DGT. Las preguntas fueron clasificadas en"“muy importantes", "importantes" y "poco importantes". El 96.5 % de los conductores, suspendió el examen. Los resultados eran tanto peores cuanto más tiempo había transcurridodesde la obtención del permiso de conducir. Esto era independiente de la importancia de las preguntas, de la mayor o menor frecuencia de conducción y afectaba por igual a hombres y mujeres. Las mujeres obtienen mejores puntuaciones en señalización mientras que los hombres son mejores en las preguntas de seguridad vial. Los resultados también demostraban que los conductores profesionales y los de mayor nivel educativo sufren un menor deterioro. Tales resultados nos llevan a considerar la relación que estos datos puedan tener en los niveles de accidentalidad y la conveniencia de establecer pautas para la actualización del conocimiento de los conductores. Finalmente, se discute la relevancia que el examen que se utiliza para obtener el permiso de conducir tiene como indicador o predictor de una futura conducción segura.
Testing of the 3M Company Composite Conductor
Energy Technology Data Exchange (ETDEWEB)
Stovall, John P [ORNL; Rizy, D Tom [ORNL; Kisner, Roger A [ORNL
2010-10-01
The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum-Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors. The objective of this work is to accelerate the commercial acceptance by electric utilities of this new conductor design by testing four representative conductor classes in controlled conditions. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have been installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by the 3M Company have been successfully test at ORNL small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.
Antarctic ice volume for the last 740 ka calculated with a simple ice sheet model
Oerlemans, J.
2005-01-01
Fluctuations in the volume of the Antarctic ice sheet for the last 740 ka are calculated by forcing a simple ice sheet model with a sea-level history (from a composite deep sea δ18O record) and a temperature history (from the Dome C deuterium record). Antarctic ice volume reaches maximum values of a
Variation in Measurements of Transtibial Stump Model Volume A Comparison of Five Methods
Bolt, A.; de Boer-Wilzing, V. G.; Geertzen, J. H. B.; Emmelot, C. H.; Baars, E. C. T.; Dijkstra, P. U.
2010-01-01
Objective: To determine the right moment for fitting the first prosthesis, it is necessary to know when the volume of the stump has stabilized. The aim of this study is to analyze variation in measurements of transtibial stump model volumes using the water immersion method, the Design TT system, the
Directory of Open Access Journals (Sweden)
Carlos Alberto Martinelli de Souza
2009-10-01
Full Text Available This work aimed to evaluate different taper models in the estimate of the merchantable height and volume and along the bole volumes of Eucalyptus sp., to the obtention of multiproducts. Considering the data of rigorous scaling of trees of Eucalyptus sp. with 16 years-old, it was appraised the models of taper of Demaerschalk (1972, Ormerod (1973, Schöepfer (1966, Hradetzky (1976, Garay (1979 and Biging (1984. Based on graphical analysis of the residues and on the statistics bias (B, average of the differences (MD and deviation pattern of the differences (DPD, it could be verified that, in the estimate of the merchantable height and volume of the models, Biging, Schöepfer and Hradetzky presented the best results, followed by the models of Garay, which have also shown good results. In general, considering the treatment of the volumes of the logs, the Biging model presented the best resuts.
Directory of Open Access Journals (Sweden)
Lihua Yang
2015-04-01
Full Text Available Export volume forecasting of fresh fruits is a complex task due to the large number of factors affecting the demand. In order to guide the fruit growers’ sales, decreasing the cultivating cost and increasing their incomes, a hybrid fresh apple export volume forecasting model is proposed. Using the actual data of fresh apple export volume, the Seasonal Decomposition (SD model of time series and Radial Basis Function (RBF model of artificial neural network are built. The predictive results are compared among the three forecasting model based on the criterion of Mean Absolute Percentage Error (MAPE. The result indicates that the proposed combined forecasting model is effective because it can improve the prediction accuracy of fresh apple export volumes.
Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System
Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.
2005-01-01
In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.
Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-01-01
The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.
Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ
DEFF Research Database (Denmark)
Sing, M.; Schwingenschlögl, U.; Claessen, R.;
2003-01-01
We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative...
NONEQUILIBRIUM DISTRIBUTION OF EDGE AND BULK CURRENT IN A QUANTUM HALL CONDUCTOR
VANSON, PC; DEVRIES, FW; KLAPWIJK, TM
1991-01-01
A quantitative model is presented that accounts for the experimental observation that four-terminal resistances of a high-mobility quantum Hall conductor cannot be related directly to a single resistivity tensor. The key ingredient is that the highest (partly occupied) Landau level is completely dec
Solution Fabrication of a Superconducting MgB2 Coated Conductor on Stainless Steel
Institute of Scientific and Technical Information of China (English)
WANG Yin-Bo; CHEN Li-Ping; ZHANG Chen; WANG Yue; GUO Zheng-Shan; CHEN Yi-Ling; FENG Qing-Rong; GAN Zi-Zhao
2012-01-01
We report the solution fabrication of a MgB2 coated conductor on a stainless steel substrate. The precursor solution of Mg(BH4)2 diethyl ether is initially synthesized by refluxing the milled mixture of NaBH4 and MgCl2 in diethyl ether. Then the Mg(BH4)2 diethyl ether is spin coated on a stainless steel substrate and annealed in Mg vapor, which yields a homogeneous MgB2 coated conductor. X-ray diffraction indicates that the grown MgB2 coated conductor is polycrystalline. It has a superconducting transition temperature of 34-37K. The slope of the upper critical field Hc2 increases with decreasing temperature, and the extrapolated value of Hc2 (0) reaches ~28T. The critical current density estimated by the Bean model is Jc (25K, 0T)~106 A·cm-2. These parameters indicate that the solution method is potentially able to produce MgB2 coated conductors that can satisfy application purposes.%We report the solution fabrication of a MgB2 coated conductor on a stainless steel substrate.The precursor solution of Mg(BH4 )2 diethyl ether is initially synthesized by refluxing the milled mixture of NaBH4 and MgCl2 in diethyl ether.Then the Mg(BH4)2 diethyl ether is spin coated on a stainless steel substrate and annealed in Mg vapor,which yields a homogeneous MgB2 coated conductor.X-ray diffraction indicates that the grown MgB2 coated conductor is polycrystalline.It has a superconducting transition temperature of 34-37K.The slope of the upper critical field HC2 increases with decreasing temperature,and the extrapolated value of Hc2 (0)reaches ～28 T.The critical current density estimated by the Bean model is JC (25K,0 T)～1 06 A.cm-2.These parameters indicate that the solution method is potentially able to produce MgB2 coated conductors that can satisfy application purposes.
Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.
Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing
2013-09-11
The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire.
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
Energy Technology Data Exchange (ETDEWEB)
Li, Bin [Electrical and Computer Engineering Department, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Fontecchio, Adam K. [Electrical and Computer Engineering and Materials Science and Engineering Departments, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Visell, Yon [Electrical and Computer Engineering Department, Media Arts and Technology, California NanoSystems Institute, University of California, Santa Barbara, California 93106 (United States)
2016-01-04
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.
Efficient high-volume cataract services: the Aravind model
Directory of Open Access Journals (Sweden)
Thulasiraj Ravilla
2014-04-01
Full Text Available Aravind Eye Care System began as an 11-bed eye clinic in 1976. Over the last 36 years, over 40 million outpatient examinations have been performed and over 5 million patients have undergone eye surgery or laser procedures. Aravind, with its mission to ‘eliminate needless blindness’, has been able to achieve this by adhering to the principle of providing large volume, high quality and affordable services in a financially sustainable manner both for the patients and for Aravind. Much importance is given to equity – ensuring that all patients are accorded the same high quality care and service, regardless of their economic status.
DEVELOPMENT OF DETENTION VOLUME MODEL FOR DETENTION PONDS WITH LONG-DURATION RAINFALL
Institute of Scientific and Technical Information of China (English)
Jen-Yan CHEN; Hong-Yu CHEN; Jung-Yi CHANG
2004-01-01
The detention pond is one of the crucial items in detention facilities. It may effectively alleviate the occurrence of peak discharge, control the center of flood flow, and reduce the amount of soil loss. The objective of this study is analyzing the detention volume change of a detention pond with long-duration rainfall under the known isosceles trapezoidal inflow hydrograph model. The volume change of detention, which is under the influences of a given isosceles trapezoidal inflow hydrograph and the extent of peak attenuation, is investigated by using the non-dimensional detention theory and the related mathematical analyses. The minimum detention volume of a detention pond can therefore be calculated based on the estimated of volume change of detention. The proposed detention volume estimation model can be used for the design of detention of facilities during the hillside development.
Lattice approach to finite volume form-factors of the Massive Thirring (Sine-Gordon) model
Hegedűs, Árpád
2017-08-01
In this paper we demonstrate, that the light-cone lattice approach for the Massive-Thirring (sine-Gordon) model, through the quantum inverse scattering method, admits an appropriate framework for computing the finite volume form-factors of local operators of the model. In this work we compute the finite volume diagonal matrix elements of the U(1) conserved current in the pure soliton sector of the theory. Based on the systematic large volume expansion of our results, we conjecture an exact expression for the finite volume expectation values of local operators in pure soliton states. At large volume in leading order these expectation values have the same form as in purely elastic scattering theories, but exponentially small corrections differ from previous Thermodynamic Bethe Ansatz conjectures of purely elastic scattering theories.
Mendoza, Carlos I; Santamaría-Holek, I
2009-01-28
We propose a simple and general model accounting for the dependence of the viscosity of a hard sphere suspension at arbitrary volume fractions. The model constitutes a continuum-medium description based on a recursive-differential method where correlations between the spheres are introduced through an effective volume fraction. In contrast to other differential methods, the introduction of the effective volume fraction as the integration variable implicitly considers interactions between the spheres of the same recursive stage. The final expression for the viscosity scales with this effective volume fraction, which allows constructing a master curve that contains all the experimental situations considered. The agreement of our expression for the viscosity with experiments at low- and high-shear rates and in the high-frequency limit is remarkable for all volume fractions.
Directory of Open Access Journals (Sweden)
Mei Guangyi
Full Text Available A systematic evaluation of nonlinear mixed-effect taper models for volume prediction was performed. Of 21 taper equations with fewer than 5 parameters each, the best 4-parameter fixed-effect model according to fitting statistics was then modified by comparing its values for the parameters total height (H, diameter at breast height (DBH, and aboveground height (h to modeling data. Seven alternative prediction strategies were compared using the best new equation in the absence of calibration data, which is often unavailable in forestry practice. The results of this study suggest that because calibration may sometimes be a realistic option, though it is rarely used in practical applications, one of the best strategies for improving the accuracy of volume prediction is the strategy with 7 calculated total heights of 3, 6 and 9 trees in the largest, smallest and medium-size categories, respectively. We cannot use the average trees or dominant trees for calculating the random parameter for further predictions. The method described here will allow the user to make the best choices of taper type and the best random-effect calculated strategy for each practical application and situation at tree level.
Guangyi, Mei; Yujun, Sun; Hao, Xu; de-Miguel, Sergio
2015-01-01
A systematic evaluation of nonlinear mixed-effect taper models for volume prediction was performed. Of 21 taper equations with fewer than 5 parameters each, the best 4-parameter fixed-effect model according to fitting statistics was then modified by comparing its values for the parameters total height (H), diameter at breast height (DBH), and aboveground height (h) to modeling data. Seven alternative prediction strategies were compared using the best new equation in the absence of calibration data, which is often unavailable in forestry practice. The results of this study suggest that because calibration may sometimes be a realistic option, though it is rarely used in practical applications, one of the best strategies for improving the accuracy of volume prediction is the strategy with 7 calculated total heights of 3, 6 and 9 trees in the largest, smallest and medium-size categories, respectively. We cannot use the average trees or dominant trees for calculating the random parameter for further predictions. The method described here will allow the user to make the best choices of taper type and the best random-effect calculated strategy for each practical application and situation at tree level.
Fixed site neutralization model programmer's manual. Volume II
Energy Technology Data Exchange (ETDEWEB)
Engi, D.; Chapman, L.D.; Judnick, W.; Blum, R.; Broegler, L.; Lenz, J.; Weinthraub, A.; Ballard, D.
1979-12-01
This report relates to protection of nuclear materials at nuclear facilities. This volume presents the source listings for the Fixed Site Neutralization Model and its supporting modules, the Plex Preprocessor and the Data Preprocessor. (DLC)
46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Equipment safety grounding (bonding) conductors. 111.05... § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor must... 110.10-1). (b) Each equipment-grounding conductor (other than a system-grounding conductor) of a...
Transport AC Losses in Striated YBCO Coated Conductors (Postprint)
2012-02-01
AFRL-RZ-WP-TP-2012-0124 TRANSPORT AC LOSSES IN STRIATED YBCO COATED CONDUCTORS (POSTPRINT) G.A. Levin and P.N. Barnes Mechanical Energy...TRANSPORT AC LOSSES IN STRIATED YBCO COATED CONDUCTORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...2006. 14. ABSTRACT DC current-voltage characteristics and transport ac losses of striated and non-striated Y1Ba2Cu3O7-δ ( YBCO ) coated conductors
Glowacki, B A; Majoros, M
2009-06-24
Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.
Energy Technology Data Exchange (ETDEWEB)
None
1996-12-01
Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.
Energy Technology Data Exchange (ETDEWEB)
None
1996-11-01
Volume VI of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the groundwater flow model data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.
Statistical Modeling of Ultrawideband Body-Centric Wireless Channels Considering Room Volume
Directory of Open Access Journals (Sweden)
Miyuki Hirose
2012-01-01
Full Text Available This paper presents the results of a statistical modeling of onbody ultrawideband (UWB radio channels for wireless body area network (WBAN applications. Measurements were conducted in five different rooms. A measured delay profile can be divided into two domains; in the first domain (04 ns has multipath components that are dominant and dependent on room volume. The first domain was modeled with a conventional power decay law model, and the second domain with a modified Saleh-Valenzuela model considering the room volume. Realizations of the impulse responses are presented based on the composite model and compared with the measured average power delay profiles.
Magnetically Guiding Atoms with Current-Carrying Conductors
Institute of Scientific and Technical Information of China (English)
刘南春; 高伟建; 印建平
2002-01-01
We propose a novel magnetic guide for cold neutral atoms using some current-carrying conductors. The spatial distributions of the magnetic fields from a V-shaped or U-shaped current-carrying conductor are calculated, and the relationship between the resulting magnetic field and the parameters of the current-carrying conductors is analysed in detail. The result shows that these current-carrying conductors can be used to realize a single or a controllable double magnetic guide of cold atoms in the weak-field-seeking state, and to construct various atom-optical elements, and even to realize a single-mode atomic waveguiding under certain conditions.
First qualification of ITER Toroidal Field Coil conductor jacketing
Energy Technology Data Exchange (ETDEWEB)
Hamada, Kazuya, E-mail: hamada.kazuya@jaea.go.jp [Japan Atomic Energy Agency (Japan); Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; Okuno, Kiyoshi [Japan Atomic Energy Agency (Japan); Matsuda, Hidemitsu; Yano, Yoshitaka [Nippon Steel Engineering Co. Ltd (Japan); Devred, Arnauld; Bessette, Denis [ITER Organization (France)
2011-10-15
The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field Coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA started to produce strand, cables and jacket sections and to construct a conductor manufacturing (jacketing) facility in 2008. Following preparation in December 2009 of the jacketing facility, the dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling, JAEA manufactured a 760 m long Cu dummy conductor for process qualification. Into the 760 m long Cu dummy conductor jacketing, JAEA successfully inserted the cable with a maximum force of 32 kN. The outer diameter of the cross section of the spooled conductor was 43.7 {+-} 0.15 mm, which complies with the ITER target requirement of 43.7 {+-} 0.3 mm. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.
Ionic polymeric conductor nanocomposites (IPCNCs) as distributed nanosensors and nanoactuators.
Shahinpoor, Mohsen
2008-09-01
This paper covers advances made in connection with ionic polymeric conductor nanocomposites (IPCNCs) as distributed biomimetic nanosensors, nanoactuators, nanorobots and artificial muscles. A review of the fundamental properties and characteristics of IPCNCs will be presented first. This summary will include descriptions of the basic materials' molecular structure and subsequent procedure to manufacture the basic material for chemical plating and electroactivation. Further described are chemical molecular plating technologies to make IPCNCs; nanotechnologies of manufacturing and trapping of nanoparticles; SEM, TEM, SPM and AFM characterization of IPMNCs; biomimetic sensing and actuation characterization techniques; electrical characterization; and equivalent circuit modeling of IPCNCs as electronic materials. A phenomenological model of the underlying sensing and actuation mechanisms is also presented based on linear irreversible thermodynamics with two driving forces, an electric field and a solvent pressure gradient and two fluxes, electric current density and the ionic+solvent flux.
[Modeling and analysis of volume conduction based on field-circuit coupling].
Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming
2012-08-01
Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.
PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL
Institute of Scientific and Technical Information of China (English)
H.W.Yang; D.P.Tao; Z.H.Zhou
2008-01-01
The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.
Directory of Open Access Journals (Sweden)
Leyzgold D.Yu.
2015-04-01
Full Text Available This article studies the problem of the transmission line conductor heating effect on the active power flows optimization in the local segment of industrial power supply. The purpose is to determine the optimal generation rating of the distributed power sources, in which the power flow values will correspond to the minimum active power losses in the power supply. The timeliness is the need to define the most appropriate rated power values of distributed sources which will be connected to current industrial power supply. Basing on the model of active power flow optimization, authors formulate the description of the nonlinear transportation problem considering the active power losses depending on the transmission line conductor heating. Authors proposed a new approach to the heating model parameters definition based on allowable current loads and nominal parameters of conductors as part of the optimization problem. Analysis of study results showed that, despite the relatively small active power losses reduction to the tune 0,45% due to accounting of the conductors heating effect for the present configuration of power supply, there are significant fluctuations in the required generation rating in nodes of the network to 9,32% within seasonal changes in the outer air temperature. This fact should be taken into account when selecting the optimum power of distributed generation systems, as exemplified by an arbitrary network configuration.
The Famous Conductor,VuZhu Dokyi
Institute of Scientific and Technical Information of China (English)
1996-01-01
VUzhu Dokyi,now the head of the Tibetan Song and Dance Ensemble is a second-grade conductor of the state,a member of Chinese Musicians’Association,the vice-president of Tibetan Musicians’Association and a council member of the Chinese Chorus Artists’Association.In 1960 he was admitted to the Tianjin Conservatory of Music and followed Qiu Jianhua,the famous music educator,to learn violin.After graduation,he was first violin in the Tibetan Song and Dance Ensemble Orchestra.
Precision gold conductors for HMCs. Final report
Energy Technology Data Exchange (ETDEWEB)
Widmer, M.R.
1994-08-01
Ti/Pd/Au multiple code coded switch (MCCS) networks were built and compared to Cr/Au MCCS networks. The data showed no measurable difference between the two systems. Interface resistance of both types of networks was measured as a diagnostic aid to determine if hydrogen was affecting the Ti/Pd/Au MCCS networks. The data showed that although hydrogen does affect Ti/Pd/Au, the changes are not significant with respect to MCCS environments. An evaluation of several proprietary gold electroplating solutions for use in the production of Ti/Pd/Au conductors was performed. All the testing results were comparable to the current product requirements.
AA, Inner Conductor of Magnetic Horn
CERN PhotoLab
1979-01-01
Antiprotons emerging at large angles from the production target (hit by an intense 26 GeV proton beam from the PS), were focused into the acceptance of the injection line of the AA by means of a "magnetic horn" (current-sheet lens). Here we see an early protype of the horn's inner conductor, machined from solid aluminium to a thickness of less than 1 mm. The 1st version had to withstand pulses of 150 kA, 15 us long, every 2.4 s. See 8801040 for a later version.
