Energy Technology Data Exchange (ETDEWEB)
Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu
2010-07-01
An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)
International Nuclear Information System (INIS)
Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.
2010-01-01
Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.
Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.
2016-02-01
We present a loosely coupled approach for the solution of fluid-structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet-Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid-structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.
International Nuclear Information System (INIS)
Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.
2016-01-01
We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.
Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk
2017-05-01
Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.
Modeling of Cementitious Representative Volume Element with Additives
Shahzamanian, M. M.; Basirun, W. J.
CEMHYD3D has been employed to simulate the representative volume element (RVE) of cementitious systems (Type I cement) containing fly ash (Class F) through a voxel-based finite element analysis (FEA) approach. Three-dimensional microstructures composed of voxels are generated for a heterogeneous cementitious material consisting of various constituent phases. The primary focus is to simulate a cementitious RVE containing fly ash and to present the homogenized macromechanical properties obtained from its analysis. Simple kinematic uniform boundary conditions as well as periodic boundary conditions were imposed on the RVE to obtain the principal and shear moduli. Our current work considers the effect of fly ash percentage on the elastic properties based on the mass and volume replacements. RVEs with lengths of 50, 100 and 200μm at different degrees of hydration are generated, and the elastic properties are modeled and simulated. In general, the elastic properties of a cementitious RVE with fly ash replacement for cement based on mass and volume differ from each other. Moreover, the finite element (FE) mesh density effect is studied. Results indicate that mechanical properties decrease with increasing mesh density.
New elements - approaching Z=114
International Nuclear Information System (INIS)
Hofmann, S.
1998-03-01
The search for new elements is part of the broader field of investigations of nuclei at the limits of stability. In two series of experiments at SHIP, six new elements (Z=107-112) were synthesized via fusion reactions using 1n-deexcitation channels and lead or bismuth targets. The isotopes were unambiguously identified by means of α-α correlations. Not fission, but alpha decay is the dominant decay mode. The collected decay data establish a means of comparison with theoretical data. This aids in the selection of appropriate models that describe the properties of known nuclei. Predictions based on these models are useful in the preparation of the next generation of experiments. Cross-sections decrease by two orders of magnitude from bohrium (Z=107) to element 112, for which a cross-section of 1 pb was measured. The development of intense beam currents and sensitive detection methods is essential for the production and identification of still heavier elements and new isotopes of already known elements, as well as the measurement of small α-, β- and fission-branching ratios. An equally sensitive set-up is needed for the measurement of excitation functions at low cross-sections. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical super heavy elements (SHE) could be achieved by fusion reactions using 208 Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. (orig.)
Comparison of different precondtioners for nonsymmtric finite volume element methods
Energy Technology Data Exchange (ETDEWEB)
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
MIT wavelength tables. Volume 2. Wavelengths by element
International Nuclear Information System (INIS)
Phelps, F.M. III.
1982-01-01
This volume is the first stage of a project to expand and update the MIT wavelength tables first compiled in the 1930's. For 109,325 atomic emission lines, arranged by element, it presents wavelength in air, wavelength in vacuum, wave number and intensity. All data are stored on computer-readable magnetic tape
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2012-07-01
Full Text Available -linear deformations are accounted for. As will be demonstrated, the finite volume approach exhibits similar disad- vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced finite volume approach is discussed and compared with finite...
Representative volume element of asphalt pavement for electromagnetic measurements
Directory of Open Access Journals (Sweden)
Terhi Pellinen
2015-02-01
Full Text Available The motivation for this study was to investigate the representative volume element (RVE needed to correlate the nondestructive electromagnetic (EM measurements with the conventional destructive asphalt pavement quality control measurements. A large pavement rehabilitation contract was used as the test site for the experiment. Pavement cores were drilled from the same locations where the stationary and continuous Ground Penetrating Radar (GPR measurements were obtained. Laboratory measurements included testing the bulk density of cores using two methods, the surface-saturated dry method and determining bulk density by dimensions. Also, Vector Network Analyzer (VNA and the through specimen transmission configuration were employed at microwave frequencies to measure the reference dielectric constant of cores using two different footprint areas and therefore volume elements. The RVE for EM measurements turns out to be frequency dependent; therefore in addition to being dependent on asphalt mixture type and method of obtaining bulk density, it is dependent on the resolution of the EM method used. Then, although the average bulk property results agreed with theoretical formulations of higher core air void content giving a lower dielectric constant, for the individual cores there was no correlation for the VNA measurements because the volume element seizes deviated. Similarly, GPR technique was unable to capture the spatial variation of pavement air voids measured from the 150-mm drill cores. More research is needed to determine the usable RVE for asphalt.
Geotourism products industry element: A community approach
Basi Arjana, I. W.; Ernawati, N. M.; Astawa, I. K.
2018-01-01
The ability of a tourism area to provide products that could satisfy the needs and desires of tourists is the key to success in developing tourism. Geotourists are a niche market that has specific needs. This study aims to identify the needs of geotourists, which is undertaken by evaluating the perceptions of geotourists with respect to 6 elements which are the industrial aspects of community-based tourism products, using a qualitative approach. In-depth interview technique is used as data collection method. These products are as follows: there are five major categories of geotourism commercial elements, which include: travel services, accommodation, transportation, food and beverage, souvenir and packaging. The research results show that there are various products which are the output of the industry elements desired by tourists in Batur representing the needs of different market segments and accommodating the sustainability of nature. These needs are arised and inspired by local culture. The necessity to offer an assortment of products packages is indicated to provide plentiful options for tourists, to lengthen tourist’s stay, and also to introduce various product components available in Batur. The research output could be used and contribute in providing a reference in developing geotourism products.
Investigations on Actuator Dynamics through Theoretical and Finite Element Approach
Directory of Open Access Journals (Sweden)
Somashekhar S. Hiremath
2010-01-01
Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.
An enhanced matrix-free edge-based finite volume approach to model structures
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2010-01-01
Full Text Available application to a number of test-cases. As will be demonstrated, the finite volume approach exhibits distinct advantages over the Q4 finite element formulation. This provides an alternative approach to the analysis of solid mechanics and allows...
Analytical Approach to Fictional Elements of Sandbadnameh
Directory of Open Access Journals (Sweden)
a عارفی
2014-05-01
Using stock and allegorical characters, fixed tone and style in dialogue tales, lack of variegated plot and logical and stable relationship between events make this work far from contemporary criteria of fiction writing in spite of its great volume, and introduce it as a symbolic and allegorical tale. On the other hand, bombastic and embellished prose as well as being loyal to ancient fiction writing have added to literary significance of this literary work.
Unstructured grids and an element based conservative approach for a black-oil reservoir simulation
Energy Technology Data Exchange (ETDEWEB)
Nogueira, Regis Lopes; Fernandes, Bruno Ramon Batista [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Chemical Engineering; Araujo, Andre Luiz de Souza [Federal Institution of Education, Science and Technology of Ceara - IFCE, Fortaleza (Brazil). Industry Department], e-mail: andre@ifce.edu.br; Marcondes, Francisco [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br
2010-07-01
Unstructured meshes presented one upgrade in modeling the main important features of the reservoir such as discrete fractures, faults, and irregular boundaries. From several methodologies available, the Element based Finite Volume Method (EbFVM), in conjunction with unstructured meshes, is one methodology that deserves large attention. In this approach, the reservoir, for 2D domains, is discretized using a mixed two-dimensional mesh using quadrilateral and triangle elements. After the initial step of discretization, each element is divided into sub-elements and the mass balance for each component is developed for each sub-element. The equations for each control-volume using a cell vertex construction are formulated through the contribution of different neighboured elements. This paper presents an investigation of an element-based approach using the black-oil model based on pressure and global mass fractions. In this approach, even when all gas phase is dissolved in oil phase the global mass fraction of gas will be different from zero. Therefore, no additional numerical procedure is necessary in order to treat the gas phase appear/disappearance. In this paper the above mentioned approach is applied to multiphase flows involving oil, gas, and water. The mass balance equations in terms of global mass fraction of oil, gas and water are discretized through the EbFVM and linearized by the Newton's method. The results are presented in terms of volumetric rates of oil, gas, and water and phase saturations. (author)
Variational approach to probabilistic finite elements
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
The chemistry of the actinide elements. Volume I
International Nuclear Information System (INIS)
Katz, J.J.; Seaborg, G.T.; Morss, L.R.
1986-01-01
The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements
Biquartic Finite Volume Element Metho d Based on Lobatto-Guass Structure
Institute of Scientific and Technical Information of China (English)
Gao Yan-ni; Chen Yan-li
2015-01-01
In this paper, a biquartic finite volume element method based on Lobatto-Guass structure is presented for variable coeﬃcient elliptic equation on rectangular partition. Not only the optimal H1 and L2 error estimates but also some super-convergent properties are available and could be proved for this method. The numer-ical results obtained by this finite volume element scheme confirm the validity of the theoretical analysis and the effectiveness of this method.
Adsorption of transuranic elements from large volume sea water
International Nuclear Information System (INIS)
Holm, E.; Ballestra, S.
1976-01-01
Some years ago a sampler for concentrating radionuclides from large volumes of sea water was developed by Silker et al. of the Battelle Northwest Laboratories. They used pure A1 2 O 3 as the adsorbent. The device has been applied successfully to the determination of 238 Pu and 239 Pu in several sea water samples. Our experience on the application of an identical system for the determination of transuranics in Mediterranean sea water was not quite as satisfactory as we had hoped. The chemistry involved in leaching up to 1 kg Al 2 O 3 . with acid, followed by removal of dissolved aluminium from the transuranic fraction, is rather tedious and time-consuming for routine use. The adsorption efficiency of transuranics, checked by dual-bed adsorption did not give consistent results. However, since the principle of the device is attractive enough for handling large volume water samples, it was felt that it was worthwhile to test other types of adsorbents which are easier to handle than Al 2 O 3 . For this purpose, chitosan and manganese dioxide were chosen and series of experiments were conducted in order to examine the suitability of these materials as an adsorbent in the system
Finite elements volumes methods: applications to the Navier-Stokes equations and convergence results
International Nuclear Information System (INIS)
Emonot, P.
1992-01-01
In the first chapter are described the equations modeling incompressible fluid flow and a quick presentation of finite volumes method. The second chapter is an introduction to the finite elements volumes method. The box model is described and a method adapted to Navier-Stokes problems is proposed. The third chapter shows a fault analysis of the finite elements volumes method for the Laplacian problem and some examples in one, two, three dimensional calculations. The fourth chapter is an extension of the error analysis of the method for the Navier-Stokes problem
Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry
DEFF Research Database (Denmark)
Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik
2004-01-01
n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....
Hybrid finite volume/ finite element method for radiative heat transfer in graded index media
Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.
2012-09-01
The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.
Hybrid finite volume/ finite element method for radiative heat transfer in graded index media
International Nuclear Information System (INIS)
Zhang, L.; Zhao, J.M.; Liu, L.H.; Wang, S.Y.
2012-01-01
The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.
Belgasam, Tarek M.; Zbib, Hussein M.
2017-12-01
Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
Effect of restoration volume on stresses in a mandibular molar: a finite element study.
Wayne, Jennifer S; Chande, Ruchi; Porter, H Christian; Janus, Charles
2014-10-01
There can be significant disagreement among dentists when planning treatment for a tooth with a failing medium-to-large--sized restoration. The clinician must determine whether the restoration should be replaced or treated with a crown, which covers and protects the remaining weakened tooth structure during function. The purpose of this study was to evaluate the stresses generated in different sized amalgam restorations via a computational modeling approach and reveal whether a predictable pattern emerges. A computer tomography scan was performed of an extracted mandibular first molar, and the resulting images were imported into a medical imaging software package for tissue segmentation. The software was used to separate the enamel, dentin, and pulp cavity through density thresholding and surface rendering. These tissue structures then were imported into 3-dimensional computer-aided design software in which material properties appropriate to the tissues in the model were assigned. A static finite element analysis was conducted to investigate the stresses that result from normal occlusal forces. Five models were analyzed, 1 with no restoration and 4 with increasingly larger restoration volume proportions: a normal-sized tooth, a small-sized restoration, 2 medium-sized restorations, and 1 large restoration as determined from bitewing radiographs and occlusal surface digital photographs. The resulting von Mises stresses for dentin-enamel of the loaded portion of the tooth grew progressively greater as the size of the restoration increased. The average stress in the normal, unrestored tooth was 4.13 MPa, whereas the smallest restoration size increased this stress to 5.52 MPa. The largest restoration had a dentin-enamel stress of 6.47 MPa. A linear correlation existed between restoration size and dentin-enamel stress, with an R(2) of 0.97. A larger restoration volume proportion resulted in higher dentin-enamel stresses under static loading. A comparison of the von Mises
Melting point gram-atomic volumes and enthalpies of atomization for liquid elements
International Nuclear Information System (INIS)
Lamoreaux, R.H.
1976-01-01
Values of the gram-atomic volumes and enthalpies of atomization to the monatomic ideal gas state for liquid elements at their melting points are collected to facilitate predictions of the behavior of mixed systems. Estimated values are given for experimentally undetermined quantities
Elements of a function analytic approach to probability.
Energy Technology Data Exchange (ETDEWEB)
Ghanem, Roger Georges (University of Southern California, Los Angeles, CA); Red-Horse, John Robert
2008-02-01
We first provide a detailed motivation for using probability theory as a mathematical context in which to analyze engineering and scientific systems that possess uncertainties. We then present introductory notes on the function analytic approach to probabilistic analysis, emphasizing the connections to various classical deterministic mathematical analysis elements. Lastly, we describe how to use the approach as a means to augment deterministic analysis methods in a particular Hilbert space context, and thus enable a rigorous framework for commingling deterministic and probabilistic analysis tools in an application setting.
Murray, K. E.
2016-12-01
Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.
Benedek, Judit; Papp, Gábor; Kalmár, János
2018-04-01
Beyond rectangular prism polyhedron, as a discrete volume element, can also be used to model the density distribution inside 3D geological structures. The calculation of the closed formulae given for the gravitational potential and its higher-order derivatives, however, needs twice more runtime than that of the rectangular prism computations. Although the more detailed the better principle is generally accepted it is basically true only for errorless data. As soon as errors are present any forward gravitational calculation from the model is only a possible realization of the true force field on the significance level determined by the errors. So if one really considers the reliability of input data used in the calculations then sometimes the "less" can be equivalent to the "more" in statistical sense. As a consequence the processing time of the related complex formulae can be significantly reduced by the optimization of the number of volume elements based on the accuracy estimates of the input data. New algorithms are proposed to minimize the number of model elements defined both in local and in global coordinate systems. Common gravity field modelling programs generate optimized models for every computation points ( dynamic approach), whereas the static approach provides only one optimized model for all. Based on the static approach two different algorithms were developed. The grid-based algorithm starts with the maximum resolution polyhedral model defined by 3-3 points of each grid cell and generates a new polyhedral surface defined by points selected from the grid. The other algorithm is more general; it works also for irregularly distributed data (scattered points) connected by triangulation. Beyond the description of the optimization schemes some applications of these algorithms in regional and local gravity field modelling are presented too. The efficiency of the static approaches may provide even more than 90% reduction in computation time in favourable
Unsteady force estimation using a Lagrangian drift-volume approach
McPhaden, Cameron J.; Rival, David E.
2018-04-01
A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.
A coordination chemistry approach for modeling trace element adsorption
International Nuclear Information System (INIS)
Bourg, A.C.M.
1986-01-01
The traditional distribution coefficient, Kd, is highly dependent on the water chemistry and the surface properties of the geological system being studied and is therefore quite inappropriate for use in predictive models. Adsorption, one of the many processes included in Kd values, is described here using a coordination chemistry approach. The concept of adsorption of cationic trace elements by solid hydrous oxides can be applied to natural solids. The adsorption process is thus understood in terms of a classical complexation leading to the formation of surface (heterogeneous) ligands. Applications of this concept to some freshwater, estuarine and marine environments are discussed. (author)
Czech Academy of Sciences Publication Activity Database
Marcinkowski, L.; Rahman, T.; Loneland, A.; Valdman, Jan
2016-01-01
Roč. 56, č. 3 (2016), s. 967-993 ISSN 0006-3835 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:67985556 Keywords : Domain decomposition * Additive Schwarz method * Finite volume element * GMRES Subject RIV: BA - General Mathematics Impact factor: 1.670, year: 2016 http://library.utia.cas.cz/separaty/2015/MTR/valdman-0447835.pdf
ABAQUS-EPGEN: a general-purpose finite element code. Volume 3. Example problems manual
International Nuclear Information System (INIS)
Hibbitt, H.D.; Karlsson, B.I.; Sorensen, E.P.
1983-03-01
This volume is the Example and Verification Problems Manual for ABAQUS/EPGEN. Companion volumes are the User's, Theory and Systems Manuals. This volume contains two major parts. The bulk of the manual (Sections 1-8) contains worked examples that are discussed in detail, while Appendix A documents a large set of basic verification cases that provide the fundamental check of the elements in the code. The examples in Sections 1-8 illustrate and verify significant aspects of the program's capability. Most of these problems provide verification, but they have also been chosen to allow discussion of modeling and analysis techniques. Appendix A contains basic verification cases. Each of these cases verifies one element in the program's library. The verification consists of applying all possible load or flux types (including thermal loading of stress elements), and all possible foundation or film/radiation conditions, and checking the resulting force and stress solutions or flux and temperature results. This manual provides program verification. All of the problems described in the manual are run and the results checked, for each release of the program, and these verification results are made available
Insights into the Biology of IRES Elements through Riboproteomic Approaches
Directory of Open Access Journals (Sweden)
Almudena Pacheco
2010-01-01
Full Text Available Translation initiation is a highly regulated process that exerts a strong influence on the posttranscriptional control of gene expression. Two alternative mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism operating in most mRNAs, and the internal ribosome entry site (IRES-dependent mechanism, first discovered in picornaviruses. IRES elements are highly structured RNA sequences that, in most instances, require specific proteins for recruitment of the translation machinery. Some of these proteins are eukaryotic initiation factors. In addition, RNA-binding proteins (RBPs play a key role in internal initiation control. RBPs are pivotal regulators of gene expression in response to numerous stresses, including virus infection. This review discusses recent advances on riboproteomic approaches to identify IRES transacting factors (ITAFs and the relationship between RNA-protein interaction and IRES activity, highlighting the most relevant features on picornavirus and hepatitis C virus IRESs.
Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine
2018-05-01
The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.
DEFF Research Database (Denmark)
Pontefisso, Alessandro; Zappalorto, Michele; Quaresimin, Marino
2016-01-01
In this work, a study of the Random Sequential Absorption (RSA) algorithm in the generation of nanoplatelet Volume Elements (VEs) is carried out. The effect of the algorithm input parameters on the reinforcement distribution is studied through the implementation of statistical tools, showing...... that the platelet distribution is systematically affected by these parameters. The consequence is that a parametric analysis of the VE input parameters may be biased by hidden differences in the filler distribution. The same statistical tools used in the analysis are implemented in a modified RSA algorithm...
Test Functions for Three-Dimensional Control-Volume Mixed Finite-Element Methods on Irregular Grids
National Research Council Canada - National Science Library
Naff, R. L; Russell, T. F; Wilson, J. D
2000-01-01
.... For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error...
Yang, Sam
The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in
2016-05-01
This study evaluated the accuracy of approach volumes and free flow approach speeds collected by the Wavetronix : SmartSensor Advance sensor for the Signal Performance Metrics system of the Utah Department of Transportation (UDOT), : using the field ...
Finite element meshing approached as a global minimization process
Energy Technology Data Exchange (ETDEWEB)
WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.
2000-03-01
The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested
Alphavirus replicon approach to promoterless analysis of IRES elements.
Kamrud, K I; Custer, M; Dudek, J M; Owens, G; Alterson, K D; Lee, J S; Groebner, J L; Smith, J F
2007-04-10
Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.
Analysis of Tube Drawing Process – A Finite Element Approach ...
African Journals Online (AJOL)
In this paper the effect of die semi angle on drawing load in cold tube drawing has been investigated numerically using the finite element method. The equation governing the stress distribution was derived and solved using Galerkin finite element method. An isoparametric formulation for the governing equation was utilized ...
Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches
DEFF Research Database (Denmark)
Hajeb, P.; Sloth, Jens Jørgen; Shakibazadeh, Sh
2014-01-01
Toxic elements such as mercury, arsenic, cadmium, and lead, sometimes called heavy metals, can diminish mental and central nervous system function; elicit damage to blood composition as well as the kidneys, lungs, and liver; and reduce energy levels. Food is considered one of the main routes...... of their entry into the human body. Numerous studies have been performed to examine the effects of common food processing procedures on the levels of toxic elements in food. While some studies have reported negative effects of processing, several have shown that processing practices may have a positive effect...... on the reduction of toxic elements in foodstuffs. A number of studies have also introduced protocols and suggested chemical agents that reduce the amount of toxic elements in the final food products. In this review, the reported methods employed for the reduction of toxic elements are discussed with particular...
The finite volume element (FVE) and multigrid method for the incompressible Navier-Stokes equations
International Nuclear Information System (INIS)
Gu Lizhen; Bao Weizhu
1992-01-01
The authors apply FVE method to discrete INS equations with the original variable, in which the bilinear square finite element and the square finite volume are chosen. The discrete schemes of INS equations are presented. The FMV multigrid algorithm is applied to solve that discrete system, where DGS iteration is used as smoother, DGS distributive mode for the INS discrete system is also presented. The sample problems for the square cavity flow with Reynolds number Re≤100 are successfully calculated. The numerical solutions show that the results with 1 FMV is satisfactory and when Re is not large, The FVE discrete scheme of the conservative INS equations and that of non-conservative INS equations with linearization both can provide almost same accuracy
International Nuclear Information System (INIS)
Staraselski, Y; Brahme, A; Inal, K; Mishra, R K
2015-01-01
This paper presents the first application of three-dimensional (3D) cross-correlation microstructure reconstruction implemented for a representative volume element (RVE) to facilitate the microstructure engineering of materials. This has been accomplished by developing a new methodology for reconstructing 3D microstructure using experimental two-dimensional electron backscatter diffraction data. The proposed methodology is based on the analytical representation of the generalized form of the two-point correlation function—the distance-disorientation function (DDF). Microstructure reconstruction is accomplished by extending the simulated annealing techniques to perform three term reconstruction with a minimization of the DDF. The new 3D microstructure reconstruction algorithm is employed to determine the 3D RVE containing all of the relevant microstructure information for accurately computing the mechanical response of solids, especially when local microstructural variations influence the global response of the material as in the case of fracture initiation. (paper)
International Nuclear Information System (INIS)
Lu, Y Charles; Kurapati, Siva N V R K; Yang Fuqian
2008-01-01
The cylindrical indentation is analysed, using the finite element method, for determining the plastic properties of elastic-plastic materials and the effect of strain hardening. The results are compared with those obtained from spherical indentation, the commonly used technique for measuring plastic properties of materials in small volumes. The analysis shows that the deformation under a cylindrical indenter quickly reaches a fully plastic state and that the size (diameter) of the plastic zone remains constant during further indentation. The indentation load is proportional to the indentation depth at large indentation depth, from which the indentation pressure P m at the onset of yielding can be readily extrapolated. The analysis of cylindrical indentation suggests that it does not need parameters such as impression radius (a) and contact stiffness (S) for determining the plastic behaviour of materials. Thus, the cylindrical indentation can suppress the uncertainties in measuring material properties
International Nuclear Information System (INIS)
Guendelman, E.
2004-01-01
Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat
Sources of trace elements in total diet. A statistical approach
International Nuclear Information System (INIS)
Aras, N.K.; Chatt, A.
2004-01-01
Sixteen total diet samples have been collected from two socioeconomic groups in Turkey by duplicate portion techniques. Samples were homogenized with titanium-blade homogenizer, freeze dried and analyzed for their minor and trace elements mostly by neutron activation analysis. Bread and flour samples were also collected from the same regions and analyzed similarly by instrumental neutron activation analysis. Concentrations of more than 25 elements in total diets, bread and flour, and fiber and phytate in total diets have been determined. Daily dietary intakes of these population groups, probable source of elements through correlation coefficients, and enrichment factor calculations have been determined. (author)
Multimedia Based on Scientific Approach for Periodic System of Element
Sari, S.; Aryana, D. M.; Subarkah, C. Z.; Ramdhani, M. A.
2018-01-01
This study aims to describe the application of interactive multimedia on the concept of the periodic system of elements. The study was conducted by using the one-shot case study design. The subjects in this study were 35 high school students of class XI IPA. Results showed that the stages of observing, questioning, data collecting (experimenting), and communicating are all considered very good. This shows that multimedia can assist students in explaining the development of the periodic system of elements, ranging from Triade doberrainer, Newland Octarchic Law, Mendeleyev, and the modern periodic, as well as atomic radius, ionization energy, and electronegativity of an element in the periodic system.
International Nuclear Information System (INIS)
Cambon, S.; Lacoste, P.
2011-01-01
We propose a finite element method to solve the axisymmetric scattering problem posed on a regular bounded domain. Here we shall show how to reduce the initial 3D problem into a truncated sum of 2D independent problems posed into a meridian plane of the object. Each of these problem results in the coupling of a partial differential equation into the interior domain and an integral equation on the surface simulating the free space. Then variational volume and boundary integral formulations of Maxwell's equation on regular surfaces are derived. We introduce some general finite element adapted to cylindrical coordinates and constructed from nodal and mixed finite element both for the interior (volume) and for the integral equation (surface). (authors)
International Nuclear Information System (INIS)
Niemierko, Andrzej; Goitein, Michael
1991-01-01
The authors investigate a model of normal tissue complication probability for tissues that may be represented by a critical element architecture. They derive formulas for complication probability that apply to both a partial volume irradiation and to an arbitrary inhomogeneous dose distribution. The dose-volume isoeffect relationship which is a consequence of a critical element architecture is discussed and compared to the empirical power law relationship. A dose-volume histogram reduction scheme for a 'pure' critical element model is derived. In addition, a point-based algorithm which does not require precomputation of a dose-volume histogram is derived. The existing published dose-volume histogram reduction algorithms are analyzed. The authors show that the existing algorithms, developed empirically without an explicit biophysical model, have a close relationship to the critical element model at low levels of complication probability. However, it is also showed that they have aspects which are not compatible with a critical element model and the authors propose a modification to one of them to circumvent its restriction to low complication probabilities. (author). 26 refs.; 7 figs
Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure
Szafran, J.; Juszczyk, K.; Kamiński, M.
2017-12-01
The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.
Directory of Open Access Journals (Sweden)
Olga eVoevodskaya
2014-10-01
Full Text Available In neurodegeneration research, normalization of regional volumes by intracranial volume (ICV is important to estimate the extent of disease-driven atrophy. There is little agreement as to whether raw volumes, volume-to-ICV fractions or regional volumes from which the ICV factor has been regressed out should be used for volumetric brain imaging studies. Using multiple regional cortical and subcortical volumetric measures generated by Freesurfer (51 in total, the main aim of this study was to elucidate the implications of these adjustment approaches. Magnetic resonance imaging (MRI data were analyzed from two large cohorts, the population-based PIVUS cohort (N=406, all subjects age 75 and the Alzheimer disease Neuroimaging Initiative (ADNI cohort (N=724. Further, we studied whether the chosen ICV normalization approach influenced the relationship between hippocampus and cognition in the three diagnostic groups of the ADNI cohort (Alzheimer’s disease, mild cognitive impairment and healthy individuals. The ability of raw vs adjusted hippocampal volumes to predict diagnostic status was also assessed. In both cohorts raw volumes correlate positively with ICV, but do not scale directly proportionally with it. The correlation direction is reversed for all volume-to-ICV fractions, except the lateral and third ventricles. Most grey matter fractions are larger in females, while lateral ventricle fractions are greater in males. Residual correction effectively eliminated the correlation between the regional volumes and ICV and removed gender differences. The association between hippocampal volumes and cognition was not altered by ICV normalization. Comparing prediction of diagnostic status using the different approaches, small but significant differences were found. The choice of normalization approach should be carefully considered when designing a volumetric brain imaging study.
Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian
2015-02-09
A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.
The "Critical" Elements of Illness Management and Recovery: Comparing Methodological Approaches.
McGuire, Alan B; Luther, Lauren; White, Dominique; White, Laura M; McGrew, John; Salyers, Michelle P
2016-01-01
This study examined three methodological approaches to defining the critical elements of Illness Management and Recovery (IMR), a curriculum-based approach to recovery. Sixty-seven IMR experts rated the criticality of 16 IMR elements on three dimensions: defining, essential, and impactful. Three elements (Recovery Orientation, Goal Setting and Follow-up, and IMR Curriculum) met all criteria for essential and defining and all but the most stringent criteria for impactful. Practitioners should consider competence in these areas as preeminent. The remaining 13 elements met varying criteria for essential and impactful. Findings suggest that criticality is a multifaceted construct, necessitating judgments about model elements across different criticality dimensions.
MILP approaches to sustainable production and distribution of meal elements
DEFF Research Database (Denmark)
Akkerman, Renzo; Wang, Yang; Grunow, Martin
2009-01-01
This paper studies the production and distribution system for professionally prepared meals, in which a new innovative concept is applied. The concept aims to improve the sustainability of the system by distributing meal elements super-chilled in the conventional cold chain. Here, sustainability...
Factor analytical approaches for evaluating groundwater trace element chemistry data
International Nuclear Information System (INIS)
Farnham, I.M.; Johannesson, K.H.; Singh, A.K.; Hodge, V.F.; Stetzenbach, K.J.
2003-01-01
The multivariate statistical techniques principal component analysis (PCA), Q-mode factor analysis (QFA), and correspondence analysis (CA) were applied to a dataset containing trace element concentrations in groundwater samples collected from a number of wells located downgradient from the potential nuclear waste repository at Yucca Mountain, Nevada. PCA results reflect the similarities in the concentrations of trace elements in the water samples resulting from different geochemical processes. QFA results reflect similarities in the trace element compositions, whereas CA reflects similarities in the trace elements that are dominant in the waters relative to all other groundwater samples included in the dataset. These differences are mainly due to the ways in which data are preprocessed by each of the three methods. The highly concentrated, and thus possibly more mature (i.e. older), groundwaters are separated from the more dilute waters using principal component 1 (PC 1). PC 2, as well as dimension 1 of the CA results, describe differences in the trace element chemistry of the groundwaters resulting from the different aquifer materials through which they have flowed. Groundwaters thought to be representative of those flowing through an aquifer composed dominantly of volcanic rocks are characterized by elevated concentrations of Li, Be, Ge, Rb, Cs, and Ba, whereas those associated with an aquifer dominated by carbonate rocks exhibit greater concentrations of Ti, Ni, Sr, Rh, and Bi. PC 3, and to a lesser extent dimension 2 of the CA results, show a strong monotonic relationship with the percentage of As(III) in the groundwater suggesting that these multivariate statistical results reflect, in a qualitative sense, the oxidizing/reducing conditions within the groundwater. Groundwaters that are relatively more reducing exhibit greater concentrations of Mn, Cs, Co, Ba, Rb, and Be, and those that are more oxidizing are characterized by greater concentrations of V, Cr, Ga
Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hansen, Sven; Manecke, Christel; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther
2017-06-01
The main function of any augmented reality system is to seamlessly merge the real world perception of a viewer with computer generated images and information. Besides real-time head-tracking and room-scanning capabilities the combiner optics, which optically merge the natural with the artificial visual information, represent a key component for those systems. Various types of combiner optics are known to the industry, all with their specific advantages and disadvantages. Beside the well-established solutions based on refractive optics or surface gratings, volume Holographic Optical Elements (vHOEs) are a very attractive alternative in this field. The unique characteristics of these diffractive grating structures - being lightweight, thin, flat and invisible in Off Bragg conditions - make them perfectly suitable for their use in integrated and compact combiners. For any consumer application it is paramount to build unobtrusive and lightweight augmented reality displays, for which those volume holographic combiners are ideally suited. Due to processing challenges of (historic) holographic recording materials mass production of vHOE holographic combiners was not possible. Therefore vHOE based combiners found use in military applications only by now. The new Bayfol® HX instant developing holographic photopolymer film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Bayfol® HX provides full color capability and adjustable diffraction efficiency as well as an unprecedented optical clarity when compared to classical holographic recording materials like silver halide emulsions (AgHX) or dichromated gelatin (DCG). Bayfol® HX film is available in industrial scale and quality. Its properties can be tailored for various diffractive performances and integration methods. Bayfol® HX film is easy to process without any need for chemical or thermal development steps, offering simplified contact-copy mass production
Representative volume element size of a polycrystalline aggregate with embedded short crack
International Nuclear Information System (INIS)
Simonovski, I.; Cizelj, L.
2007-01-01
A random polycrystalline aggregate model is proposed for evaluation of a representative volume element size (RVE) of a 316L stainless steel with embedded surface crack. RVE size is important since it defines the size of specimen where the influence of local microstructural features averages out, resulting in the same macroscopic response for geometrically similar specimen. On the other hand macroscopic responses of specimen with size smaller than RVE will, due to the microstructural features, differ significantly. Different sizes and orientations of grains, inclusions, voids,... etc are examples of such microstructural features. If a specimen size is above RVE size, classical continuum mechanics can be applied. On the other hand, advanced material models should be used for specimen with size below RVE. This paper proposes one such model, where random size, shape and orientation of grains are explicitly modeled. Crystal plasticity constitutive model is used to account for slip in the grains. RVE size is estimated by calculating the crack tip opening displacements of aggregates with different grain numbers. Progressively larger number of grains are included in the aggregates until the crack tip displacements for two consecutive aggregates of increasing size differ less than 1 %. At this point the model has reached RVE size. (author)
Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation
Litaker, Eric T.
1994-12-01
The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.
A Study on the Mechanical Properties of the Representative Volume Element in Fractal Porous Media
Directory of Open Access Journals (Sweden)
Jianjun Liu
2017-01-01
Full Text Available Natural porous structure is extremely complex, and it is of great significance to study the macroscopic mechanical response of the representative volume element (RVE with the microstructure of porous media. The real porous media RVE is generated by an improved quartet structure generation set (QSGS, and the connectivity of the reconstructed porous media models is analyzed. The fractal dimension of the RVE is calculated by the box-counting method, which considers the different porosity, different fractal dimension, and different mechanical properties of the matrix. Thus, the stress-strain curves of the RVE in the elastoplastic stage under different conditions are obtained. The results show that when the matrix mechanics are consistent, the mechanical properties of the porous media RVE are negatively correlated with the porosity and fractal dimension; when the difference between the porosity and fractal dimension increases, the trend is more obvious. The mechanical properties of the RVE have a positive correlation with the modulus of elasticity of the matrix, though the correlation with Poisson’s ratio of the matrix is weak. The fractal dimension of complex porous media can better predict the RVE mechanical characteristics than the porosity.
Extended volume and surface scatterometer for optical characterization of 3D-printed elements
Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius
2015-09-01
The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.
Song, Yeo-Ul; Youn, Sung-Kie; Park, K. C.
2017-10-01
A method for three-dimensional non-matching interface treatment with a virtual gap element is developed. When partitioned structures contain curved interfaces and have different brick meshes, the discretized models have gaps along the interfaces. As these gaps bring unexpected errors, special treatments are required to handle the gaps. In the present work, a virtual gap element is introduced to link the frame and surface domain nodes in the frame work of the mortar method. Since the surface of the hexahedron element is quadrilateral, the gap element is pyramidal. The pyramidal gap element consists of four domain nodes and one frame node. Zero-strain condition in the gap element is utilized for the interpolation of frame nodes in terms of the domain nodes. This approach is taken to satisfy the momentum and energy conservation. The present method is applicable not only to curved interfaces with gaps, but also to flat interfaces in three dimensions. Several numerical examples are given to describe the effectiveness and accuracy of the proposed method.
Heavy element stable isotope ratios. Analytical approaches and applications
International Nuclear Information System (INIS)
Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi
2013-01-01
Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.
Directory of Open Access Journals (Sweden)
Ye. S. Sherina
2014-01-01
Full Text Available This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.
Cumulative damage fraction design approach for LMFBR metallic fuel elements
International Nuclear Information System (INIS)
Johnson, D.L.; Einziger, R.E.; Huchman, G.D.
1979-01-01
The cumulative damage fraction (CDF) analytical technique is currently being used to analyze the performance of metallic fuel elements for proliferation-resistant LMFBRs. In this technique, the fraction of the total time to rupture of the cladding is calculated as a function of the thermal, stress, and neutronic history. Cladding breach or rupture is implied by CDF = 1. Cladding wastage, caused by interactions with both the fuel and sodium coolant, is assumed to uniformly thin the cladding wall. The irradiation experience of the EBR-II Mark-II driver fuel with solution-annealed Type 316 stainless steel cladding provides an excellent data base for testing the applicability of the CDF technique to metallic fuel. The advanced metal fuels being considered for use in LMFBRs are U-15-Pu-10Zr, Th-20Pu and Th-2OU (compositions are given in weight percent). The two cladding alloys being considered are Type 316 stainless steel and a titanium-stabilized Type 316 stainless steel. Both are in the cold-worked condition. The CDF technique was applied to these fuels and claddings under the assumed steady-state operating conditions
CADDIS Volume 4. Data Analysis: Selecting an Analysis Approach
An approach for selecting statistical analyses to inform causal analysis. Describes methods for determining whether test site conditions differ from reference expectations. Describes an approach for estimating stressor-response relationships.
Multi element synthetic aperture transmission using a frequency division approach
DEFF Research Database (Denmark)
Gran, Fredrik; Jensen, Jørgen Arendt
2003-01-01
transmitted into the tissue is low. This paper describes a novel method in which the available spectrum is divided into 2N overlapping subbands. This will assure a smooth broadband high resolution spectrum when combined. The signals are grouped into two subsets in which all signals are fully orthogonal...... can therefore be used for flow imaging, unlike with Hadamard and Golay coding. The frequency division approach increases the SNR by a factor of N2 compared to conventional pulsed synthetic aperture imaging, provided that N transmission centers are used. Simulations and phantom measurements...
A FINITE-ELEMENTS APPROACH TO THE STUDY OF FUNCTIONAL ARCHITECTURE IN SKELETAL-MUSCLE
OTTEN, E; HULLIGER, M
1994-01-01
A mathematical model that simulates the mechanical processes inside a skeletal muscle under various conditions of muscle recruitment was formulated. The model is based on the finite-elements approach and simulates both contractile and passive elastic elements. Apart from the classic strategy of
Restraining approach for the spurious kinematic modes in hybrid equilibrium element
Parrinello, F.
2013-10-01
The present paper proposes a rigorous approach for the elimination of spurious kinematic modes in hybrid equilibrium elements, for three well known mesh patches. The approach is based on the identification of the dependent equations in the set of inter-element and boundary equilibrium equations of the sides involved in the spurious kinematic mode. Then the kinematic variables related to the dependent equations are reciprocally constrained and, by application of master slave elimination method, the set of inter-element equilibrium equations is reduced to full rank. The elastic solutions produced by means of the proposed approach verify the homogeneous, the inter-element and the boundary equilibrium equations. Hybrid stress formulation is developed in a rigorous mathematical setting. The results of linear elastic analysis obtained by the proposed approach and by classical displacement based method are compared for some structural examples.
Kou, Jisheng
2017-06-09
In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated by piecewise constant functions or Q1 functions, while the velocity and pressure are discretized by the lowest-order Raviart-Thomas element and the piecewise constant functions, respectively. Using quadrature rules, we demonstrate that this scheme can be reduced into a finite volume method on staggered grid, which is extensively used in computational fluid mechanics and engineering.
Martin, Heiner; Guthoff, Rudolf; Schmitz, Klaus-Peter
2011-09-01
Polymer injection into the capsular bag after phakoemulsification is an interesting and promising approach to lens surgery. Safe clinical application of this technique will require an appropriate estimate of the effect of implantation variables on the lens power. This article details the results of finite element investigations into the effects of the injected polymer volume and capsular bag contraction on the resultant lens power and accommodation amplitude. An axisymmetric finite element model was created from literature sources. Polymer injection and the capsular contraction were simulated, and their effect on the lens power was calculated. The simulations show that overfilling during polymer injection leads to a refractive power increase of the lens. Capsular bag contraction also results in a power increase. The calculated accommodative amplitude of the lens is minimally affected by capsular bag contraction but decreases significantly with increased capsular bag stiffness as a result of fibrosis. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.
International Nuclear Information System (INIS)
Ansanay-Alex, G.
2009-01-01
The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)
Directory of Open Access Journals (Sweden)
Qian Zhang
2014-01-01
Full Text Available The paper presents a framework for the construction of Monte Carlo finite volume element method (MCFVEM for the convection-diffusion equation with a random diffusion coefficient, which is described as a random field. We first approximate the continuous stochastic field by a finite number of random variables via the Karhunen-Loève expansion and transform the initial stochastic problem into a deterministic one with a parameter in high dimensions. Then we generate independent identically distributed approximations of the solution by sampling the coefficient of the equation and employing finite volume element variational formulation. Finally the Monte Carlo (MC method is used to compute corresponding sample averages. Statistic error is estimated analytically and experimentally. A quasi-Monte Carlo (QMC technique with Sobol sequences is also used to accelerate convergence, and experiments indicate that it can improve the efficiency of the Monte Carlo method.
New approach to lung cancer screening with helical volume CT
International Nuclear Information System (INIS)
Midorikawa, S.; Hashimoto, N.; Katakura, T.; Suzuki, K.
1990-01-01
This paper evaluates the relationship between reducing radiation dose to the patient and maintaining the clinical quality of the chest image in lung cancer screening by helical-volume CT (HVCT). The authors evaluated the changing relationship between radiation dose and clinical quality after changing the HVCY scanning conditions (such as stroke of patient transport and section thickness) as well as adding copper filters of various thickness and using high-voltage x-ray examination to complement CT examinations. The authors were able to reduce radiation dose by changing the HVCT scanning conditions (eg, stroke of 20 mm/sec, with a section thickness of 10 mm)
VOXEL-BASED APPROACH FOR ESTIMATING URBAN TREE VOLUME FROM TERRESTRIAL LASER SCANNING DATA
Directory of Open Access Journals (Sweden)
C. Vonderach
2012-07-01
Full Text Available The importance of single trees and the determination of related parameters has been recognized in recent years, e.g. for forest inventories or management. For urban areas an increasing interest in the data acquisition of trees can be observed concerning aspects like urban climate, CO2 balance, and environmental protection. Urban trees differ significantly from natural systems with regard to the site conditions (e.g. technogenic soils, contaminants, lower groundwater level, regular disturbance, climate (increased temperature, reduced humidity and species composition and arrangement (habitus and health status and therefore allometric relations cannot be transferred from natural sites to urban areas. To overcome this problem an extended approach was developed for a fast and non-destructive extraction of branch volume, DBH (diameter at breast height and height of single trees from point clouds of terrestrial laser scanning (TLS. For data acquisition, the trees were scanned with highest scan resolution from several (up to five positions located around the tree. The resulting point clouds (20 to 60 million points are analysed with an algorithm based on voxel (volume elements structure, leading to an appropriate data reduction. In a first step, two kinds of noise reduction are carried out: the elimination of isolated voxels as well as voxels with marginal point density. To obtain correct volume estimates, the voxels inside the stem and branches (interior voxels where voxels contain no laser points must be regarded. For this filling process, an easy and robust approach was developed based on a layer-wise (horizontal layers of the voxel structure intersection of four orthogonal viewing directions. However, this procedure also generates several erroneous "phantom" voxels, which have to be eliminated. For this purpose the previous approach was extended by a special region growing algorithm. In a final step the volume is determined layer-wise based on the
4739 Volume 11 No. 3 May 2011 APPROACHES TO DIAGNOSIS ...
African Journals Online (AJOL)
user
2011-05-03
May 3, 2011 ... In this study, the comparative efficiencies of diagonal and zigzag approaches to. CBSD field .... CBSV was detected by the reverse transcriptase polymerase chain reaction (RT-PCR) using the (coat protein) ... established by ensuring that equal weight of starting tissues for RNA isolation was maintained, that ...
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
Heat transfer analysis in internally-cooled fuel elements by means of a conformal mapping approach
International Nuclear Information System (INIS)
Sarmiento, G.S.; Laura, P.A.A.
1981-01-01
The present paper deals with an approximate solution of the steady-state heat conduction problem in internally cooled fuel elements of fast breeder reactors. Explicit expressions for the dimensionless temperature distribution in terms of the governing physical and geometrical parameters are determined by means of a coupled conformal mapping-variational approach. The results obtained are found to be in very good agreement with those calculated by means of a finite element code. (orig.)
Saad, Bilal Mohammed; Saad, Mazen Naufal B M
2014-01-01
We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.
Saad, Bilal Mohammed
2014-06-28
We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.
DEFF Research Database (Denmark)
Yoon, Gil Ho; Kim, Y.Y.; Langelaar, M.