30 CFR 56.12010 - Isolation or insulation of communication conductors.
2010-07-01
... conductors. 56.12010 Section 56.12010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12010 Isolation or insulation of communication conductors. Telephone and low... energized power conductors or any other power source....
Volume and aboveground biomass models for dry Miombo woodland in Tanzania
DEFF Research Database (Denmark)
Mwakalukwa, Ezekiel Edward; Meilby, Henrik; Treue, Thorsten
2014-01-01
Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume...... and biomass of three important species, Brachystegia spiciformis Benth. (n=40), Combretum molle G. Don (n=41), and Dalbergia arbutifolia Baker (n=37) separately, and for broader samples of trees (28 species, n=72), shrubs (16 species, n=31), and trees and shrubs combined (44 species, n=104). Applied...... of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had R2 values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges....
Measurement and modeling of advanced coal conversion processes, Volume III
Energy Technology Data Exchange (ETDEWEB)
Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others
1993-08-01
A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.
Measurement and modeling of advanced coal conversion processes, Volume II
Energy Technology Data Exchange (ETDEWEB)
Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others
1993-06-01
A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.
Model refinements of transformers via a subproblem finite element method
Dular, Patrick; Kuo-Peng, Patrick; Ferreira Da Luz, Mauricio,; Krähenbühl, Laurent
2015-01-01
International audience; A progressive modeling of transformers is performed via a subproblem finite element method. A complete problem is split into subproblems with different adapted overlapping meshes. Model refinements are performed from ideal to real flux tubes, 1-D to 2-D to 3-D models, linear to nonlinear materials, perfect to real materials, single wire to volume conductor windings, and homogenized to fine models of cores and coils, with any coupling of these changes. The proposed unif...
Directory of Open Access Journals (Sweden)
Arschang eValipour
2012-10-01
Full Text Available Rationale: In clinical trials, homogeneous emphysema patients have responded well to upper lobe volume reduction but not lower lobe volume reduction. Materials/Methods: To understand the physiological basis for this observation, a computer model was developed to simulate the effects of upper and lower lobe lung volume reduction on RV/TLC and lung recoil in homogeneous emphysema.Results: Patients with homogeneous emphysema received either upper or lower lobe volume reduction therapy based on findings of radionucleotide scintigraphy scanning. CT analysis of lobar volumes showed that patients undergoing upper (n=18; -265 mL/site and lower lobe treatment (n=11; -217 mL/site experienced similar reductions in lung volume. However, only upper lobe treatment improved FEV1 (+11.1±14.7% vs -4.4±15.8% and RV/TLC (-5.4± 8.1% vs -2.4±8.6%. Model simulations provided an unexpected explanation for this response. Increases in transpulmonary pressure subsequent to volume reduction increased RV/TLC in upper lobe alveoli, while caudal shifts in airway closure decreased RV/TLC in lower lobe alveoli. Upper lobe treatment, which eliminates apical alveoli with high RV/TLC values, lowers the average RV/TLC of the lung. Conversely, lower lobe treatment, which eliminates caudal alveoli with low RV/TLC values, has less effect. Conclusions: Lower lobe treatment in homogeneous emphysema is uniformly less effective than upper lobe treatment.
Testing of the 3M Company ACCR Conductor
Energy Technology Data Exchange (ETDEWEB)
Stovall, J.P.; RIzy, D.T.; Kisner, R.A.; Deve, H.E. (3M Comp.)
2010-09-15
The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum- Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors so the core has a lower density and higher conductivity. The objective of this work is to accelerate the commercial acceptance by electric utilities of these new conductor designs by testing four representative conductor classes in controlled conditions. Overhead transmission lines use bare aluminum conductor strands wrapped around a steel core strands to transmit electricity. The typical cable is referred to as aluminum-conductor steel-reinforced (ACSR). The outer strands are aluminum, chosen for its conductivity, low weight, and low cost. The center strand is of steel for the strength required to support the weight without stretching the aluminum due to its ductility. The power density of a transmission corridor has been directly increased by increasing the voltage level. Transmission voltages have increased from 115-kV to 765- kV over the past 80 years. In the United States, further increasing the voltage level is not feasible at this point in time, so in order to further increase the power density of a transmission corridor, conductor designs that increase the current carrying capability have been examined. One of the key limiting factors in the design of a transmission line is the conductor sag which determines the clearance of the conductor above ground or underlying structures needed for electrical safety. Increasing the current carrying capability of a conductor increases the joule heating in the conductor which increases the conductor sag. A conductor designed for high-temperature and lowsag operation requires an engineered modification of the conductor materials. To make an advanced cable, the 3M Company solution has been the development of a composite conductor consisting of Nextel ceramic fibers to replace the steel core and
The average free volume model for the ionic and simple liquids
Yu, Yang
2014-01-01
In this work, the molar volume thermal expansion coefficient of 60 room temperature ionic liquids is compared with their van der Waals volume Vw. Regular correlation can be discerned between the two quantities. An average free volume model, that considers the particles as hard core with attractive force, is proposed to explain the correlation in this study. Some typical one atom liquids (molten metals and liquid noble gases) are introduced to verify this hypothesis. Good agreement between the theory prediction and experimental data can be obtained.
Cluster-Based Pavement Deterioration Models for Low-Volume Rural Roads
Sunitha, V.; Veeraragavan, A.; Karthik K. Srinivasan; Samson Mathew
2012-01-01
The management of low-volume rural roads in developing countries presents a range of challenges to road designers and managers. Rural roads comprise over 85 percent of the road network in India. The present study aims at development of deterioration models for the optimum maintenance management of the rural roads under a rural road programme namely Pradhan Mantri Gram Sadak Yojana (PMGSY) in India. Visual condition survey along the selected low-volume rural roads considers parameters like con...
Solution Fabrication of a Superconducting MgB2 Coated Conductor on Stainless Steel
Wang, Yin-Bo; Chen, Li-Ping; Zhang, Chen; Wang, Yue; Guo, Zheng-Shan; Chen, Yi-Ling; Feng, Qing-Rong; Gan, Zi-Zhao
2012-04-01
We report the solution fabrication of a MgB2 coated conductor on a stainless steel substrate. The precursor solution of Mg(BH4)2 diethyl ether is initially synthesized by refluxing the milled mixture of NaBH4 and MgCl2 in diethyl ether. Then the Mg(BH4)2 diethyl ether is spin coated on a stainless steel substrate and annealed in Mg vapor, which yields a homogeneous MgB2 coated conductor. X-ray diffraction indicates that the grown MgB2 coated conductor is polycrystalline. It has a superconducting transition temperature of 34-37 K. The slope of the upper critical field HC2 increases with decreasing temperature, and the extrapolated value of HC2(0) reaches ~28 T. The critical current density estimated by the Bean model is JC(25K, 0T)~106 A·cm-2. These parameters indicate that the solution method is potentially able to produce MgB2 coated conductors that can satisfy application purposes.
Maximum permissible voltage of YBCO coated conductors
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.
2014-06-01
Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
Maximum permissible voltage of YBCO coated conductors
Energy Technology Data Exchange (ETDEWEB)
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)
2014-06-15
Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
Novel processing of HTS based conductors
Ginley, D. S.; Venturini, E. L.; Kwak, J. F.; Baughman, R. J.; Bourcier, R. J.; Mitchell, M. A.; Morosin, B.; Halloran, J. W.; Neal, N. J.; Capone, D. W.
1990-04-01
Conductor development is one of the major long term goals in high temperature superconductor research. Two promising processing technologies that were utilized to produce superconducting HTS conductors are reported. First, melt spun YBa2Cu3O7 fibers rapid thermal processed for 1 to 8 sec at 950 to 1075 C have (Tc)'s to 92 K, J(sub c)'s to 1100 A/sq cm and the orthorhombic twinned morphology typical for high quality YBa2Cu3O7. A processing matrix of time, temperature and composition for these fibers shows that slightly CuO-rich starting compositions give the best results. Second, silver tube encapsulated wires of Bi(1.7)Pb(0.3)Sr2Ca2Cu3O10 were made by extrusion, wire drawing and cold rolling. The resulting tapes show orientation of the crystallites, zero resistance up to 100 K and improved magnetic hysteresis above 50 K. The combination of mechanical reprocessing and extended thermal anneals near 850 C appears to significantly improve these materials.
Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes
Lewis, Timothy A.
2016-01-01
With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.
Effect of annular secondary conductor in a linear electromagnetic stirrer
Indian Academy of Sciences (India)
R Madhavan; V Ramanarayanan
2008-10-01
This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder. Experimental and numerical simulations are performed for a 2-pole in house built 15 kW linear electromagnetic stirrer (EMS). It is observed for a supply current of 200 A at 30 Hz the force densities in the hollow annular ring is 67% higher than the equivalent solid cylinder. The same values are 33% for annular ring with a solid cylinder. Force density variation with supply frequency and current are also reported. Numerical simulations using ﬁnite element model are validated with experimental results.
Recreation of architectural structures using procedural modeling based on volumes
Directory of Open Access Journals (Sweden)
Santiago Barroso Juan
2013-11-01
Full Text Available While the procedural modeling of buildings and other architectural structures has evolved very significantly in recent years, there is noticeable absence of high-level tools that allow a designer, an artist or an historian, creating important buildings or architectonic structures in a particular city. In this paper we present a tool for creating buildings in a simple and clear, following rules that use the language and methodology of creating their own buildings, and hiding the user the algorithmic details of the creation of the model.
The Identification of Conductor-Distinguished Functions of Conducting
Gumm, Alan J.; Battersby, Sharyn L.; Simon, Kathryn L.; Shankles, Andrew E.
2011-01-01
The purpose of the present study was to identify whether conductors distinguish functions of conducting similarly to functions implied in previous research. A sample of 84 conductors with a full range of experience levels (M = 9.8) and of a full range of large ensemble types and ensemble age levels rated how much they pay attention to 82…
Elastically stretchable thin film conductors on an elastomeric substrate
Jones Harris, Joyelle Elizabeth
Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.
Organic Conductors: Evidence for Correlation Effects in Infrared Properties
DEFF Research Database (Denmark)
Jacobsen, Claus Schelde; Johannsen, Ib; Bechgaard, Klaus
1984-01-01
The infrared conductivities of four organic conductors with partially filled one-electron bands are compared. The behavior ranges from near Drude type in the best metal to semiconductorlike in the moderate conductor. Electron-molecular-vibration coupling effects of varying degree are seen in all...
Multi-Volume CAD Modeling for Heterogeneous Object Design and Fabrication
Institute of Scientific and Technical Information of China (English)
SUN Wei
2000-01-01
he current computer-aided technologies in design and product development, the evolution of CAD modeling, and a framework of multi-volume CAD modeling system for heterogeneous object design and fabrication are presented in this paper.The multi-volume CAD modeling system is presented based on nonmanifold topological elements. Material identifications are defined as design attributes introduced along with geometric and topological information at the design stage. Extended Euler operation and reasoning Boolean operations for merging and extraction are executed according to the associated material identifications in the developed multi-volume modeling system for heterogeneous object.An application example and a pseudo-processing algorithm for prototyping of heterogeneous structure through solid free-form fabrication are also described.1
High-Resolution Finite Volume Modeling of Wave Propagation in Orthotropic Poroelastic Media
Lemoine, Grady I; LeVeque, Randall J
2012-01-01
Poroelasticity theory models the dynamics of porous, fluid-saturated media. It was pioneered by Maurice Biot in the 1930s through 1960s, and has applications in several fields, including geophysics and modeling of in vivo bone. A wide variety of methods have been used to model poroelasticity, including finite difference, finite element, pseudospectral, and discontinuous Galerkin methods. In this work we use a Cartesian-grid high-resolution finite volume method to numerically solve Biot's equations in the time domain for orthotropic materials, with the stiff relaxation source term in the equations incorporated using operator splitting. This class of finite volume method has several useful properties, including the ability to use wave limiters to reduce numerical artifacts in the solution, ease of incorporating material inhomogeneities, low memory overhead, and an explicit time-stepping approach. To the authors' knowledge, this is the first use of high-resolution finite volume methods to model poroelasticity. T...
Volume Sculpting: Intuitive, Interactive 3D Shape Modelling
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas
A system for interactive modelling of 3D shapes on a computer is presented. The system is intuitive and has a flat learning curve. It is especially well suited to the creation of organic shapes and shapes of complex topology. The interaction is simple; the user can either add new shape features...
Storm Water Management Model Reference Manual Volume I, Hydrology
SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and gene...
Lanchester-Type Models of Warfare. Volume II
1980-10-01
verification of combat models are as follows: 594 (1) principle of uniformitarianism does not hold, (2) systems are only partially observable, (3...the principle of uniformitarianism , which holds that physical and biological process- es, conditions, and operations do not change over time (i.e. uni
High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-01-01
The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.
Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II
Energy Technology Data Exchange (ETDEWEB)
Manohar Motwani
2011-09-01
Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.
Storm Water Management Model Reference Manual Volume II – Hydraulics
SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and gene...
Directory of Open Access Journals (Sweden)
Aaron Smith
2014-12-01
Full Text Available The accurate characterization of three-dimensional (3D root architecture, volume, and biomass is important for a wide variety of applications in forest ecology and to better understand tree and soil stability. Technological advancements have led to increasingly more digitized and automated procedures, which have been used to more accurately and quickly describe the 3D structure of root systems. Terrestrial laser scanners (TLS have successfully been used to describe aboveground structures of individual trees and stand structure, but have only recently been applied to the 3D characterization of whole root systems. In this study, 13 recently harvested Norway spruce root systems were mechanically pulled from the soil, cleaned, and their volumes were measured by displacement. The root systems were suspended, scanned with TLS from three different angles, and the root surfaces from the co-registered point clouds were modeled with the 3D Quantitative Structure Model to determine root architecture and volume. The modeling procedure facilitated the rapid derivation of root volume, diameters, break point diameters, linear root length, cumulative percentages, and root fraction counts. The modeled root systems underestimated root system volume by 4.4%. The modeling procedure is widely applicable and easily adapted to derive other important topological and volumetric root variables.
Overcurrent experiments on HTS tape and cable conductor
DEFF Research Database (Denmark)
Tønnesen, Ole; Jensen, Kim Høj; Træholt, Chresten;
2001-01-01
their critical current. In this light, it is important to investigate the response of HTS tapes and cable conductors to overcurrents several times the critical current. A number of experiments have been performed on HTS tapes and cable conductors, with currents up to 20 times the critical current. During...... overcurrent experiments, the voltage, and the temperature were measured as functions of time in order to investigate the dynamic behavior of the HTS tape and cable conductor. After each experiment, damage to the superconductors was assessed by measuring the critical current. Preliminary results show...... that within seconds an HTS tape (critical current=17 A) heats above room temperature with an overcurrent larger than 140 A. Similar overcurrent experiments showed that a HTS cable conductor could sustain damage with overcurrents exceeding 10 times the critical current of the cable conductor....
Analysis on Critical Anti-icing Current of Conductor and Its Impacting Factors%导线临界防冰电流及其影响因素分析
Institute of Scientific and Technical Information of China (English)
蒋兴良; 兰强; 毕茂强
2012-01-01
Conductor icing is one of major factors which affect the safe operation of the transmission line, and the anti-icing method based on the Joule heating effect is feasible and effective. Taking the skin effect, the effect of geometric shapes, and water film covering conductors on heat transfer process into consideration, we established a mathematical model of critical anti-icing current on the basis of Joule heating effect and the heat transfer process of conductor under critical icing condition, and its calculations were consistent with the test results in artificial climate chamber. The proposed model is more accurate compared with other current models. We also studied the effects of the geometrical parameters of conductor, environment temperature, wind velocity, liquid water content （LWC）, and median volume diameter（MVD） on critical anti-icing current of conductor. The simulation results show that the critical current increases rapidly with decreasing temperature, and increases rapidly with increasing wind velocity. The critical current slowly increases with increasing LWC, and increases slowly with increasing MVD when MVD is in the range of 0-100 μm.%导线覆冰是影响输电线路安全运行的主要问题之一,基于焦耳热效应的临界电流防冰方法可行且有效。为此,基于焦耳热效应和导线在临界覆冰状态下的传热过程,并考虑了集肤效应、导线几何外形及其表面水膜对传热过程的影响,建立了临界防冰电流模型,其计算结果与人工气候室试验结果符合。另外,还研究了在覆冰环境下,导线直径及几何外形、环境温度、风速、液态水含量（LWC）、中值体积直径（MVD）对输电线路临界防冰电流的影响。仿真结果表明,临界防冰电流随温度的降低或风速的增加而迅速增大,随LWC的增大或MVD在0～100μm区间增大而缓慢增大,而当MVD〉100μm时,临界防冰电流无明显变化。
Zhao, Bo; Wen, Ning; Chetty, Indrin J; Huang, Yimei; Brown, Stephen L; Snyder, Karen C; Siddiqui, Farzan; Movsas, Benjamin; Siddiqui, M Salim
2017-08-01
This study aims to extend the observation that the 12 Gy-radiosurgical-volume (V12Gy) correlates with the incidence of radiation necrosis in patients with intracranial tumors treated with radiosurgery by using target volume to predict V12Gy. V12Gy based on the target volume was used to predict the radiation necrosis probability (P) directly. Also investigated was the reduction in radiation necrosis rates (ΔP) as a result of optimizing the prescription isodose lines for linac-based SRS. Twenty concentric spherical targets and 22 patients with brain tumors were retrospectively studied. For each case, a standard clinical plan and an optimized plan with prescription isodose lines based on gradient index were created. V12Gy were extracted from both plans to analyze the correlation between V12Gy and target volume. The necrosis probability P as a function of V12Gy was evaluated. To account for variation in prescription, the relation between V12Gy and prescription was also investigated. A prediction model for radiation-induced necrosis was presented based on the retrospective study. The model directly relates the typical prescribed dose and the target volume to the radionecrosis probability; V12Gy increased linearly with the target volume (R(2) > 0.99). The linear correlation was then integrated into a logistic model to predict P directly from the target volume. The change in V12Gy as a function of prescription was modeled using a single parameter, s (=-1.15). Relatively large ΔP was observed for target volumes between 7 and 28 cm(3) with the maximum reduction (8-9%) occurring at approximately 18 cm(3) . Based on the model results, optimizing the prescription isodose line for target volumes between 7 and 28 cm(3) results in a significant reduction in necrosis probability. V12Gy based on the target volume could provide clinicians a predictor of radiation necrosis at the contouring stage thus facilitating treatment decisions. © 2017 American Association of
Mathematical model of diffusion-limited gas bubble dynamics in unstirred tissue with finite volume.
Srinivasan, R Srini; Gerth, Wayne A; Powell, Michael R
2002-02-01
Models of gas bubble dynamics for studying decompression sickness have been developed by considering the bubble to be immersed in an extravascular tissue with diffusion-limited gas exchange between the bubble and the surrounding unstirred tissue. In previous versions of this two-region model, the tissue volume must be theoretically infinite, which renders the model inapplicable to analysis of bubble growth in a finite-sized tissue. We herein present a new two-region model that is applicable to problems involving finite tissue volumes. By introducing radial deviations to gas tension in the diffusion region surrounding the bubble, the concentration gradient can be zero at a finite distance from the bubble, thus limiting the tissue volume that participates in bubble-tissue gas exchange. It is shown that these deviations account for the effects of heterogeneous perfusion on gas bubble dynamics, and are required for the tissue volume to be finite. The bubble growth results from a difference between the bubble gas pressure and an average gas tension in the surrounding diffusion region that explicitly depends on gas uptake and release by the bubble. For any given decompression, the diffusion region volume must stay above a certain minimum in order to sustain bubble growth.
Forward modelling of geophysical survey data using cylindrical elemental volumes
Energy Technology Data Exchange (ETDEWEB)
Xu, X.; Lockerbie, N.A. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Physics and Applied Physics
1996-04-01
A simple model is presented for the gravitational field due to a finite cylinder, and this is elaborated so that (in principle) the gravitational field from a body of any shape may be found in terms of the field of such primitive cylinders. The primitive field is described as a moment-expansion in terms of odd-order Legendre P{sub 2p+1}(cos{theta}),p=0,1,2..., where {theta} is the angle between the field point and the cylinder`s axis, and in terms of the radial distance R of the field point from the centre of mass of the cylinder, such that the parameters describing the shape of the cylinder, and the field point parameters, are separated. This allows gravitational field modelling calculations to be carried out extremely quickly in the space domain for gravitational sources of any shape. Moreover, the form of the solutions-due to the separation mentioned above-allows a clear insight into the underlying physical mechanisms involved in the synthesis of such fields, making such elements suitable in the solution of inverse gravitational problems in the
Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings
Tsai, F.; Chang, H.; Lin, Y.-W.
2017-08-01
This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.
Stochastic modeling of the tumor volume assessment and growth patterns in hepatocellular carcinoma.
Sãftoiu, Adrian; Ciurea, Tudorel; Gorunescu, Florin; Rogoveanu, Ion; Georgescu, Claudia
2004-06-01
The growth pattern of hepatocellular carcinoma (HCC) arising from cirrhosis is variable and depends on the degree of differentiation and vascularization. Because growth is not constant in the natural history of HCC, prediction of subsequent growth rate based on tumor volume doubling time and correlation with histological and ultrasonographical characteristics at the moment of initial diagnosis are usually unreliable. The aim of our study was to assess the growth patterns of HCC with the aid of stochastic modeling. Thus, we included in our study 27 patients with histologically proven HCC, which had multiple (more than three)follow-up ultrasound studies in a six months interval. The patients did not receive any treatment during the observation period. HCC was visualized by computer aided ultrasound imaging, obtaining both the primary size quantification and the edge-detection enhancement. By a bi-cubic B-spline interpolation of points on the edges (3-D Bezier approximation) we approximated the surfaces shapes, and using the hit or miss Monte Carlo method we accurately estimate the tumor volume. Starting from the previous tumor volumes time series recorded during the first six months of evolution we applied both a linear, exponential and logarithmic smoothing to forecast the future size of the HCC tumor in the next six months. Our conclusion was that a dynamic forecasting model of HCC volumes could be very accurate for the assessment of tumor volume doubling time usually obtained by two discrete volume measurements of the tumor.
Directory of Open Access Journals (Sweden)
Sang-Eun Park
2012-05-01
Full Text Available In this paper, the three-component power decomposition for polarimetric SAR (PolSAR data with an adaptive volume scattering model is proposed. The volume scattering model is assumed to be reflection-symmetric but parameterized. For each image pixel, the decomposition first starts with determining the adaptive parameter based on matrix similarity metric. Then, a respective scattering power component is retrieved with the established procedure. It has been shown that the proposed method leads to complete elimination of negative powers as the result of the adaptive volume scattering model. Experiments with the PolSAR data from both the NASA/JPL (National Aeronautics and Space Administration/Jet Propulsion Laboratory Airborne SAR (AIRSAR and the JAXA (Japan Aerospace Exploration Agency ALOS-PALSAR also demonstrate that the proposed method not only obtains similar/better results in vegetated areas as compared to the existing Freeman-Durden decomposition but helps to improve discrimination of the urban regions.
An advective volume-balance model for flow in porous media
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2016-11-01
Volume-balance models are used by petroleum engineers to simulate multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Preliminary numerical tests of phase separation due to gravity suggest the model reproduces qualitatively the physical phenomena. Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
Manufacture of the poloidal field conductor insert coil (PFCI)
Energy Technology Data Exchange (ETDEWEB)
Baker, W. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany); Keefe, C. [Tesla Engineering, Storrington, Sussex (United Kingdom); Rajainmaeki, H. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)], E-mail: hannu.rajainmaki@tech.efda.org; Salpietro, E. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)
2007-10-15
Within the framework of the R and D programme for international thermonuclear experimental reactor (ITER) the European team European Fusion Development Agreement (EFDA) has been charged with the design and manufacture of the poloidal field conductor insert coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long-length full-scale NbTi conductors in ITER-relevant conditions. The PFCI will be tested in the central solenoid model coil test facility at the JAEA, Naka, Japan. This paper details the complete manufacturing of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single-layered wound solenoid of nine turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, preformed and machined glass resin composite filler pieces are assembled with the winding and is finally vacuum pressure impregnated (VPI) to create a single assembly unit. The PFCI is enclosed for assembly in a support structure, which consists of an upper and lower flange, each made up of four electrically insulated machined stainless steel castings, and 12 tie rods preloading the complete assembly in the vertical direction. The upper flange is equipped with four radial restraining jacks and the lower flange is equipped with four sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil has passed the final acceptance tests and it is in the support structure assembly stage.
Fitting parametric models of diffusion MRI in regions of partial volume
Eaton-Rosen, Zach; Cardoso, M. J.; Melbourne, Andrew; Orasanu, Eliza; Bainbridge, Alan; Kendall, Giles S.; Robertson, Nicola J.; Marlow, Neil; Ourselin, Sebastien
2016-03-01
Regional analysis is normally done by fitting models per voxel and then averaging over a region, accounting for partial volume (PV) only to some degree. In thin, folded regions such as the cerebral cortex, such methods do not work well, as the partial volume confounds parameter estimation. Instead, we propose to fit the models per region directly with explicit PV modeling. In this work we robustly estimate region-wise parameters whilst explicitly accounting for partial volume effects. We use a high-resolution segmentation from a T1 scan to assign each voxel in the diffusion image a probabilistic membership to each of k tissue classes. We rotate the DW signal at each voxel so that it aligns with the z-axis, then model the signal at each voxel as a linear superposition of a representative signal from each of the k tissue types. Fitting involves optimising these representative signals to best match the data, given the known probabilities of belonging to each tissue type that we obtained from the segmentation. We demonstrate this method improves parameter estimation in digital phantoms for the diffusion tensor (DT) and `Neurite Orientation Dispersion and Density Imaging' (NODDI) models. The method provides accurate parameter estimates even in regions where the normal approach fails completely, for example where partial volume is present in every voxel. Finally, we apply this model to brain data from preterm infants, where the thin, convoluted, maturing cortex necessitates such an approach.
Precise determination of universal finite volume observables in the Gross-Neveu model
Energy Technology Data Exchange (ETDEWEB)
Korzec, T.
2007-01-26
The Gross-Neveu model is a quantum field theory in two space time dimensions that shares many features with quantum chromo dynamics. In this thesis the continuum model and its discretized versions are reviewed and a finite volume renormalization scheme is introduced and tested. Calculations in the limit of infinitely many fermion flavors as well as perturbative computations are carried out. In extensive Monte-Carlo simulations of the one flavor and the four flavor lattice models with Wilson fermions a set of universal finite volume observables is calculated to a high precision. In the one flavor model which is equivalent to the massless Thirring model the continuum extrapolated Monte-Carlo results are confronted with an exact solution of the model. (orig.)
Frandsen, Michael W.; Wessol, Daniel E.; Wheeler, Floyd J.
2001-01-16
Methods and computer executable instructions are disclosed for ultimately developing a dosimetry plan for a treatment volume targeted for irradiation during cancer therapy. The dosimetry plan is available in "real-time" which especially enhances clinical use for in vivo applications. The real-time is achieved because of the novel geometric model constructed for the planned treatment volume which, in turn, allows for rapid calculations to be performed for simulated movements of particles along particle tracks there through. The particles are exemplary representations of neutrons emanating from a neutron source during BNCT. In a preferred embodiment, a medical image having a plurality of pixels of information representative of a treatment volume is obtained. The pixels are: (i) converted into a plurality of substantially uniform volume elements having substantially the same shape and volume of the pixels; and (ii) arranged into a geometric model of the treatment volume. An anatomical material associated with each uniform volume element is defined and stored. Thereafter, a movement of a particle along a particle track is defined through the geometric model along a primary direction of movement that begins in a starting element of the uniform volume elements and traverses to a next element of the uniform volume elements. The particle movement along the particle track is effectuated in integer based increments along the primary direction of movement until a position of intersection occurs that represents a condition where the anatomical material of the next element is substantially different from the anatomical material of the starting element. This position of intersection is then useful for indicating whether a neutron has been captured, scattered or exited from the geometric model. From this intersection, a distribution of radiation doses can be computed for use in the cancer therapy. The foregoing represents an advance in computational times by multiple factors of
Plasma Waves and Jets from Moving Conductors
Gralla, Samuel E
2016-01-01
We consider force-free plasma waves launched by the motion of conducting material through a magnetic field. We develop a spacetime-covariant formalism for perturbations of a uniform magnetic field and show how the transverse motion of a conducting fluid acts as a source. We show that fast-mode waves are sourced by the compressibility of the fluid, with incompressible fluids launching a pure-Alfven outflow. Remarkably, this outflow can be written down in closed form, at the nonlinear level, for an arbitrary incompressible flow. The instantaneous flow velocity is imprinted on the magnetic field and transmitted away at the speed of light, carrying detailed information about the conducting source at the time of emission. These results can be applied to transients in pulsar outflows and to jets from neutron stars orbiting in the magnetosphere of another compact object. We discuss jets from moving conductors in some detail.
Microwave Loss Reduction in Cryogenically Cooled Conductors
Finger, R
2015-01-01
Measurements of microwave attenuation at room temperature and 4.2 K have been performed on some conductors commonly used in receiver input circuits. The reduction in loss on cooling is substantial, particularly for copper and plated gold, both of which showed a factor of 3 loss reduction. Copper passivated with benzotriazole shows the same loss as without passivation. The residual resistivity ratio between room temperature and 4.2 K, deduced from the measurements using the classical skin effect formula, was smaller than the measured DC value to a degree consistent with conduction in the extreme anomalous skin effect regime at cryogenic temperatures. The measurements were made in the 5-10 GHz range. The materials tested were: aluminum alloys 1100-T6 and 6061-O, C101 copper, benzotriazole treated C101 copper, and brass plated with electroformed copper, Pur-A-Gold 125-Au soft gold, and BDT200 bright gold.
Alternative fiber optic conductor for laboratory practices
Calderon Ocampo, Juan F.; Jaramillo Florez, Samuel A.; Amaya Rodriguez, Juan C.
1995-10-01
Due to the high cost and difficulty in obtaining an optical fiber sample to be used in laboratory tests, we have given ourselves the task of looking for an adequate optical-fiber alternative for laboratory practices. We have as a result, found an object that can be used as an alternate optical conductor. This object called 'Venoclisis Hose', is a cylindrical plastic tube, hollow inside, whose main use has been in medical applications as a conveyor of liquids going in or coming out of the human body. In this document, the tests carried out and the results obtained to characterize the venoclisis as an optical fiber are described. This project was undertaken in order to propose the use of Venoclisis as an alternate optical fiber for laboratory work, due primarily to its low costs, as well as how easy it to acquire and measure its parameters as an optical fiber.
Conductors and Newforms for (1,1)
Indian Academy of Sciences (India)
Joshua Lansky; A Raghuram
2004-11-01
Let be a non-Archimedean local field whose residue characteristic is odd. In this paper we develop a theory of newforms for (1,1)(), building on previous work on $SL_2(F)$. This theory is analogous to the results of Casselman for $GL_2(F)$ and Jacquet, Piatetski-Shapiro, and Shalika for $GL_n(F)$. To a representation π of (1,1)(), we attach an integer () called the conductor of , which depends only on the -packet containing . A newform is a vector in which is essentially fixed by a congruence subgroup of level ()$. We show that our newforms are always test vectors for some standard Whittaker functionals, and, in doing so, we give various explicit formulae for newforms.
Local digital estimators of intrinsic volumes for Boolean models and in the design based setting
DEFF Research Database (Denmark)
Svane, Anne Marie
In order to estimate the specific intrinsic volumes of a planar Boolean model from a binary image, we consider local digital algorithms based on weigted sums of 2×2 configuration counts. For Boolean models with balls as grains, explicit formulas for the bias of such algorithms are derived...... for the bias obtained for Boolean models are applied to existing algorithms in order to compare their accuracy....
Joint modelling of flood peaks and volumes: A copula application for the Danube River
Directory of Open Access Journals (Sweden)
Papaioannou George
2016-12-01
Full Text Available Flood frequency analysis is usually performed as a univariate analysis of flood peaks using a suitable theoretical probability distribution of the annual maximum flood peaks or peak over threshold values. However, other flood attributes, such as flood volume and duration, are necessary for the design of hydrotechnical projects, too. In this study, the suitability of various copula families for a bivariate analysis of peak discharges and flood volumes has been tested. Streamflow data from selected gauging stations along the whole Danube River have been used. Kendall’s rank correlation coefficient (tau quantifies the dependence between flood peak discharge and flood volume settings. The methodology is applied to two different data samples: 1 annual maximum flood (AMF peaks combined with annual maximum flow volumes of fixed durations at 5, 10, 15, 20, 25, 30 and 60 days, respectively (which can be regarded as a regime analysis of the dependence between the extremes of both variables in a given year, and 2 annual maximum flood (AMF peaks with corresponding flood volumes (which is a typical choice for engineering studies. The bivariate modelling of the extracted peak discharge - flood volume couples is achieved with the use of the Ali-Mikhail-Haq (AMH, Clayton, Frank, Joe, Gumbel, Hüsler-Reiss, Galambos, Tawn, Normal, Plackett and FGM copula families. Scatterplots of the observed and simulated peak discharge - flood volume pairs and goodness-of-fit tests have been used to assess the overall applicability of the copulas as well as observing any changes in suitable models along the Danube River. The results indicate that for the second data sampling method, almost all of the considered Archimedean class copula families perform better than the other copula families selected for this study, and that for the first method, only the upper-tail-flat copulas excel (except for the AMH copula due to its inability to model stronger relationships.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-02-17
The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.
Automated modelling of spatially-distributed glacier ice thickness and volume
James, William H. M.; Carrivick, Jonathan L.
2016-07-01
Ice thickness distribution and volume are both key parameters for glaciological and hydrological applications. This study presents VOLTA (Volume and Topography Automation), which is a Python script tool for ArcGISTM that requires just a digital elevation model (DEM) and glacier outline(s) to model distributed ice thickness, volume and bed topography. Ice thickness is initially estimated at points along an automatically generated centreline network based on the perfect-plasticity rheology assumption, taking into account a valley side drag component of the force balance equation. Distributed ice thickness is subsequently interpolated using a glaciologically correct algorithm. For five glaciers with independent field-measured bed topography, VOLTA modelled volumes were between 26.5% (underestimate) and 16.6% (overestimate) of that derived from field observations. Greatest differences were where an asymmetric valley cross section shape was present or where significant valley infill had occurred. Compared with other methods of modelling ice thickness and volume, key advantages of VOLTA are: a fully automated approach and a user friendly graphical user interface (GUI), GIS consistent geometry, fully automated centreline generation, inclusion of a side drag component in the force balance equation, estimation of glacier basal shear stress for each individual glacier, fully distributed ice thickness output and the ability to process multiple glaciers rapidly. VOLTA is capable of regional scale ice volume assessment, which is a key parameter for exploring glacier response to climate change. VOLTA also permits subtraction of modelled ice thickness from the input surface elevation to produce an ice-free DEM, which is a key input for reconstruction of former glaciers. VOLTA could assist with prediction of future glacier geometry changes and hence in projection of future meltwater fluxes.
Stem volume Models and Validation for Cryptomeria japonica in Jeju Island, Korea
Seo, YeonOk; Jung, Sung Cheol; Lumbres, Roscinto Ian; Jeon, Chul Hyun; Kim, Chan Soo
2016-04-01
This study was carried out to fit different volume equations for Cryptomeria japonica trees in Jeju Experimental Forests, Jeju Island, Korea. A total of 120 Cryptomeria japonica trees were measured and were randomly split into two dataset One is for initial model development (80% of the dataset) and the other is for model validation (20% of the dataset). The two dataset were then combined for the final model development. Coefficient of determination (R2), root mean square error (RMSE), mean difference (MD), absolute mean difference (AMD) were used as evaluation statistics to evaluate the performance of the different models. Results showed that volume models with two independent variables (DBH and total height) had a better performance as compared to models with only one (DBH). The result of model evaluation and validation showed that model 6 (V=aDbHc) was considered best based on the rank analysis among the candidate models. It is hope that the result of this study could help forests managers to easily predict the total volume of Cryptomeria japonica which is important in Carbon stock assessment of the different Cryptomeria japonica forests in Jeju Island, Korea.
Directory of Open Access Journals (Sweden)
C. Makendran
2015-01-01
Full Text Available Prediction models for low volume village roads in India are developed to evaluate the progression of different types of distress such as roughness, cracking, and potholes. Even though the Government of India is investing huge quantum of money on road construction every year, poor control over the quality of road construction and its subsequent maintenance is leading to the faster road deterioration. In this regard, it is essential that scientific maintenance procedures are to be evolved on the basis of performance of low volume flexible pavements. Considering the above, an attempt has been made in this research endeavor to develop prediction models to understand the progression of roughness, cracking, and potholes in flexible pavements exposed to least or nil routine maintenance. Distress data were collected from the low volume rural roads covering about 173 stretches spread across Tamil Nadu state in India. Based on the above collected data, distress prediction models have been developed using multiple linear regression analysis. Further, the models have been validated using independent field data. It can be concluded that the models developed in this study can serve as useful tools for the practicing engineers maintaining flexible pavements on low volume roads.
Antonov, A N; Sarriguren, P; de Guerra, E Moya
2016-01-01
The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS) and also with results of other theoretical methods.
The impact of surface area, volume, curvature, and Lennard-Jones potential to solvation modeling.
Nguyen, Duc D; Wei, Guo-Wei
2017-01-05
This article explores the impact of surface area, volume, curvature, and Lennard-Jones (LJ) potential on solvation free energy predictions. Rigidity surfaces are utilized to generate robust analytical expressions for maximum, minimum, mean, and Gaussian curvatures of solvent-solute interfaces, and define a generalized Poisson-Boltzmann (GPB) equation with a smooth dielectric profile. Extensive correlation analysis is performed to examine the linear dependence of surface area, surface enclosed volume, maximum curvature, minimum curvature, mean curvature, and Gaussian curvature for solvation modeling. It is found that surface area and surfaces enclosed volumes are highly correlated to each other's, and poorly correlated to various curvatures for six test sets of molecules. Different curvatures are weakly correlated to each other for six test sets of molecules, but are strongly correlated to each other within each test set of molecules. Based on correlation analysis, we construct twenty six nontrivial nonpolar solvation models. Our numerical results reveal that the LJ potential plays a vital role in nonpolar solvation modeling, especially for molecules involving strong van der Waals interactions. It is found that curvatures are at least as important as surface area or surface enclosed volume in nonpolar solvation modeling. In conjugation with the GPB model, various curvature-based nonpolar solvation models are shown to offer some of the best solvation free energy predictions for a wide range of test sets. For example, root mean square errors from a model constituting surface area, volume, mean curvature, and LJ potential are less than 0.42 kcal/mol for all test sets. © 2016 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Dong Sup Lee
2011-04-01
Full Text Available Although real-time monitoring of bladder volume together with intravesical pressure can provide more information for understanding the functional changes of the urinary bladder, it still entails difficulties in the accurate prediction of real-time bladder volume in urodynamic studies with small animal models. We studied a new implantable bladder volume monitoring device with eight rats. During cystometry, microelectrodes prepared by the microelectromechanical systems process were placed symmetrically on both lateral walls of the bladder, and the expanded bladder volume was calculated. Immunohistological study was done after 1 week and after 4 weeks to evaluate the biocompatibility of the microelectrode. From the point that infused saline volume into the bladder was higher than 0.6 mL, estimated bladder volume was statistically correlated with the volume of saline injected (p<0.01. Additionally, the microelectromechanical system microelectrodes used in this study showed reliable biocompatibility. Therefore, the device can be used to evaluate changes in bladder volume in studies with small animals, and it may help to provide more information about functional changes in the bladder in laboratory studies. Furthermore, owing to its biocompatibility, the device could be chronically implanted in conscious ambulating animals, thus allowing a novel longitudinal study to be performed for a specific purpose.