2008-01-01
The internal element connectivity parameterization (I-ECP) method is an alternative approach to overcome numerical instabilities associated with low-stiffness element states in non-linear problems. In I-ECP, elements are connected by zero-length links while their link stiffness values are varied....... Therefore, it is important to interpolate link stiffness properly to obtain stably converging results. The main objective of this work is two-fold (1) the investigation of the relationship between the link stiffness and the stiffness of a domain-discretizing patch by using a discrete model and a homogenized...
Coupled thermomechanical behavior of graphene using the spring-based finite element approach
Energy Technology Data Exchange (ETDEWEB)
Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr [Machine Design Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, Rio, 26500 Patras (Greece); Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr [Materials Science Laboratory, Department of Mechanical Engineering, Technological Educational Institute of Western Greece, 1 Megalou Alexandrou Street, 26334 Patras (Greece)
2016-07-07
The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations are analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.
The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.
Sun, Yahui; Ma, Chenkai; Halgamuge, Saman
2017-12-28
Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.
A novel approach to predict the excess volume of hydrocarbon mixtures
Finkers, H. J.; Bosma, J. C.; Broekhuis, A. A.
2011-01-01
This paper explores whether principles obtained for the packing of solid macroscopic particles can be applied to the study of excess volumes of liquid mixtures. The approach is applied to mixtures of 'pure' hydrocarbons, i.e. containing only C- and H-atoms. In this new approach a set of equations
Comparing geological and statistical approaches for element selection in sediment tracing research
Laceby, J. Patrick; McMahon, Joe; Evrard, Olivier; Olley, Jon
2015-04-01
Elevated suspended sediment loads reduce reservoir capacity and significantly increase the cost of operating water treatment infrastructure, making the management of sediment supply to reservoirs of increasingly importance. Sediment fingerprinting techniques can be used to determine the relative contributions of different sources of sediment accumulating in reservoirs. The objective of this research is to compare geological and statistical approaches to element selection for sediment fingerprinting modelling. Time-integrated samplers (n=45) were used to obtain source samples from four major subcatchments flowing into the Baroon Pocket Dam in South East Queensland, Australia. The geochemistry of potential sources were compared to the geochemistry of sediment cores (n=12) sampled in the reservoir. The geochemical approach selected elements for modelling that provided expected, observed and statistical discrimination between sediment sources. Two statistical approaches selected elements for modelling with the Kruskal-Wallis H-test and Discriminatory Function Analysis (DFA). In particular, two different significance levels (0.05 & 0.35) for the DFA were included to investigate the importance of element selection on modelling results. A distribution model determined the relative contributions of different sources to sediment sampled in the Baroon Pocket Dam. Elemental discrimination was expected between one subcatchment (Obi Obi Creek) and the remaining subcatchments (Lexys, Falls and Bridge Creek). Six major elements were expected to provide discrimination. Of these six, only Fe2O3 and SiO2 provided expected, observed and statistical discrimination. Modelling results with this geological approach indicated 36% (+/- 9%) of sediment sampled in the reservoir cores were from mafic-derived sources and 64% (+/- 9%) were from felsic-derived sources. The geological and the first statistical approach (DFA0.05) differed by only 1% (σ 5%) for 5 out of 6 model groupings with only
Czech Academy of Sciences Publication Activity Database
Berezovski, A.; Kolman, Radek; Blažek, Jiří; Kopačka, Ján; Gabriel, Dušan; Plešek, Jiří
2014-01-01
Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : elastic wave propagation * finite element method * isogeometric analysis * finite volume method * stress discontinuities * spurious oscillations Subject RIV: JR - Other Machinery http://www.ndt.net/events/ECNDT2014/app/content/Paper/25_Berezovski_Rev1.pdf
Yu, Isseki; Takayanagi, Masayoshi; Nagaoka, Masataka
2009-03-19
The partial molar volume (PMV) of the protein chymotrypsin inhibitor 2 (CI2) was calculated by all-atom MD simulation. Denatured CI2 showed almost the same average PMV value as that of native CI2. This is consistent with the phenomenological question of the protein volume paradox. Furthermore, using the surficial Kirkwood-Buff approach, spatial distributions of PMV were analyzed as a function of the distance from the CI2 surface. The profiles of the new R-dependent PMV indicate that, in denatured CI2, the reduction in the solvent electrostatic interaction volume is canceled out mainly by an increment in thermal volume in the vicinity of its surface. In addition, the PMV of the denatured CI2 was found to increase in the region in which the number density of water atoms is minimum. These results provide a direct and detailed picture of the mechanism of the protein volume paradox suggested by Chalikian et al.
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2
Energy Technology Data Exchange (ETDEWEB)
2011-01-01
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1
Energy Technology Data Exchange (ETDEWEB)
2011-01-01
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.
Energy Technology Data Exchange (ETDEWEB)
Ansanay-Alex, G.
2009-06-17
The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)
An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering
Sengers, B.G.; Oomens, C.W.J.; Baaijens, F.P.T.
2004-01-01
A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive
DEFF Research Database (Denmark)
Vahdatirad, Mohammadjavad; Bayat, Mehdi; Andersen, Lars Vabbersgaard
2012-01-01
In this study a stochastic approach is conducted to obtain the horizontal and rotational stiffness of an offshore monopile foundation. A nonlinear stochastic p-y curve is integrated into a finite element scheme for calculation of the monopile response in over-consolidated clay having spatial...
Volume concentration of 41 elements in ground level of atmosphere in Bratislava
International Nuclear Information System (INIS)
Florek, M.; Meresova, J.; Holy, K.; Sykora, I.; Frontasyeva, M. V.; Pavlov, S. S.
2006-01-01
The concentrations of 41 chemical elements (heavy metals, rare earths, and actinides) were determined in atmospheric aerosol using nuclear and related analytical techniques. The sampling location was in Bratislava (Slovak Republic). The main goal of this study is the quantification of the atmospheric pollution and its trend. The elemental content in filters was measured using instrumental neutron activation analysis at IBR-2 reactor in JINR Dubna and by atomic absorption spectrometry in Bratislava. The obtained results confirmed the decreasing trend of pollution by most of the heavy metals in Bratislava atmosphere, and they are compared with the contents of pollutants in atmosphere of other cities. We determined also the composition of clear filter materials. (authors)
ABAQUS-EPGEN: a general-purpose finite-element code. Volume 1. User's manual
International Nuclear Information System (INIS)
Hibbitt, H.D.; Karlsson, B.I.; Sorensen, E.P.
1982-10-01
This document is the User's Manual for ABAQUS/EPGEN, a general purpose finite element computer program, designed specifically to serve advanced structural analysis needs. The program contains very general libraries of elements, materials and analysis procedures, and is highly modular, so that complex combinations of features can be put together to model physical problems. The program is aimed at production analysis needs, and for this purpose aspects such as ease-of-use, reliability, flexibility and efficiency have received maximum attention. The input language is designed to make it straightforward to describe complicated models; the analysis procedures are highly automated with the program choosing time or load increments based on user supplied tolerances and controls; and the program offers a wide range of post-processing options for display of the analysis results
1975-01-01
the thermal expansion of metallic elements, alloys, and intermetallic compounds. We believe there is also much food for reflection by the specialist...24 39 Plutonium Pu ........ ............... 260 40’ t Polonium Po ..... ............... 270 41* Potassium K ..... ............... 271 42...923 209 NIckel-Palladium NI-Pd..................926 210 * Nickel-Pitaum Ni-Pt.................90 211 Nickel-Silicon NI-SI.................932 212
Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.
Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G
1999-01-01
The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.
Energy Technology Data Exchange (ETDEWEB)
Bellivier, A.
2004-05-15
For 3D modelling of thermo-aeraulics in building using field codes, it is necessary to reduce the computing time in order to model increasingly larger volumes. The solution suggested in this study is to couple two modelling: a zonal approach and a CFD approach. The first part of the work that was carried out is the setting of a simplified CFD modelling. We propose rules for use of coarse grids, a constant effective viscosity law and adapted coefficients for heat exchange in the framework of building thermo-aeraulics. The second part of this work concerns the creation of fluid Macro-Elements and their coupling with a calculation of CFD finite volume type. Depending on the boundary conditions of the problem, a local description of the driving flow is proposed via the installation and use of semi-empirical evolution laws. The Macro-Elements is then inserted in CFD computation: the values of velocity calculated by the evolution laws are imposed on the CFD cells corresponding to the Macro-Element. We use these two approaches on five cases representative of thermo-aeraulics in buildings. The results are compared with experimental data and with traditional RANS simulations. We highlight the significant gain of time that our approach allows while preserving a good quality of numerical results. (author)
Trauma of the Frontal Region Is Influenced by the Volume of Frontal Sinuses. A Finite Element Study
Directory of Open Access Journals (Sweden)
Srbislav S. Pajic
2017-07-01
Full Text Available Anatomy of frontal sinuses varies individually, from differences in volume and shape to a rare case when the sinuses are absent. However, there are scarce data related to influence of these variations on impact generated fracture pattern. Therefore, the aim of this study was to analyse the influence of frontal sinus volume on the stress distribution and fracture pattern in the frontal region. The study included four representative Finite Element models of the skull. Reference model was built on the basis of computed tomography scans of a human head with normally developed frontal sinuses. By modifying the reference model, three additional models were generated: a model without sinuses, with hypoplasic, and with hyperplasic sinuses. A 7.7 kN force was applied perpendicularly to the forehead of each model, in order to simulate a frontal impact. The results demonstrated that the distribution of impact stress in frontal region depends on the frontal sinus volume. The anterior sinus wall showed the highest fragility in case with hyperplasic sinuses, whereas posterior wall/inner plate showed more fragility in cases with hypoplasic and undeveloped sinuses. Well-developed frontal sinuses might, through absorption of the impact energy by anterior wall, protect the posterior wall and intracranial contents.
Multidisciplinary approach and multi-scale elemental analysis and separation chemistry
International Nuclear Information System (INIS)
Mariet, Clarisse
2014-01-01
The development of methods for the analysis of trace elements is an important component of my research activities either for a radiometric measure or mass spectrometric detection. Many studies raise the question of the chemical signature of a sample or a process: eruptive behavior of a volcano, indicator of pollution, ion exchange in vectors vesicles of active principles,... Each time, highly sensitive analytical procedures, accurate and multi-elementary as well as the development of specific protocols were needed. Neutron activation analysis has often been used as reference procedure and allowed to validate the chemical lixiviation and the measurement by ICP-MS. Analysis of radioactive samples requires skills in analysis of trace but also separation chemistry. Two separation methods occupy an important place in the separation chemistry of radionuclides: chromatography and liquid-liquid extraction. The study of extraction of Lanthanide (III) by the oxide octyl (phenyl)-n, N-diisobutyl-carbamoylmethyl phosphine (CMPO) and a calixarene-CMPO led to better understand and quantify the influence of operating conditions on their performance of extraction and selectivity. The high concentration of salts in aqueous solutions required to reason in terms of thermodynamic activities in relying on a comprehensive approach to quantification of deviations from ideality. In order to reduce the amount of waste generated and costs, alternatives to the hydrometallurgical extraction processes were considered using ionic liquids at low temperatures as alternative solvents in biphasic processes. Remaining in this logic of effluent reduction, miniaturization of the liquid-liquid extraction is also study so as to exploit the characteristics of microscopic scale (very large specific surface, short diffusion distances). The miniaturization of chromatographic separations carries the same ambitions of gain of volumes of wastes and reagents. The miniaturization of the separation Uranium
International Nuclear Information System (INIS)
Eggert, F
2010-01-01
This work describes first real automated solution for qualitative evaluation of EDS spectra in X-ray microanalysis. It uses a combination of integrated standardless quantitative evaluation, computation of analytical errors to a final uncertainty, and parts of recently developed simulation approaches. Multiple spectra reconstruction assessments and peak searches of the residual spectrum are powerful enough to solve the qualitative analytical question automatically for totally unknown specimens. The integrated quantitative assessment is useful to improve the confidence of the qualitative analysis. Therefore, the qualitative element analysis becomes a part of integrated quantitative spectrum evaluation, where the quantitative results are used to iteratively refine element decisions, spectrum deconvolution, and simulation steps.
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
International Nuclear Information System (INIS)
Bletry, M.; Guyot, P.; Brechet, Y.; Blandin, J.J.; Soubeyroux, J.L.
2007-01-01
The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition range. Compression and stress-relaxation tests have been conducted. The stress-strain curves are modeled in the framework of the free volume theory, including transient phenomena (overshoot and undershoot). This approach allows several physical parameters (activation volume, flow defect creation and relaxation coefficient) to be determined from a mechanical experiment. This model is able to rationalize the dependency of stress overshoot on relaxation time. It is shown that, due to the relationship between flow defect concentration and free volume model, it is impossible to determine the equilibrium flow defect concentration. However, the relative variation of flow defect is always the same, and all the model parameters depend on the equilibrium flow defect concentration. The methodology presented in this paper should, in the future, allow the consistency of the free volume model to be assessed
Brain tissues volume measurements from 2D MRI using parametric approach
L'vov, A. A.; Toropova, O. A.; Litovka, Yu. V.
2018-04-01
The purpose of the paper is to propose a fully automated method of volume assessment of structures within human brain. Our statistical approach uses maximum interdependency principle for decision making process of measurements consistency and unequal observations. Detecting outliers performed using maximum normalized residual test. We propose a statistical model which utilizes knowledge of tissues distribution in human brain and applies partial data restoration for precision improvement. The approach proposes completed computationally efficient and independent from segmentation algorithm used in the application.
Directory of Open Access Journals (Sweden)
Rauch Ł.
2015-09-01
Full Text Available The coupled finite element multiscale simulations (FE2 require costly numerical procedures in both macro and micro scales. Attempts to improve numerical efficiency are focused mainly on two areas of development, i.e. parallelization/distribution of numerical procedures and simplification of virtual material representation. One of the representatives of both mentioned areas is the idea of Statistically Similar Representative Volume Element (SSRVE. It aims at the reduction of the number of finite elements in micro scale as well as at parallelization of the calculations in micro scale which can be performed without barriers. The simplification of computational domain is realized by transformation of sophisticated images of material microstructure into artificially created simple objects being characterized by similar features as their original equivalents. In existing solutions for two-phase steels SSRVE is created on the basis of the analysis of shape coefficients of hard phase in real microstructure and searching for a representative simple structure with similar shape coefficients. Optimization techniques were used to solve this task. In the present paper local strains and stresses are added to the cost function in optimization. Various forms of the objective function composed of different elements were investigated and used in the optimization procedure for the creation of the final SSRVE. The results are compared as far as the efficiency of the procedure and uniqueness of the solution are considered. The best objective function composed of shape coefficients, as well as of strains and stresses, was proposed. Examples of SSRVEs determined for the investigated two-phase steel using that objective function are demonstrated in the paper. Each step of SSRVE creation is investigated from computational efficiency point of view. The proposition of implementation of the whole computational procedure on modern High Performance Computing (HPC
Boente, C; Matanzas, N; García-González, N; Rodríguez-Valdés, E; Gallego, J R
2017-09-01
The urban and peri-urban soils used for agriculture could be contaminated by atmospheric deposition or industrial releases, thus raising concerns about the potential risk to public health. Here we propose a method to evaluate potential soil pollution based on multivariate statistics, geostatistics (kriging), a novel soil pollution index, and bioavailability assessments. This approach was tested in two districts of a highly populated and industrialized city (Gijón, Spain). The soils showed anomalous content of several trace elements, such as As and Pb (up to 80 and 585 mg kg -1 respectively). In addition, factor analyses associated these elements with anthropogenic activity, whereas other elements were attributed to natural sources. Subsequent clustering also facilitated the differentiation between the northern area studied (only limited Pb pollution found) and the southern area (pattern of coal combustion, including simultaneous anomalies of trace elements and benzo(a)pyrene). A normalized soil pollution index (SPI) was calculated by kriging, using only the elements falling above threshold levels; therefore point-source polluted zones in the northern area and diffuse contamination in the south were identified. In addition, in the six mapping units with the highest SPIs of the fifty studied, we observed low bioavailability for most of the elements that surpassed the threshold levels. However, some anomalies of Pb contents and the pollution fingerprint in the central area of the southern grid call for further site-specific studies. On the whole, the combination of a multivariate (geo) statistic approach and a bioavailability assessment allowed us to efficiently identify sources of contamination and potential risks. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
McKenzie, D.E.; Grantham, L.F.; Paulson, R.B.
1979-01-01
In the Molten Salt Combustion Process, transuranic or β-γ organic waste and air are continuously introduced beneath the surface of a sodium carbonate-containing melt at a temperature of about 800 0 C. Complete combustion of the organic material to carbon dioxide and steam occurs without the conversion of nitrogen to nitrogen oxides. The noxious gases formed by combustion of the chloride, sulfur or phosphorus content of the waste instantly react with the melt to form the corresponding sodium compounds. These compounds as well as the ash and radionuclides are retained in the molten salt. The spent salt is either fused cast into an engineered disposal container or processed to recover salt and plutonium. Molten salt combustion reduces the waste to about 2% of its original volume. Many reactor or reprocessing wastes which cannot be incinerated without difficulty are readily combusted in the molten salt. A 50 kg/hr molten salt combustion system is being designed for the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Construction of the combustor started during 1977, and combustor startup was scheduled for the spring of 1978
An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements
Ross, H. Richard
1993-01-01
A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.
Finite element methods for engineering sciences. Theoretical approach and problem solving techniques
Energy Technology Data Exchange (ETDEWEB)
Chaskalovic, J. [Ariel University Center of Samaria (Israel); Pierre and Marie Curie (Paris VI) Univ., 75 (France). Inst. Jean le Rond d' Alembert
2008-07-01
This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds. (orig.)
Infill architecture: Design approaches for in-between buildings and 'bond' as integrative element
Directory of Open Access Journals (Sweden)
Alfirević Đorđe
2015-01-01
Full Text Available The aim of the paper is to draw attention to the view that the two key elements in achieving good quality of architecture infill in immediate, current surroundings, are the selection of optimal creative method of infill architecture and adequate application of 'the bond' as integrative element, The success of achievement and the quality of architectural infill mainly depend on the assessment of various circumstances, but also on the professionalism, creativity, sensibility, and finally innovativeness of the architect, In order for the infill procedure to be carried out adequately, it is necessary to carry out the assessment of quality of the current surroundings that the object will be integrated into, and then to choose the creative approach that will allow the object to establish an optimal dialogue with its surroundings, On a wider scale, both theory and the practice differentiate thee main creative approaches to infill objects: amimetic approach (mimesis, bassociative approach and ccontrasting approach, Which of the stated approaches will be chosen depends primarily on the fact whether the existing physical structure into which the object is being infilled is 'distinct', 'specific' or 'indistinct', but it also depends on the inclination of the designer, 'The bond' is a term which in architecture denotes an element or zone of one object, but in some instances it can refer to the whole object which has been articulated in a specific way, with an aim of reaching the solution for the visual conflict as is often the case in situations when there is a clash between the existing objects and the newly designed or reconstructed object, This paper provides in-depth analysis of different types of bonds, such as 'direction as bond', 'cornice as bond', 'structure as bond', 'texture as bond' and 'material as bond', which indicate complexity and multiple layers of the designing process of object interpolation.
A multi-criteria approach to camera motion design for volume data animation.
Hsu, Wei-Hsien; Zhang, Yubo; Ma, Kwan-Liu
2013-12-01
We present an integrated camera motion design and path generation system for building volume data animations. Creating animations is an essential task in presenting complex scientific visualizations. Existing visualization systems use an established animation function based on keyframes selected by the user. This approach is limited in providing the optimal in-between views of the data. Alternatively, computer graphics and virtual reality camera motion planning is frequently focused on collision free movement in a virtual walkthrough. For semi-transparent, fuzzy, or blobby volume data the collision free objective becomes insufficient. Here, we provide a set of essential criteria focused on computing camera paths to establish effective animations of volume data. Our dynamic multi-criteria solver coupled with a force-directed routing algorithm enables rapid generation of camera paths. Once users review the resulting animation and evaluate the camera motion, they are able to determine how each criterion impacts path generation. In this paper, we demonstrate how incorporating this animation approach with an interactive volume visualization system reduces the effort in creating context-aware and coherent animations. This frees the user to focus on visualization tasks with the objective of gaining additional insight from the volume data.
A risk management approach to double-shell tank waste volume versus storage capacity
International Nuclear Information System (INIS)
Coles, G.A.; Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J.
1996-01-01
A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences
A risk management approach to double-shell tank waste volume versus storage capacity
Energy Technology Data Exchange (ETDEWEB)
Coles, G.A. [Westinghouse Hanford Co., Richland, WA (United States); Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J. [ARES Corp. (United States)
1996-01-01
A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.
Energy Technology Data Exchange (ETDEWEB)
Li, Yi; Chen, Wei; Xu, Hongyi; Jin, Xuejun
2016-01-01
To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way of integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.
Directory of Open Access Journals (Sweden)
Fan Yuxin
2014-12-01
Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui
2018-06-01
Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.
Borghesi, Fabrizio; Migani, Francesca; Andreotti, Alessandro; Baccetti, Nicola; Bianchi, Nicola; Birke, Manfred; Dinelli, Enrico
2016-02-15
Assessing trace metal pollution using feathers has long attracted the attention of ecotoxicologists as a cost-effective and non-invasive biomonitoring method. In order to interpret the concentrations in feathers considering the external contamination due to lithic residue particles, we adopted a novel geochemical approach. We analysed 58 element concentrations in feathers of wild Eurasian Greater Flamingo Phoenicopterus roseus fledglings, from 4 colonies in Western Europe (Spain, France, Sardinia, and North-eastern Italy) and one group of adults from zoo. In addition, 53 elements were assessed in soil collected close to the nesting islets. This enabled to compare a wide selection of metals among the colonies, highlighting environmental anomalies and tackling possible causes of misinterpretation of feather results. Most trace elements in feathers (Al, Ce, Co, Cs, Fe, Ga, Li, Mn, Nb, Pb, Rb, Ti, V, Zr, and REEs) were of external origin. Some elements could be constitutive (Cu, Zn) or significantly bioaccumulated (Hg, Se) in flamingos. For As, Cr, and to a lesser extent Pb, it seems that bioaccumulation potentially could be revealed by highly exposed birds, provided feathers are well cleaned. This comprehensive study provides a new dataset and confirms that Hg has been accumulated in feathers in all sites to some extent, with particular concern for the Sardinian colony, which should be studied further including Cr. The Spanish colony appears critical for As pollution and should be urgently investigated in depth. Feathers collected from North-eastern Italy were the hardest to clean, but our methods allowed biological interpretation of Cr and Pb. Our study highlights the importance of external contamination when analysing trace elements in feathers and advances methodological recommendations in order to reduce the presence of residual particles carrying elements of external origin. Geochemical data, when available, can represent a valuable tool for a correct
International Nuclear Information System (INIS)
Richard, Benjamin
2016-01-01
This work is the synthesis of research activities I have conducted over the past decade aiming at improving the numerical description of some dissipative mechanisms at the material scale and quantifying the vulnerability of reinforced concrete structures. The main objectives of the research presented in this dissertation are: (i) to improve both the predictive capabilities and the numerical robustness of the time integration strategies of the continuous constitutive model when dealing with the cyclic behavior of quasi-brittle materials subjected to either long-term or short-term loadings, (ii) to improve numerical techniques capable of describing the discontinuous nature of cracking and related local dissipative phenomena, and (iii) to contribute to the definition of large-scale experimental campaigns and to organize international workshops aiming to better understand the complex behavior of reinforced concrete structures when subjected to extreme loadings, such as earthquakes. In the first part, we focus on the development and validation of a continuous constitutive model to describe the mechanical behavior of quasi-brittle materials subjected to cyclic loadings. Simplified strategies are also derived from full three-dimensional approaches to serve probabilistic techniques aiming at taking into account uncertainties and updating mechanical models. In the second part, some light is shed on some developments aiming at better quantifying the cracking features. Then, the results of experiments designed to assess the dynamic response of strongly asymmetric reinforced concrete structures are presented. The experimental data have led to numerical studies shared with the international scientific community. The lessons learned from this research is then employed to design research projects we plan to work on over the next few years. (author) [fr
A multidimensional approach to assessing the elemental status of an organism
Akimov, S.; Vedeneev, P.; Kiyaeva, E.; Laryushina, I.; Notova, S.; Pishchukhin, A.
2017-10-01
Multidimensional space is a convenient means of representing large amounts of information. This fully applies to information on the elemental status of population groups. The novelty of the approach of this study is based on the fact that the totality of the weight parts of all elements of the periodic table together makes up the weight of a person. In a multidimensional space, organisms with the same weight have the same sum of coordinates and are located on one hyperplane. Since for any norms it is important to have a ratio between the quantities that reflect the content of the chemical elements - a ray becomes the standard, for each point of which the ratio between the coordinates is observed. Large amounts of data will adequately represent the proximity an organism to one or another class, that is, increasing the accuracy of diagnosing the elemental status. The algorithm for diagnosing, therefore, should include finding the corresponding hyperplane, the point of intersection with the ray and determining the proximity to this point.
Simulations of singularity dynamics in liquid crystal flows: A C finite element approach
International Nuclear Information System (INIS)
Lin Ping; Liu Chun
2006-01-01
In this paper, we present a C finite element method for a 2a hydrodynamic liquid crystal model which is simpler than existing C 1 element methods and mixed element formulation. The energy law is formally justified and the energy decay is used as a validation tool for our numerical computation. A splitting method combined with only a few fixed point iteration for the penalty term of the director field is applied to reduce the size of the stiffness matrix and to keep the stiffness matrix time-independent. The latter avoids solving a linear system at every time step and largely reduces the computational time, especially when direct linear system solvers are used. Our approach is verified by comparing its computational results with those obtained by C 1 elements and by mixed formulation. Through numerical experiments of a few other splittings and explicit-implicit strategies, we recommend a fast and reliable algorithm for this model. A number of examples are computed to demonstrate the algorithm
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
Directory of Open Access Journals (Sweden)
Jordi Marcé-Nogué
2017-10-01
Full Text Available Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
A local contrast based approach to threshold segmentation for PET target volume delineation
International Nuclear Information System (INIS)
Drever, Laura; Robinson, Don M.; McEwan, Alexander; Roa, Wilson
2006-01-01
Current radiation therapy techniques, such as intensity modulated radiation therapy and three-dimensional conformal radiotherapy rely on the precise delivery of high doses of radiation to well-defined volumes. CT, the imaging modality that is most commonly used to determine treatment volumes cannot, however, easily distinguish between cancerous and normal tissue. The ability of positron emission tomography (PET) to more readily differentiate between malignant and healthy tissues has generated great interest in using PET images to delineate target volumes for radiation treatment planning. At present the accurate geometric delineation of tumor volumes is a subject open to considerable interpretation. The possibility of using a local contrast based approach to threshold segmentation to accurately delineate PET target cross sections is investigated using well-defined cylindrical and spherical volumes. Contrast levels which yield correct volumetric quantification are found to be a function of the activity concentration ratio between target and background, target size, and slice location. Possibilities for clinical implementation are explored along with the limits posed by this form of segmentation
International Nuclear Information System (INIS)
Hopkins, A.; Stewart, C.; Cabble, K.
1994-01-01
The primary purpose of Project Chariot was to investigate the technical problems and assess the effect of the proposed harbor excavation using nuclear explosives in Alaska. However, no nuclear devices were brought to the Project Chariot site. Between 1959 and 1961 various environmental tests were conducted. During the course of these environmental studies, the U.S. Geological Survey (USGS) granted the use of up to 5 curies of radioactive material at the Chariot site in Cape Thompson, Alaska; however only 26 millicuries were ever actually used. The tests were conducted in 12 test plots which were later gathered together and were mixed with in situ-soils generating approximately 1,600 cubic feet of soil. This area was then covered with four feet of clean soil, creating a mound. In 1962, the site was abandoned. A researcher at the University of Alaska at Fairbanks obtained in formation regarding the tests conducted and the materials left at the Project Chariot site. In response to concerns raised through the publication of this information, it was decided by the Department of Energy (DOE) that total remediation of the mound be completed within the year. During the summer of 1993, IT Corporation carried out the assessment and remediation of the Project Chariot site using a streamlined approach to waste site decision making called the Observational Approach (OA), and added elements of the new DOE Streamlined Approach for Environmental Restoration (SAFER). This remediation and remediation approach is described
Dib, Julián R.; Wagenknecht, Martin; Farías, María E.; Meinhardt, Friedhelm
2015-01-01
The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions. PMID:26074886
International Nuclear Information System (INIS)
Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.
2015-01-01
Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks
Identification of tipping elements of the Indian Summer Monsoon using climate network approach
Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen
2015-04-01
Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a
The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes
International Nuclear Information System (INIS)
Carmen Grande, Maria del; Julia, Jorge Alvarez; Barrero, Carmen R.; Marschoff, Carlos M.; Bianchi, Hugo L.
2006-01-01
Density and viscosity of (water + acetonitrile) mixtures were measured over the whole composition range at the temperatures: (298.15, 303.15, 308.15, 313.15, and 318.15) K. A new mathematical approach was developed which allows the calculation of the derivatives of density with respect to composition avoiding the appearance of local discontinuities. Thus, reliable partial molar volumes and thermal expansion coefficients were obtained
Kaiser, C.; Roll, K.; Volk, W.
2017-09-01
In the automotive industry, the manufacturing of automotive outer panels requires hemming processes in which two sheet metal parts are joined together by bending the flange of the outer part over the inner part. Because of decreasing development times and the steadily growing number of vehicle derivatives, an efficient digital product and process validation is necessary. Commonly used simulations, which are based on the finite element method, demand significant modelling effort, which results in disadvantages especially in the early product development phase. To increase the efficiency of designing hemming processes this paper presents a hemming-specific metamodel approach. The approach includes a part analysis in which the outline of the automotive outer panels is initially split into individual segments. By doing a para-metrization of each of the segments and assigning basic geometric shapes, the outline of the part is approximated. Based on this, the hemming parameters such as flange length, roll-in, wrinkling and plastic strains are calculated for each of the geometric basic shapes by performing a meta-model-based segmental product validation. The metamodel is based on an element similar formulation that includes a reference dataset of various geometric basic shapes. A random automotive outer panel can now be analysed and optimized based on the hemming-specific database. By implementing this approach into a planning system, an efficient optimization of designing hemming processes will be enabled. Furthermore, valuable time and cost benefits can be realized in a vehicle’s development process.
Gaetani, G.A.; Cohen, A.L.; Wang, Z.; Crusius, John
2011-01-01
This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where
A finite element approach to self-consistent field theory calculations of multiblock polymers
Energy Technology Data Exchange (ETDEWEB)
Ackerman, David M. [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Delaney, Kris; Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara (United States); Ganapathysubramanian, Baskar, E-mail: baskarg@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States)
2017-02-15
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.
Enhanced phytoextraction of germanium and rare earth elements - a rhizosphere-based approach
Wiche, Oliver
2016-04-01
Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that have become an integral part of our modern high tech society. While most of these elements are not actually rare in terms of general amounts in the earth's crust, they are rarely found in sufficient abundances in single locations for their mining to be economically viable. The average concentration of Ge in soils is estimated at 1.6 μg g-1. The REEs comprise a group of 16 elements including La, the group of lanthanides and Y that are abundant in the earth crust with concentrations varying from 35 μg g-1 (La), 40 μg g-1 (Nd), 6 μg g-1 (Gd) and 3.5 μg g-1 (Er) to 0.5 μg g-1 in Tm. Thus, a promising chance to improve supply of these elements could be phytomining. Unfortunately, bioavailability of Ge and REEs in soils appears to be low, in particular in neutral or alkaline soils. A sequential dissolution analysis of 120 soil samples taken from the A-horizons of soils in the area of Freiberg (Saxony, Germany) revealed that only 0.2% of total Ge and about 0.5% of La, Nd, Gd and Er of bulk concentrations were easily accessible by leaching with NH4-acetate (pH 7). Most of the investigated elements were bound to Fe-/Mn-oxides and silicates and were therefore only poorly available for plant uptake. Here we report an environmentally friendly approach for enhanced phytoextraction of Ge and REEs from soils using mixed cultures of plant species with efficient mechanisms for the acquisition of nutrients in the rhizosphere. The rhizosphere is characterized as the zone in soil sourrounding a plant root that consists of a gradient in chemical, physical and biological soil properties driven by rhizodeposits like carboxylates and protons. Some species like white lupin (Lupinus albus) are able to excrete large amounts of organic acid anions(predominantly citrate and malate) and show a particularly high potential for the acidification of the rhizosphere. In our experiments, mixed cultures
International Nuclear Information System (INIS)
Schinkel, Colleen; Stavrev, Pavel; Stavreva, Nadia; Fallone, B. Gino
2006-01-01
This paper outlines a theoretical approach to the problem of estimating and choosing dose-volume constraints. Following this approach, a method of choosing dose-volume constraints based on biological criteria is proposed. This method is called ''reverse normal tissue complication probability (NTCP) mapping into dose-volume space'' and may be used as a general guidance to the problem of dose-volume constraint estimation. Dose-volume histograms (DVHs) are randomly simulated, and those resulting in clinically acceptable levels of complication, such as NTCP of 5±0.5%, are selected and averaged producing a mean DVH that is proven to result in the same level of NTCP. The points from the averaged DVH are proposed to serve as physical dose-volume constraints. The population-based critical volume and Lyman NTCP models with parameter sets taken from literature sources were used for the NTCP estimation. The impact of the prescribed value of the maximum dose to the organ, D max , on the averaged DVH and the dose-volume constraint points is investigated. Constraint points for 16 organs are calculated. The impact of the number of constraints to be fulfilled based on the likelihood that a DVH satisfying them will result in an acceptable NTCP is also investigated. It is theoretically proven that the radiation treatment optimization based on physical objective functions can sufficiently well restrict the dose to the organs at risk, resulting in sufficiently low NTCP values through the employment of several appropriate dose-volume constraints. At the same time, the pure physical approach to optimization is self-restrictive due to the preassignment of acceptable NTCP levels thus excluding possible better solutions to the problem
International Nuclear Information System (INIS)
Nathan, Usha; Premadas, A.
2013-01-01
A new approach for the beryl mineral sample decomposition and solution preparation method suitable for the elemental analysis using ICP-AES and FAAS is described. For the complete sample decomposition four different decomposition procedures are employed such as with (i) ammonium bi-fluoride alone (ii) a mixture of ammonium bi-fluoride and ammonium sulphate (iii) powdered mixture of NaF and KHF 2 in 1: 3 ratio, and (iv) acid digestion treatment using hydrofluoric acid and nitric acid mixture, and the residue fused with a powdered mixture NaF and KHF 2 . Elements like Be, Al, Fe, Mn, Ti, Cr, Ca, Mg, and Nb are determined by ICP-AES and Na, K, Rb and Cs are determined by FAAS method. Fusion with 2g ammonium bifluoride flux alone is sufficient for the complete decomposition of 0.400 gram sample. The values obtained by this decomposition procedure are agreed well with the reported method. Accuracy of the proposed method was checked by analyzing synthetic samples prepared in the laboratory by mixing high purity oxides having a chemical composition similar to natural beryl mineral. It indicates that the accuracy of the method is very good, and the reproducibility is characterized by the RSD 1 to 4% for the elements studied. (author)
International Nuclear Information System (INIS)
Masoud Ziaei-Rad
2010-01-01
In this paper, a two-dimensional numerical scheme is presented for the simulation of turbulent, viscous, transient compressible flows in the simultaneously developing hydraulic and thermal boundary layer region. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. This combination together with a new method applied for the boundary conditions allows for accurate computation of the variables in the entrance region and for a wide range of flow fields from subsonic to transonic. The Roe-Riemann solver is used for the convective terms, whereas the standard Galerkin technique is applied for the viscous terms. A modified κ-ε model with a two-layer equation for the near-wall region combined with a compressibility correction is used to predict the turbulent viscosity. Parallel processing is also employed to divide the computational domain among the different processors to reduce the computational time. The method is applied to some test cases in order to verify the numerical accuracy. The results show significant differences between incompressible and compressible flows in the friction coefficient, Nusselt number, shear stress and the ratio of the compressible turbulent viscosity to the molecular viscosity along the developing region. A transient flow generated after an accidental rupture in a pipeline was also studied as a test case. The results show that the present numerical scheme is stable, accurate and efficient enough to solve the problem of transient wall-bounded flow.
Le Troter, Arnaud; Fouré, Alexandre; Guye, Maxime; Confort-Gouny, Sylviane; Mattei, Jean-Pierre; Gondin, Julien; Salort-Campana, Emmanuelle; Bendahan, David
2016-04-01
Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD
Quality Assurance of Cancer Study Common Data Elements Using A Post-Coordination Approach.
Jiang, Guoqian; Solbrig, Harold R; Prud'hommeaux, Eric; Tao, Cui; Weng, Chunhua; Chute, Christopher G
2015-01-01
Domain-specific common data elements (CDEs) are emerging as an effective approach to standards-based clinical research data storage and retrieval. A limiting factor, however, is the lack of robust automated quality assurance (QA) tools for the CDEs in clinical study domains. The objectives of the present study are to prototype and evaluate a QA tool for the study of cancer CDEs using a post-coordination approach. The study starts by integrating the NCI caDSR CDEs and The Cancer Genome Atlas (TCGA) data dictionaries in a single Resource Description Framework (RDF) data store. We designed a compositional expression pattern based on the Data Element Concept model structure informed by ISO/IEC 11179, and developed a transformation tool that converts the pattern-based compositional expressions into the Web Ontology Language (OWL) syntax. Invoking reasoning and explanation services, we tested the system utilizing the CDEs extracted from two TCGA clinical cancer study domains. The system could automatically identify duplicate CDEs, and detect CDE modeling errors. In conclusion, compositional expressions not only enable reuse of existing ontology codes to define new domain concepts, but also provide an automated mechanism for QA of terminological annotations for CDEs.
Large-scaled biomonitoring of trace-element air pollution: goals and approaches
International Nuclear Information System (INIS)
Wolterbeek, H.T.
2000-01-01
Biomonitoring is often used in multi-parameter approaches in especially larger scaled surveys. The information obtained may consist of thousands of data points, which can be processed in a variety of mathematical routines to permit a condensed and strongly-smoothed presentation of results and conclusions. Although reports on larger-scaled biomonitoring surveys are 'easy- to-read' and often include far-reaching interpretations, it is not possible to obtain an insight into the real meaningfulness or quality of the survey performed. In any set-up, the aims of the survey should be put forward as clear as possible. Is the survey to provide information on atmospheric element levels, or on total, wet and dry deposition, what should be the time- or geographical scale and resolution of the survey, which elements should be determined, is the survey to give information on emission or immission characteristics? Answers to all these questions are of paramount importance, not only regarding the choice of the biomonitoring species or necessary handling/analysis techniques, but also with respect to planning and personnel, and, not to forget, the expected/available means of data interpretation. In considering a survey set-up, rough survey dimensions may follow directly from the goals; in practice, however, they will be governed by other aspects such as available personnel, handling means/capacity, costs, etc. In what sense and to what extent these factors may cause the survey to drift away from the pre-set goals should receive ample attention: in extreme cases the survey should not be carried out. Bearing in mind the above considerations, the present paper focuses on goals, quality and approaches of larger-scaled biomonitoring surveys on trace element air pollution. The discussion comprises practical problems, options, decisions, analytical means, quality measures, and eventual survey results. (author)
Seol, Ki Ho; Lee, Jeong Eun
2016-03-01
To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC.
Energy Technology Data Exchange (ETDEWEB)
Seol, Ki Ho; Lee, Jeong Eun [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)
2016-03-15
To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC.
International Nuclear Information System (INIS)
Seol, Ki Ho; Lee, Jeong Eun
2016-01-01
To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC
Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong; PAN Feng
2001-01-01
The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.
A topological approach to migration and visualization of time-varying volume data
International Nuclear Information System (INIS)
Fujishiro, Issei; Otsuka, Rieko; Hamaoka, Aya; Takeshima, Yuriko; Takahashi, Shigeo
2004-01-01
Rapid advance in high performance computing and measurement technologies has recently made it possible to produce a stupendous amount of time-varying volume datasets in various disciplines. However, there exist a few known visual exploration tools which allow us to investigate the core of their complex behavior effectively. In this article, our previous approach to topological volume skeletonization is extended to capture the topological skeleton of a 4D volumetric field in terms of critical timing. A cyclic information drilldown scheme, termed T-map, is presented, where a wide choice of information visualization techniques are deployed so that the users are allowed to repeatedly squeeze partial spatiotemporal domains of interest until the size gets fitted into an available computing storage space, prior to topologically-accentuated visualization of the pinpointed volumetric domains. A case study with datasets from atomic collision research is performed to illustrate the feasibility of the present method. (author)
A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models
Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.
2016-12-01
Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.
Allison, Stuart A; Xin, Yao
2005-08-15
A boundary element (BE) procedure is developed to numerically calculate the electrophoretic mobility of highly charged, rigid model macroions in the thin double layer regime based on the continuum primitive model. The procedure is based on that of O'Brien (R.W. O'Brien, J. Colloid Interface Sci. 92 (1983) 204). The advantage of the present procedure over existing BE methodologies that are applicable to rigid model macroions in general (S. Allison, Macromolecules 29 (1996) 7391) is that computationally time consuming integrations over a large number of volume elements that surround the model particle are completely avoided. The procedure is tested by comparing the mobilities derived from it with independent theory of the mobility of spheres of radius a in a salt solution with Debye-Huckel screening parameter, kappa. The procedure is shown to yield accurate mobilities provided (kappa)a exceeds approximately 50. The methodology is most relevant to model macroions of mean linear dimension, L, with 1000>(kappa)L>100 and reduced absolute zeta potential (q|zeta|/k(B)T) greater than 1.0. The procedure is then applied to the compact form of high molecular weight, duplex DNA that is formed in the presence of the trivalent counterion, spermidine, under low salt conditions. For T4 DNA (166,000 base pairs), the compact form is modeled as a sphere (diameter=600 nm) and as a toroid (largest linear dimension=600 nm). In order to reconcile experimental and model mobilities, approximately 95% of the DNA phosphates must be neutralized by bound counterions. This interpretation, based on electrokinetics, is consistent with independent studies.
Elements of integrated care approaches for older people: a review of reviews.
Briggs, Andrew M; Valentijn, Pim P; Thiyagarajan, Jotheeswaran A; Araujo de Carvalho, Islene
2018-04-07
The World Health Organization (WHO) recently proposed an Integrated Care for Older People approach to guide health systems and services in better supporting functional ability of older people. A knowledge gap remains in the key elements of integrated care approaches used in health and social care delivery systems for older populations. The objective of this review was to identify and describe the key elements of integrated care models for elderly people reported in the literature. Review of reviews using a systematic search method. A systematic search was performed in MEDLINE and the Cochrane database in June 2017. Reviews of interventions aimed at care integration at the clinical (micro), organisational/service (meso) or health system (macro) levels for people aged ≥60 years were included. Non-Cochrane reviews published before 2015 were excluded. Reviews were assessed for quality using the Assessment of Multiple Systematic Reviews (AMSTAR) 1 tool. Fifteen reviews (11 systematic reviews, of which six were Cochrane reviews) were included, representing 219 primary studies. Three reviews (20%) included only randomised controlled trials (RCT), while 10 reviews (65%) included both RCTs and non-RCTs. The region where the largest number of primary studies originated was North America (n=89, 47.6%), followed by Europe (n=60, 32.1%) and Oceania (n=31, 16.6%). Eleven (73%) reviews focused on clinical 'micro' and organisational 'meso' care integration strategies. The most commonly reported elements of integrated care models were multidisciplinary teams, comprehensive assessment and case management. Nurses, physiotherapists, general practitioners and social workers were the most commonly reported service providers. Methodological quality was variable (AMSTAR scores: 1-11). Seven (47%) reviews were scored as high quality (AMSTAR score ≥8). Evidence of elements of integrated care for older people focuses particularly on micro clinical care integration processes, while there
International Nuclear Information System (INIS)
Ezer, Muhsin; Elwood, Seth A.; Jones, Bradley T.; Simeonsson, Josef B.
2006-01-01
The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 μg/mL. The determined concentrations were 20.05 ± 2.60, 20.70 ± 2.27 and 20.60 ± 2.46 μg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible
Ezer, Muhsin; Elwood, Seth A; Jones, Bradley T; Simeonsson, Josef B
2006-06-30
The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 microg/mL. The determined concentrations were 20.05+/-2.60, 20.70+/-2.27 and 20.60+/-2.46 microg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible.
Extension of the direct statistical approach to a volume parameter model (non-integer splitting)
International Nuclear Information System (INIS)
Burn, K.W.
1990-01-01
The Direct Statistical Approach is a rigorous mathematical derivation of the second moment for surface splitting and Russian Roulette games attached to the Monte Carlo modelling of fixed source particle transport. It has been extended to a volume parameter model (involving non-integer ''expected value'' splitting), and then to a cell model. The cell model gives second moment and time functions that have a closed form. This suggests the possibility of two different methods of solution of the optimum splitting/Russian Roulette parameters. (author)
A Practical Approach to Governance and Optimization of Structured Data Elements.