Glass Property Data and Models for Estimating High-Level Waste Glass Volume
Energy Technology Data Exchange (ETDEWEB)
Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.
2009-10-05
This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.
MELSAR: a mesoscale air quality model for complex terrain. Volume 2. Appendices
Energy Technology Data Exchange (ETDEWEB)
Allwine, K.J.; Whiteman, C.D.
1985-04-01
This final report is submitted as part of the Green River Ambient Model Assessment (GRAMA) project conducted at the US Department of Energy's Pacific Northwest Laboratory for the US Environmental Protection Agency. The GRAMA Program has, as its ultimate goal, the development of validated air quality models that can be applied to the complex terrain of the Green River Formation of western Colorado, eastern Utah and southern Wyoming. The Green River Formation is a geologic formation containing large reserves of oil shale, coal, and other natural resources. Development of these resources may lead to a degradation of the air quality of the region. Air quality models are needed immediately for planning and regulatory purposes to assess the magnitude of these regional impacts. This report documents one of the models being developed for this purpose within GRAMA - specifically a model to predict short averaging time (less than or equal to 24 h) pollutant concentrations resulting from the mesoscale transport of pollutant releases from multiple sources. MELSAR has not undergone any rigorous operational testing, sensitivity analyses, or validation studies. Testing and evaluation of the model are needed to gain a measure of confidence in the model's performance. This report consists of two volumes. This volume contains the Appendices, which include listings of the FORTRAN code and Volume 1 contains the model overview, technical description, and user's guide. 13 figs., 10 tabs.
Dresvyannikov, M. A.; Chernyaev, A. P.; Karuzskii, A. L.; Mityagin, Yu. A.; Perestoronin, A. V.; Volchkov, N. A.
2016-12-01
An operator of the permittivity can completely describe alone a microwave response of conductors with the spatial dispersion. An eigenvalue problem for the nonself-adjoint permittivity operator Ễa was considered generally to search the wave solutions for conductors and superconductors. An appearance of additional solutions (additional waves) due to the spatial dispersion can strongly influence the properties of nanoelectronic devices or novel superconducting materials in the form of anomalous losses for example, and should be accounted in simulation and modeling of micro- and nanoelectronic devices. It was concluded that the modulus |Ž| of the surface impedance is proportional to the degree of frequency ω2/3 for all normal conductor solutions except that for the superconductor. There was some criticism related to the idea that the electrodynamics of superconductors should be in principle reduced to those for conductors as the temperature approaches and beyond the critical temperature. We demonstrate that appropriately taken into account effects of the spatial dispersion can give the general frequency dependence of the surface impedance for the obtained solutions including that for the superconductor. It is shown that an incorporation of the spatial dispersion leads to an appearance of the Meissner effect in perfect conductors in the same manner as in superconductors.
Energy Technology Data Exchange (ETDEWEB)
Bruce A Zeitlin
2005-02-23
An internal tin conductor has been developed using a Mono Element Internal Tin (MEIT) with an integral Nb barrier surrounding the Nb filaments. High current densities of 3000 A/mm2+ at 12 T and 1800 A/mm2 at 15 T have been achieved in conductors as small as 0.152 mm with the use of Nb7.5Ta filaments and Ti in the Sn core. In contrast, conductors with pure Nb and Ti in the Sn achieved 2700 A/mm2 at 12 T. Two internal fins, developed and patented on the project, were introduced into the filament array and reduced the effective filament diameter (Deff) by 38%. Additional fins will further reduce Deff The conductor was produced from 152.4 mm diameter billets to produce wire as small as 0.152 mm. The process promises be scaleable to 304 mm diameter billets yielding wire of 0.304 mm diameter. The MEIT process wire was easy to draw with relatively few breaks. The cost of this conductor in large production quantities based on the cost model presented could meet the 1.5 $/kilo amp meter(KAM) target of the HEP community
Recent progress in high-pressure studies on organic conductors
Directory of Open Access Journals (Sweden)
Syuma Yasuzuka and Keizo Murata
2009-01-01
Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.
(Liquid plus liquid) equilibria of binary polymer solutions using a free-volume UNIQUAC-NRF model
DEFF Research Database (Denmark)
Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.
2006-01-01
In this work, a modified free-volume (FV) model based on the UNIQUAC-Nonrandom factor (UNIQUAC-NRF) model developed by Haghtalab and Asadollahi was proposed. While the combinatorial part of the proposed model for activity coefficient takes the same form as that of the entropic free-volume (entrop...
Numerical simulation of corona-induced vibration of high voltage conductor
Institute of Scientific and Technical Information of China (English)
A. GOURBI; M. BRAHAMI; A. TILMATINE; P. PIROTTE
2009-01-01
When it rains, electric power transmission lines start vibrating due to corona effect. This type of vibration is known as "corona-induced vibration". The aim of this paper is to elaborate a mathematical model for numerical simulation of the corona-induced vibration, with consid-eration of the influence of the magnitude and the polarity of the electric field on the conductor surface. Finite element method was employed to develop the numerical model,and the finite difference method was used for the time discretisation. The moment of application of the corona-induced force is evaluated using the resultant vertical force applied to a water drop, suspended under a high voltage conductor. Some experimental results of other authors are exploited to evaluate the precision of the simulation and the validation of numerical results.
Spectral densities and diagrams of states of one-dimensional ionic Pauli conductor
Directory of Open Access Journals (Sweden)
O. Vorobyov
2011-06-01
Full Text Available We focus on the features of spectra and diagrams of states obtained via exact diagonalization technique for finite ionic conductor chain in periodic boundary conditions. One dimensional ionic conductor is described with the lattice model where ions are treated within the framework of "mixed" Pauli statistics. The ion transfer and nearest-neighbour interaction between ions are taken into account. The spectral densities and diagrams of states for various temperatures and values of interaction are obtained. The conditions of transition from uniform (Mott insulator to the modulated (charge density wave state through the superfluid-like state (similar to the state with the Bose-Einstein condensation observed in hard-core boson models are analyzed.
Research on surveying technology applied for DTM modelling and volume computation in open pit mines
Directory of Open Access Journals (Sweden)
Jaroslaw Wajs
2016-01-01
Full Text Available The spatial information systems of mining company can be used for monitoring of mining activity, excavation planning, calculations of the ore volume and decision making. Nowadays, data base has to be updated by sources such as surveying positioning technologies and remote sensed photogrammetry data. The presented paper contains review of the methodology for the digital terrain model, i.e. DTM, modelling and obtaining data from surveying technologies in an open pit mine or quarry. This paper reviews the application of GPS, total station measurements, and ground photogrammetry for the volume accuracy assessment of a selected object. The testing field was situated in Belchatow lignite open pit mine. A suitable object had been selected. The testing layer of coal seam was located at 8’th pit sidewall excavation area. The data were acquired two times within one month period and it was connected with monthly DTM actualization of excavation. This paper presents the technological process and the results of the research of using digital photogrammetry for opencast mining purposes in the scope of numerical volume computation and monitoring the mines by comparison of different sources. The results shows that the presented workflow allow to build DTM manually and remote sensed and the accuracy assessment was presented by the volume computation pathway. Major advantages of the techniques are presented illustrating how a terrestrial photogrammetry techniques provide rapid spatial measurements of breaklines 3D data utilized to volume calculation.
Sensitivity Analysis of Wavelet Neural Network Model for Short-Term Traffic Volume Prediction
Directory of Open Access Journals (Sweden)
Jinxing Shen
2013-01-01
Full Text Available In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back-propagation neural network (BPNN. The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short-term traffic volume prediction.
33 CFR 183.430 - Conductors in circuits of less than 50 volts.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors in circuits of less... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a...; resistance conductors that control circuit amperage; and pigtails of less than seven inches of exposed length....
33 CFR 183.435 - Conductors in circuits of 50 volts or more.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors in circuits of 50... Requirements § 183.435 Conductors in circuits of 50 volts or more. (a) Each conductor in a circuit that has a nominal voltage of 50 volts or more must be: (1) A conductor that has insulation listed and...
30 CFR 56.12005 - Protection of power conductors from mobile equipment.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile... MINES Electricity § 56.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over power conductors, unless...
Modelling dynamic liquid-gas systems: Extensions to the volume-of-fluid solver
CSIR Research Space (South Africa)
Heyns, Johan A
2013-06-01
Full Text Available This study presents the extension of the volume-of-fluid solver, interFoam, for improved accuracy and efficiency when modelling dynamic liquid-gas systems. Examples of these include the transportation of liquids, such as in the case of fuel carried...
Wind deficit model in a wind farm using finite volume method
DEFF Research Database (Denmark)
Soleimanzadeh, Maryam; Wisniewski, Rafal
2010-01-01
A wind deficit model for wind farms is developed in this work using finite volume method. The main question addressed here is to calculate approximately the wind speed in the vicinity of each wind turbine of a farm. The procedure followed is to solve the governing equations of flow for the whole ...
Directory of Open Access Journals (Sweden)
Qinghua Xie
2017-01-01
Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there
Volume and Aboveground Biomass Models for Dry Miombo Woodland in Tanzania
Directory of Open Access Journals (Sweden)
Ezekiel Edward Mwakalukwa
2014-01-01
Full Text Available Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume and biomass of three important species, Brachystegia spiciformis Benth. (n = 40, Combretum molle G. Don (n = 41, and Dalbergia arbutifolia Baker (n = 37 separately, and for broader samples of trees (28 species, n = 72, shrubs (16 species, n = 32, and trees and shrubs combined (44 species, n = 104. Applied independent variables were log-transformed diameter, height, and wood basic density, and in each case a range of different models were tested. The general tendency among the final models is that the fit improved when height and wood basic density were included. Also the precision and accuracy of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had R2 values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges.
Comparison of Moving Boundary and Finite-Volume Heat Exchanger Models in the Modelica Language
Directory of Open Access Journals (Sweden)
Adriano Desideri
2016-05-01
Full Text Available When modeling low capacity energy systems, such as a small size (5–150 kWel organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, the finite volume (FV and the moving boundary (MB approaches are the most widely used. The two models are developed and included in the open-source ThermoCycle Modelica library. In this contribution, a comparison between the two approaches is presented. An integrity and accuracy test is designed to evaluate the performance of the FV and MB models during transient conditions. In order to analyze how the two modeling approaches perform when integrated at a system level, two organic Rankine cycle (ORC system models are built using the FV and the MB evaporator model, and their responses are compared against experimental data collected on an 11 kWel ORC power unit. Additionally, the effect of the void fraction value in the MB evaporator model and of the number of control volumes (CVs in the FV one is investigated. The results allow drawing general guidelines for the development of heat exchanger dynamic models involving two-phase flows.
A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)
Lee, Jin
2014-05-01
The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.
Directory of Open Access Journals (Sweden)
Ivanova Evgenia V.
2016-01-01
Full Text Available There are developed mathematical model of physical and chemical processes of polymerization adhesive coating stranded cable. There are shown difference in the temperature distribution along the radius of the finished product in the presence of an air gap between the conductor and the rubber sheath. Also, due to the need to change process parameters with possible loose contacts inside the cable. Such as the temperature of the heating surface, feeding speed and dwell time in the oven.
Ivanova, Evgenia V.; Yashutina, Olga S.; Shidlovskiy, Stanisla V.
2016-02-01
There are developed mathematical model of physical and chemical processes of polymerization adhesive coating stranded cable. There are shown difference in the temperature distribution along the radius of the finished product in the presence of an air gap between the conductor and the rubber sheath. Also, due to the need to change process parameters with possible loose contacts inside the cable. Such as the temperature of the heating surface, feeding speed and dwell time in the oven.
Volume Averaging Theory (VAT) based modeling and closure evaluation for fin-and-tube heat exchangers
Zhou, Feng; Catton, Ivan
2012-10-01
A fin-and-tube heat exchanger was modeled based on Volume Averaging Theory (VAT) in such a way that the details of the original structure was replaced by their averaged counterparts, so that the VAT based governing equations can be efficiently solved for a wide range of parameters. To complete the VAT based model, proper closure is needed, which is related to a local friction factor and a heat transfer coefficient of a Representative Elementary Volume (REV). The terms in the closure expressions are complex and sometimes relating experimental data to the closure terms is difficult. In this work we use CFD to evaluate the rigorously derived closure terms over one of the selected REVs. The objective is to show how heat exchangers can be modeled as a porous media and how CFD can be used in place of a detailed, often formidable, experimental effort to obtain closure for the model.
RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-08-01
The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.
Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli
2017-10-01
A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.
Computational Methods for Protein Structure Prediction and Modeling Volume 1: Basic Characterization
Xu, Ying; Liang, Jie
2007-01-01
Volume one of this two volume sequence focuses on the basic characterization of known protein structures as well as structure prediction from protein sequence information. The 11 chapters provide an overview of the field, covering key topics in modeling, force fields, classification, computational methods, and struture prediction. Each chapter is a self contained review designed to cover (1) definition of the problem and an historical perspective, (2) mathematical or computational formulation of the problem, (3) computational methods and algorithms, (4) performance results, (5) existing software packages, and (6) strengths, pitfalls, challenges, and future research directions.
Lattice Boltzmann Model for The Volume-Averaged Navier-Stokes Equations
Zhang, Jingfeng; Ouyang, Jie
2014-01-01
A numerical method, based on discrete lattice Boltzmann equation, is presented for solving the volume-averaged Navier-Stokes equations. With a modified equilibrium distribution and an additional forcing term, the volume-averaged Navier-Stokes equations can be recovered from the lattice Boltzmann equation in the limit of small Mach number by the Chapman-Enskog analysis and Taylor expansion. Due to its advantages such as explicit solver and inherent parallelism, the method appears to be more competitive with traditional numerical techniques. Numerical simulations show that the proposed model can accurately reproduce both the linear and nonlinear drag effects of porosity in the fluid flow through porous media.
The Three-Dimensional Finite-Volume Non-Hydrostatic Icosahedral Model (NIM)
Lee, J. L.; MacDonald, A. E.
2014-12-01
A multi-scales Non-hydrostatic Icosahedral Model (NIM) has been developed at Earth System Research Laboratory (ESRL) to meet NOAA's future prediction mission ranging from mesoscale short-range, high-impact weather forecasts to longer-term intra-seasonal climate prediction. NIM formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM is designed to utilize the state-of-art computing architecture such as Graphic Processing Units (GPU) processors to run globally at kilometer scale resolution to explicitly resolve convective storms and complex terrains. The novel features of NIM numerical design include: 1.1. A local coordinate system upon which finite-volume integrations are undertaken. The use of a local Cartesian coordinate greatly simplifies the mathematic formulation of the finite-volume operators and leads to the finite-volume integration along straight lines on the plane, rather than along curved lines on the spherical surface. 1.2. A general indirect addressing scheme developed for modeling on irregular grid. It arranges the icosahedral grid with a one-dimensional vector loop structure, table specified memory order, and an indirect addressing scheme that yields very compact code despite the complexities of this grid. 1.3. Use of three-dimensional finite-volume integration over control volumes constructed on the height coordinates. Three-dimensional finite-volume integration accurately represents the Newton Third Law over terrain and improves pressure gradient force over complex terrain. 1.4. Use of the Runge-Kutta 4th order conservative and positive-definite transport scheme 1.5. NIM dynamical solver has been implemented on CPU as well as GPU. As one of the potential candidates for NWS next generation models, NIM dynamical core has been successfully verified with various benchmark test cases including those proposed by DCMIP
Parameter Identification for a New Circuit Model Aimed to Predict Body Water Volume
Directory of Open Access Journals (Sweden)
GHEORGHE, A.-G.
2012-11-01
Full Text Available Intracellular and extracellular water volumes in the human body have been computed using a sequence of models starting with a linear first order RC circuit (Cole model and finishing with the De Lorenzo model. This last model employs a fractional order impedance whose parameters are identified using the frequency characteristics of the impedance module and phase, the latter being not unique. While the Cole model has a two octaves frequency validity range, the De Lorenzo model can be used for three decades. A new linear RC model, valid for a three decades frequency range, is proposed. This circuit can be viewed as an extension of the Cole model for a larger frequency interval, unlike similar models proposed by the same authors.
Study on detinning process of a reflow conductor roll
Institute of Scientific and Technical Information of China (English)
FU Hanguang; DAI Mingshan; FU Hanfeng
2005-01-01
Adhering tin is the main reason of a reflow conductor roll which works in an electroplating tin line (ETL). A detinning agent whose main composition is NaOH and KOH and assistant composition is Na2PbO2 or K2PbO2 and NaNO3 or NaNO2 has excellent detinning effects when the temperature of detinning solution is 40-80℃ and the temperature of the reflow conductor roll reaches 40-70℃. After the adhering tin layer of the reflow conductor roll is removed, the roughness of the reflow conductor roll can resume to 4.0 μm, its service life increases by 80%, and the repairing cost decreases by 90%.
Casimir Free Energy at High Temperatures: Grounded vs Isolated Conductors
Fosco, C D; Mazzitelli, F D
2016-01-01
We evaluate the difference between the Casimir free energies corresponding to either grounded or isolated perfect conductors, at high temperatures. We show that a general and simple expression for that difference can be given, in terms of the electrostatic capacitance matrix for the system of conductors. For the case of close conductors, we provide approximate expressions for that difference, by evaluating the capacitance matrix using the proximity force approximation. Since the high-temperature limit for the Casimir free energy for a medium described by a frequency-dependent conductivity diverging at zero frequency coincides with that of an isolated conductor, our results may shed light on the corrections to the Casimir force in the presence of real materials.
High voltage switches having one or more floating conductor layers
Energy Technology Data Exchange (ETDEWEB)
Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson
2015-11-24
This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.
Numerical analysis of quench in coated conductors with defects
Liu, Wenbin; Yong, Huadong; Zhou, Youhe
2016-09-01
When the superconductor is subjected to local thermal perturbations, a large amount of joule heat may be generated in the conductor, which may lead to a quench. In a quench event, a normal zone irreversibly spreads throughout the conductor leading to failure of the superconducting device. In this paper, we will discuss the one-dimensional quench behavior in the coated conductors with internal defects or interface defects. Based on the numerical procedure given in the previous works, the normal zone propagation is studied by using the finite difference method. The numerical results are presented to discuss the normal zone propagation. We consider the effect of internal defect on the nonuniform temperature propagation. For the conductor with interface defects, it can be found that the normal zone propagation velocity is increased by defects.
Numerical analysis of quench in coated conductors with defects
Directory of Open Access Journals (Sweden)
Wenbin Liu
2016-09-01
Full Text Available When the superconductor is subjected to local thermal perturbations, a large amount of joule heat may be generated in the conductor, which may lead to a quench. In a quench event, a normal zone irreversibly spreads throughout the conductor leading to failure of the superconducting device. In this paper, we will discuss the one-dimensional quench behavior in the coated conductors with internal defects or interface defects. Based on the numerical procedure given in the previous works, the normal zone propagation is studied by using the finite difference method. The numerical results are presented to discuss the normal zone propagation. We consider the effect of internal defect on the nonuniform temperature propagation. For the conductor with interface defects, it can be found that the normal zone propagation velocity is increased by defects.