Collins, Sarah A; Gesner, Emily; Morgan, Steven; Mar, Perry; Maviglia, Saverio; Colburn, Doreen; Tierney, Diana; Rocha, Roberto
2015-01-01
Definition and configuration of clinical content in an enterprise-wide electronic health record (EHR) implementation is highly complex. Sharing of data definitions across applications within an EHR implementation project may be constrained by practical limitations, including time, tools, and expertise. However, maintaining rigor in an approach to data governance is important for sustainability and consistency. With this understanding, we have defined a practical approach for governance of structured data elements to optimize data definitions given limited resources. This approach includes a 10 step process: 1) identification of clinical topics, 2) creation of draft reference models for clinical topics, 3) scoring of downstream data needs for clinical topics, 4) prioritization of clinical topics, 5) validation of reference models for clinical topics, and 6) calculation of gap analyses of EHR compared against reference model, 7) communication of validated reference models across project members, 8) requested revisions to EHR based on gap analysis, 9) evaluation of usage of reference models across project, and 10) Monitoring for new evidence requiring revisions to reference model.
Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.
2018-01-01
The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.
Kulkarni, Ankur H; Ghosh, Prasenjit; Seetharaman, Ashwin; Kondaiah, Paturu; Gundiah, Namrata
2018-05-09
Traction forces exerted by adherent cells are quantified using displacements of embedded markers on polyacrylamide substrates due to cell contractility. Fourier Transform Traction Cytometry (FTTC) is widely used to calculate tractions but has inherent limitations due to errors in the displacement fields; these are mitigated through a regularization parameter (γ) in the Reg-FTTC method. An alternate finite element (FE) approach computes tractions on a domain using known boundary conditions. Robust verification and recovery studies are lacking but essential in assessing the accuracy and noise sensitivity of the traction solutions from the different methods. We implemented the L2 regularization method and defined a maximum curvature point in the traction with γ plot as the optimal regularization parameter (γ*) in the Reg-FTTC approach. Traction reconstructions using γ* yield accurate values of low and maximum tractions (Tmax) in the presence of up to 5% noise. Reg-FTTC is hence a clear improvement over the FTTC method but is inadequate to reconstruct low stresses such as those at nascent focal adhesions. FE, implemented using a node-by-node comparison, showed an intermediate reconstruction compared to Reg-FTTC. We performed experiments using mouse embryonic fibroblast (MEF) and compared results between these approaches. Tractions from FTTC and FE showed differences of ∼92% and 22% as compared to Reg-FTTC. Selection of an optimum value of γ for each cell reduced variability in the computed tractions as compared to using a single value of γ for all the MEF cells in this study.
A time-domain finite element boundary integral approach for elastic wave scattering
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
Novel Approaches for Mutual Coupling Reduction among Vertical and Planar Monopole Elements
Isaac, Ayman A.
Modern wireless systems such as 4G LTE-A, RFID, Wi-Fi, WiMAX, and GPS utilize miniaturized antenna array elements to improve performance and reliability through diversity and increase throughput using spatial multiplexing schemes of MIMO systems. One original contribution in this thesis is to significantly reduce the complexity of traditional design approaches targeting mutual coupling reductions such as metamaterials, defected ground plane structures, soft electromagnetic surfaces using novel design alternatives. A decoupling network is proposed, which consists of a rectangular metallic ring along with two tuning strips printed on a dielectric substrate, surrounding a two-element monopole antenna array fed by a coplanar waveguide or microstrip structure. The array design offers a reduction in mutual coupling level by around 20 dB at 2.4 GHz as compared to the same array in which the two monopoles share the same ground plane but without the decoupling network. The array achieves a -10 dB S11 bandwidth of 0.63 GHz, (2.12 GHz - 2.75 GHz), a 0.24 GHz (2.33 GHz - 2.57 GHz) bandwidth in which S21 is less than -20 dB, respectively. A total realized gain of 1.6 to 1.69 dB in the frequency range over which S11 and S21 is less than -10 dB and -20 dB respectively. The boresight of the radiation patterns of two vertical monopole wire antennas operating at 2.4 GHz and separated by 8 mm are shown to be orthogonal and inclined by 45° with respect to the horizon while maintaining the shape of the isolated single antenna element. Hence, we denote this design as the descattered and decoupled orthogonal MIMO antenna array, which is reported for the first time in this dissertation, providing the ideal far-field radiation characteristics as theoretically deemed for handheld MIMO devices. Moreover, two new approaches for the reduction of mutual coupling between two rectangular planar monopole antennas printed on a dielectric substrate with a partial ground plane are presented in this
Ramírez, Cristian; Young, Ashley; James, Bryony; Aguilera, José M
2010-10-01
Quantitative analysis of food structure is commonly obtained by image analysis of a small portion of the material that may not be the representative of the whole sample. In order to quantify structural parameters (air cells) of 2 types of bread (bread and bagel) the concept of representative volume element (RVE) was employed. The RVE for bread, bagel, and gelatin-gel (used as control) was obtained from the relationship between sample size and the coefficient of variation, calculated from the apparent Young's modulus measured on 25 replicates. The RVE was obtained when the coefficient of variation for different sample sizes converged to a constant value. In the 2 types of bread tested, the tendency of the coefficient of variation was to decrease as the sample size increased, while in the homogeneous gelatin-gel, it remained always constant around 2.3% to 2.4%. The RVE resulted to be cubes with sides of 45 mm for bread, 20 mm for bagels, and 10 mm for gelatin-gel (smallest sample tested). The quantitative image analysis as well as visual observation demonstrated that bread presented the largest dispersion of air-cell sizes. Moreover, both the ratio of maximum air-cell area/image area and maximum air-cell height/image height were greater for bread (values of 0.05 and 0.30, respectively) than for bagels (0.03 and 0.20, respectively). Therefore, the size and the size variation of air cells present in the structure determined the size of the RVE. It was concluded that RVE is highly dependent on the heterogeneity of the structure of the types of baked products.
Bruder, Friedrich-Karl; Fäcke, Thomas; Grote, Fabian; Hagen, Rainer; Hönel, Dennis; Koch, Eberhard; Rewitz, Christian; Walze, Günther; Wewer, Brita
2017-05-01
Volume Holographic Optical Elements (vHOEs) gained wide attention as optical combiners for the use in smart glasses and augmented reality (SG and AR, respectively) consumer electronics and automotive head-up display applications. The unique characteristics of these diffractive grating structures - being lightweight, thin and flat - make them perfectly suitable for use in integrated optical components like spectacle lenses and car windshields. While being transparent in Off-Bragg condition, they provide full color capability and adjustable diffraction efficiency. The instant developing photopolymer Bayfol® HX film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Important for any commercialization are simple and robust mass production schemes. In this paper, we present an efficient and easy to control one-beam recording scheme to copy a so-called master vHOE in a step-and-repeat process. In this contact-copy scheme, Bayfol® HX film is laminated to a master stack before being exposed by a scanning laser line. Subsequently, the film is delaminated in a controlled fashion and bleached. We explain working principles of the one-beam copy concept, discuss the opto-mechanical construction and outline the downstream process of the installed vHOE replication line. Moreover, we focus on aspects like performance optimization of the copy vHOE, the bleaching process and the suitable choice of protective cover film in the re-lamination step, preparing the integration of the vHOE into the final device.
Finite element analysis of an extended end-plate connection using the T-stub approach
Energy Technology Data Exchange (ETDEWEB)
Muresan, Ioana Cristina; Balc, Roxana [Technical University of Cluj-Napoca, Faculty of Civil Engineering. 15 C Daicoviciu Str., 400020, Cluj-Napoca (Romania)
2015-03-10
Beam-to-column end-plate bolted connections are usually used as moment-resistant connections in steel framed structures. For this joint type, the deformability is governed by the deformation capacity of the column flange and end-plate under tension and elongation of the bolts. All these elements around the beam tension flange form the tension region of the joint, which can be modeled by means of equivalent T-stubs. In this paper a beam-to-column end-plate bolted connection is substituted with a T-stub of appropriate effective length and it is analyzed using the commercially available finite element software ABAQUS. The performance of the model is validated by comparing the behavior of the T-stub from the numerical simulation with the behavior of the connection as a whole. The moment-rotation curve of the T-stub obtained from the numerical simulation is compared with the behavior of the whole extended end-plate connection, obtained by numerical simulation, experimental tests and analytical approach.
An approach for the design of closure bolts of spent fuel elements transportation packages
International Nuclear Information System (INIS)
Mattar Neto, Miguel; Miranda, Carlos A.J.; Fainer, Gerson
2009-01-01
The spent fuel elements transportation packages must be designed for severe conditions including significant fire and impact loads corresponding to hypothetical accident conditions. In general, these packages have large flat lids connected to cylindrical bodies by closure bolts that can be the weak link in the containment system. The bolted closure design depends on the geometrical characteristics of the flat lid and the cylindrical body, including their flanges, on the type of the gaskets and their dimensions, and on the number, strength, and tightness of the bolts. There are well established procedures for the closure bolts design used in pressure vessels and piping. They can not be used directly in the bolts design applied to transportation packages. Prior to the use of these procedures, it is necessary consider the differences in the main loads (pressure for the pressure vessels and piping and impact loads for the transportation packages) and in the geometry (large flat lids are not used in pressure vessels and piping). So, this paper presents an approach for the design of the closure bolts of spent fuel elements transportation packages considering the impact loads and the typical geometrical configuration of the transportation packages. (author)
Directory of Open Access Journals (Sweden)
Sergiu Ciprian Catinas
2015-07-01
Full Text Available A detailed theoretical and practical investigation of the reinforced concrete elements is due to recent techniques and method that are implemented in the construction market. More over a theoretical study is a demand for a better and faster approach nowadays due to rapid development of the calculus technique. The paper above will present a study for implementing in a static calculus the direct stiffness matrix method in order capable to address phenomena related to different stages of loading, rapid change of cross section area and physical properties. The method is a demand due to the fact that in our days the FEM (Finite Element Method is the only alternative to such a calculus and FEM are considered as expensive methods from the time and calculus resources point of view. The main goal in such a method is to create the moment-curvature diagram in the cross section that is analyzed. The paper above will express some of the most important techniques and new ideas as well in order to create the moment curvature graphic in the cross sections considered.
Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J
2016-04-01
This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.
Priemetz, O.; Samoilov, K.; Mukasheva, M.
2017-11-01
An ornament is an actual phenomenon of the architecture modern theory, a common element in the practice of design and construction. It has been an important aspect of shaping for millennia. The description of the methods of its application occupies a large place in the studies on the theory and practice of architecture. However, the problem of the saturation of compositions with ornamentation, the specificity of its themes and forms have not been sufficiently studied yet. This aspect requires accumulation of additional knowledge. The application of quantitative methods for the plastic solutions types and a thematic diversity of facade compositions of buildings constructed in different periods creates another tool for an objective analysis of ornament development. It demonstrates the application of this approach for studying the features of the architectural development in Kazakhstan at the end of the XIX - XXI centuries.
Finite-element blunt-crack propagation: a modified J-integral approach
International Nuclear Information System (INIS)
Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.
1983-01-01
In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is the behavior of concrete structures subjected to high temperatures. The potential of concrete cracking is an important parameter which could significantly influence the safety assessment of thermally attacked concrete. A new modified J-integral approach for the blunt crack model has been derived to provide a general procedure to accurately predict the direction of crack growth. This formulation has been incorporated into the coupled heat transfer-stress analysis finite element code TEMP-STRESS. A description of the formulation is presented in this paper. Results for the problems of a Mode I and mixed mode crack in a plate using regular and slanted meshes subjected to uniaxial and shear loading are presented
A bottom-up approach to estimating cost elements of REDD+ pilot projects in Tanzania
Directory of Open Access Journals (Sweden)
Merger Eduard
2012-08-01
Full Text Available Abstract Background Several previous global REDD+ cost studies have been conducted, demonstrating that payments for maintaining forest carbon stocks have significant potential to be a cost-effective mechanism for climate change mitigation. These studies have mostly followed highly aggregated top-down approaches without estimating the full range of REDD+ costs elements, thus underestimating the actual costs of REDD+. Based on three REDD+ pilot projects in Tanzania, representing an area of 327,825 ha, this study explicitly adopts a bottom-up approach to data assessment. By estimating opportunity, implementation, transaction and institutional costs of REDD+ we develop a practical and replicable methodological framework to consistently assess REDD+ cost elements. Results Based on historical land use change patterns, current region-specific economic conditions and carbon stocks, project-specific opportunity costs ranged between US$ -7.8 and 28.8 tCOxxxx for deforestation and forest degradation drivers such as agriculture, fuel wood production, unsustainable timber extraction and pasture expansion. The mean opportunity costs for the three projects ranged between US$ 10.1 – 12.5 tCO2. Implementation costs comprised between 89% and 95% of total project costs (excluding opportunity costs ranging between US$ 4.5 - 12.2 tCO2 for a period of 30 years. Transaction costs for measurement, reporting, verification (MRV, and other carbon market related compliance costs comprised a minor share, between US$ 0.21 - 1.46 tCO2. Similarly, the institutional costs comprised around 1% of total REDD+ costs in a range of US$ 0.06 – 0.11 tCO2. Conclusions The use of bottom-up approaches to estimate REDD+ economics by considering regional variations in economic conditions and carbon stocks has been shown to be an appropriate approach to provide policy and decision-makers robust economic information on REDD+. The assessment of opportunity costs is a crucial first step to
A bottom-up approach to estimating cost elements of REDD+ pilot projects in Tanzania
2012-01-01
Background Several previous global REDD+ cost studies have been conducted, demonstrating that payments for maintaining forest carbon stocks have significant potential to be a cost-effective mechanism for climate change mitigation. These studies have mostly followed highly aggregated top-down approaches without estimating the full range of REDD+ costs elements, thus underestimating the actual costs of REDD+. Based on three REDD+ pilot projects in Tanzania, representing an area of 327,825 ha, this study explicitly adopts a bottom-up approach to data assessment. By estimating opportunity, implementation, transaction and institutional costs of REDD+ we develop a practical and replicable methodological framework to consistently assess REDD+ cost elements. Results Based on historical land use change patterns, current region-specific economic conditions and carbon stocks, project-specific opportunity costs ranged between US$ -7.8 and 28.8 tCOxxxx for deforestation and forest degradation drivers such as agriculture, fuel wood production, unsustainable timber extraction and pasture expansion. The mean opportunity costs for the three projects ranged between US$ 10.1 – 12.5 tCO2. Implementation costs comprised between 89% and 95% of total project costs (excluding opportunity costs) ranging between US$ 4.5 - 12.2 tCO2 for a period of 30 years. Transaction costs for measurement, reporting, verification (MRV), and other carbon market related compliance costs comprised a minor share, between US$ 0.21 - 1.46 tCO2. Similarly, the institutional costs comprised around 1% of total REDD+ costs in a range of US$ 0.06 – 0.11 tCO2. Conclusions The use of bottom-up approaches to estimate REDD+ economics by considering regional variations in economic conditions and carbon stocks has been shown to be an appropriate approach to provide policy and decision-makers robust economic information on REDD+. The assessment of opportunity costs is a crucial first step to provide information on the
MAIN LAND USE PLANNING APPROACHES TO STRUCTURAL ELEMENTS LOCAL ECOLOGICAL NETWORK
Directory of Open Access Journals (Sweden)
TretiakV.M.
2016-08-01
Full Text Available In modern conditions of social development, changes in land eco-system of economic relations in Ukraine, the problem of providing conditions for the creation of sustainable land use and creation of protected areas get the status of special urgency. Ideology establishment of ecological networks became logical continuation of environmental thought in general. Considering the methodological approach to the establishment of ecological networks we can constitute, that it is an environmental frame of spatial infrastructure, land conservation and environmental areas, major part of land is the basis of the structural elements of ecological network. Designing an ecological network is made through developing regional schemes of Econet formation, regional and local schemes for establishing an ecological network areas, settlements and other areas. Land Management uses design of structural elements of the ecological network in the village council, as a rule, begins with ecological and landscape mikrozonationof the village council, held during the preparatory work for the land drafting and finishing the formation of environmentally homogeneous regions, which represents the tied system components of ecological network, environmental measures in the form of local environmental restrictions (encumbrances to use land and other natural resources. Additionally, there are some project organization and territorial measures that increase the sustainability area, such as: key, binders, buffer areas and renewable ecological network. Land management projects on the formation of structural elements of ecological network as territorial restrictions (encumbrances in land are used within the territories Councils determined the location and size of land: - Protection zones around especially valuable natural objects of cultural heritage, meteorological stations, etc. in order to protect them from adverse human impacts; - Protection zones along telecommunication lines, power
Institute of Scientific and Technical Information of China (English)
高夫征
2005-01-01
A finite volume element predictor-correetor method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L2 error estimate for the finite volume element predictor-corrector method is derived. A numerical experiment shows that the numerical results are consistent with theoretical analysis.
A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids
Energy Technology Data Exchange (ETDEWEB)
Bungartz, H.J. [Technische Universitaet Muenchen (Germany)
1996-12-31
In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.
International Nuclear Information System (INIS)
Calio, I.; Cannizzaro, F.; Marletta, M.; Panto, B.; D'Amore, E.
2008-01-01
In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria
Beyond Housing First: Essential Elements of a System-Planning Approach to Ending Homelessness
Directory of Open Access Journals (Sweden)
Alina Turner
2014-10-01
Full Text Available The concept of “Housing First” has taken on a powerful status in the complex of government, non-profit and academic systems that study and seek to eliminate homelessness. It is a compelling concept, in that it has brought our society to the realization that housing instability itself is often the culmination of various underlying and intersecting issues, ranging from mental health and addiction issues to domestic abuse and poverty. The “Housing First” principle holds that homeless individuals stand a far poorer chance of improving their condition while they remain homeless; that the stability of a permanent home provides the foundation that allows individuals to begin addressing the issues that led to their housing instability in the first place. However, the elegance of the fundamental principle behind “Housing First” also risks creating an illusion, wherein agencies and governments might too easily conclude that the entirety of this approach to ending homelessness is merely to begin housing the homeless. While that is a step in the process, it is but a piece of the Housing First approach. And unless all the various elements of the approach are also included in the actual work done on the ground, the success observed so far in communities that have tried the Housing First approach will not necessarily be replicated. This can lead to disappointment for those trying to implement new strategies, undermine the effectiveness of Housing First, and most importantly, fail to fully help those individuals in need. Housing First encompasses a strategic application of key principles across the entire homeless-serving system. When it is introduced into a new jurisdiction, it must be accompanied by an overhaul of the current approach to social policy and service delivery. The implementation of Housing First requires a difficult and systematic process, beginning with planning and strategy development that recognizes how every part of the homeless
A new approach for calculation of volume confined by ECR surface and its area in ECR ion source
International Nuclear Information System (INIS)
Filippov, A.V.
2007-01-01
The volume confined by the resonance surface and its area are important parameters of the balance equations model for calculation of ion charge-state distribution (CSD) in the electron-cyclotron resonance (ECR) ion source. A new approach for calculation of these parameters is given. This approach allows one to reduce the number of parameters in the balance equations model
A Rule Based Approach to ISS Interior Volume Control and Layout
Peacock, Brian; Maida, Jim; Fitts, David; Dory, Jonathan
2001-01-01
Traditional human factors design involves the development of human factors requirements based on a desire to accommodate a certain percentage of the intended user population. As the product is developed human factors evaluation involves comparison between the resulting design and the specifications. Sometimes performance metrics are involved that allow leniency in the design requirements given that the human performance result is satisfactory. Clearly such approaches may work but they give rise to uncertainty and negotiation. An alternative approach is to adopt human factors design rules that articulate a range of each design continuum over which there are varying outcome expectations and interactions with other variables, including time. These rules are based on a consensus of human factors specialists, designers, managers and customers. The International Space Station faces exactly this challenge in interior volume control, which is based on anthropometric, performance and subjective preference criteria. This paper describes the traditional approach and then proposes a rule-based alternative. The proposed rules involve spatial, temporal and importance dimensions. If successful this rule-based concept could be applied to many traditional human factors design variables and could lead to a more effective and efficient contribution of human factors input to the design process.
An improved approach to reduce partial volume errors in brain SPET
International Nuclear Information System (INIS)
Hatton, R.L.; Hatton, B.F.; Michael, G.; Barnden, L.; QUT, Brisbane, QLD; The Queen Elizabeth Hospital, Adelaide, SA
1999-01-01
Full text: Limitations in SPET resolution give rise to significant partial volume error (PVE) in small brain structures We have investigated a previously published method (Muller-Gartner et al., J Cereb Blood Flow Metab 1992;16: 650-658) to correct PVE in grey matter using MRI. An MRI is registered and segmented to obtain a grey matter tissue volume which is then smoothed to obtain resolution matched to the corresponding SPET. By dividing the original SPET with this correction map, structures can be corrected for PVE on a pixel-by-pixel basis. Since this approach is limited by space-invariant filtering, modification was made by estimating projections for the segmented MRI and reconstructing these using identical parameters to SPET. The methods were tested on simulated brain scans, reconstructed with the ordered subsets EM algorithm (8,16, 32, 64 equivalent EM iterations) The new method provided better recovery visually. For 32 EM iterations, recovery coefficients were calculated for grey matter regions. The effects of potential errors in the method were examined. Mean recovery was unchanged with one pixel registration error, the maximum error found in most registration programs. Errors in segmentation > 2 pixels results in loss of accuracy for small structures. The method promises to be useful for reducing PVE in brain SPET
Directory of Open Access Journals (Sweden)
Zhang, M. Z.
2010-12-01
Full Text Available Concrete diffusivity is a function of its microstructure on many scales, ranging from nanometres to millimetres. Multi-scale techniques are therefore needed to model this parameter. Representative elementary volume (REV, in conjunction with the homogenization principle, is one of the most common multi-scale approaches. This study aimed to establish a procedure for establishing the REV required to determine cement paste diffusivity based on a three-step, numerical-statistical approach. First, several series of 3D cement paste microstructures were generated with HYMOSTRUC3D, a cement hydration and microstructure model, for different volumes of cement paste and w/c ratios ranging from 0.30 to 0.60. Second, the finite element method was used to simulate the diffusion of tritiated water through these microstructures. Effective cement paste diffusivity values for different REVs were obtained by applying Fick’s law. Finally, statistical analysis was used to find the fluctuation in effective diffusivity with cement paste volume, from which the REV was then determined. The conclusion drawn was that the REV for measuring diffusivity in cement paste is 100x100x100 μm^{3}.
La difusividad del hormigón depende de su microestructura a numerosas escalas, desde nanómetros hasta milímetros, por lo que se precisa de técnicas multiescala para representar este parámetro. Junto con el principio de homogeneización, uno de los métodos multiescala más habituales es el volumen elemental representativo (VER. El objeto de este estudio era establecer un procedimiento que permitiera determinar el VER necesario para calcular la difusividad de la pasta de cemento, basándose en un método numéricoestadístico que consta de tres etapas. Primero, se crearon varias series de microestructuras de pasta de cemento en 3D con HYMOSTRUC3D, un programa que permite crear un modelo de la hidratación y microestructura del cemento. Luego se empleó el método de
A New Approach for Deep Gray Matter Analysis Using Partial-Volume Estimation.
Bonnier, Guillaume; Kober, Tobias; Schluep, Myriam; Du Pasquier, Renaud; Krueger, Gunnar; Meuli, Reto; Granziera, Cristina; Roche, Alexis
2016-01-01
The existence of partial volume effects in brain MR images makes it challenging to understand physio-pathological alterations underlying signal changes due to pathology across groups of healthy subjects and patients. In this study, we implement a new approach to disentangle gray and white matter alterations in the thalamus and the basal ganglia. The proposed method was applied to a cohort of early multiple sclerosis (MS) patients and healthy subjects to evaluate tissue-specific alterations related to diffuse inflammatory or neurodegenerative processes. Forty-three relapsing-remitting MS patients and nineteen healthy controls underwent 3T MRI including: (i) fluid-attenuated inversion recovery, double inversion recovery, magnetization-prepared gradient echo for lesion count, and (ii) T1 relaxometry. We applied a partial volume estimation algorithm to T1 relaxometry maps to gray and white matter local concentrations as well as T1 values characteristic of gray and white matter in the thalamus and the basal ganglia. Statistical tests were performed to compare groups in terms of both global T1 values, tissue characteristic T1 values, and tissue concentrations. Significant increases in global T1 values were observed in the thalamus (p = 0.038) and the putamen (p = 0.026) in RRMS patients compared to HC. In the Thalamus, the T1 increase was associated with a significant increase in gray matter characteristic T1 (p = 0.0016) with no significant effect in white matter. The presented methodology provides additional information to standard MR signal averaging approaches that holds promise to identify the presence and nature of diffuse pathology in neuro-inflammatory and neurodegenerative diseases.
Finite Element Analysis of the Cingulata Jaw: An Ecomorphological Approach to Armadillo's Diets.
Directory of Open Access Journals (Sweden)
Sílvia Serrano-Fochs
Full Text Available Finite element analyses (FEA were applied to assess the lower jaw biomechanics of cingulate xenarthrans: 14 species of armadillos as well as one Pleistocene pampathere (11 extant taxa and the extinct forms Vassallia, Eutatus and Macroeuphractus. The principal goal of this work is to comparatively assess the biomechanical capabilities of the mandible based on FEA and to relate the obtained stress patterns with diet preferences and variability, in extant and extinct species through an ecomorphology approach. The results of FEA showed that omnivorous species have stronger mandibles than insectivorous species. Moreover, this latter group of species showed high variability, including some similar biomechanical features of the insectivorous Tolypeutes matacus and Chlamyphorus truncatus to those of omnivorous species, in agreement with reported diets that include items other than insects. It remains unclear the reasons behind the stronger than expected lower jaw of Dasypus kappleri. On the other hand, the very strong mandible of the fossil taxon Vassallia maxima agrees well with the proposed herbivorous diet. Moreover, Eutatus seguini yielded a stress pattern similar to Vassalia in the posterior part of the lower jaw, but resembling that of the stoutly built Macroeuphractus outesi in the anterior part. The results highlight the need for more detailed studies on the natural history of extant armadillos. FEA proved a powerful tool for biomechanical studies in a comparative framework.
Directory of Open Access Journals (Sweden)
Sara Gabriela Pacichana-Quinayáz
2016-06-01
Full Text Available Abstract Due to the limited supply of mental health services for Afro-Colombian victims of violence, a Common Elements Treatment Approach (CETA intervention has been implemented in the Colombian Pacific. Given the importance of improvement in mental health interventions for this population, it is necessary to characterize this process. This article seeks to describe the implementation of CETA for Afro-Colombian victims of violence in Buenaventura and Quibdó, Colombia through case studieswith individual in-depth interviews with Lay Psychosocial Community Workers (LPCW, supervisors, and coordinators responsible for implementing CETA. From this six core categories were obtained: 1. Effect of armed conflict and poverty 2. Trauma severity 3. Perceived changes with CETA 4. Characteristics and LPCW’s performance 5. Afro-Colombian culturalapproach and 6. Strategies to promote users’ well-being.Colombian Pacific’s scenario implies several factors, such as the active armed conflict, economic crisis, and lack of mental health care resources, affecting the implementation process and the intervention effects. This implies the need to establish and strengthen partnerships between institutions in order to administer necessary mental health care for victims of violence in the Colombian Pacific.
A new approach to elastography using mutual information and finite elements
International Nuclear Information System (INIS)
Miga, Michael I
2003-01-01
Historically, increased mechanical stiffness during tissue palpation exams has been associated with assessing organ health as well as with detecting the growth of a potentially life-threatening cell mass. As such, techniques to image elasticity parameters (i.e., elastography) have recently become of great interest to scientists. In this work, a new method of elastography will be introduced within the context of mammographic imaging. The elastography method proposed represents a non-rigid iterative image registration algorithm that varies material properties within a finite element model to improve registration. More specifically, regional measures of image similarity are used within an objective function minimization framework to reconstruct elasticity images of tissue stiffness. Numerical simulations illustrate: (1) the encoding of stiffness information within the context of a regional image similarity criterion, (2) the methodology for an iterative elastographic imaging framework and (3) elasticity reconstruction simulations. The real strength in this approach is that images from any modality (e.g., magnetic resonance, computed tomography, ultrasound, etc) that have sufficient anatomically-based intensity heterogeneity and remain consistent from a pre- to a post-deformed state could be used in this paradigm
Espath, L. F R; Braun, Alexandre Luis; Awruch, Armando Miguel; Dalcin, Lisandro
2015-01-01
A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.
An Image-Based Finite Element Approach for Simulating Viscoelastic Response of Asphalt Mixture
Directory of Open Access Journals (Sweden)
Wenke Huang
2016-01-01
Full Text Available This paper presents an image-based micromechanical modeling approach to predict the viscoelastic behavior of asphalt mixture. An improved image analysis technique based on the OTSU thresholding operation was employed to reduce the beam hardening effect in X-ray CT images. We developed a voxel-based 3D digital reconstruction model of asphalt mixture with the CT images after being processed. In this 3D model, the aggregate phase and air void were considered as elastic materials while the asphalt mastic phase was considered as linear viscoelastic material. The viscoelastic constitutive model of asphalt mastic was implemented in a finite element code using the ABAQUS user material subroutine (UMAT. An experimental procedure for determining the parameters of the viscoelastic constitutive model at a given temperature was proposed. To examine the capability of the model and the accuracy of the parameter, comparisons between the numerical predictions and the observed laboratory results of bending and compression tests were conducted. Finally, the verified digital sample of asphalt mixture was used to predict the asphalt mixture viscoelastic behavior under dynamic loading and creep-recovery loading. Simulation results showed that the presented image-based digital sample may be appropriate for predicting the mechanical behavior of asphalt mixture when all the mechanical properties for different phases became available.
Espath, L. F R
2015-02-03
A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.
A Novel Approach for Earthing System Design Using Finite Element Method
Directory of Open Access Journals (Sweden)
Sajad Samadinasab
2017-04-01
Full Text Available Protection of equipment, safety of persons and continuity of power supply are the main objectives of the grounding system. For its accurate design, it is essential to determine the potential distribution on the earth surface and the equivalent resistance of the system. The knowledge of such parameters allows checking the security offered by the grounding system when there is a failure in the power systems. A new method to design an earthing systems using Finite Element Method (FEM is presented in this article. In this approach, the influence of the moisture and temperature on the behavior of soil resistivity are considered in EARTHING system DESIGN. The earthing system is considered to be a rod electrode and a plate type electrode buried vertically in the ground. The resistance of the system which is a very important factor in the design process is calculated using FEM. FEM is used to estimate the solution of the partial differential equation that governs the system behavior. COMSOL Multiphysics 4.4 which is one of the packages that work with the FEM is used as a tool in this design. Finally the values of the resistance obtained by COMSOL Multiphysics are compared with the proven analytical formula values for the ground resistance, in order to prove the work done with COMSOL Multiphysics.
A finite element model of myocardial infarction using a composite material approach.
Haddad, Seyyed M H; Samani, Abbas
2018-01-01
Computational models are effective tools to study cardiac mechanics under normal and pathological conditions. They can be used to gain insight into the physiology of the heart under these conditions while they are adaptable to computer assisted patient-specific clinical diagnosis and therapeutic procedures. Realistic cardiac mechanics models incorporate tissue active/passive response in conjunction with hyperelasticity and anisotropy. Conventional formulation of such models leads to mathematically-complex problems usually solved by custom-developed non-linear finite element (FE) codes. With a few exceptions, such codes are not available to the research community. This article describes a computational cardiac mechanics model developed such that it can be implemented using off-the-shelf FE solvers while tissue pathologies can be introduced in the model in a straight-forward manner. The model takes into account myocardial hyperelasticity, anisotropy, and active contraction forces. It follows a composite tissue modeling approach where the cardiac tissue is decomposed into two major parts: background and myofibers. The latter is modelled as rebars under initial stresses mimicking the contraction forces. The model was applied in silico to study the mechanics of infarcted left ventricle (LV) of a canine. End-systolic strain components, ejection fraction, and stress distribution attained using this LV model were compared quantitatively and qualitatively to corresponding data obtained from measurements as well as to other corresponding LV mechanics models. This comparison showed very good agreement.
Pulcini, C; Binda, F; Lamkang, A S; Trett, A; Charani, E; Goff, D A; Harbarth, S; Hinrichsen, S L; Levy-Hara, G; Mendelson, M; Nathwani, D; Gunturu, R; Singh, S; Srinivasan, A; Thamlikitkul, V; Thursky, K; Vlieghe, E; Wertheim, H; Zeng, M; Gandra, S; Laxminarayan, R
2018-04-03
With increasing global interest in hospital antimicrobial stewardship (AMS) programmes, there is a strong demand for core elements of AMS to be clearly defined on the basis of principles of effectiveness and affordability. To date, efforts to identify such core elements have been limited to Europe, Australia, and North America. The aim of this study was to develop a set of core elements and their related checklist items for AMS programmes that should be present in all hospitals worldwide, regardless of resource availability. A literature review was performed by searching Medline and relevant websites to retrieve a list of core elements and items that could have global relevance. These core elements and items were evaluated by an international group of AMS experts using a structured modified Delphi consensus procedure, using two-phased online in-depth questionnaires. The literature review identified seven core elements and their related 29 checklist items from 48 references. Fifteen experts from 13 countries in six continents participated in the consensus procedure. Ultimately, all seven core elements were retained, as well as 28 of the initial checklist items plus one that was newly suggested, all with ≥80% agreement; 20 elements and items were rephrased. This consensus on core elements for hospital AMS programmes is relevant to both high- and low-to-middle-income countries and could facilitate the development of national AMS stewardship guidelines and adoption by healthcare settings worldwide. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. All rights reserved.
A new approach for implementation of associative memory using volume holographic materials
Habibi, Mohammad; Pashaie, Ramin
2012-02-01
Associative memory, also known as fault tolerant or content-addressable memory, has gained considerable attention in last few decades. This memory possesses important advantages over the more common random access memories since it provides the capability to correct faults and/or partially missing information in a given input pattern. There is general consensus that optical implementation of connectionist models and parallel processors including associative memory has a better record of success compared to their electronic counterparts. In this article, we describe a novel optical implementation of associative memory which not only has the advantage of all optical learning and recalling capabilities, it can also be realized easily. We present a new approach, inspired by tomographic imaging techniques, for holographic implementation of associative memories. In this approach, a volume holographic material is sandwiched within a matrix of inputs (optical point sources) and outputs (photodetectors). The memory capacity is realized by the spatial modulation of refractive index of the holographic material. Constructing the spatial distribution of the refractive index from an array of known inputs and outputs is formulated as an inverse problem consisting a set of linear integral equations.
Demougeot-Renard, Helene; De Fouquet, Chantal
2004-10-01
Assessing the volume of soil requiring remediation and the accuracy of this assessment constitutes an essential step in polluted site management. If this remediation volume is not properly assessed, misclassification may lead both to environmental risks (polluted soils may not be remediated) and financial risks (unexpected discovery of polluted soils may generate additional remediation costs). To minimize such risks, this paper proposes a geostatistical methodology based on stochastic simulations that allows the remediation volume and the uncertainty to be assessed using investigation data. The methodology thoroughly reproduces the conditions in which the soils are classified and extracted at the remediation stage. The validity of the approach is tested by applying it on the data collected during the investigation phase of a former lead smelting works and by comparing the results with the volume that has actually been remediated. This real remediated volume was composed of all the remediation units that were classified as polluted after systematic sampling and analysis during clean-up stage. The volume estimated from the 75 samples collected during site investigation slightly overestimates (5.3% relative error) the remediated volume deduced from 212 remediation units. Furthermore, the real volume falls within the range of uncertainty predicted using the proposed methodology.
Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen
2017-04-01
The monsoon is the season of rain caused by a global seasonal reverse in winds direction and a change in pressure distribution. The Southwest winds bring summer monsoon to India. The economy of India is able to maintain its GDP in the wake of a good monsoon. However, if monsoon gets delayed by even two weeks, it can spell disaster because the high population depending on agriculture - 70% of its people directly related to farming. Agriculture, in turn, is dependent on the monsoon. Although the rainy season happens annually between June and September, the time of monsoon season's onset and withdrawal varies within a month from year to year. The important feature of the monsoon is that it starts and ends suddenly. Hence, despite enormous progress having been made in predicting monsoon since 1886, it remains a significant scientific challenge. To make predictions of monsoon timing in 2016, we applied our recently developed method [1]. Our approach is based on a teleconnection between the Eastern Ghats (EG) and North Pakistan (NP) - Tipping Elements of Indian Summer Monsoon. Both our predictions - for monsoon onset and withdrawal - were made for the Eastern Ghats region (EG-20N,80E) in the central part of India, while the Indian Meteorological Department forecasts monsoon over Kerala - a state at the southern tip of the Indian subcontinent. Our prediction for monsoon onset was published on May 6-th, 2016 [2]. We predicted the monsoon arrival to the EG on the 13th of June with a deviation of +/-4 days. In fact, monsoon onset was on June 17-th, that was confirmed by information from meteorological stations located around the EG-region. Hence, our prediction of monsoon onset (made 40 days in advance) was correct. We delivered the prediction of monsoon withdrawal on July 27, 2016 [3], announcing the monsoon withdrawal from the EG on October 5-th with a deviation of +/-5 days. The actual monsoon withdrawal started on October 10-th when the relative humidity in the region
Daude, F.; Galon, P.
2018-06-01
A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.
Study of the behaviour of trace elements in estuaries: experimental approaches and modeling
International Nuclear Information System (INIS)
Dange, Catherine
2002-01-01
Most of trace elements have a non conservative behavior in estuarine environments. It is the case of cadmium, cobalt and caesium for which the fate in estuarine and coastal zones is largely controlled by their distribution between water and suspended particles, which generally have high residence times or can be definitely deposited in these areas. Metallic contaminants and radionuclides can be present under various species: dissolved (mineral and organic complexes), colloidal and particulate forms (adsorbed, precipitated) or integrated by various mechanisms in the organisms. Such distributions are the result of processes (physical, chemical, biological) which are controlled by many factors (ionic strength, pH, E_h, major cations concentration, nature and concentration of suspended matter, primary production,...). Geochemical modeling is a very useful approach to understand the dynamics of this type of contaminant, especially in the complex systems which are the estuaries. A speciation model was used to simulate the measurements of dissolved and particulate Cd, Co and Cs, taken during various cruises carried out in the Seine, Loire, Gironde and Rhone estuaries. The model is able to reproduce the distribution of metals between the dissolved and particulate phases, and also to evaluate the concentrations of various chemical species (especially those which are most bio-available). The approach presented treats adsorption processes as a formation of inner sphere complexes with functional surface groups (surface complexation model) or as an cationic exchange reaction. The calculation of chemical species takes into account the presence of dissolved ligands or major cations of seawater, which compete with the metal for the surface sites. The model can consider the various natural particle components (metal oxy-hydroxides, organic matter) as individual adsorbent phases or treat natural particles in a 'global manner'. The choice of modeled processes is based on studies of
Marrero, Julieta; Rebagliati, Raúl Jiménez; Gómez, Darío; Smichowski, Patricia
2005-12-15
A study was conducted to evaluate the homogeneity of the distribution of metals and metalloids deposited on glass fiber filters collected using a high-volume sampler equipped with a PM-10 sampling head. The airborne particulate matter (APM)-loaded glass fiber filters (with an active surface of about 500cm(2)) were weighed and then each filter was cut in five small discs of 6.5cm of diameter. Each disk was mineralized by acid-assisted microwave (MW) digestion using a mixture of nitric, perchloric and hydrofluoric acids. Analysis was performed by axial view inductively coupled plasma optical emission spectrometry (ICP OES) and the elements considered were: Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Ti and V. The validation of the procedure was performed by the analysis of the standard reference material NIST 1648, urban particulate matter. As a way of comparing the possible variability in trace elements distribution in a particular filter, the mean concentration for each element over the five positions (discs) was calculated and each element concentration was normalized to this mean value. Scatter plots of the normalized concentrations were examined for all elements and all sub-samples. We considered that an element was homogeneously distributed if its normalized concentrations in the 45 sub-samples were within +/-15% of the mean value ranging between 0.85 and 1.15. The study demonstrated that the 12 elements tested showed different distribution pattern. Aluminium, Cu and V showed the most homogeneous pattern while Cd and Ni exhibited the largest departures from the mean value in 13 out of the 45 discs analyzed. No preferential deposition was noticed in any sub-sample.
Linking flood peak, flood volume and inundation extent: a DEM-based approach
Rebolho, Cédric; Furusho-Percot, Carina; Blaquière, Simon; Brettschneider, Marco; Andréassian, Vazken
2017-04-01
Traditionally, flood inundation maps are computed based on the Shallow Water Equations (SWE) in one or two dimensions, with various simplifications that have proved to give good results. However, the complexity of the SWEs often requires a numerical resolution which can need long computing time, as well as detailed cross section data: this often results in restricting these models to rather small areas abundant with high quality data. This, along with the necessity for fast inundation mapping, are the reason why rapid inundation models are being designed, working for (almost) any river with a minimum amount of data and, above all, easily available data. Our model tries to follow this path by using a 100m DEM over France from which are extracted a drainage network and the associated drainage areas. It is based on two pre-existing methods: (1) SHYREG (Arnaud et al.,2013), a regionalized approach used to calculate the 2-year and 10-year flood quantiles (used as approximated bankfull flow and maximum discharge, respectively) for each river pixel of the DEM (below a 10 000 km2 drainage area) and (2) SOCOSE (Mailhol,1980), which gives, amongst other things, an empirical formula of a characteristic flood duration (for each pixel) based on catchment area, average precipitation and temperature. An overflow volume for each river pixel is extracted from a triangular shaped synthetic hydrograph designed with SHYREG quantiles and SOCOSE flood duration. The volume is then spread from downstream to upstream one river pixel at a time. When the entire hydrographic network is processed, the model stops and generates a map of potential inundation area associated with the 10-year flood quantile. Our model can also be calibrated using past-events inundation maps by adjusting two parameters, one which modifies the overflow duration, and the other, equivalent to a minimum drainage area for river pixels to be flooded. Thus, in calibration on a sample of 42 basins, the first draft of the
Divanoglou, A; Tasiemski, T; Augutis, M; Trok, K
2017-06-01
Active Rehabilitation (AR) is a community peer-based approach that started in Sweden in 1976. As a key component of the approach, AR training camps provide intensive, goal-oriented, intentional, group-based, customised training and peer-support opportunities in a community environment for individuals with spinal cord injury. Prospective cross-sectional study. To describe the profile of the organisations that use components of the AR approach, and to explore the characteristics and the international variations of the approach. Twenty-two organisations from 21 countries from Europe, Asia and Africa reported using components of the AR approach during the past 10 years. An electronic survey was developed and distributed through a personalised email. Sampling involved a prospective identification of organisations that met the inclusion criteria and snowball strategies. While there were many collaborating links between the organisations, RG Active Rehabilitation from Sweden and Motivation Charitable Trust from the United Kingdom were identified as key supporting organisations. The 10 key elements of the AR approach were found to be used uniformly across the participating organisations. Small variations were associated with variations in country income and key supporting organisation. This is the first study to describe the key elements and international variations of the AR approach. This will provide the basis for further studies exploring the effectiveness of the approach, it will likely facilitate international collaboration on research and operational aspects and it could potentially support higher integration in the health-care system and long-term funding of these programmes.
International Nuclear Information System (INIS)
Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur
2007-01-01
A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases
Energy Technology Data Exchange (ETDEWEB)
Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)
2007-07-15
A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.
DEFF Research Database (Denmark)
Hansen, Jens Zangenberg; Brøndsted, Povl
2013-01-01
In a previous study, Trias et al. [1] determined the minimum size of a statistical representative volume element (SRVE) of a unidirectional fibre-reinforced composite primarily based on numerical analyses of the stress/strain field. In continuation of this, the present study determines the minimu...... size of an SRVE based on a statistical analysis on the spatial statistics of the fibre packing patterns found in genuine laminates, and those generated numerically using a microstructure generator. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....
Kou, Jisheng; Sun, Shuyu
2017-01-01
In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated
Clinical Application of an Open-Source 3D Volume Rendering Software to Neurosurgical Approaches.
Fernandes de Oliveira Santos, Bruno; Silva da Costa, Marcos Devanir; Centeno, Ricardo Silva; Cavalheiro, Sergio; Antônio de Paiva Neto, Manoel; Lawton, Michael T; Chaddad-Neto, Feres
2018-02-01
Preoperative recognition of the anatomic individualities of each patient can help to achieve more precise and less invasive approaches. It also may help to anticipate potential complications and intraoperative difficulties. Here we describe the use, accuracy, and precision of a free tool for planning microsurgical approaches using 3-dimensional (3D) reconstructions from magnetic resonance imaging (MRI). We used the 3D volume rendering tool of a free open-source software program for 3D reconstruction of images of surgical sites obtained by MRI volumetric acquisition. We recorded anatomic reference points, such as the sulcus and gyrus, and vascularization patterns for intraoperative localization of lesions. Lesion locations were confirmed during surgery by intraoperative ultrasound and/or electrocorticography and later by postoperative MRI. Between August 2015 and September 2016, a total of 23 surgeries were performed using this technique for 9 low-grade gliomas, 7 high-grade gliomas, 4 cortical dysplasias, and 3 arteriovenous malformations. The technique helped delineate lesions with an overall accuracy of 2.6 ± 1.0 mm. 3D reconstructions were successfully performed in all patients, and images showed sulcus, gyrus, and venous patterns corresponding to the intraoperative images. All lesion areas were confirmed both intraoperatively and at the postoperative evaluation. With the technique described herein, it was possible to successfully perform 3D reconstruction of the cortical surface. This reconstruction tool may serve as an adjunct to neuronavigation systems or may be used alone when such a system is unavailable. Copyright © 2017 Elsevier Inc. All rights reserved.
Czech Academy of Sciences Publication Activity Database
Šesnic, S.; Dorić, V.; Poljak, D.; Šušnjara, A.; Artaud, J.F.
2018-01-01
Roč. 46, č. 4 (2018), s. 1027-1034 ISSN 0093-3813 R&D Projects: GA MŠk(CZ) 8D15001 Institutional support: RVO:61389021 Keywords : Finite element analysis * Tokamaks * current diffusion equation (CDE) * finite-element method (FEM) Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.052, year: 2016
International Nuclear Information System (INIS)
Barber, R.W.; Fonty, A.
2003-01-01
This paper describes a novel vortex element method for simulating incompressible laminar flow over a two-dimensional backward-facing step. The model employs an operator-splitting technique to compute the evolution of the vorticity field downstream of abrupt changes in flow geometry. During the advective stage of the computation, a semi-Lagrangian scheme is used to update the positions of the vortex elements, whilst an analytical diffusion algorithm employing Oseen vortices is implemented during the diffusive time step. Redistributing the vorticity analytically instead of using the more traditional random-walk method enables the numerical model to simulate steady flows directly and avoids the need to filter the results to remove the oscillations created by the random-walk procedure. Model validation has been achieved by comparing the length of the recirculating eddy behind a confined backward-facing step against data from experimental and alternative numerical investigations. In addition, results from the vortex element method are compared against predictions obtained using the commercial finite-volume computational fluid dynamics code, CFD-ACE+. The results show that the vortex element scheme marginally overpredicts the length of the downstream recirculating eddy, implying that the method may be associated with an artificial reduction in the vorticity diffusion rate. Nevertheless the results demonstrate that the proposed vortex redistribution scheme provides a practical alternative to traditional random-walk discrete vortex algorithms. (author)
International Nuclear Information System (INIS)
Embrey, D.E.; Humphreys, P.; Rosa, E.A.; Kirwan, B.; Rea, K.
1984-07-01
This two-volume report presents the procedures and analyses performed in developing an approach for structuring expert judgments to estimate human error probabilities. Volume I presents an overview of work performed in developing the approach: SLIM-MAUD (Success Likelihood Index Methodology, implemented through the use of an interactive computer program called MAUD-Multi-Attribute Utility Decomposition). Volume II provides a more detailed analysis of the technical issues underlying the approach
Energy Technology Data Exchange (ETDEWEB)
Munz, C D; Schneider, R; Stein, E; Voss, U [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik; Westermann, T [FH Karlsruhe (Germany). Fachbereich Naturwissenschaften; Krauss, M [Forschungszentrum Karlsruhe (Germany). Hauptabteilung Informations- und Kommunikationstechik
1997-12-31
The numerical concept realized in the the Karlsruhe Diode Code KADI2D is briefly reviewed. Several new aspects concerning the Maxwell field solver based on high resolution finite-volume methods are presented. A new approach maintaining charge conservation numerically for the Maxwell-Lorentz equations is shortly summarized. (author). 2 figs., 12 refs.
International Nuclear Information System (INIS)
Munz, C.D.; Schneider, R.; Stein, E.; Voss, U.; Westermann, T.; Krauss, M.
1996-01-01
The numerical concept realized in the the Karlsruhe Diode Code KADI2D is briefly reviewed. Several new aspects concerning the Maxwell field solver based on high resolution finite-volume methods are presented. A new approach maintaining charge conservation numerically for the Maxwell-Lorentz equations is shortly summarized. (author). 2 figs., 12 refs
Radiochemical approaches to the migration of elements from a radwaste repository
International Nuclear Information System (INIS)
Guillaumont, R.
1993-01-01
Underground high-level or intermediary-level alpha radwaste repositories will contain tons to hundreds of tons of anthropogenic elements. It is predicted that the release of the elements into the far field will be mainly dependent upon the 'solubilities', sums of the concentrations of soluble species and colloidal/pseudo colloidal forms, of expected near field compounds. On the other hand, safety assessments, based on computation models of migration, show that elements in the discharged water into the biosphere will be at tracer level, or at least, at trace levels. Kinetic and thermodynamic aspects of the processes in which elements will be involved during their migration are discussed together with the change in their concentrations, over several orders of magnitude. It is shown that special attention must be given to predict the behaviour of the elements in the far field from what we know from classical chemistry, and that more experimental data must be obtained to improve the models. (author). 31 refs., 5 figs., 4 tabs
The spectral element approach for the solution of neutron transport problems
International Nuclear Information System (INIS)
Barbarino, A.; Dulla, S.; Ravetto, P.; Mund, E.H.
2011-01-01
In this paper a possible application of the Spectral Element Method to neutron transport problems is presented. The basic features of the numerical scheme on the one-dimensional diffusion equation are illustrated. Then, the AN model for neutron transport is introduced, and the basic steps for the construction of a bi-dimensional solver are described. The AN equations are chosen for their structure, involving a system of coupled elliptic-type equations. Some calculations are carried out on typical benchmark problems and results are compared with the Finite Element Method, in order to evaluate their performances. (author)
Modeling approach for annular-fuel elements using the ASSERT-PV subchannel code
International Nuclear Information System (INIS)
Dominguez, A.N.; Rao, Y.
2012-01-01
The internally and externally cooled annular fuel (hereafter called annular fuel) is under consideration for a new high burn-up fuel bundle design in Atomic Energy of Canada Limited (AECL) for its current, and its Generation IV reactor. An assessment of different options to model a bundle fuelled with annular fuel elements is presented. Two options are discussed: 1) Modify the subchannel code ASSERT-PV to handle multiple types of elements in the same bundle, and 2) coupling ASSERT-PV with an external application. Based on this assessment, the selected option is to couple ASSERT-PV with the thermalhydraulic system code CATHENA. (author)
Global and local approaches to population analysis: Bonding patterns in superheavy element compounds
Oleynichenko, Alexander; Zaitsevskii, Andréi; Romanov, Stepan; Skripnikov, Leonid V.; Titov, Anatoly V.
2018-03-01
Relativistic effective atomic configurations of superheavy elements Cn, Nh and Fl and their lighter homologues (Hg, Tl and Pb) in their simple compounds with fluorine and oxygen are determined using the analysis of local properties of molecular Kohn-Sham density matrices in the vicinity of heavy nuclei. The difference in populations of atomic spinors with the same orbital angular momentum and different total angular momenta is demonstrated to be essential for understanding the peculiarities of chemical bonding in superheavy element compounds. The results are fully compatible with those obtained by the relativistic iterative version of conventional projection analysis of global density matrices.
A historical approach to teaching the concept of the chemical element
Cachapuz, António; Paixão, Fátima
2005-01-01
A novel teaching strategy is described, which was developed to introduce the key notion of chemical elements to 15-year-old Portuguese chemistry pupils. The strategy started from the analysis of the so-called ‘Lavoisier law ’and explored the relationships between macro and micro level chemistry in an innovative way. The key idea was first to explore the macro level (mass conservation) to help pupils consider the existence of indestructible units (elements, micro level) as a logical necessity ...
Lakdawalla, Darius N; Doshi, Jalpa A; Garrison, Louis P; Phelps, Charles E; Basu, Anirban; Danzon, Patricia M
2018-02-01
The third section of our Special Task Force report identifies and defines a series of elements that warrant consideration in value assessments of medical technologies. We aim to broaden the view of what constitutes value in health care and to spur new research on incorporating additional elements of value into cost-effectiveness analysis (CEA). Twelve potential elements of value are considered. Four of them-quality-adjusted life-years, net costs, productivity, and adherence-improving factors-are conventionally included or considered in value assessments. Eight others, which would be more novel in economic assessments, are defined and discussed: reduction in uncertainty, fear of contagion, insurance value, severity of disease, value of hope, real option value, equity, and scientific spillovers. Most of these are theoretically well understood and available for inclusion in value assessments. The two exceptions are equity and scientific spillover effects, which require more theoretical development and consensus. A number of regulatory authorities around the globe have shown interest in some of these novel elements. Augmenting CEA to consider these additional elements would result in a more comprehensive CEA in line with the "impact inventory" of the Second Panel on Cost-Effectiveness in Health and Medicine. Possible approaches for valuation and inclusion of these elements include integrating them as part of a net monetary benefit calculation, including elements as attributes in health state descriptions, or using them as criteria in a multicriteria decision analysis. Further research is needed on how best to measure and include them in decision making. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Petr Koňas
2009-01-01
Full Text Available Paper presents new original application WOOD3D in form of program code assembling. The work extends the previous article “Part I – Theoretical approach” in detail description of implemented C++ classes of utilized projects Visualization Toolkit (VTK, Insight Toolkit (ITK and MIMX. Code is written in CMake style and it is available as multiplatform application. Currently GNU Linux (32/64b and MS Windows (32/64b platforms were released. Article discusses various filter classes for image filtering. Mainly Otsu and Binary threshold filters are classified for anatomy wood samples thresholding. Registration of images series is emphasized for difference of colour spaces compensation is included. Resulted work flow of image analysis is new methodological approach for images processing through the composition, visualization, filtering, registration and finite element mesh formation. Application generates script in ANSYS parametric design language (APDL which is fully compatible with ANSYS finite element solver and designer environment. The script includes the whole definition of unstructured finite element mesh formed by individual elements and nodes. Due to simple notation, the same script can be used for generation of geometrical entities in element positions. Such formed volumetric entities are prepared for further geometry approximation (e.g. by boolean or more advanced methods. Hexahedral and tetrahedral types of mesh elements are formed on user request with specified mesh options. Hexahedral meshes are formed both with uniform element size and with anisotropic character. Modified octree method for hexahedral mesh with anisotropic character was declared in application. Multicore CPUs in the application are supported for fast image analysis realization. Visualization of image series and consequent 3D image are realized in VTK format sufficiently known and public format, visualized in GPL application Paraview. Future work based on mesh
International Nuclear Information System (INIS)
McCoy, Michael L.; Moradi, Rasoul; Lankarani, Hamid M.
2011-01-01
This paper examines the effectiveness of analyzing impact events in mechanical systems for design purposes using simple or low ordered finite elements. Traditional impact dynamics analyses of mechanical systems namely stereomechanics, energy method, stress-wave propagation and contact mechanics approaches are limited to very simplified geometries and provide basic analyses in making predictions and understanding the dominant features of the impact in a mechanical system. In engineering practice, impacted systems present a complexity of geometry, stiffness, mass distributions, contact areas and impact angles that are impossible to analyze and design with the traditional impact dynamics methods. In real cases, the effective tool is the finite element (FE) method. The high-end FEA codes though may be not available for typical engineer/designer. This paper provides information on whether impact events of mechanical systems can be successfully modeled using simple or low-order finite elements. FEA models using simple elements are benchmarked against theoretical impact problems and published experimental impact results. As a case study, an FE model using simple plastic beam elements is further tested to predict stresses and deflections in an experimental structural impact
丸山, 哲央
2002-01-01
"The main purpose of this paper is to propose a conceptual scheme for the analysis of cultural globalization in accordance with the Parsonian notion of culture, and to point out some problematic issues caused by cultural globalization: the unbalanced development of cultural elements and the prevalence of the pseudo universality of a dominant particular culture. With respect to the recent trend of ‘cultural turn’ in social sciences, this is a tentative approach to a theorization of culture as ...
Two approaches to form antibacterial surface: Doping with bactericidal element and drug loading
Energy Technology Data Exchange (ETDEWEB)
Sukhorukova, I.V.; Sheveyko, A.N.; Kiryukhantsev-Korneev, Ph.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation); Anisimova, N.Y.; Gloushankova, N.A.; Zhitnyak, I.Y. [N.N Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation); Benesova, J. [Institute of Experimental Medicine of the ASCR, Vídenska 1083, Prague 14220 (Czech Republic); Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, Prague 15006 (Czech Republic); Amler, E. [Institute of Experimental Medicine of the ASCR, Vídenska 1083, Prague 14220 (Czech Republic); Faculty of Biomedical Engineering, Czech Technical University in Prague (Czech Republic); Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation)
2015-03-01
Graphical abstract: - Highlights: • Bioactive materials with rate-controlled release of antibacterial agent. • Ag{sup +} ion release from TiCaPCON-Ag films depended on Ag content. • TiCaPCON-coated Ti network structure with blind pores loaded with co-amoxiclav. • Strong bactericidal effect of drug-loaded samples. • Antibacterial yet biocompatible and bioactive surfaces. - Abstract: Two approaches (surface doping with bactericidal element and loading of antibiotic into specially formed surface microcontainers) to the fabrication of antibacterial yet biocompatible and bioactive surfaces are described. A network structure with square-shaped blind pores of 2.6 ± 0.6 × 10{sup −3} mm{sup 3} for drug loading was obtained by selective laser sintering (SLS). The SLS-fabricated samples were loaded with 0.03, 0.3, 2.4, and 4 mg/cm{sup 2} of co-amoxiclav (amoxicillin and clavulanic acid). Ag-doped TiCaPCON films with 0.4, 1.2, and 4.0 at.% of Ag were obtained by co-sputtering of composite TiC{sub 0.5}-Ca{sub 3}(PO{sub 4}){sub 2} and metallic Ag targets. The surface structure of SLS-prepared samples and cross-sectional morphology of TiCaPCON-Ag films were studied by scanning electron microscopy. The through-thickness of Ag distribution in the TiCaPCON-Ag films was obtained by glow discharge optical emission spectroscopy. The kinetics of Ag ion release in normal saline solution was studied using inductively coupled plasma mass spectrometry. Bacterial activity of the samples was evaluated against S. epidermidis, S. aureus, and K. pneum. ozaenae using the agar diffusion test and photometric method by controlling the variation of optical density of the bacterial suspension over time. Cytocompatibility of the Ag-doped TiCaPCON films was observed in vitro using chondrocytic and MC3T3-E1 osteoblastic cells. The viability and proliferation of chondrocytic cells were determined using the MTS assay and PicoGreen assay tests, respectively. The alkaline phosphatase (ALP
Some new approaches to the synthesis of heavy and superheavy elements
International Nuclear Information System (INIS)
Flerov, G.N.
1980-01-01
The results of work on the synthesis of heavy and superheavy elements are considered. It is shown that the new regularity of the systematics of spontaneous-fission half-lives, established for heavy nuclei at Dubna, has made it possible to extend the region of the nuclei being synthesized. In particular, it becomes possible to produce relatively long-lived heavy isotopes of Z>=107. The results of experiments to study the emission of energetic α-particles in the collision of heavy nuclei are presented. It is noted that such reactions can be used to produce atomic nuclei with low excitation energy and large angular momentum. The possible use of similar reactions in the synthesis of heavy and superheavy elements is discussed. In case the existence of a naturally occurring superheavy element has been established, a possibility will arise to synthesize in nuclear reactions a number of isotopes belonging to the island of stability, and to investigate their properties. The present state of work on the search for superheavy elements in nature is briefly described
Energy Technology Data Exchange (ETDEWEB)
Eshel, Gil, E-mail: eshelgil@gmail.com [Soil Erosion Research Station, Ministry of Agriculture and Rural Development, HaMaccabim Road, Rishon-Lezion. P.O.B. 30, Beit-Dagan, 50250 (Israel); Lin, Chunye [School of Environment, Beijing Normal University, 19 Xinjiekouwaidajie St., Beijing, 100875 (China); Banin, Amos [Department of Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot (Israel)
2015-01-01
We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4 m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. - Highlights: • Sc proved as a reliable tracer for reconstructing the initial soil elemental contents. • Mass-balance for 18 elements resulting from 19 years of SAT operation is presented. • After 19 years of operation Cr, Ni, and P inputs may not reach the groundwater. • The inputs of other 15 elements may reach the groundwater. • 58, 60, 30% of initial soil content of Mn, Ca, Co res. leached from the upper 2-m.
Figueroa, M. C.; Gregory, D. D.; Lyons, T. W.; Williford, K. H.
2017-12-01
Life processes affect trace element abundances in pyrite such that sedimentary and hydrothermal pyrite have significantly different trace element signatures. Thus, we propose that these biogeochemical data could be used to identify pyrite that formed biogenetically either early in our planet's history or on other planets, particularly Mars. The potential for this approach is elevated because pyrite is common in diverse sedimentary settings, and its trace element content can be preserved despite secondary overprints up to greenschist facies, thus minimizing the concerns about remobilization that can plague traditional whole rock studies. We are also including in-situ sulfur isotope analysis to further refine our understanding of the complex signatures of ancient pyrite. Sulfur isotope data can point straightforwardly to the involvement of life, because pyrite in sediments is inextricably linked to bacterial sulfate reduction and its diagnostic isotopic expressions. In addition to analyzing pyrite of known biological origin formed in the modern and ancient oceans under a range of conditions, we are building a data set for pyrite formed by hydrothermal and metamorphic processes to minimize the risk of false positives in life detection. We have used Random Forests (RF), a machine learning statistical technique with proven efficiency for classifying large geological datasets, to classify pyrite into biotic and abiotic end members. Coupling the trace element and sulfur isotope data from our analyses with a large existing dataset from diverse settings has yielded 4500 analyses with 18 different variables. Our initial results reveal the promise of the RF approach, correctly identifying biogenic pyrite 97 percent of the time. We will continue to couple new in-situ S-isotope and trace element analyses of biogenic pyrite grains from modern and ancient environments, using cutting-edge microanalytical techniques, with new data from high temperature settings. Our ultimately goal
The Elements of Language Curriculum: A Systematic Approach to Program Development.
Brown, James Dean
A systematic approach to second language curriculum development is outlined, enumerating the phases and activities involved in developing and implementing a sound and effective language program. The first chapter describes a system whereby all language teaching activities can be classified into approaches, syllabuses, techniques, exercises, or…
Discrete element modeling approach to porosimetry for durability risk estimation of concrete
Stroeven, P.; Le, N.L.B.; Stroeven, M.; Sluys, L.J.
2011-01-01
The paper introduces a novel approach to porosimetry in virtual concrete, denoted as random node structuring (RNS). The fresh state of this particulate material is produced by the DEM system HADES. Hydration simulation is a hybrid approach making use of wellknown discretization and vector methods.
Energy Technology Data Exchange (ETDEWEB)
Anderson, M.B. [Renewable Energy Systems Ltd., Hemel Hempstead (United Kingdom)
1996-09-01
It is possible to compute the aeroelastic response of a horizontal axis wind turbine comprising; Structural: rotor substructure 144 dof, tower substructure 48 dof, induction, synchronous or variable speed, and gearbox. Aerodynamic: 3 blades (10 elements per blade), dynamic stall, and 6 different aerofoil types with combination of fixed or pitching elements. Control: stall or power regulation or speed control and shutdowns, wind shear, and tower shadow. Turbulence: 8 radial points, 32 circumferential, and 3 components. On a DEC Alpha Workstation the code will simulate the response inclose to real-time. As the code is presently formulated deflections from the initial starting point have to be small and therefore its ability to fully analyse very flexible structures is limited. (EG)
Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves
Hanson, Ronald K.; Pang, Genny A.; Chakraborty, Sreyashi; Ren, Wei; Wang, Shengkai; Davidson, David Frank
2013-01-01
We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we
Jurowski, Claudia Anne
1994-01-01
Recent research in the field of tourism has demonstrated that the endorsement of the indigenous the population is essential for the development, successful operation and sustainability of tourism. Achieving the goal of favorable community support for the tourism industry will require an understanding of how residents formulate their perceptions of the impact of tourism and their attitudes toward tourism. The purpose of this study was to examine the interplay of elements that affect host co...
Investigation of High-Speed Cryogenic Machining Based on Finite Element Approach
Directory of Open Access Journals (Sweden)
Pooyan Vahidi Pashaki
Full Text Available Abstract The simulation of cryogenic machining process because of using a three-dimensional model and high process duration time in the finite element method, have been studied rarely. In this study, to overcome this limitation, a 2.5D finite element model using the commercial finite element software ABAQUS has been developed for the cryogenic machining process and by considering more realistic assumptions, the chip formation procedure investigated. In the proposed method, the liquid nitrogen has been used as a coolant. At the modeling of friction during the interaction of tools - chip, the Coulomb law has been used. In order to simulate the behavior of plasticity and failure criterion, Johnson-Cook model was used, and unlike previous investigations, thermal and mechanical properties of materials as a function of temperature were applied to the software. After examining accuracy of the model with present experimental data, the effect of parameters such as rake angle and the cutting speed as well as dry machining of aluminum alloy by the use of coupled dynamic temperature solution has been studied. Results indicated that at the cutting velocity of 10 m/s, cryogenic cooling has caused into decreasing 60 percent of tools temperature in comparison with the dry cooling. Furthermore, a chip which has been made by cryogenic machining were connected and without fracture in contrast to dry machining.
Manufacturing of 37-element fuel bundles for PHWR 540 - new approach
Energy Technology Data Exchange (ETDEWEB)
Arora, U.K.; Sastry, V.S.; Banerjee, P.K.; Rao, G.V.S.H.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. Atomic Energy, Government of India, Hyderabad (India)
2003-07-01
Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO{sub 2} pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)
Manufacturing of 37-element fuel bundles for PHWR 540 - new approach
International Nuclear Information System (INIS)
Arora, U.K.; Sastry, V.S.; Banerjee, P.K.; Rao, G.V.S.H.; Jayaraj, R.N.
2003-01-01
Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO 2 pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)
Hadwiger, Markus
2012-12-01
This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience. © 1995-2012 IEEE.
Hadwiger, Markus; Beyer, Johanna; Jeong, Wonki; Pfister, Hanspeter
2012-01-01
This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience. © 1995-2012 IEEE.
Energy Technology Data Exchange (ETDEWEB)
Tritt, T M; Kanatzidis, M G; Lyon, Jr, H B; Mahan, G D [eds.
1997-07-01
Thermoelectric materials are utilized in a wide variety of applications related to solid-state refrigeration or small-scale power generation. Thermoelectric cooling is an environmentally friendly method of small-scale cooling in specific applications such as cooling computer chips and laser diodes. Thermoelectric materials are used in a wide range of applications from beverage coolers to power generation for deep-space probes such as the Voyager missions. Over the past thirty years, alloys based on the Bi-Te systems {l{underscore}brace}(Bi{sub 1{minus}x}Sb{sub x}){sub 2} (Te{sub 1{minus}x}Se{sub x}){sub 3}{r{underscore}brace} and Si{sub 1{minus}x}Ge{sub x} systems have been extensively studied and optimized for their use as thermoelectric materials to perform a variety of solid-state thermoelectric refrigeration and power generation tasks. Despite this extensive investigation of the traditional thermoelectric materials, there is still a substantial need and room for improvement, and thus, entirely new classes of compounds will have to be investigated. Over the past two-to-three years, research in the field of thermoelectric materials has been undergoing a rapid rebirth. The enhanced interest in better thermoelectric materials has been driven by the need for much higher performance and new temperature regimes for thermoelectric devices in many applications. The essence of a good thermoelectric is given by the determination of the material's dimensionless figure of merit, ZT = ({alpha}{sup 2}{sigma}/{lambda})T, where {alpha} is the Seebeck coefficient, {sigma} the electrical conductivity and {lambda} the total thermal conductivity. The best thermoelectric materials have a value of ZT = 1. This ZT = 1 has been an upper limit for more than 30 years, yet no theoretical or thermodynamic reason exits for why it can not be larger. The focus of the symposium is embodied in the title, Thermoelectric Materials: New Directions and Approaches. Many of the researchers in the
Directory of Open Access Journals (Sweden)
Alejandro Morales
2017-11-01
Full Text Available This paper presents a new approach for energetic analyses of traffic accidents against fixed road elements using close-range photogrammetry. The main contributions of the developed approach are related to the quality of the 3D photogrammetric models, which enable objective and accurate energetic analyses through the in-house tool CRASHMAP. As a result, security forces can reconstruct the accident in a simple and comprehensive way without requiring spreadsheets or external tools, and thus avoid the subjectivity and imprecisions of the traditional protocol. The tool has already been validated, and is being used by the Local Police of Salamanca (Salamanca, Spain for the resolution of numerous accidents. In this paper, a real accident of a car against a fixed metallic pole is analysed, and significant discrepancies are obtained between the new approach and the traditional protocol of data acquisition regarding collision speed and absorbed energy.
International Nuclear Information System (INIS)
Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.
1999-01-01
We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society
Directory of Open Access Journals (Sweden)
J. Czerny
2013-05-01
Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon
International Nuclear Information System (INIS)
Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin
2008-01-01
Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies
Moshrefzadeh, Ali; Fasana, Alessandro
2018-05-01
Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding a suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this paper is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of second-order cyclostationarity, especially in the presence of localized faults. The autocovariance function of a 2nd order cyclostationary signal is periodic and the proposed method, named Autogram, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased Autocorrelation (AC) of the squared envelope of the demodulated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. A new indicator, Combined Squared Envelope Spectrum, is employed to consider all the frequency bands with valuable diagnostic information and to improve the fault detectability of the Autogram. The proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics.
A Multi-Element Approach to Location Inference of Twitter: A Case for Emergency Response
Directory of Open Access Journals (Sweden)
Farhad Laylavi
2016-04-01
Full Text Available Since its inception, Twitter has played a major role in real-world events—especially in the aftermath of disasters and catastrophic incidents, and has been increasingly becoming the first point of contact for users wishing to provide or seek information about such situations. The use of Twitter in emergency response and disaster management opens up avenues of research concerning different aspects of Twitter data quality, usefulness and credibility. A real challenge that has attracted substantial attention in the Twitter research community exists in the location inference of twitter data. Considering that less than 2% of tweets are geotagged, finding location inference methods that can go beyond the geotagging capability is undoubtedly the priority research area. This is especially true in terms of emergency response, where spatial aspects of information play an important role. This paper introduces a multi-elemental location inference method that puts the geotagging aside and tries to predict the location of tweets by exploiting the other inherently attached data elements. In this regard, textual content, users’ profile location and place labelling, as the main location-related elements, are taken into account. Location-name classes in three granularity levels are defined and employed to look up the location references from the location-associated elements. The inferred location of the finest granular level is assigned to a tweet, based on a novel location assignment rule. The location assigned by the location inference process is considered to be the inferred location of a tweet, and is compared with the geotagged coordinates as the ground truth of the study. The results show that this method is able to successfully infer the location of 87% of the tweets at the average distance error of 12.2 km and the median distance error of 4.5 km, which is a significant improvement compared with that of the current methods that can predict the location
Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinate
International Nuclear Information System (INIS)
Fivaz, M.; Brunner, S.; Ridder, G. de; Sauter, O.; Tran, T.M.; Vaclavik, J.; Villard, L.; Appert, K.
1997-08-01
We present a fully-global linear gyrokinetic simulation code (GYGLES) aimed at describing the instable spectrum of the ion-temperature-gradient modes in toroidal geometry. We formulate the Particle-In-Cell method with finite elements defined in magnetic coordinates, which provides excellent numerical convergence properties. The poloidal mode structure corresponding to k // =0 is extracted without approximation from the equations, which reduces drastically the numerical resolution needed. The code can simulate routinely modes with both very long and very short toroidal wavelengths, can treat realistic (MHD) equilibria of any size and runs on a massively parallel computer. (author) 10 figs., 28 refs
Olson, David A.; Norris, Gary A.
Experiments were completed to determine the extent of artifacts from sampling elemental carbon (EC) and organic carbon (OC) under sample conditions consistent with personal sampling. Two different types of experiments were completed; the first examined possible artifacts from oils used in personal environmental monitor (PEM) impactor plates, and the second examined artifacts from microenvironmental sampling using different sampling media combinations (quartz, Teflon, XAD denuder, and electrostatic precipitator). The effectiveness of front and backup filters was evaluated for most sampling configurations. Mean total carbon concentrations from sampling configurations using impactor oils were not statistically different from the control case (using a sharp cut cyclone). Three microenvironments were tested (kitchen, library, and ambient); carbon concentrations were highest in the kitchen using a front quartz filter (mean OC of 16.4 μg m -3). The lowest front quartz filter concentrations were measured in the library using XAD denuders (mean OC of 3.6 μg m -3). Denuder removal efficiencies (average of 82% for total carbon) were lower compared with previous ambient studies and may indicate that indoor sources influenced denuder efficiency during sample collection. The highest carbon concentrations from backup quartz filters were measured using the Teflon-quartz combination.
Directory of Open Access Journals (Sweden)
Reem Yassine
2016-12-01
Full Text Available The frequency response function is a quantitative measure used in structural analysis and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of substructures, also called cells, must be considered, which will lead to a high amount of computational time. In this paper, the recursive method, a finite element method, is used for computing the frequency response function, independent of the number of cells with much lesser time costs. The fundamental principle is eliminating the internal degrees of freedom that are at the interface between a cell and its succeeding one. The method is applied solely for free (no load nodes. Based on the boundary and interior degrees of freedom, the global dynamic stiffness matrix is computed by means of products and inverses resulting with a dimension the same as that for one cell. The recursive method is demonstrated on periodic structures (cranes and buildings under harmonic vibrations. The method yielded a satisfying time decrease with a maximum time ratio of 1 18 and a percentage difference of 19%, in comparison with the conventional finite element method. Close values were attained at low and very high frequencies; the analysis is supported for two types of materials (steel and plastic. The method maintained its efficiency with a high number of forces, excluding the case when all of the nodes are under loads.
Directory of Open Access Journals (Sweden)
Michael J. Leamy
2011-12-01
Full Text Available Dispersion calculations are presented for cylindrical carbon nanotubes using a manifold-based continuum-atomistic finite element formulation combined with Bloch analysis. The formulated finite elements allow any (n,m chiral nanotube, or mixed tubes formed by periodically-repeating heterojunctions, to be examined quickly and accurately using only three input parameters (radius, chiral angle, and unit cell length and a trivial structured mesh, thus avoiding the tedious geometry generation and energy minimization tasks associated with ab initio and lattice dynamics-based techniques. A critical assessment of the technique is pursued to determine the validity range of the resulting dispersion calculations, and to identify any dispersion anomalies. Two small anomalies in the dispersion curves are documented, which can be easily identified and therefore rectified. They include difficulty in achieving a zero energy point for the acoustic twisting phonon, and a branch veering in nanotubes with nonzero chiral angle. The twisting mode quickly restores its correct group velocity as wavenumber increases, while the branch veering is associated with a rapid exchange of eigenvectors at the veering point, which also lessens its impact. By taking into account the two noted anomalies, accurate predictions of acoustic and low-frequency optical branches can be achieved out to the midpoint of the first Brillouin zone.
Directory of Open Access Journals (Sweden)
Anuruddh Kumar
2015-03-01
Full Text Available This paper examines the selection and performance evaluation of a variety of piezoelectric materials for cantilever-based sensor applications. The finite element analysis method is implemented to evaluate the relative importance of materials properties such as Young's Modulus (E, piezoelectric stress constants (e31, dielectric constant (ε and Poisson's ratio (υ for cantilever-based sensor applications. An analytic hierarchy process (AHP is used to assign weights to the properties that are studied for the sensor structure under study. A technique for order preference by similarity to ideal solution (TOPSIS is used to rank the performance of the piezoelectric materials in the context of sensor voltage outputs. The ranking achieved by the TOPSIS analysis is in good agreement with the results obtained from finite element method simulation. The numerical simulations show that K0.5Na0.5NbO3–LiSbO3 (KNN–LS materials family is important for sensor application. Young's modulus (E is most influencing material's property followed by piezoelectric constant (e31, dielectric constant (ε and Poisson's ratio (υ for cantilever-based piezoelectric sensor applications.
International Nuclear Information System (INIS)
Guney, Mert; Zagury, Gerald J.
2014-01-01
Highlights: • Risk for children up to 3 years-old was characterized considering oral exposure. • Saliva mobilization, ingestion of parts and of scraped-off material were considered. • Ingestion of parts caused hazard index (HI) values >>for Cd, Ni, and Pb exposure. • HI were lower (but > for saliva mobilization and 1, up to 75, 5.8, and 43, respectively). HI for ingestion of scraped-off material scenario was always 1 in three samples (two for Cd, one for Ni). Risk characterization identified different potentially hazardous items compared to United States, Canadian, and European Union approaches. A comprehensive approach was also developed to deal with complexity and drawbacks caused by various toy/jewelry definitions, test methods, exposure scenarios, and elements considered in different regulatory approaches. It includes bioaccessible limits for eight priority elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb). Research is recommended on metals bioaccessibility determination in toys/jewelry, in vitro bioaccessibility test development, estimation of material ingestion rates and frequency, presence of hexavalent Cr and organic Sn, and assessment of prolonged exposure to MJ
Guney, Mert; Zagury, Gerald J
2014-04-30
Contamination problem in jewelry and toys and children's exposure possibility have been previously demonstrated. For this study, risk from oral exposure has been characterized for highly contaminated metallic toys and jewelry ((MJ), n=16) considering three scenarios. Total and bioaccessible concentrations of Cd, Cu, Ni, and Pb were high in selected MJ. First scenario (ingestion of parts or pieces) caused unacceptable risk for eight items for Cd, Ni, and/or Pb (hazard index (HI)>1, up to 75, 5.8, and 43, respectively). HI for ingestion of scraped-off material scenario was always 1 in three samples (two for Cd, one for Ni). Risk characterization identified different potentially hazardous items compared to United States, Canadian, and European Union approaches. A comprehensive approach was also developed to deal with complexity and drawbacks caused by various toy/jewelry definitions, test methods, exposure scenarios, and elements considered in different regulatory approaches. It includes bioaccessible limits for eight priority elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb). Research is recommended on metals bioaccessibility determination in toys/jewelry, in vitro bioaccessibility test development, estimation of material ingestion rates and frequency, presence of hexavalent Cr and organic Sn, and assessment of prolonged exposure to MJ. Copyright © 2014 Elsevier B.V. All rights reserved.
A logical approach to determine a waste segregation/volume reduction program
International Nuclear Information System (INIS)
Shriner, G.D.; Carmel, P.G.; Shimmura, H.
1986-01-01
This paper discusses advantages and disadvantages of hand sorting versus use of automated radioactive waste segregation monitors and makes an analysis of costs/versus benefits based on volume with time. Many programs to be employed to prevent unnecessary waste generation with little or no additional cost to the power plant. Parameters needed to perform a cost analysis and methods used to obtain them are discussed. Recommendations on use of vendor-supplied services for segregation, volume reduction, and decontamination are given. The data provided will enable the selection of a program(s) to benefit the individual user's requirements
Sustainable development, tourism and territory. Previous elements towards a systemic approach
Directory of Open Access Journals (Sweden)
Pierre TORRENTE
2009-01-01
Full Text Available Today, tourism is one of the major challenges for many countries and territories. The balance of payments, an ever-increasing number of visitors and the significant development of the tourism offer clearly illustrate the booming trend in this sector. This macro-economic approach is often used by the organizations in charge of tourism, WTO for instance. Quantitative assessments which consider the satisfaction of customers’ needs as an end in itself have prevailed both in tourism development schemes and in prospective approaches since the sixties.
Brown, Koshonna Dinettia
X-ray Fluorescence Microscopy (XFM) is a useful technique for study of biological samples. XFM was used to map and quantify endogenous biological elements as well as exogenous materials in biological samples, such as the distribution of titanium dioxide (TiO2) nanoparticles. TiO 2 nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic particles for cancer detection and treatment, drug delivery, and induction of DNA breaks. Delivery of such nanoparticles can be targeted to specific cells and subcellular structures. In this work, we develop two novel approaches to stain TiO2 nanoparticles for optical microscopy and to confirm that staining by XFM. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called CLICK chemistry, for labeling of azide conjugated TiO2 nanoparticles with "clickable" dyes such as alkyne Alexa Fluor dyes with a high fluorescent yield. To confirm that the optical fluorescence signals of nanoparticles stained in situ match the distribution of the Ti element, we used high resolution synchrotron X-Ray Fluorescence Microscopy (XFM) using the Bionanoprobe instrument at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific X-ray fluorescence showed excellent overlap with the location of Alexa Fluor optical fluorescence detected by confocal microscopy. In this work XFM was also used to investigate native elemental differences between two different types of head and neck cancer, one associated with human papilloma virus infection, the other virus free. Future work may see a cross between these themes, for example, exploration of TiO2 nanoparticles as anticancer treatment for these two different types of head and neck cancer.
Territorial community: a systematic approach to advance functions of individual elements
Directory of Open Access Journals (Sweden)
T. V. Serohina
2017-03-01
It is established that in conditions of the administrative-territorial reform, is the need to change in the approach to the basic concepts, in particular, of the territorial communities category as well as of a new category of amalgamated territorial community. New categories need to be identifyed and be enshrined in the legal framework.
Elements and rationale for a common approach to assess and report soil disturbance.
Mike Curran; Doug Maynard; Ron Heninger; Tom Terry; Steve Howes; Doug Stone; Tom Niemann; Richard E. Miller
2008-01-01
Soil disturbance from forest practices ranges from barely perceptible to very obvious, and from positive to nil to negative effects on forest productivity and 1 or hydrologic function. Currently, most public and private landholders and various other interested parties have different approaches to describing this soil disturbance. More uniformity is needed to describe,...
The 4th Missing Element of the ITO Systemic Approach to Safety
International Nuclear Information System (INIS)
Smetnik, A.; Murlis, D.
2016-01-01
According to the IAEA Report the Fukushima Daiichi accident was a wake-up call for the nuclear community to recognise the complexity of safety and to respect the entire systems interaction of ITOs. The complexity of nuclear organizations is increasing, and different and more unique approaches are needed to ensure that safety is maintained. The Fukushima Daiichi accident was avoidable, according to the presentations of experts from Japan. Taking into account the ongoing interaction between all the individual, technical and organizational (ITO) factors reveals the complexity and non-linearity of the operations at a nuclear power plant. It is necessary to better examine how the weaknesses and strengths of all these factors influence one another and to facilitate the proactive elimination of risks. The International Experts Meeting (IEM) participants emphasised that an integrated approach to safety through consideration of the interaction of ITO systems is needed to complement the more traditional approach to safety. The concept of a systemic approach to safety represents a new way of thinking about safety for some Member States and even for some IAEA activities and services.
A novel approach to the island of stability of super-heavy elements search
Directory of Open Access Journals (Sweden)
Wieloch A.
2016-01-01
Full Text Available It is expected that the cross section for super-heavy nuclei production of Z > 118 is dropping into the region of tens of femto barns. This creates a serious limitation for the complete fusion technique that is used so far. Moreover, the available combinations of the neutron to proton ratio of stable projectiles and targets are quite limited and it can be difficult to reach the island of stability of super heavy elements using complete fusion reactions with stable projectiles. In this context, a new experimental investigation of mechanisms other than complete fusion of heavy nuclei and a novel experimental technique are invented for our search of super- and hyper-nuclei. This contribution is focused on that technique.
New approach to description of fusion-fission dynamics in super-heavy element formation
International Nuclear Information System (INIS)
Zagrebaev, V.I.
2002-01-01
A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)
Numerical investigation of a shot peening process by a finite element approach
DEFF Research Database (Denmark)
Liu, Hongsheng; Zhang, Xiaodan; Hansen, Niels
2014-01-01
Shot peening is a surface impact treatment widely used to improve the performance of a metal or a component. The better performance of the shot peened part is controlled by compressive residual stresses resulting from the plastic deformation of the surface layers by impacts of shot. The compressive...... residual stress is generally measured by X-ray diffraction. However, considerable cost and time are needed for such measurements. For this reason, in this work a 3D finite element (FE) model is introduced for a shot peening process. Through the FE simulations, the effect of process parameters...... such as damping ratio of material, friction coefficient, shot velocity and shot angle on the magnitude and distribution of the compressive residual stress is examined....
Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying
2016-01-01
Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately.
Macho, Gabriele A; Shimizu, Daisuke; Jiang, Yong; Spears, Iain R
2005-04-01
Australopithecus anamensis is the stem species of all later hominins and exhibits the suite of characters traditionally associated with hominins, i.e., bipedal locomotion when on the ground, canine reduction, and thick-enameled teeth. The functional consequences of its thick enamel are, however, unclear. Without appropriate structural reinforcement, these thick-enameled teeth may be prone to failure. This article investigates the mechanical behavior of A. anamensis enamel and represents the first in a series that will attempt to determine the functional adaptations of hominin teeth. First, the microstructural arrangement of enamel prisms in A. anamensis teeth was reconstructed using recently developed software and was compared with that of extant hominoids. Second, a finite-element model of a block of enamel containing one cycle of prism deviation was reconstructed for Homo, Pan, Gorilla, and A. anamensis and the behavior of these tissues under compressive stress was determined. Despite similarities in enamel microstructure between A. anamensis and the African great apes, the structural arrangement of prismatic enamel in A. anamensis appears to be more effective in load dissipation under these compressive loads. The findings may imply that this hominin species was well adapted to puncture crushing and are in some respects contrary to expectations based on macromorphology of teeth. Taking together, information obtained from both finite-element analyses and dental macroanatomy leads us to suggest that A. anamensis was probably adapted for habitually consuming a hard-tough diet. However, additional tests are needed to understand the functional adaptations of A. anamensis teeth fully.
DEFF Research Database (Denmark)
Østergaard, Mikkel
1997-01-01
Automated fast (5-20 min) synovial membrane volume determination by MRI, based on pre-set post-gadolinium-DTPA enhancement thresholds, was evaluated as a substitute for a time-consuming (45-120 min), previously validated, manual segmentation method. Twenty-nine knees [rheumatoid arthritis (RA) 13...
Ferguson, Philip E; Sales, Catherine M; Hodges, Dalton C; Sales, Elizabeth W
2015-01-01
Recent publications have emphasized the importance of a multidisciplinary strategy for maximum conservation and utilization of lung biopsy material for advanced testing, which may determine therapy. This paper quantifies the effect of a multidisciplinary strategy implemented to optimize and increase tissue volume in CT-guided transthoracic needle core lung biopsies. The strategy was three-pronged: (1) once there was confidence diagnostic tissue had been obtained and if safe for the patient, additional biopsy passes were performed to further increase volume of biopsy material, (2) biopsy material was placed in multiple cassettes for processing, and (3) all tissue ribbons were conserved when cutting blocks in the histology laboratory. This study quantifies the effects of strategies #1 and #2. This retrospective analysis comparing CT-guided lung biopsies from 2007 and 2012 (before and after multidisciplinary approach implementation) was performed at a single institution. Patient medical records were reviewed and main variables analyzed include biopsy sample size, radiologist, number of blocks submitted, diagnosis, and complications. The biopsy sample size measured was considered to be directly proportional to tissue volume in the block. Biopsy sample size increased 2.5 fold with the average total biopsy sample size increasing from 1.0 cm (0.9-1.1 cm) in 2007 to 2.5 cm (2.3-2.8 cm) in 2012 (Pstrategy to CT-guided lung biopsies was effective in significantly increasing tissue volume and number of blocks available for advanced diagnostic testing.
Directory of Open Access Journals (Sweden)
Yuehjen E. Shao
2013-01-01
Full Text Available Because the volume of currency issued by a country always affects its interest rate, price index, income levels, and many other important macroeconomic variables, the prediction of currency volume issued has attracted considerable attention in recent years. In contrast to the typical single-stage forecast model, this study proposes a hybrid forecasting approach to predict the volume of currency issued in Taiwan. The proposed hybrid models consist of artificial neural network (ANN and multiple regression (MR components. The MR component of the hybrid models is established for a selection of fewer explanatory variables, wherein the selected variables are of higher importance. The ANN component is then designed to generate forecasts based on those important explanatory variables. Subsequently, the model is used to analyze a real dataset of Taiwan's currency from 1996 to 2011 and twenty associated explanatory variables. The prediction results reveal that the proposed hybrid scheme exhibits superior forecasting performance for predicting the volume of currency issued in Taiwan.