Electron transport in a mesoscopic superconducting ferromagnetic hybrid conductor
Energy Technology Data Exchange (ETDEWEB)
Giroud, M.; Hasselbach, K.; Courtois, H.; Pannetier, B. [Centre de Recherche sur les Tres Basses Temperatures, CNRS, 38 - Grenoble (France); Mailly, D. [Laboratoire de Photonique et de Nanostructures, 91 - Marcoussis (France)
2003-01-01
We present electrical transport experiments performed on submicron hybrid devices made of a ferromagnetic conductor (Co) and a superconducting (Al) electrode. The sample was patterned in order to separate the contributions of the Co conductor and of the Co-Al interface. We observed a strong influence of the Al electrode superconductivity on the resistance of the Co conductor. This effect is large only when the interface is highly transparent. We characterized the dependence of the observed resistance decrease on temperature, bias current and magnetic field. As the differential resistance of the ferromagnet exhibits a non-trivial asymmetry, we claim that the magnetic domain structure plays an important role in the electron transport properties of superconducting / ferromagnetic conductors. (authors)
Electric field distribution in a finite-volume head model of deep brain stimulation.
Grant, Peadar F; Lowery, Madeleine M
2009-11-01
This study presents a whole-head finite element model of deep brain stimulation to examine the effect of electrical grounding, the finite conducting volume of the head, and scalp, skull and cerebrospinal fluid layers. The impedance between the stimulating and reference electrodes in the whole-head model was found to lie within clinically reported values when the reference electrode was incorporated on a localized surface in the model. Incorporation of the finite volume of the head and inclusion of surrounding outer tissue layers reduced the magnitude of the electric field and activating function by approximately 20% in the region surrounding the electrode. Localized distortions of the electric field were also observed when the electrode was placed close to the skull. Under bipolar conditions the effect of the finite conducting volume was shown to be negligible. The results indicate that, for monopolar stimulation, incorporation of the finite volume and outer tissue layers can alter the magnitude of the electric field and activating function when the electrode is deep within the brain, and may further affect the shape if the electrode is close to the skull.
Solid state proton conductors properties and applications in fuel cells
Knauth, Philippe
2012-01-01
Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water electrolyzers and, most importantly, for high-efficiency electrochemical energy conversion in fuel cells. Focusing on fundamentals and physico-chemical properties of solid state proton conductors, topics covered include: Morphology and Structure of Solid Acids Diffusion in Soli
Generalized nonlinear models applied to the prediction of basal area and volume of Eucalyptus sp
Directory of Open Access Journals (Sweden)
Samuel de Pádua Chaves e Carvalho
2011-12-01
Full Text Available This paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume.
Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model
Tabor, C. R.; Poulsen, C. J.; Pollard, D.
2013-12-01
Milankovitch theory proposes high-latitude summer insolation intensity paces the ice ages by controlling perennial snow cover amounts (Milankovitch, 1941). According to theory, the ~21 kyr cycle of precession should dominate the ice-volume records since it has the greatest influence on high-latitude summer insolation. Modeling experiments frequently support Milankovitch theory by attributing the majority of Northern Hemisphere high-latitude summer snowmelt to changes in the cycle of precession (e.g. Jackson and Broccoli, 2003). However, ice-volume proxy records, especially those of the Early Pleistocene (2.6-0.8 Ma), display variability with a period of ~41 kyr (Raymo and Lisiecki, 2005), indicative of insolation forcing from obliquity, which has a much smaller influence on summer insolation intensity than precession. Several hypotheses attempt to explain the discrepancies between Milkankovitch theory and the proxy records by invoking phenomena such as insolation gradients (Raymo and Nisancioglu, 2003), hemispheric offset (Raymo et al., 2006; Lee and Poulsen, 2009), and integrated summer energy (Huybers, 2006); however, all of these hypotheses contain caveats (Ruddiman, 2006) and have yet to be supported by modeling studies that use a complex GCM. To explore potential solutions to this '41 kyr problem,' we use an Earth system model composed of the GENESIS GCM and Land Surface model, the BIOME4 vegetation model, and the Pennsylvania State ice-sheet model. Using an asynchronous coupling technique, we run four idealized transient combinations of obliquity and precession, representing the orbital extremes of the Pleistocene (Berger and Loutre, 1991). Each experiment is run through several complete orbital cycles with a dynamic ice domain spanning North America and Greenland, and fixed preindustrial greenhouse-gas concentrations. For all orbital configurations, model results produce greater ice-volume spectral power at the frequency of obliquity despite significantly
Zhang, Zhongrui; Zhong, Quanlin; Niklas, Karl J.; Cai, Liang; Yang, Yusheng; Cheng, Dongliang
2016-08-01
Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, and biomass M will covary across phyletically diverse species. However, the relationships between scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive model for the covariation of H, D, and stem volume V scaling relationships and used data from Chinese fir (Cunninghamia lanceolata) in Jiangxi province, China to test it. As predicted by the model and supported by the data, normalization constants are positively correlated with their associated scaling exponents for D vs. V and H vs. V, whereas normalization constants are negatively correlated with the scaling exponents of H vs. D. The prediction model also yielded reliable estimations of V (mean absolute percentage error = 10.5 ± 0.32 SE across 12 model calibrated sites). These results (1) support a totally new covariation scaling model, (2) indicate that differences in stem volume scaling relationships at the intra-specific level are driven by anatomical or ecophysiological responses to site quality and/or management practices, and (3) provide an accurate non-destructive method for predicting Chinese fir stem volume.
Zhang, Zhongrui; Zhong, Quanlin; Niklas, Karl J; Cai, Liang; Yang, Yusheng; Cheng, Dongliang
2016-08-24
Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, and biomass M will covary across phyletically diverse species. However, the relationships between scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive model for the covariation of H, D, and stem volume V scaling relationships and used data from Chinese fir (Cunninghamia lanceolata) in Jiangxi province, China to test it. As predicted by the model and supported by the data, normalization constants are positively correlated with their associated scaling exponents for D vs. V and H vs. V, whereas normalization constants are negatively correlated with the scaling exponents of H vs. D. The prediction model also yielded reliable estimations of V (mean absolute percentage error = 10.5 ± 0.32 SE across 12 model calibrated sites). These results (1) support a totally new covariation scaling model, (2) indicate that differences in stem volume scaling relationships at the intra-specific level are driven by anatomical or ecophysiological responses to site quality and/or management practices, and (3) provide an accurate non-destructive method for predicting Chinese fir stem volume.
Modeling Accumulated Volume of Landslides Using Remote Sensing and DTM Data
Directory of Open Access Journals (Sweden)
Zhengchao Chen
2014-02-01
Full Text Available Landslides, like other natural hazards, such as avalanches, floods, and debris flows, may result in a lot of property damage and human casualties. The volume of landslide deposits is a key parameter for landslide studies and disaster relief. Using remote sensing and digital terrain model (DTM data, this paper analyzes errors that can occur in calculating landslide volumes using conventional models. To improve existing models, the mechanisms and laws governing the material deposited by landslides are studied and then the mass balance principle and mass balance line are defined. Based on these ideas, a novel and improved model (Mass Balance Model, MBM is proposed. By using a parameter called the “height adaptor”, MBM translates the volume calculation into an automatic search for the mass balance line within the scope of the landslide. Due to the use of mass balance constraints and the height adaptor, MBM is much more effective and reliable. A test of MBM was carried out for the case of a typical landslide, triggered by the Wenchuan Earthquake of 12 May 2008.
Directory of Open Access Journals (Sweden)
Xiaolu Tang
Full Text Available Chinese fir (Cunninghamia lanceolata [Lamb.] Hook is one of the most important plantation tree species in China with good timber quality and fast growth. It covers an area of 8.54 million hectare, which corresponds to 21% of the total plantation area and 32% of total plantation volume in China. With the increasing market demand, an accurate estimation and prediction of merchantable volume at tree- and stand-level is becoming important for plantation owners. Although there are many studies on the total tree volume estimation from allometric models, these allometric models cannot predict tree- and stand-level merchantable volume at any merchantable height, and the stand-level merchantable volume model was not seen yet in Chinese fir plantations. This study aimed to develop (1 a compatible taper function for tree-level merchantable volume estimation, and (2 a stand-level merchantable volume model for Chinese fir plantations. This "taper function system" consisted in a taper function, a merchantable volume equation and a total tree volume equation. 46 Chinese fir trees were felled to develop the taper function in Shitai County, Anhui province, China. A second-order continuous autoregressive error structure corrected the inherent serial autocorrelation of different observations in one tree. The taper function and volume equations were fitted simultaneously after autocorrelation correction. The compatible taper function fitted well to our data and had very good performances in diameter and total tree volume prediction. The stand-level merchantable volume equation based on the ratio approach was developed using basal area, dominant height, quadratic mean diameter and top diameter (ranging from 0 to 30 cm as independent variables. At last, a total stand-level volume table using stand basal area and dominant height as variables was proposed for local forest managers to simplify the stand volume estimation.
Hot-gas cleanup system model development. Volume I. Final report
Energy Technology Data Exchange (ETDEWEB)
Ushimaru, K.; Bennett, A.; Bekowies, P.J.
1982-11-01
This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.
Electron quantum optics in ballistic chiral conductors
Energy Technology Data Exchange (ETDEWEB)
Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal [Laboratoire Pierre Aigrain, Ecole Normale Superieure, CNRS (UMR 8551), Universite Pierre et Marie Curie, Universite Paris Diderot, Paris (France); Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry [Aix Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal [Universite de Lyon, Federation de Physique Andre Marie Ampere, CNRS - Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, Lyon (France)
2014-01-15
The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
The ATLAS SemiConductorTracker
Mikuz, M
2004-01-01
The ATLAS SemiConductor Tracker (SCT) is presented. About 16000 silicon micro-strip sensors with a total active surface of over 60 m /sup 2/ and with 6.3 million read-out channels are built into 4088 modules arranged into four barrel layers and nine disks covering each of the forward regions up to an eta of 2.5. Challenges are imposed by the hostile radiation environment with particle fluences up to 2*10 /sup 14/ cm/sup -2/ 1 MeV neutron NIEL equivalent and 100 kGy TID, the 25 ns LHC bunch crossing time and the need for a hermetic, lightweight tracker. The solution adopted is carefully designed strip detectors operated at -7 degrees C, biased up to 500 V and read out by binary rad-hard fast BiCMOS electronics. A zero-CTE carbon fibre structure provides mechanical support. 30 kW of power are supplied on aluminium/Kapton tapes and cooled by C/sub 3/F/sub 8/ evaporative cooling. Data and commands are transferred by optical links. Prototypes of detector modules have been built, irradiated to the maximum expected ...
Local electron heating in nanoscopic conductors
D'Agosta, Roberto; Sai, Na; di Ventra, Massimiliano
2007-03-01
The electron current density in nanoscale junctions is typically several orders of magnitude larger than the corresponding one in bulk electrodes. Consequently, the electron-electron scattering rate increases substantially in the junction. This leads to local electron heating of the underlying Fermi sea [1] in analogy to the local ionic heating that is due to the increased electron-phonon scattering rates [2]. By using a novel hydrodynamic formulation of transport [3], we predict the bias dependence of local electron heating in quasi-ballistic nanoscale conductors [1], its effect on ionic heating [1], and the consequent observable changes in the inelastic conductance [4]. [1] R. D'Agosta, N. Sai and M. Di Ventra, accepted in Nano Letters (2006). [2] Y.-C. Chen, M. Zwolak, and M. Di Ventra, Nano Lett. 3, 1961 (2003); Nano Lett. 4, 1709 (2004); Nano Lett. 5, 621 (2005). M. J. Montgomery, T. N. Todorov, and A. P. Sutton, J. Phys. Cond. Matt. 14, 5377 (2002). [3] R. D'Agosta and M. Di Ventra, J. Phys. Cond. Matt. in press. [4] R. D'Agosta and M. Di Ventra, in preparation.
On electromagnetic induction in electric conductors
Korolev, Alexander I
2013-01-01
Experimental validation of the Faraday's law of electromagnetic induction (EMI) is performed when an electromotive force is generated in thin copper turns, located inside a large magnetic coil. It has been established that the electromotive force (emf) value should be dependent not only on changes of the magnetic induction flux through a turn and on symmetry of its crossing by magnetic power lines also. The law of EMI is applicable in sufficient approximation in case of the changes of the magnetic field near the turn are symmetrical. Experimental study of the induced emf in arcs and a direct section of the conductor placed into the variable field has been carried out. Linear dependence of the induced emf on the length of the arc has been ascertained in case of the magnetic field distribution symmetry about it. Influence of the magnetic field symmetry on the induced emf in the arc has been observed. The curve of the induced emf in the direct section over period of current pulse is similar to this one for the t...
SYNTHESIS AND CHARACTERIZATION OF PROTON CONDUCTORS
Energy Technology Data Exchange (ETDEWEB)
Brinkman, K.
2010-02-18
The morphological and electrical properties of yttrium (Y) and indium (In) doped barium cerate perovskites of the form BaIn{sub 0.3-x}Y{sub x}Ce{sub 0.7}O{sub 3-{delta}} (with x=0-0.3) prepared by a modified Pechini method were investigated as potential high temperature proton conductors with improved chemical stability. The sinterability increased with the increase of In-doping, and the perovskite phase was found in the BaIn{sub 0.3-x}Y{sub x}Ce{sub 0.7}O{sub 3-{delta}} solid solutions over the range 0 {le} x {le} 0.3. The conductivities decreased (from x to x, insert quantitative values) while the tolerance to wet CO{sub 2} improved for BaIn{sub 0.3-x}Y{sub x}Ce{sub 0.7}O{sub 3-{delta}} samples with an increase of In-doping.
Energy Technology Data Exchange (ETDEWEB)
Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others
1995-09-01
This report describes work pertaining to the development of models for coal gasification and combustion processes. This volume, volume 1, part 2, contains research progress in the areas of large particle oxidation at high temperatures, large particle, thick-bed submodels, sulfur oxide/nitrogen oxides submodels, and comprehensive model development and evaluation.
Data on dose-volume effects in the rat spinal cord do not support existing NTCP models
Van Luijk, P; Bijl, HP; Konings, AWT; Van Der Kogel, AJ; Schippers, JM
2005-01-01
Purpose: To evaluate several existing dose-volume effect models for their ability to describe the occurrence of white matter necrosis in rat spinal cord after irradiation with small proton beams. Methods and Materials: A large number of dose-volume effect models has been fitted to data on the occurr
Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering
Energy Technology Data Exchange (ETDEWEB)
Jacobson, Allan J. [Univ. of Houston, TX (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Grey, Clare [Stony Brook Univ., NY (United States)
2014-08-31
The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B_{2}O_{5+x}, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo_{2}O_{5+x} and NdBaCo_{2}O_{5+x}, PrBaCo_{2-x}FexO_{6- δ} (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO_{6- δ} (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr_{3}YCo_{4}O_{10.5}, YBaMn_{2}O_{5+x}. A_{0.5}A’_{0.5}BO_{3} (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr
2015-05-22
CNT induce a current on another CNT. In a lumped parameter circuit model, the CNT junction is represented as a capacitor in parallel with a resistor...Figure 2. Left| Microstrip waveguide with various CNT types imbedded into the central conductor. Right| All microwave and millimeter
Directory of Open Access Journals (Sweden)
Gmel Gerrit
2010-03-01
Full Text Available Abstract Background Alcohol consumption is a major risk factor in the global burden of disease, with overall volume of exposure as the principal underlying dimension. Two main sources of data on volume of alcohol exposure are available: surveys and per capita consumption derived from routine statistics such as taxation. As both sources have significant problems, this paper presents an approach that triangulates information from both sources into disaggregated estimates in line with the overall level of per capita consumption. Methods A modeling approach was applied to the US using data from a large and representative survey, the National Epidemiologic Survey on Alcohol and Related Conditions. Different distributions (log-normal, gamma, Weibull were used to model consumption among drinkers in subgroups defined by sex, age, and ethnicity. The gamma distribution was used to shift the fitted distributions in line with the overall volume as derived from per capita estimates. Implications for alcohol-attributable fractions were presented, using liver cirrhosis as an example. Results The triangulation of survey data with aggregated per capita consumption data proved feasible and allowed for modeling of alcohol exposure disaggregated by sex, age, and ethnicity. These models can be used in combination with risk relations for burden of disease calculations. Sensitivity analyses showed that the gamma distribution chosen yielded very similar results in terms of fit and alcohol-attributable mortality as the other tested distributions. Conclusions Modeling alcohol consumption via the gamma distribution was feasible. To further refine this approach, research should focus on the main assumptions underlying the approach to explore differences between volume estimates derived from surveys and per capita consumption figures.
Energy Technology Data Exchange (ETDEWEB)
Woods, D.D.; Roth, E.M.; Hanes, L.F.
1986-07-01
This report contains the results of a feasibility study to determine if the current state of models human cognitive activities can serve as the basis for improved techniques for predicting human error in nuclear power plants emergency operations. Based on the answer to this questions, two subsequent phases of research are planned. Phase II is to develop a model of cognitive activities, and Phase III is to test the model. The feasibility study included an analysis of the cognitive activities that occur in emergency operations and an assessment of the modeling concepts/tools available to capture these cognitive activities. The results indicated that a symbolic processing (or artificial intelligence) model of cognitive activities in nuclear power plants is both desirable and feasible. This cognitive model can be built upon the computational framework provided by an existing artificial intelligence system for medical problem solving called Caduceus. The resulting cognitive model will increase the capability to capture the human contribution to risk in probabilistic risk assessments studies. Volume I summarizes the major findings and conclusions of the study. Volume II provides a complete description of the methods and results, including a synthesis of the cognitive activities that occur during emergency operations, and a literature review on cognitive modeling relevant to nuclear power plants. 112 refs., 10 figs.
Verification of Conjugate Heat Transfer Models in a Closed Volume with Radiative Heat Source
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2016-01-01
Full Text Available The results of verification of mathematical model of convective-conductive heat transfer in a closed volume with a thermally conductive enclosing structures are presented. Experiments were carried out to determine the temperature of floor premises in the working conditions of radiant heating systems. Comparison of mathematical modelling of temperature fields and experiments showed their good agreement. It is concluded that the mathematical model of conjugate heat transfers in the air cavity with a heat-conducting and heat-retaining walls correspond to the real process of formation of temperature fields in premises with gas infrared heaters system.
Mandati, Sreekanth; Kunstmann, Jens; Boerrnert, Felix; Schoenfelder, Ronny; Ruemmeli, Mark; Kar, Kamal K.; Cuniberti, Gianaurelio
2010-03-01
The influence of mixed catalysts for the high yield production of carbon nanotubes (CNTs) has been studied systematically. Based on extensive experimental data a ``Catalyst Volume to Surface Area'' (CVSA) model was developed to understand the influence of the process parameters on the yield and CNT diameter distribution [1]. In our study, we present a refined version of the CVSA model developed by combining experiments and simulations. We discuss our current understanding of the growth mechanism and how the model might be used to increase CNT yields by using mixed catalysts.[4pt] [1] S. Tetali et al., ACS Nano (2009), DOI: 10.1021/nn9012548.
Eddy damping effect of additional conductors in superconducting levitation systems
Energy Technology Data Exchange (ETDEWEB)
Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn
2015-12-15
Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.
Simulation model for wind energy storage systems. Volume II. Operation manual. [SIMWEST code
Energy Technology Data Exchange (ETDEWEB)
Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.
1977-08-01
The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume II, the SIMWEST operation manual, describes the usage of the SIMWEST program, the design of the library components, and a number of simple example simulations intended to familiarize the user with the program's operation. Volume II also contains a listing of each SIMWEST library subroutine.