Mottese, Antonio Francesco; Naccari, Clara; Vadalà, Rossella; Bua, Giuseppe Daniel; Bartolomeo, Giovanni; Rando, Rossana; Cicero, Nicola; Dugo, Giacomo
2018-01-01
Opuntia ficus-indica L. Miller fruits, particularly 'Ficodindia dell'Etna' of Biancavilla (POD), 'Fico d'india tradizionale di Roccapalumba' with protected brand and samples from an experimental field in Pezzolo (Sicily) were analyzed by inductively coupled plasma mass spectrometry in order to determine the multi-element profile. A multivariate chemometric approach, specifically principal component analysis (PCA), was applied to individuate how mineral elements may represent a marker of geographic origin, which would be useful for traceability. PCA has allowed us to verify that the geographical origin of prickly pear fruits is significantly influenced by trace element content, and the results found in Biancavilla PDO samples were linked to the geological composition of this volcanic areas. It was observed that two principal components accounted for 72.03% of the total variance in the data and, in more detail, PC1 explains 45.51% and PC2 26.52%, respectively. This study demonstrated that PCA is an integrated tool for the traceability of food products and, at the same time, a useful method of authentication of typical local fruits such as prickly pear. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Nie, Jing-Bao; Fitzgerald, Ruth P
From the outset, cross-cultural and transglobal bioethics has constituted a potent arena for a dynamic public discourse and academic debate alike. But prominent bioethical debates on such issues as the notion of common morality and a distinctive "Asian" bioethics in contrast to a "Western" one reveal some deeply rooted and still popular but seriously problematic methodological habits in approaching cultural differences, most notably, radically dichotomizing the East and the West, the local and the universal. In this paper, a "transcultural" approach to bioethics and cultural studies is proposed. It takes seriously the challenges offered by social sciences, anthropology in particular, towards the development of new methodologies for comparative and global bioethics. The key methodological elements of "transculturalism" include acknowledging the great internal plurality within every culture; highlighting the complexity of cultural differences; upholding the primacy of morality; incorporating a reflexive theory of social power; and promoting changes or progress towards shared and sometimes new moral values.
Dodd, Michael; Ferrante, Antonino
2017-11-01
Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.
Riza, Yose; Cheris, Rika; Repi
2017-12-01
The development of Pekanbaru City is very rapid, consequently is constantly experiencing changes in buildings, areas or cultural objects that need to be preserved to be disrupted, replaced by economic-oriented development - commercial. The contradiction between the construction of the metropolis will be the beginning of the problem for urban areas. Kampong Bandar Senapelan is an early town of Pekanbaru town located on the banks of the Siak River. The settlement has a typology of Malay and vernacular Malay architecture. The existence of these villages experienced concern as a contradiction of the city's development toward the metropolis which resulted in degradation of the historical value of urban development in this region. This study was conducted to make an important assessment of preserving Kampung Bandar Senapelan as the oldest area and its great influence on the development of metropolis. Preservation of historical and cultural heritage with conservation and preservation measures is one of the urban design elements to be considered for all city stakeholders to safeguard the civilization of a generation. Considerations that will become a benchmark is the history, conservation and urban development towards the metropolis. The importance of awareness of the conservation of the city through conservation and preservation in this area can lead to new characters and values to the building and its environment and will create an atmosphere different from the rapid development (modern style). In addition, this preservation will be evident in a harmonious life with a high tolerance between multi-ethnicity that co-existed in the past.
Vora, H.; Morgan, J.
2017-12-01
Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.
Directory of Open Access Journals (Sweden)
Marco Gonzalez
Full Text Available Abstract The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs. The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has become very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes.
Finite element (fem) Kohn-Sham density functional approach to lighter dimers
International Nuclear Information System (INIS)
Kolb, D.; Kopylow, A.V.; Duesterhoft, C.; Heinemann, D.
1998-01-01
The very accurate Finite Element Method has been employed for a comparative study of various combinations of frequently used exchange and correlation density functionals both local and non-local. We also investigated the properties of the Colle- Salvetti orbital functional in KLI approximation. All these studies were done for atoms and dimers of the sp-shell which exhibits a rich variety of system dependent properties. Moving through the sp-shell we compare binding energies, radii and vibrational frequencies for ground state and excited configurations and also compute potential energy surfaces (curves) as a function of internuclear distance. The dependency of total energies on occupation number variations of the Kohn-Sham orbitals provides inferences on polarisation and alignment. An interesting question is how to incorporate at least approximately non- relativistic strict physical conservation laws like spin S 2 and S z , angular momentum L 2 and L z and parity and how to allow for symmetry breaking necessary for the dissociation e.g. of N 2 . (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling
Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit
2014-09-01
When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.
Li, Yubo; Wang, Pengtao; Hua, Fei; Zhan, Shijie; Wang, Xiaozhi; Luo, Jikui; Yang, Hangsheng
2018-03-01
Electronic properties of cubic boron nitride (c-BN) doped with group IIA elements were systematically investigated using the first principle calculation based on density functional theory. The electronic bandgap of c-BN was found to be narrowed when the impurity atom substituted either the B (IIA→B) or the N (IIA→N) atom. For IIA→B, a shallow accept level degenerated into valence band (VB); while for IIA→N, a shallow donor level degenerated conduction band (CB). In the cases of IIBe→N and IIMg→N, deep donor levels were also induced. Moreover, a zigzag bandgap narrowing pattern was found, which is in consistent with the variation pattern of dopants' radius of electron occupied outer s-orbital. From the view of formation energy, the substitution of B atom under N-rich conditions and the substitution of N atom under B-rich conditions were energetically favored. Our simulation results suggested that Mg and Ca are good candidates for p-type dopants, and Ca is the best candidate for n-type dopant.
Material Substitution For The Supporting Frame of Power Tiller With Finite Element Analysis Approach
Directory of Open Access Journals (Sweden)
Midian Shite
2006-08-01
Full Text Available Due to its advantageouse characteristic, aluminum is considered to substitute the existing steel as material of the supporting frame of power tiller to meet the strength and environment concerns. The investigation was emphasized on the comparison of both material in view of stress and deformation. In this study, both experimental test and finite element (FE analysis were employed to meet the research concem.comparison between the experimental test and numerical analysis result indicated acceptable differnces of about 7-33% wich is lower than the previouse research. Substitution with aluminum was confirmed using material index that aluminum has better performance in strength and stiffness than that of steel by prescibing minimum better performance in strength and stiffness than that of steel by prescibing minimum weight. FE analysis result revealed that aluminum model was capable of sustaining loads about equal to the steel model. It was based on its maximum von Mises stress wich was insignificatly lower than the steel model. In term of strength characteristic, strength ratio of the aluminum model was higher than the steel model. Furthemore, the substitution also resulted in redistrubuting stress into wider area and mass reduction for about 36%.
Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves
Hanson, Ronald K.
2013-09-01
We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we demonstrate that this strategy eliminates the possibility of non-localized (remote) ignition in shock tubes. Furthermore, we show that this same strategy can also effectively eliminate or minimize pressure changes due to combustion heat release, thereby enabling quantitative modeling of the kinetics throughout the combustion event using a simple assumption of specified pressure and enthalpy. We measure temperature and OH radical time-histories during ethylene-oxygen combustion behind reflected shock waves in a constrained reaction volume and verify that the results can be accurately modeled using a detailed mechanism and a specified pressure and enthalpy constraint. © 2013 The Combustion Institute.
International Nuclear Information System (INIS)
Matsunaga, Takeshi
2002-10-01
Concerning the study subject on the transport of trace, toxic chemicals and radioactive elements in a river watershed, that has been developed in the Research Group for Terrestrial Environment, its aims and methodological approaches have been discussed in the light of related social and technological aspects of today. It is stressed that a study of the transport of radionuclides originated from a nuclear installation is needed to assess the physiological impact and to provide appropriate countermeasures in case of an accident. A numerical model is prerequisite for these objectives and to be keenly developed. The outcome of the modeling will be also important for a quantitative analysis of cycling of trace toxic elements in the atmosphere- lithosphere-hydrosphere, and also of the mechanisms of contamination of the surface aquatic environment. Accordingly, the study will contribute to the key issues stated in the national programs of science and technologies such as conservation of the natural and living environment. The present large consumption of metals and metalloids may cause an extensive contamination in the future. The study can provide solutions to the problems associated with metals and metalloids, because their environmental behavior resembles to that of radionuclides. From a methodological aspect, an importance of a direct investigation of physicochemical forms of trace, toxic elements must be stressed. A simultaneous use of experimental methods and chemical modeling to study the physico-chemical forms will be a good exemption to be realized hereafter. Experimentally, partitioning between solid and liquid phases using radioisotopes, and identification of solid species using various X-ray spectrometric techniques, for example, have been recognized very promising to investigate physico-chemical form of trace elements. These techniques are much ought to the nuclear sciences, suggesting further possible contribution of the nuclear sciences to the questions of
Sarparandeh, Mohammadali; Hezarkhani, Ardeshir
2017-12-01
The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed
Collewet, Guylaine; Moussaoui, Saïd; Deligny, Cécile; Lucas, Tiphaine; Idier, Jérôme
2018-06-01
Multi-tissue partial volume estimation in MRI images is investigated with a viewpoint related to spectral unmixing as used in hyperspectral imaging. The main contribution of this paper is twofold. It firstly proposes a theoretical analysis of the statistical optimality conditions of the proportion estimation problem, which in the context of multi-contrast MRI data acquisition allows to appropriately set the imaging sequence parameters. Secondly, an efficient proportion quantification algorithm based on the minimisation of a penalised least-square criterion incorporating a regularity constraint on the spatial distribution of the proportions is proposed. Furthermore, the resulting developments are discussed using empirical simulations. The practical usefulness of the spectral unmixing approach for partial volume quantification in MRI is illustrated through an application to food analysis on the proving of a Danish pastry. Copyright © 2018 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Moyer, Bruce A.; Marchand, Alan P.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Haverlock, Tamara J.
2004-01-01
This research was intended to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of high-activity tank waste can be evaluated. Primary focus has been on sodium hydroxide separation, with potential Hanford application. Value in sodium hydroxide separation can potentially be found in alternative flowsheets for treatment and disposal of low-activity salt waste. Additional value can be expected in recycle of sodium hydroxide for use in waste retrieval and sludge washing, whereupon additions of fresh sodium hydroxide to the waste can be avoided. Potential savings are large both because of the huge cost of vitrification of the low-activity waste stream and because volume reduction of high-activity wastes could obviate construction of costly new tanks. Toward these ends, the conceptual development begun in the original proposal was extended with the formulation of eight fundamental approaches that could be undertaken for extraction of sodium hydroxide
Survey of meshless and generalized finite element methods: A unified approach
Babuška, Ivo; Banerjee, Uday; Osborn, John E.
In the past few years meshless methods for numerically solving partial differential equations have come into the focus of interest, especially in the engineering community. This class of methods was essentially stimulated by difficulties related to mesh generation. Mesh generation is delicate in many situations, for instance, when the domain has complicated geometry; when the mesh changes with time, as in crack propagation, and remeshing is required at each time step; when a Lagrangian formulation is employed, especially with nonlinear PDEs. In addition, the need for flexibility in the selection of approximating functions (e.g., the flexibility to use non-polynomial approximating functions), has played a significant role in the development of meshless methods. There are many recent papers, and two books, on meshless methods; most of them are of an engineering character, without any mathematical analysis.In this paper we address meshless methods and the closely related generalized finite element methods for solving linear elliptic equations, using variational principles. We give a unified mathematical theory with proofs, briefly address implementational aspects, present illustrative numerical examples, and provide a list of references to the current literature.The aim of the paper is to provide a survey of a part of this new field, with emphasis on mathematics. We present proofs of essential theorems because we feel these proofs are essential for the understanding of the mathematical aspects of meshless methods, which has approximation theory as a major ingredient. As always, any new field is stimulated by and related to older ideas. This will be visible in our paper.
3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.
Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio
2014-09-22
Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fortuny, Josep; Marcé-Nogué, Jordi; Konietzko-Meier, Dorota
2017-06-01
The Late Triassic freshwater ecosystems were occupied by different tetrapod groups including large-sized anamniotes, such as metoposaurids. Most members of this group of temnospondyls acquired gigantic sizes (up to 5 m long) with a nearly worldwide distribution. The paleoecology of metoposaurids is controversial; they have been historically considered passive, bottom-dwelling animals, waiting for prey on the bottom of rivers and lakes, or they have been suggested to be active mid-water feeders. The present study aims to expand upon the paleoecological interpretations of these animals using 3D finite element analyses (FEA). Skulls from two taxa, Metoposaurus krasiejowensis, a gigantic taxon from Europe, and Apachesaurus gregorii, a non-gigantic taxon from North America, were analyzed under different biomechanical scenarios. Both 3D models of the skulls were scaled to allow comparisons between them and reveal that the general stress distribution pattern found in both taxa is clearly similar in all scenarios. In light of our results, both previous hypotheses about the paleoecology of these animals can be partly merged: metoposaurids probably were ambush and active predators, but not the top predators of these aquatic environments. The FEA results demonstrate that they were particularly efficient at bilateral biting, and together with their characteristically anteropositioned orbits, optimal for an ambush strategy. Nonetheless, the results also show that these animals were capable of lateral strikes of the head, suggesting active hunting of prey. Regarding the important skull size differences between the taxa analyzed, our results suggest that the size reduction in the North American taxon could be related to drastic environmental changes or the increase of competitors. The size reduction might have helped them expand into new ecological niches, but they likely remained fully aquatic, as are all other metoposaurids. © 2017 Anatomical Society.
How to finance energy transition? Elements of analysis for a strategic approach
International Nuclear Information System (INIS)
Ruedinger, Andreas
2015-01-01
If regulatory and economic signals are the first determining factors for the launching of energy transition projects, financing tools are a major stake. But financing these projects is also facing two complementary challenges: the mobilisation of additional capital resources to face the needs, and the re-orientation of a part of this financing towards more efficient projects. In order to asses the consistency of financing tools, this study identifies three determining financing stakes: an inter-mediation with capital markets to mobilise capitals at low cost, a calibration of project financing mechanisms to meet the needs of the different actors and sectors and to limit transaction costs, and a better articulation between financial tools and regulatory tools. The authors thus propose an integrated approach to the stakes of transition financing
Przygoda, K; Napieralski, A; Grecki, M
2010-01-01
Abstract: Linear accelerators such as Free Electron Lasers (FELs) use superconducting (SC) resonant cavities to accelerate electron beam to high energies. TESLA type resonators are extremely sensitive to detuning induced by mechanical deformations – Lorentz force detuning (LFD), mainly due to the extremely high quality factor (Q) of the 1.3 GHz resonance mode, in the range of 1e6. The resulting modulation of a resonance frequency of the cavity makes power consumption and stability performances of the Low-Latency Radio Frequency (LLRF) control more critical. In order to minimize the RF control efforts and desired stabilities, the fast piezoelectric actuators with digital control systems are commonly used. The paper presents a novel approach for automatic control of piezoelectric actuators used for compensation of Lorentz force detuning, the practical application and carried out tests in accelerating module ACC6 in Free-Electron Laser in Hamburg (FLASH).
Ricoeur, Andreas; Lange, Stephan; Avakian, Artjom
2015-04-01
Magnetoelectric (ME) coupling is an inherent property of only a few crystals exhibiting very low coupling coefficients at low temperatures. On the other hand, these materials are desirable due to many promising applications, e.g. as efficient data storage devices or medical or geophysical sensors. Efficient coupling of magnetic and electric fields in materials can only be achieved in composite structures. Here, ferromagnetic (FM) and ferroelectric (FE) phases are combined e.g. including FM particles in a FE matrix or embedding fibers of the one phase into a matrix of the other. The ME coupling is then accomplished indirectly via strain fields exploiting magnetostrictive and piezoelectric effects. This requires a poling of the composite, where the structure is exposed to both large magnetic and electric fields. The efficiency of ME coupling will strongly depend on the poling process. Besides the alignment of local polarization and magnetization, it is going along with cracking, also being decisive for the coupling properties. Nonlinear ferroelectric and ferromagnetic constitutive equations have been developed and implemented within the framework of a multifield, two-scale FE approach. The models are microphysically motivated, accounting for domain and Bloch wall motions. A second, so called condensed approach is presented which doesn't require the implementation of a spatial discretisation scheme, however still considering grain interactions and residual stresses. A micromechanically motivated continuum damage model is established to simulate degradation processes. The goal of the simulation tools is to predict the different constitutive behaviors, ME coupling properties and lifetime of smart magnetoelectric devices.
Uma, B.; Swaminathan, T. N.; Ayyaswamy, P. S.; Eckmann, D. M.; Radhakrishnan, R.
2011-09-01
A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.
International Nuclear Information System (INIS)
Eguchi, Yuzuru
2005-07-01
The report is concerned with the evaluation of applicability of numerical modelling methods for the prediction of gas entrainment in an upper plenum of a sodium-cooled fast breeder reactor (FBR). Special attention was paid to applicability of variational multiscale (VMS) modelling in the context of the Finite Element Method. Two flow problems, which were experimentally shown to induce gas entrainment, are solved by a VMS code (MISTRAL). First, computing a benchmark problem of a gas entrainment swirl flow in a cylindrical vessel has led to the following results; (1) the VMS solution is able to resolve the precise vortex core structure more accurately than the non-VMS solution computed by Smart-fem. The circumferential velocity obtained from VMS computation rises almost double in comparison with the non-VMS solution, though it still underestimates the experimental values. (2) the half-value radius of the negative region of the second invariant of velocity gradient matches well between the VMS solution and non-VMS solution. (3) the negative/positive boundary of the second invariant of velocity gradient obtained from the VMS solution is closer to the vortex core radius observed in the experiment than that of the non-VMS solution, though the vortex dip length computed from the VMS result is shorter than the experimental value. Second, computing a benchmark problem of open channel flow with a square pillar and downstream suction pipe has led to the following results; (4) 2Δx-type spatial oscillation was observed due to lack of mesh subdivisions. (5) the distributional profile of the second invariant of velocity gradient is similar to that of the first problem (swirl flow in a cylindrical vessel), characterized by a strong negative region surrounded by a weak positive region. As a possible future plan, it may be necessary to analyze more precisely the features of unsteady vortices obtained in the second benchmark problem and to identify the difference (if any) from the
Chai, Siaw Ming; Herba, Karl; Kumarasinghe, M Priyanthi; de Boer, W Bastiaan; Amanuel, Benhur; Grieu-Iacopetta, Fabienne; Lim, Ee Mun; Segarajasingam, Dev; Yusoff, Ian; Choo, Chris; Frost, Felicity
2013-02-01
The objective of this study was to develop a triage algorithm to optimize diagnostic yield from cytology, carcinoembryonic antigen (CEA), and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) testing on different components of a single pancreatic cyst fluid specimen. The authors also sought to determine whether cell block supernatant was suitable for CEA and KRAS testing. Fifty-four pancreatic cysts were triaged according to a volume-dependent protocol to generate fluid (neat and supernatant) and cell block specimens for cytology, comparative CEA, and KRAS testing. Follow-up histology, diagnostic cytology, or a combined clinicopathologic interpretation was recorded as the final diagnosis. There were 26 mucinous cystic lesions and 28 nonmucinous cystic lesions with volumes ranging from 0.3 mL to 55 mL. Testing different components of the specimens (cell block, neat, and/or supernatant) enabled all laboratory investigations to be performed on 50 of 54 cyst fluids (92.6%). Interpretive concordance was observed in 17 of 17 cases (100%) and in 35 of 40 cases (87.5%) that had multiple components tested for CEA and KRAS mutations, respectively. An elevated CEA level (>192 ng/mL) was the most sensitive test for the detection of a mucinous cystic lesion (62.5%) versus KRAS mutation (56%) and "positive" cytology (61.5%). KRAS mutations were identified in 2 of 25 mucinous cystic lesions (8%) in which cytology and CEA levels were not contributory. A volume-based protocol using different components of the specimen was able to optimize diagnostic yield in pancreatic cyst fluids. KRAS mutation testing increased diagnostic yield when combined with cytology and CEA analysis. The current results demonstrated that supernatant is comparable to neat fluid and cell block material for CEA and KRAS testing. Copyright © 2012 American Cancer Society.
Comparative risk assessment: an element for a more rational and ethical approach to radiation risk
International Nuclear Information System (INIS)
Danesi, P.R.
2006-01-01
Peaceful nuclear technologies are still perceived by a large fraction of the general public, the media as well as by some decision makers, as more risky than many other 'conventional' technologies. One of the approaches that can help bringing more rationality and ethics into the picture is to present the risk associated with radiation and nuclear technologies in the frame of correctly conducted comparative risk assessments. However, comparing different risks is not so straightforward because quantifying different risks on a comparable scale requires overcoming both conceptual and practical difficulties. Risk (R) can be expressed as the product of the probability (P) that a given undesired event, the risk, will occur, times the consequences of this event (C), i.e. R = P x C. Although in principle risks could be compared by simply ranking them according to the different values of R, this simplistic approach is not always possible because to correctly compare risks all factors, circumstances and assumptions should be mutually equivalent and quantified and the (often large) uncertainties taken into proper account. In the case of radiation risk, ICRP has assumed as valid the LNT model, (probability coefficient of 5 % per Sievert for attributable death from cancer) and selected the present equivalent dose limit of 1 mSv per year for public exposure. This dose corresponds to 50 lethal cancers by 1 million people exposed and is approximately equivalent (in terms of probability of death) to the risk of bicycling for 600 km, driving for 3200 km, crossing a busy road twice a day for 1 year, smoking 2.5 packets of cigarettes or being X-rayed once for kidney metabolism. However, according to many scientists on the basis of both epidemiological and biological results and considerations, the actual risk is far lower than that predicted by the LNT model. Nevertheless, the policies and myths that were created about half a century ago are still persisting and have lead the general
Minarik, Marek; Franc, Martin; Minarik, Milan
2018-06-15
A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling. Copyright © 2018 Elsevier B.V. All rights reserved.
Validation of a Methodology to Predict Micro-Vibrations Based on Finite Element Model Approach
Soula, Laurent; Rathband, Ian; Laduree, Gregory
2014-06-01
This paper presents the second part of the ESA R&D study called "METhodology for Analysis of structure- borne MICro-vibrations" (METAMIC). After defining an integrated analysis and test methodology to help predicting micro-vibrations [1], a full-scale validation test campaign has been carried out. It is based on a bread-board representative of typical spacecraft (S/C) platform consisting in a versatile structure made of aluminium sandwich panels equipped with different disturbance sources and a dummy payload made of a silicon carbide (SiC) bench. The bread-board has been instrumented with a large set of sensitive accelerometers and tests have been performed including back-ground noise measurement, modal characterization and micro- vibration tests. The results provided responses to the perturbation coming from a reaction wheel or cryo-cooler compressors, operated independently then simultaneously with different operation modes. Using consistent modelling and associated experimental characterization techniques, a correlation status has been assessed by comparing test results with predictions based on FEM approach. Very good results have been achieved particularly for the case of a wheel in sweeping rate operation with test results over-predicted within a reasonable margin lower than two. Some limitations of the methodology have also been identified for sources operating at a fixed rate or coming with a small number of dominant harmonics and recommendations have been issued in order to deal with model uncertainties and stay conservative.
Thermodynamic approach of the poly-azine - f element ions interaction in aqueous conditions
International Nuclear Information System (INIS)
Miguirditchian, M.; Guillaumont, D.; Moisy, P.; Guillaneux, D.; Madic, C.
2004-01-01
2-Amino-4,6-di-(pyridine-2-yl)-1,3,5-triazine (Adptz) was considered as a model compound for selective aromatic nitrogen extractants (poly-azines) of minor actinides. Thermodynamic data ( ΔG 0 , ΔH 0 , ΔS 0 ) were systematically acquired for the complexation of lanthanide(III) ions as well as yttrium(III) and americium(III) in hydro-alcoholic medium. Two complementary experimental approaches were followed. Stability constants for the formation of the 1:1 complexes were evaluated from UV-visible spectrophotometry titration experiments, whereas enthalpies and entropies of reaction were obtained consistently from either temperature dependence experiments or micro-calorimetry. The interaction of Adptz with lanthanide(III) and yttrium(III) ions was found to be essentially ionic and dependent upon the hydration and size of the ion. As for americium(III) ion, stability constant and enthalpy of complexation was significantly larger. This was attributed to a partial electronic transfer from the ligand to empty orbitals of the cation. DFT calculations support this interpretation. (authors)
Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.
2008-01-01
Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production
Weissenberger, S. (Editor)
1973-01-01
A systems engineering approach is reported for the problem of reducing the number and severity of California's wildlife fires. Prevention methodologies are reviewed and cost benefit models are developed for making preignition decisions.
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach
Directory of Open Access Journals (Sweden)
Abdinardo Moreira Barreto de Oliveira
2015-06-01
Full Text Available The aim of this paper was to offer econometric forecasting models to the Brazilian exported volume fruits, with a view to assisting the planning and production control, also motivated by the existence of a few published papers dealing with this issue. In this sense, it was used the ARIMA/GARCH models, considering, likewise, the occurrence of a multiplicative stochastic seasonality in these series. They were collected 300 observations of exported net weight (kg between Jan/1989 and Dec/2013 of the following fruits: pineapple, banana, orange, lemon, apple, papaya, mango, watermelon, melon and grape, which selection criteria was its importance in the exported basket fruit, because they represented 97% of total received dollars, and 99% of total volume sold in 2010, of a population about 28 kinds of exported fruits. The results showed that it was not only observed the existence of a 12 month multiplicative seasonality in banana and mango. On the other hand, they were identified two fruits groups: (1 those which are continuously exported, and (2 those which have export peaks. On the quality of the models, they were considered satisfactory for six of the ten fruits analyzed. On the volatility, it was seen a high persistence in banana and papaya series, pointing to the existence of a structural break in time series, which could be linked to the economic crises happened in the last 17 years.
International Nuclear Information System (INIS)
Chen, Z.; Huang, G.H.; Chakma, A.
1999-01-01
An integrated approach for estimating the distribution of light nonaqueous phase liquids (LNAPLs) such as oil spill and leakage in a porous media is proposed, based on a study at a site located in western Canada. The site has one original release source that is a flare pit, with on-site soil and groundwater seriously contaminated by petroleum products spilled over the past two decades. Results of the study show that soil properties and site characteristics have significant impact on the spreading of contaminants which affect the estimation of contaminant volume. Although the LNAPLs in the subsurface do not appear as a distinct layer, and the volume and distribution differ from site to site, the proposed method offers insight into the contamination details and is, therefore, considered to be an effective and convenient tool for obtaining a reasonable estimate of residual oil volume in the subsurface. Results could also be used in designing an enhanced recovery scheme for the site under study, as well as in designing multi-component models of the subsurface contamination for the purpose of risk assessment. 13 refs., 2 tabs., 2 figs
Dörr, Dominik; Faisst, Markus; Joppich, Tobias; Poppe, Christian; Henning, Frank; Kärger, Luise
2018-05-01
Finite Element (FE) forming simulation offers the possibility of a detailed analysis of thermoforming processes by means of constitutive modelling of intra- and inter-ply deformation mechanisms, which makes manufacturing defects predictable. Inter-ply slippage is a deformation mechanism, which influences the forming behaviour and which is usually assumed to be isotropic in FE forming simulation so far. Thus, the relative (fibre) orientation between the slipping plies is neglected for modelling of frictional behaviour. Characterization results, however, reveal a dependency of frictional behaviour on the relative orientation of the slipping plies. In this work, an anisotropic model for inter-ply slippage is presented, which is based on an FE forming simulation approach implemented within several user subroutines of the commercially available FE solver Abaqus. This approach accounts for the relative orientation between the slipping plies for modelling frictional behaviour. For this purpose, relative orientation of the slipping plies is consecutively evaluated, since it changes during forming due to inter-ply slipping and intra-ply shearing. The presented approach is parametrized based on characterization results with and without relative orientation for a thermoplastic UD-tape (PA6-CF) and applied to forming simulation of a generic geometry. Forming simulation results reveal an influence of the consideration of relative fibre orientation on the simulation results. This influence, however, is small for the considered geometry.
Nistor, Dan-Viorel; Caterev, Sergiu; Bolboacă, Sorana-Daniela; Cosma, Dan; Lucaciu, Dan Osvald Gheorghe; Todor, Adrian
2017-11-01
We conducted this study to establish if the transition from a lateral approach (LA) to the direct anterior approach (DAA) for a low volume hip arthroplasty surgeon during the steep learning curve can be performed maintaining the muscle sparing approach of the DAA without increasing the complication rates. In this controlled, prospective, randomized clinical study we investigated 70 patients (35 DAA, 35 LA) with similar demographics that underwent a total hip arthroplasty. Assessment of the two approaches consisted of determining the invasiveness through serum markers for muscle damage (i.e. myoglobin, creatine kinase and lactate dehydrogenase), the operative parameters such as post-operative pain and rescue medication consumption, the component positioning and complication rates. Post-operative myoglobin levels were higher (p < 0.001) in the LA group (326.42 ± 84.91 ng/mL) as compared to the DAA group (242.80 ± 71.03 ng/mL), but with no differences regarding other biomarkers for muscle damage. Pain levels were overall lower in the DAA group, with a statistical and clinical difference during surgery day (p < 0.001) associated with lower (p < 0.001) rescue medication consumption (median 1 (1; 3) mg morphine vs. 3 (2; 4) mg morphine). Most patients in the LA group reported chronic post-operative pain throughout all three evaluated months, while the majority of patients in the DAA group reported no pain after week six. Component positioning did not differ significantly between groups and neither did complication rates. The DAA can be transitioned from the LA safely, without higher complication rates while maintaining its muscle spearing advantages when performed by a low volume hip arthroplasty surgeon.
Bruder, Friedrich-Karl; Fäcke, Thomas; Grote, Fabian; Hagen, Rainer; Hönel, Dennis; Koch, Eberhard; Rewitz, Christian; Walze, Günther; Wewer, Brita
2017-03-01
Volume Holographic Optical Elements (vHOEs) gained wide attention as optical combiners for the use in augmented and virtual reality (AR and VR, respectively) consumer electronics and automotive head-up display applications. The unique characteristics of these diffractive grating structures - being lightweight, thin and flat - make them perfectly suitable for use in integrated optical components like spectacle lenses and car windshields. While being transparent in Off-Bragg condition, they provide full color capability and adjustable diffraction efficiency. The instant developing photopolymer Bayfol® HX film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Important for any commercialization are simple and robust mass production schemes. In this paper, we present an efficient and easy to control one-beam recording scheme to copy a so-called master vHOE in a step-and-repeat process. In this contact-copy scheme, Bayfol® HX film is laminated to a master stack before being exposed by a scanning laser line. Subsequently, the film is delaminated in a controlled fashion and bleached. We explain working principles of the one-beam copy concept and discuss the mechanical construction of the installed vHOE replication line. Moreover, we treat aspects like master design, effects of vibration and suppression of noise gratings. Furthermore, digital vHOEs are introduced as master holograms. They enable new ways of optical design and paths to large scale vHOEs.
Park, Junhong; Palumbo, Daniel L.
2004-01-01
The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.
A finite volume alternate direction implicit approach to modeling selective laser melting
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Mohanty, Sankhya
2013-01-01
Over the last decade, several studies have attempted to develop thermal models for analyzing the selective laser melting process with a vision to predict thermal stresses, microstructures and resulting mechanical properties of manufactured products. While a holistic model addressing all involved...... to accurately simulate the process, are constrained by either the size or scale of the model domain. A second challenging aspect involves the inclusion of non-linear material behavior into the 3D implicit FE models. An alternating direction implicit (ADI) method based on a finite volume (FV) formulation...... is proposed for modeling single-layer and few-layers selective laser melting processes. The ADI technique is implemented and applied for two cases involving constant material properties and non-linear material behavior. The ADI FV method consume less time while having comparable accuracy with respect to 3D...
International Nuclear Information System (INIS)
Boussion, N; Hatt, M; Lamare, F; Bizais, Y; Turzo, A; Rest, C Cheze-Le; Visvikis, D
2006-01-01
Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography. They lead to a loss of signal in tissues of size similar to the point spread function and induce activity spillover between regions. Although PVE can be corrected for by using algorithms that provide the correct radioactivity concentration in a series of regions of interest (ROIs), so far little attention has been given to the possibility of creating improved images as a result of PVE correction. Potential advantages of PVE-corrected images include the ability to accurately delineate functional volumes as well as improving tumour-to-background ratio, resulting in an associated improvement in the analysis of response to therapy studies and diagnostic examinations, respectively. The objective of our study was therefore to develop a methodology for PVE correction not only to enable the accurate recuperation of activity concentrations, but also to generate PVE-corrected images. In the multiresolution analysis that we define here, details of a high-resolution image H (MRI or CT) are extracted, transformed and integrated in a low-resolution image L (PET or SPECT). A discrete wavelet transform of both H and L images is performed by using the 'a trous' algorithm, which allows the spatial frequencies (details, edges, textures) to be obtained easily at a level of resolution common to H and L. A model is then inferred to build the lacking details of L from the high-frequency details in H. The process was successfully tested on synthetic and simulated data, proving the ability to obtain accurately corrected images. Quantitative PVE correction was found to be comparable with a method considered as a reference but limited to ROI analyses. Visual improvement and quantitative correction were also obtained in two examples of clinical images, the first using a combined PET/CT scanner with a lymphoma patient and the second using a FDG brain PET and corresponding T1-weighted MRI in
Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent
2017-04-01
Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low
Institute of Scientific and Technical Information of China (English)
毕春加
2005-01-01
In this paper, we establish the maximum norm estimates of the solutions of the finite volume element method (FVE) based on the P1 conforming element for the non-selfadjoint and indefinite elliptic problems.
Institute of Scientific and Technical Information of China (English)
龙晓瀚; 毕春加
2005-01-01
In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.
Learner-Centered Instruction (LCI): Volume 7. Evaluation of the LCI Approach. Final Report.
Pieper, William J.; And Others
An evaluation of the learner-centered instruction (LCI) approach to training was conducted by comparing the LCI F-111A weapons control systems mechanic/technician course with the conventional Air Force course for the same Air Force specialty code (AFSC) on the following dimensions; job performance of course graduates, man-hour and dollar costs of…
Christensen, Matthew; Warnick, Paul
2006-01-01
This book is a general introduction to the performed culture approach, which trains students how to express themselves in a way that native speakers of the target culture feel appropriate in given situations. Target readership includes Chinese, Japanese, and Korean language teachers and graduate students. Chapters of this book include: (1)…
Novel approach to the exploitation of the tidal energy. Volume 1: Summary and discussion
Gorlov, A. M.
1981-12-01
The hydropneumatic concept in the approach to harnessing low tidal hydropower is discussed. The energy of water flow is converted into the energy of an air jet by a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. It is possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). It is confirmed that the concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach.
Newman, Lauri K.; Hejduk, Matthew D.
2015-01-01
NASA is committed to safety of flight for all of its operational assets Performed by CARA at NASA GSFC for robotic satellites Focus of this briefing Performed by TOPO at NASA JSC for human spaceflight he Conjunction Assessment Risk Analysis (CARA) was stood up to offer this service to all NASA robotic satellites Currently provides service to 70 operational satellites NASA unmanned operational assets Other USG assets (USGS, USAF, NOAA) International partner assets Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction screening The Joint Space Operations Center (JSpOC) a USAF unit at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD tasking, and generates close approach data.
B-1 Systems Approach to Training. Volume 3. Appendix B. Bibliography and Data Collection Trips
1975-07-01
the Fourth Annual Symposium on Psychology in the Air Force, 1974, ~ •—- ~ - --- - Creelman , J.A., Evaluation of Approach Training Procedures...of Engineering Psychology , American Psychologist, 1972, 27 (7), 615-622. Adams, J.A., and Hufford, I.E., Effects of Programmed Perceptual Training on...Control, Wright-Patterson Air Force Base, Ohio, April 7-9, 1970. Aldrich, T.B., Proceedings of the Annual Symposium on Psychology in the Air Force (2nd
Eggler, Aimee L; Small, Evan; Hannink, Mark; Mesecar, Andrew D
2009-07-29
Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that activates transcription of a battery of cytoprotective genes by binding to the ARE (antioxidant response element). Nrf2 is repressed by the cysteine-rich Keap1 (kelch-like ECH-associated protein 1) protein, which targets Nrf2 for ubiquitination and subsequent degradation by a Cul3 (cullin 3)-mediated ubiquitination complex. We find that modification of Cys(151) of human Keap1, by mutation to a tryptophan, relieves the repression by Keap1 and allows activation of the ARE by Nrf2. The Keap1 C151W substitution has a decreased affinity for Cul3, and can no longer serve to target Nrf2 for ubiquitination, though it retains its affinity for Nrf2. A series of 12 mutant Keap1 proteins, each containing a different residue at position 151, was constructed to explore the chemistry required for this effect. The series reveals that the extent to which Keap1 loses the ability to target Nrf2 for degradation, and hence the ability to repress ARE activation, correlates well with the partial molar volume of the residue. Other physico-chemical properties do not appear to contribute significantly to the effect. Based on this finding, a structural model is proposed whereby large residues at position 151 cause steric clashes that lead to alteration of the Keap1-Cul3 interaction. This model has significant implications for how electrophiles which modify Cys(151), disrupt the repressive function of Keap1.
International Nuclear Information System (INIS)
Lougovski, A; Hofheinz, F; Maus, J; Schramm, G; Will, E; Hoff, J van den
2014-01-01
The aim of this study is the evaluation of on-the-fly volume of intersection computation for system’s geometry modelling in 3D PET image reconstruction. For this purpose we propose a simple geometrical model in which the cubic image voxels on the given Cartesian grid are approximated with spheres and the rectangular tubes of response (ToRs) are approximated with cylinders. The model was integrated into a fully 3D list-mode PET reconstruction for performance evaluation. In our model the volume of intersection between a voxel and the ToR is only a function of the impact parameter (the distance between voxel centre to ToR axis) but is independent of the relative orientation of voxel and ToR. This substantially reduces the computational complexity of the system matrix calculation. Based on phantom measurements it was determined that adjusting the diameters of the spherical voxel size and the ToR in such a way that the actual voxel and ToR volumes are conserved leads to the best compromise between high spatial resolution, low noise, and suppression of Gibbs artefacts in the reconstructed images. Phantom as well as clinical datasets from two different PET systems (Siemens ECAT HR + and Philips Ingenuity-TF PET/MR) were processed using the developed and the respective vendor-provided (line of intersection related) reconstruction algorithms. A comparison of the reconstructed images demonstrated very good performance of the new approach. The evaluation showed the respective vendor-provided reconstruction algorithms to possess 34–41% lower resolution compared to the developed one while exhibiting comparable noise levels. Contrary to explicit point spread function modelling our model has a simple straight-forward implementation and it should be easy to integrate into existing reconstruction software, making it competitive to other existing resolution recovery techniques. (paper)
Steiner, Hans-Georg
1988-01-01
Describes two kinds of elements in mathematics: Euclid's and Bourbaki's. Discusses some criticisms on the two concepts of elements from a philosophical, methodological, and didactical point of view. Suggests a complementarist view and several implications for mathematics education. (YP)
Energy Technology Data Exchange (ETDEWEB)
Alloui, L., E-mail: lotfi.alloui@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Laboratoire de modelisation des systemes energetiques (LMSE), Universite de Biskra, 07000 Biskra (Algeria); Bouillault, F., E-mail: bouillault@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Bernard, L., E-mail: laurent.bernardl@lgep.supelc.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Leveque, J., E-mail: jean.leveque@green.uhp-nancy.fr [Groupe de recherche en electronique et electrotechnique de Nancy, Universite Henry Poincare, BP 239, 54506 Vandoeuvre les Nancy (France)
2012-05-15
In this paper we present new 3D numerical model to calculate the vertical and the guidance forces in high temperature superconductors taking into account the influence of the flux creep phenomena. In the suggested numerical model, we adopt a new approach of the control volume method. This approach is based on the use of an unstructured grid which can be used to model more complex geometries. A comparison of the control volume method results with experiments verifies the validity of this approach and the proposed numerical model. Based on this model, the levitation force's relaxation at different temperatures was also studied.
International Nuclear Information System (INIS)
Yeo, Seung Gu; Kim, Eun Seog
2013-01-01
This study aimed to investigate efficient approaches for determining internal target volume (ITV) from four-dimensional computed tomography (4D CT) images used in stereotactic body radiotherapy (SBRT) for patients with early-stage non-small cell lung cancer (NSCLC). 4D CT images were analyzed for 15 patients who received SBRT for stage I NSCLC. Three different ITVs were determined as follows: combining clinical target volume (CTV) from all 10 respiratory phases (ITV 10Phases ); combining CTV from four respiratory phases, including two extreme phases (0% and 50%) plus two intermediate phases (20% and 70%) (ITV 4Phases ); and combining CTV from two extreme phases (ITV 2Phases ). The matching index (MI) of ITV 4Phases and ITV 2Phases was defined as the ratio of ITV 4Phases and ITV 2Phases , respectively, to the ITV 10Phases . The tumor motion index (TMI) was defined as the ratio of ITV 10Phases to CTV mean , which was the mean of 10 CTVs delineated on 10 respiratory phases. The ITVs were significantly different in the order of ITV 10Phases , ITV 4Phases , and ITV 2Phases (all p 4Phases was significantly higher than that of ITV 2Phases (p 4Phases was inversely related to TMI (r = -0.569, p = 0.034). In a subgroup with low TMI (n = 7), ITV 4Phases was not statistically different from ITV 10Phases (p = 0.192) and its MI was significantly higher than that of ITV 2Phases (p = 0.016). The ITV 4Phases may be an efficient approach alternative to optimal ITV 10Phases in SBRT for early-stage NSCLC with less tumor motion.
Deetjen, Ulrike; Powell, John A
2016-05-01
This research examines the extent to which informational and emotional elements are employed in online support forums for 14 purposively sampled chronic medical conditions and the factors that influence whether posts are of a more informational or emotional nature. Large-scale qualitative data were obtained from Dailystrength.org. Based on a hand-coded training dataset, all posts were classified into informational or emotional using a Bayesian classification algorithm to generalize the findings. Posts that could not be classified with a probability of at least 75% were excluded. The overall tendency toward emotional posts differs by condition: mental health (depression, schizophrenia) and Alzheimer's disease consist of more emotional posts, while informational posts relate more to nonterminal physical conditions (irritable bowel syndrome, diabetes, asthma). There is no gender difference across conditions, although prostate cancer forums are oriented toward informational support, whereas breast cancer forums rather feature emotional support. Across diseases, the best predictors for emotional content are lower age and a higher number of overall posts by the support group member. The results are in line with previous empirical research and unify empirical findings from single/2-condition research. Limitations include the analytical restriction to predefined categories (informational, emotional) through the chosen machine-learning approach. Our findings provide an empirical foundation for building theory on informational versus emotional support across conditions, give insights for practitioners to better understand the role of online support groups for different patients, and show the usefulness of machine-learning approaches to analyze large-scale qualitative health data from online settings. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Energy Technology Data Exchange (ETDEWEB)
Henriksen, K.; Kaye, R.D.; Jones, R. [Hughes Training, Inc., Falls Church, VA (United States); Morisseau, D.S.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology
1995-07-01
A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multi-disciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists, assisted by a panel of radiation oncologists, medical physicists, and radiation technologists, conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The final phase of the project focused on identification of the most significant human factors problems with respect to safe and effective operation of the teletherapy system and an identification and assessment of alternative approaches for resolving the problems. This report presents the findings of this final phase.
International Nuclear Information System (INIS)
Henriksen, K.; Kaye, R.D.; Jones, R.; Morisseau, D.S.; Serig, D.I.
1995-07-01
A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multi-disciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists, assisted by a panel of radiation oncologists, medical physicists, and radiation technologists, conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The final phase of the project focused on identification of the most significant human factors problems with respect to safe and effective operation of the teletherapy system and an identification and assessment of alternative approaches for resolving the problems. This report presents the findings of this final phase
A New Approach to Image-Based Estimation of Food Volume
Directory of Open Access Journals (Sweden)
Hamid Hassannejad
2017-06-01
Full Text Available A balanced diet is the key to a healthy lifestyle and is crucial for preventing or dealing with many chronic diseases such as diabetes and obesity. Therefore, monitoring diet can be an effective way of improving people’s health. However, manual reporting of food intake has been shown to be inaccurate and often impractical. This paper presents a new approach to food intake quantity estimation using image-based modeling. The modeling method consists of three steps: firstly, a short video of the food is taken by the user’s smartphone. From such a video, six frames are selected based on the pictures’ viewpoints as determined by the smartphone’s orientation sensors. Secondly, the user marks one of the frames to seed an interactive segmentation algorithm. Segmentation is based on a Gaussian Mixture Model alongside the graph-cut algorithm. Finally, a customized image-based modeling algorithm generates a point-cloud to model the food. At the same time, a stochastic object-detection method locates a checkerboard used as size/ground reference. The modeling algorithm is optimized such that the use of six input images still results in an acceptable computation cost. In our evaluation procedure, we achieved an average accuracy of 92 % on a test set that includes images of different kinds of pasta and bread, with an average processing time of about 23 s.
Directory of Open Access Journals (Sweden)
Nigel Cook
2016-10-01
Full Text Available Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS has rapidly established itself as the method of choice for generation of multi-element datasets for specific minerals, with broad applications in Earth science. Variation in absolute concentrations of different trace elements within common, widely distributed phases, such as pyrite, iron-oxides (magnetite and hematite, and key accessory minerals, such as apatite and titanite, can be particularly valuable for understanding processes of ore formation, and when trace element distributions vary systematically within a mineral system, for a vector approach in mineral exploration. LA-ICP-MS trace element data can assist in element deportment and geometallurgical studies, providing proof of which minerals host key elements of economic relevance, or elements that are deleterious to various metallurgical processes. This contribution reviews recent advances in LA-ICP-MS methodology, reference standards, the application of the method to new mineral matrices, outstanding analytical uncertainties that impact on the quality and usefulness of trace element data, and future applications of the technique. We illustrate how data interpretation is highly dependent on an adequate understanding of prevailing mineral textures, geological history, and in some cases, crystal structure.
International Nuclear Information System (INIS)
Dehghani, Hamid; Brooksby, Ben; Vishwanath, Karthik; Pogue, Brian W; Paulsen, Keith D
2003-01-01
Near-infrared (NIR) tomography is a technique used to measure light propagation through tissue and generate images of internal optical property distributions from boundary measurements. Most popular applications have concentrated on female breast imaging, neonatal and adult head imaging, as well as muscle and small animal studies. In most instances a highly scattering medium with a homogeneous refractive index is assumed throughout the imaging domain. Using these assumptions, it is possible to simplify the model to the diffusion approximation. However, biological tissue contains regions of varying optical absorption and scatter, as well as varying refractive index. In this work, we introduce an internal boundary constraint in the finite element method approach to modelling light propagation through tissue that accounts for regions of different refractive indices. We have compared the results to data from a Monte Carlo simulation and show that for a simple two-layered slab model of varying refractive index, the phase of the measured reflectance data is significantly altered by the variation in internal refractive index, whereas the amplitude data are affected only slightly
International Nuclear Information System (INIS)
Martin, M.L.; Martin, G.J.; Guillou, C.
1991-01-01
A strategy is presented for the characterization of sugars according to their botanical origin. The samples fermented in standardized conditions can be described in the multi-dimensional space of the overall carbon isotope ratio of ethanol measured by isotope ratio mass spectrometry (IRMS) and of the specific hydrogen isotope parameters of the methyl and methylene sites derived from nuclear magnetic resonance investigation of site-specific natural isotope fractionation (SNIF-NMR method). In the comparison of natural juices, the deuterium and oxygen-18 parameters of water extracted from the juice and from the end fermentation medium also contain information on the origin of the product. The isotopic effects of the concentration processes leading to concentrated juices, musts and syrups can be estimated and taken into account in interpreting the data. The classification power of this multi-element and multi-site approach is illustrated by discriminant analyses involving selected isotopic variables associated with pineapple, apple and barley sugars, compared to beet and cane sugars which are common sources of enrichment. The ability of the method to detect adulteration by exogenous sugars is improved when environmental conditions can be taken into account. (authors)
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis
2017-09-01
Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.
DEFF Research Database (Denmark)
Busk, Peter Kamp; Hallin, Peter Fischer; Salomon, Jesper
-regulatory elements. We have developed a method for identifying short, conserved motifs in biological sequences such as proteins, DNA and RNA5. This method was used for analysis of approximately 2000 Arabidopsis thaliana promoters that have been shown by DNA array analysis to be induced by abscisic acid6....... These promoters were compared to 28000 promoters that are not induced by abscisic acid. The analysis identified previously described ABA-inducible promoter elements such as ABRE, CE3 and CRT1 but also new cis-elements were found. Furthermore, the list of DNA elements could be used to predict ABA...
Joyce, Walter G; Werneburg, Ingmar; Lyson, Tyler R
2013-01-01
The hooked element in the pes of turtles was historically identified by most palaeontologists and embryologists as a modified fifth metatarsal, and often used as evidence to unite turtles with other reptiles with a hooked element. Some recent embryological studies, however, revealed that this element might represent an enlarged fifth distal tarsal. We herein provide extensive new myological and developmental observations on the hooked element of turtles, and re-evaluate its primary and secondary homology using all available lines of evidence. Digital count and timing of development are uninformative. However, extensive myological, embryological and topological data are consistent with the hypothesis that the hooked element of turtles represents a fusion of the fifth distal tarsal with the fifth metatarsal, but that the fifth distal tarsal dominates the hooked element in pleurodiran turtles, whereas the fifth metatarsal dominates the hooked element of cryptodiran turtles. The term ‘ansulate bone’ is proposed to refer to hooked elements that result from the fusion of these two bones. The available phylogenetic and fossil data are currently insufficient to clarify the secondary homology of hooked elements within Reptilia. PMID:24102560
International Nuclear Information System (INIS)
Tanabe, M; Wakui, H; Sogabe, M; Matsumoto, N; Tanabe, Y
2010-01-01
A combined multibody and finite element approach is given to solve the dynamic interaction of a Shinkansen train (high-speed train in Japan) and the railway structure including post-derailment during an earthquake effectively. The motion of the train is expressed in multibody dynamics. Efficient mechanical models to express interactions between wheel and track structure including post-derailment are given. Rail and track elements expressed in multibody dynamics and FEM are given to solve contact problems between wheel and long railway components effectively. The motion of a railway structure is modeled with various finite elements and rail and track elements. The computer program has been developed for the dynamic interaction analysis of a Shinkansen train and railway structure including post derailment during an earthquake. Numerical examples are demonstrated.
International Nuclear Information System (INIS)
Amor, H.; Bourgeois, M.
2012-01-01
Document available in extended abstract form only. The disposal of high level, long lived waste in deep underground clay formations is investigated by several countries including France. In the safety assessment of such geological repositories, a thoughtful consideration must be given to the mechanisms and possible pathways of migration of radionuclides released from waste packages. However, when modelling the transfer of radionuclides throughout the disposal facilities and geological formations, the numerical simulations must take into consideration, in addition to long durations of concern, the variety in the properties as well as in geometrical scales of the different components of the overall disposal, including the host formation. This task presents significant computational challenges. Numerical methods used in the MELODIE software The MELODIE software is developed by IRSN, and constantly upgraded, with the aim to assess the long-term containment capabilities of underground and surface radioactive waste repositories. The MELODIE software models water flow and the phenomena involved in the transport of radionuclides in saturated and unsaturated porous media in 2 and 3 dimensions; chemical processes are represented by a retardation factor and a solubility limit, for sorption and solubility respectively, integrated in the computational equations. These equations are discretized using a so-called Finite Volume Finite Element method (FVFE), which is based on a Galerkin method to discretize time and variables, together with a Finite Volume method using the Godunov scheme for the convection term. The FVFE method is used to convert partial differential equations into a finite number of algebraic equations that match the number of nodes in the mesh used to model the considered domain. It is also used to stabilise the numerical scheme. In order to manage the variety in properties and geometrical scales of underground disposal components, an a posteriori error estimator
Equeter, Lucas; Ducobu, François; Rivière-Lorphèvre, Edouard; Abouridouane, Mustapha; Klocke, Fritz; Dehombreux, Pierre
2018-05-01
Industrial concerns arise regarding the significant cost of cutting tools in machining process. In particular, their improper replacement policy can lead either to scraps, or to early tool replacements, which would waste fine tools. ISO 3685 provides the flank wear end-of-life criterion. Flank wear is also the nominal type of wear for longest tool lifetimes in optimal cutting conditions. Its consequences include bad surface roughness and dimensional discrepancies. In order to aid the replacement decision process, several tool condition monitoring techniques are suggested. Force signals were shown in the literature to be strongly linked with tools flank wear. It can therefore be assumed that force signals are highly relevant for monitoring the condition of cutting tools and providing decision-aid information in the framework of their maintenance and replacement. The objective of this work is to correlate tools flank wear with numerically computed force signals. The present work uses a Finite Element Model with a Coupled Eulerian-Lagrangian approach. The geometry of the tool is changed for different runs of the model, in order to obtain results that are specific to a certain level of wear. The model is assessed by comparison with experimental data gathered earlier on fresh tools. Using the model at constant cutting parameters, force signals under different tool wear states are computed and provide force signals for each studied tool geometry. These signals are qualitatively compared with relevant data from the literature. At this point, no quantitative comparison could be performed on worn tools because the reviewed literature failed to provide similar studies in this material, either numerical or experimental. Therefore, further development of this work should include experimental campaigns aiming at collecting cutting forces signals and assessing the numerical results that were achieved through this work.
Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.
2011-01-01
Oscillations observed in the load–displacement response of brittle interfaces modeled by cohesive zone elements in a quasi-static finite element framework are artifacts of the discretization. The typical limit points in this oscillatory path can be traced by application of path-following techniques,
International Nuclear Information System (INIS)
Su Tingzhi; Guan Xiaohong; Tang Yulin; Gu Guowei; Wang Jianmin
2010-01-01
Toxic anionic elements such as arsenic, selenium, and vanadium often co-exist in groundwater. These elements may impact each other when adsorption methods are used to remove them. In this study, we investigated the competitive adsorption behavior of As(V), Se(IV), and V(V) onto activated alumina under different pH and surface loading conditions. Results indicated that these anionic elements interfered with each other during adsorption. A speciation-based model was developed to quantify the competitive adsorption behavior of these elements. This model could predict the adsorption data well over the pH range of 1.5-12 for various surface loading conditions, using the same set of adsorption constants obtained from single-sorbate systems. This model has great implications in accurately predicting the field capacity of activated alumina under various local water quality conditions when multiple competitive anionic elements are present.
International Nuclear Information System (INIS)
Ringwelski, S; Gabbert, U
2010-01-01
A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element–boundary element model is derived by introducing coupling conditions at the fluid–fluid and fluid–structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural–acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element–boundary element model shows a good agreement
Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel
2017-09-15
Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (E MREE =0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin
2012-01-01
. With the number of modules in the three axial directions defined, wall and floor panels are constructed, placed and coupled in the global model. The core of this modular finite element model consists of connecting the different panels to each other in a rational manner, where the accuracy is as high as possible......, with as many applications as possible, for the least possible computational cost. The coupling method of the structural panels in the above mentioned modular finite element model is in this paper discussed and evaluated. The coupling of the panels are performed using the commercial finite element program....... In this way a well-defined master geometry is present onto which all panels can be tied. But as the skeleton is an element itself, it will have a physical mass and a corresponding stiffness to be included in the linear system of equations. This means that the skeleton will influence the structure...
Templeton, D.M.; Ariese, F.; Cornelis, R.; Danielsson, L.G.; Muntau, H.; Leeuwen, van H.P.; Lobínski, R.
2000-01-01
This paper presents definitions of concepts related to speciation of elements, more particularly speciation analysis and chemical species. Fractionation is distinguished from speciation analysis, and a general outline of fractionation procedures is given. We propose a categorization of species
Nicholson, Caroline; Hepworth, Julie; Burridge, Letitia; Marley, John; Jackson, Claire
2018-01-31
Against a paucity of evidence, a model describing elements of health governance best suited to achieving integrated care internationally was developed. The aim of this study was to explore how health meso-level organisations used, or planned to use, the governance elements. A case study design was used to offer two contrasting contexts of health governance. Semi-structured interviews were conducted with participants who held senior governance roles. Data were thematically analysed to identify if the elements of health governance were being used, or intended to be in the future. While all participants agreed that the ten elements were essential to developing future integrated care, most were not used. Three major themes were identified: (1) organisational versus system focus, (2) leadership and culture, and, (3) community (dis)engagement. Several barriers and enablers to the use of the elements were identified and would require addressing in order to make evidence-based changes. Despite a clear international policy direction in support of integrated care this study identified a number of significant barriers to its implementation. The study reconfirmed that a focus on all ten elements of health governance is essential to achieve integrated care.
International Nuclear Information System (INIS)
Khalil, S.R.
1980-02-01
Instrumental neutron activation analysis was used to study the distribution and fate of up to 36 elements in the Solvent Refined Coal Process Pilot Plant located at Fort Lewis, Washington. The elements Ti, V, Mg, Ca, Al, Cl, Mn, As, Br, Na, K, Sm, La, Ga, Cu, Sb, Se, Hg, Ni, Co, Cr, Fe, Rb, Cs, Sc, Tb, Eu, Ce, Sr, Ba, Th, U, Hf, Ta, Zr and Zn were measured in feed coal, insoluble residues, process solvent, process and effluent waters, by-product sulfur, SRC-I solid product, liquid-liquid separator oils and SRC-II liquid products. The material balance was calculated for each element from the concentration data and yields of each process fraction for both the SRC-I and SRC-II processes. Except for Ti, Cl and Br in the SRC-I mode and Hg in the SRC-II mode, each element was substantially lower in the SRC products than in the original feed coal. Residues from the process contained more than 80% of the trace element content found in the coal, except for Hg. More than 98.5% of the total contents of K and Fe in coal were retained in the insoluble residues. Elements such as Hg, Se, As and Sb can form volatile compounds (such as Hg 0 , H 2 Se, AsH 3 and SbH 3 ) stable under the process conditions. The high enhancement factors of Se (957), As (202) and Sb (27.4) in the aqueous phase of the separator water compared to that of the oil are evidence for the formation of volatile species which are more soluble in water than in the oil phase
Ülker, Erkan; Turanboy, Alparslan
2009-07-01
The block stone industry is one of the main commercial use of rock. The economic potential of any block quarry depends on the recovery rate, which is defined as the total volume of useful rough blocks extractable from a fixed rock volume in relation to the total volume of moved material. The natural fracture system, the rock type(s) and the extraction method used directly influence the recovery rate. The major aims of this study are to establish a theoretical framework for optimising the extraction process in marble quarries for a given fracture system, and for predicting the recovery rate of the excavated blocks. We have developed a new approach by taking into consideration only the fracture structure for maximum block recovery in block quarries. The complete model uses a linear approach based on basic geometric features of discontinuities for 3D models, a tree structure (TS) for individual investigation and finally a genetic algorithm (GA) for the obtained cuboid volume(s). We tested our new model in a selected marble quarry in the town of İscehisar (AFYONKARAHİSAR—TURKEY).
Jantarasaengaram, Surasak; Vairojanavong, Kittipong
2010-09-15
Theoretically, a cross-sectional image of any cardiac planes can be obtained from a STIC fetal heart volume dataset. We described a method to display 11 fetal echocardiographic planes from STIC volumes. Fetal heart volume datasets were acquired by transverse acquisition from 200 normal fetuses at 15 to 40 weeks of gestation. Analysis of the volume datasets using the described technique to display 11 echocardiographic planes in the multiplanar display mode were performed offline. Volume datasets from 18 fetuses were excluded due to poor image resolution. The mean visualization rates for all echocardiographic planes at 15-17, 18-22, 23-27, 28-32 and 33-40 weeks of gestation fetuses were 85.6% (range 45.2-96.8%, N = 31), 92.9% (range 64.0-100%, N = 64), 93.4% (range 51.4-100%, N = 37), 88.7%(range 54.5-100%, N = 33) and 81.8% (range 23.5-100%, N = 17) respectively. Overall, the applied technique can favorably display the pertinent echocardiographic planes. Description of the presented method provides a logical approach to explore the fetal heart volumes.
3D Discrete element approach to the problem on abutment pressure in a gently dipping coal seam
Klishin, S. V.; Revuzhenko, A. F.
2017-09-01
Using the discrete element method, the authors have carried out 3D implementation of the problem on strength loss in surrounding rock mass in the vicinity of a production heading and on abutment pressure in a gently dripping coal seam. The calculation of forces at the contacts between particles accounts for friction, rolling resistance and viscosity. Between discrete particles modeling coal seam, surrounding rock mass and broken rocks, an elastic connecting element is introduced to allow simulating coherent materials. The paper presents the kinematic patterns of rock mass deformation, stresses in particles and the graph of the abutment pressure behavior in the coal seam.
Directory of Open Access Journals (Sweden)
Farhat Ghada
2008-04-01
Full Text Available Abstract Background Recent advances in genomics, proteomics, and the increasing demands for biomarker validation studies have catalyzed changes in the landscape of cancer research, fueling the development of tissue banks for translational research. A result of this transformation is the need for sufficient quantities of clinically annotated and well-characterized biospecimens to support the growing needs of the cancer research community. Clinical annotation allows samples to be better matched to the research question at hand and ensures that experimental results are better understood and can be verified. To facilitate and standardize such annotation in bio-repositories, we have combined three accepted and complementary sets of data standards: the College of American Pathologists (CAP Cancer Checklists, the protocols recommended by the Association of Directors of Anatomic and Surgical Pathology (ADASP for pathology data, and the North American Association of Central Cancer Registry (NAACCR elements for epidemiology, therapy and follow-up data. Combining these approaches creates a set of International Standards Organization (ISO – compliant Common Data Elements (CDEs for the mesothelioma tissue banking initiative supported by the National Institute for Occupational Safety and Health (NIOSH of the Center for Disease Control and Prevention (CDC. Methods The purpose of the project is to develop a core set of data elements for annotating mesothelioma specimens, following standards established by the CAP checklist, ADASP cancer protocols, and the NAACCR elements. We have associated these elements with modeling architecture to enhance both syntactic and semantic interoperability. The system has a Java-based multi-tiered architecture based on Unified Modeling Language (UML. Results Common Data Elements were developed using controlled vocabulary, ontology and semantic modeling methodology. The CDEs for each case are of different types: demographic
Czech Academy of Sciences Publication Activity Database
Pavlů, J.; Řehák, Petr; Vřešťál, Jan; Šob, Mojmír
2015-01-01
Roč. 51, č. 1 (2015), s. 161-171 ISSN 0364-5916 Institutional support: RVO:68081723 Keywords : Einstein temperature * Heat capacity * Low temperature * Pure elements * SGTE data * Zero Kelvin Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.129, year: 2015
Czech Academy of Sciences Publication Activity Database
Janoušek, V.; Navrátil, Tomáš; Trubač, J.; Strnad, J.; Laufek, F.; Minařík, Luděk
2014-01-01
Roč. 65, č. 4 (2014), s. 257-271 ISSN 1335-0552 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : modal analyses * trace-element residence * ICP -MS * Central Bohemian Plutonic Complex * Říčany granite Subject RIV: DD - Geochemistry Impact factor: 0.761, year: 2014
International Nuclear Information System (INIS)
Cozer, Thamara C.; Conceicao, Andre L.C.; Paschuk, Sergei A.; Rocha, Anna S.S. da; Fagundes, Alana C.F.; Maciel, Karla F.R.; Pimentel, Gustavo R.O.; Badelli, Juliana C.
2015-01-01
Studies performed with canines indicate that one of the main neoplasia which affect these animals are the breast tumors, representing from 25% to 50% of all kinds of tumors. Moreover, half of them are classified as malignant. In this sense, recent researches on humans have been associated the presence of certain trace elements with the development of breast neoplasia in those individuals. Then, as the breast tissue composition in canines is very similar to the humans, it is expected the same behavior. In this direction, a very effective technique to identify and to determinate trace elements concentration is the EDXRF. However, studies on this area are scarce in the literature. Therefore, in this work it was developed an approach to quantify the main trace elements present into these tumors with high sensitivity. For this purpose, it was determined calibration curves of standards samples diluted in water, with concentrations of Ca, Fe, Cu and Zn, ranging from 400mg/kg to 35mg/kg, from 20mg/kg to 2mg/kg, from 10mg/kg to 1mg/kg and from 100mg/kg to 10mg/kg, respectively. All calibration curves were linearly fitted and on basis in this behavior it was determined the sensitivity of our approach to quantify the concentration of the trace elements mentioned above. In addition, it is important to mention that studies in this area are of great potential, because EDXRF represents a quickly practical and non-destructive alternative to quantify trace elements. (author)
Energy Technology Data Exchange (ETDEWEB)
Cozer, Thamara C.; Conceicao, Andre L.C.; Paschuk, Sergei A.; Rocha, Anna S.S. da; Fagundes, Alana C.F.; Maciel, Karla F.R.; Pimentel, Gustavo R.O.; Badelli, Juliana C., E-mail: thamara.cozer@gmail.com, E-mail: alconceicao@utfpr.edu.br, E-mail: sergei@utfpr.edu.br, E-mail: anna@utfpr.edu.br, E-mail: alanacarolinef@gmail.com, E-mail: karla_rimanski@hotmail.com, E-mail: g_rop@hotmail.com, E-mail: jubadellin@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Lab. de Espectroscopia de Raio-X
2015-07-01
Studies performed with canines indicate that one of the main neoplasia which affect these animals are the breast tumors, representing from 25% to 50% of all kinds of tumors. Moreover, half of them are classified as malignant. In this sense, recent researches on humans have been associated the presence of certain trace elements with the development of breast neoplasia in those individuals. Then, as the breast tissue composition in canines is very similar to the humans, it is expected the same behavior. In this direction, a very effective technique to identify and to determinate trace elements concentration is the EDXRF. However, studies on this area are scarce in the literature. Therefore, in this work it was developed an approach to quantify the main trace elements present into these tumors with high sensitivity. For this purpose, it was determined calibration curves of standards samples diluted in water, with concentrations of Ca, Fe, Cu and Zn, ranging from 400mg/kg to 35mg/kg, from 20mg/kg to 2mg/kg, from 10mg/kg to 1mg/kg and from 100mg/kg to 10mg/kg, respectively. All calibration curves were linearly fitted and on basis in this behavior it was determined the sensitivity of our approach to quantify the concentration of the trace elements mentioned above. In addition, it is important to mention that studies in this area are of great potential, because EDXRF represents a quickly practical and non-destructive alternative to quantify trace elements. (author)
DEFF Research Database (Denmark)
Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter
2017-01-01
associated with non-planar interfaces between agglomerates, the coarse velocity space has guaranteed approximation properties. The employed AMGe technique provides coarse spaces with desirable local mass conservation and stability properties analogous to the original pair of Raviart-Thomas and piecewise......We study the application of a finite element numerical upscaling technique to the incompressible two-phase porous media total velocity formulation. Specifically, an element agglomeration based Algebraic Multigrid (AMGe) technique with improved approximation proper ties [37] is used, for the first...... discontinuous polynomial spaces, resulting in strong mass conservation for the upscaled systems. Due to the guaranteed approximation properties and the generic nature of the AMGe method, recursive multilevel upscaling is automatically obtained. Furthermore, this technique works for both structured...
El-Zein, Abbas; Carter, John P.; Airey, David W.
2006-06-01
A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.
Optical phonons in cubic AlxGa1-xN approached by the modified random element isodisplacement model
International Nuclear Information System (INIS)
Liu, M.S.; Bursill, L.A.; Prawer, S.
1998-01-01
The behaviour of longitudinal and transverse optical phonons in cubic Al x Ga l-x N are derived theoretically as a function of the concentration x (0≤x≤1). The calculation is based on a Modified Random Element Isodisplacement model which considers the interactions from the nearest neighbor and second neighbor atoms. We find one-mode behavior in Al x Ga l-x N where the phonon frequency in general varies continuously and approximately linearly with x. (author)
International Nuclear Information System (INIS)
Thien, Bruno M.J.; Kulik, Dmitrii A.; Curti, Enzo
2014-01-01
Highlights: • There are several models able to describe trace element partitioning in growing minerals. • To describe complex systems, those models must be embedded in a geochemical code. • We merged two models into a unified one suitable for implementation in a geochemical code. • This unified model was tested against coprecipitation experimental data. • We explored how our model reacts to solution depletion effects. - Abstract: Thermodynamics alone is usually not sufficient to predict growth-rate dependencies of trace element partitioning into host mineral solid solutions. In this contribution, two uptake kinetic models were analyzed that are promising in terms of mechanistic understanding and potential for implementation in geochemical modelling codes. The growth Surface Entrapment Model (Watson, 2004) and the Surface Reaction Kinetic Model (DePaolo, 2011) were shown to be complementary, and under certain assumptions merged into a single analytical expression. This Unified Uptake Kinetics Model was implemented in GEMS3K and GEM-Selektor codes ( (http://gems.web.psi.ch)), a Gibbs energy minimization package for geochemical modelling. This implementation extends the applicability of the unified uptake kinetics model to accounting for non-trivial factors influencing the trace element partitioning into solid solutions, such as the changes in aqueous solution composition and speciation, or the depletion effects in closed geochemical systems
An approach to unfold the response of a multi-element system using an artificial neural network
International Nuclear Information System (INIS)
Cordes, E.; Fehrenbacher, G.; Schuetz, R.; Sprunck, M.; Hahn, K.; Hofmann, R.; Wahl, W.
1998-01-01
An unfolding procedure is proposed which aims at obtaining spectral information of a neutron radiation field by the analysis of the response of a multi-element system consisting of converter type semiconductors. For the unfolding procedure an artificial neural network (feed forward network), trained by the back-propagation method, was used. The response functions of the single elements to neutron radiation were calculated by application of a computational model for an energy range from 10 -2 eV to 10 MeV. The training of the artificial neural network was based on the computation of responses of a six-element system for a set of 300 neutron spectra and the application of the back-propagation method. The validation was performed by the unfolding of 100 computed responses. Two unfolding examples were pointed out for the determination of the neutron spectra. The spectra resulting from the unfolding procedure agree well with the original spectra used for the response computation
International Nuclear Information System (INIS)
Wanty, R.B.; Langmuir, D.; Chatham, J.R.
1981-08-01
This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging
Energy Technology Data Exchange (ETDEWEB)
Wanty, R.B.; Langmuir, D.; Chatham, J.R.
1981-08-01
This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging.
1980-01-01
good decisions. What usually prevents him from implementing those rational decisions is either an overstrong conflict, leading to behavioural paralysis...of Prosocial Behaviour in the group situation. It assumes a typology of people, and attempts to show sequentially how people are influenced in their...COVERED CURRENT SCIENTIFIC APPROACHES TO DECISION MAKING IN COMPLEX SYSTEMS: III. Volume I, Conference Proceedings 6. PERFORMING ORG. REPORT NUMBER 7
International Nuclear Information System (INIS)
1974-01-01
The Environmental Protection Agency embarked on a program to evaluate the environmental impact of the transuranium elements and to consider whether further guidelines or standards are needed to assure adequate protection of the general ambient environment and of the public health from potential contamination of the environment by radionuclides of these elements. Public hearings were held in Washington, D. C., and Denver, Colorado, to gather information regarding the public and social implications of plutonium utilization; the factors involved in the balancing of costs vs benefits; dosimetry, health, and environmental effects; environmental levels and pathways; applications using plutonium; and control and cleanup technology. The proceedings of the hearing in Washington, D. C., Dec. 10-11, 1974, are presented. Data are included on current and potential sources of transuranium elements in the environment; animal studies on the tissue distribution of 233 U, 237 Np, 238 Pu, 239 Pu, 241 Am, 244 Cm, 249 Bk, 252 Cf, and 253 Es and pathological effects of body burdens of these radionuclides; and data on the health status of personnel known to have body burdens of 238 Pu or 239 Pu acquired during acute or chronic exposure, many of them over 30 years previously. It is pointed out that the lack of demonstrable biological effects of Pu in man provides presumptive evidence that the radiation protection standards in effect are adequate. (U.S.)
International Nuclear Information System (INIS)
2013-12-01
The first volume presents the climate issue as a world issue as well as a local issue (historic context of adaptation to climate change effects, legal obligation for local communities, indicators of direct and indirect effects of climate change, economic impacts), and presents adaptation as a way of action at a local level (definition of a strategy, articulation between works on greenhouse gas emissions and those on adaptation, actions to be implemented, action follow-up and adjustment). The second volume describes how to communicate and talk about climate change, and more specifically about the above-mentioned issues (reality of climate change, indirect and direct effects, obligations and responsibilities for local communities, economic impacts). It addresses the issue of climate change in the Rhone-Alpes region: adaptation within the regional scheme on climate, air and energy (SRCAE), role of local communities. It presents an action methodology: to inform and organise, to prepare the mobilisation of actors, to prepare the territory vulnerability diagnosis, to define the adaptation strategy, and to implement, follow-up and assess the action. The third volume proposes a set of sheets containing scientific information and data related to climate change: factors of climate variability, current global warming, greenhouse gases and aerosols, physical-chemical principles involved in greenhouse effect, carbon sinks and carbon sources, effects of land assignment and agriculture, combined effects of mankind actions on the atmosphere, climate change and oceans, climate change and cryo-sphere, climate change and biodiversity, extreme meteorological and climate events and their consequences
Directory of Open Access Journals (Sweden)
Petr Koňas
2009-01-01
Full Text Available The work summarizes created algorithms for formation of finite element (FE mesh which is derived from bitmap pattern. Process of registration, segmentation and meshing is described in detail. C++ library of STL from Insight Toolkit (ITK Project together with Visualization Toolkit (VTK were used for base processing of images. Several methods for appropriate mesh output are discussed. Multiplatform application WOOD3D for the task under GNU GPL license was assembled. Several methods of segmentation and mainly different ways of contouring were included. Tetrahedral and rectilinear types of mesh were programmed. Improving of mesh quality in some simple ways is mentioned. Testing and verification of final program on wood anatomy samples of spruce and walnut was realized. Methods of microscopic anatomy samples preparation are depicted. Final utilization of formed mesh in the simple structural analysis was performed.The article discusses main problems in image analysis due to incompatible colour spaces, samples preparation, thresholding and final conversion into finite element mesh. Assembling of mentioned tasks together and evaluation of the application are main original results of the presented work. In presented program two thresholding filters were used. By utilization of ITK two following filters were included. Otsu filter based and binary filter based were used. The most problematic task occurred in a production of wood anatomy samples in the unique light conditions with minimal or zero colour space shift and the following appropriate definition of thresholds (corresponding thresholding parameters and connected methods (prefiltering + registration which influence the continuity and mainly separation of wood anatomy structure. Solution in samples staining is suggested with the following quick image analysis realization. Next original result of the work is complex fully automated application which offers three types of finite element mesh
International Nuclear Information System (INIS)
Hirose, Yasuo.
1982-01-01
Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)
Barrett, John W.; Garcke, Harald; Nürnberg, Robert
2017-01-01
A finite element method for the evolution of a two-phase membrane in a sharp interface formulation is introduced. The evolution equations are given as an $L^2$--gradient flow of an energy involving an elastic bending energy and a line energy. In the two phases Helfrich-type evolution equations are prescribed, and on the interface, an evolving curve on an evolving surface, highly nonlinear boundary conditions have to hold. Here we consider both $C^0$-- and $C^1$--matching conditions for the su...
Just-in-Time Training for High-Risk Low-Volume Therapies: An Approach to Ensure Patient Safety.
Helman, Stephanie; Lisanti, Amy Jo; Adams, Ann; Field, Cynthia; Davis, Katherine Finn
2016-01-01
High-risk low-volume therapies are those therapies that are practiced infrequently and yet carry an increased risk to patients because of their complexity. Staff nurses are required to competently manage these therapies to treat patients' unique needs and optimize outcomes; however, maintaining competence is challenging. This article describes implementation of Just-in-Time Training, which requires validation of minimum competency of bedside nurses managing high-risk low-volume therapies through direct observation of a return-demonstration competency checklist.
Alter, P; Rupp, H; Rominger, M B; Klose, K J; Maisch, B
2008-01-01
In experimental animals, cardiac work is derived from pressure-volume area and analyzed further using stress-length relations. Lack of methods for determining accurately myocardial mass has until now prevented the use of stress-length relations in patients. We hypothesized, therefore, that not only pressure-volume loops but also stress-length diagrams can be derived from cardiac volume and cardiac mass as assessed by cardiac magnetic resonance imaging (CMR) and invasively measured pressure. Left ventricular (LV) volume and myocardial mass were assessed in seven patients with aortic valve stenosis (AS), eight with dilated cardiomyopathy (DCM), and eight controls using electrocardiogram (ECG)-gated CMR. LV pressure was measured invasively. Pressure-volume curves were calculated based on ECG triggering. Stroke work was assessed as area within the pressure-volume loop. LV wall stress was calculated using a thick-wall sphere model. Similarly, stress-length loops were calculated to quantify stress-length-based work. Taking the LV geometry into account, the normalization with regard to ventricular circumference resulted in "myocardial work." Patients with AS (valve area 0.73+/-0.18 cm(2)) exhibited an increased LV myocardial mass when compared with controls (Pwork of AS was unchanged when compared with controls (0.539+/-0.272 vs 0.621+/-0.138 Nm, not significant), whereas DCM exhibited a significant depression (0.367+/-0.157 Nm, Pwork was significantly reduced in both AS and DCM when compared with controls (129.8+/-69.6, 200.6+/-80.1, 332.2+/-89.6 Nm/m(2), Pmethodological approach of using CMR and invasive pressure measurement. Myocardial work was reduced in patients with DCM and noteworthy also in AS, while stroke work was reduced in DCM only. Most likely, deterioration of myocardial work is crucial for the prognosis. It is suggested to include these basic physiological procedures in the clinical assessment of the pump function of the heart.
Energy Technology Data Exchange (ETDEWEB)
Takata, Hyoe, E-mail: takata@kaiseiken.or.jp [Marine Ecology Research Institute, Central Laboratory, Onjuku, Chiba (Japan); National Institute of Radiological Sciences, Chiba City, Chiba (Japan); Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo [National Institute of Radiological Sciences, Chiba City, Chiba (Japan)
2016-02-01
In numerical models to simulate the dispersion of anthropogenic radionuclides in the marine environment, the sediment–seawater distribution coefficient (K{sub d}) for various elements is an important parameter. In coastal regions, K{sub d} values are largely dependent on hydrographic conditions and physicochemical characteristics of sediment. Here we report K{sub d} values for 36 elements (Na, Mg, Al, K, Ca, V, Mn, Fe, Co, Ni, Cu, Se, Rb, Sr, Y, Mo, Cd, I, Cs, rare earth elements, Pb, {sup 232}Th and {sup 238}U) in seawater and sediment samples from 19 Japanese coastal regions, and we examine the factors controlling the variability of these K{sub d} values by investigating their relationships to hydrographic conditions and sediment characteristics. There was large variability in K{sub d} values for Al, Mn, Fe, Co, Ni, Cu, Se, Cd, I, Pb and Th. Variations of K{sub d} for Al, Mn, Fe, Co, Pb and Th appear to be controlled by hydrographic conditions. Although K{sub d} values for Ni, Cu, Se, Cd and I depend mainly on grain size, organic matter content, and the concentrations of hydrous oxides/oxides of Fe and Mn in sediments, heterogeneity in the surface characteristics of sediment particles appears to hamper evaluation of the relative importance of these factors. Thus, we report a new approach to evaluate the factors contributing to variability in K{sub d} for an element. By this approach, we concluded that the K{sub d} values for Cu, Se, Cd and I are controlled by grain size and organic matter in sediments, and the K{sub d} value for Ni is dependent on grain size and on hydrous oxides/oxides of Fe and Mn. - Highlights: • K{sub d}s for 36 elements were determined in 19 Japanese coastal regions. • K{sub d}s for several elements appeared to be controlled by multiple factors in sediments. • We evaluated these factors based on physico-chemical characteristics of sediments.
Bridge element deterioration rates.
2008-10-01
This report describes the development of bridge element deterioration rates using the NYSDOT : bridge inspection database using Markov chains and Weibull-based approaches. It is observed : that Weibull-based approach is more reliable for developing b...
Energy Technology Data Exchange (ETDEWEB)
Renn, O
1981-01-01
Volume 1 gives an introduction to the scope of this social analysis of the nuclear energy problem; it reviews the state-of-the-art of social research in this field and presents the theoretical and terminological concept and its form of operationalization.
Volume overload cleanup: An approach for on-line SPE-GC, GPC-GC, and GPC-SPE-GC
Kerkdijk, H.; Mol, H.G.J.; Nagel, B. van der
2007-01-01
A new concept for cleanup, based on volume overloading of the cleanup column, has been developed for on-line coupling of gel permeation chromatography (GPC), solid-phase extraction (SPE), or both, to gas chromatography (GC). The principle is outlined and the applicability demonstrated by the
Kiriktas, Halit; Sahin, Mehmet; Eslek, Sinan; Kiriktas, Irem
2018-01-01
This study aims to design a mechanism with which the density of any solid or liquid can be determined without measuring its mass and volume in order to help students comprehend the concept of density more easily. The "solidensimeter" comprises of two scaled and nested glass containers (graduated cylinder or beaker) and sufficient water.…
Carlos Alberto Silva; Carine Klauberg; Andrew T. Hudak; Lee A. Vierling; Veraldo Liesenberg; Samuel P. C. e Carvalho; Luiz C. E. Rodriguez
2016-01-01
Improving management practices in industrial forest plantations may increase production efficiencies, thereby reducing pressures on native tropical forests for meeting global pulp needs. This study aims to predict stem volume (V) in plantations of fast-growing Eucalyptus hybrid clones located in southeast Brazil using field plot and airborne Light Detection...
Energy Technology Data Exchange (ETDEWEB)
Guney, Mert; Zagury, Gerald J., E-mail: gerald.zagury@polymtl.ca
2014-04-01
Highlights: • Risk for children up to 3 years-old was characterized considering oral exposure. • Saliva mobilization, ingestion of parts and of scraped-off material were considered. • Ingestion of parts caused hazard index (HI) values >>for Cd, Ni, and Pb exposure. • HI were lower (but > for saliva mobilization and <1 for scraped material ingestion. • Comprehensive approach aims to deal with drawbacks of current toy safety approaches. - Abstract: Contamination problem in jewelry and toys and children's exposure possibility have been previously demonstrated. For this study, risk from oral exposure has been characterized for highly contaminated metallic toys and jewelry ((MJ), n = 16) considering three scenarios. Total and bioaccessible concentrations of Cd, Cu, Ni, and Pb were high in selected MJ. First scenario (ingestion of parts or pieces) caused unacceptable risk for eight items for Cd, Ni, and/or Pb (hazard index (HI) > 1, up to 75, 5.8, and 43, respectively). HI for ingestion of scraped-off material scenario was always <1. Finally, saliva mobilization scenario caused HI > 1 in three samples (two for Cd, one for Ni). Risk characterization identified different potentially hazardous items compared to United States, Canadian, and European Union approaches. A comprehensive approach was also developed to deal with complexity and drawbacks caused by various toy/jewelry definitions, test methods, exposure scenarios, and elements considered in different regulatory approaches. It includes bioaccessible limits for eight priority elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb). Research is recommended on metals bioaccessibility determination in toys/jewelry, in vitro bioaccessibility test development, estimation of material ingestion rates and frequency, presence of hexavalent Cr and organic Sn, and assessment of prolonged exposure to MJ.
International Nuclear Information System (INIS)
Seaborg, G.T.; Loveland, W.D.
1990-01-01
This book is the 12th volume in a series on transuranium elements. Varied techniques for production of these elements, the methods used in the identification, and the exquisitely refined microchemical techniques required to deal wth samples sometimes involving only a few atoms are described in detail. The chapter on synthesis of the new elements is liberally laced with reminiscences of the proud progenitors as well as the criteria for the discovery of a new chemical element. The authors lament that the superheavy elements (elements in the region of atomic number 114) still elude detection even though their creation should be possible, and some, at least, should survive long enough to be detected. One chapter in the book is devoted to practical applictions of uranium, and the transuranic elements
Investigation of Drag Force on Fibres of Bonded Spherical Elements using a Coupled CFD-DEM Approach
DEFF Research Database (Denmark)
Jensen, Anna Lyhne; Sørensen, Henrik; Rosendahl, Lasse Aistrup
2016-01-01
Clogging in wastewater pumps is often caused by flexible, stringy objects. Therefore, simulation of clogging effects in wastewater pumps entails simulation of such flexible objects and the interaction between these objects and fluid in the pump. Using a coupled CFD-DEM approach, the flexible obje...
International Nuclear Information System (INIS)
Dogra, Sugandha; Singh, Jasveer; Lodh, Abhishek; Sharma, Nita Dilawar; Bandyopadhyay, A K
2011-01-01
This paper reports the behavior of a well-characterized pneumatic piston gauge in the pressure range up to 8 MPa through simulation using finite element method (FEM). Experimentally, the effective area of this piston gauge has been estimated by cross-floating to obtain A 0 and λ. The FEM technique addresses this problem through simulation and optimization with standard commercial software (ANSYS) where the material properties of the piston and cylinder, dimensional measurements, etc are used as the input parameters. The simulation provides the effective area A p as a function of pressure in the free deformation mode. From these data, one can estimate A p versus pressure and thereby A o and λ. Further, we have carried out a similar theoretical calculation of A p using the conventional method involving the Dadson's as well as Johnson–Newhall equations. A comparison of these results with the experimental results has been carried out
Dogra, Sugandha; Singh, Jasveer; Lodh, Abhishek; Dilawar Sharma, Nita; Bandyopadhyay, A. K.
2011-02-01
This paper reports the behavior of a well-characterized pneumatic piston gauge in the pressure range up to 8 MPa through simulation using finite element method (FEM). Experimentally, the effective area of this piston gauge has been estimated by cross-floating to obtain A0 and λ. The FEM technique addresses this problem through simulation and optimization with standard commercial software (ANSYS) where the material properties of the piston and cylinder, dimensional measurements, etc are used as the input parameters. The simulation provides the effective area Ap as a function of pressure in the free deformation mode. From these data, one can estimate Ap versus pressure and thereby Ao and λ. Further, we have carried out a similar theoretical calculation of Ap using the conventional method involving the Dadson's as well as Johnson-Newhall equations. A comparison of these results with the experimental results has been carried out.
Chegel, Raad; Behzad, Somayeh
2014-02-01
We have studied the electronic structure and dipole matrix element, D, of carbon nanotubes (CNTs) under magnetic field, using the third nearest neighbor tight binding model. It is shown that the 1NN and 3NN-TB band structures show differences such as the spacing and mixing of neighbor subbands. Applying the magnetic field leads to breaking the degeneracy behavior in the D transitions and creates new allowed transitions corresponding to the band modifications. It is found that |D| is proportional to the inverse tube radius and chiral angle. Our numerical results show that amount of filed induced splitting for the first optical peak is proportional to the magnetic field by the splitting rate ν11. It is shown that ν11 changes linearly and parabolicly with the chiral angle and radius, respectively.
DEFF Research Database (Denmark)
Hansen, Elo Harald; Miró, Manuel; Long, Xiangbao
2006-01-01
The determination of trace level concentrations of elements, such as metal species, in complex matrices by atomic absorption or emission spectrometric methods often require appropriate pretreatments comprising separation of the analyte from interfering constituents and analyte preconcentration...... are presented as based on the exploitation of micro-sequential injection (μSI-LOV) using hydrophobic as well as hydrophilic bead materials. The examples given comprise the presentation of a universal approach for SPE-assays, front-end speciation of Cr(III) and Cr(VI) in a fully automated and enclosed set...
Becker, P.; Idelsohn, S. R.; Oñate, E.
2015-06-01
This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.
Directory of Open Access Journals (Sweden)
M.A. Khanday
2015-10-01
Full Text Available The human body is a complex structure where the balance of mass and heat transport in all tissues is necessary for its normal functioning. The stabilities of intracellular and extracellular fluids are important physiological factors responsible for homoeostasis. To estimate the effects of thermal stress on the behavior of extracellular fluid concentration in human dermal regions, a mathematical model based on diffusion equation along with appropriate boundary conditions has been formulated. Atmospheric temperature, evaporation rate, moisture concentration and other factors affecting the fluid concentration were taken into account. The variational finite element approach has been employed to solve the model and the results were interpreted graphically.
Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas
2008-02-01
High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.
Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.
2007-01-01
In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of complex multi-fluid flows in which simultaneously (moving) deformable (drops or bubbles) and non-deformable (moving) elements (particles) are present, possibly with the additional presence of free surfaces.
Biagini, Francesca
2016-01-01
This book provides an introduction to elementary probability and to Bayesian statistics using de Finetti's subjectivist approach. One of the features of this approach is that it does not require the introduction of sample space – a non-intrinsic concept that makes the treatment of elementary probability unnecessarily complicate – but introduces as fundamental the concept of random numbers directly related to their interpretation in applications. Events become a particular case of random numbers and probability a particular case of expectation when it is applied to events. The subjective evaluation of expectation and of conditional expectation is based on an economic choice of an acceptable bet or penalty. The properties of expectation and conditional expectation are derived by applying a coherence criterion that the evaluation has to follow. The book is suitable for all introductory courses in probability and statistics for students in Mathematics, Informatics, Engineering, and Physics.
Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.
2017-01-01
Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis. PMID:28256587
International Nuclear Information System (INIS)
Tanuma, T.; Oneda, S.; Terasaki, K.
1984-01-01
A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes
Zhang, Chi; Fang, Xin; Qiu, Haopu; Li, Ning
2015-01-01
Real-time PCR amplification of mitochondria gene could not be used for DNA quantification, and that of single copy DNA did not allow an ideal sensitivity. Moreover, cross-reactions among similar species were commonly observed in the published methods amplifying repetitive sequence, which hindered their further application. The purpose of this study was to establish a short interspersed nuclear element (SINE)-based real-time PCR approach having high specificity for species detection that could be used in DNA quantification. After massive screening of candidate Sus scrofa SINEs, one optimal combination of primers and probe was selected, which had no cross-reaction with other common meat species. LOD of the method was 44 fg DNA/reaction. Further, quantification tests showed this approach was practical in DNA estimation without tissue variance. Thus, this study provided a new tool for qualitative detection of porcine component, which could be promising in the QC of meat products.
International Nuclear Information System (INIS)
Kirby, Anna M.; Coles, Charlotte E.; Yarnold, John R.