Energy Technology Data Exchange (ETDEWEB)
Allen, B J
1979-02-01
This documentation describes the PIES Integrating Model as it existed on January 1, 1978. This Volume VI of six volumes is data documentation, containing the standard table data used for the Administrator's Report at the beginning of 1978, along with the primary data sources and the office responsible. It also contains a copy of a PIES Integrating Model Report with a description of its content. Following an overview chapter, Chapter II, Supply and Demand Data Tables and Sources for the Mid-range Scenario for Target Years 1985 and 1990, data on demand, price, and elasticity; coal; imports; oil and gas; refineries; synthetics, shale, and solar/geothermal; transportation; and utilities are presented. The following data on alternate scenarios are discussed: low and high demand; low and high oil and gas supply; refinery and oil and gas data assuming a 5% annual increase in real world oil prices. Chapter IV describes the solution output obtained from an execution of PIES.
A Monte Carlo method for critical systems in infinite volume: the planar Ising model
Herdeiro, Victor
2016-01-01
In this paper we propose a Monte Carlo method for generating finite-domain marginals of critical distributions of statistical models in infinite volume. The algorithm corrects the problem of the long-range effects of boundaries associated to generating critical distributions on finite lattices. It uses the advantage of scale invariance combined with ideas of the renormalization group in order to construct a type of "holographic" boundary condition that encodes the presence of an infinite volume beyond it. We check the quality of the distribution obtained in the case of the planar Ising model by comparing various observables with their infinite-plane prediction. We accurately reproduce planar two-, three- and four-point functions of spin and energy operators. We also define a lattice stress-energy tensor, and numerically obtain the associated conformal Ward identities and the Ising central charge.
Monte Carlo method for critical systems in infinite volume: The planar Ising model.
Herdeiro, Victor; Doyon, Benjamin
2016-10-01
In this paper we propose a Monte Carlo method for generating finite-domain marginals of critical distributions of statistical models in infinite volume. The algorithm corrects the problem of the long-range effects of boundaries associated to generating critical distributions on finite lattices. It uses the advantage of scale invariance combined with ideas of the renormalization group in order to construct a type of "holographic" boundary condition that encodes the presence of an infinite volume beyond it. We check the quality of the distribution obtained in the case of the planar Ising model by comparing various observables with their infinite-plane prediction. We accurately reproduce planar two-, three-, and four-point of spin and energy operators. We also define a lattice stress-energy tensor, and numerically obtain the associated conformal Ward identities and the Ising central charge.
The Meshfree Finite Volume Method with application to multi-phase porous media models
Foy, Brody H.; Perré, Patrick; Turner, Ian
2017-03-01
Numerical methods form a cornerstone of the analysis and investigation of mathematical models for physical processes. Many classical numerical schemes rely on the application of strict meshing structures to generate accurate solutions, which in some applications are an infeasible constraint. Within this paper we outline a new meshfree numerical scheme, which we call the Meshfree Finite Volume Method (MFVM). The MFVM uses interpolants to approximate fluxes in a disjoint finite volume scheme, allowing for the accurate solution of strong-form PDEs. We present a derivation of the MFVM, and give error bounds on the spatial and temporal approximations used within the scheme. We present a wide variety of applications of the method, showing key features, and advantages over traditional meshed techniques. We close with an application of the method to a non-linear multi-phase wood drying model, showing the potential for solving numerically challenging problems.
Local tetrahedron modeling of microelectronics using the finite-volume hybrid-grid technique
Energy Technology Data Exchange (ETDEWEB)
Riley, D.J.; Turner, C.D.
1995-12-01
The finite-volume hybrid-grid (FVHG) technique uses both structured and unstructured grid regions in obtaining a solution to the time-domain Maxwell`s equations. The method is based on explicit time differencing and utilizes rectilinear finite-difference time-domain (FDTD) and nonorthogonal finite-volume time-domain (FVTD). The technique directly couples structured FDTD grids with unstructured FVTD grids without the need for spatial interpolation across grid interfaces. In this paper, the FVHG method is applied to simple planar microelectronic devices. Local tetrahedron grids are used to model portions of the device under study, with the remainder of the problem space being modeled with cubical hexahedral cells. The accuracy of propagating microstrip-guided waves from a low-density hexahedron region through a high-density tetrahedron grid is investigated.
Directory of Open Access Journals (Sweden)
Sarmad ISTEPHAN
2015-06-01
Full Text Available Volumetric medical image datasets contain vital information for noninvasive diagnosis, treatment planning and prognosis. However, direct and unlimited query of such datasets is hindered due to the unstructured nature of the imaging data. This study is a step towards the unlimited query of medical image datasets by focusing on specific Structures of Interest (SOI. A requirement in achieving this objective is having both the surface and volume models of the SOI. However, typically, only the surface model is available. Therefore, this study focuses on creating a fast method to convert a surface model to a volume model. Three methods (1D, 2D and 3D are proposed and evaluated using simulated and real data of Deep Perisylvian Area (DPSA within the human brain. The 1D method takes 80 msec for DPSA model; about 4 times faster than 2D method and 7.4 fold faster than 3D method, with over 97% accuracy. The proposed 1D method is feasible for surface to volume conversion in computer aided diagnosis, treatment planning and prognosis systems containing large amounts of unstructured medical images.
Hot-gas cleanup system model development. Volume II. Final report
Energy Technology Data Exchange (ETDEWEB)
Ushimaru, K.; Bennett, A.; Bekowies, P.J.
1982-11-01
Under Contract to the Department of Energy (DOE) through the Morgantown Energy Technology Center (METC), Flow Industries, Inc., has developed computer models to simulate the physical performance of five hot-gas cleanup devices for pressurized, fluidized-bed combustion (PFBC), combined-cycle power plants. Separate cost models have also been developed to estimate the cost of each device. The work leading to the development of these models is described in Volume I of this report. This volume contains the user's manuals for both the physical and cost models. The manuals for the physical models are given first followed by those for the cost models. Each manual is a complete and separate document. The model names and devices and their respective subroutine names are: (1) Moving Granular Bed Filter by Combustion Power Company, USRCGB, QFCOST; (2) Ceramic Bag Filter by Acurex, USRACB, QDCOST; (3) Electrostatic Granular Bed Filter by General Electric, USRGGB, QACOST; (4) Electrostatic Precipitator by Research Cottrell, USRCEP, QECOST; and (5) Electrocyclone by General Electric, USRGCY, QBCOST.
Convergence of discrete duality finite volume schemes for the cardiac bidomain model
Andreianov, Boris; Karlsen, Kenneth H; Pierre, Charles
2010-01-01
We prove convergence of discrete duality finite volume (DDFV) schemes on distorted meshes for a class of simplified macroscopic bidomain models of the electrical activity in the heart. Both time-implicit and linearised time-implicit schemes are treated. A short description is given of the 3D DDFV meshes and of some of the associated discrete calculus tools. Several numerical tests are presented.
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove
2006-01-01
We present an approach for modelling unsteady, primarily one-dimensional, compressible flow. The conservation laws for mass, energy, and momentum are applied to a staggered mesh of control volumes and loss mechanisms are included directly as extra terms. Heat transfer, flow friction......, and multidimensional effects are calculated using empirical correlations. Transformations of the conservation equations into new variables, artificial dissipation for dissipating acoustic phenomena, and an asymmetric interpolation method for minimising numerical diffusion and non physical temperature oscillations...
Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin
2016-03-01
The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.
Energy Technology Data Exchange (ETDEWEB)
Li, Xuebao, E-mail: lxb08357x@ncepu.edu.cn; Cui, Xiang, E-mail: x.cui@ncepu.edu.cn; Ma, Wenzuo; Bian, Xingming; Wang, Donglai [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Lu, Tiebing, E-mail: tiebinglu@ncepu.edu.cn [Beijing Key Laboratory of High Voltage and EMC, North China Electric Power University, Beijing 102206 (China); Hiziroglu, Huseyin [Department of Electrical and Computer Engineering, Kettering University, Flint, Michigan 48504 (United States)
2016-03-15
The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.
A Volume-Weighting Cloud-in-Cell Model for Particle Simulation of Axially Symmetric Plasmas
Institute of Scientific and Technical Information of China (English)
李永东; 何锋; 刘纯亮
2005-01-01
A volume-weighting cloud-in-cell (VW-CIC) model is developed to implement the particle-in-cell (PIC) simulation in axially symmetric systems. This model gives a first-order accuracy in the cylindrical system, and it is incorporated into a PIC code. A planar diode with a finite-radius circular emitter is simulated with the code. The simulation results show that the VW-CIC model has a better accuracy and a lower noise than the conventional area-weighting cloud-in-cell (AW-CIC) model, especially on those points near the axis. The two-dimensional (2-D) space-charge-limited current density obtained from VW-CIC model is in better agreement with Lau's analytical result. This model is more suitable for 2.5-D PIC simulation of axially symmetric plasmas.
Modelling the Hydraulic Behaviour of Growing Media with the Explicit Finite Volume Solution
Directory of Open Access Journals (Sweden)
Marco Carbone
2015-02-01
Full Text Available The increasing imperviousness of urban areas reduces the infiltration and evapotranspiration capacity of urban catchments and results in increased runoff. In the last few decades, several solutions and techniques have been proposed to prevent such impacts by restoring the hydrological cycle. A limiting factor in spreading the use of such systems is the lack of proper modelling tools for design, especially for the infiltration processes in a growing medium. In this research, a physically-based model, employing the explicit Finite Volume Method (FVM, is proposed for modelling infiltration into growing media. The model solves a modified version of the Richards equation using a formulation which takes into account the main characteristics of green infrastructure substrates. The proposed model was verified against the HYDRUS-1D software and the comparison of results confirmed the suitability of the proposed model for correctly describing the hydraulic behaviour of soil substrates.
Demand modelling of passenger air travel: An analysis and extension, volume 2
Jacobson, I. D.
1978-01-01
Previous intercity travel demand models in terms of their ability to predict air travel in a useful way and the need for disaggregation in the approach to demand modelling are evaluated. The viability of incorporating non-conventional factors (i.e. non-econometric, such as time and cost) in travel demand forecasting models are determined. The investigation of existing models is carried out in order to provide insight into their strong points and shortcomings. The model is characterized as a market segmentation model. This is a consequence of the strengths of disaggregation and its natural evolution to a usable aggregate formulation. The need for this approach both pedagogically and mathematically is discussed. In addition this volume contains two appendices which should prove useful to the non-specialist in the area.
Ye, Yuan; Liao, Yunjun; Lu, Feng; Gao, Jianhua
2017-02-01
Fat grafting has variable and sometimes poor outcomes, and therefore new methods are needed. Multiple studies have demonstrated the excellent performance of external volume expansion and focused only on preexpansion with emphasis on the recipient. Two mouse models (a suction model and a fat-exchange transplantation model) were established to investigate changes in the origins and biological behaviors of regeneration-related cells in grafted fat under daily suction provided by external volume expansion. Blood supply increased from new host-derived capillaries or macrophage infiltration under suction. CD34-positive cells showed increased migration from the host into the grafts under suction. At week 12, nearly half of the mature adipocytes regenerated in the grafts in the suction group were derived from the host. Peroxisome proliferator-activated receptor γ expression of the suction group was significantly higher than that of controls at weeks 2 and 4 during adipogenesis. The normalized sample weight of the grafted fat was significantly greater than that of controls at 1 (0.081 ± 0.001 versus 0.072 ± 0.005; p suction provided by external volume expansion favors the regeneration of grafted fat and improves retention by promoting the migration of regeneration-related cells and the differentiation of adipocytes. Thus, more mature fat tissue with a well-organized structure was formed under suction.
Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs
Directory of Open Access Journals (Sweden)
Jiahang Wang
2017-01-01
Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.
Directory of Open Access Journals (Sweden)
A. A. Mazurenko
2017-01-01
Full Text Available Magnetic mode for 3-phase transformer with symmetrical magnetic conductor of frame design has been investigated on schematic model. The scheme consists of three non-linear coils having star-connection without zero wire. Weberampere characteristics correspond to similar parameters of separate frames of a magnetic conductor. It has been accepted that a magnetic flow of every frame is closed on itself without passing into other frame of the magnetic conductor. Electromagnetic state of equivalent diagram has been described by a system of differential equations which were solved with the help of MathCad program. Investigations have resulted in calculation of functions for magnetic frame induction and magnetizing current and their harmonic compositions; dependence of actual amplitude for magnetic field induction on amplitude of the main harmonic induction has been determined in the paper. While executing experiments it has been revealed the following: induction amplitude of the main harmonic in the magnetic field within frames of the magnetic conductor is higher in comparison with the design induction value by 15.5 %; due to non-linearity of weber-ampere characteristics in frames and properties of 3-phase system harmonic components, which are multiple of three, are initiated in the functions of magnetic induction for separate frames; high-order harmonics of function for magnetic frame induction being imposed on the main harmonic decrease an actual amplitude of magnetic field induction practically up to the design induction value within the operational range of the actual amplitude and in this context coefficients of high-order harmonics change insignificantly; harmonic components, which are multiple of three, are absent in magnetizing currents.
Ercan, Ilke; Anderson, Neal G.
2010-06-01
Bushong, Sai, and Di Ventra (BSD) recently demonstrated that steady-state transport can emerge solely from quantum dynamics in a globally closed system consisting of a nanoscale conductor bridging two electrodes by Bushong et al. [Nano Lett. 5, 2569 (2005)]. They reported calculations, based on a simple tight-binding implementation of the "microcanonical" approach (TBIMCA) by Di Ventra and Todorov [J. Phys.: Condens. Matter 16, 8025 (2004)], in which a steady-state conductor current consistent in magnitude with the quantum conductance G0=2e2/h is established after an initial bias-induced imbalance in electrode populations begins to equalize. In this work, BSD's TBIMCA is generalized, and their expressions for the time-dependent current and local occupation functions are shown to apply only to a restricted class of structures. Calculations of the current dynamics and local occupation functions, based on the generalized formalism, are then presented for a wide variety of electrode-conductor-electrode geometries. These calculations provide a more comprehensive characterization of the TBIMCA, enable identification of the conditions under which signature features of nanoscale transport emerge, and show that the emergence of these features hinges critically on details of the structure geometry. This structure dependence represents an important consideration for application of the TBIMCA to the modeling of transport through nanostructures and should be recognized in any attempt to identify and explain signature features of nanoscale transport within this approach.
Energy Technology Data Exchange (ETDEWEB)
Lü, Jing-Tao, E-mail: jtlu@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, 430074 Wuhan (China); Zhou, Hangbo [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117551 Singapore (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore (Singapore); Jiang, Jin-Wu [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, 200072 Shanghai (China); Wang, Jian-Sheng [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117551 Singapore (Singapore)
2015-05-15
The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons.
Directory of Open Access Journals (Sweden)
Jing-Tao Lü
2015-05-01
Full Text Available The topic of this review is the effects of electron-phonon interaction (EPI on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons.
FEMCAM Analysis of SULTAN Test Results for ITER Nb3SN Cable-conduit Conductors
Energy Technology Data Exchange (ETDEWEB)
Yuhu Zhai, Pierluigi Bruzzone, Ciro Calzolaio
2013-03-19
Performance degradation due to filament fracture of Nb3 Sn cable-in-conduit conductors (CICCs) is a critical issue in large-scale magnet designs such as ITER which is currently being constructed in the South of France. The critical current observed in most SULTAN TF CICC samples is significantly lower than expected and the voltage-current characteristic is seen to have a much broader transition from a single strand to the CICC. Moreover, most conductors exhibit the irreversible degradation due to filament fracture and strain relaxation under electromagnetic cyclic loading. With recent success in monitoring thermal strain distribution and its evolution under the electromagnetic cyclic loading from in situ measurement of critical temperature, we apply FEMCAM which includes strand filament breakage and local current sharing effects to SULTAN tested CICCs to study Nb3 Sn strain sensitivity and irreversible performance degradation. FEMCAM combines the thermal bending effect during cool down and the EM bending effect due to locally accumulating Lorentz force during magnet operation. It also includes strand filament fracture and related local current sharing for the calculation of cable n value. In this paper, we model continuous performance degradation under EM cyclic loading based on strain relaxation and the transition broadening upon cyclic loading to the extreme cases seen in SULTAN test data to better quantify conductor performance degradation.
Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.
Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.
Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz
2015-01-01
This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.
Guanidinium nonaflate as a solid-state proton conductor
DEFF Research Database (Denmark)
Chen, Xiaoli; Tang, Haolin; Putzeys, Tristan
2016-01-01
Protic organic ionic plastic crystals (POIPCs) are a type of novel solid-state proton conductors. In this work, guanidinium nonaflate ([Gdm-H][NfO]) is reported to be a model POIPC. Its structure-property relationship has been investigated comprehensively. Infrared analysis of [Gdm-H][NfO] and its...... deuterated analogue [Gdm-D][NfO] confirms the complete formation of the protic salts. The cations in as-prepared [Gdm-D][NfO] are estimated to consist of [C(ND2)2(NHD)]+ and [C(ND2)3]+ with a molar ratio of around 1:1. The deuteration also proves that each guanidinium cation has six displaceable protons...... order in the plastic crystalline phases. Dielectric spectroscopy measurements show that its ionic conductivity reaches 2.1 × 10-3 S cm-1 at 185 °C. The proton conduction in the plastic crystalline phases of [Gdm-H][NfO] is assumed to happen via the vehicle mechanism. In the molten state, the proton...
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available The main purpose of this research was to analyse the effects of stand structure on biomass allocation and on the accurancy of estimation models for volume and aboveground biomass of Italian stone pine (Pinus pinea L.. Although the species is widely distributed on Mediterranean coasts, few studies on forest biomass estimation have focused on pinewoods. The research was carried out in the Castelfusano’s pinewood (Rome and concerned the two most common structural types: (a 50 years-old pinewood originated by broadcast seeding; and (b 62 years-old pinewood originated by partial seeding alternating worked strips to firm strips. Some 83 sample trees were selected for stem volume estimation and a subset of 32 trees used to quantify the total epigeous biomass, the wooden biomass compartment, including stem and big branches (diameter > 3 cm and the photosynthetic biomass, including thin branches (diameter < 3 cm and needles. Collected data were used to elaborate allometric relations for stem volume, total biomass and specific relations for both compartments, based on one (d2 or two (d2h indipendent variables, for both structural types. Furthermore, pinewood specific biomass expansion factors (BEF - indexes used to estimate carbon stocks starting from stem biomass data - were obtained. The achieved estimation models were subjected to both parallelism and coincidence tests, showing significant effects of stand structure on the accurancy of the allometric relations. The effects of stand structure and reliability of tree height curves on the accurancy of estimation models for volume and aboveground biomass and on biomass allocation in different compartments are analysed and discussed.
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
Directory of Open Access Journals (Sweden)
Chieh-Fan Chen
2011-01-01
Full Text Available This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
Methods to Increase the Robustness of Finite-Volume Flow Models in Thermodynamic Systems
Directory of Open Access Journals (Sweden)
Sylvain Quoilin
2014-03-01
Full Text Available This paper addresses the issues linked to simulation failures during integration in finite-volume flow models, especially those involving a two-phase state. This kind of model is particularly useful when modeling 1D heat exchangers or piping, e.g., in thermodynamic cycles involving a phase change. Issues, such as chattering or stiff systems, can lead to low simulation speed, instabilities and simulation failures. In the particular case of two-phase flow models, they are usually linked to a discontinuity in the density derivative between the liquid and two-phase zones. In this work, several methods to tackle numerical problems are developed, described, implemented and compared. In addition, methods available in the literature are also implemented and compared to the proposed approaches. Results suggest that the robustness of the models can be significantly increased with these different methods, at the price of a small increase of the error in the mass and energy balances.