2010-01-01
Partial breast irradiation (PBI) is currently under investigation in several phase III trials and, following a recent consensus statement, its use off-study may increase despite ongoing uncertainty regarding optimal target volume definition. We review the clinical, pathological and technical evidence for target volume definition in external beam partial breast irradiation (EB-PBI). The optimal method of tumour bed (TB) delineation requires X-ray CT imaging of implanted excision cavity wall markers. The definition of clinical target volume (CTV) as TB plus concentric 15 mm margins is based on the anatomical distribution of multifocal and multicentric disease around the primary tumour in mastectomy specimens, and the clinical locations of local tumour relapse (LR) after breast conservation surgery. If the majority of LR originate from foci of residual invasive and/or intraduct disease in the vicinity of the TB after complete microscopic resection, CTV margin logically takes account of the position of primary tumour within the surgical resection specimen. The uncertain significance of independent primary tumours as sources of preventable LR, and of wound healing responses in stimulating LR, increases the difficulties in defining optimal CTV. These uncertainties may resolve after long-term follow-up of current PBI trials. By contrast, a commonly used 10 mm clinical to planning target volume (PTV) margin has a stronger evidence base, although departmental set-up errors need to be confirmed locally. A CTV-PTV margin >10 mm may be required in women with larger breasts and/or large seromas, whilst the role of image-guided radiotherapy with or without TB markers in reducing CTV-PTV margins needs to be explored.
Energy Technology Data Exchange (ETDEWEB)
Simmons, C.S.; Cole, C.R.
1985-05-01
This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs.
International Nuclear Information System (INIS)
Simmons, C.S.; Cole, C.R.
1985-05-01
This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs
Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J. Arturo
2012-01-01
The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time. Key points The source of reduction of swimming rescue time was researched. Time required to approach and to tow the victim while doing the flutter kick and the dolphin-kick with fins was analyzed. The propulsion generated by dolphin-kick did not make the approach and tow faster than the flutter kick. More difficult skill to realize of
Kiriktaş, Halit; Şahin, Mehmet; Eslek, Sinan; Kiriktaş, İrem
2018-05-01
This study aims to design a mechanism with which the density of any solid or liquid can be determined without measuring its mass and volume in order to help students comprehend the concept of density more easily. The solidensimeter comprises of two scaled and nested glass containers (graduated cylinder or beaker) and sufficient water. In this method, the density measurement was made using the Archimedes’ principle stating that an object fully submerged in a liquid displaces the same amount of liquid as its volume, while an object partially submerged or floating displaces the same amount of liquid as its mass. Using this method, the density of any solids or liquids can be determined using a simple mathematical ratio. At the end of the process a mechanism that helps students to comprehend the density topic more easily was designed. The system is easy-to-design, uses low-cost equipment and enables one to determine the density of any solid or liquid without measuring its mass and volume.
Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng
2008-08-01
Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.
Martínez-Fernández, Domingo; Bingöl, Deniz; Komárek, Michael
2014-07-15
Two experiments were carried out to study the competition for adsorption between trace elements (TEs) and nutrients following the application of nano-maghemite (NM) (iron nano-oxide; Fe2O3) to a soil solution (the 0.01molL(-1) CaCl2 extract of a TEs-contaminated soil). In the first, the nutrients K, N, and P were added to create a set of combinations: potential availability of TEs during their interaction with NM and nutrients were studied. In the second, response surface methodology was used to develop predictive models by central composite design (CCD) for competition between TEs and the nutrients K and N for adsorption onto NM. The addition of NM to the soil solution reduced specifically the concentrations of available As and Cd, but the TE-adsorption capacity of NM decreased as the P concentration increased. The CCD provided more concise and valuable information, appropriate to estimate the behavior of NM sequestering TEs: according to the suggested models, K(+) and NH4(+) were important factors for Ca, Fe, Mg, Mn, Na, and Zn adsorption (Radj(2)=95%, except for Zn with Radj(2)=87%). The obtained information and models can be used to predict the effectiveness of NM for the stabilization of TEs, crucial during the phytoremediation of contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei
2018-01-01
Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis. © 2018 The Author(s).
International Nuclear Information System (INIS)
Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn
2012-01-01
This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)
International Nuclear Information System (INIS)
Chao, K.S. Clifford; Bhide, Shreerang FRCR; Chen, Hansen; Asper, Joshua PAC; Bush, Steven; Franklin, Gregg; Kavadi, Vivek; Liengswangwong, Vichaivood; Gordon, William; Raben, Adam; Strasser, Jon; Koprowski, Christopher; Frank, Steven; Chronowski, Gregory; Ahamad, Anesa; Malyapa, Robert; Zhang Lifei; Dong Lei
2007-01-01
Purpose: To determine whether a computer-assisted target volume delineation (CAT) system using a deformable image registration approach can reduce the variation of target delineation among physicians with different head and neck (HN) IMRT experiences and reduce the time spent on the contouring process. Materials and Methods: We developed a deformable image registration method for mapping contours from a template case to a patient case with a similar tumor manifestation but different body configuration. Eight radiation oncologists with varying levels of clinical experience in HN IMRT performed target delineation on two HN cases, one with base-of-tongue (BOT) cancer and another with nasopharyngeal cancer (NPC), by first contouring from scratch and then by modifying the contours deformed by the CAT system. The gross target volumes were provided. Regions of interest for comparison included the clinical target volumes (CTVs) and normal organs. The volumetric and geometric variation of these regions of interest and the time spent on contouring were analyzed. Results: We found that the variation in delineating CTVs from scratch among the physicians was significant, and that using the CAT system reduced volumetric variation and improved geometric consistency in both BOT and NPC cases. The average timesaving when using the CAT system was 26% to 29% for more experienced physicians and 38% to 47% for the less experienced ones. Conclusions: A computer-assisted target volume delineation approach, using a deformable image-registration method with template contours, was able to reduce the variation among physicians with different experiences in HN IMRT while saving contouring time
Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.
2016-04-01
X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.
International Nuclear Information System (INIS)
Pavlov, S.S.; Dmitriev, A.Yu.; Chepurchenko, I.A.; Frontas'eva, M.V.
2014-01-01
The automation system for measurement of induced activity of gamma-ray spectra for multi-element high-volume neutron activation analysis (NAA) was designed, developed and implemented at the IBR-2 reactor. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis linear positioning module M202A by DriveSet (DriveSet.de) company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec (systec.de) company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database. The system is unique and can be recommended for other laboratories as one of the possible ways of the NAA integrated automation
1998-01-01
many-body interactions. Then, hamiltonian (3) is reduced to: H = X PAT + Zfica + Tvc (c* aCca + C*aCva )] (5a) where --V2+V,(F) + V2(r) -^V2 +Vx{r...correction due to charge fluctuations is now represented by the Mulliken charge dependent contribution H^v to the matrix elements ffM „. As in
Standard elements; Elements standards
Energy Technology Data Exchange (ETDEWEB)
Blanc, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
Following his own experience the author recalls the various advantages, especially in the laboratory, of having pre-fabricated vacuum-line components at his disposal. (author) [French] A la suite de sa propre experience, l'auteur veut rappeler les divers avantages que presente, tout particulierement en laboratoire, le fait d'avoir a sa disposition des elements pre-fabriques de canalisations a vide. (auteur)
Dim, Chidozie Izuchukwu Princeton; Onuoha, K. Mosto; Okeugo, Chukwudike Gabriel; Ozumba, Bertram Maduka
2017-06-01
Sequence stratigraphic studies have been carried out using subsurface well and 2D seismic data in the Late Cretaceous and Early Paleogene sediments of Anambra and proximal onshore section of Niger Delta Basin in the Southeastern Nigeria. The aim was to establish the stratigraphic framework for better understanding of the reservoir, source and seal rock presence and distribution in the basin. Thirteen stratigraphic bounding surfaces (consisting of six maximum flooding surfaces - MFSs and seven sequence boundaries - SBs) were recognized and calibrated using a newly modified chronostratigraphic chart. Stratigraphic surfaces were matched with corresponding foraminiferal and palynological biozones, aiding correlation across wells in this study. Well log sequence stratigraphic correlation reveals that stratal packages within the basin are segmented into six depositional sequences occurring from Late Cretaceous to Early Paleogene age. Generated gross depositional environment maps at various MFSs show that sediment packages deposited within shelfal to deep marine settings, reflect continuous rise and fall of sea levels within a regressive cycle. Each of these sequences consist of three system tracts (lowstand system tract - LST, transgressive system tract - TST and highstand system tract - HST) that are associated with mainly progradational and retrogradational sediment stacking patterns. Well correlation reveals that the sand and shale units of the LSTs, HSTs and TSTs, that constitute the reservoir and source/seal packages respectively are laterally continuous and thicken basinwards, due to structural influences. Result from interpretation of seismic section reveals the presence of hanging wall, footwall, horst block and collapsed crest structures. These structural features generally aid migration and offer entrapment mechanism for hydrocarbon accumulation. The combination of these reservoirs, sources, seals and trap elements form a good petroleum system that is viable
Georgiou, Andrew; Westbrook, Johanna I; Braithwaite, Jeffrey
2012-07-12
The purpose of this paper is to illustrate the Elementally Entangled Organisational Communication (EEOC) framework by drawing on a set of three case studies which assessed the impact of new Health Information Technology (HIT) on a pathology service. The EEOC framework was empirically developed as a tool to tackle organisational communication challenges in the implementation and evaluation of health information systems. The framework was synthesised from multiple research studies undertaken across a major metropolitan hospital pathology service during the period 2005 to 2008. These studies evaluated the impact of new HIT systems in pathology departments (Laboratory Information System) and an Emergency Department (Computerised Provider Order Entry) located in Sydney, Australia. Key dimensions of EEOC are illustrated by the following case studies: 1) the communication infrastructure between the Blood Bank and the ward for the coordination and distribution of blood products; 2) the organisational environment in the Clinical Chemistry and Haematology departments and their attempts to organise, plan and control the processing of laboratory specimens; and 3) the temporal make up of the organisation as revealed in changes to the way the Central Specimen Reception allocated, sequenced and synchronised work tasks. The case studies not only highlight the pre-existing communication architecture within the organisation but also the constitutive role communication plays in the way organisations go about addressing their requirements. HIT implementation involves a mutual transformation of the organisation and the technology. This is a vital consideration because of the dangers associated with poor organisational planning and implementation of HIT, and the potential for unintended adverse consequences, workarounds and risks to the quality and safety of patient care. The EEOC framework aims to account for the complex range of contextual factors and triggers that play a role in the
Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig
2017-12-01
Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.
Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig
2018-05-01
Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.
International Nuclear Information System (INIS)
2004-07-01
For several decades, countries have made use of near surface facilities for the disposal of low and intermediate level radioactive waste. In line with the internationally agreed principles of radioactive waste management, the safety of these facilities needs to be ensured during all stages of their lifetimes, including the post-closure period. By the mid 1990s, formal methodologies for evaluating the long term safety of such facilities had been developed, but intercomparison of these methodologies had revealed a number of discrepancies between them. Consequently, in 1997, the International Atomic Energy Agency launched a Co-ordinated Research Project (CRP) on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM). The particular objectives of the CRP were to provide a critical evaluation of the approaches and tools used in post-closure safety assessment for proposed and existing near-surface radioactive waste disposal facilities, enhance the approaches and tools used and build confidence in the approaches and tools used. The CRP ran until 2000 and resulted in the development of a harmonized assessment methodology (the ISAM project methodology), which was applied to a number of test cases. Over seventy participants from twenty-two Member States played an active role in the project and it attracted interest from around seven hundred persons involved with safety assessment in seventy-two Member States. The results of the CRP have contributed to the Action Plan on the Safety of Radioactive Waste Management which was approved by the Board of Governors and endorsed by the General Conference in September 2001. Specifically, they contribute to Action 5, which requests the IAEA Secretariat to 'develop a structured and systematic programme to ensure adequate application of the Agency's waste safety standards', by elaborating on the Safety Requirements on 'Near Surface Disposal of Radioactive Waste' (Safety Standards Series No. WS-R-1) and
DEFF Research Database (Denmark)
Jung, Jaesoon; Kook, Junghwan; Goo, Seongyeol
2017-01-01
combines the FEM and Elementary Radiator Approach (ERA) is proposed. The FE-ERA method analyzes the vibrational response of the plate structure excited by incident sound using FEM and then computes the transmitted acoustic pressure from the vibrating plate using ERA. In order to improve the accuracy...... and efficiency of the FE-ERA method, a novel criterion for the optimal number of elementary radiators is proposed. The criterion is based on the radiator error index that is derived to estimate the accuracy of the computation with used number of radiators. Using the proposed criterion a radiator selection method...... is presented for determining the optimum number of radiators. The presented radiator selection method and the FE-ERA method are combined to improve the computational accuracy and efficiency. Several numerical examples that have been rarely addressed in previous studies, are presented with the proposed method...
Messori, Andrea
2016-08-01
Several cases of expensive drugs designed for large patient populations (e.g. sofosbuvir) have raised a complex question in terms of drug pricing. Even assuming value-based pricing, the treatment with these drugs of all eligible patients would have an immense budgetary impact, which is unsustainable also for the richest countries. This raises the need to reduce the prices of these agents in comparison with those suggested by the value-based approach and to devise new pricing methods that can achieve this goal. The present study discusses in detail the following two methods: (i) The approach based on setting nation-wide budget thresholds for individual innovative agents in which a fixed proportion of the historical pharmaceutical expenditure represents the maximum budget attributable to an innovative treatment; (ii) The approach based on nation-wide price-volume agreements in which drug prices are progressively reduced as more patients receive the treatment. The first approach has been developed in the USA by the Institute for Clinical and Economic Review and has been applied to PCSK9 inhibitors (alirocumab and evolocumab). The second approach has been designed for the Italian market and has found a systematic application to manage the price of ranibizumab, sofosbuvir, and PCSK9 inhibitors. While, in the past, price-volume agreements have been applied only on an empirical basis (i.e. in the absence of any quantitative theoretical rule), more recently some explicit mathematical models have been described. The performance of these models is now being evaluated on the basis of the real-world experiences conducted in some European countries, especially Italy.
Directory of Open Access Journals (Sweden)
I. V. Kalashnikova
2016-01-01
Full Text Available . The aims of the publication are: to analyse domestic experience of education and training of preschool children with logoneurosis; to designate the causes and displays of this disease; to define the problems arising through organization of correctional work in preschool institution taking into account modern requirements of the Russian legislation and climatic features of regions; to present a possible version of the solution of these problems.Methods. The methods of theoretical analysis and generalization of scientific, methodical publications, and legislative base on a problem of correctional work on stuttering among preschool children are used.Results and scientific novelty. The authors’ program of additional education with the correctional elements «Ecotherapy for Children at the age of 5–7 years with Logoneurosis» developed by the staff of the Ecotherapy Laboratory of the Polar Alpine Botanical Garden – Institute named after N. A. Avrorin is described in the publication. The program complies with the modern requirements of Federal State Educational Standard of preschool education and is focused on tutors and speech language therapists of correctional groups and logocentres. In the course of mastering the program, a child by means of a game at once joins in search-investigative activity in the field of biology and ecology with visualization of an ultimate goal and obligatory practical material realization of results of work. From the point of view of medical expediency, the program has included the special breathing and relaxation exercises which are picked up for the lesson topic. The efficiency of a combination in correctional pedagogics of standard logopedic methods and the practise with nonconventional methods of art-, garden-, and animal-assisted therapy is confirmed. Special relevance of the proposed techniques and methods in the conditions of the Polar region (the region, wherein during the period of an exit from polar night
Energy Technology Data Exchange (ETDEWEB)
Chen, Li; He, Ya-Ling [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Kang, Qinjun [Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM (United States); Tao, Wen-Quan, E-mail: wqtao@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2013-12-15
A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.
Loutrari, Ariadne; Lorch, Marjorie Perlman
2017-07-01
We present a follow-up study on the case of a Greek amusic adult, B.Z., whose impaired performance on scale, contour, interval, and meter was reported by Paraskevopoulos, Tsapkini, and Peretz in 2010, employing a culturally-tailored version of the Montreal Battery of Evaluation of Amusia. In the present study, we administered a novel set of perceptual judgement tasks designed to investigate the ability to appreciate holistic prosodic aspects of 'expressiveness' and emotion in phrase length music and speech stimuli. Our results show that, although diagnosed as a congenital amusic, B.Z. scored as well as healthy controls (N=24) on judging 'expressiveness' and emotional prosody in both speech and music stimuli. These findings suggest that the ability to make perceptual judgements about such prosodic qualities may be preserved in individuals who demonstrate difficulties perceiving basic musical features such as melody or rhythm. B.Z.'s case yields new insights into amusia and the processing of speech and music prosody through a holistic approach. The employment of novel stimuli with relatively fewer non-naturalistic manipulations, as developed for this study, may be a useful tool for revealing unexplored aspects of music and speech cognition and offer the possibility to further the investigation of the perception of acoustic streams in more authentic auditory conditions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Li Fengxiang; Li Jianbin; Zhang Yingjie; Shang Dongping; Liu Tonghai; Tian Shiyu; Xu Min; Ma Changsheng
2011-01-01
Objective: To compare positional and volumetric differences of internal gross tumor volume (IGTV) delineated separately by three approaches based on four-dimensional CT (4DCT) for the primary tumor of non-small cell lung cancer (NLCLC). Methods: Twenty-one patients with NLCLC underwent big bore 4DCT simulation scan of the thorax. IGTVs of the primary tumor of NSCLC were delineated using three approaches as followed: (1) the gross tumor volume (GTV) on each of the ten the respiratory phases of the 4DCT image set were delineated and the ten GTV were fused to produce IGTV 10 ; (2) the GTV delineated separately based on 0% and 50% phase were fused to produce IGTV EI+EE ; (3) the visible tumor on the MIP images were delineated to produce IGTV MIP . The position of the target center, the volume of target, the degree of inclusion (DI) and the matching index (MI) were compared reciprocally between IGTV 10 , IGTV EI+EE and IGTV MIP . Results: Average differences between the position of the center of IGTVs on direction of x, y and z axes were less than 1 mm, with no statistically significant difference. The volume of IGTV 10 was larger than that of IGTV EI+EE , the difference was statistically significant (t=2.37, P=0.028); the volume of IGTV 10 was larger than that of IGTV MIP , but the difference was not statistically significant (t=1.95, P=0.065). The ratio of IGTV EI+EE with IGTV 10 , IGTV MIP with IGTV 10 were 0.85±0.08 and 0.92±0.11, respectively. DI of IGTV EI+EE in IGTV 10 , IGTV MIP in IGTV 10 were 84.78% ± 8. 95% and 88.47% ±9.04%. MI between IGTV 10 and IGTV EI+EE , IGTV 10 and IGTV MIP were 0.85 ±0.09, 0.86±0.09, respectively. Conclusions: The center displacement of the IGTVs delineated separately by the three different techniques based on 4DCT images are not obvious; IGTV EI+EE and IGTV MIP can not replace IGTV 10 , however, IGTV MIP is more close to IGTV 10 comparing to IGTV EI+EE . The ratio of GTV EI+EE with IGTV 10 is correlated to the tumor motion
Medvedovici, Andrei; Udrescu, Stefan; Albu, Florin; Tache, Florentin; David, Victor
2011-09-01
Liquid-liquid extraction of target compounds from biological matrices followed by the injection of a large volume from the organic layer into the chromatographic column operated under reversed-phase (RP) conditions would successfully combine the selectivity and the straightforward character of the procedure in order to enhance sensitivity, compared with the usual approach of involving solvent evaporation and residue re-dissolution. Large-volume injection of samples in diluents that are not miscible with the mobile phase was recently introduced in chromatographic practice. The risk of random errors produced during the manipulation of samples is also substantially reduced. A bioanalytical method designed for the bioequivalence of fenspiride containing pharmaceutical formulations was based on a sample preparation procedure involving extraction of the target analyte and the internal standard (trimetazidine) from alkalinized plasma samples in 1-octanol. A volume of 75 µl from the octanol layer was directly injected on a Zorbax SB C18 Rapid Resolution, 50 mm length × 4.6 mm internal diameter × 1.8 µm particle size column, with the RP separation being carried out under gradient elution conditions. Detection was made through positive ESI and MS/MS. Aspects related to method development and validation are discussed. The bioanalytical method was successfully applied to assess bioequivalence of a modified release pharmaceutical formulation containing 80 mg fenspiride hydrochloride during two different studies carried out as single-dose administration under fasting and fed conditions (four arms), and multiple doses administration, respectively. The quality attributes assigned to the bioanalytical method, as resulting from its application to the bioequivalence studies, are highlighted and fully demonstrate that sample preparation based on large-volume injection of immiscible diluents has an increased potential for application in bioanalysis.
Lacava, T.; Faruolo, M.; Coviello, I.; Filizzola, C.; Pergola, N.; Tramutoli, V.
2014-12-01
Gas flaring is one of the most controversial energetic and environmental issues the Earth is facing, moreover contributing to the global warming and climate change. According to the World Bank, each year about 150 Billion Cubic Meter of gas are being flared globally, that is equivalent to the annual gas use of Italy and France combined. Besides, about 400 million tons of CO2 (representing about 1.2% of global CO2 emissions) are added annually into the atmosphere. Efforts to evaluate the impact of flaring on the surrounding environment are hampered by lack of official information on flare locations and volumes. Suitable satellite based techniques could offers a potential solution to this problem through the detection and subsequent mapping of flare locations as well as gas emissions estimation. In this paper a new methodological approach, based on the Robust Satellite Techniques (RST), a multi-temporal scheme of satellite data analysis, was developed to analyze and characterize the flaring activity of the largest Italian gas and oil pre-treatment plant (ENI-COVA) located in Val d'Agri (Basilicata) For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring), being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the RST approach was implemented on 13 years of EOS-MODIS (Earth Observing System - Moderate Resolution Imaging Spectroradiometer) infrared data to detect COVA-related thermal anomalies and to develop a regression model for gas flared volume estimation. The methodological approach, the whole processing chain and the preliminarily achieved results will be shown and discussed in this paper. In addition, the possible implementation of the proposed approach on the data acquired by the SUOMI NPP - VIIRS (National Polar-orbiting Partnership - Visible Infrared Imaging
Smith, Paul L.; VonderHaar, Thomas H.
1996-01-01
The principal goal of this project is to establish relationships that would allow application of area-time integral (ATI) calculations based upon satellite data to estimate rainfall volumes. The research is being carried out as a collaborative effort between the two participating organizations, with the satellite data analysis to determine values for the ATIs being done primarily by the STC-METSAT scientists and the associated radar data analysis to determine the 'ground-truth' rainfall estimates being done primarily at the South Dakota School of Mines and Technology (SDSM&T). Synthesis of the two separate kinds of data and investigation of the resulting rainfall-versus-ATI relationships is then carried out jointly. The research has been pursued using two different approaches, which for convenience can be designated as the 'fixed-threshold approach' and the 'adaptive-threshold approach'. In the former, an attempt is made to determine a single temperature threshold in the satellite infrared data that would yield ATI values for identifiable cloud clusters which are closely related to the corresponding rainfall amounts as determined by radar. Work on the second, or 'adaptive-threshold', approach for determining the satellite ATI values has explored two avenues: (1) attempt involved choosing IR thresholds to match the satellite ATI values with ones separately calculated from the radar data on a case basis; and (2) an attempt involved a striaghtforward screening analysis to determine the (fixed) offset that would lead to the strongest correlation and lowest standard error of estimate in the relationship between the satellite ATI values and the corresponding rainfall volumes.
International Nuclear Information System (INIS)
Nagel, W.; Quik, F.
1993-01-01
A new approach for the determination of elemental uranium in uranium bearing ore, using high resolution gamma-ray spectrometry, was applied. Using a variant of the enrichment meter technique an agreement of better than 1% has been obtained between gamma-ray measurement results and the certified value obtained by other analytical methods. For the calibration of the gamma-ray spectrometer uranium reference samples have been used which are made available jointly in Europe and the USA as Certified Reference Materials for Gamma-ray Spectrometry (EC NRM 171 and NBS SRM 969, respectively). The measured ore has been put in a special designed container which ensured in all directions seen from the radiation window a uniform degree of infinite thickness of about 95%. The measurement results can be taken as an example for the applicability of gamma-ray spectrometry when high accuracy is required and under conditions where homogeneous distributed elemental uranium is embedded in a larger amount of matrix material. (author). 8 refs., 10 figs., 2 tabs., 2 appendices
International Nuclear Information System (INIS)
Upadhyay, M.V.; Van Petegem, S.; Panzner, T.; Lebensohn, R.A.; Van Swygenhoven, H.
2016-01-01
A multi-scale elastic-plastic finite element and fast Fourier transform based approach is proposed to study lattice strain evolution during uniaxial and biaxial loading of stainless steel cruciform shaped samples. At the macroscale, finite element simulations capture the complex coupling between applied forces in the arms and gauge stresses induced by the cruciform geometry. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale elasto-viscoplastic fast Fourier transform model, from which lattice strains are calculated for particular grain families. The calculated lattice strain evolution matches well with experimental values from in-situ neutron diffraction measurements and demonstrates that the spread in lattice strain evolution between different grain families decreases with increasing biaxial stress ratio. During equibiaxial loading, the model reveals that the lattice strain evolution in all grain families, and not just the 311 grain family, is representative of the polycrystalline response. A detailed quantitative analysis of the 200 and 220 grain family reveals that the contribution of elastic and plastic anisotropy to the lattice strain evolution significantly depends on the applied stress ratio.
Chen, Chau-Kuang
2010-01-01
Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…
Galvanic element. Galvanisches Element
Energy Technology Data Exchange (ETDEWEB)
Sprengel, D.; Haelbig, H.
1980-01-03
The invention concerns a gas-tight sealed accumulator with positive and negative electrode plates and an auxillary electrode electroconductively bound to the latter for suppressing oxygen pressure. The auxillary electrode is an intermediate film electrode. The film catalysing oxygen reduction is hydrophilic in character and the other film is hydrophobic. A double coated foil has proved to be advantageous, the hydrophilic film being formed from polymer-bound activated carbon and the hydrophrobic film from porous polytetrafluoroethylene. A metallic network of silver or nickel is rolled into the outer side of the activated carbon film. This auxillary electrode can be used to advantage in all galvanic elements. Even primary cells fall within the scope of application for auxillary electrodes because many of these contain a highly oxidized electrodic material which tends to give off oxygen.
Reis, T.; Dellar, P.J.
2011-01-01
Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.
Reis, T.
2011-07-01
Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.
Schob, Stefan; Beeskow, Anne; Dieckow, Julia; Meyer, Hans-Jonas; Krause, Matthias; Frydrychowicz, Clara; Hirsch, Franz-Wolfgang; Surov, Alexey
2018-05-31
Medulloblastomas are the most common central nervous system tumors in childhood. Treatment and prognosis strongly depend on histology and transcriptomic profiling. However, the proliferative potential also has prognostical value. Our study aimed to investigate correlations between histogram profiling of diffusion-weighted images and further microarchitectural features. Seven patients (age median 14.6 years, minimum 2 years, maximum 20 years; 5 male, 2 female) were included in this retrospective study. Using a Matlab-based analysis tool, histogram analysis of whole apparent diffusion coefficient (ADC) volumes was performed. ADC entropy revealed a strong inverse correlation with the expression of the proliferation marker Ki67 (r = - 0.962, p = 0.009) and with total nuclear area (r = - 0.888, p = 0.044). Furthermore, ADC percentiles, most of all ADCp90, showed significant correlations with Ki67 expression (r = 0.902, p = 0.036). Diffusion histogram profiling of medulloblastomas provides valuable in vivo information which potentially can be used for risk stratification and prognostication. First of all, entropy revealed to be the most promising imaging biomarker. However, further studies are warranted.
International Nuclear Information System (INIS)
Shih, C.F.; Xia, L.; Hutchinson, J.W.
1995-02-01
In this report, Volume 2, Mode I crack initiation and growth under plane strain conditions in tough metals are computed using an elastic/plastic continuum model which accounts for void growth and coalescence ahead of the crack tip. The material parameters include the stress-strain properties, along with the parameters characterizing the spacing and volume fraction of voids in material elements lying in the plane of the crack. For a given set of these parameters and a specific specimen, or component, subject to a specific loading, relationships among load, load-line displacement and crack advance can be computed with no restrictions on the extent of plastic deformation. Similarly, there is no limit on crack advance, except that it must take place on the symmetry plane ahead of the initial crack. Suitably defined measures of crack tip loading intensity, such as those based on the J-integral, can also be computed, thereby directly generating crack growth resistance curves. In this report, the model is applied to five specimen geometries which are known to give rise to significantly different crack tip constraints and crack growth resistance behaviors. Computed results are compared with sets of experimental data for two tough steels for four of the specimen types. Details of the load, displacement and crack growth histories are accurately reproduced, even when extensive crack growth takes place under conditions of fully plastic yielding. A description of material resistance to crack initiation and subsequent growth is essential for assessing structural integrity such as nuclear pressure vessels and piping
Energy Technology Data Exchange (ETDEWEB)
Liao, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Venugopalan, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berges, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaizot, J. -P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gelis, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2014-04-09
The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory*. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The purpose of this Workshop is to critically review the recent progress on the theory and phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC energies, to examine the various approaches on thermalization and existing issues, and to formulate new research efforts for the future. Topics slated to be covered include Experimental evidence for equilibration/isotropization, comparison of various approaches, dependence on the initial conditions and couplings, and turbulent cascades and Bose-Einstein condensation.
International Nuclear Information System (INIS)
Da Silva, R S; De Carvalho, D K E; Antunes, A R E; Lyra, P R M; Willmersdorf, R B
2010-01-01
In this paper a finite volume method with a 'Modified Implicit Pressure, Explicit Saturation' (MIMPES) approach is used to model the 3-D incompressible and immiscible two-phase flow of water and oil in heterogeneous and anisotropic porous media. A vertex centered finite volume method with an edge-based data structure is adopted to discretize both the elliptic pressure and the hyperbolic saturation equations using parallel computers with distributed memory. Due to the explicit solution of the saturation equation in the IMPES method, severe time step restrictions are imposed on the simulation. In order to circumvent this problem, an edge-based implementation of the MIMPES method was used. In this method, the pressure equation is solved and the velocity field is computed much less frequently than the saturation field. Following the work of Hurtado, a mean relative variation of the velocity field throughout the simulation is used to automatically control the updating process, allowing for much larger time-steps in a very simple way. In order to run large scale problems, we have developed a parallel implementation using clusters of PC's. The simulator uses open source parallel libraries like FMDB, ParMetis and PETSc. Results of speed-up and efficiency are presented to validate the performance of the parallel simulator.
Mixed Element Formulation for the Finite Element-Boundary Integral Method
National Research Council Canada - National Science Library
Meese, J; Kempel, L. C; Schneider, S. W
2006-01-01
A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...
Yu, Isseki; Tasaki, Tomohiro; Nakada, Kyoko; Nagaoka, Masataka
2010-09-30
The influence of hydrostatic pressure on the partial molar volume (PMV) of the protein apomyoglobin (AMb) was investigated by all-atom molecular dynamics (MD) simulations. Using the time-resolved Kirkwood-Buff (KB) approach, the dynamic behavior of the PMV was identified. The simulated time average value of the PMV and its reduction by 3000 bar pressurization correlated with experimental data. In addition, with the aid of the surficial KB integral method, we obtained the spatial distributions of the components of PMV to elucidate the detailed mechanism of the PMV reduction. New R-dependent PMV profiles identified the regions that increase or decrease the PMV under the high pressure condition. The results indicate that besides the hydration in the vicinity of the protein surface, the outer space of the first hydration layer also significantly influences the total PMV change. These results provide a direct and detailed picture of pressure induced PMV reduction.
International Nuclear Information System (INIS)
Mejia, J.; Galvis-Alonso, O.Y.; Braga, J.; Correa, R.; Leite, J.P.; Simoes, M.V.
2009-01-01
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multi pinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target's radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals. (author)
Energy Technology Data Exchange (ETDEWEB)
Mejia, J.; Galvis-Alonso, O.Y. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Faculdade de Medicina. Dept. de Biologia Molecular], e-mail: mejia_famerp@yahoo.com.br; Braga, J. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Div. de Astrofisica; Correa, R. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Ciencia Espacial e Atmosferica; Leite, J.P. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Neurologia, Psiquiatria e Psicologia Medica; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica
2009-08-15
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multi pinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target's radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals. (author)
Directory of Open Access Journals (Sweden)
J. Mejia
2009-08-01
Full Text Available Single-photon emission computed tomography (SPECT is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.
Analogs for transuranic elements
International Nuclear Information System (INIS)
Weimer, W.C.; Laul, J.C.; Kutt, J.C.
1981-01-01
A combined theoretical and experimental approach is being used to estimate the long-term environmental and biogeochemical behaviors of selected transuranic elements. The objective of this research is to estimate the effect that long-term (hundreds of years) environmental weathering has on the behavior of the transuranic elements americium and curium. This is achieved by investigating the actual behavior of naturally occurring rare earth elements, especially neodymium, that serve as transuranic analogs. Determination of the analog element behavior provides data that can be used to estimate the ultimate availability to man of transuranic materials released into the environment
Proceedings of transuranium elements
International Nuclear Information System (INIS)
Anon.
1992-01-01
The identification of the first synthetic elements was established by chemical evidence. Conclusive proof of the synthesis of the first artificial element, technetium, was published in 1937 by Perrier and Segre. An essential aspect of their achievement was the prediction of the chemical properties of element 43, which had been missing from the periodic table and which was expected to have properties similar to those of manganese and rhenium. The discovery of other artificial elements, astatine and francium, was facilitated in 1939-1940 by the prediction of their chemical properties. A little more than 50 years ago, in the spring of 1940, Edwin McMillan and Philip Abelson synthesized element 93, neptunium, and confirmed its uniqueness by chemical means. On August 30, 1940, Glenn Seaborg, Arthur Wahl, and the late Joseph Kennedy began their neutron irradiations of uranium nitrate hexahydrate. A few months later they synthesized element 94, later named plutonium, by observing the alpha particles emitted from uranium oxide targets that had been bombarded with deuterons. Shortly thereafter they proved that is was the second transuranium element by establishing its unique oxidation-reduction behavior. The symposium honored the scientists and engineers whose vision and dedication led to the discovery of the transuranium elements and to the understanding of the influence of 5f electrons on their electronic structure and bonding. This volume represents a record of papers presented at the symposium
Analytical elements of mechanics
Kane, Thomas R
2013-01-01
Analytical Elements of Mechanics, Volume 1, is the first of two volumes intended for use in courses in classical mechanics. The books aim to provide students and teachers with a text consistent in content and format with the author's ideas regarding the subject matter and teaching of mechanics, and to disseminate these ideas. The book opens with a detailed exposition of vector algebra, and no prior knowledge of this subject is required. This is followed by a chapter on the topic of mass centers, which is presented as a logical extension of concepts introduced in connection with centroids. A
Discrete element modeling of deformable particles in YADE
Directory of Open Access Journals (Sweden)
Martin Haustein
2017-01-01
Full Text Available In this paper we describe the open-source discrete element framework YADE and the implementation of a new deformation engine. YADE is a highly expandable software package that allows the simulation of current industrial problems in the field of granular materials using particle-based numerical methods. The description of the compaction of powders and granular material like metal pellets is now possible with a pure and simple discrete element approach in a modern DEM-framework. The deformation is realized by expanding the radius of the spherical particles, depending on their overlap, so that the volume of the material is kept constant.
Amir-Moez, A R; Sneddon, I N
1962-01-01
Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a
Christen, T; Pannetier, N A; Ni, W W; Qiu, D; Moseley, M E; Schuff, N; Zaharchuk, G
2014-04-01
In the present study, we describe a fingerprinting approach to analyze the time evolution of the MR signal and retrieve quantitative information about the microvascular network. We used a Gradient Echo Sampling of the Free Induction Decay and Spin Echo (GESFIDE) sequence and defined a fingerprint as the ratio of signals acquired pre- and post-injection of an iron-based contrast agent. We then simulated the same experiment with an advanced numerical tool that takes a virtual voxel containing blood vessels as input, then computes microscopic magnetic fields and water diffusion effects, and eventually derives the expected MR signal evolution. The parameter inputs of the simulations (cerebral blood volume [CBV], mean vessel radius [R], and blood oxygen saturation [SO2]) were varied to obtain a dictionary of all possible signal evolutions. The best fit between the observed fingerprint and the dictionary was then determined by using least square minimization. This approach was evaluated in 5 normal subjects and the results were compared to those obtained by using more conventional MR methods, steady-state contrast imaging for CBV and R and a global measure of oxygenation obtained from the superior sagittal sinus for SO2. The fingerprinting method enabled the creation of high-resolution parametric maps of the microvascular network showing expected contrast and fine details. Numerical values in gray matter (CBV=3.1±0.7%, R=12.6±2.4μm, SO2=59.5±4.7%) are consistent with literature reports and correlated with conventional MR approaches. SO2 values in white matter (53.0±4.0%) were slightly lower than expected. Numerous improvements can easily be made and the method should be useful to study brain pathologies. Copyright © 2013 Elsevier Inc. All rights reserved.
Nuclear fuel elements design, fabrication and performance
Frost, Brian R T
1982-01-01
Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie
Shah, S. M.; Crawshaw, J. P.; Gray, F.; Yang, J.; Boek, E. S.
2017-06-01
In the last decade, the study of fluid flow in porous media has developed considerably due to the combination of X-ray Micro Computed Tomography (micro-CT) and advances in computational methods for solving complex fluid flow equations directly or indirectly on reconstructed three-dimensional pore space images. In this study, we calculate porosity and single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations for 8 different porous media: beadpacks (with bead sizes 50 μm and 350 μm), sandpacks (LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). Combining the observed porosity and calculated single phase permeability, we shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging. Our study applies the concept of the 'Convex Hull' to calculate the REV by considering the two main macroscopic petrophysical parameters, porosity and single phase permeability, simultaneously. The shape of the hull can be used to identify strong correlation between the parameters or greatly differing convergence rates. To further enhance computational efficiency we note that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size so that only a few small simulations are needed to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.
Energy Technology Data Exchange (ETDEWEB)
Sivaramakrishnan, C. K.; Jadhav, A. V.; Reghuraman, K.; Mathew, K. A.; Nair, P. S.; Ramaniah, M. V.
1973-07-01
Research progress is reported on studies of the transplutonium elements including recovery and purification of americium, preparation of /sup 238/Pu, extraction studies using diethylhexyl phosphate. (DHM)
Shen, Chenyang; Li, Bin; Chen, Liyuan; Yang, Ming; Lou, Yifei; Jia, Xun
2018-04-01
Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual-energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi-energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary-based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation. A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non-negative combination of only a few tissues in the dictionary. We formulated this as a non-convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies. Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method. The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy. © 2018 American Association of Physicists in Medicine.
Chemistry of the actinide elements. Second edition
International Nuclear Information System (INIS)
Katz, J.J.; Seaborg, G.T.; Morss, L.R.
1987-01-01
This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for σ- and π-bonded compounds, and some concluding remarks on the superheavy elements
DEFF Research Database (Denmark)
Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen
2016-01-01
Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to h...
Parallel Fast Multipole Boundary Element Method for crustal dynamics
International Nuclear Information System (INIS)
Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar
2010-01-01
Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.
Directory of Open Access Journals (Sweden)
Mojgan Vazin
2016-01-01
Full Text Available Background. Distal arm surgery is widely performed under regional anesthesia with brachial plexus block. The preponderance of evidence for the efficacy relies upon injection of local anesthetic in excess of 30 mL. We aimed to compare three different ultrasound-guided brachial plexus block techniques restricting the total volume to 20 mL. Methods. 120 patients were prospectively randomized to ultrasound-guided brachial plexus block with 20 mL ropivacaine 0.75% at either the supraclavicular, infraclavicular, or axillary level. Multiinjection technique was performed with all three approaches. Primary outcome measure was performance time. Results. Performance time and procedural pain were similar between groups. Needle passes and injection numbers were significantly reduced in the infraclavicular group (P<0.01. Nerve visibility was significantly reduced in the axillary group (P=0.01. Success-rate was significantly increased in the supraclavicular versus the axillary group (P<0.025. Total anesthesia-related time was significantly reduced in the supraclavicular compared to the infraclavicular group (P<0.01. Block duration was significantly increased in the infraclavicular group (P<0.05. No early adverse effects occurred. Conclusion. Supraclavicular and infraclavicular blocks exhibited favorable characteristics compared to the axillary block. Supraclavicular brachial plexus block with the multiinjection intracluster technique exhibited significantly reduced total anesthesia-related time and higher success rate without any early adverse events.
Energy Technology Data Exchange (ETDEWEB)
Zanderigo, Francesca [Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY (United States)], E-mail: francesca.zanderigo@gmail.com; Ogden, R. Todd [Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY (United States); Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY (United States); Bertoldo, Alessandra; Cobelli, Claudio [Department of Information Engineering, University of Padova, Padova (Italy); Mann, J. John; Parsey, Ramin V. [Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY (United States); Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY (United States)
2010-05-15
Introduction: Total volume of distribution (V{sub T}) determined by graphical analysis (GA) of PET data suffers from a noise-dependent bias. Likelihood estimation in GA (LEGA) eliminates this bias at the region of interest (ROI) level, but at voxel noise levels, the variance of estimators is high, yielding noisy images. We hypothesized that incorporating LEGA V{sub T} estimation in a Bayesian framework would shrink estimators towards prior means, reducing variability and producing meaningful and useful voxel images. Methods: Empirical Bayesian estimation in GA (EBEGA) determines prior distributions using a two-step k-means clustering of voxel activity. Results obtained on eight [{sup 11}C]-DASB studies are compared with estimators computed by ROI-based LEGA. Results: EBEGA reproduces the results obtained by ROI LEGA while providing low-variability V{sub T} images. Correlation coefficients between average EBEGA V{sub T} and corresponding ROI LEGA V{sub T} range from 0.963 to 0.994. Conclusions: EBEGA is a fully automatic and general approach that can be applied to voxel-level V{sub T} image creation and to any modeling strategy to reduce voxel-level estimation variability without prefiltering of the PET data.
New functionalities in abundant element oxides: ubiquitous element strategy
International Nuclear Information System (INIS)
Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi
2011-01-01
While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A 'rare-element crisis' is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a 'ubiquitous element strategy' for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements. (topical review)
Lecloux, André J; Atluri, Rambabu; Kolen'ko, Yury V; Deepak, Francis Leonard
2017-10-12
The first part of this study was dedicated to the modelling of the influence of particle shape, porosity and particle size distribution on the volume specific surface area (VSSA) values in order to check the applicability of this concept to the identification of nanomaterials according to the European Commission Recommendation. In this second part, experimental VSSA values are obtained for various samples from nitrogen adsorption isotherms and these values were used as a screening tool to identify and classify nanomaterials. These identification results are compared to the identification based on the 50% of particles with a size below 100 nm criterion applied to the experimental particle size distributions obtained by analysis of electron microscopy images on the same materials. It is concluded that the experimental VSSA values are able to identify nanomaterials, without false negative identification, if they have a mono-modal particle size, if the adsorption data cover the relative pressure range from 0.001 to 0.65 and if a simple, qualitative image of the particles by transmission or scanning electron microscopy is available to define their shape. The experimental conditions to obtain reliable adsorption data as well as the way to analyze the adsorption isotherms are described and discussed in some detail in order to help the reader in using the experimental VSSA criterion. To obtain the experimental VSSA values, the BET surface area can be used for non-porous particles, but for porous, nanostructured or coated nanoparticles, only the external surface of the particles, obtained by a modified t-plot approach, should be considered to determine the experimental VSSA and to avoid false positive identification of nanomaterials, only the external surface area being related to the particle size. Finally, the availability of experimental VSSA values together with particle size distributions obtained by electron microscopy gave the opportunity to check the
Energy Technology Data Exchange (ETDEWEB)
Thomsen, H. (Den Sundhedsfaglige Kandidatuddannelse, Aarhus Universitet Bygning 1264, Aarhus (Denmark); University College Nordjylland, Aalborg (Denmark)), Email: hnt@ucn.dk; Steffensen, E. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark)); Larsson, E. M. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden))
2012-02-15
Background. Perfusion magnetic resonance imaging (MRI) is increasingly used in the evaluation of brain tumors. Relative cerebral blood volume (rCBV) is usually obtained by dynamic susceptibility contrast (DSC) MRI using normal appearing white matter as reference region. The emerging perfusion technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose. To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC-MRI using two different regions for normalization and two different measurement approaches. Material and Methods. Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and rCBV maps, with contralateral normal appearing white matter and cerebellum as reference regions. Larger ROIs were drawn for histogram analyses. The type and grade of the gliomas were obtained by histopathology. Statistical comparison was made between diffuse astrocytomas, anaplastic astrocytomas, and glioblastomas. Results. rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r = 0.60) and to the cerebellum (r = 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated (0.61 < r < 0.93), whereas for kurtosis and peak height, the correlation coefficient was about 0.3 when comparing rCBF and rCBV values for the same reference region. Neither rCBF nor rCBV quantification provided a statistically significant difference between the three types of gliomas. However, both rCBF and rCBV tended to increase with tumor grade and to be lower in patients who had undergone resection/treatment. Conclusion. rCBF measurements normalized to white matter
Elements from chlorine to calcium nuclear reactions
Kunz, Wunibald
1968-01-01
Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.