A finite volume alternate direction implicit approach to modeling selective laser melting
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Mohanty, Sankhya
2013-01-01
is proposed for modeling single-layer and few-layers selective laser melting processes. The ADI technique is implemented and applied for two cases involving constant material properties and non-linear material behavior. The ADI FV method consume less time while having comparable accuracy with respect to 3D...... to accurately simulate the process, are constrained by either the size or scale of the model domain. A second challenging aspect involves the inclusion of non-linear material behavior into the 3D implicit FE models. An alternating direction implicit (ADI) method based on a finite volume (FV) formulation......Over the last decade, several studies have attempted to develop thermal models for analyzing the selective laser melting process with a vision to predict thermal stresses, microstructures and resulting mechanical properties of manufactured products. While a holistic model addressing all involved...
Simulation model for wind energy storage systems. Volume I. Technical report. [SIMWEST code
Energy Technology Data Exchange (ETDEWEB)
Warren, A.W.; Edsinger, R.W.; Chan, Y.K.
1977-08-01
The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume I gives a brief overview of the SIMWEST program and describes the two NASA defined simulation studies.
Energy Technology Data Exchange (ETDEWEB)
Allen, B J
1979-02-01
This documentation describes the PIES Integrating Model as it existed on January 1, 1978. This volume contains two chapters. In Chapter I, Overview, the following subjects are briefly described: supply data, EIA projection series and scenarios, demand data and assumptions, and supply assumptions - oil and gas availabilities. Chapter II contains supply and demand data tables and sources used by the PIES Integrating Model for the mid-range scenario target years 1985 and 1990. Tabulated information is presented for demand, price, and elasticity data; coal data; imports data; oil and gas data; refineries data; synthetics, shale, and solar/geothermal data; transportation data; and utilities data.
Synergistic, ultrafast mass storage and removal in artificial mixed conductors
Chen, Chia-Chin; Fu, Lijun; Maier, Joachim
2016-08-01
Mixed conductors—single phases that conduct electronically and ionically—enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the ‘super-ionic’ conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors.
Design of force-cooled conductors for large fusion magnets
Energy Technology Data Exchange (ETDEWEB)
Dresner, L.; Lue, J.W.
1977-01-01
Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.
The fate of sounds in conductors' brains: an ERP study.
Nager, Wido; Kohlmetz, Christine; Altenmüller, Eckart; Rodriguez-Fornells, Antoni; Münte, Thomas F
2003-06-01
Professional music conductors are required to home in on a particular musician but at the same time have to monitor the entire orchestra. It was hypothesized that this unique experience should be reflected by superior auditory spatial processing. Event-related brain potentials were obtained, while conductors, professional pianists, and non-musicians listened to sequences of bandpass-filtered noise-bursts presented in random order from six speakers, three located in front and three to the right of the subjects. In different runs, subjects either attended the centermost or the most peripheral speaker in order to detect slightly deviant noise-bursts. For centrally located speakers, the ERPs showed a typical Nd attention effect for the relevant location with a steep decline for the neighboring speakers in all subject groups. For peripheral speakers, only the conductors showed attentional selectivity, while the Nd effect was of similar size for all three peripheral speakers in the other two groups. These ERP effects were paralleled by an enhanced behavioral selectivity in peripheral auditory space in conductors. Moreover, the pre-attentive monitoring of the entire auditory scene indexed by the mismatch negativity was superior in musicians compared to non-musicians. In conductors, the MMN was followed by a positivity suggesting an attention shift towards the deviant stimuli in this group only.
Hearing status among Norwegian train drivers and train conductors.
Lie, A; Skogstad, M; Johnsen, T S; Engdahl, B; Tambs, K
2013-12-01
There is a general perception that train drivers and conductors may be at increased risk of developing noise-induced hearing loss. To study job-related hearing loss among train drivers and train conductors. Audiograms from train drivers and train conductors were obtained from the medical records of the occupational health service of the major Norwegian railway company. The results were compared with audiograms from an internal control group of railway workers and an external reference group of people not occupationally exposed to noise. The monaural hearing threshold level at 4kHz, the mean binaural value at 3, 4 and 6kHz and the prevalence of audiometric notches (≥25 dB at 4kHz) were used for comparison. Audiograms were available for 1567 drivers, 1565 conductors, 4029 railway worker controls and 15 012 people not occupationally exposed to noise. No difference in hearing level or prevalence of audiometric notches was found between study groups after adjusting for age and gender. Norwegian train drivers and conductors have normal hearing threshold levels comparable with those in non-exposed groups.
A model for the volume regulatory mechanism of the Airway Surface Layer
Lang, Michael; Rubinstein, Michael; Davis, C. William; Tarran, Robert; Boucher, Richard
2006-03-01
The airway surface layer (ASL) of a lung consists of two parts: a mucus layer with thickness of about 30 μm in contact with air and a periciliary layer (PCL) of about 7 μm below. Mucus collects dust and bacteria and is swept to throat by beating cilia, while riding on top of PCL. It is important that the thickness of PCL is matched with the length of cilia in order to optimize clearance of mucus. Decrease of PCL thickness would finally lead to an occlusion of the respiratory system. Experiments show that the height of PCL stays constant after removing mucus. When modifying height or composition of this open PCL by removing fluid or adding isotonic solution leads to the same final height of PCL. Thus, there must be a regulatory mechanism, that controls height, i.e. ASL volume. Additional experiments show that mechanical stimulus of the cells like shear leads to an increase of ASL volume, thus, the cell is able to actively adjust this volume. Based on these observations a class of models is introduced that describes the experiments and a specific minimum model for the given problem is proposed.
Cornelius, Nathan R.; Nishimura, Nozomi; Suh, Minah; Schwartz, Theodore H.; Doerschuk, Peter C.
2015-08-01
Objective. To describe a toolkit of components for mathematical models of the relationship between cortical neural activity and space-resolved and time-resolved flows and volumes of oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI). Approach. Both blood flow and blood volume and both oxygenated and deoxygenated hemoglobin and their interconversion are accounted for. Flow and volume are described by including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and deoxygenated hemoglobin and their interconversion are described by generalization of Kirchhoff's laws based on well-mixed compartments. Main results. Mathematical models built from this toolkit are able to reproduce experimental single-stimulus OISI results that are described in papers from other research groups and are able to describe the response to multiple-stimuli experiments as a sublinear superposition of responses to the individual stimuli. Significance. The same assembly of tools from the toolkit but with different parameter values is able to describe effects that are considered distinctive, such as the presence or absence of an initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be due to unique parameter values in a subject rather than different fundamental mechanisms.
Treating network junctions in finite volume solution of transient gas flow models
Bermúdez, Alfredo; López, Xián; Vázquez-Cendón, M. Elena
2017-09-01
A finite volume scheme for the numerical solution of a non-isothermal non-adiabatic compressible flow model for gas transportation networks on non-flat topography is introduced. Unlike standard Euler equations, the model takes into account wall friction, variable height and heat transfer between the pipe and the environment which are source terms. The case of one single pipe was considered in a previous reference by the authors, [8], where a finite volume method with upwind discretization of the flux and source terms has been proposed in order to get a well-balanced scheme. The main goal of the present paper is to go a step further by considering a network of pipes. The main issue is the treatment of junctions for which container-like 2D finite volumes are introduced. The couplings between pipes (1D) and containers (2D) are carefully described and the conservation properties are analyzed. Numerical tests including real gas networks are solved showing the performance of the proposed methodology.
Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.
1982-01-01
The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
Directory of Open Access Journals (Sweden)
Mohammad Iranmanesh
2014-12-01
Full Text Available Many standard brands sell products under the volume discount scheme (VDS as more and more consumers are fond of purchasing products under this scheme. Despite volume discount being commonly practiced, there is a dearth of research, both conceptual and empirical, focusing on purchase characteristics factors and consumer internal evaluation concerning the purchase of products under VDS. To attempt to fill this void, this article develops a conceptual model on VDS with the intention of delineating the influence of the purchase characteristics factors on the consumer intention to purchase products under VDS and provides an explanation of their effects through consumer internal evaluation. Finally, the authors discuss the managerial implications of their research and offer guidelines for future empirical research.
ECONOMETRIC MODELING OF THE DYNAMICS OF VOLUMES HYDROCARBONS OF SMALL OIL AND GAS ENTERPRISES
Directory of Open Access Journals (Sweden)
GORLOV A.V.
2015-01-01
Full Text Available In this paper investigates the principles of functioning of small oil and gas enterprises of Russia. The basic characteristics and socio-economic tasks performed by the small oil and gas enterprises. Made correlation and regression analysis, a result of which the pair correlation coefficients between the indicator of development of small oil and gas enterprises (volumes hydrocarbons and the factors that characterize the work environment of their operation; built regressions, describing the process of development of small oil and gas enterprises. With a view to forecasting the development of small oil and gas enterprises built production function of Cobb-Douglas and selected econometric model, has good predictive properties. Made predictive calculations dynamics of volumes hydrocarbons of small oil and gas enterprises on formulating scenarios for the planning period (2015-2016 years.
Energy modeling. Volume 2: Inventory and details of state energy models
Melcher, A. G.; Underwood, R. G.; Weber, J. C.; Gist, R. L.; Holman, R. P.; Donald, D. W.
1981-05-01
An inventory of energy models developed by or for state governments is presented, and certain models are discussed in depth. These models address a variety of purposes such as: supply or demand of energy or of certain types of energy; emergency management of energy; and energy economics. Ten models are described. The purpose, use, and history of the model is discussed, and information is given on the outputs, inputs, and mathematical structure of the model. The models include five models dealing with energy demand, one of which is econometric and four of which are econometric-engineering end-use models.
Jin, Xinzhe; Yanagisawa, Yoshinori; Maeda, Hideaki; Takano, Yoshiki
2015-07-01
We have started to develop a superconducting bridge joint between two GdBa2Cu3O7-δ (Gd123)-coated conductors, where both conductors are placed in an end-to-end arrangement on the surface of a melt-textured YBCO (including Y2BaCuO5 and YBa2Cu3O7-δ) bulk, which acts as a superconducting medium between the coated conductors. As a first step in the development, one half of the bridge joint assembly was modeled and investigated. Experimental results achieved are as follows: (a) the higher-melting-temperature textured Gd123-coated conductor acts as a seed for the melt texture of the YBa2Cu3O7-δ (Y123) bulk, and (b) the superconducting phase continues across the Y123/Gd123 boundary. The critical current of the joint model is 10 A, which is about 10% of the original Gd123-coated conductor, at 77 K in a self-magnetic field. These results are considered to be extensible to the superconducting bridge joint between the Gd123-coated conductors.
An Accurate Multimoment Constrained Finite Volume Transport Model on Yin-Yang Grids
Institute of Scientific and Technical Information of China (English)
LI Xingliang; SHEN Xueshun; PENG Xindong; XIAO Feng; ZHUANG Zhaorong; CHEN Chungang
2013-01-01
A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid.The MCV scheme defines 16 degrees of freedom (DOFs) within each element to build a 2D cubic reconstruction polynomial.The time evolution equations for DOFs are derived from constraint conditions on moments of line-integrated averages (LIA),point values (PV),and values of first-order derivatives (DV).The Yin-Yang grid eliminates polar singularities and results in a quasi-uniform mesh.A limiting projection is designed to remove nonphysical oscillations around discontinuities.Our model was tested against widely used benchmarks; the competitive results reveal that the model is accurate and promising for developing general circulation models.
Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.
2008-01-01
Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in
Multivariate process modeling of high-volume manufacturing of consumer electronics
Asp, Stefan; Wide, Peter
1998-12-01
As production volumes continue to increase and the global market for consumer electronics is getting fiercer, the need for a reliable and essentially fault-free production process is becoming a necessity to survive. The manufacturing processes of today are highly complex and the increasing amount of process data produced in making it hard to unravel the useful information extracted from a huge data set. We have used multivariate and nonlinear process modeling to examine the surface mount production process in a high volume manufacturing of mobile telephones and made an artificial neural network model of the process. As input parameters to the model we have used process data logged by an automatic test equipment and the result variables come from an Automatic Inspection system placed after the board manufacturing process. Using multivariate process modeling has enabled us to identify parameters, which contributes heavily to the quality of the product and can further be implemented to optimize the manufacturing process for system production faults.
Directory of Open Access Journals (Sweden)
Lisa J. Samuelson
2012-12-01
Full Text Available Longleaf pine (Pinus palustris Mill. is an important tree species of the southeast U.S. Currently there is no comprehensive stand-level growth and yield model for the species. The model system described here estimates site index (SI if dominant height (Hdom and stand age are known (inversely, the model can project Hdom at any given age if SI is known. The survival (N equation was dependent on stand age and Hdom, predicting greater mortality on stands with larger Hdom. The function that predicts stand basal area (BA for unthinned stands was dependent on N and Hdom. For thinned stands BA was predicted with a competition index that was dependent on stand age. The function that best predicted stand stem volume (outside or inside bark was dependent on BA and Hdom. All functions performed well for a wide range of stand ages and productivity, with coefficients of determination ranging between 0.946 (BA and 0.998 (N. We also developed equations to estimate merchantable volume yield consisting of different combinations of threshold diameter at breast height and top diameter for longleaf pine stands. The equations presented in this study performed similarly or slightly better than other reported models to estimate future N, Hdom and BA. The system presented here provides important new tools for supporting future longleaf pine management and research.
An implicit control-volume finite element method for well-reservoir modelling
Pavlidis, Dimitrios; Salinas, Pablo; Xie, Zhihua; Pain, Christopher; Matar, Omar
2016-11-01
Here a novel implicit approach (embodied within the IC-Ferst) is presented for modelling wells with potentially a large number of laterals within reservoirs. IC-Ferst is a conservative and consistent, control-volume finite element method (CV-FEM) model and fully unstructured/geology conforming meshes with anisotropic mesh adaptivity. As far as the wells are concerned, a multi-phase/multi-well approach, where well systems are represented as phases, is taken here. Phase volume fraction conservation equations are solved for in both the reservoir and the wells, in addition, the field within wells is also solved for. A second novel aspect of the work is the combination of modelling and resolving of the motherbore and laterals. In this case wells do not have to be explicitly discretised in space. This combination proves to be accurate (in many situations) as well as computationally efficient. The method is applied to a number of multi-phase reservoir problems in order to gain an insight into the effectiveness, in terms of production rate, of perforated laterals. Model results are compared with semi-analytical solutions for simple cases and industry-standard codes for more complicated cases. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).
A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography.
Aristophanous, Michalis; Penney, Bill C; Martel, Mary K; Pelizzari, Charles A
2007-11-01
The increased interest in 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an "analysis region" to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of the
Al-Hussaini, A; Owens, D; Tomkinson, A
2011-12-01
Tympanometric evaluation is routinely used as part of the complete otological examination. During tympanometric examination, evaluation of middle ear pressure and ear canal volume is undertaken. Little is reported in relation to the accuracy and precision tympanometry evaluates external ear canal volume. This study examines the capability of the tympanometer to accurately evaluate external auditory canal volume in both simple and partially obstructed ear canal models and assesses its capability to be used in studies examining the effectiveness of cerumolytics. An ear canal model was designed using simple laboratory equipment, including a 5 ml calibrated clinical syringe (Becton Dickinson, Spain). The ear canal model was attached to the sensing probe of a Kamplex tympanometer (Interacoustics, Denmark). Three basic trials were undertaken: evaluation of the tympanometer in simple canal volume measurement, evaluation of the tympanometer in assessing canal volume with partial canal occlusion at different positions within the model, and evaluation of the tympanometer in assessing canal volume with varying degrees of canal occlusion. 1,290 individual test scenarios were completed over the three arms of the study. At volumes of 1.4 cm(3) or below, a perfect relationship was noted between the actual and tympanometric volumes in the simple model (Spearman's ρ = 1) with weakening degrees of agreement with increasing volume of the canal. Bland-Altman plotting confirmed the accuracy of this agreement. In the wax substitute models, tympanometry was observed to have a close relationship (Spearman's ρ > 0.99) with the actual volume present with worsening error above a volume of 1.4 cm(3). Bland-Altman plotting and precision calculations provided evidence of accuracy. Size and position of the wax substitute had no statistical effect on results [Wilcoxon rank-sum test (WRST) p > 0.99], nor did degree of partial obstruction (WRST p > 0.99). The Kamplex tympanometer
Kasabova, Boryana E; Holliday, Trenton W
2015-04-01
A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions.
Variable thickness transient ground-water flow model. Volume 3. Program listings
Energy Technology Data Exchange (ETDEWEB)
Reisenauer, A.E.
1979-12-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.
Air-Stable n-type Conductors and Semiconductors
2015-07-14
AFRL-OSR-VA-TR-2015-0209 Air-Stable n-type Conductors and Semiconductors Zhenan Bao LELAND STANFORD JUNIOR UNIVERSITY THE Final Report 07/14/2015...04-2012 to 14-04-2015 4. TITLE AND SUBTITLE Air-Stable n-type Conductors and Semiconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0190 5c...2. Design rules and synthesis of high performance n-doped conducting polymers; 3. Fundamental understanding of organic semiconductors through
The Joule-Thomson effect on the thermoelectric conductors
Energy Technology Data Exchange (ETDEWEB)
Consiglieri, Luisa [Lisbon Univ. (Portugal). Dept. of Mathematics and CMAF
2009-03-15
The transmission of an electric current in a conductor is a process in which some electrical energy is converted into heat (thermal energy). We deal with a nonlinear boundary value elliptic problem which describes the electrical heating of a solid conductor and the Joule-Thomson effect is taken into account. The existence of a weak solution is proved under both space and temperature dependence of the electrical and thermal conductivities. When the coefficients are only dependent on their temperature argument, some regularity results are stated. (orig.)
Improvement of SOFC electrodes using mixed ionic-electronic conductors
Energy Technology Data Exchange (ETDEWEB)
Matsuzaki, Y.; Hishinuma, M. [Tokyo Gas Co., Ltd. (Japan)
1996-12-31
Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.
Zhang, Yu; Liu, Jinliang
2013-02-01
As important devices for voltage boosting and switching, respectively, pulse transformer and magnetic switch are widely used in pulsed power technology. In this paper, a new kind of transformer type magnetic switch (TTMS) with coaxial cylindrical conductors is put forward to combine the functions of voltage boosting and switching in one power device. As a compact combination device of discrete pulse transformer and magnetic switch, the compact TTMS decreases the required volume of magnetic cores in a large scale. The primary windings of the TTMS have a parallel combination structure so that the TTMS which only has 3 turns of secondary windings has a step-up ratio at 1:9. Before the magnetic core saturates, the TTMS has low unsaturated inductances of windings and good pulse response characteristics, so it can be used to substitute the Marx generator to charge the pulse forming line (PFL) at the ranges of several hundred kV and several hundred ns. After the core saturates, the cylindrical conductors can decrease the saturated inductance of the secondary windings of TTMS to a level less than 400 nH. As a result, the proposed TTMS can be used as the boosting transformer and main switch of helical Blumlein PFL to form the quasi-square voltage pulse on the 160 Ω load with a short pulse rise time only at 60 ns.