Wever, R.; Boks, C.; Stevels, A.
2007-01-01
Traditionally packaging design-for-sustainability (DfS) strongly focuses on resource conservation and material recycling. The type and amount of materials used has been the driver in design. For consumer electronics (CE) products this weight-based approach is too limited; a volume-based approach is
Kadoura, Ahmad Salim; Salama, Amgad; Sun, Shuyu; Sherik, Abdelmounam
2013-01-01
In this work, a method to estimate solid elemental sulfur solubility in pure and gas mixtures using Monte Carlo (MC) molecular simulation is proposed. This method is based on Isobaric-Isothermal (NPT) ensemble and the Widom insertion technique
Finite element simulation of texture evolution and Swift effect in NiAl under torsion
Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht
2007-09-01
The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.
Energy Technology Data Exchange (ETDEWEB)
Yamaguchi, T; Bando, M; Nakajima, A [Juntendo Univ., Tokyo (Japan). School of Medicine; Terai, M [Tokyo Metropolitan Univ. (Japan). Faculty of Science; Suzuki-Yasumoto, M [National Inst. of Radiological Sciences, Chiba (Japan)
1980-01-01
Fourteen trace elements (short-lived nuclides: Al, Br, Cu, Mn and V; long-lived nuclides: Ag, Au, Cd, Co, Cr, Fe, Sc, Se and Zn) in human eye tissues are determined simultaneously by non-destructive neutron activation analysis. The quantity of Al, Br, Fe, Se and Zn in the eye tissues (about 1 to more than 10 ..mu..g/g dry weight tissue) seems to be higher than that of other trace elements, although the content of each trace element in individual tissue is scattered in a wide range. Conjunctiva, iris (+ciliary body) and choroid (+pigment epithelium) seem to contain larger amount of various trace elements than other eye tissues. From correlation studies it is evident that the relative distribution of 14 trace elements in various eye tissues are similar, and furthermore the content of trace elements in the eye tissues may be correlated in each of the three groups (group A: Cd, Se and Zn; group B: Al, Cr, Fe, Se and V; group C: Al, Au, Fe and Se).
Hsieh, Mei-Chin; Mumphrey, Brent; Pareti, Lisa; Yi, Yong; Wu, Xiao-Cheng
2017-01-01
BACKGROUND: In order to comply with the Louisiana legislative obligation and meet funding agencies’ requirement of case completeness for 12-month data submission, hospital cancer registries are mandated to submit cancer incidence data to the Louisiana Tumor Registry (LTR) within 6 months of diagnosis. However, enforcing compliance with timely reporting may result in incomplete data on adjuvant treatment received by the LTR. Although additional treatment information can be obtained via retransmission of the North American Association of Central Cancer Registries (NAACCR)–modified abstracts, consolidating multiple NAACCR-modified abstracts for the same case is extremely time consuming. To avoid a huge amount of work while obtaining timely and complete data, the LTR has requested hospital cancer registries resubmit their data 15 months after the close of the diagnosis year. The purpose of this report is to assess the improvement in the completeness of data items related to treatment, staging and site specific factors. METHODS: The LTR requested that hospital cancer registries resubmit 15-month data between April 1, 2016 and April 15, 2016 for cases diagnosed in 2014. Microsoft Visual Studio Visual Basic script was used to link and compare resubmitted data with existing data in the LTR database. Data elements used for matching same patient/tumor were name, Social Security number, date of birth, primary site, laterality, and hospital identifier number. Treatment data items were compared as known vs none/ unknown and known vs known with different code. Matched records with updated information were imported into the LTR database and flagged as modified abstract records for manual consolidation. Nonmatched records were also loaded in the LTR database as potential new cases for further investigation. RESULTS: A total of 25,207 resubmitted NAACCR abstracts were received from 38 hospitals and freestanding radiation centers. About 11.1% had at least 1 update related to
International Nuclear Information System (INIS)
Armijo, J.S.
1976-01-01
A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de
Hafke, Jens B; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J E
2013-01-01
Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (-130 mV to -110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. -100 mV). In roots, the membrane potential of sieve elements dropped abruptly to -55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H(+)-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie-Hofstee (EH) -transformations pointed at biphasic Michaelis-Menten kinetics (2 MM, EH: K m1 1.2-1.8 mM, K m2 6.6-9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, K m values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher K m values (EH: K m1 10 mM, K m2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (-0.1 to -0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) K m values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of K m values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose
Immersive volume rendering of blood vessels
Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.
2012-03-01
In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.
Vicenti, Dan; And Others
Volume 4 of a 4-volume bilingual bicultural law-related curriculum examines Navajo community life as it is affected by certain laws. Getting a job, obtaining assistance from welfare and other agencies, and preserving one's individual rights as an employee or as a student are all aspects of daily living with important legal ramifications. This unit…
Garin, Etienne; Rolland, Yan; Lenoir, Laurence; Pracht, Marc; Mesbah, Habiba; Porée, Philippe; Laffont, Sophie; Clement, Bruno; Raoul, Jean-Luc; Boucher, Eveline
2011-01-01
Objectives. The aim of this study was to assess the effectiveness of SPECT/CT for volume measurements and to report a case illustrating the major impact of SPECT/CT in calculating the vascularized liver volume and dosimetry prior to injecting radiolabelled yttrium-90 microspheres (Therasphere). Materials and Methods. This was a phantom study, involving volume measurements carried out by two operators using SPECT and SPECT/CT images. The percentage of error for each method was calculated, and interobserver reproducibility was evaluated. A treatment using Therasphere was planned in a patient with three hepatic arteries, and the quantitative analysis of SPECT/CT for this patient is provided. Results. SPECT/CT volume measurements proved to be accurate (mean error Therasphere used. Conclusions. MAA SPECT/CT is accurate for vascularized liver volume measurements, providing a valuable contribution to the therapeutic planning of patients with complex hepatic vascularization.
Garin, Etienne; Rolland, Yan; Lenoir, Laurence; Pracht, Marc; Mesbah, Habiba; Porée, Philippe; Laffont, Sophie; Clement, Bruno; Raoul, Jean-Luc; Boucher, Eveline
2011-01-01
Objectives. The aim of this study was to assess the effectiveness of SPECT/CT for volume measurements and to report a case illustrating the major impact of SPECT/CT in calculating the vascularized liver volume and dosimetry prior to injecting radiolabelled yttrium-90 microspheres (Therasphere). Materials and Methods. This was a phantom study, involving volume measurements carried out by two operators using SPECT and SPECT/CT images. The percentage of error for each method was calculated, and interobserver reproducibility was evaluated. A treatment using Therasphere was planned in a patient with three hepatic arteries, and the quantitative analysis of SPECT/CT for this patient is provided. Results. SPECT/CT volume measurements proved to be accurate (mean error Therasphere used. Conclusions. MAA SPECT/CT is accurate for vascularized liver volume measurements, providing a valuable contribution to the therapeutic planning of patients with complex hepatic vascularization. PMID:21822489
Energy Technology Data Exchange (ETDEWEB)
Romero, Vicente Jose
2011-11-01
This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.
International Nuclear Information System (INIS)
Springer, Fabian; Ehehalt, Stefan; Sommer, Julia; Ballweg, Verena; Machann, Jürgen; Binder, Gerhard; Claussen, Claus D.; Schick, Fritz
2012-01-01
Objectives: To evaluate 5-slice stack/single-slice MRI approaches and anthropometric measures as predictors for metabolically relevant whole-body adipose tissue (AT) compartments in overweight/obese adolescents. Methods: Forty adolescents (22 males, age 11.4–16.1 years) were included with a BMI above the 90th percentile. Volumes of whole-body AT compartments, i.e. total AT (TAT), subcutaneous AT (SCAT) and visceral AT (VAT), were determined using a breath-hold T1-weighted-FSE-MR-sequence and semi-automated segmentation serving as the gold standard. SCAT, VAT and TAT was estimated by either axially oriented single-slices or 5-slice-stacks centred at specific anatomic landmarks (umbilicus, head of femur and humerus). Furthermore, anthropometric measures were also evaluated as predictors of whole-body AT compartments. Results: Strong correlations were found for both genders between TAT/SCAT and single-slice evaluation (e.g. whole-body SCAT-SCAT at umbilicus level: r = 0.91 (m), r = 0.92 (f)) or anthropometry (SCAT-BMI: r = 0.93 (m, f)). VAT was correlated to VAT at umbilicus (r = 0.71 (m), r = 0.94 (f)) but only weakly to anthropometry. Conclusions: Anthropometric measures and single-slice MRI can accurately predict TAT/SCAT which cannot be improved by evaluation of 5-slice stacks. Prediction of VAT by 5-slice stack/single-slice MRI protocols seems only to be accurate in females. Anthropometry cannot be reliably used for prediction of VAT in both genders. Thus, MRI seems to be necessary for quantification of VAT in overweight/obese adolescents of both genders.
Towards practical multiscale approach for analysis of reinforced concrete structures
Moyeda, Arturo; Fish, Jacob
2017-12-01
We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.
Villemonteix, Thomas; De Brito, Stéphane A; Kavec, Martin; Balériaux, Danielle; Metens, Thierry; Slama, Hichem; Baijot, Simon; Mary, Alison; Peigneux, Philippe; Massat, Isabelle
2015-08-01
Psychostimulants are the first-line treatment in attention deficit/hyperactivity disorder (ADHD), but their effects on brain development remain poorly understood. In particular, previous structural magnetic resonance imaging (sMRI) studies only investigated treatment effects on grey matter (GM) volumes in selected regions of interest (ROIs). In this study, voxel-based morphometry (VBM) was used to assess medication-related GM volume differences across the entire brain. Automated tracing measurements of selected ROIs were also obtained. Three groups (77 participants aged 7-to-13 year old) underwent MRI scans and were compared: never-medicated children with ADHD (n=33), medicated (methylphenidate) children with ADHD (n=20) and typically developing children (TD; n=24). Optimised VBM was used to investigate regional GM volumes, controlling for age and gender. Automated tracing procedures were also used to assess the average volume of the caudate nucleus, the amygdala and the nucleus accumbens. When compared to both medicated children with ADHD and TD children, never-medicated children with ADHD exhibited decreased GM volume in the insula and in the middle temporal gyrus. When compared to TD children, medicated children with ADHD had decreased GM volume in the middle frontal gyrus and in the precentral gyrus. Finally, ROI analyses revealed a significant association between duration of treatment and GM volume of the left nucleus accumbens in medicated children with ADHD. In conclusion, this study documents potential methylphenidate-related GM volume normalization and deviation in previously unexplored brain structures, and reports a positive association between treatment history and GM volume in the nucleus accumbens, a key region for reward-processing. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements
Meng, Xiangning; Suzuki, Ryosuke O.
2015-06-01
The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.
Tani, Laurits
2015-01-01
To control Peltier elements, temperature controller was used. I used TEC-1091 that was manufactured my Meerstetter Engineering. To gain control with the temperature controller, software had to be intalled on a controlling PC. There were different modes to control the Peltier: Tempererature controller to control temperature, Static current/voltage to control voltage and current and LIVE ON/OFF to auto-tune the controller respectively to the system. Also, since near the collision pipe there is much radiation, radiation-proof Peltier elements have to be used. To gain the best results, I had to find the most efficient Peltier elements and try to get their cold side to -40 degrees Celsius.
Photovoltaic radiation detector element
International Nuclear Information System (INIS)
Agouridis, D.C.
1980-01-01
A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips
CSIR Research Space (South Africa)
Heyns, Johan A
2012-06-01
Full Text Available combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume-of-fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting...
Stojsavljević, Aleksandar; Trifković, Jelena; Rasić-Milutinović, Zorica; Jovanović, Dragana; Bogdanović, Gradimir; Mutić, Jelena; Manojlović, Dragan
2018-07-01
Inductively coupled plasma-mass spectrometry ((ICP-MS)) was used to determine three toxic (Ni, As, Cd) and six essential trace elements (Cr, Mn, Co, Cu, Zn, Se) in blood serum of patients with hypothyroidism (Hy group) and healthy people (control group), in order to set the experimental conditions for accurate determination of a unique profile of these elements in hypothyroidism. Method validation was performed with standard reference material of the serum by varying the sample treatment with both standard and collision mode for analysis of elements isotopes. Quadratic curvilinear functions with good performances of models and the lowest detection limits were obtained for 52 Cr, 66 Zn, 75 As, 112 Cd in collision mode, and 55 Mn, 59 Co, 60 Ni, 65 Cu, 78 Se in standard mode. Treatment of serum samples with aqueous solution containing nitric acid, Triton X-100 and n-butanol gave the best results. Chemometric tools were applied for discrimination of patients with hypothyroidism. All nine elements discriminated Hy group of samples with almost the same discriminating power as indicated by their higher values for this group of patients. Statistically significant correlation (p hypothyroid state. Copyright © 2018 Elsevier GmbH. All rights reserved.
International Nuclear Information System (INIS)
Zilberman, B.Ya.; Fedorov, Yu.S.; Puzikov, E.A.; Blazheva, I.V.
2008-01-01
HNO 3 and U(IV) extraction by diluted TBP (tributyl phosphate) appeared significantly higher than believed earlier, requiring correction of mathematical model for extraction of all the species. The proposed model of HNO 3 extraction includes its dissolving in the extracted water, as well as its abduction to UO 2 (NO 3 ) 2 (TBP) 2 . Extraction of U(VI) and tetravalent elements is considered as reaction of their hydrated or partially hydrolyzed forms, the latter could be extracted themselves or as neutral forms with water liberation. The equation of element chemical reaction for modeling is determined by the slope of the linear part of the S-shaped curve representing D/S 2 function as a plot of HNO 3 concentration, where D is a distribution coefficient of the micro-component and S is a TBP concentration free of HNO 3 . The description of tetravalent element extraction in U(VI) presence needs the assumption of cation-cation interaction of element hydrolyzed forms with U(VI) in aqueous phase. Zr distribution is affected by micellar effects. (authors)
International Nuclear Information System (INIS)
Kennedy, S.T.
1982-01-01
A nuclear reactor fuel element wherein a stack of nuclear fuel is prevented from displacement within its sheath by a retainer comprising a tube member which is radially expanded into frictional contact with the sheath by means of a captive ball within a tapered bore. (author)
International Nuclear Information System (INIS)
Hemingway, J.D.
1975-01-01
The review is covered in sections, entitled: predicted nuclear properties - including closed shells, decay characteristics; predicted chemical properties - including electronic structure and calculated properties, X-radiation, extrapolated chemical properties, separation chemistry; methods of synthesis; the natural occurrence of superheavy elements. (U.K.)
Bertolesi, Elisa; Milani, Gabriele
2017-07-01
The present paper is devoted to the analysis of entire 3D masonry structures adopting a Rigid Body and Spring-Mass (HRBSM) model. A series of non linear static and dynamic analyses are conducted with respect to two structures with technical relevance. The elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. At a structural level, the non-linear analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM) by means of which both in and out of plane mechanisms are allowed. In order to validate the proposed model for the analyses of full scale structures subjected to seismic actions, two different examples are critically discussed, namely a church façade and an in-scale masonry building, both subjected to dynamic excitation. The results obtained are compared with experimental or numerical results available in literature.
Energy Technology Data Exchange (ETDEWEB)
Melo B, W.; Barboza F, M. [Universidad de Sonora, Departamento de Investigacion en Fisica, 83000 Hermosillo, Sonora (Mexico); Chernov, G., E-mail: g.chernovch@gmail.com [Universidad de Sonora, Departamento de Fisica, 83000 Hermosillo, Sonora (Mexico)
2016-10-15
The goal of combining nanoparticles (Nps) with radiation therapy is to increase the differential effect between healthy and tumor tissues. Only some elements have been investigated to be used as radiosensitizers and no systematic experimental or theoretical comparisons between different materials have been developed. MacMahon, et al. (Nano scale, 2016, 8, 581) presents the first systematic computational study of the impact of elemental composition on nanoparticle radiation interaction for kilo voltage and megavoltage X-ray exposure, for a range of elements (Z = 14 - 80). In this study we present and analytical model to assess the cell survival modification responses of cell cultures under irradiation treatments with keV X-rays assisted with Nps of different materials as platinum, hafnium, gadolinium, gold, germanium, iodine and iron. This model starts from the data of radial dose deposition around a single 20 nm diameter Np irradiated with photons of an energy 20 keV higher than the element K-shell binding energy to the nano scale probability of dose distribution inside cell structures with embedded Nps (the assessment of the average dose and the average squared dose in cell structure). Also based on the Local Effect Model we estimate potential biological effects, as is the case of the Relative Biological Effectiveness (RBE). Nano scale dose deposition exhibits a complex dependence on atomic number, as a consequence of the variations in secondary Auger electron spectra, this is manifested in significant variations in RBE. Upon in vitro experiments RBE varies from 1 to 1.6. Values representative of a high radiosensitization were observed for lower energies, ones that are well reproduced by our analytical analysis for cell cultures with a homogeneous distribution of different material Nps. (Author)
International Nuclear Information System (INIS)
Melo B, W.; Barboza F, M.; Chernov, G.
2016-10-01
The goal of combining nanoparticles (Nps) with radiation therapy is to increase the differential effect between healthy and tumor tissues. Only some elements have been investigated to be used as radiosensitizers and no systematic experimental or theoretical comparisons between different materials have been developed. MacMahon, et al. (Nano scale, 2016, 8, 581) presents the first systematic computational study of the impact of elemental composition on nanoparticle radiation interaction for kilo voltage and megavoltage X-ray exposure, for a range of elements (Z = 14 - 80). In this study we present and analytical model to assess the cell survival modification responses of cell cultures under irradiation treatments with keV X-rays assisted with Nps of different materials as platinum, hafnium, gadolinium, gold, germanium, iodine and iron. This model starts from the data of radial dose deposition around a single 20 nm diameter Np irradiated with photons of an energy 20 keV higher than the element K-shell binding energy to the nano scale probability of dose distribution inside cell structures with embedded Nps (the assessment of the average dose and the average squared dose in cell structure). Also based on the Local Effect Model we estimate potential biological effects, as is the case of the Relative Biological Effectiveness (RBE). Nano scale dose deposition exhibits a complex dependence on atomic number, as a consequence of the variations in secondary Auger electron spectra, this is manifested in significant variations in RBE. Upon in vitro experiments RBE varies from 1 to 1.6. Values representative of a high radiosensitization were observed for lower energies, ones that are well reproduced by our analytical analysis for cell cultures with a homogeneous distribution of different material Nps. (Author)
Directory of Open Access Journals (Sweden)
Chicoine Louis G
2007-09-01
Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an X-linked recessive disorder with monogenic mutations setting the stage for successful gene therapy treatment. We have completed a study that directly deals with the following key issues that can be directly adapted to a gene therapy clinical trial using rAAV considering the following criteria: 1 A regional vascular delivery approach that will protect the patient from widespread dissemination of virus; 2 an approach to potentially facilitate safe passage of the virus for efficient skeletal muscle transduction; 3 the use of viral doses to accommodate current limitations imposed by vector production methods; 4 and at the same time, achieve a clinically meaningful outcome by transducing multiple muscles in the lower limb to prolong ambulation. Methods The capacity of AAV1, AAV6 or AAV8 to cross the vascular endothelial barrier carrying a micro-dystrophin cDNA was compared under identical conditions with delivery through a catheter placed in the femoral artery of the mdx mouse. Transduction efficiency was assessed by immuno-staining using an antibody (Manex1a that recognizes the N-terminus of micro-dystrophin. The degree of physiologic correction was assessed by measuring tetanic force and protection from eccentric contraction in the extensor digitorum longus muscle (EDL. The vascular delivery paradigm found successful in the mouse was carried to the non-human primate to test its potential translation to boys with DMD. Results Regional vascular delivery resulted in transduction by rAAV8.micro-dystrophin reaching 94.5 ± 0.9 (1 month, 91.3 ± 3.1 (2 months, and 89.6 ± 1.6% (3 months. rAAV6.micro-dystrophin treated animals demonstrated 87.7 ± 6.8 (1 month, 78.9 ± 7.4 (2 months, and 81.2 ± 6.2% (3 months transduction. In striking contrast, rAAV1 demonstrated very low transduction efficiency [0.9 ± 0.3 (1 month, 2.1 ± 0.8 (2 months, and 2.1 ± 0.7% (3 months] by vascular delivery. Micro
International Nuclear Information System (INIS)
Gu Yangguang; Wang, Zhao-Hui; Lu Songhui; Jiang Shijun; Mu Dehai; Shu Yonghong
2012-01-01
Growing concerns surround the mid Guangdong coasts, one of China’s fastest and developing economical regions. To study the environmental impacts of economic and industrial development, we measured ten metallic elements (Hg, Pb, Cu, Zn, Fe, Al, Ni, Sr, Li, and Co) in surface sediments from nineteen stations in three bays. All these metals showed concentrations substantially higher than their background values, suggesting possible anthropogenic pollution. Highest metal levels were close to the nuclear power plants likely as a result of nuclear waste discharges. Results revealed that Hg, Pb, and Sr largely originated from human activities, while Cu, Ni, Co, Al, and Fe mainly from natural rock weathering. Two types of anthropogenic sources were identified through a principal component analysis, one from shipping industry, port transport service and nuclear power plants, and the other from municipal sewage and coal power plant. - Highlights: ► Ten metallic elements in surface sediments from mid Guangdong coasts were measured. ► High metal levels occurred close to the nuclear power plants. ► Hg, Pb and Sr mainly originated from human activities. ► Two types of anthropogenic metallic sources were identified in this region. - Hot spots of metallic elements were close to the nuclear power plants. Industrial and municipal discharges were the main anthropogenic metallic source.
International Nuclear Information System (INIS)
Flerov, G.
1976-01-01
The history is briefly described of the investigation of superheavy elements at the Joint Institute for Nuclear Research at Dubna. The significance of the investigation is assessed from the point of view of the nuclear structure study and major problems encountered in experimental efforts are indicated. Current experimental methods aiming at the discovery or the production of superheavy nuclei with Z approximately 114 are listed. (I.W.)
International Nuclear Information System (INIS)
Nomura, T.
1990-10-01
The (HI, αxn) reaction, in which precompound α particle emission takes place, is shown to occur significantly even near the Coulomb barrier. Because the α emission can efficiently cool down a highly excited nucleus both in energy and angular momentum, it is considered to be very effective for production of heavy elements like SHE. However, the angular distributions of residual nuclei produced in this reaction are side-peaked, requiring a recoil-type separator with large angular acceptance when it is applied for collection of the relevant nuclei. A brief description is given about a gas-filled separator recently constructed at RIKEN, which meets the above requirement. (author)
International Nuclear Information System (INIS)
Chijimatsu, Masakazu; Koyama, Tomofumi; Shimizu, Hiroyuki; Nakama, Shigeo; Fujita, Tomoo
2013-01-01
DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In DECOVALEX-2011 project, the failure mechanism during excavation and heating processes observed in the Aespoe pillar stability experiment, which was carried out at the Aespoe Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company, were simulated using Finite Element Method. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters. (author)
DEFF Research Database (Denmark)
Hansen, Adam Espe; Pedersen, Henrik; Rostrup, Egill
2009-01-01
The partial volume effect (PVE) on the arterial input function (AIF) remains a major obstacle to absolute quantification of cerebral blood flow (CBF) using MRI. This study evaluates the validity and performance of a commonly used multiplicative rescaling of the AIF to correct for the PVE. In a gr...
International Nuclear Information System (INIS)
1980-03-01
Results are presented on a study of the distribution and fate of 34 trace elements in the Solvent Refined Coal Process at the pilot plant located at Fort Lewis, Washington, and operated by The Pittsburg and Midway Coal Mining Co. under contract with the US Department of Energy. Neutron activation analysis was used to determine Ti, V, Ca, Mg, Al, Cl, Mn, As, Sb, Se, Hg, Br, Co, Ni, Cr, Fe, Na, Rb, Cs, K, Sc, Tb, Eu, Sm, Ce, La, Sr, Ba, Th, Hf, Ta, Ga, Zr, and Cu in feed coals, process solvent, Solvent Refined Coal (SRC), mineral residues, wet filter cake, by-product solvents, process and effluent waters and by-product sulfur. The sample points were chosen such that the major process streams were adequately described and that the major input and output materials were included. Atomic absorption spectrophotometry was used to measure the toxic elements Pb, Cd, Be in plant-derived solvents, effluent water and Hamer Marsh water. Specific methods were developed for analysis of a wide range of material compositions. The neutron activation analysis procedures were divided into short and long irradiation procedures for elements with short half lives (less than 3 hours) and intermediate to long half lives ( 8 hours to 5.2 years). Data are presented for a third equilibrium set of samples from the SRC-I process and compared to two similar sets analyzed previously. A material balance (or budget) was calculated for each element from the concentration data and the yields of each process fraction. Data are also presented on a study of carbon monoxide addition to the hydrogen stream and its effect on trace elements, and trace element data on a study of thirty-six plant effluent water samples taken during an SRC-I production run
International Nuclear Information System (INIS)
Abbott, T.I.; Jones, C.G.
1984-01-01
Radiographic elements are disclosed comprised of first and second silver halide emulsion layers separated by an interposed support capable of transmitting radiation to which the second image portion is responsive. At least the first imaging portion contains a silver halide emulsion in which thin tubular silver halide grains of intermediate aspect ratios (from 5:1 to 8:1) are present. Spectral sensitizing dye is adsorbed to the surface of the tubular grains. Increased photographic speeds can be realized at comparable levels of crossover. (author)
Energy Technology Data Exchange (ETDEWEB)
Zepf, Volker
2013-02-01
This thesis deals with Rare Earth Elements (REE), especially with neodymium used in permanent magnets, from a very scientific basis by providing basic research data. Despite the fact that REE are newsworthy and very important elements for a considerable bandwidth of todays' technologies, accompanied by the monopolistic supply-situation and Chinese politics, there are inexplicable data discrepancies about REE which have been recognized frequently but usually have not been addressed accordingly. So this analysis started with the hypothesis that the four application areas, namely computer hard disk drives (HDD), mobile phones, wind turbines and e-mobility (automotive traction), account for about 80% of the global annual neodymium-demand. The research methodology was a laboratory analysis of the composition of used magnets for HDDs and mobile phones and a literature and official report analysis of wind turbine and automotive neodymium use. The result was amazing and the hypothesis had to be withdrawn as these four areas only account for about 20% of neodymium use. This result raises some questions concerning actual use and thus potential recycling options.
Kadoura, Ahmad Salim
2013-06-01
In this work, a method to estimate solid elemental sulfur solubility in pure and gas mixtures using Monte Carlo (MC) molecular simulation is proposed. This method is based on Isobaric-Isothermal (NPT) ensemble and the Widom insertion technique for the gas phase and a continuum model for the solid phase. This method avoids the difficulty of having to deal with high rejection rates that are usually encountered when simulating using Gibbs ensemble. The application of this method is tested with a system made of pure hydrogen sulfide gas (H2S) and solid elemental sulfur. However, this technique may be used for other solid-vapor systems provided the fugacity of the solid phase is known (e.g., through experimental work). Given solid fugacity at the desired pressure and temperature, the mole fraction of the solid dissolved in gas that would be in chemical equilibrium with the solid phase might be obtained. In other words a set of MC molecular simulation experiments is conducted on a single box given the pressure and temperature and for different mole fractions of the solute. The fugacity of the gas mixture is determined using the Widom insertion method and is compared with that predetermined for the solid phase until one finds the mole fraction which achieves the required fugacity. In this work, several examples of MC have been conducted and compared with experimental data. The Lennard-Jones parameters related to the sulfur molecule model (ɛ, σ) have been optimized to achieve better match with the experimental work.
International Nuclear Information System (INIS)
Zepf, Volker
2013-01-01
This thesis deals with Rare Earth Elements (REE), especially with neodymium used in permanent magnets, from a very scientific basis by providing basic research data. Despite the fact that REE are newsworthy and very important elements for a considerable bandwidth of todays' technologies, accompanied by the monopolistic supply-situation and Chinese politics, there are inexplicable data discrepancies about REE which have been recognized frequently but usually have not been addressed accordingly. So this analysis started with the hypothesis that the four application areas, namely computer hard disk drives (HDD), mobile phones, wind turbines and e-mobility (automotive traction), account for about 80% of the global annual neodymium-demand. The research methodology was a laboratory analysis of the composition of used magnets for HDDs and mobile phones and a literature and official report analysis of wind turbine and automotive neodymium use. The result was amazing and the hypothesis had to be withdrawn as these four areas only account for about 20% of neodymium use. This result raises some questions concerning actual use and thus potential recycling options.
Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Procopio, Jesús R
2017-03-15
A simple method based on FAAS was developed for the sequential multi-element determination of Cu, Zn, Mn, Mg and Si in beverages and food supplements with successful results. The main absorption lines for Cu, Zn and Si and secondary lines for Mn and Mg were selected to carry out the measurements. The sample introduction was performed using a flow injection system. Using the choice of the absorption line wings, the upper limit of the linear range increased up to 110mgL -1 for Mg, 200mgL -1 for Si and 13mgL -1 for Zn. The determination of the five elements was carried out, in triplicate, without the need of additional sample dilutions and/or re-measurements, using less than 3.5mL of sample to perform the complete analysis. The LODs were 0.008mgL -1 for Cu, 0.017mgL -1 for Zn, 0.011mgL -1 for Mn, 0.16mgL -1 for Si and 0.11mgL -1 for Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hurtado, Daniel E.; Rojas, Guillermo
2018-04-01
Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.
Hofmann, S
1999-01-01
The outstanding aim of experimental investigations of heavy nuclei is the exploration of spherical 'SuperHeavy Elements' (SHEs). On the basis of the nuclear shell model, the next double magic shell-closure beyond sup 2 sup 0 sup 8 Pb is predicted at proton numbers between Z=114 and 126 and at neutron number N=184. All experimental efforts aiming at identifying SHEs (Z>=114) were negative so far. A highly sensitive search experiment was performed in November-December 1995 at SHIP. The isotope sup 2 sup 9 sup 0 116 produced by 'radiative capture' was searched for in the course of a 33 days irradiation of a sup 2 sup 0 sup 8 Pb target with sup 8 sup 2 Se projectiles, however, only cross-section limits were measured. Positive results were obtained in experiments searching for elements from 110 to 112 using cold fusion and the 1n evaporation channel. The produced isotopes were unambiguously identified by means of alpha-alpha correlations. Not fission, but alpha emission is the dominant decay mode. The measurement ...
Accinelli, J. B.; Koch, D. A.; Reuter, F.
1972-01-01
The use of liquid hydrogen to cool the rolling element radial bearings in the nuclear engine for rocket vehicles is discussed. The fifteen hour service life goal was obtained during the tests. The increase in bearing life was also considered to be produced by: (1) improvements in bearing material, (2) bearing retainer configuration and manufacturing changes, and (3) better control of operating parameters.
Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi
2015-04-01
Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger
Energy Technology Data Exchange (ETDEWEB)
Douglas, D.G.; Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr. [Vista Research, Inc., Mountain View, CA (United States)
1994-11-01
This document, the Leak Testing Plan for the Oak Ridge National Laboratory Liquid Low-Level Waste System (Active Tanks), comprises three volumes. The first two volumes address the component-based leak testing plan for the liquid low-level waste system at Oak Ridge, while the third volume describes the performance evaluation of the leak detection method that will be used to test this system. Volume 1, describes that portion of the liquid low-level waste system at that will be tested; it provides the regulatory background, especially in terms of the requirements stipulated in the Federal Facilities Agreement, upon which the leak testing plan is based. Volume 1 also describes the foundation of the plan, portions of which were abstracted from existing federal documents that regulate the petroleum and hazardous chemicals industries. Finally, Volume 1 gives an overview the plan, describing the methods that will be used to test the four classes of components in the liquid low-level waste system. Volume 2 takes the general information on component classes and leak detection methods presented in Volume 1 and shows how it applies particularly to each of the individual components. A complete test plan for each of the components is presented, with emphasis placed on the methods designated for testing tanks. The protocol for testing tank systems is described, and general leak testing schedules are presented. Volume 3 describes the results of a performance evaluation completed for the leak testing method that will be used to test the small tanks at the facility (those less than 3,000 gal in capacity). Some of the details described in Volumes 1 and 2 are expected to change as additional information is obtained, as the viability of candidate release detection methods is proven in the Oak Ridge environment, and as the testing program evolves.
International Nuclear Information System (INIS)
Douglas, D.G.; Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.
1994-11-01
This document, the Leak Testing Plan for the Oak Ridge National Laboratory Liquid Low-Level Waste System (Active Tanks), comprises three volumes. The first two volumes address the component-based leak testing plan for the liquid low-level waste system at Oak Ridge, while the third volume describes the performance evaluation of the leak detection method that will be used to test this system. Volume 1, describes that portion of the liquid low-level waste system at that will be tested; it provides the regulatory background, especially in terms of the requirements stipulated in the Federal Facilities Agreement, upon which the leak testing plan is based. Volume 1 also describes the foundation of the plan, portions of which were abstracted from existing federal documents that regulate the petroleum and hazardous chemicals industries. Finally, Volume 1 gives an overview the plan, describing the methods that will be used to test the four classes of components in the liquid low-level waste system. Volume 2 takes the general information on component classes and leak detection methods presented in Volume 1 and shows how it applies particularly to each of the individual components. A complete test plan for each of the components is presented, with emphasis placed on the methods designated for testing tanks. The protocol for testing tank systems is described, and general leak testing schedules are presented. Volume 3 describes the results of a performance evaluation completed for the leak testing method that will be used to test the small tanks at the facility (those less than 3,000 gal in capacity). Some of the details described in Volumes 1 and 2 are expected to change as additional information is obtained, as the viability of candidate release detection methods is proven in the Oak Ridge environment, and as the testing program evolves
Multi-element proportional counter for radiation protection measurements
International Nuclear Information System (INIS)
Kliauga, P.; Rossi, H.H.; Johnson, G.
1988-01-01
This article discusses design modifications of a multi-element proportional counter. The original counter exhibited poor resolution, as measured by the width of the event-size spectrum for low-energy photons. It was also suspected that the field inside each volume was not sufficiently symmetric. Results of the modifications showed that a dramatic improvement in resolution could be obtained in the chamber with tissue-equivalent septa if their potentials were adjusted to obtain optimal resolution. The full width at half maximum then approached, although it did not equal, that of a standard spherical counter
Philosophy of mathematics and deductive structure in Euclid's elements
Mueller, Ian
2006-01-01
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics. It offers a well-rounded perspective, examining similarities to modern views as well as differences. Rather than focusing strictly on historical and mathematical issues, the book examines philosophical, foundational, and logical questions.Although comprehensive in its treatment, this study represents a less cumbersome, more streamlined approach than the classic three-volume reference by Sir Thomas L. Heath (also available from Dover Publications). To make reading easier and to f
DEFF Research Database (Denmark)
Cassia, Marco; Shah, Peter Jivan; Bruun, Erik
2003-01-01
is discussed. Also, a new methodology for behavioral simulation is presented: the proposed methodology is based on an object-oriented event-driven approach and offers the possibility to perform very fast and accurate simulations, and the theoretical models developed validate the simulation results. We show...
Energy Technology Data Exchange (ETDEWEB)
Nechaev, A. F.; Akatov, A.A., E-mail: anechaev@lti-gti.ru, E-mail: andrey_akatov@mail.ru [Saint-Petersburg State Institute of Technology (Technical University), Saint-Petersburg (Russian Federation)
2013-08-15
This report contains the principal results of analytical studies performed by Research Group of St.-Petersburg State Institute of Technology in the framework of the IAEA CRP on ''Planning, Management and Organizational Aspects in Decommissioning of Nuclear Facilities''. The aims of the studies were to determine the adequacy of available tools and mechanisms for planning and organization of a large scale decommissioning and waste management activities; to define such elements of planning and management system that require changes and improvements; to elaborate recommendations on necessary actions; and to provide info analytical and methodical support for sustainable realization of decommissioning programme. Final report includes systematized information on a broad spectrum of issues related to CRP goals - from legislation, financing, subordination to concrete plans, projects, relevant manuals and guides addressed both to decision makers, technical executors and the public. (author)
Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie
2016-04-15
Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Weimer, W.C.; Laul, J.C.; Kutt, J.C.
1978-01-01
Several naturally-occurring elements with chemical properties similar to those of selected transuranic elements have been chosen and are being examined as potential predictors of transuranic geochemical behaviors. This approach may allow the estimation of the long-term behaviors of transuranic elements in the environment by analyses of the steady-state behaviors of their analog elements. The elements receiving principal attention are the transuranics Am and Cm and their proposed lanthanide element analog Nd
Directory of Open Access Journals (Sweden)
Antonio J. Torregrosa
2017-05-01
Full Text Available Duct junctions play a major role in the operation and design of most piping systems. The objective of this paper is to establish the potential of a staggered mesh finite volume model as a way to improve the description of the effect of simple duct junctions on an otherwise one-dimensional flow system, such as the intake or exhaust of an internal combustion engine. Specific experiments have been performed in which different junctions have been characterized as a multi-port, and that have provided precise and reliable results on the propagation of pressure pulses across junctions. The results obtained have been compared to simulations performed with a staggered mesh finite volume method with different flux limiters and different meshes and, as a reference, have also been compared with the results of a more conventional pressure loss-based model. The results indicate that the staggered mesh finite volume model provides a closer description of wave dynamics, even if further work is needed to establish the optimal calculation settings.
International Nuclear Information System (INIS)
Filby, R.H.; Khalil, S.R.; Grimm, C.A.; Ekabaram, V.; Hunt, M.L.
1980-12-01
This work reports the results of neutron activation analysis determination of the fate of trace elements in the SRC II process. Six coals were studied for their behavior in material balance runs carried out at the Fort Lewis Pilot Plant. The distribution of trace elements among products and input streams was determined by thermal neutron activation analysis using thermal neutron flux of 8 x 10 12 neutrons cm -2 sec -1 followed by Ge(Li) gamma ray spectroscopy. National Bureau of Standards Standard Reference Materials (SRM) were used to evaluate the analytical precision and accuracy of the methods used. For each material balance study the trace element input stream was taken as ground coal and the output streams were vacuum bottoms, SRC II product oil, and process water. In addition to these major components, oils, sludges and waters from liquid-liquid separators, effluent waters, biosludges, and by-product sulfur were also analyzed. Concerning the distribution of trace elements in the SRC II process, it was found that the vacuum bottoms was the major sink for all trace element studied, with the exception of Hg. Much lower trace element concentrations (except for Hg) were found in the SRC II product oil relative to the vacuum bottoms or the feed coal, irrespective of coal type. The results indicate excellent balances for the elements studied, except for Hg. Except for Hg, Se, and C1, the SRC II product and process waters contributed less than 1% of the elemental balances for light oil fractions and process waters indicates that Hg, and to a lesser degree As, Se, and Sb, exhibited volatile behavior in the SRC II process but that the degree of volatility is strongly dependent on conditions or coal type
Weinberg, Sharon L.
2010-01-01
In the university setting, the issue of faculty morale typically has been linked to a variety of perceived inequities, including inequities in faculty salary. New approaches for analyzing two different, but related, types of inequity are proposed. One approach addresses whether salary compression, often perceived by faculty to exist, actually does…
Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D
2017-11-01
This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jason Bourke
Full Text Available Models of the mammalian jaw have predicted that bite force is intimately linked to jaw gape and to tooth position. Despite widespread use, few empirical studies have provided evidence to validate these models in non-human mammals and none have considered the influence of gape angle on the distribution of stress. Here using a multi-property finite element (FE model of Canis lupus dingo, we examined the influence of gape angle and bite point on both bite force and cranial stress. Bite force data in relation to jaw gape and along the tooth row, are in broad agreement with previously reported results. However stress data showed that the skull of C. l. dingo is mechanically suited to withstand stresses at wide gapes; a result that agreed well with previously held views regarding carnivoran evolution. Stress data, combined with bite force information, suggested that there is an optimal bite angle of between 25 degrees and 35 degrees in C. l. dingo. The function of these rather small bite angles remains unclear.
Burghard, Philipp; Plank, Fabian; Beyer, Christoph; Müller, Silvana; Dörler, Jakob; Zaruba, Marc-Michael; Pölzl, Leo; Pölzl, Gerhard; Klauser, Andrea; Rauch, Stefan; Barbieri, Fabian; Langer, Christian-Ekkehardt; Schgoer, Wilfried; Williamson, Eric E; Feuchtner, Gudrun
2018-06-04
To evaluate right ventricle (RV) function by coronary computed tomography angiography (CTA) using a novel automated three-dimensional (3D) RV volume segmentation tool in comparison with clinical reference modalities. Twenty-six patients with severe end-stage heart failure [left ventricle (LV) ejection fraction (EF) right heart invasive catheterisation (IC). Automated 3D RV volume segmentation was successful in 26 (100%) patients. Read-out time was 3 min 33 s (range, 1 min 50s-4 min 33s). RV EF by CTA was stronger correlated with right atrial pressure (RAP) by IC (r = -0.595; p = 0.006) but weaker with TAPSE (r = 0.366, p = 0.94). When comparing TAPSE with RAP by IC (r = -0.317, p = 0.231), a weak-to-moderate non-significant inverse correlation was found. Interobserver correlation was high with r = 0.96 (p right atrium (RA) and right ventricle (RV) was 196.9 ± 75.3 and 217.5 ± 76.1 HU, respectively. Measurement of RV function by CTA using a novel 3D volumetric segmentation tool is fast and reliable by applying a dedicated biphasic injection protocol. The RV EF from CTA is a closer surrogate of RAP than TAPSE by TTE. • Evaluation of RV function by cardiac CTA by using a novel 3D volume segmentation tool is fast and reliable. • A biphasic contrast agent injection protocol ensures homogenous RV contrast attenuation. • Cardiac CT is a valuable alternative modality to CMR for the evaluation of RV function.
Directory of Open Access Journals (Sweden)
L. Rabenstein
2013-06-01
Full Text Available A combined interpretation of synthetic aperture radar (SAR satellite images and helicopter electromagnetic (HEM sea-ice thickness data has provided an estimate of sea-ice volume formed in Laptev Sea polynyas during the winter of 2007/08. The evolution of the surveyed sea-ice areas, which were formed between late December 2007 and middle April 2008, was tracked using a series of SAR images with a sampling interval of 2–3 days. Approximately 160 km of HEM data recorded in April 2008 provided sea-ice thicknesses along profiles that transected sea ice varying in age from 1 to 116 days. For the volume estimates, thickness information along the HEM profiles was extrapolated to zones of the same age. The error of areal mean thickness information was estimated to be between 0.2 m for younger ice and up to 1.55 m for older ice, with the primary error source being the spatially limited HEM coverage. Our results have demonstrated that the modal thicknesses and mean thicknesses of level ice correlated with the sea-ice age, but that varying dynamic and thermodynamic sea-ice growth conditions resulted in a rather heterogeneous sea-ice thickness distribution on scales of tens of kilometers. Taking all uncertainties into account, total sea-ice area and volume produced within the entire surveyed area were 52 650 km2 and 93.6 ± 26.6 km3. The surveyed polynya contributed 2.0 ± 0.5% of the sea-ice produced throughout the Arctic during the 2007/08 winter. The SAR-HEM volume estimate compares well with the 112 km3 ice production calculated with a~high-resolution ocean sea-ice model. Measured modal and mean-level ice thicknesses correlate with calculated freezing-degree-day thicknesses with a factor of 0.87–0.89, which was too low to justify the assumption of homogeneous thermodynamic growth conditions in the area, or indicates a strong dynamic thickening of level ice by rafting of even thicker ice.
Directory of Open Access Journals (Sweden)
Bárbara Yadira García Sánchez
2016-01-01
Full Text Available The objective of this article is to relect upon the history of the ield of contemporary family and its changes from the revolution of youth in 1960s until the irst decade of the XXIst century. This historical approach is linked to the study of relations of violence inside the family context. The implementation of certain theoretical and methodological concepts allowed us to establish a contrast between several time periods, starting from the present and going back to situations of the past, following the track of micro social conlicts expressed in violence toward parental igures, as well as in violence between siblings, all of which are analyzed as typologies of what has been called domestic violence. The theoretical relection is supported by some approaches of Pierre Bourdieu regarding the reproduction of symbolic violence, and more speciically, the strategies of its reproduction in the ield of family. We emphasize on the strategies of symbolic, ethicaland educational inversion. The data used to support this article is taken from the database of two research projects on school violence in Bogota between 2009 and 2015.
2016-08-01
This document describes the Deployment Plan for the New York City Department of Transportation (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. This plan describes the approach to complete Phase 2 Design/Build/Test, and Phase 3 Operate and Ma...
Accelerator vacuum system elements
International Nuclear Information System (INIS)
Sivokon', V.V.; Kobets, A.F.; Shvetsov, V.A.; Sivokon', L.V.
1980-01-01
Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter
A Benchmark for Banks’ Strategy in Online Presence – An Innovative Approach Based on