Static test on aerodynamic characteristics of iced quad bundled conductors%覆冰四分裂导线静态气动力特性试验
Institute of Scientific and Technical Information of China (English)
张宏雁; 严波; 周松; 胡景; 刘小会
2011-01-01
The aerodynamic characteristics of iced quad bundled conductor may be different from those of iced single conductor because of the wake interference around the sub-conductors of the bundled conductor.Test models of iced quad bundled conductors with two different cross section shapes of ice were prepared.The static aerodynamic coefficients of the models varying with attack angle, in the cases of different ice thickness and wind velocities, are obtained by wind tunnel test.It is observed that the wake interference around sub-conductors on the aerodynamic coefficients is obvious under certain wind attack angles.The obtained tests provide basic data for the analysis of galloping of iced quad bundled conductor and the development of anti-galloping technology.%覆冰四分裂导线的空气动力特性,由于覆冰子导线尾流的相互干扰可能不同于覆冰单导线.针对两种不同冰型制作覆冰四分裂导线模型,通过风洞试验测试获得不同冰厚和不同风速下覆冰四分裂导线静态空气动力系数随攻角的变化曲线.结果表明,在一定的攻角下,子导线尾流相互干扰对空气动力系数有明显影响.所得试验结果为覆冰四分裂导线的舞动及其防止技术的研究提供必要的数据.
Koizumi, Norikiyo; Matsui, Kunihiro; Okuno, Kiyoshi
2010-03-01
The critical currents of the Japanese ITER TF conductors made through an internal-tin and bronze process were preliminarily estimated to be about 5.7 K, which approximates the design value of 5.7 K, and about 6.1 K, respectively, at 68 kA and 11.8 T using a short conductor sample. To investigate the influence of the current distribution in the sample conductor, a simulation was performed using a lumped circuit model of a cable and static electrical field model for jackets. The simulation results show that a large, non-uniform current distribution is established due to magneto-resistance of the copper in the joint and an imbalance of contact resistance of the strands to the copper and by poor soldering between the copper shoes, results which make a precise evaluation of the critical current performance difficult. The analytical results indicate that the current sharing temperature of the internal-tin and bronze process conductors is expected to be 6.0 K and 6.7 K, respectively, when the current distribution is uniform. In addition, solder filling of the joints makes the current distribution uniform due to the normal resistance in the high field zone, and the current sharing temperature can be estimated as almost the same as when the current distribution is uniform. The other possible solution is to use a thin copper plate with a low RRR to reduce the influence of magneto-resistance and any non-uniformity in contact resistance. Conductor performance is under-estimated in this case because the non-uniform current distribution still remains. However, the reduction in the estimated current sharing temperature is expected to be a few hundred milli-Kelvins, which seems acceptable as a margin in a qualification trial.
Maples, A. L.
1981-01-01
The operation of solidification Model 2 is described and documentation of the software associated with the model is provided. Model 2 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of unsteady horizontal axisymmetric bidirectional solidification. The solidification program allows interactive modification of calculation parameters as well as selection of graphical and tabular output. In batch mode, parameter values are input in card image form and output consists of printed tables of solidification functions. The operational aspects of Model 2 that differ substantially from Model 1 are described. The global flow diagrams and data structures of Model 2 are included. The primary program documentation is the code itself.
Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition
Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.
2012-01-01
We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.
Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique
Directory of Open Access Journals (Sweden)
Jahedul Islam Chowdhury
2015-12-01
Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.
Thermal stimulation of aqueous volumes contained in carbon nanotubes: Experiment and modeling
Yarin, Alexander L.; Yazicioglu, Almila G.; Megaridis, Constantine M.
2005-01-01
The dynamic response, as caused by thermal stimulation, of aqueous liquid attoliter volumes contained inside multiwall carbon nanotubes is investigated theoretically and experimentally. The experiments indicate an energetically driven mechanism responsible for the dynamic multiphase fluid behavior visualized under high resolution in the transmission electron microscope. The theoretical model is formulated using a continuum approach, which combines temperature-dependent diffusion with intermolecular interactions in the fluid bulk, as well as in the vicinity of the carbon wall. Intermolecular van der Waals forces are modeled by Lennard-Jones 12-6 potentials. Comparisons between theoretical predictions and experimental data demonstrate the ability of the model to describe the major trends observed in the experiments.
Energy Technology Data Exchange (ETDEWEB)
1988-12-15
This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in these appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.
ITAC volume assessment through a Gaussian hidden Markov random field model-based algorithm.
Passera, Katia M; Potepan, Paolo; Brambilla, Luca; Mainardi, Luca T
2008-01-01
In this paper, a semi-automatic segmentation method for volume assessment of Intestinal-type adenocarcinoma (ITAC) is presented and validated. The method is based on a Gaussian hidden Markov random field (GHMRF) model that represents an advanced version of a finite Gaussian mixture (FGM) model as it encodes spatial information through the mutual influences of neighboring sites. To fit the GHMRF model an expectation maximization (EM) algorithm is used. We applied the method to a magnetic resonance data sets (each of them composed by T1-weighted, Contrast Enhanced T1-weighted and T2-weighted images) for a total of 49 tumor-contained slices. We tested GHMRF performances with respect to FGM by both a numerical and a clinical evaluation. Results show that the proposed method has a higher accuracy in quantifying lesion area than FGM and it can be applied in the evaluation of tumor response to therapy.
Kadam, Guru Prakash
2015-01-01
We estimate dissipative properties viz: shear and bulk viscosities of hadronic matter using rel- ativistic Boltzmann equation in relaxation time approximation within ambit of excluded volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio ({\\eta}/s) decreases with temperature and reaches very close to Kovtun-Son- Starinets (KSS) bound. At sufficiently large baryon chemical potential this ratio shows same behav- ior as a function of temperature but goes below KSS bound. We further find that along chemical freezout line {\\eta}/s increases monotonically while the bulk viscosity to entropy ratio ({\\zeta}/s) decreases monotonically.
Study on Quench Protection of a Coil Wound of YBCO Coated Conductors
Institute of Scientific and Technical Information of China (English)
FUYoukun
2003-01-01
Owing to recent progress of long YBCO coated conductors, coils wound of YBCO conductors will be developed in near future.Compared with coils wound of LTS conductom, coils wound of HTS conductors operated at higher temperature are hard to be quenched. However, measures for quench protection are still necessary. Especially YBCO coated conductors that are made by deposition of thin YBCO film on Ni based alloy substrates such as Hastelloy tapes are highly resistive when they are quenched, Therefore,
Suarez, Max J. (Editor); Chang, Yehui; Schubert, Siegfried D.; Lin, Shian-Jiann; Nebuda, Sharon; Shen, Bo-Wen
2001-01-01
This document describes the climate of version 1 of the NASA-NCAR model developed at the Data Assimilation Office (DAO). The model consists of a new finite-volume dynamical core and an implementation of the NCAR climate community model (CCM-3) physical parameterizations. The version of the model examined here was integrated at a resolution of 2 degrees latitude by 2.5 degrees longitude and 32 levels. The results are based on assimilation that was forced with observed sea surface temperature and sea ice for the period 1979-1995, and are compared with NCEP/NCAR reanalyses and various other observational data sets. The results include an assessment of seasonal means, subseasonal transients including the Madden Julian Oscillation, and interannual variability. The quantities include zonal and meridional winds, temperature, specific humidity, geopotential height, stream function, velocity potential, precipitation, sea level pressure, and cloud radiative forcing.
Directory of Open Access Journals (Sweden)
Baranovskaya T. P.
2014-06-01
Full Text Available The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of production, processing and sales of wheat (bread with the full technological cycle
Stebbins, Linda B.; And Others
This segment of the national evaluation study of the Follow Through Planned Variation Model reviews the background of the study, describes 13 of the Follow Through models involved, and presents an analysis of the effects of these models on students. The analysis is based on data from 4 years of Follow Through participation by Cohort II children…
30 CFR 57.12005 - Protection of power conductors from mobile equipment.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile... NONMETAL MINES Electricity Surface and Underground § 57.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over...
30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and ungrounded conductors. 57.12069 Section 57.12069 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... ungrounded conductors. Each ungrounded conductor or telephone wire that leads underground and is...
30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.
2010-07-01
... power conductors and telephone wires. 77.508 Section 77.508 Mineral Resources MINE SAFETY AND HEALTH... arresters, ungrounded and exposed power conductors and telephone wires. All ungrounded, exposed power conductors and telephone wires shall be equipped with suitable lightning arresters which are...
30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.
2010-07-01
... ungrounded conductors. 56.12069 Section 56.12069 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded power conductor or telephone wire that leads underground and is directly exposed...
30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.
2010-07-01
... power conductors and telephone wires. 75.521 Section 75.521 Mineral Resources MINE SAFETY AND HEALTH... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...
30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.
2010-07-01
... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout...
30 CFR 57.12010 - Isolation or insulation of communication conductors.
2010-07-01
... conductors. 57.12010 Section 57.12010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... conductors. Telephone and low-potential signal wire shall be protected, by isolation or suitable insulation, or both, from contacting energized power conductors or any other power source....
30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.
2010-07-01
... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by...
30 CFR 75.1002 - Installation of electric equipment and conductors; permissibility.
2010-07-01
... conductors; permissibility. 75.1002 Section 75.1002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Wires and Trolley Feeder Wires § 75.1002 Installation of electric equipment and conductors... equipment is located within 150 feet of pillar workings or longwall faces. (b) Electric conductors...
Directory of Open Access Journals (Sweden)
Li Dong Qing
2016-01-01
Full Text Available The breeze vibration duration of conductors is long, the vibration amplitude is strong and the frequency range is wide for electric power transmission lines in strong wind areas, which seriously affects the safe and stable operation of transmission lines. There are two design schemes of conductors which can achieve the purpose of reducing wind-induced disaster. One is enhancing the structural strength of conductors to withstand wind load, but the investment is enormous and the effect is limited. The other is developing drag reduced conductors to reduce wind load by changing conductor structure. This paper started from application feasibility analysis of drag reduced conductors and designed four drag reduced conductors by structure optimization of the conventional aluminium conductor steel reinforced JL/G1A-630/45-45/7, denoted as DFY630/45(45°-R3.5, DFY630/45(60°-R3.5, DFY630/45(45°–R3.2 and DFY630/45(60°-R3.2, respectively. The wind tunnel test was performed and the wind resistance coefficients in unit length of five conductors were compared. Result showed that the wind resistance coefficients in unit length of four drag reduced conductors were obviously lower than that of the conventional conductor. By controlling the manufacturing process, popularization and application of drag reduced conductors for transmission lines in strong wind areas can be realized.
Geometry modeling and grid generation using 3D NURBS control volume
Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin
1995-01-01
The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.
Modeling water uptake by a root system growing in a fixed soil volume
Albrieu, J L Blengino; Tarzia, D A
2015-01-01
The water uptake by roots of plants is examined for an ideal situation, with an approximation that resembles plants growing in pots, meaning that the total soil volume is fixed. We propose a coupled water uptake-root growth model. A one-dimensional model for water flux and water uptake by a root system growing uniformly distributed in the soil is presented, and the Van Genuchten model for the transport of water in soil is used. The governing equations are represented by a moving boundary model for which the root length, as a function of time, is prescribed. The solution of the model is obtained by front-fixing and finite element methods. Model predictions for water uptake by a same plant growing in loam, silt and clay soils are obtained and compared. A sensitivity analysis to determine relative effects on water uptake when system parameters are changed is also presented and shows that the model and numerical method proposed are more sensitive to the root growth rate than to the rest of the parameters. This se...
Mathews, Alyssa
Emissions from the combustion of fossil fuels are a growing pollution concern throughout the global community, as they have been linked to numerous health issues. The freight transportation sector is a large source of these emissions and is expected to continue growing as globalization persists. Within the US, the expanding development of the natural gas industry is helping to support many industries and leading to increased transportation. The process of High Volume Hydraulic Fracturing (HVHF) is one of the newer advanced extraction techniques that is increasing natural gas and oil reserves dramatically within the US, however the technique is very resource intensive. HVHF requires large volumes of water and sand per well, which is primarily transported by trucks in rural areas. Trucks are also used to transport waste away from HVHF well sites. This study focused on the emissions generated from the transportation of HVHF materials to remote well sites, dispersion, and subsequent health impacts. The Geospatial Intermodal Freight Transport (GIFT) model was used in this analysis within ArcGIS to identify roadways with high volume traffic and emissions. High traffic road segments were used as emissions sources to determine the atmospheric dispersion of particulate matter using AERMOD, an EPA model that calculates geographic dispersion and concentrations of pollutants. Output from AERMOD was overlaid with census data to determine which communities may be impacted by increased emissions from HVHF transport. The anticipated number of mortalities within the impacted communities was calculated, and mortality rates from these additional emissions were computed to be 1 in 10 million people for a simulated truck fleet meeting stricter 2007 emission standards, representing a best case scenario. Mortality rates due to increased truck emissions from average, in-use vehicles, which represent a mixed age truck fleet, are expected to be higher (1 death per 341,000 people annually).
Directory of Open Access Journals (Sweden)
Lirong Tan
2017-09-01
Full Text Available In this paper, we investigated the problem of computer-aided diagnosis of Attention Deficit Hyperactivity Disorder (ADHD using machine learning techniques. With the ADHD-200 dataset, we developed a Support Vector Machine (SVM model to classify ADHD patients from typically developing controls (TDCs, using the regional brain volumes as predictors. Conventionally, the volume of a brain region was considered to be an anatomical feature and quantified using structural magnetic resonance images. One major contribution of the present study was that we had initially proposed to measure the regional brain volumes using fMRI images. Brain volumes measured from fMRI images were denoted as functional volumes, which quantified the volumes of brain regions that were actually functioning during fMRI imaging. We compared the predictive power of functional volumes with that of regional brain volumes measured from anatomical images, which were denoted as anatomical volumes. The former demonstrated higher discriminative power than the latter for the classification of ADHD patients vs. TDCs. Combined with our two-step feature selection approach which integrated prior knowledge with the recursive feature elimination (RFE algorithm, our SVM classification model combining functional volumes and demographic characteristics achieved a balanced accuracy of 67.7%, which was 16.1% higher than that of a relevant model published previously in the work of Sato et al. Furthermore, our classifier highlighted 10 brain regions that were most discriminative in distinguishing between ADHD patients and TDCs. These 10 regions were mainly located in occipital lobe, cerebellum posterior lobe, parietal lobe, frontal lobe, and temporal lobe. Our present study using functional images will likely provide new perspectives about the brain regions affected by ADHD.
DEFF Research Database (Denmark)
Goussanou, Cédric A.; Guendehou, Sabin; Assogbadjo, Achille E.
2016-01-01
The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest...... in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass...... predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range...
Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-01-01
The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.
Low-frequency scattering from two-dimensional perfect conductors
DEFF Research Database (Denmark)
Hansen, Thorkild; Yaghjian, A.D
1991-01-01
Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...
Solutions of Maxwell equations for hollow curved wave conductor
Bashkov, V I
1995-01-01
In the present paper the idea is proposed to solve Maxwell equations for a curved hollow wave conductor by means of effective Riemannian space, in which the lines of motion of fotons are isotropic geodesies for a 4-dimensional space-time. The algorithm of constructing such a metric and curvature tensor components are written down explicitly. The result is in accordance with experiment.
Conductor and Ensemble Performance Expressivity and State Festival Ratings
Price, Harry E.; Chang, E. Christina
2005-01-01
This study is the second in a series examining the relationship between conducting and ensemble performance. The purpose was to further examine the associations among conductor, ensemble performance expressivity, and festival ratings. Participants were asked to rate the expressivity of video-only conducting and parallel audio-only excerpts from a…
Influence of the magnetic field profile on ITER conductor testing
Nijhuis, A.; Ilyin, Y.; Kate, ten H.H.J.
2006-01-01
We performed simulations with the numerical CUDI-CICC code on a typical short ITER (International Thermonuclear Experimental Reactor) conductor test sample of dual leg configuration, as usually tested in the SULTAN test facility, and made a comparison with the new EFDA-Dipole test facility offering
Center conductor diagnostic for multipactor detection in inaccessible geometries
Chaplin, Vernon H.; Hubble, Aimee A.; Clements, Kathryn A.; Graves, Timothy P.
2017-01-01
Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was positive biases satisfying VD C/VR F 0 effectively with no bias at all—this is the preferred implementation, but biases in the range VD C=0 -10 V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.
Elementary charge-transfer processes in mesoscopic conductors
Vanević, M.; Nazarov, Y.V.; Belzig, W.
2008-01-01
We determine charge-transfer statistics in a quantum conductor driven by a time-dependent voltage and identify the elementary transport processes. At zero temperature unidirectional and bidirectional single-charge transfers occur. The unidirectional processes involve electrons injected from the sour
Polaron effects in the protonic conductor hydrogen uranyl phosphate
Energy Technology Data Exchange (ETDEWEB)
Lupu, D. (Inst. of Isotopic and Molecular Technology, Cluj-Napoca (Romania)); Grecu, R. (Inst. of Chemistry, Cluj-Napoca (Romania)); Biris, A.R. (Inst. of Isotopic and Molecular Technology, Cluj-Napoca (Romania))
1993-08-01
The isotope effects on the conductivity of hydrogen uranyl phosphate reveal ionic polaron effects in this solid protonic conductor, in agreement with the small polaron theory. An absorption band is observed at 0.67 eV, which can be correlated with the conduction mechanism consisting in both tunnelling and over-barrier hopping processes. (orig.)
Attentional flexibility and memory capacity in conductors and pianists.
Wöllner, Clemens; Halpern, Andrea R
2016-01-01
Individuals with high working memory (WM) capacity also tend to have better selective and divided attention. Although both capacities are essential for skilled performance in many areas, evidence for potential training and expertise effects is scarce. We investigated the attentional flexibility of musical conductors by comparing them to equivalently trained pianists. Conductors must focus their attention both on individual instruments and on larger sections of different instruments. We studied students and professionals in both domains to assess the contributions of age and training to these skills. Participants completed WM span tests for auditory and visual (notated) pitches and timing durations, as well as long-term memory tests. In three dichotic attention tasks, they were asked to detect small pitch and timing deviations from two melodic streams presented in baseline (separate streams), selective-attention (concentrating on only one stream), and divided-attention (concentrating on targets in both streams simultaneously) conditions. Conductors were better than pianists in detecting timing deviations in divided attention, and experts detected more targets than students. We found no group differences for WM capacity or for pitch deviations in the attention tasks, even after controlling for the older age of the experts. Musicians' WM spans across multimodal conditions were positively related to selective and divided attention. High-WM participants also had shorter reaction times in selective attention. Taken together, conductors showed higher attentional flexibility in successfully switching between different foci of attention.
An Organic Mixed Ion–Electron Conductor for Power Electronics
DEFF Research Database (Denmark)
Malti, Abdellah; Edberg, Jesper; Granberg, Hjalmar
2016-01-01
A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting...
An Organic Mixed Ion-Electron Conductor for Power Electronics
DEFF Research Database (Denmark)
Malti, Abdellah; Edberg, Jesper; Granberg, Hjalmar
2016-01-01
A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting...
Modeling of electrical impedance tomography to detect breast cancer by finite volume methods
Ain, K.; Wibowo, R. A.; Soelistiono, S.
2017-05-01
The properties of the electrical impedance of tissue are an interesting study, because changes of the electrical impedance of organs are related to physiological and pathological. Both physiological and pathological properties are strongly associated with disease information. Several experiments shown that the breast cancer has a lower impedance than the normal breast tissue. Thus, the imaging based on impedance can be used as an alternative equipment to detect the breast cancer. This research carries out by modelling of Electrical Impedance Tomography to detect the breast cancer by finite volume methods. The research includes development of a mathematical model of the electric potential field by 2D Finite Volume Method, solving the forward problem and inverse problem by linear reconstruction method. The scanning is done by 16 channel electrode with neighbors method to collect data. The scanning is performed at a frequency of 10 kHz and 100 kHz with three objects numeric includes an anomaly at the surface, an anomaly at the depth and an anomaly at the surface and at depth. The simulation has been successfully to reconstruct image of functional anomalies of the breast cancer at the surface position, the depth position or a combination of surface and the depth.
Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y
2014-11-15
Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport.
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation