WorldWideScience

Sample records for volume 2-d choteau

  1. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Michael [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: ormying@polyu.edu.hk; Sin Manhong [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Pang, Shuk-fan [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-11-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = {pi}/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects.

  2. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    International Nuclear Information System (INIS)

    Ying, Michael; Sin Manhong; Pang, Shuk-fan

    2005-01-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = π/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects

  3. Factors controlling volume errors through 2D gully erosion assessment: guidelines for optimal survey design

    Science.gov (United States)

    Castillo, Carlos; Pérez, Rafael

    2017-04-01

    The assessment of gully erosion volumes is essential for the quantification of soil losses derived from this relevant degradation process. Traditionally, 2D and 3D approaches has been applied for this purpose (Casalí et al., 2006). Although innovative 3D approaches have recently been proposed for gully volume quantification, a renewed interest can be found in literature regarding the useful information that cross-section analysis still provides in gully erosion research. Moreover, the application of methods based on 2D approaches can be the most cost-effective approach in many situations such as preliminary studies with low accuracy requirements or surveys under time or budget constraints. The main aim of this work is to examine the key factors controlling volume error variability in 2D gully assessment by means of a stochastic experiment involving a Monte Carlo analysis over synthetic gully profiles in order to 1) contribute to a better understanding of the drivers and magnitude of gully erosion 2D-surveys uncertainty and 2) provide guidelines for optimal survey designs. Owing to the stochastic properties of error generation in 2D volume assessment, a statistical approach was followed to generate a large and significant set of gully reach configurations to evaluate quantitatively the influence of the main factors controlling the uncertainty of the volume assessment. For this purpose, a simulation algorithm in Matlab® code was written, involving the following stages: - Generation of synthetic gully area profiles with different degrees of complexity (characterized by the cross-section variability) - Simulation of field measurements characterised by a survey intensity and the precision of the measurement method - Quantification of the volume error uncertainty as a function of the key factors In this communication we will present the relationships between volume error and the studied factors and propose guidelines for 2D field surveys based on the minimal survey

  4. 2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment

    Directory of Open Access Journals (Sweden)

    P. Bifulco

    2010-01-01

    Full Text Available This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.

  5. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    Science.gov (United States)

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound

    International Nuclear Information System (INIS)

    Andermann, P.; Schloegl, S.; Maeder, U.; Luster, M.; Lassmann, M.; Reiners, C.

    2007-01-01

    Thyroid volume measurement by ultrasonography (US) is essential in numerous clinical diagnostic and therapeutic fields. While known to be limited, the accuracy and precision of two-dimensional (2D) US thyroid volume measurement have not been thoroughly characterized. Objective: We sought to assess the intra- and interobserver variability, accuracy and precision of thyroid volume determination by conventional 2D US in healthy adults using reference volumes determined by three-dimensional (3D) US. Design, methods: In a prospective blinded trial, thyroid volumes of ten volunteers were determined repeatedly by nine experienced sonographers using conventional 2D US (ellipsoid model). The values obtained were statistically compared to the so-called true volumes determined by 3D US (multiplanar approximation), the so-called gold standard, to estimate systematic errors and relative deviations of individual observers. Results: The standard error of measurement (SEM) for one observer and successive measurements (intraobserver variability), was 14%, and for different observers and repeated measurements (interobserver variability), 17%. The minimum relative thyroid volume change significantly different at the 95% level was 39% for the same observer and 46% for different observers. Regarding accuracy, the mean value of the differences showed a significant thyroid volume overestimation (17%, p <0.01) by 2D relative to 3D US. Conclusion: 2D US is appropriate for routine thyroid volumetry. Nevertheless, the so-called human factor (random error) should be kept in mind and correction is needed for methodical bias (systematic error). Further efforts are required to improve the accuracy and precision of 2D US thyroid volumetry by optimizing the underlying geometrical modeling or by the application of 3D US. (orig.)

  7. Finite volume simulation of 2-D steady square lid driven cavity flow at high reynolds numbers

    Directory of Open Access Journals (Sweden)

    K. Yapici

    2013-12-01

    Full Text Available In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe numbers. Furthermore, after Re > 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies.

  8. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Petersen, Claus Leth; Kjaer, Andreas

    2005-01-01

    : Thirty-four subjects with (a) prior inferior ST-elevation myocardial infarction (n=17), (b) a history of pulmonary embolism and persistent dyspnea (n=7) or (c) normal subjects (n=10) had 2D and 3D echocardiography, SPECT and MRI within 24h. End-diastolic volume and peak tricuspid regurgitation velocity...... were increased in patients with a history of pulmonary embolism compared to healthy subjects, 130+/-26 ml vs. 94+/-26 ml, P... volume showed significant correlation to RV volumes by MRI. Tricuspid annular plane systolic excursion (TAPSE) had the better correlation to RVEF by MRI, r=0.48, P

  9. Conductivity equations of protons transporting through 2D crystals obtained with the rate process theory and free volume concept

    Science.gov (United States)

    Hao, Tian; Xu, Yuanze; Hao, Ting

    2018-04-01

    The Eyring's rate process theory and free volume concept are employed to treat protons (or other particles) transporting through a 2D (two dimensional) crystal like graphene and hexagonal boron nitride. The protons are assumed to be activated first in order to participate conduction and the conduction rate is dependent on how much free volume available in the system. The obtained proton conductivity equations show that only the number of conduction protons, proton size and packing structure, and the energy barrier associated with 2D crystals are critical; the quantization conductance is unexpectedly predicted with a simple Arrhenius type temperature dependence. The predictions agree well with experimental observations and clear out many puzzles like much smaller energy barrier determined from experiments than from the density function calculations and isotope separation rate independent of the energy barrier of 2D crystals, etc. Our work may deepen our understandings on how protons transport through a membrane and has direct implications on hydrogen related technology and proton involved bioprocesses.

  10. Brain tissues volume measurements from 2D MRI using parametric approach

    Science.gov (United States)

    L'vov, A. A.; Toropova, O. A.; Litovka, Yu. V.

    2018-04-01

    The purpose of the paper is to propose a fully automated method of volume assessment of structures within human brain. Our statistical approach uses maximum interdependency principle for decision making process of measurements consistency and unequal observations. Detecting outliers performed using maximum normalized residual test. We propose a statistical model which utilizes knowledge of tissues distribution in human brain and applies partial data restoration for precision improvement. The approach proposes completed computationally efficient and independent from segmentation algorithm used in the application.

  11. An enhanced finite volume method to model 2D linear elastic structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2014-04-01

    Full Text Available . Suliman) Preprint submitted to Applied Mathematical Modelling July 22, 2013 Keywords: finite volume, finite element, locking, error analysis 1. Introduction Since the 1960s, the finite element method has mainly been used for modelling the mechanics... formulation provides higher accuracy 2 for displacement solutions. It is well known that the linear finite element formulation suffers from sensitivity to element aspect ratio or shear locking when subjected to bend- ing [16]. Fallah [8] and Wheel [6] present...

  12. SOLA-VOF, 2-D Transient Hydrodynamic Using Fractional Volume of Fluid Method

    International Nuclear Information System (INIS)

    Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.

    1991-01-01

    1 - Description of problem or function: SOLA-VOF is a program for the solution of two-dimensional transient fluid flow with free boundaries, based on the concept of a fractional volume of fluid (VOF). Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. 2 - Method of solution: The basis of the SOLA-VOF method is the fractional volume of fluid scheme for tracking free boundaries. In this technique, a function F(x,y,t) is defined whose value is unity at any point occupied by fluid and zero elsewhere. When averaged over the cells of a computational mesh, the average value of F in a cell is equal to the fractional volume of the cell occupied by fluid. In particular, a unit value of F corresponds to a cell full of fluid, whereas a zero value indicates that the cell contains no fluid. Cells with F values between zero and one contain a free surface. SOLA-VOF uses an Eulerian mesh of rectangular cells having variable sizes. The fluid equations solved are the finite difference approximations of the Navier-Stokes equations. 3 - Restrictions on the complexity of the problem: The setting of array dimensions is controlled through PARAMETER statements

  13. 1D and 2D Numerical Modeling for Solving Dam-Break Flow Problems Using Finite Volume Method

    Directory of Open Access Journals (Sweden)

    Szu-Hsien Peng

    2012-01-01

    Full Text Available The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.

  14. 2D and 3D milled surface roughness of high volume fraction SiCp/Al composites

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-06-01

    Full Text Available This paper presents a study on surface roughness generated by high speed milling of high volume fraction (65% silicon carbide particle-reinforced aluminum matrix (SiCp/Al composites. Typical 2D (Ra and Rz and 3D (Sa and Sq surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy. The 3D topography of the milled surface was studied as well. The results indicate that 3D parameters (Sa and Sq are more capable to describe the influence of the milling parameters on the surface quality, and among them Sq is preferable due to its good sensitivity. Sq decreases with milling speed and increases with feed rate. The influence of axial depth of cut (ADOC is negligible.

  15. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    Science.gov (United States)

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the

  16. Measurement of left atrial volume by 2D and 3D non-contrast computed tomography compared with cardiac magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fredgart, Maise Høigaard; Carter-Storch, Rasmus; Møller, Jacob Eifer

    2018-01-01

    Background: Cardiac magnetic resonance imaging (MRI) is considered the gold standard for assessment of left atrial (LA) volume. We assessed the feasibility of evaluating LA volume using 3D non-contrast computed tomography (NCCT). Furthermore, since manual tracing of LA volume is time consuming, we...... evaluated the accuracy of the LA area using 2D NCCT imaging for LA volume assessment. Methods: MRI and NCCT imaging were performed in 69 patients before and one year after aortic valve replacement. In 3D MRI and 3D NCCT, each slice was manually traced, excluding the pulmonary veins and atrial appendage...

  17. Comparison of 2D and 3D algorithms for adding a margin to the gross tumor volume in the conformal radiotherapy planning of prostate cancer

    International Nuclear Information System (INIS)

    Khoo, V.S.; Bedford, J.L.; Webb, S.; Dearnaley, D.P.

    1997-01-01

    Purpose: To evaluate the adequacy of tumor volume coverage using a three dimensional (3D) margin growing algorithm compared to a two dimensional (2D) margin growing algorithm in the conformal radiotherapy planning of prostate cancer. Methods and Materials: Two gross tumor volumes (GTV) were segmented in each of ten patients with localized prostate cancer: prostate gland only (PO) and prostate with seminal vesicles (PSV). A margin of 10 mm was applied to these two groups (PO and PSV) using both the 2D and 3D margin growing algorithms. The true planning target volume (PTV) was defined as the region delineated by the 3D algorithm. Adequacy of geometric coverage of the GTV with the two algorithms was examined throughout the target volume. Discrepancies between the two margin methods were measured in the transaxial plane. Results: The 2D algorithm underestimated the PTV by 17% (range 12-20) in the PO group and by 20% (range 13-28) for the PSV group when compared to the 3D algorithm. For both the PO and PSV groups, the inferior coverage of the PTV was consistently underestimated by the 2D margin algorithm when compared to the 3D margins with a mean radial distance of 4.8 mm (range 0-10). In the central region of the prostate gland, the anterior, posterior, and lateral PTV borders were underestimated with the 2D margin in both the PO and PSV groups by a mean of 3.6 mm (range 0-9), 2.1 mm (range 0-8), and 1.8 (range 0-9) respectively. The PTV coverage of the PO group superiorly was radially underestimated by 4.5mm (range 0-14) when comparing the 2D margins to the 3D margins. For the PSV group, the junction region between the prostate and the seminal vesicles was underestimated by the 2D margin by a mean transaxial distance of 18.1 mm in the anterior PTV border (range 4-30), 7.2 mm posteriorly (range 0-20), and 3.7 mm laterally (range 0-14). The superior region of the seminal vesicles in the PSV group was also consistently underestimated with a radial discrepancy of 3.3 mm

  18. Large-volume multi-tined expandable RF ablation in pig livers: comparison of 2D and volumetric measurements of the ablation zone

    International Nuclear Information System (INIS)

    Bangard, Christopher; Roesgen, Silvia; Lackner, Klaus J.; Wahba, Roger; Stippel, Dirk L.; Wiemker, Rafael; Hellmich, Martin; Reiter, Hannah; Fischer, Juergen H.

    2010-01-01

    To compare two-dimensional (2D) and three-dimensional (3D) computed tomography (CT) measurements of ablation zones (AZs) related to the shaft of two different large-volume monopolar multi-tined expandable electrodes. Percutaneous radiofrequency (RF) ablation was performed in 12 pigs (81.6±7.8 kg) using two electrodes (LeVeen 5 cm, Rita XL 5 cm; n=6 in each group). Contrast-enhanced CT with the electrode shaft in place evaluated the AZ. The largest sphere centred on the electrode shaft within the AZ was calculated (1) based on the 2D axial CT image in the plane of the shaft assuming rotational symmetry of the AZ and (2) using prototype software and the 3D volume data of the AZ measured with CT. The mean largest diameter of a sphere centred on the electrode shaft was always smaller using the 3D data of the AZ than using 2D CT measurements assuming rotational symmetry of the AZ (3D vs 2D): LeVeen 18.2±4.8 mm; 24.5 ±3.1 mm; p=0.001; Rita XL 20.0±3.7 mm; 28.8±4.9 mm; p=0.0002. All AZ showed indentations around the tines. Two-dimensional CT measurements assuming rotational symmetry of the AZ overestimate the largest ablated sphere centred on the electrode shaft compared with 3D CT measurements. (orig.)

  19. Comparison of 2D and 3D algorithms for adding a margin to the gross tumor volume in the conformal radiotherapy planning of prostate cancer

    International Nuclear Information System (INIS)

    Khoo, Vincent S.; Bedford, James L.; Webb, Steve; Dearnaley, David P.

    1998-01-01

    Purpose: To evaluate the adequacy of tumor volume coverage using a three-dimensional (3D) margin-growing algorithm compared to a two-dimensional (2D) margin-growing algorithm in the conformal radiotherapy planning of prostate cancer. Methods and Materials: Two gross tumor volumes (GTV) were segmented in each of 10 patients with localized prostate cancer; prostate gland only (PO) and prostate with seminal vesicles (PSV). A predetermined margin of 10 mm was applied to these two groups (PO and PSV) using both 2D and 3D margin-growing algorithms. The 2D algorithm added a transaxial margin to each GTV slice, whereas the 3D algorithm added a volumetric margin all around the GTV. The true planning target volume (PTV) was defined as the region delineated by the 3D algorithm. The adequacy of geometric coverage of the GTV by the two algorithms was examined in a series of transaxial planes throughout the target volume. Results: The 2D margin-growing algorithm underestimated the PTV by 17% (range 12-20) in the PO group and by 20% (range 13-28) for the PSV group when compared to the 3D-margin algorithm. For the PO group, the mean transaxial difference between the 2D and 3D algorithm was 3.8 mm inferiorly (range 0-20), 1.8 mm centrally (range 0-9), and 4.4 mm superiorly (range 0-22). Considering all of these regions, the mean discrepancy anteriorly was 5.1 mm (range 0-22), posteriorly 2.2 (range 0-20), right border 2.8 mm (range 0-14), and left border 3.1 mm (range 0-12). For the PSV group, the mean discrepancy in the inferior region was 3.8 mm (range 0-20), central region of the prostate was 1.8 mm ( range 0-9), the junction region of the prostate and the seminal vesicles was 5.5 mm (range 0-30), and the superior region of the seminal vesicles was 4.2 mm (range 0-55). When the different borders were considered in the PSV group, the mean discrepancies for the anterior, posterior, right, and left borders were 6.4 mm (range 0-55), 2.5 mm (range 0-20), 2.6 mm (range 0-14), and 3

  20. Automatic intensity-based 3D-to-2D registration of CT volume and dual-energy digital radiography for the detection of cardiac calcification

    Science.gov (United States)

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 +/- 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 +/- 0.03 to 0.25 +/- 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  1. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    Science.gov (United States)

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure

  2. An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm

    International Nuclear Information System (INIS)

    Das, Ranjan; Mishra, Subhash C.; Ajith, M.; Uppaluri, R.

    2008-01-01

    This article deals with the simultaneous estimation of parameters in a 2-D transient conduction-radiation heat transfer problem. The homogeneous medium is assumed to be absorbing, emitting and scattering. The boundaries of the enclosure are diffuse gray. Three parameters, viz. the scattering albedo, the conduction-radiation parameter and the boundary emissivity, are simultaneously estimated by the inverse method involving the lattice Boltzmann method (LBM) and the finite volume method (FVM) in conjunction with the genetic algorithm (GA). In the direct method, the FVM is used for computing the radiative information while the LBM is used to solve the energy equation. The temperature field obtained in the direct method is used in the inverse method for simultaneous estimation of unknown parameters using the LBM-FVM and the GA. The LBM-FVM-GA combination has been found to accurately predict the unknown parameters

  3. Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRµCT slices

    Directory of Open Access Journals (Sweden)

    R Bernhardt

    2012-04-01

    Full Text Available Histological imaging is still considered the gold standard for analysing bone formation around metallic implants. Generally, a limited number of histological sections per sample are used for the approximation of mean values of peri-implant bone formation. In this study we compared statistically the results of bone-implant contact (BIC and bone-implant volume (BIV obtained by histological sections, with those obtained by X-ray absorption images from synchrotron radiation micro-computed tomography (SRµCT using osseointegrated screw-shaped implants from a mini-pig study. Comparing the BIC results of 3-4 histological sections per implant sample with the appropriate 3-4 SRµCT slices showed a non-significant difference of 1.9 % (p = 0.703. The contact area assessed by the whole 3D information from the SRµCT measurement in comparison to the histomorphometric results showed a non-significant difference in BIC of 4.9 % (p = 0.171. The amount of the bone-implant volume in the histological sections and the appropriate SRµCT slices showed a non-significant difference by only 1.4 % (p = 0.736 and also remains non-significant with 2.6 % (p = 0.323 using the volumetric SRµCT information. We conclude that for a clinical evaluation of implant osseointegration with histological imaging at least 3-4 sections per sample are sufficient to represent the BIC or BIV for a sample. Due to the fact that in this study we have found a significant intra-sample variation in BIC of up to ± 35 % the selection of only one or two histological sections per sample may strongly influence the determined BIC.

  4. PERICLES 2D experiment

    International Nuclear Information System (INIS)

    Morel, Christophe

    2001-01-01

    Scope of the lecture was the modelling of severe reactor accidents. The PERICLES 2D experiment was compared to CATHARE 3D simulation results considering progression of a quench front inside the reactor core, steam flow rates, heat conduction, cladding temperature. (uke)

  5. HipMatch: an object-oriented cross-platform program for accurate determination of cup orientation using 2D-3D registration of single standard X-ray radiograph and a CT volume.

    Science.gov (United States)

    Zheng, Guoyan; Zhang, Xuan; Steppacher, Simon D; Murphy, Stephen B; Siebenrock, Klaus A; Tannast, Moritz

    2009-09-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D-3D image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of either multiple radiographs or a radiograph-specific calibration, both of which are not available for most retrospective studies. To address these issues, we developed and validated an object-oriented cross-platform program called "HipMatch" where a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration was implemented to estimate a rigid transformation between a pre-operative CT volume and the post-operative X-ray radiograph for a precise estimation of cup alignment. No CAD model of the prosthesis is required. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the robustness and the accuracy of the program. HipMatch is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway), VTK, and Coin3D and is transportable to any platform.

  6. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D [University of California, Los Angeles, Ca (United States)

    2016-06-15

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  7. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    International Nuclear Information System (INIS)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D

    2016-01-01

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  8. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  9. Lectures on 2D gravity and 2D string theory

    International Nuclear Information System (INIS)

    Ginsparg, P.; Moore, G.

    1992-01-01

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  10. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  11. 2D-hahmoanimaation toteuttamistekniikat

    OpenAIRE

    Smolander, Aku

    2009-01-01

    Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...

  12. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N N

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  13. SES2D user's manual

    International Nuclear Information System (INIS)

    Johnson, J.D.; Lyon, S.P.

    1982-04-01

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  14. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database......., and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...

  15. VERTICAL ACTIVITY ESTIMATION USING 2D RADAR

    African Journals Online (AJOL)

    hennie

    estimates on aircraft vertical behaviour from a single 2D radar track. ... Fortunately, the problem of detecting relative vertical motion using a single 2D ..... awareness tools in scenarios where aerial activity sensing is typically limited to 2D.

  16. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  17. NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1988-01-01

    1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method

  18. Unparticle Example in 2D

    International Nuclear Information System (INIS)

    Georgi, Howard; Kats, Yevgeny

    2008-01-01

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles

  19. Statistics of 2D solitons

    International Nuclear Information System (INIS)

    Brekke, L.; Imbo, T.D.

    1992-01-01

    The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions

  20. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  1. 2-d spectroscopic imaging of brain tumours

    International Nuclear Information System (INIS)

    Ferris, N.J.; Brotchie, P.R.

    2002-01-01

    Full text: This poster illustrates the use of two-dimensional spectroscopic imaging (2-D SI) in the characterisation of brain tumours, and the monitoring of subsequent treatment. After conventional contrast-enhanced MR imaging of patients with known or suspected brain tumours, 2-D SI is performed at a single axial level. The level is chosen to include the maximum volume of abnormal enhancement, or, in non-enhancing lesions. The most extensive T2 signal abnormality. Two different MR systems have been used (Marconi Edge and GE Signa LX); at each site, a PRESS localisation sequence is employed with TE 128-144 ms. Automated software is used to generate spectral arrays, metabolite maps, and metabolite ratio maps from the spectroscopic data. Colour overlays of the maps onto anatomical images are produced using manufacturer software or the Medex imaging data analysis package. High grade gliomas showed choline levels higher than those in apparently normal brain, with decreases in NAA and creatine. Some lesions showed spectral abnormality extending into otherwise normal appearing brain. This was also seen in a case of CNS lymphoma. Lowgrade lesions showed choline levels similar to normal brain, but with decreased NAA. Only a small number of metastases have been studied, but to date no metastasis has shown spectral abnormality beyond the margins suggested by conventional imaging. Follow-up studies generally show spectral heterogeneity. Regions with choline levels higher than those in normal-appearing brain are considered to represent recurrent high-grade tumour. Some regions show choline to be the dominant metabolite, but its level is not greater than that seen in normal brain. These regions are considered suspicious for residual / recurrent tumour when the choline / creatine ratio exceeds 2 (lower ratios may represent treatment effect). 2-D SI improves the initial assessment of brain tumours, and has potential for influencing the radiotherapy treatment strategy. 2-D SI also

  2. A method for the direct injection and analysis of small volume human blood spots and plasma extracts containing high concentrations of organic solvents using revered-phase 2D UPLC/MS.

    Science.gov (United States)

    Rainville, Paul D; Simeone, Jennifer L; Root, Dan S; Mallet, Claude R; Wilson, Ian D; Plumb, Robert S

    2015-03-21

    The emergence of micro sampling techniques holds great potential to improve pharmacokinetic data quality, reduce animal usage, and save costs in safety assessment studies. The analysis of these samples presents new challenges for bioanalytical scientists, both in terms of sample processing and analytical sensitivity. The use of two dimensional LC/MS with, at-column-dilution for the direct analysis of highly organic extracts prepared from biological fluids such as dried blood spots and plasma is demonstrated. This technique negated the need to dry down and reconstitute, or dilute samples with water/aqueous buffer solutions, prior to injection onto a reversed-phase LC system. A mixture of model drugs, including bromhexine, triprolidine, enrofloxacin, and procaine were used to test the feasibility of the method. Finally an LC/MS assay for the probe pharmaceutical rosuvastatin was developed from dried blood spots and protein-precipitated plasma. The assays showed acceptable recovery, accuracy and precision according to US FDA guidelines. The resulting analytical method showed an increase in assay sensitivity of up to forty fold as compared to conventional methods by maximizing the amount loaded onto the system and the MS response for the probe pharmaceutical rosuvastatin from small volume samples.

  3. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  4. FEM-2D - Input description and performance

    International Nuclear Information System (INIS)

    Schmidt, F.A.R.

    1975-03-01

    FEM-2D solves the 2d diffusion equation by the Finite Element Method. This version of the code was written for x-y geometry, triangular elements with first and second order flux approximations, and has a solution routine which is based on a modified Cholesky procedure. FEM-2D is fully integrated into the modular system RSYST. However, we have developed a simulation program RSIMK which simulates some of the functions of RSYST and allows to run FEM-2D independently. (orig.) [de

  5. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  6. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  7. Tamoxifen and CYP2D6

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P.; Damkier, Per

    2018-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2...

  8. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    Strachan, J.D.; Corrigan, G.

    2005-01-01

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  9. Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI

    DEFF Research Database (Denmark)

    Stoebe, Stephan; Metze, Michael; Jurisch, Daniel

    2018-01-01

    ) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography. RESULTS: 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D...... echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different...... between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r

  10. Light field morphing using 2D features.

    Science.gov (United States)

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field.

  11. 2D Barcode for DNA Encoding

    OpenAIRE

    Elena Purcaru; Cristian Toma

    2011-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...

  12. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.

    2017-01-01

    of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...

  13. Matrix models of 2d gravity

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  14. A companion matrix for 2-D polynomials

    International Nuclear Information System (INIS)

    Boudellioua, M.S.

    1995-08-01

    In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs

  15. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  16. 2d index and surface operators

    International Nuclear Information System (INIS)

    Gadde, Abhijit; Gukov, Sergei

    2014-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role

  17. 3-D Imaging using Row--Column-Addressed 2-D Arrays with a Diverging Lens

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Stuart, Matthias Bo

    2016-01-01

    It has been shown that row–column-addressed (RCA) 2-D arrays can be an inexpensive alternative to fully addressed 2-D arrays. Generally imaging with an RCA 2-D array is limited to its forward-looking volume region. Constructing a double-curved RCA 2-D array or applying a diverging lens over......, is designed for imaging down to 14 cm at a volume rate of 88 Hz. The curvilinear imaging performance of a λ/2-pitch 3 MHz 62+62 RCA 2-D array is investigated as a function of depth, using a diverging lens with f-number of -1. The results of this study demonstrate that the proposed beamforming approach...

  18. Orthotropic Piezoelectricity in 2D Nanocellulose.

    Science.gov (United States)

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V -1 , ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  19. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  20. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  1. 2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec

    2018-02-01

    Ultrasound in infertility diagnostics: Ultrasound is used for examination of uterus, tubes, ovaries and peritoneal cause of infertility. It can be used in different menstrual phases: proliferative, periovulatory and secretory phase. Examination of uterus: A 2D scan can measure the size of the uterus (length, width and depth and a 2D flow (colour and power doppler. With 3D technology we can measure the whole volume with VOCAL (virtual organ computer-aided analysis and 3D circulation with the index (VI – vascular index, FI – flow index and VFI – vascular flow index in the uterus. A 2D scan can help us define uterine malformations, fibroids and adenomyosis to a certain extent. However, a 3D scan offers more accurate diagnosis of these malformations. Endometrium is examined separately. With 2D the width is measured and morphology and focal lesions (polyp, fibroids, adhesions are examined. With 3D the real sagital plane for the width measurement can be defined . We can measure the volume of endometrium and subendometrium and 3D circulation in endometrium and subendometrium. The FIS (f luid instlation sonography is very useful when examining the endometrium; saline or gel can be used for uterine instalation. We can measure and define the position of the structures in the endometrium more accurately when they are surrouned by saline or gel. We can view these structures with a surface view, similar to the one used for hysteroscopy. With this information we can explain the pathology to the patient and easily plan the surgical procedures. Examination of the tubes: With 2D US we can see the tubes in the pelvis only if there are dilatations, but sometimes it is difficult to distinguish them from the neighbouring forma- tions. With a 3D ultrasound we can define the shape and continuity of the tube and we can view the tube from different angles (inversion mode. Different contrast media are used for determining tubal patency. Tubal patency can be diagnosed with 2D Hy

  2. Explorative analysis of 2D color maps

    OpenAIRE

    Steiger, Martin; Bernard, Jürgen; Thum, Simon; Mittelstädt, Sebastian; Hutter, Marco; Keim, Daniel A.; Kohlhammer, Jörn

    2015-01-01

    Color is one of the most important visual variables in information visualization. In many cases, two-dimensional information can be color-coded based on a 2D color map. A variety of color maps as well as a number of quality criteria for the use of color have been presented. The choice of the best color map depends on the analytical task users intend to perform and the design space in choosing an appropriate 2D color map is large. In this paper, we present the ColorMap-Explorer, a visual-inter...

  3. GAIA: A 2-D Curvilinear moving grid hydrodynamic code

    International Nuclear Information System (INIS)

    Jourdren, H.

    1987-02-01

    The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension

  4. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  5. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...

  6. 2-D model for electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J.M.; Garcia Delgado, R.A.; Gomez Lahoz, C.; Garcia Herruzo, F. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain); Vereda Alonso, C. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain)]|[Inst. for Geologi and Geoteknik, Danmarks Tekniske Univ., Lyngby (Denmark)

    2001-07-01

    A simple two-dimensional numerical model is presented in this work. In this case, the model is used to examine the enhanced method of the electrokinetic remediation technique in a 2-D arrangement. Nevertheless the model with minor changes can also be used to study the effect of the electrode configuration in the performance of this technique. (orig.)

  7. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-11-02

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  8. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele; Yin, Jun; Birowosuto, Muhammad D.; Lo, Shu-Zee A.; Gurzadyan, Gagik G.; Bruno, Annalisa; Bredas, Jean-Luc; Soci, Cesare

    2017-01-01

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  9. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  10. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong

    2012-02-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists\\' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  11. Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI

    Science.gov (United States)

    Stoebe, Stephan; Metze, Michael; Jurisch, Daniel; Tayal, Bhupendar; Solty, Kilian; Laufs, Ulrich; Pfeiffer, Dietrich; Hagendorff, Andreas

    2018-01-01

    Purpose The study compares the feasibility of the quantitative volumetric and semi-quantitative approach for quantification of chronic aortic regurgitation (AR) using different imaging modalities. Methods Left ventricular (LV) volumes, regurgitant volumes (RVol) and regurgitant fractions (RF) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography. Results 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r echocardiography and 2D echocardiography/cMRI and good agreement was observed between 3D echocardiography/cMRI. Conclusion Semi-quantitative parameters are difficult to determine by 2D echocardiography in clinical routine. The quantitative volumetric RF assessment seems to be feasible and can be discussed as an alternative approach in chronic AR. However, RVol and RF did not correlate well between the different imaging modalities. The best agreement for grading of AR severity by RF was observed between 3D echocardiography and cMRI. LV volumes can be verified by different approaches and different imaging modalities. PMID:29519957

  12. 2D/ 3D Quantitative Ultrasound of the Breast

    Science.gov (United States)

    Nasief, Haidy Gerges

    Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to

  13. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova

    2016-02-01

    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  14. 2D-deformaatio-animaatio peligrafiikassa

    OpenAIRE

    Falck, Tia

    2017-01-01

    Opinnäytetyössä tavoitteena oli esitellä deformaatio-animaation hyötyjä peligrafiikassa. Esimerkillisenä pelinä käytettiin pääasiassa Vanillawaren Dragon’s Crownian, koska siinä yhdistyvät perinteinen sprite sheet -animaatiota käyttävä peligrafiikka ja animaatiotyyli, jonka pystyisi tekemään helpommin kokonaan 2D-mesh-deformaatiota ja luurankoanimaatiota käyttäen. Projektityön osuudessa käytiin läpi animoidun 2D-hahmon työvaiheet kahdessa eri ohjelmassa, joissa molemmissa pystyi teke...

  15. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  16. 2dF mechanical engineering

    Science.gov (United States)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  17. Design of 2-D rational digital filters

    International Nuclear Information System (INIS)

    Harris, D.B

    1981-01-01

    A novel 2-D rational filter design technique is presented which makes use of a reflection coefficient function (RCF) representation for the filter transfer function. The design problem is formulated in the frequency domain. A least-square error criterion is used though the usual error measure is augmented with barrier functions. These act to restrict the domain of approximation to the set of stable filters. Construction of suitable barrier functions is facilitated by the RCF characterization

  18. Quasiparticle interference in unconventional 2D systems.

    Science.gov (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-15

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe 2 ), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  19. Thermodynamics of 2D string theory

    International Nuclear Information System (INIS)

    Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University

    2003-01-01

    We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)

  20. 2D materials: Graphene and others

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Suneev Anil, E-mail: suneev@gmail.com; Singh, Amrinder Pal [Deptt. of Mech Engg, UIET, Panjab University, Chandigarh (India); Kumar, Suresh [Deptt. of Applied Sciences, UIET, Panjab University, Chandigarh (India)

    2016-05-06

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  1. Simulation of 2D Granular Hopper Flow

    Science.gov (United States)

    Li, Zhusong; Shattuck, Mark

    2012-02-01

    Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.

  2. Realistic and efficient 2D crack simulation

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  3. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  4. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien; Kang, Jeongseuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsinping; Roy, Tania; Eggleston, Michael S.; Wu, Ming C.; Dubey, Madan; Lee, Sichen; He, Jr-Hau; Javey, Ali

    2015-01-01

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  5. From 2D to 3D turbulence through 2D3C configurations

    Science.gov (United States)

    Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz

    2017-11-01

    We study analytically and numerically the geometry of the nonlinear interactions and the resulting energy transfer directions of 2D3C flows. Through a set of suitably designed Direct Numerical Simulations we also study the coupling between several 2D3C flows, where we explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to a stationary 3D out-of-equilibrium dynamics at the energy containing scales where the inverse cascade is directly balanced by a forward cascade carried by a different subsets of interactions. ERC AdG Grant No 339032 NewTURB.

  6. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography

    Science.gov (United States)

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.

  7. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  8. Horns Rev II, 2-D Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...... diameter to water depth ratio and the wave hight to water depth ratio on wave run-up of piles. The measurements should be used to design access platforms on piles....

  9. Gluon amplitudes as 2 d conformal correlators

    Science.gov (United States)

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-10-01

    Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  10. 2D gravity and random matrices

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1990-01-01

    Recent progress in 2D gravity coupled to d ≤ 1 matter, based on a representation of discrete gravity in terms of random matrices, is reported. The matrix problem can be solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representation of the canonical commutation relations in terms of differential operators. In the case of pure gravity or discrete Ising-like matter the sum over topologies is reduced to the solution of non-linear differential equations. The d = 1 problem can be solved by semiclassical methods

  11. Is 'bosonic matter' unstable in 2D?

    CERN Document Server

    Manoukian, E B

    2003-01-01

    An upper bound is derived for the exact ground-state energy in 2D, E sub N <= -(me sup 4 /2 h-bar sup 2)(N sup 3 sup / sup 2 /50 pi sup 2), of 'bosonic matter' consisting of N positive and N negative charges with Coulombic interactions. This is to be compared with the classic N sup 7 sup / sup 5 3D-law of Dyson and gives rise to a more 'violent' collapse of such matter in 2D for large N. The derivation is based on a rigorous analysis which, in the process, controls the negative part of the Hamiltonian over its positive kinetic energy part and detailed estimates needed for counting trial wavefunctions of arbitrary states. A formal dimensional analysis in the style of Dyson alone shows, in arbitrary dimensions of space d = 1, 2, ..., that E sub N approx = -(me sup 4 /2 h-bar sup 2)C sub d N suprho, rho = (d + 4)/(d + 2), where C sub d is a positive constant depending on d, consistent with our rigorous bound, and we are led to conjecture that 'bosonic matter' is unstable in all dimensions.

  12. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  13. Improved Focusing Method for 3-D Imaging using Row–Column-Addressed 2-D Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Stuart, Matthias Bo

    2017-01-01

    A row–column-addressed (RCA) 2-D array can be interpreted as two orthogonal 1-D arrays. By transmitting with row elements and receiving the echoes through column elements or vice versa, a rectilinear volume in front of the array can be beamformed. Since the transmit and receive 1-D arrays are ort...... measurements with a PZT λ/2-pitch 3 MHz 62+62 RCA 2-D transducer probe. A synthetic aperture imaging sequence with single element transmissions at a time, is designed for imaging down to 14 cm at a volume rate of 44 Hz....

  14. Lagrangian MHD in 2D and 3D

    International Nuclear Information System (INIS)

    Oliphant, T.A.; Morel, J.E.; Gula, W.P.; Pfeufer, G.W.

    1997-01-01

    The cell-centered diffusion differencing scheme presented by Morel et al. has been applied to magnetic diffusion associated with Lagrangian hydrodynamic codes. Thus, the method applies to non-orthogonal meshes. Although the present application involves structured meshes, the method applies equally well to unstructured meshes. Morel's example of application is to 2D diffusion using Ficke's law. Thus, a volume integral approach is applied to the divergence operator. In 2D magnetic diffusion symmetry allows the use of an area integral approach involving the field components normal to the area, e.g. A-theta and B-theta. Instead of a divergence of a term proportional to the field gradient a curl of a term proportional to the curl of the field is used. An essential fact that allows this procedure is that the solenoidal property of the magnetic field is automatic. In the case of 3D it is necessary to return to the volumetric integral approach and to use rectangular components of the vector potential. Successful benchmarks have been run in comparison with the 1D code RAVEN. A typical example is that of a metal cylinder being compressed by a magnetic field applied at the outer boundary. So far, the 3D diffusion model has been tested in the orthogonal case and found to preserve the linear, homogeneous solution. Results of these and further tests are presented

  15. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...

  16. 2D vector-cyclic deformable templates

    DEFF Research Database (Denmark)

    Schultz, Nette; Conradsen, Knut

    1998-01-01

    In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation...... and probabillity measurement. The case study concerns estimation of meat percent in pork carcasses. Given two cross-sectional images - one at the front and one near the ham of the carcass - the areas of lean and fat and a muscle in the lean area are measured automatically by the deformable templates....

  17. 2D quantum gravity from quantum entanglement.

    Science.gov (United States)

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  18. Locality constraints and 2D quasicrystals

    International Nuclear Information System (INIS)

    Socolar, J.E.S.

    1990-01-01

    The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs

  19. Nonlinear Optics with 2D Layered Materials.

    Science.gov (United States)

    Autere, Anton; Jussila, Henri; Dai, Yunyun; Wang, Yadong; Lipsanen, Harri; Sun, Zhipei

    2018-03-25

    2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  1. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    ). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992...... was on the Dolos breakwater with a high superstructure, where there was almost no overtopping. This case is believed to be the most dangerous one. The test of the Dolos breakwater with a low superstructure was also performed. The objective of the last part of the experiment is to investigate the influence...

  2. Full revivals in 2D quantum walks

    International Nuclear Information System (INIS)

    Stefanak, M; Jex, I; Kollar, B; Kiss, T

    2010-01-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  3. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.

    Science.gov (United States)

    Montagnini, Anna; Spering, Miriam; Masson, Guillaume S

    2006-12-01

    Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.

  4. Interactive initialization of 2D/3D rigid registration

    International Nuclear Information System (INIS)

    Gong, Ren Hui; Güler, Özgür; Kürklüoglu, Mustafa; Lovejoy, John; Yaniv, Ziv

    2013-01-01

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the

  5. Interactive initialization of 2D/3D rigid registration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children' s National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children' s National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)

    2013-12-15

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on

  6. Photovoltaic Effect of 2D Homologous Perovskites

    International Nuclear Information System (INIS)

    Jung, Mi-Hee

    2017-01-01

    Highlights: • The mixed perovskite was prepared by exposure of MAI gas on the BAPbI_4 film. • The increased dimensional perovskite shows a smaller band gap than 2D perovskite. • The mixed perovskite system shows the vertical crystal orientation. • The mixed perovskite cell exhibits the higher Jsc and FF than 2D perovskite cell. - Abstract: The controlled growth of mixed dimensional perovskite structures, (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1, through the introduction of CH_3NH_3I molecule vapor into the two-dimensional perovskite C_6H_5CH_2NH_3PbI_4 structure and its application in photovoltaic devices is reported. The dimensionality of (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 is controlled using the exposure time to the CH_3NH_3I vapor on the C_6H_5CH_2NH_3PbI_4 perovskite film. As the stacking of the lead iodide lattice increases, the crystallographic planes of the inorganic perovskite compound exhibit vertical growth in order to facilitate efficient charge transport. Furthermore, the devices have a smaller band gap, which offers broader absorption and the potential to increase the photocurrent density in the solar cell. As a result, the photovoltaic device based on the (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 perovskite exhibits a power conversion efficiency of 5.43% with a short circuit current density of 14.49 mA cm"−"2, an open circuit voltage of 0.85 V, and a fill factor of 44.30 for the best power conversion efficiency under AM 1.5G solar irradiation (100 mW cm"−"2), which is significantly higher than the 0.34% of the pure two-dimensional BAPbI_4 perovskite-based solar cell.

  7. Parallelization of 2-D lattice Boltzmann codes

    International Nuclear Information System (INIS)

    Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo.

    1996-03-01

    Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author)

  8. Multimodal 2D Brain Computer Interface.

    Science.gov (United States)

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.

  9. FILM ANIMASI 2D (DIMENSI PENYULUHAN KB

    Directory of Open Access Journals (Sweden)

    Tri Hidayatul Ahmad Ismail

    2013-02-01

    Full Text Available Multimedia Animation is an attempt to make a live presentation of static or moving, the animation may consist of images and music to blend together and become alive. In this case Multimedia Animation designed by using multimedia-based information technology. From year to year Multimedia Animation Film Animation shaped more advanced, both in coloring, and in concep movement. With the community Animation Film spoiled by progress dazzling animation creation. Later in the era of globalization in Indonesia's population penetration rate can be calculated very rapidly. So the authors designed an Animated Film to Family Planning Counseling to promote family planning in the community.Data collection methods used to make this application is the method of interview and literature study. For the development of the system in this paper by using development techniques Luther systems development models - Sutopo which consists of six stages: concept, design, collecting materials, assembly, testing and distribution. The results of this study are 2D Animation Film as a medium of socialization to Family Planning Department with extension. Avi and will be distributed via CD media and aired on Social Media such as Facebook, Twitter and YouTube. This animation movie aims to be one choice as the media reduces the increase in the number of residents is too drastic. Keywords: movies, animation, family planning, Luther-Sutopo

  10. 2D conformal field theories and holography

    International Nuclear Information System (INIS)

    Freidel, Laurent; Krasnov, Kirill

    2004-01-01

    It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions

  11. 2D electromagnetic modelling of superconductors

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2012-01-01

    Some issues concerning the numerical analysis of superconductors are discussed and a novel approach to 2D modelling is proposed. Both axial and translational symmetric as well as current driven and voltage driven systems are examined in detail. The E–J power law is chosen instead of the critical state model as a constitutive relation of the material and the need to modify this relation in order to account for the normal state transition at high currents is discussed. A linear space reconstruction of the current density by means of nodal shape functions is used in order to build the finite dimensional model. A method to relax the tangential continuity of the current density, which is inherent to the discretization method used, is discussed. The performance of the proposed approach, both in terms of current distribution and AC loss, is evaluated with reference to some cases of practical interest involving composite materials. The role of the electric field as a natural state variable for superconducting problems is also pointed out. The use of the method as an alternative to the circuit approach or edge elements for modelling the superconductors is finally discussed. (paper)

  12. Parallelization of 2-D lattice Boltzmann codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo

    1996-03-01

    Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author).

  13. A simplified 2D HTTR benchmark problem

    International Nuclear Information System (INIS)

    Zhang, Z.; Rahnema, F.; Pounders, J. M.; Zhang, D.; Ougouag, A.

    2009-01-01

    To access the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of relevant whole core configurations. In this paper we have created a numerical benchmark problem in 2D configuration typical of a high temperature gas cooled prismatic core. This problem was derived from the HTTR start-up experiment. For code-to-code verification, complex details of geometry and material specification of the physical experiments are not necessary. To this end, the benchmark problem presented here is derived by simplifications that remove the unnecessary details while retaining the heterogeneity and major physics properties from the neutronics viewpoint. Also included here is a six-group material (macroscopic) cross section library for the benchmark problem. This library was generated using the lattice depletion code HELIOS. Using this library, benchmark quality Monte Carlo solutions are provided for three different configurations (all-rods-in, partially-controlled and all-rods-out). The reference solutions include the core eigenvalue, block (assembly) averaged fuel pin fission density distributions, and absorption rate in absorbers (burnable poison and control rods). (authors)

  14. A scintillating GEM detector for 2D dose imaging in hadron therapy

    NARCIS (Netherlands)

    Seravalli, E.

    2008-01-01

    The main aim of radiotherapy techniques is to deliver the dose to the target volume while sparing as much as possible the healthy tissue. Dose verifications prior the treatment of the patient are mandatory in order to guarantee high accuracy to the treatment. We have developed a 2D dose imaging

  15. Usefulness of the classification technique of cerebral artery for 2D/3D registration

    International Nuclear Information System (INIS)

    Takemura, Akihiro; Suzuki, Masayuki; Kikuchi, Yuzo; Okumura, Yusuke; Harauchi, Hajime

    2007-01-01

    Several papers have proposed 2D/3D registration methods of the cerebral artery using magnetic resonance angiography (MRA) and digital subtraction angiography (DSA). Since differences between vessels in a DSA image and MRA volume data cause registration failure, we previously proposed a method to extract vessels from MRA volume data using a technique based on classification of the cerebral artery. In this paper, we evaluated the usefulness of this classification technique by evaluating the reliability of this 2D/3D registration method. This classification method divides the cerebral artery in MRA volume data into 12 segments. According to the results of the classification, structures corresponding to vessels on a DSA image can then be extracted. We applied the 2D/3D registration with/without classification to 16 pairs of MRA volume data and DSA images obtained from six patients. The registration results were scored into four levels (Excellent, Good, Fair and Poor). The rates of successful registration (>fair) were 37.5% for registration without classification and 81.3% for that with classification. These findings suggested that there was a low percentage of incorrectly extracted voxels and we could facilitate reliable registration. Thus, the classification technique was shown to be useful for feature-based 2D/3D registration. (author)

  16. Pharmacokinetics of 1,25(OH)(2)D(3) and 1alpha(OH)D(3) in normal and uraemic men

    DEFF Research Database (Denmark)

    Brandi, Lisbet; Egfjord, Martin; Olgaard, Klaus

    2002-01-01

    ,25(OH)(2)D(3) (n=6) protocol. RESULTS: After oral administration of 1,25(OH)(2)D(3) the bioavailability of 1,25(OH)(2)D(3) was 70.6+/-5.8/72.2+/-4.8% in healthy volunteers/uraemic patients (n.s.). After i.v. administration the volume of distribution of 1,25(OH)(2)D(3) was similar, 0.49+/-0.14 vs 0...

  17. Conventional (2D) Versus Conformal (3D) Techniques in Radiotherapy for Malignant Pediatric Tumors: Dosimetric Perspectives

    International Nuclear Information System (INIS)

    Ahmad, N.; Attia, G.; Radwan, A.; El-Badawy, S.; El-Ghoneimy, E.

    2009-01-01

    Objectives: In pediatric radiotherapy, the enhanced radiosensitivity of the developing tissues combined with the high overall survival, raise the possibility of late complications. The present study aims at comparing two dimensional (2D) and three dimensional (3D) planning regarding dose homogeneity within target volume and dose to organs at risk (OARs) to demonstrate the efficacy of 3D in decreasing dose to normal tissue. Material and Methods: Thirty pediatric patients (18 years or less) with different pediatric tumors were planned using 2D and 3D plans. All were CT scanned after proper positioning and immobilization. Structures were contoured; including the planning target volume (PTV) and organs at risk (OARs). Conformal beams were designed and dose distribution analysis was edited to provide the best dose coverage to the PTV while sparing OARs using dose volume histograms (DVHs) of outlined structures. For the same PTVs conventional plans were created using the conventional simulator data (2-4 coplanar fields). Conventional and 3D plans coverage and distribution were compared using the term of V95% (volume of PTV receiving 95% of the prescribed dose), V107% (volume of PTV receiving 107% of the prescribed dose), and conformity index (CI) (volume receiving 90% of the prescribed dose/PTV). Doses received by OARs were compared in terms of mean dose. In children treated for brain lesions, OAR volume received 90% of the dose (V 90%) and OAR score were calculated. Results: The PTV coverage showed no statistical difference between 2D and 3D radiotherapy in terms of V95% or V107%. However, there was more conformity in 3D planning with CI 1.43 rather than conventional planning with CI 1.86 (p-value <0.001). Regarding OARs, 3D planning shows large gain in healthy tissue sparing. There was no statistical difference in mean dose received by each OAR. However, for brain cases, brain stem mean dose and brain V 90% showed better sparing in 3D planning (brain stem mean dose was

  18. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Directory of Open Access Journals (Sweden)

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  19. 2D model for melt progression through rods and debris

    International Nuclear Information System (INIS)

    Fichot, F.

    2001-01-01

    During the degradation of a nuclear core in a severe accident scenario, the high temperatures reached lead to the melting of materials. The formation of liquid mixtures at various elevations is followed by the flow of molten materials through the core. Liquid mixture may flow under several configurations: axial relocation along the rods, horizontal motion over a plane surface such as the core support plate or a blockage of material, 2D relocation through a debris bed, etc.. The two-dimensional relocation of molten material through a porous debris bed, implemented for the simulation of late degradation phases, has opened a new way to the elaboration of the relocation model for the flow of liquid mixture along the rods. It is based on a volume averaging method, where wall friction and capillary effects are taken into account by introducing effective coefficients to characterize the solid matrix (rods, grids, debris, etc.). A local description of the liquid flow is necessary to derive the effective coefficients. Heat transfers are modelled in a similar way. The derivation of the conservation equations for the liquid mixture falling flow (momentum) in two directions (axial and radial-horizontal) and for the heat exchanges (energy) are the main points of this new model for simulating melt progression. In this presentation, the full model for the relocation and solidification of liquid materials through a rod bundle or a debris bed is described. It is implemented in the ICARE/CATHARE code, developed by IPSN in Cadarache. The main improvements and advantages of the new model are: A single formulation for liquid mixture relocation, in 2D, either through a rod bundle or a porous debris bed, Extensions to complex structures (grids, by-pass, etc..), The modeling of relocation of a liquid mixture over plane surfaces. (author)

  20. On physical states in 2d (topological) gravity

    International Nuclear Information System (INIS)

    Bouwknegt, P.; McCarthy, J.; Pilch, K.

    1993-01-01

    We review the BRST computation of physical states in various 2d gravity theories. First we discuss the cohomology relevant for 2d gravity coupled to c ≤ 1 conformal matter. We then use these results to compute the cohomology of a c=26 βγ-system, i.e. restricted 2d topological gravity. We also comment on the cohomology for the complete 2d topological gravity. (author). 39 refs

  1. NKG2D and its ligands in cancer.

    Science.gov (United States)

    Dhar, Payal; Wu, Jennifer D

    2018-04-01

    NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives. Copyright © 2018. Published by Elsevier Ltd.

  2. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  3. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  4. High performance CCD camera system for digitalisation of 2D DIGE gels.

    Science.gov (United States)

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The no-hair conjecture in 2D dilaton supergravity

    International Nuclear Information System (INIS)

    Gamboa, J.; Georgelin, Y.

    1993-06-01

    Two dimensional dilaton gravity and supergravity are studied following Hamiltonian methods. The structure of constraints of 2D dilaton gravity and the 2D dilaton supergravity theory is discussed taking the square root of the bosonic constraints. The equations of motion are integrated in both cases, and it is shown that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity. (authors). 28 refs

  6. Anti-NKG2D mAb

    DEFF Research Database (Denmark)

    Vadstrup, Kasper; Bendtsen, Flemming

    2017-01-01

    with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56⁺ T, and CD8⁺ T cells. Activation of NKG2D triggers cellular proliferation, cytokine...... production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...... expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance...

  7. Real-time 3D imaging methods using 2D phased arrays based on synthetic focusing techniques.

    Science.gov (United States)

    Kim, Jung-Jun; Song, Tai-Kyong

    2008-07-01

    A fast 3D ultrasound imaging technique using a 2D phased array transducer based on the synthetic focusing method for nondestructive testing or medical imaging is proposed. In the proposed method, each column of a 2D array is fired successively to produce transverse fan beams focused at a fixed depth along a given longitudinal direction and the resulting pulse echoes are received at all elements of a 2D array used. After firing all column arrays, a frame of high-resolution image along a given longitudinal direction is obtained with dynamic focusing employed in the longitudinal direction on receive and in the transverse direction on both transmit and receive. The volume rate of the proposed method can be increased much higher than that of the conventional 2D array imaging by employing an efficient sparse array technique. A simple modification to the proposed method can further increase the volume scan rate significantly. The proposed methods are verified through computer simulations.

  8. 2D or Not 2D? Testing the Utility of 2D Vs. 3D Landmark Data in Geometric Morphometrics of the Sculpin Subfamily Oligocottinae (Pisces; Cottoidea).

    Science.gov (United States)

    Buser, Thaddaeus J; Sidlauskas, Brian L; Summers, Adam P

    2018-05-01

    We contrast 2D vs. 3D landmark-based geometric morphometrics in the fish subfamily Oligocottinae by using 3D landmarks from CT-generated models and comparing the morphospace of the 3D landmarks to one based on 2D landmarks from images. The 2D and 3D shape variables capture common patterns across taxa, such that the pairwise Procrustes distances among taxa correspond and the trends captured by principal component analysis are similar in the xy plane. We use the two sets of landmarks to test several ecomorphological hypotheses from the literature. Both 2D and 3D data reject the hypothesis that head shape correlates significantly with the depth at which a species is commonly found. However, in taxa where shape variation in the z-axis is high, the 2D shape variables show sufficiently strong distortion to influence the outcome of the hypothesis tests regarding the relationship between mouth size and feeding ecology. Only the 3D data support previous studies which showed that large mouth sizes correlate positively with high percentages of elusive prey in the diet. When used to test for morphological divergence, 3D data show no evidence of divergence, while 2D data show that one clade of oligocottines has diverged from all others. This clade shows the greatest degree of z-axis body depth within Oligocottinae, and we conclude that the inability of the 2D approach to capture this lateral body depth causes the incongruence between 2D and 3D analyses. Anat Rec, 301:806-818, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Synthesis, properties and applications of 2D non-graphene materials

    International Nuclear Information System (INIS)

    Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun

    2015-01-01

    As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III–V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field. (topical review)

  10. Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Jung, Young Mee

    2003-01-01

    Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra

  11. Structural Theory and Classification of 2D Adinkras

    International Nuclear Information System (INIS)

    Iga, Kevin; Zhang, Yan X.

    2016-01-01

    Adinkras are combinatorial objects developed to study (1-dimensional) supersymmetry representations. Recently, 2D Adinkras have been developed to study 2-dimensional supersymmetry. In this paper, we classify all 2D Adinkras, confirming a conjecture of T. Hübsch. Along the way, we obtain other structural results, including a simple characterization of Hübsch’s even-split doubly even codes.

  12. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    1999-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a

  13. 2D gravity, random surfaces and all that

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1990-11-01

    I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)

  14. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  15. A large 2D PSD for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B.; Watt, G.; Boldeman, J.W. [Australian Nucl. Sci. and Tech. Organ., Menai, NSW (Australia). Phys. Div.; Smith, G.C. [Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    1997-06-21

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4}, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2 A neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The proportional counter operating system (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display. (orig.).

  16. A large 2D PSD for thermal neutron detection

    International Nuclear Information System (INIS)

    Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.

    1996-01-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm 2 . To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa 3 He plus 100 kPa CF 4 and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10 5 events per second. The (calculated) neutron detection efficiency was 60% for 2 angstrom neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm 2 ) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display

  17. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.; Guisinger, Nathan P.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  18. 2D nanomaterials assembled from sequence-defined molecules

    International Nuclear Information System (INIS)

    Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long

    2017-01-01

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.

  19. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate

    International Nuclear Information System (INIS)

    Adpakpang, Kanyaporn; Patil, Sharad B.; Oh, Seung Mi; Kang, Joo-Hee; Lacroix, Marc; Hwang, Seong-Ju

    2016-01-01

    Graphical abstract: Effective morphological control of porous silicon 2D nanoplate can be achieved by the magnesiothermically-induced phase transition of exfoliated silicate clay nanosheets. The promising lithium storage performance of the obtained silicon materials with huge capacity and excellent rate characteristics underscores the prime importance of porously 2D nanostructured morphology of silicon. - Highlights: • 2D nanostructured silicon electrode materials are successfully synthesized via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. • High discharge capacity and rate capability are achieved from the 2D nanoplates of silicon. • Silicon 2D nanoplates can enhance both Li"+ diffusion and charge-transfer kinetics. • 2D nanostructured silicon is beneficial for the cycling stability by minimizing the volume change during lithiation-delithiation. - Abstract: An efficient and economical route for the synthesis of porous two-dimensional (2D) nanoplates of silicon is developed via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. The magnesiothermic reaction of precursor clay nanosheets prepared by the exfoliation and restacking with Mg"2"+ cations yields porous 2D nanoplates of elemental silicon. The variation in the Mg:SiO_2 ratio has a significant effect on the porosity and connectivity of silicon nanoplates. The porous silicon nanoplates show a high discharge capacity of 2000 mAh g"−"1 after 50 cycles. Of prime importance is that this electrode material still retains a large discharge capacity at higher C-rates, which is unusual for the elemental silicon electrode. This is mainly attributed to the improved diffusion of lithium ions, charge-transfer kinetics, and the preservation of the electrical connection of the porous 2D plate-shaped morphology. This study highlights the usefulness of clay mineral as an economical and scalable precursor of high-performance silicon electrodes with

  20. From 3 d duality to 2 d duality

    Science.gov (United States)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  1. Novel three-dimensional imaging volumetry in autosomal dominant polycystic kidney disease: comparison with 2D volumetry.

    Science.gov (United States)

    Shin, Dongsuk; Lee, Kyu-Beck; Hyun, Young Youl; Lee, Young Rae; Hwang, Young-Hwan; Park, Hayne Cho; Ahn, Curie

    2014-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) volumetry is an important marker for evaluating the progression of disease. Three-dimensional (3D) volumetry is generally more timesaving than 2D volumetry, but its reliability and accuracy are uncertain. Small and large phantoms simulating polycystic kidneys and 20 patients with ADPKD underwent magnetic resonance imaging (MRI) volumetry. We evaluated the total kidney volume (TKV) and total cyst volume (TCV) using a novel 3D volumetry program (XelisTM) and compared 3D volumetry data with the conventional 2D method (the reference volume values). After upload and threshold setting, the other organs surrounding the kidney were removed by picking and sculpting. The novel method involves drawing of the kidney or cyst and automatic measurement of kidney volume and cyst volume in 3D images. The 3D volume estimation of the small and large phantoms differed from the actual values by 6.9% and -8.2%, respectively, for TKV and by 2.1% and 1.4% for TCV. In ADPKD patients, the intra-reader reliability of 3D volumetry was 30 ± 180 mL (1.3 ± 10.3%) and 25 ± 113 mL (1.2 ± 9.4%), respectively, for TKV and TCV. Correlation between 3D volumetry and 2D volumetry of TKV and TCV resulted in a high correlation coefficient and a regression slope approaching 1.00 (r = 0.97 - 0.98). The mean of the volume percentage differences for 3D vs. 2D for TKV : TCV were -6.0 ± 8.9% : 2.0 ± 11.8% in large ADPKD and -16.1 ± 10.4% : 13.2 ± 21.9% in small ADPKD. Our study showed that 3D volumetry has reliability and accuracy compared with 2D volumetry in ADPKD. 3D volumetry is more accurate for TCV and large ADPKD.

  2. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  3. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  4. Effective viscosity of 2D suspensions - Confinement effects

    OpenAIRE

    Doyeux , Vincent; Priem , Stephane; Jibuti , Levan; Farutin , Alexander; Ismail , Mourad; Peyla , Philippe

    2016-01-01

    International audience; We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. Thanks to the direct visualization of the whole 2D flow (th...

  5. Wearable energy sources based on 2D materials.

    Science.gov (United States)

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  6. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  7. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2011-05-01

    This report presents results from modelling of geophysical data. Ground magnetic and geo electric data were collected in 1988 as part of the pre-investigations carried out before the construction of the Aespoe Hard Rock Laboratory (HRL). The work presented in this report is an evaluation of the magnetic and geo electric data with the focus on estimating variations in geometry and dip of some of the possible deformation zones indicated in lineament interpretations presented earlier. This was done by 2D forward magnetic modelling, 2D forward resistivity modelling and 3D inversion of the magnetic data. The specific aims of this work are: 1. Produce magnetic 2D forward models across 12 selected linked lineaments. 2. Produce a 3D susceptibility model of the entire data set of Aespoe. 3. Use 2D forward resistivity modelling to produce electric anomaly response diagrams for a dipole-dipole survey across low resistivity zones with various dips. The results of the modelling work will mainly be used as supportive information for deterministic geological modelling of deformation zones and rock units in the vicinity of the Aespoe HRL. The results of the 2D forward modelling of magnetic data show geologically reasonable solutions, and in most cases it is possible to make reliable estimates of the width and orientation of the cause of the targeted lineament. The possible deformation zones generally dip steeply (80 deg-90 deg) and have a width of c. 30-50 m. In some cases the modelled lineament has a diffuse character with low amplitude, which makes the model solution uncertain. Two 3D susceptibility models were created by use of inversion of the ground magnetic data; one coarse model of the entire Island of Aespoe and one more detailed model of the south-eastern peninsula of the Island, covering the volume of the Aespoe HRL. The two models fit nicely to the measured data and they are geologically realistic. It is possible to identify well-defined bodies (rock volumes) of

  8. 32 CFR 1639.4 - Exclusion from Class 2-D.

    Science.gov (United States)

    2010-07-01

    ... recognized; or (c) He ceases to be a full-time student; or (d) He fails to maintain satisfactory academic... Class 2-D when: (a) He fails to establish that the theological or divinity school is a recognized school...

  9. Proteome analysis of human colorectal cancer tissue using 2-D ...

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... protein spots were identified by mass spectrometric analysis. The cDNA of the ..... sensitivity, dynamic range and reproducibility vs the conventional 2-D ... linkage, and also has molecular chaperones activity for inhibiting the ...

  10. MERRA DAS 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0NXASM or const_2d_asm_Nx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native resolution. MERRA, or the Modern Era...

  11. MERRA CHM 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0FXCHM or const_2d_chm_Fx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native Fv resolution. MERRA, or the Modern Era...

  12. Optical identification using imperfections in 2D materials

    Science.gov (United States)

    Cao, Yameng; Robson, Alexander J.; Alharbi, Abdullah; Roberts, Jonathan; Woodhead, Christopher S.; Noori, Yasir J.; Bernardo-Gavito, Ramón; Shahrjerdi, Davood; Roedig, Utz; Fal'ko, Vladimir I.; Young, Robert J.

    2017-12-01

    The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.

  13. Soluble NKG2D ligands: prevalence, release, and functional impact.

    Science.gov (United States)

    Salih, Helmut Rainer; Holdenrieder, Stefan; Steinle, Alexander

    2008-05-01

    Natural Killer (NK) cells are capable to recognize and eliminate malignant cells. Anti-tumor responses of NK cells are promoted by the tumor-associated expression of cell stress-inducible ligands of the activating NK receptor NKG2D. Current evidence suggests that established tumors subvert NKG2D-mediated tumor immunosurveillance by releasing NKG2D ligands (NKG2DL). Release of NKG2DL has been observed in a broad variety of human tumor entities and is thought to interfere with NKG2D-mediated tumor immunity in several ways. Further, levels of soluble NKG2DL (sNKG2DL) were also found to be elevated under various non-malignant conditions, although the functional implications remain largely unclear. Here we review and discuss the available data on the prevalence, release, functional impact, and potential clinical value of sNKG2DL.

  14. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  15. Excitons in atomically thin 2D semiconductors and their applications

    Science.gov (United States)

    Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang

    2017-06-01

    The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  16. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  17. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  18. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    Science.gov (United States)

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  19. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    Science.gov (United States)

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  20. Tailored Assembly of 2D Heterostructures beyond Graphene

    Science.gov (United States)

    2017-05-11

    attainable. Here we propose our synthetic approach to construct graphene-based 3D heterostructures composed of 2D layered materials with finely tunable...DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research ...Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rapid progress in graphene research has attracted further research attentions for other 2D layered

  1. Proteasome modulator 9 and macrovascular pathology of T2D

    Directory of Open Access Journals (Sweden)

    Gragnoli Claudia

    2011-04-01

    Full Text Available Abstract Aims Coronary artery disease (CAD and stroke share a major linkage at the chromosome 12q24 locus. The same chromosome region entails at least a major risk gene for type 2 diabetes (T2D within NIDDM2, the non-insulin-dependent-diabetes 2 locus. The gene of Proteasome Modulator 9 (PSMD9 lies in the NIDDM2 region and is implicated in diabetes in mice. PSMD9 mutations rarely cause T2D and common variants are linked to both late-onset T2D and maturity-onset-diabetes of the young (MODY3. In this study, we aimed at determining whether PSMD9 is linked to macrovascular pathology of T2D. Methods and Results In our 200 T2D families from Italy, we characterized the clinical phenotype of macrovascular pathology by defining the subjects for presence or absence of CAD, stroke and/or transitory ischemic attacks (TIA, plaques of the large arterial vessels (macro-vasculopathy and arterial angioplasty performance. We then screened 200 T2D siblings/families for PSMD9 +nt460A/G, +nt437C/T and exon E197G A/G single nucleotide polymorphisms (SNPs and performed a non-parametric linkage study to test for linkage for coronary artery disease, stroke/TIA, macro-vasculopathy and macrovascular pathology of T2D. We performed 1,000 replicates to test the power of our significant results. Our results show a consistent significant LOD score in linkage with all the above-mentioned phenotypes. Our 1000 simulation analyses, performed for each single test, confirm that the results are not due to random chance. Conclusions In summary, the PSMD9 IVS3+nt460A/G, +nt437C/T and exon E197G A/G SNPs are linked to CAD, stroke/TIA and macrovascular pathology of T2D in Italians.

  2. Photonics of 2D gold nanolayers on sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Nabatov, B. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation); Konovko, A. A.; Belov, I. V.; Gizetdinov, R. M.; Andreev, A. V. [Moscow State University (Russian Federation); Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Gold layers with thicknesses of up to several nanometers, including ordered and disordered 2D nanostructures of gold particles, have been formed on sapphire substrates; their morphology is described; and optical investigations are carried out. The possibility of increasing the accuracy of predicting the optical properties of gold layers and 2D nanostructures using quantum-mechanical models based on functional density theory calculation techniques is considered. The application potential of the obtained materials in photonics is estimated.

  3. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng

    2017-06-20

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  4. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng; Xu, Weiyu; Yang, Yang

    2017-01-01

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  5. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  6. Benchmarking of FA2D/PARCS Code Package

    International Nuclear Information System (INIS)

    Grgic, D.; Jecmenica, R.; Pevec, D.

    2006-01-01

    FA2D/PARCS code package is used at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, for static and dynamic reactor core analyses. It consists of two codes: FA2D and PARCS. FA2D is a multigroup two dimensional transport theory code for burn-up calculations based on collision probability method, developed at FER. It generates homogenised cross sections both of single pins and entire fuel assemblies. PARCS is an advanced nodal code developed at Purdue University for US NRC and it is based on neutron diffusion theory for three dimensional whole core static and dynamic calculations. It is modified at FER to enable internal 3D depletion calculation and usage of neutron cross section data in a format produced by FA2D and interface codes. The FA2D/PARCS code system has been validated on NPP Krsko operational data (Cycles 1 and 21). As we intend to use this code package for development of IRIS reactor loading patterns the first logical step was to validate the FA2D/PARCS code package on a set of IRIS benchmarks, starting from simple unit fuel cell, via fuel assembly, to full core benchmark. The IRIS 17x17 fuel with erbium burnable absorber was used in last full core benchmark. The results of modelling the IRIS full core benchmark using FA2D/PARCS code package have been compared with reference data showing the adequacy of FA2D/PARCS code package model for IRIS reactor core design.(author)

  7. The Correlation Between the GFR and the Renal Dimensions in Glomerulopathy Patients: Comparison of 2D and 3D Ultrasound

    International Nuclear Information System (INIS)

    Kim, Gyoung Min; Lee, Hak Jong; Hwang, Sung Il; Chin, Ho Jun

    2011-01-01

    We wanted to determine the correlation between the renal length as measured on two dimensional (2D) ultrasonography (US) and the renal parenchymal volume as measured with a new three-dimensional (3D) volume probe ultrasound system. We also wanted to determine the correlation between the renal length or renal parenchymal volume and the glomerular filtration rate (GFR) in patients with glomerulopathy. From July 2007 to December 2007, 26 patients who were pathologically confirmed to have glomerulopathy by biopsy were enrolled. Renal length was measured with 2D US and the renal parenchymal volume was measured with 3D US just prior to biopsy. The GFR was obtained from the electronic medical records. Pearson's correlation coefficients were used to analyze the correlation between the renal length and the renal parenchymal volume, the correlation between the renal length and the GFR and the correlation between the renal parenchymal volume and the GFR. The renal length and the renal parenchymal volume showed strong positive correlation (r = 0.850, p = 0.0001). The correlation coefficient between the renal length and the GFR was 0.623 (p = 0.0007) and the correlation coefficient between the renal volume and the GFR was 0.590 (p = 0.0015). Both the renal length and renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. The renal length showed strong positive correlations with the renal parenchymal volume. Both the renal length and the renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. In glomerulopathy patients, the renal dimensions measured by ultrasound can reflect the status of the GFR, and the measurement of the 2D renal length could be sufficient for follow up. Further studies are needed to evaluate the role of 3D US for assessing patients with renal disease

  8. CYP2D6 variability in populations from Venezuela.

    Science.gov (United States)

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  9. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    Science.gov (United States)

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  magnon edge modes.

  10. Giant Thermal Expansion in 2D and 3D Cellular Materials.

    Science.gov (United States)

    Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di

    2018-03-25

    When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimization of FIBMOS Through 2D Silvaco ATLAS and 2D Monte Carlo Particle-based Device Simulations

    OpenAIRE

    Kang, J.; He, X.; Vasileska, D.; Schroder, D. K.

    2001-01-01

    Focused Ion Beam MOSFETs (FIBMOS) demonstrate large enhancements in core device performance areas such as output resistance, hot electron reliability and voltage stability upon channel length or drain voltage variation. In this work, we describe an optimization technique for FIBMOS threshold voltage characterization using the 2D Silvaco ATLAS simulator. Both ATLAS and 2D Monte Carlo particle-based simulations were used to show that FIBMOS devices exhibit enhanced current drive ...

  12. High performance shallow water kernels for parallel overland flow simulations based on FullSWOF2D

    KAUST Repository

    Wittmann, Roland; Bungartz, Hans-Joachim; Neumann, Philipp

    2017-01-01

    -by-step transformation of the second order finite volume scheme in FullSWOF2D towards MPI parallelization. Second, the computational kernels are optimized by the use of templates and a portable vectorization approach. We discuss the load imbalance of the flux computation

  13. A 2D model of causal set quantum gravity: the emergence of the continuum

    International Nuclear Information System (INIS)

    Brightwell, Graham; Henson, Joe; Surya, Sumati

    2008-01-01

    Non-perturbative theories of quantum gravity inevitably include configurations that fail to resemble physically reasonable spacetimes at large scales. Often, these configurations are entropically dominant and pose an obstacle to obtaining the desired classical limit. We examine this 'entropy problem' in a model of causal set quantum gravity corresponding to a discretization of 2D spacetimes. Using results from the theory of partial orders we show that, in the large volume or continuum limit, its partition function is dominated by causal sets which approximate to a region of 2D Minkowski space. This model of causal set quantum gravity thus overcomes the entropy problem and predicts the emergence of a physically reasonable geometry

  14. Automatic computation of 2D cardiac measurements from B-mode echocardiography

    Science.gov (United States)

    Park, JinHyeong; Feng, Shaolei; Zhou, S. Kevin

    2012-03-01

    We propose a robust and fully automatic algorithm which computes the 2D echocardiography measurements recommended by America Society of Echocardiography. The algorithm employs knowledge-based imaging technologies which can learn the expert's knowledge from the training images and expert's annotation. Based on the models constructed from the learning stage, the algorithm searches initial location of the landmark points for the measurements by utilizing heart structure of left ventricle including mitral valve aortic valve. It employs the pseudo anatomic M-mode image generated by accumulating the line images in 2D parasternal long axis view along the time to refine the measurement landmark points. The experiment results with large volume of data show that the algorithm runs fast and is robust comparable to expert.

  15. CFD Analysis of 2D Unsteady Flow Past a Square Cylinder at Low Reynolds Numbers

    Directory of Open Access Journals (Sweden)

    Li Zhenquan

    2018-01-01

    Full Text Available A study of the behaviour of flow past a square cylinder for Reynolds numbers 10 and 20 is presented. Open source software Navier2d in Matlab is used in this study. The investigation starts from a uniform initial mesh and then refine the initial mesh using a mesh refinement method which was proposed based on both qualitative theory of differential equations and the finite volume method implemented in Navier2d. The horizontal and vertical velocity component profiles and pressures are shown on the once refined meshes. The comparisons between the profiles and pressures are conducted to show the variations from Reynolds number 10 to 20. The twice refined meshes are also presented and these refined meshes provide the information where the behaviour of flow is complex.

  16. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements.

    Science.gov (United States)

    Coene, A; Crevecoeur, G; Leliaert, J; Dupré, L

    2015-09-01

    Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of larger volumes can be

  17. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements

    International Nuclear Information System (INIS)

    Coene, A.; Crevecoeur, G.; Dupré, L.; Leliaert, J.

    2015-01-01

    Purpose: Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. Methods: To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. Results: The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of

  18. Reconstruction of incomplete cell paths through a 3D-2D level set segmentation

    Science.gov (United States)

    Hariri, Maia; Wan, Justin W. L.

    2012-02-01

    Segmentation of fluorescent cell images has been a popular technique for tracking live cells. One challenge of segmenting cells from fluorescence microscopy is that cells in fluorescent images frequently disappear. When the images are stacked together to form a 3D image volume, the disappearance of the cells leads to broken cell paths. In this paper, we present a segmentation method that can reconstruct incomplete cell paths. The key idea of this model is to perform 2D segmentation in a 3D framework. The 2D segmentation captures the cells that appear in the image slices while the 3D segmentation connects the broken cell paths. The formulation is similar to the Chan-Vese level set segmentation which detects edges by comparing the intensity value at each voxel with the mean intensity values inside and outside of the level set surface. Our model, however, performs the comparison on each 2D slice with the means calculated by the 2D projected contour. The resulting effect is to segment the cells on each image slice. Unlike segmentation on each image frame individually, these 2D contours together form the 3D level set function. By enforcing minimum mean curvature on the level set surface, our segmentation model is able to extend the cell contours right before (and after) the cell disappears (and reappears) into the gaps, eventually connecting the broken paths. We will present segmentation results of C2C12 cells in fluorescent images to illustrate the effectiveness of our model qualitatively and quantitatively by different numerical examples.

  19. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    Science.gov (United States)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  20. Recent mathematical developments in 2D correlation spectroscopy

    Science.gov (United States)

    Noda, I.

    2000-03-01

    Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.

  1. Graphene based 2D-materials for supercapacitors

    Science.gov (United States)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  2. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  3. Approximate 2D inversion of airborne TEM data

    DEFF Research Database (Denmark)

    Christensen, N.B.; Wolfgram, Peter

    2006-01-01

    We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...... section. For moving platform data there is translational invariance and the second part of the inversion becomes a deconvolution. The convolution kernels are computed by perturbing one model element in an otherwise homogeneous 2D section and calculating full nonlinear responses. These responses...... are then inverted with 1D models to produce a 1D model section. This section is the convolution kernel for the deconvolution. Within its limitations, the approximate 2D inversion performs well. Theoretical modeling shows that it delivers model sections that are a definite improvement over 1D model sections...

  4. Graphene based 2D-materials for supercapacitors

    International Nuclear Information System (INIS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-01-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed. (topical review)

  5. Effective viscosity of 2D suspensions - Confinement effects

    Science.gov (United States)

    Peyla, Philippe; Priem, Stephane; Vincent, Doyeux; Farutin, Alexander; Ismail, Mourad

    2014-11-01

    We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. For instance, we examine the role of particle-wall and particle-particle interactions in determining the rheology of confined sheared suspensions. In addition we evaluate the intrinsic viscosity as well as the contribution of hydrodynamic interactions to the dissipation as a function of a wide range of confinements. Thanks to the direct visualisation of the whole 2D Stokes flow, we are able to give a clear interpretation about the rheology of semi-dilute confined suspensions.

  6. Theory of Magnetoelectric Properties of 2D Systems

    Science.gov (United States)

    Chen, S. C.; Wu, J. Y.; Lin, C. Y.; Lin, M. F.

    2017-12-01

    This book addresses important advances in diverse quantization phenomena. 'Theory of Magnetoelectric Properties of 2D Systems' develops the generalized tight-binding model in order to comprehend the rich quantization phenomena in 2D materials. The unusual effects, taken into consideration simultaneously, mainly come from the multi-orbital hybridization, the spin-orbital coupling, the intralayer and interlayer atomic interactions, the layer number, the stacking configuration, the site-energy difference, the magnetic field, and the electric field. The origins of the phenomena are discussed in depth, particularly focusing on graphene, tinene, phosphorene and MoS2, with a broader model also drawn. This model could be further used to investigate electronic properties of 1D and 3D condensed-matter systems, and this book will prove to be a valuable resource to researchers and graduate students working in 2D materials science.

  7. MESH2D Grid generator design and use

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-31

    Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].

  8. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  9. Titan2D simulations of dome-collapse pyroclastic flows for crisis assessments on Montserrat

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Patra, A.; Pitman, E.

    2010-12-01

    The Soufriere Hills Volcano (SHV), Montserrat, has experienced numerous episodes of lava dome collapses since 1995. Collapse volumes range from small rockfalls to major dome collapses (as much as ~200 M m3). Problems arise in hazards mitigation, particularly in zoning for populated areas. Determining the likely extent of flowage deposits in various scenarios is important for hazards zonation, provision of advice by scientists, and decision making by public officials. Towards resolution of this issue we have tested the TITAN2D code, calibrated parameters for an SHV database, and using updated topography have provided flowage maps for various scenarios and volume classes from SHV, for use in hazards assessments. TITAN2D is a map plane (depth averaged) simulator of granular flow and yields mass distributions over a DEM. Two Coulomb frictional parameters (basal and internal frictions) and initial source conditions (volume, source location, and source geometry) of single or multiple pulses in a dome-collapse type event control behavior of the flow. Flow kinematics are captured, so that the dynamics of flow can be examined spatially from frame to frame, or as a movie. Our hazard maps include not only the final deposit, but also areas inundated by moving debris prior to deposition. Simulations from TITAN2D were important for analysis of crises in the period 2007-2010. They showed that any very large mass released on the north slope would be strongly partitioned by local topography, and thus it was doubtful that flows of very large size (>20 M m3) could be generated in the Belham River drainage. This partitioning effect limited runout toward populated areas. These effects were interpreted to greatly reduce the down-valley risk of ash-cloud surges.

  10. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  11. Quantum process tomography by 2D fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-01-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed

  12. Melting of 2D monatomic solids: Lennard-Jones system

    International Nuclear Information System (INIS)

    Yi, Y.M.; Guo, Z.C.

    1987-09-01

    The Lennard-Jones interaction has been introduced into the Collins mix lattice of 2D liquids. By means of rigorous calculation of the total potential and the free area, the Gibbs functions for 2D liquid and solid have been derived. The melting line obtained from the phase transition equation agrees quite well with the result of recent computer simulation experiments. The obtained reduced temperature of the triple point T* t =0.438 agrees with the data measured in experiments of some inert gas monolayers adsorbed on graphite as well as in computer simulation experiments. (author). 11 refs, 7 figs, 3 tabs

  13. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir

    2011-01-01

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  14. 2-D emittance equation with acceleration and compression

    International Nuclear Information System (INIS)

    Hahn, K.D.; Smith, L.

    1988-10-01

    Since both acceleration and compression are required for an Inertial Fusion Driver, the understanding of their effect on the beam quality, emittance, is important. This report attempts to generalize the usual emittance formula for the drifting beam to include these effects. The derivation of the 2-D emittance equation is carried out and a comparison with the particle code results is given. The 2-D emittance at a given axial location is reasonable to consider for a long beam, particularly with velocity tilt; transverse emittance averaged over the entire bunch is not a useful quantity. 6 refs., 2 figs., 1 tab

  15. Real-time 2-D Phased Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon; Hansen, Kristoffer Lindskov; Fogh, Nikolaj

    2018-01-01

    Echocardiography examination of the blood flow is currently either restricted to 1-D techniques in real-time or experimental off-line 2-D methods. This paper presents an implementation of transverse oscillation for real-time 2-D vector flow imaging (VFI) on a commercial BK Ultrasound scanner....... A large field-of-view (FOV) sequence for studying flow dynamics at 11 frames per second (fps) and a sequence for studying peak systolic velocities (PSV) with a narrow FOV at 36 fps were validated. The VFI sequences were validated in a flow-rig with continuous laminar parabolic flow and in a pulsating flow...

  16. Radiative heat transfer in 2D Dirac materials

    International Nuclear Information System (INIS)

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-01-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. (paper)

  17. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  18. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...

  19. Design and production of a short 2D animated film

    OpenAIRE

    Prusnik, Petra

    2014-01-01

    Design and production of a short 2D animated film The thesis aims at analysing animation, the process of creating an ani- mated film with its technical and compositional details as well as show the process of making a short 2D animated movie with Toon Boom Studio. It is composed of theoretical and practical part. The theoretical part of this thesis consists of the definition of the term "animation", a quick overview of its history and evolution, and an in-depth look into var...

  20. 2D director calculation for liquid crystal optical phased array

    International Nuclear Information System (INIS)

    Xu, L; Zhang, J; Wu, L Y

    2005-01-01

    A practical numerical model for a liquid crystal cell is set up based on the geometrical structure of liquid crystal optical phased arrays. Model parameters include width and space of electrodes, thickness of liquid crystal layer, alignment layers and glass substrates, pre-tilted angles, dielectric constants, elastic constants and so on. According to electrostatic field theory and Frank-Oseen elastic continuum theory, 2D electric potential distribution and 2D director distribution are calculated by means of the finite difference method on non-uniform grids. The influence of cell sizes on director distribution is analyzed. The fringe field effect between electrodes is also discussed

  1. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    Science.gov (United States)

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.

  2. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  3. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....

  4. Design of the LRP airfoil series using 2D CFD

    International Nuclear Information System (INIS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N; Vronsky, Tomas; Gaudern, Nicholas

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils

  5. Thermodynamics of an Attractive 2D Fermi Gas

    Science.gov (United States)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  6. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    Science.gov (United States)

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical

  7. How Mucosal Epithelia Deal with Stress: Role of NKG2D/NKG2D Ligands during Inflammation

    Directory of Open Access Journals (Sweden)

    Fabrizio Antonangeli

    2017-11-01

    Full Text Available Mucosal epithelia encounter both physicochemical and biological stress during their life and have evolved several mechanisms to deal with them, including regulation of immune cell functions. Stressed and damaged cells need to be cleared to control local inflammation and trigger tissue healing. Engagement of the activating NKG2D receptor is one of the most direct mechanisms involved in the recognition of stressed cells by the immune system. Indeed, injured cells promptly express NKG2D ligands that in turn mediate the activation of lymphocytes of both innate and adaptive arms of the immune system. This review focuses on different conditions that are able to modulate NKG2D ligand expression on the epithelia. Special attention is given to the mechanisms of immunosurveillance mediated by natural killer cells, which are finely tuned by NKG2D. Different types of stress, including viral and bacterial infections, chronic inflammation, and cigarette smoke exposure, are discussed as paradigmatic conditions for NKG2D ligand modulation, and the implications for tissue homeostasis are discussed.

  8. NASA-VOF2D: a computer program for incompressible flows with free surfaces

    Science.gov (United States)

    Torrey, M. D.; Cloutman, L. D.; Mjolsness, R. C.; Hirt, C. W.

    1985-12-01

    We present the NASA-VOF2D two-dimensional, transient, free-surface hydrodynamics program. It has a variety of options that provide capabilities for a wide range of applications, and it is designed to be relatively easy to use. It is based on the fractional volume-of-fluid method, and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report includes a discussion of the numerical method, a code listing, and a selection of sample problems.

  9. A MATLAB Script for Solving 2D/3D Minimum Compliance Problems using Anisotropic Mesh Adaptation

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjerg

    2017-01-01

    We present a pure MATLAB implementation for solving 2D/3D compliance minimization problems using the density method. A filtered design variable with a minimum length is computed using a Helmholtz-type differential equation. The optimality criteria is used as optimizer and to avoid local minima we...... apply continuation of an exponent that controls the stiffness associated with intermediate design variables. We constrain the volume from above and use the implementation to show that optimizations with dynamic meshes can save significant amounts of computational time compared to fixed meshes without...

  10. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method

    Directory of Open Access Journals (Sweden)

    Lina Yang

    2014-01-01

    Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.

  11. The toroidal Hausdorff dimension of 2d Euclidean quantum gravity

    DEFF Research Database (Denmark)

    Ambjorn, Jan; Budd, Timothy George

    2013-01-01

    The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...

  12. 2-D fluid transport simulations of gaseous/radiative divertors

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Brown, P.N.; Campbell, R.B.; Kaiser, T.B.; Knoll, D.A.; McHugh, P.R.; Porter, G.D.; Rensink, M.E.; Smith, G.R.

    1994-01-01

    The features of the fully implicit 2-D fluid code UEDGE are described. The utility of the code is demonstrated by showing bifurcations or multiple solutions of the tokamak edge plasma for both deuterium and impurity injection in the divertor. (orig.)

  13. 2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Augustyn, Veronica [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering, A. J. Drexel Nanomaterials Inst.

    2017-10-11

    In the quest to develop energy storage with both high power and high energy densities, and while maintaining high volumetric capacity, recent results show that a variety of 2D and layered materials exhibit rapid kinetics of ion transport by the incorporation of nanoconfined fluids.

  14. Interactive exploratory visualization of 2D vector fields

    NARCIS (Netherlands)

    Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh

    In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom design glyphs (arrows, lines, etc.) that best reveal patterns of the

  15. 2D Vertical Heterostructures for Novel Tunneling Device Applications

    Science.gov (United States)

    2017-03-01

    2D Vertical Heterostructures for Novel Tunneling Device Applications Philip M. Campbell, Christopher J. Perini, W. Jud Ready, and Eric M. Vogel...School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA, USA 30332 Abstract: Vertical heterostructures...digital logic, signal processing, analog-to-digital conversion, and high-frequency communications, vertical heterostructure tunneling devices have

  16. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented

  17. 2-D tiles declustering method based on virtual devices

    Science.gov (United States)

    Li, Zhongmin; Gao, Lu

    2009-10-01

    Generally, 2-D spatial data are divided as a series of tiles according to the plane grid. To satisfy the effect of vision, the tiles in the query window including the view point would be displayed quickly at the screen. Aiming at the performance difference of real storage devices, we propose a 2-D tiles declustering method based on virtual device. Firstly, we construct a group of virtual devices which have same storage performance and non-limited capacity, then distribute the tiles into M virtual devices according to the query window of 2-D tiles. Secondly, we equably map the tiles in M virtual devices into M equidistant intervals in [0, 1) using pseudo-random number generator. Finally, we devide [0, 1) into M intervals according to the tiles distribution percentage of every real storage device, and distribute the tiles in each interval in the corresponding real storage device. We have designed and realized a prototype GlobeSIGht, and give some related test results. The results show that the average response time of each tile in the query window including the view point using 2-D tiles declustering method based on virtual device is more efficient than using other methods.

  18. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    Science.gov (United States)

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Discrepant Results in a 2-D Marble Collision

    Science.gov (United States)

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  20. Validation and testing of the VAM2D computer code

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, ''Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs

  1. ENVIRONMENTAL EFFECTS OF DREDGING AND DISPOSAL (E2-D2)

    Science.gov (United States)

    US Army Corps of Engineers public web site for the "Environmental Effects of Dredging and Disposal" ("E2-D2") searchable database of published reports and studies about environmental impacts associated with dredging and disposal operations. Many of the reports and studies are ava...

  2. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    KAUST Repository

    Chiu, Ming-Hui

    2016-09-20

    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reorientation of magnetization with temperature in 2D ferromagnets

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Spirin, D.V.; Klevets, Ph. N.

    2002-01-01

    We investigated 2D Heisenberg ferromagnet (monolayer) with the account of dipolar forces and uniaxial anisotropy and found a reorientation phase transition in temperature from out-of-plane to in-plane phase. This phase transition is of the first order with hysteresis. We estimated the temperatures of switching both analytically and numerically

  4. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...

  5. Spontaneous bending of 2D molecular bottle-brush

    NARCIS (Netherlands)

    Subbotin, A; Jong, J; ten Brinke, G

    Using a scaling approach we consider a 2D comb copolymer brush under bending deformations. We show that the rectilinear brush is locally stable and can be characterized by a persistence length lambda increasing with the molecular weight of grafting side chains as lambda similar to M-3. A bending

  6. Lattice simulation of 2d Gross-Neveu-type models

    International Nuclear Information System (INIS)

    Limmer, M.; Gattringer, C.; Hermann, V.

    2006-01-01

    Full text: We discuss a Monte Carlo simulation of 2d Gross-Neveu-type models on the lattice. The four-Fermi interaction is written as a Gaussian integral with an auxiliary field and the fermion determinant is included by reweighting. We present results for bulk quantities and correlators and compare them to a simulation using a fermion-loop representation. (author)

  7. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  8. Validation of minor species of the MIPAS2D database

    Directory of Open Access Journals (Sweden)

    Enzo Papandrea

    2014-01-01

    Full Text Available The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding [Fischer et al., 2008] mission. […

  9. 2D MR angiography of the aortic aneurysm

    International Nuclear Information System (INIS)

    Amanuma, Makoto; Hasegawa, Makoto; Watabe, Tsuneya; Heshiki, Atsuko

    1992-01-01

    2D time-of-flight MR angiography was performed in 6 cases of thoracic aortic aneurysm. Oblique saturation pulses were used to suppress the signals of the pulmonary artery and SVC, providing excellent selective MR aortograms. Three dimensional extension of the aneurysm and its relation with cervical branches were easily assessed. It could be possible to replace invasive aortography by this technique. (author)

  10. 2D Toda chain and associated commutator identity

    OpenAIRE

    Pogrebkov, A. K.

    2007-01-01

    Developing observation made in \\cite{commut} we show that simple identity of the commutator type on an associative algebra is in one-to-one correspondence to 2D (infinite) Toda chain. We introduce representation of elements of associative algebra that, under some generic conditions, enables derivation of the Toda chain equation and its Lax pair from the given commutator identity.

  11. ELLIPT2D: A Flexible Finite Element Code Written Python

    International Nuclear Information System (INIS)

    Pletzer, A.; Mollis, J.C.

    2001-01-01

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research

  12. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    Science.gov (United States)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  13. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients

    DEFF Research Database (Denmark)

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per

    2017-01-01

    -infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association...... genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor...

  14. Flood hazard assessment using 1D and 2D approaches

    Science.gov (United States)

    Petaccia, Gabriella; Costabile, Pierfranco; Macchione, Francesco; Natale, Luigi

    2013-04-01

    The EU flood risk Directive (Directive 2007/60/EC) prescribes risk assessment and mapping to develop flood risk management plans. Flood hazard mapping may be carried out with mathematical models able to determine flood-prone areas once realistic conditions (in terms of discharge or water levels) are imposed at the boundaries of the case study. The deterministic models are mainly based on shallow water equations expressed in their 1D or 2D formulation. The 1D approach is widely used, especially in technical studies, due to its relative simplicity, its computational efficiency and also because it requires topographical data not as expensive as the ones needed by 2D models. Even if in a great number of practical situations, such as modeling in-channel flows and not too wide floodplains, the 1D approach may provide results close to the prediction of a more sophisticated 2D model, it must be pointed out that the correct use of a 1D model in practical situations is more complex than it may seem. The main issues to be correctly modeled in a 1D approach are the definition of hydraulic structures such as bridges and buildings interacting with the flow and the treatment of the tributaries. Clearly all these aspects have to be taken into account also in the 2D modeling, but with fewer difficulties. The purpose of this paper is to show how the above cited issues can be described using a 1D or 2D unsteady flow modeling. In particular the Authors will show the devices that have to be implemented in 1D modeling to get reliable predictions of water levels and discharges comparable to the ones obtained using a 2D model. Attention will be focused on an actual river (Crati river) located in the South of Italy. This case study is quite complicated since it deals with the simulation of channeled flows, overbank flows, interactions with buildings, bridges and tributaries. Accurate techniques, intentionally developed by the Authors to take into account all these peculiarities in 1D and 2

  15. 2d-LCA - an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  16. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  17. Half-metallicity in 2D organometallic honeycomb frameworks

    International Nuclear Information System (INIS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-01-01

    Half-metallic materials with a high Curie temperature (T C ) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d – p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. (paper)

  18. The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.

    Science.gov (United States)

    Iacovache, Ioan; Biasini, Marco; Kowal, Julia; Kukulski, Wanda; Chami, Mohamed; van der Goot, F Gisou; Engel, Andreas; Rémigy, Hervé-W

    2010-03-01

    Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution. (c) 2009 Elsevier Inc. All rights reserved.

  19. Ion beam profiling from the interaction with a freestanding 2D layer

    Directory of Open Access Journals (Sweden)

    Ivan Shorubalko

    2017-03-01

    Full Text Available Recent years have seen a great potential of the focused ion beam (FIB technology for the nanometer-scale patterning of a freestanding two-dimensional (2D layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does.

  20. Application of 2D and 3D image technologies to characterise morphological attributes of grapevine clusters.

    Science.gov (United States)

    Tello, Javier; Cubero, Sergio; Blasco, José; Tardaguila, Javier; Aleixos, Nuria; Ibáñez, Javier

    2016-10-01

    Grapevine cluster morphology influences the quality and commercial value of wine and table grapes. It is routinely evaluated by subjective and inaccurate methods that do not meet the requirements set by the food industry. Novel two-dimensional (2D) and three-dimensional (3D) machine vision technologies emerge as promising tools for its automatic and fast evaluation. The automatic evaluation of cluster length, width and elongation was successfully achieved by the analysis of 2D images, significant and strong correlations with the manual methods being found (r = 0.959, 0.861 and 0.852, respectively). The classification of clusters according to their shape can be achieved by evaluating their conicity in different sections of the cluster. The geometric reconstruction of the morphological volume of the cluster from 2D features worked better than the direct 3D laser scanning system, showing a high correlation (r = 0.956) with the manual approach (water displacement method). In addition, we constructed and validated a simple linear regression model for cluster compactness estimation. It showed a high predictive capacity for both the training and validation subsets of clusters (R(2)  = 84.5 and 71.1%, respectively). The methodologies proposed in this work provide continuous and accurate data for the fast and objective characterisation of cluster morphology. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Utilizing of 2-D resistivity with geotechnical method for sediment mapping in Sungai Batu, Kedah

    Science.gov (United States)

    Taqiuddin, Z. M.; Rosli, S.; Nordiana, M. M.; Azwin, I. N.; Mokhtar, S.

    2017-07-01

    Sungai Batu is Lembah Bujang subdistrict, located at northern region of Peninsular Malaysia, recognized as an international cultural and commercial crossroad for 2000 years ago, and recorded as the oldest archaeological site in southeast Asia. The discovering of iron smelting area (1st-4th century) shows the evidence of important iron industry in Malay Peninsular to others civilization. Nowadays, a lot of interdisciplinary research was conducted in this area including geophysical prospect to understand the subsurface profile for this locality. Geophysical approach such as 2-D resistivity was performed with the main objective is to identify sediment deposit for this area. Three 2-D resistivity survey lines were design across borehole and data acquired using ABEM SAS4000 system with Pole-dipole array using 2.5 m minimum electrode spacing. The data obtained was process using Res2Dinv software to produce inversion model and Surfer10 software used for interpretation and correlation with respective borehole record. The 2-D resistivity inversion model shows that, the area dominated by clay soil with resistivity values of values of >500 Ωm interpreted as hard layer. The saturated zone (25 m which consider large volume of soil deposit during sedimentation process. The correlation with the borehole record shows that clay profile distributed at depth of >20 m. The present of shale in certain borehole record indicate that the environment deposit is clam/stagnant water condition during the formation process which suspected controlled by the deposition process from the land deposit.

  2. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    International Nuclear Information System (INIS)

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-01-01

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  3. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  4. Microstructure representations for sound absorbing fibrous media: 3D and 2D multiscale modelling and experiments

    Science.gov (United States)

    Zieliński, Tomasz G.

    2017-11-01

    The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous media. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the corresponding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations with non-uniformly distributed fibres.

  5. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  6. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    Science.gov (United States)

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  7. Titan 2D: Understanding Titan’s Seasonal Atmospheric Cycles

    Science.gov (United States)

    Wong, Michael; Zhang, X.; Li, C.; Hu, R.; Shia, R.; Newman, C.; Müller-Wodarg, I.; Yung, Y.

    2013-10-01

    In this study, we present results from a novel two-dimensional (2D) model that simulates the physics and chemistry of Titan’s atmosphere. Despite being an icy moon of Saturn, Titan is the only Solar System object aside from Earth that is sheathed by a thick nitrogen-dominated atmosphere. This vulnerable gaseous envelope—an embodiment of a delicate coupling between photochemistry, radiation, and dynamics—is Nature’s laboratory for the synthesis of complex organic molecules. Titan’s large obliquity generates pronounced seasonal cycles in its atmosphere, and the Cassini spacecraft has been observing these variations since 2004. In particular, Cassini measurements show that the latitudinal distribution of Titan’s rich mélange of hydrocarbon species follows seasonal patterns. The mixing ratios of hydrocarbons increase with latitude towards the winter pole, suggesting a pole-to-pole circulation that reverses after equinox. Using a one-dimensional photochemical model of Titan’s atmosphere, we show that photochemistry alone cannot produce the observed meridional hydrocarbon distribution. This necessitates the employment of a 2D chemistry-transport model that includes meridional circulation as well as diffusive processes and photochemistry. Of additional concern, no previous 2D model of Titan extends beyond 500 km altitude—a critical limitation since the peak of methane photolysis is at 800 km. Our 2D model is the first to include Titan’s stratosphere, mesosphere, and thermosphere. The meridional circulation in our 2D model is derived from the outputs of two general circulation models (GCMs): the TitanWRF GCM (Newman et al. 2011) covering the troposphere, stratosphere, and lower mesosphere, and a thermosphere general circulation model (TGCM) covering the remainder of the atmosphere through the thermosphere (Müller-Wodarg et al. 2003; 2008). This presentation will focus on the utilization of these advances applied to the 2D Caltech/JPL KINETICS model to

  8. 2-D linear motion system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However

  9. Finite volume spectrum of 2D field theories from Hirota dynamics

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro; Univ. do Porto

    2008-12-01

    We propose, using the example of the O(4) sigma model, a general method for solving integrable two dimensional relativistic sigma models in a finite size periodic box. Our starting point is the so-called Y-system, which is equivalent to the thermodynamic Bethe ansatz equations of Yang and Yang. It is derived from the Zamolodchikov scattering theory in the cross channel, for virtual particles along the non-compact direction of the space-time cylinder. The method is based on the integrable Hirota dynamics that follows from the Y-system. The outcome is a nonlinear integral equation for a single complex function, valid for an arbitrary quantum state and accompanied by the finite size analogue of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation. We present the numerical data for the energy of various states as a function of the size, and derive the general Luescher-type formulas for the finite size corrections. We also re-derive by our method the DdV equation for the SU(2) chiral Gross-Neveu model. (orig.)

  10. MPEG-4-based 2D facial animation for mobile devices

    Science.gov (United States)

    Riegel, Thomas B.

    2005-03-01

    The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.

  11. Cluster algebras in scattering amplitudes with special 2D kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marcus A.C. [Institut de Physique Theorique, CEA-Saclay, Gif-sur-Yvette Cedex (France)

    2014-02-15

    We study the cluster algebra of the kinematic configuration space Conf{sub n}(P{sup 3}P3) of an n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-point two-loop MHVremainder function in special 2D kinematics depends on a selection of the X-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercube beads in the corresponding Stasheff polytope. Furthermore at n = 12, the cluster algebra and the selection of theX-coordinates in special2Dkinematics replicates the cluster algebra and the selection of X-coordinates of the n = 6 two-loop MHV amplitude in 4D kinematics. (orig.)

  12. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  13. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  14. 2D-grafiikan käyttö peliprojektissa

    OpenAIRE

    Reimi-Orsa, Anniina

    2010-01-01

    Opinnäytetyö on projektikuvaus, jossa on käsitelty kaksiulotteisen grafiikan käyttöä peliprojektissa toteutettujen töiden kautta. Työharjoittelussani tuotin materiaalia peliprojektiin, jonka maailma luotiin pääasiassa 2D-grafiikan avulla. Projektikuvauksessa on käyty läpi työn kulkua alkuvalmisteluista valmiiseen pelissä käytettävään grafiikkaan sekä käytäntöjä tämän tyyppisen 2D-grafiikan tuotannossa. Alussa peliprojektia on käsitelty yleisluontoisesti sekä avattu työssä käytettyjä ja p...

  15. Two-particle microrheology of quasi-2D viscous systems.

    Science.gov (United States)

    Prasad, V; Koehler, S A; Weeks, Eric R

    2006-10-27

    We study the spatially correlated motions of colloidal particles in a quasi-2D system (human serum albumin protein molecules at an air-water interface) for different surface viscosities eta s. We observe a transition in the behavior of the correlated motion, from 2D interface dominated at high eta s to bulk fluid dependent at low eta s. The correlated motions can be scaled onto a master curve which captures the features of this transition. This master curve also characterizes the spatial dependence of the flow field of a viscous interface in response to a force. The scale factors used for the master curve allow for the calculation of the surface viscosity eta s that can be compared to one-particle measurements.

  16. 2D/3D Program work summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author).

  17. 2-D and 3-D computations of curved accelerator magnets

    International Nuclear Information System (INIS)

    Turner, L.R.

    1991-01-01

    In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-θ coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs

  18. 2D/3D Program work summary report

    International Nuclear Information System (INIS)

    1995-09-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author)

  19. The 2-D lattice theory of Flower Constellations

    Science.gov (United States)

    Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele

    2013-08-01

    The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.

  20. Beam test of the 2D position sensitive neutron detector

    International Nuclear Information System (INIS)

    Tian Lichao; Chen Yuanbo; Sun Zhijia; Tang Bin; Zhou Jianrong; Qi Huirong; Liu Rongguang; Zhang Jian; Yang Guian; Xu Hong

    2014-01-01

    China Spallation Neutron Source (CSNS), one of the Major scientific apparatuses of the national Eleventh Five-Year Plane, is under construction and three spectrumeters will be constructed in the first phase of the project. A 2D position sensitive neutron detector has been constructed for the Multifunctional Reflect spectrumeter (MR) in Institute of High Energy Physics (IHEP). The basic operation principle of the detector and the test on the residual stress diffractometer of Chinese Advanced Research Reactor (CARR) in China Institute of Atomic Energy (CIAE) is introduced in this paper. The results show that it has a good position resolution of l.18 mm (FWHM) for the neutrons of l.37 A and 2D imaging ability, which is consistent with the theory. It can satisfy the requirements of MR and lays the foundation for the construction of larger neutron detectors. (authors)

  1. A 2-D nucleation-growth model of spheroidal graphite

    International Nuclear Information System (INIS)

    Lacaze, Jacques; Bourdie, Jacques; Castro-Román, Manuel Jesus

    2017-01-01

    Analysis of recent experimental investigations, in particular by transmission electron microscopy, suggests spheroidal graphite grows by 2-D nucleation of new graphite layers at the outer surface of the nodules. These layers spread over the surface along the prismatic direction of graphite which is the energetically preferred growth direction of graphite when the apparent growth direction of the nodules is along the basal direction of graphite. 2-D nucleation-growth models first developed for precipitation of pure substances are then adapted to graphite growth from the liquid in spheroidal graphite cast irons. Lateral extension of the new graphite layers is controlled by carbon diffusion in the liquid. This allows describing quantitatively previous experimental results giving strong support to this approach.

  2. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  3. The Ising model coupled to 2d orders

    Science.gov (United States)

    Glaser, Lisa

    2018-04-01

    In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.

  4. Electrical spin injection into high mobility 2D systems.

    Science.gov (United States)

    Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D

    2014-12-05

    We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

  5. Conformal field theory and 2D critical phenomena. Part 1

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.; Zamolodchikov, Al.B.

    1989-01-01

    Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs

  6. Spontaneous compactification in 2D induced quantum gravity

    International Nuclear Information System (INIS)

    Elizalde, E.; Odintsov, S.D.

    1992-01-01

    In this paper spontaneous compactification - on a R 1 x S 1 background - in 2D induced quantum gravity (considered as a toy model for more fundamental quantum gravity) is analyzed in the gauge-independent effective action formalism. It is shown that such compactification is stable, in contradistinction to multidimensional quantum gravity on a R degrees x S 1 (D-> 2) background - which is known to be one-loop unstable

  7. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  8. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    Science.gov (United States)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  9. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  10. Energy transfer mechanisms in layered 2D perovskites.

    Science.gov (United States)

    Williams, Olivia F; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M

    2018-04-07

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA) 2 (MA) n-1 [Pb n I 3n+1 ] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  11. Energy transfer mechanisms in layered 2D perovskites

    Science.gov (United States)

    Williams, Olivia F.; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M.

    2018-04-01

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  12. EDGE2D Simulations of JET 13C Migration Experiments

    International Nuclear Information System (INIS)

    Strachan, J.D.; Coad, J.P.; Corrigan, G.; Matthews, G.F.; Spence, J.

    2004-01-01

    Material migration has received renewed interest due to tritium retention associated with carbon transport to remote vessel locations. Those results influence the desirability of carbon usage on ITER. Subsequently, additional experiments have been performed, including tracer experiments attempting to identify material migration from specific locations. In this paper, EDGE2D models a well-diagnosed JET 13 C tracer migration experiment. The role of SOL flows upon the migration patterns is identified

  13. Adaptyvaus 2d pozicionavimo metodo autonominiam robotui tyrimas

    OpenAIRE

    Senvaitis, Vytautas

    2016-01-01

    Overview SLAM algorithm, laser distance scanner working principle, EKF and UKF filters in analytical part. EKF mathematical models are implemented for autonomous robot whit two-wheel drive and for laser distance scanner. EKF and UKF filters are compared. 2D robot positioning with EKF filter are modeled and simulated in MATALB and STM32 microcontroller with DSP library. MATLAB and STM32 are compared in speed test. Analyzing EKF filter working. Design and construct autonomous robot experimental...

  14. Design Application Translates 2-D Graphics to 3-D Surfaces

    Science.gov (United States)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  15. MXene–2D layered electrode materials for energy storage

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2018-04-01

    Full Text Available As promising candidates of power resources, electrochemical energy storage (EES devices have drawn more and more attention due to their ease of use, environmental friendliness, and high transformation efficiency. The performances of EES devices, such as lithium-ion batteries, sodium-ion batteries, and supercapacitors, depend largely on the inherent properties of electrode materials. On account of the outstanding properties of graphene, a lot of studies have been carried out on two-dimensional (2D materials. Over the past few years, a new exfoliation method has been utilized to successfully prepare a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered precursors. Moreover, some unique EES properties of MXene have been discovered. With rapid research progress on this field, a timely account about the applications of MXene in the EES fields is highly necessary. In this article, the research progress on the preparation, electrochemical performance, and mechanism analysis of MXene is summarized and discussed. We also propose some personal prospects for the further development of this field. Keywords: MXene, 2D materials, Electrochemistry, Battery, Supercapacitor

  16. Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal

    Science.gov (United States)

    Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi

    Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).

  17. Hybrid 3D-2D printing for bone scaffolds fabrication

    Science.gov (United States)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  18. F-theory and 2d (0,2) theories

    Energy Technology Data Exchange (ETDEWEB)

    Schäfer-Nameki, Sakura [Department of Mathematics, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)

    2016-05-11

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N=(0,2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0,2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0,2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0,2) GLSM is realized via different T-branes or gluing data in F-theory.

  19. Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy.

    Science.gov (United States)

    Paganelli, Chiara; Lee, Danny; Kipritidis, John; Whelan, Brendan; Greer, Peter B; Baroni, Guido; Riboldi, Marco; Keall, Paul

    2018-02-11

    In-room MRI is a promising image guidance strategy in external beam radiotherapy to acquire volumetric information for moving targets. However, limitations in spatio-temporal resolution led several authors to use 2D orthogonal images for guidance. The aim of this work is to present a method to concurrently compensate for non-rigid tumour motion and provide an approach for 3D reconstruction from 2D orthogonal cine-MRI slices for MRI-guided treatments. Free-breathing sagittal/coronal interleaved 2D cine-MRI were acquired in addition to a pre-treatment 3D volume in two patients. We performed deformable image registration (DIR) between cine-MRI slices and corresponding slices in the pre-treatment 3D volume. Based on an extrapolation of the interleaved 2D motion fields, the 3D motion field was estimated and used to warp the pre-treatment volume. Due to the lack of a ground truth for patients, the method was validated on a digital 4D lung phantom. On the phantom, the 3D reconstruction method was able to compensate for tumour motion and compared favourably to the results of previously adopted strategies. The difference in the 3D motion fields between the phantom and the extrapolated motion was 0.4 ± 0.3 mm for tumour and 0.8 ± 1.5 mm for whole anatomy, demonstrating feasibility of performing a 3D volumetric reconstruction directly from 2D orthogonal cine-MRI slices. Application of the method to patient data confirmed the feasibility of utilizing this method in real world scenarios. Preliminary results on phantom and patient cases confirm the feasibility of the proposed approach in an MRI-guided scenario, especially for non-rigid tumour motion compensation. © 2018 The Royal Australian and New Zealand College of Radiologists.

  20. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    OpenAIRE

    Akca Irfan

    2016-01-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole invers...

  1. Simulation of Degraded Properties of 2D plain Woven C/SiC Composites under Preloading Oxidation Atmosphere

    Science.gov (United States)

    Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong

    2017-12-01

    In this paper, a numerical model which incorporates the oxidation damage model and the finite element model of 2D plain woven composites is presented for simulation of the oxidation behaviors of 2D plain woven C/SiC composite under preloading oxidation atmosphere. The equal proportional reduction method is firstly proposed to calculate the residual moduli and strength of unidirectional C/SiC composite. The multi-scale method is developed to simulate the residual elastic moduli and strength of 2D plain woven C/SiC composite. The multi-scale method is able to accurately predict the residual elastic modulus and strength of the composite. Besides, the simulated residual elastic moduli and strength of 2D plain woven C/SiC composites under preloading oxidation atmosphere show good agreements with experimental results. Furthermore, the preload, oxidation time, temperature and fiber volume fractions of the composite are investigated to show their influences upon the residual elastic modulus and strength of 2D plain woven C/SiC composites.

  2. 2D Seismic Reflection Data across Central Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  3. Data of evolutionary structure change: 1ONAD-2D3PC [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3PC 1ONA 2D3P D C ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...14> 1ONA D 1ONAD

  4. Data of evolutionary structure change: 1ONAD-2D3PA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3PA 1ONA 2D3P D A ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ONA D 1ONAD LTRVSSNGSPQ

  5. Data of evolutionary structure change: 1ONAD-2D3PB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3PB 1ONA 2D3P D B ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ain> 1ONA D 1ONAD TR

  6. Data of evolutionary structure change: 1ONAD-2D3RA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3RA 1ONA 2D3R D A ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ID>1ONA D 1ONAD TRVSSNGSPQG <

  7. Data of evolutionary structure change: 1ONAD-2D3RC [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3RC 1ONA 2D3R D C ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT... 1ONA D 1ONAD TRVSSN

  8. Data of evolutionary structure change: 1ONAD-2D3RD [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3RD 1ONA 2D3R D D ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLK------TNALHFMFNQFSKDQKDLILQGDAT...n> 1ONA D 1ONAD TRVS

  9. 2D to 3D conversion implemented in different hardware

    Science.gov (United States)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  10. Non-Newtonian fluid flow in 2D fracture networks

    Science.gov (United States)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  11. 2D Electrostatic Potential Solver for Hall Thruster Simulation

    National Research Council Canada - National Science Library

    Koo, Justin W

    2006-01-01

    ...) for Hall thruster simulation. It is based on a finite volume discretization of a current conservation equation where the electron current density is described by a Generalized Ohm's law description...

  12. Novel 2D representation of vibration for local damage detection

    Directory of Open Access Journals (Sweden)

    Grzegorz Żak

    2014-07-01

    Full Text Available In this paper a new 2D representation for local damage detection is presented. It is based on a vibration time series analysis. A raw vibration signal is decomposed via short-time Fourier transform and new time series for each frequency bin are differentiated to decorrelate them. For each time series, autocorrelation function is calculated. In the next step ACF maps are constructed. For healthy bearing ACF map should not have visible horizontal lines indicating damage. The method is illustrated by analysis of real data containing signals from damaged bearing and healthy for comparison.

  13. Deep Cuboid Detection: Beyond 2D Bounding Boxes

    OpenAIRE

    Dwibedi, Debidatta; Malisiewicz, Tomasz; Badrinarayanan, Vijay; Rabinovich, Andrew

    2016-01-01

    We present a Deep Cuboid Detector which takes a consumer-quality RGB image of a cluttered scene and localizes all 3D cuboids (box-like objects). Contrary to classical approaches which fit a 3D model from low-level cues like corners, edges, and vanishing points, we propose an end-to-end deep learning system to detect cuboids across many semantic categories (e.g., ovens, shipping boxes, and furniture). We localize cuboids with a 2D bounding box, and simultaneously localize the cuboid's corners,...

  14. A new 2-d approach to iterative , learning control system

    International Nuclear Information System (INIS)

    Ashraf, S.; Muhammad, E.; Tasleem, M.

    2004-01-01

    The well known two-dimensional system theory is used to analyze and develop a class of learning control system. In this paper we first explore and test a method given by ZHENG and JAMSHIDI. In that paper all the input samples are treated at once. In comparison our paper presents a scheme in which one sample at a time is treated. The 2- D state-space model of proposed learning control scheme is given. An important consequence of the proposed scheme is that given the right choice of gain matrix and sampling time the system's output can be made to converge to any degree of accuracy. (author)

  15. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  16. 2D Inversion of Transient Electromagnetic Method (TEM)

    Science.gov (United States)

    Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando

    2017-04-01

    A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most

  17. The multicomponent 2D Toda hierarchy: dispersionless limit

    International Nuclear Information System (INIS)

    Mañas, Manuel; Alonso, Luis Martínez

    2009-01-01

    The factorization problem of the multi-component 2D Toda hierarchy is used to analyze the dispersionless limit of this hierarchy. A dispersive version of the Whitham hierarchy defined in terms of scalar Lax and Orlov–Schulman operators is introduced and the corresponding additional symmetries and string equations are discussed. Then, it is shown how KP and Toda pictures of the dispersionless Whitham hierarchy emerge in the dispersionless limit. Moreover, the additional symmetries and string equations for the dispersive Whitham hierarchy are studied in this limit

  18. Optical diffraction by ordered 2D arrays of silica microspheres

    Science.gov (United States)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  19. Rotational Invariance of the 2d Spin - Spin Correlation Function

    Science.gov (United States)

    Pinson, Haru

    2012-09-01

    At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).

  20. Hybrid animation integrating 2D and 3D assets

    CERN Document Server

    O'Hailey, Tina

    2010-01-01

    Artist imaginations continue to grow and stretch the boundaries of traditional animation. Successful animators adept and highly skilled in traditional animation mediums are branching out beyond traditional animation workflows and will often use multiple forms of animation in a single project. With the knowledge of 3D and 2D assets and the integration of multiple animation mediums into a single project, animators have a wealth of creative resources available for a project that is not limited to a specific animation medium, software package or workflow processs. Enhance a poignant scene by choos

  1. A generalized 2-D Poincaré inequality

    Directory of Open Access Journals (Sweden)

    Crisciani Fulvio

    2000-01-01

    Full Text Available Two 1-D Poincaré-like inequalities are proved under the mild assumption that the integrand function is zero at just one point. These results are used to derive a 2-D generalized Poincare inequality in which the integrand function is zero on a suitable arc contained in the domain (instead of the whole boundary. As an application, it is shown that a set of boundary conditions for the quasi geostrophic equation of order four are compatible with general physical constraints dictated by the dissipation of kinetic energy.

  2. DESAIN KOMUNIKASI DAKWAH VISUAL ANIMASI 2D UNTUK ANAK

    Directory of Open Access Journals (Sweden)

    Mokhamad Mahfud

    2017-04-01

    Full Text Available Dakwah activities as a communication process of delivering the teachings of Islam's ideal has no power to change people for the better. There are many causal factors, one of them is because of propagandas that has been done tends to be cold, impersonal, and is only informative sheer, yet using less effective communication ethics. A visual cultural revolution is now growing rapidly, unfortunately its dominated by capitalists and worshipers of lust. For example, nearly all visual ads is using the interest of sensuality and lust to lure customers. On the billboards, media newspapers, magazines, television and other media, visual communication seemed to be a valuable garbage, and this is very dangerous, especially if in the consumption of children who are mentally and immature psyche. The Effects of visual "value-free" communication can damage the sense of children as the next generation, we are slowly showed on-aurast which makes Muslims become stupid. This study aims to provide a creative space to explore the lives of children for the purpose of providing religious materials in SDN Monggang Pendowoharjo Sewon Bantul. 2D animation design is expected to give a message to children that religious material is not complicated but enjoyable. And the use of cartoon animation techniques in the making is in fact, expecting the material to be delivered to children to be light for their minds and appropriate with their entertainment media which is television. This research Visual Communication Design using 2d Animation For Children is using descriptive study which is a qualitative research method that analyze the words or sentences and separate it by category for the conclusion. Qualitative research aims to explain the phenomenon in detail and in-depth data collection that focuses on quality rather than the quantity of data. The results of this study is that the creation of 2D animation is effective to be a dakwah media for children that will be made with a

  3. Resolving power test of 2-D K+ K+ interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Roldao, Christiane G.

    1999-01-01

    Adopting a procedure previously proposed to quantitatively study pion interferometry 1 , an equivalent 2-D X 2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, when no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K + K + interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. (author)

  4. Survey of 1 1/2D transport codes

    International Nuclear Information System (INIS)

    Grad, H.

    1978-10-01

    A survey is given of a family of classical transport codes, recently termed ''1 1/2D'', which efficiently and accurately follow the evolution of plasma configurations on a long time scale, following coupled changes in plasma shape and topology with transport (but not wave motion). Codes have been constructed and operated (since 1974) which include various combinations of finite beta, general plasma cross-section and aspect, various topologies (Doublet, tearing, reversed-field mirror) including time dependent transitions in topology resulting from external coil variation and plasma transport, with models including (classical) tensor resistivity and heat flow as well as the adiabatic limiting case

  5. Conformal field theory and 2D quantum gravity

    International Nuclear Information System (INIS)

    Distler, J.; Kawai, Hikaru

    1989-01-01

    Inspired by the recent work of Knizhnik, Polyakov and Zamolodchikov on the solution of 2D quantum gravity in the 'light cone' gauge, we present a proposal for solving the theory in the usual conformal gauge. Our results for the critical exponents of the theory agree with the genus-zero results of KPZ. Since our formalism naturally generalizes to higher-genus Riemann surfaces, we obtain the critical exponents for all genera. The corresponding results for the supersymmetric case are presented. We also show how to calculate correlation functions in these theories. (orig.)

  6. Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morgener, Kai Henning

    2014-12-08

    This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has

  7. Integer channels in nonuniform non-equilibrium 2D systems

    Science.gov (United States)

    Shikin, V.

    2018-01-01

    We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.

  8. Deformable 3D–2D registration for CT and its application to low dose tomographic fluoroscopy

    International Nuclear Information System (INIS)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-01-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D–3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D–2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D–3D registration method. The comparison is done for a range of 4–60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D–3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness

  9. Placental Volumetry by 2-D Sonography with a New Mathematical Formula: Prospective Study on the Shell of a Spherical Sector Model.

    Science.gov (United States)

    Kozinszky, Zoltan; Surányi, Andrea; Péics, Hajnalka; Molnár, András; Pál, Attila

    2015-08-01

    The aim of this study was to determine the utility of a new mathematical model in volumetric assessment of the placenta using 2-D ultrasound. Placental volumetry was performed in a prospective cross-sectional survey by virtual organ computer-aided analysis (VOCAL) with the help of a shell-off method in 346 uncomplicated pregnancies according to STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. Furthermore, placental thickness, length and height were measured with the 2-D technique to estimate placental volume based on the mathematical formula for the volume of "the shell of the spherical sector." Fetal size was also assessed by 2-D sonography. The placental volumes measured by 2-D and 3-D techniques had a correlation of 0.86. In the first trimester, the correlation was 0.82, and later during pregnancy, it was 0.86. Placental volumetry using "the circle-shaped shell of the spherical sector" mathematical model with 2-D ultrasound technique may be introduced into everyday practice to screen for placental volume deviations associated with adverse pregnancy outcome. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. 2D arc-PIC code description: methods and documentation

    CERN Document Server

    Timko, Helga

    2011-01-01

    Vacuum discharges are one of the main limiting factors for future linear collider designs such as that of the Compact LInear Collider. To optimize machine efficiency, maintaining the highest feasible accelerating gradient below a certain breakdown rate is desirable; understanding breakdowns can therefore help us to achieve this goal. As a part of ongoing theoretical research on vacuum discharges at the Helsinki Institute of Physics, the build-up of plasma can be investigated through the particle-in-cell method. For this purpose, we have developed the 2D Arc-PIC code introduced here. We present an exhaustive description of the 2D Arc-PIC code in two parts. In the first part, we introduce the particle-in-cell method in general and detail the techniques used in the code. In the second part, we provide a documentation and derivation of the key equations occurring in the code. The code is original work of the author, written in 2010, and is therefore under the copyright of the author. The development of the code h...

  11. 2-D Fractal Carpet Antenna Design and Performance

    Science.gov (United States)

    Barton, C. C.; Tebbens, S. F.; Ewing, J. J.; Peterman, D. J.; Rizki, M. M.

    2017-12-01

    A 2-D fractal carpet antenna uses a fractal (self-similar) pattern to increase its perimeter by iteration and can receive or transmit electromagnetic radiation within its perimeter-bounded surface area. 2-D fractals are shapes that, at their mathematical limit (infinite iterations) have an infinite perimeter bounding a finite surface area. The fractal dimension describes the degree of space filling and lacunarity which quantifies the size and spatial distribution of open space bounded by a fractal shape. A key aspect of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that are very compact, wideband and multiband. As the number of iterations increases, the antenna operates at higher and higher frequencies. Manifestly different from traditional antenna designs, a fractal antenna can operate at multiple frequencies simultaneously. We have created a MATLAB code to generate deterministic and stochastic modes of Sierpinski carpet fractal antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, number of iterations, and lacunarities have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance

  12. 2-D Fractal Wire Antenna Design and Performance

    Science.gov (United States)

    Tebbens, S. F.; Barton, C. C.; Peterman, D. J.; Ewing, J. J.; Abbott, C. S.; Rizki, M. M.

    2017-12-01

    A 2-D fractal wire antenna uses a fractal (self-similar) pattern to increase its length by iteration and can receive or transmit electromagnetic radiation. 2-D fractals are shapes that, at their mathematical limit (of infinite iterations) have an infinite length. The fractal dimension describes the degree of space filling. A fundamental property of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that can be very compact, wideband and multiband. As the number of iterations increases, the antenna tends to have additional frequencies that minimize far field return loss. This differs from traditional antenna designs in that a single fractal antenna can operate well at multiple frequencies. We have created a MATLAB code to generate deterministic and stochastic modes of fractal wire antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, and number of iterations have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance.

  13. The unitary conformal field theory behind 2D Asymptotic Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)

    2016-02-25

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.

  14. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    Science.gov (United States)

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.

  15. Syndrome identification based on 2D analysis software.

    Science.gov (United States)

    Boehringer, Stefan; Vollmar, Tobias; Tasse, Christiane; Wurtz, Rolf P; Gillessen-Kaesbach, Gabriele; Horsthemke, Bernhard; Wieczorek, Dagmar

    2006-10-01

    Clinical evaluation of children with developmental delay continues to present a challenge to the clinicians. In many cases, the face provides important information to diagnose a condition. However, database support with respect to facial traits is limited at present. Computer-based analyses of 2D and 3D representations of faces have been developed, but it is unclear how well a larger number of conditions can be handled by such systems. We have therefore analysed 2D pictures of patients each being affected with one of 10 syndromes (fragile X syndrome; Cornelia de Lange syndrome; Williams-Beuren syndrome; Prader-Willi syndrome; Mucopolysaccharidosis type III; Cri-du-chat syndrome; Smith-Lemli-Opitz syndrome; Sotos syndrome; Microdeletion 22q11.2; Noonan syndrome). We can show that a classification accuracy of >75% can be achieved for a computer-based diagnosis among the 10 syndromes, which is about the same accuracy achieved for five syndromes in a previous study. Pairwise discrimination of syndromes ranges from 80 to 99%. Furthermore, we can demonstrate that the criteria used by the computer decisions match clinical observations in many cases. These findings indicate that computer-based picture analysis might be a helpful addition to existing database systems, which are meant to assist in syndrome diagnosis, especially as data acquisition is straightforward and involves off-the-shelf digital camera equipment.

  16. Polymer ultrapermeability from the inefficient packing of 2D chains

    Science.gov (United States)

    Rose, Ian; Bezzu, C. Grazia; Carta, Mariolino; Comesaña-Gándara, Bibiana; Lasseuguette, Elsa; Ferrari, M. Chiara; Bernardo, Paola; Clarizia, Gabriele; Fuoco, Alessio; Jansen, Johannes C.; Hart, Kyle E.; Liyana-Arachchi, Thilanga P.; Colina, Coray M.; McKeown, Neil B.

    2017-09-01

    The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (Gas permeability data for PIM-TMN-Trip surpass the 2008 Robeson upper bounds for O2/N2, H2/N2, CO2/N2, H2/CH4 and CO2/CH4, with the potential for biogas purification and carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

  17. Predicting non-square 2D dice probabilities

    Science.gov (United States)

    Pender, G. A. T.; Uhrin, M.

    2014-07-01

    The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 (Newton 1967 The Mathematical Papers of Issac Newton vol I (Cambridge: Cambridge University Press) pp 60-1). In this paper we make progress on the 2D problem (which can be realized in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest that the ratio of the probabilities of landing on each of the two sides is given by \\frac{\\sqrt{{{k}^{2}}+{{l}^{2}}}-k}{\\sqrt{{{k}^{2}}+{{l}^{2}}}-l}\\frac{arctan \\frac{l}{k}}{arctan \\frac{k}{l}} where k and l are the lengths of the two sides. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or ‘grippy’ surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This problem may also have wider relevance in the testing of physics engines.

  18. Joint Secrecy for D2D Communications Underlying Cellular Networks

    KAUST Repository

    Hyadi, Amal

    2018-01-15

    In this work, we investigate the ergodic secrecy rate region of a block-fading spectrum-sharing system, where a D2D communication is underlying a cellular channel. We consider that both the primary and the secondary transmissions require their respective transmitted messages to be kept secret from a common eavesdropper under a joint secrecy constraint. The presented results are for three different scenarios, each corresponding to a particular requirement of the cellular system. First, we consider the case of a fair cellular system, and we show that the impact of jointly securing the transmissions can be balanced between the primary and the secondary systems. The second scenario examines the case when the primary network is demanding and requires the secondary transmission to be at a rate that is decodable by the primary receiver, while the last scenario assumes a joint transmission of artificial noise by the primary and the secondary transmitters. For each scenario, we present an achievable ergodic secrecy rate region that can be used as an indicator for the cellular and the D2D systems to agree under which terms the spectrum will be shared.

  19. Horns Rev II, 2D-Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Brorsen, Michael

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006. The......-shaped access platforms on piles. The Model tests include mainly regular waves and a few irregular wave tests. These tests have been conducted at Aalborg University from 9. November, 2006 to 17. November, 2006.......This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006....... The objective of the tests was to investigate the impact pressures generated on a horizontal platform and a cone platform for selected sea states calibrated by Lykke Andersen & Frigaard, 2006. The measurements should be used for assessment of slamming coefficients for the design of horizontal and cone...

  20. New Approach for 2D Readout of GEM Detectors

    International Nuclear Information System (INIS)

    Hasell, Douglas K.

    2011-01-01

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to ∼50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  1. DNN-state identification of 2D distributed parameter systems

    Science.gov (United States)

    Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.

    2012-02-01

    There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.

  2. The Usage of 2D Codes in Marketing Practices

    Directory of Open Access Journals (Sweden)

    Toni Podmanicki

    2011-07-01

    Full Text Available Barcodes, which are used for the labelling and identification of products, have been used as the foundation for the development of new symbols, two-dimensional barcodes (usually called 2D codes. These codes are capable of receiving large amounts of data in a small area, and data stored in them can be read by means of mobile devices. They usually contain information such as web addresses, text, contacts and similar data that encourage users to interact in order to obtain the desired information, entertainment, discount, reservation, and even do their shopping. The possibility of connecting the physical and digital world by means of 2D codes has led marketing professionals to face new challenges in the development of strategies in mobile marketing. Many companies recognized the potential of the above technology very early, in its initial phase, and they use it now in their activities. This paper aims to emphasize the importance of knowing this technology and its advantages by providing examples in marketing practices.

  3. Soft tubular microfluidics for 2D and 3D applications

    Science.gov (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  4. Magnetic gating of a 2D topological insulator

    Science.gov (United States)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  5. On the resolving power of 2-D interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1996-12-31

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D {sub X}{sup 2} analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean {sub X}{sup 2} per degrees of freedom with respect to the range of the analysis in the ({sub qT}, {sub qL}) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high {omega}, {eta} resonance formation yields. (author) 24 refs., 5 figs.

  6. On the resolving power of 2-D interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.

    1996-01-01

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D X 2 analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean X 2 per degrees of freedom with respect to the range of the analysis in the ( qT , qL ) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high ω, η resonance formation yields. (author)

  7. 2D mesoscale colloidal crystal patterns on polymer substrates

    Science.gov (United States)

    Bredikhin, Vladimir; Bityurin, Nikita

    2018-05-01

    The development of nanosphere lithography relies on the ability of depositing 2D colloidal crystals comprising micro- and nano-size elements on substrates of different materials. One of the most difficult problems here is deposition of coatings on hydrophobic substrates, e.g. polymers, from aqueous colloidal solutions. We use UV photooxidation for substrate hydrophilization. We demonstrate a new method of producing a two-dimensional ordered array of polymer microparticles (polystyrene microspheres ∼1 μm in diameter) on a polymer substrate (PMMA). We show that implementation of the new deposition technique for directed self-assembly of microspheres on an UV irradiated surface provides an opportunity to obtain coatings on a hydrophilized PMMA surface of large area (∼5 cm2). UV irradiation of the surface through masks allows creating 2D patterns consisting of mesoscale elements formed by the deposited self-assembled microparticles owing to the fact that the colloidal particles are deposited only on the irradiated area leaving the non-irradiated sections intact.

  8. 2D magnetic texture analysis of Co-Cu films

    International Nuclear Information System (INIS)

    Bayirli, Mehmet; Karaagac, Oznur; Kockar, Hakan; Alper, Mursel

    2017-01-01

    The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co"2"+ in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, M_p(β) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co in the films with the change of Co"2"+ in the electrolyte. The coefficients of Fourier series (A_0 and A_2_n) were also computed for 2D films. It is seen that a systematic and small decrease in A_0 and an obvious decrease in A_2_n (n=1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.

  9. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials

    Science.gov (United States)

    Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang

    2018-03-01

    The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.

  10. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  11. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  12. Modelling RF sources using 2-D PIC codes

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (''port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation

  13. 2D CFT partition functions at late times

    Science.gov (United States)

    Dyer, Ethan; Gur-Ari, Guy

    2017-08-01

    We consider the late time behavior of the analytically continued partition function Z( β + it) Z( β - it) in holographic 2 d CFTs. This is a probe of information loss in such theories and in their holographic duals. We show that each Virasoro character decays in time, and so information is not restored at the level of individual characters. We identify a universal decaying contribution at late times, and conjecture that it describes the behavior of generic chaotic 2 d CFTs out to times that are exponentially large in the central charge. It was recently suggested that at sufficiently late times one expects a crossover to random matrix behavior. We estimate an upper bound on the crossover time, which suggests that the decay is followed by a parametrically long period of late time growth. Finally, we discuss gravitationally-motivated integrable theories and show how information is restored at late times by a series of characters. This hints at a possible bulk mechanism, where information is restored by an infinite sum over non-perturbative saddles.

  14. A 2d Block Model For Landslide Simulation: An Application To The 1963 Vajont Case

    Science.gov (United States)

    Tinti, S.; Zaniboni, F.; Manucci, A.; Bortolucci, E.

    A 2D block model to study the motion of a sliding mass is presented. The slide is par- titioned into a matrix of blocks the basis of which are quadrilaterals. The blocks move on a specified sliding surface and follow a trajectory that is computed by the model. The forces acting on the blocks are gravity, basal friction, buoyancy in case of under- water motion, and interaction with neighbouring blocks. At any time step, the position of the blocks on the sliding surface is determined in curvilinear (local) co-ordinates by computing the position of the vertices of the quadrilaterals and the position of the block centre of mass. Mathematically, the topology of the system is invariant during the motion, which means that the number of blocks is constant and that each block has always the same neighbours. Physically, this means that blocks are allowed to change form, but not to penetrate into each other, not to coalesce, not to split. The change of form is compensated by the change of height, under the computational assumption that the block volume is constant during motion: consequently lateral expansion or contraction yield respectively height reduction or increment of the blocks. This model is superior to the analogous 1D model where the mass is partitioned into a chain of interacting blocks. 1D models require the a-priori specification of the sliding path, that is of the trajectory of the blocks, which the 2D block model supplies as one of its output. In continuation of previous studies on the catastrophic slide of Vajont that occurred in 1963 in northern Italy and caused more than 2000 victims, the 2D block model has been applied to the Vajont case. The results are compared to the outcome of the 1D model, and more importantly to the observational data concerning the deposit position and morphology. The agreement between simulation and data is found to be quite good.

  15. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    Science.gov (United States)

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  16. Differences in 3D vs. 2D analysis in lumbar spinal fusion simulations.

    Science.gov (United States)

    Hsu, Hung-Wei; Bashkuev, Maxim; Pumberger, Matthias; Schmidt, Hendrik

    2018-04-27

    Lumbar interbody fusion is currently the gold standard in treating patients with disc degeneration or segmental instability. Despite it having been used for several decades, the non-union rate remains high. A failed fusion is frequently attributed to an inadequate mechanical environment after instrumentation. Finite element (FE) models can provide insights into the mechanics of the fusion process. Previous fusion simulations using FE models showed that the geometries and material of the cage can greatly influence the fusion outcome. However, these studies used axisymmetric models which lacked realistic spinal geometries. Therefore, different modeling approaches were evaluated to understand the bone-formation process. Three FE models of the lumbar motion segment (L4-L5) were developed: 2D, Sym-3D and Nonsym-3D. The fusion process based on existing mechano-regulation algorithms using the FE simulations to evaluate the mechanical environment was then integrated into these models. In addition, the influence of different lordotic angles (5, 10 and 15°) was investigated. The volume of newly formed bone, the axial stiffness of the whole segment and bone distribution inside and surrounding the cage were evaluated. In contrast to the Nonsym-3D, the 2D and Sym-3D models predicted excessive bone formation prior to bridging (peak values with 36 and 9% higher than in equilibrium, respectively). The 3D models predicted a more uniform bone distribution compared to the 2D model. The current results demonstrate the crucial role of the realistic 3D geometry of the lumbar motion segment in predicting bone formation after lumbar spinal fusion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Global and regional left ventricular function: a comparison between gated SPECT, 2D echocardiography and multi-slice computed tomography

    International Nuclear Information System (INIS)

    Henneman, Maureen M.; Bax, Jeroen J.; Holman, Eduard R.; Schuijf, Joanne D.; Jukema, J.W.; Wall, Ernst E. van der; Stokkel, Marcel P.M.; Lamb, Hildo J.; Roos, Albert de

    2006-01-01

    Global and regional left ventricular (LV) function are important indicators of the cardiac status in patients with coronary artery disease (CAD). Therapy and prognosis are to a large extent dependent on LV function. Multi-slice computed tomography (MSCT) has already earned its place as an imaging modality for non-invasive assessment of the coronary arteries, but since retrospective gating to the patient's ECG is performed, information on LV function can be derived. In 49 patients with known or suspected CAD, coronary angiography with MSCT imaging was performed, in addition to gated SPECT and 2D echocardiography. LV end-diastolic and LV end-systolic volumes and LV ejection fraction were analysed with dedicated software (CMR Analytical Software System, Medis, Leiden, The Netherlands for MSCT; gated SPECT by QGS, Cedars-Sinai Medical Center, Los Angeles, CA, USA), and by the biplane Simpson's rule for 2D echocardiography. Regional wall motion was evaluated according to a 17-segment model and a three-point score system. Correlations were fairly good between gated SPECT and MSCT (LVEDV: r=0.65; LVESV: r=0.63; LVEF: r=0.60), and excellent between 2D echocardiography and MSCT (LVEDV: r=0.92; LVESV: r=0.93; LVEF: r=0.80). Agreement for regional wall motion was 95% (κ=0.66) between gated SPECT and MSCT, and 96% (κ=0.73) between 2D echocardiography and MSCT. Global and regional LV function and LV volumes can be adequately assessed with MSCT. Correlations with 2D echocardiography are stronger than with gated SPECT. (orig.)

  18. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.

    Science.gov (United States)

    Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang

    2012-02-01

    In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Stochastic analysis of 1D and 2D surface topography of x-ray mirrors

    Science.gov (United States)

    Tyurina, Anastasia Y.; Tyurin, Yury N.; Yashchuk, Valeriy V.

    2017-08-01

    The design and evaluation of the expected performance of new optical systems requires sophisticated and reliable information about the surface topography for planned optical elements before they are fabricated. The problem is especially complex in the case of x-ray optics, particularly for the X-ray Surveyor under development and other missions. Modern x-ray source facilities are reliant upon the availability of optics with unprecedented quality (surface slope accuracy quality optics. The uniqueness of the optics and limited number of proficient vendors makes the fabrication extremely time consuming and expensive, mostly due to the limitations in accuracy and measurement rate of metrology used in fabrication. We discuss improvements in metrology efficiency via comprehensive statistical analysis of a compact volume of metrology data. The data is considered stochastic and a new statistical model called Invertible Time Invariant Linear Filter (InTILF) is developed now for 2D surface profiles to provide compact description of the 2D data additionally to 1D data treated so far. The model captures faint patterns in the data and serves as a quality metric and feedback to polishing processes, avoiding high resolution metrology measurements over the entire optical surface. The modeling, implemented in our Beatmark software, allows simulating metrology data for optics made by the same vendor and technology. The forecast data is vital for reliable specification for optical fabrication, to be exactly adequate for the required system performance.

  20. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    Science.gov (United States)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  1. RiverFlow2D numerical simulation of flood mitigation solutions in the Ebro River

    Directory of Open Access Journals (Sweden)

    I. Echeverribar

    2017-01-01

    Full Text Available A study of measures oriented to flood mitigation in the mid reach of the Ebro river is presented: elimination of vegetation in the riverbed, use of controlled flooding areas and construction or re-adaptation of levees. The software used is RiverFlow2D which solves the conservative free-surface flow equations with a finite volume method running on GPU. The results are compared with measurements at gauge stations and aerial views. The most effective measure has turned out to be the elimination of vegetation in the riverbed. It is demonstrated that not only the maximum flooded area is narrower but also it reduces the water depth up to 1 m. The other measures have local consequences when the peak discharge is relatively high although they could be useful in case the discharge is lower.

  2. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI

    DEFF Research Database (Denmark)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian

    2013-01-01

    This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3...... dopamine receptor antagonist [(11)C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels...... caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular...

  3. A software tool for automatic classification and segmentation of 2D/3D medical images

    International Nuclear Information System (INIS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-01-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided

  4. A software tool for automatic classification and segmentation of 2D/3D medical images

    Energy Technology Data Exchange (ETDEWEB)

    Strzelecki, Michal, E-mail: michal.strzelecki@p.lodz.pl [Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, 90-924 Lodz (Poland); Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur [Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, 90-924 Lodz (Poland)

    2013-02-21

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  5. Space-Time Foam in 2D and the Sum Over Topologies

    International Nuclear Information System (INIS)

    Loll, R.; Westra, W.

    2003-01-01

    It is well-known that the sum over topologies in quantum gravity is ill-defined, due to a super-exponential growth of the number of geometries as a function of the space-time volume, leading to a badly divergent gravitational path integral. Not even in dimension 2, where a non-perturbative quantum gravity theory can be constructed explicitly from a (regularized) path integral, has this problem found a satisfactory solution. In the present work, we extend a previous 2d Lorentzian path integral, regulated in terms of Lorentzian random triangulations, to include space-times with an arbitrary number of handles. We show that after the imposition of physically motivated causality constraints, the combined sum over geometries and topologies is well-defined and possesses a continuum limit which yields a concrete model of space-time foam in two dimensions. (author)

  6. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    Science.gov (United States)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  7. Neutron diffraction study of the β1-β2 transformation in Ta2D

    International Nuclear Information System (INIS)

    Kaneko, H.; Kajitani, T.; Hirabayashi, M.

    1984-01-01

    The β 1 -β 2 phase transformation in Ta 2 D was studied by neutron diffraction using the pulsed source at the Tohoku Linac and the Intense Pulsed Neutron Source, Argonne National Laboratory. It was found that the hhO reflections almost disappear in the β 2 phase, whereas the 00l reflections are the same as those in the β 1 phase. The diffraction data show that the β 2 phase has an orthorhombic unit cell which is identical with that of the β 1 phase and contains four tantalum and two deuterium atoms in a volume which is approximately 2sup(1/2) X 1 X 2sup(1/2) that of the b.c.c. host lattice. The deuterium atoms fractionally occupy the tetrahedral sites in alternate (002)sub(orth) planes. (Auth.)

  8. On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations

    International Nuclear Information System (INIS)

    An Hengbin; Mo Zeyao; Xu Xiaowen; Liu Xu

    2009-01-01

    The 2-D 3-T heat conduction equations can be used to approximately describe the energy broadcast in materials and the energy swapping between electron and photon or ion. To solve the equations, a fully implicit finite volume scheme is often used as the discretization method. Because the energy diffusion and swapping coefficients have a strongly nonlinear dependence on the temperature, and some physical parameters are discontinuous across the interfaces between the materials, it is a challenge to solve the discretized nonlinear algebraic equations. Particularly, as time advances, the temperature varies so greatly in the front of energy that it is difficult to choose an effective initial iterate when the nonlinear algebraic equations are solved by an iterative method. In this paper, a method of choosing a nonlinear initial iterate is proposed for iterative solving this kind of nonlinear algebraic equations. Numerical results show the proposed initial iterate can improve the computational efficiency, and also the convergence behavior of the nonlinear iteration.

  9. Optimized designs for 2D and 3D thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2011-01-01

    . This is proved for thermoelastic structures by compliance sensitivity analysis that return localized determination of sensitivities.The compliance is not identical to the total elastic energy (twice strain energy). An explicit formula for the difference is derived and numerically illustrated with examples....... In compliance minimization it may be advantageous to decrease the total volume, but for strength maximization it is argued to keep the total permissible volume. For direct strength maximization the sensitivity analysis of local von Mises stresses is demanding. A simple recursive procedure to obtain uniform...

  10. The Role of screening in the strongly correlated 2D systems

    CERN Document Server

    Hwang, E H

    2003-01-01

    We investigate recently observed experiments in the strongly correlated 2D systems (r sub s >> 1) (low-density 2D plasmons, metallic behaviour of 2D systems and frictional drag resistivity between two 2D hole layers). We compare them with our theoretical results calculated within a conventional Fermi liquid theory with RPA screening.

  11. Cutting an NKG2D Ligand Short: Cellular Processing of the Peculiar Human NKG2D Ligand ULBP4

    Directory of Open Access Journals (Sweden)

    Tobias Zöller

    2018-03-01

    Full Text Available Stress-induced cell surface expression of MHC class I-related glycoproteins of the MIC and ULBP families allows for immune recognition of dangerous “self cells” by human cytotoxic lymphocytes via the NKG2D receptor. With two MIC molecules (MICA and MICB and six ULBP molecules (ULBP1–6, there are a total of eight human NKG2D ligands (NKG2DL. Since the discovery of the NKG2D–NKG2DL system, the cause for both redundancy and diversity of NKG2DL has been a major and ongoing matter of debate. NKG2DL diversity has been attributed, among others, to the selective pressure by viral immunoevasins, to diverse regulation of expression, to differential tissue expression as well as to variations in receptor interactions. Here, we critically review the current state of knowledge on the poorly studied human NKG2DL ULBP4. Summarizing available facts and previous studies, we picture ULBP4 as a peculiar ULBP family member distinct from other ULBP family members by various aspects. In addition, we provide novel experimental evidence suggesting that cellular processing gives rise to mature ULBP4 glycoproteins different to previous reports. Finally, we report on the proteolytic release of soluble ULBP4 and discuss these results in the light of known mechanisms for generation of soluble NKG2DL.

  12. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.

    Science.gov (United States)

    Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing

    2016-06-28

    Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface.

  13. Acute effect of intravenously applied alcohol in the human striatal and extrastriatal D2 /D3 dopamine system.

    Science.gov (United States)

    Pfeifer, Philippe; Tüscher, Oliver; Buchholz, Hans Georg; Gründer, Gerhard; Vernaleken, Ingo; Paulzen, Michael; Zimmermann, Ulrich S; Maus, Stephan; Lieb, Klaus; Eggermann, Thomas; Fehr, Christoph; Schreckenberger, Mathias

    2017-09-01

    Investigations on the acute effects of alcohol in the human mesolimbic dopamine D 2 /D 3 receptor system have yielded conflicting results. With respect to the effects of alcohol on extrastriatal D 2 /D 3 dopamine receptors no investigations have been reported yet. Therefore we applied PET imaging using the postsynaptic dopamine D 2 /D 3 receptor ligand [ 18 F]fallypride addressing the question, whether intravenously applied alcohol stimulates the extrastriatal and striatal dopamine system. We measured subjective effects of alcohol and made correlation analyses with the striatal and extrastriatal D 2 /D 3 binding potential. Twenty-four healthy male μ-opioid receptor (OPRM1)118G allele carriers underwent a standardized intravenous and placebo alcohol administration. The subjective effects of alcohol were measured with a visual analogue scale. For the evaluation of the dopamine response we calculated the binding potential (BP ND ) by using the simplified reference tissue model (SRTM). In addition, we calculated distribution volumes (target and reference regions) in 10 subjects for which metabolite corrected arterial samples were available. In the alcohol condition no significant dopamine response in terms of a reduction of BP ND was observed in striatal and extrastriatal brain regions. We found a positive correlation for 'liking' alcohol and the BP ND in extrastriatal brain regions (Inferior frontal cortex (IFC) (r = 0.533, p = 0.007), orbitofrontal cortex (OFC) (r = 0.416, p = 0.043) and prefrontal cortex (PFC) (r = 0.625, p = 0.001)). The acute alcohol effects on the D 2 /D 3 dopamine receptor binding potential of the striatal and extrastriatal system in our experiment were insignificant. A positive correlation of the subjective effect of 'liking' alcohol with cortical D 2 /D 3 receptors may hint at an addiction relevant trait. © 2016 Society for the Study of Addiction.

  14. Optical diffraction by ordered 2D arrays of silica microspheres

    International Nuclear Information System (INIS)

    Shcherbakov, A.A.; Shavdina, O.; Tishchenko, A.V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-01-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality. - Highlights: • High quality silica microsphere monolayer was fabricated. • Accurate measurements of diffraction efficiency angular dependencies. • Rigorous diffraction simulation of both ideal hexagonal and realistic microsphere arrangements. • Qualitative rationalization of the obtained results and the observed differences between the experiment and the theory.

  15. Persistent spin helices in 2D electron systems

    Science.gov (United States)

    Kozulin, A. S.; Malyshev, A. I.; Konakov, A. A.

    2017-03-01

    We present a theoretical investigation of persistent spin helices in two-dimensional electron systems with spin-orbit coupling. For this purpose, we consider a single-particle effective mass Hamiltonian with a generalized linear-in- k spin-orbit coupling term corresponding to a quantum well grown in an arbitrary crystallographic direction, and derive the general condition for the formation of the persistent spin helix. This condition applied for the Hamiltonians describing quantum wells with different growth directions indicates the possibility of existence of the persistent spin helix in a wide class of 2D systems apart from the [001] model with equal Rashba and Dresselhaus spin-orbit coupling strengths and the [110] Dresselhaus model.

  16. 2D supergravity and its connection to integrable models

    International Nuclear Information System (INIS)

    Arnaudov, L.N.; Prodanov, E.M.; Rashkov, R.C.

    1993-05-01

    In the recent work two different approaches for obtaining the covariant W 2 -action of 2-d quantum supergravity are considered. The first one is based on Hamiltonian reduction of flat Osp(2/1) connection in holomorphic polarization. Adding extra degrees of freedom with the help of gauging procedure the W 2 -action and the superconformal identities are obtained. It is shown that the super Virasoro transformations preserve the form of the Lax connection and therefore are symmetries of the sKdV equations. In the second approach starting with Chern-Simons theory and using non-canonical polarization the zero-curvature condition entails the same results. (author). 7 refs

  17. 2D quantum gravity at three loops: A counterterm investigation

    Directory of Open Access Journals (Sweden)

    Lætitia Leduc

    2016-02-01

    Full Text Available We analyze the divergences of the three-loop partition function at fixed area in 2D quantum gravity. Considering the Liouville action in the Kähler formalism, we extract the coefficient of the leading divergence ∼AΛ2(ln⁡AΛ22. This coefficient is non-vanishing. We discuss the counterterms one can and must add and compute their precise contribution to the partition function. This allows us to conclude that every local and non-local divergence in the partition function can be balanced by local counterterms, with the only exception of the maximally non-local divergence (ln⁡AΛ23. Yet, this latter is computed and does cancel between the different three-loop diagrams. Thus, requiring locality of the counterterms is enough to renormalize the partition function. Finally, the structure of the new counterterms strongly suggests that they can be understood as a renormalization of the measure action.

  18. Electronic Properties of Curved and Defective 2-D BN Nanostructures

    Science.gov (United States)

    Beach, Kory; Terrones, Humberto; Raeliarijaona, Aldo; Siegel, Ross; Florio, Fred

    Density functional theory (DFT) with local density approximation (LDA) pseudopotentials is used to calculate the band structure and density of states of various novel 2-D BN nanostructures. Three types of systems are studied: Schwarzites, a Haeckelite, and an h-BN monolayer. Schwarzites are negatively curved structures in which the curvature is due to the introduction of octagonal rings of alternating boron and nitrogen atoms. In particular, three families of Schwarzites are analyzed: P, G and IWP. The Haeckelites on the other hand, are flat layers composed of squares and octagons of BN. It is found that all these BN allotropes are metastable in which the band gap is direct and smaller than the most stable system, h-BN. National Science Foundation (EFRI-1433311).

  19. Solution structure of d-GAATTCGAATTC by 2D NMR

    International Nuclear Information System (INIS)

    Hosur, R.V.; Ravikumar, M.; Chary, K.V.R.; Sheth, A.; Govil, G.

    1986-01-01

    A new approach based on the correlated spectroscopy (COSY) in 2D NMR has been described for determination of sugar geometries in oligonucleotides. Under the usual low resolution conditions employed in COSY, the intensities of cross peaks depend on the magnitudes of coupling constants. There are five vicinal coupling constants in a deoxyribose ring which are sensitive to the sugar geometry. The presence, absence and rough comparison of relative intensities of COSY cross peaks arising from such coupling constants enable one to fix the sugar conformation to a fair degree of precision. The methodology has been applied to d-GAATTCGAATTC. It is observed that ten out of the twelve nucleotide units in this sequence exhibit a rare O1'-endo geometry. The EcoRI cleavage sites in the dodecanucleotide show an interesting variation in the conformation with the two sugars attached to the Gs acquiring a geometry between C2'-endo and C4'-endo. (Auth.)

  20. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  1. A reusable OSL-film for 2D radiotherapy dosimetry

    Science.gov (United States)

    Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt

    2017-11-01

    Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film’s reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after ‘beam on’ or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities  ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min-1) over the 20 min measured, and limited angular dependence  ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film’s measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after

  2. Aerodynamic shape optimization of Airfoils in 2-D incompressible flow

    Science.gov (United States)

    Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth

    2010-11-01

    An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.

  3. Charge Transport in 2D DNA Tunnel Junction Diodes

    KAUST Repository

    Yoon, Minho

    2017-11-06

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.

  4. Thermodynamics of the localized D2-D6 system

    International Nuclear Information System (INIS)

    Gomez-Reino, Marta; Naculich, Stephen G.; Schnitzer, Howard J.

    2005-01-01

    An exact fully-localized extremal supergravity solution for N 2 D2-branes and N 6 D6-branes, which is dual to 3-dimensional supersymmetric SU(N 2 ) gauge theory with N 6 fundamentals, was found by Cherkis and Hashimoto. In order to consider the thermal properties of the gauge theory we present the non-extremal extension of this solution to first order in an expansion near the core of the D6-branes. We compute the Hawking temperature and the black-brane horizon area/entropy. The leading-order entropy, which is proportional to N 2 3/2 N 6 1/2 T H 2 , is not corrected to first order in the expansion. This result is consistent with the analogous weak-coupling result at the correspondence point N 2 similar to N 6

  5. 2-D tomography with bolometry in DIII-D

    International Nuclear Information System (INIS)

    Leonard, A.W.; Meyer, W.H.; Geer, B.; Behne, D.M.; Hill, D.N.

    1994-07-01

    We have installed a 48-channel platinum-foil bolometer system on DIII-D achieve better spatial and temporal resolution of the radiated power in diverted discharges. Two 24-channel arrays provide complete plasma coverage with optimized views of the divertor. We have measured the divertor radiation profile for a series of radiative divertor and power balance experiments. We observe a rapid change in the magnitude and distribution of divertor radiation with heavy gas puffing. Unfolding the radiation profile with only two views requires us to treat the core and divertor radiation separately. The core radiation is fitted to a function of magnetic flux and is then subtracted from the divertor viewing chords. The divertor profile is then fit to a 2-D spline as a function of magnetic flux and poloidal angle

  6. Horns Rev II, 2D-Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To investigate the combined influence of the pile diameter to water depth ratio and the wave height to water...... depth ratio on wave run-up of piles. The measurements should be used to design access platforms on piles. The Model tests include: Calibration of regular and irregular sea states at the location of the pile (without structure in place). Measurement of wave run-up for the calibrated sea states...... on the front side of the pile (0 to 90 degrees). These tests have been conducted at Aalborg University from 9. October, 2006 to 8. November, 2006. Unless otherwise mentioned, all values given in this report are in model scale....

  7. The seismic analyzer: interpreting and illustrating 2D seismic data.

    Science.gov (United States)

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  8. Izrada 2D video igre za iOS platformu

    OpenAIRE

    Kampuš, Dominik

    2016-01-01

    Tema ovog završnog rada temelji se na izradi 2D video igre za iOS mobilni uređaj te njezinoj demonstraciji na istom. Kroz rad su opisane sve bitne funkcije GameSalad Creator-a koje su potrebne kod izrade igre bazirane na 2 dimenzije. Također se prolazi kroz iOS operativni sustav, što je on i kako se razvijao. Spominje se i tema koja govori općenito o igrama na mobilnim uređajima. U završnom dijelu rada prikazan je postupak izrade, koje funkcije programa se točno koriste i kako se igra može te...

  9. Symmetries of the 2D magnetic particle imaging system matrix

    International Nuclear Information System (INIS)

    Weber, A; Knopp, T

    2015-01-01

    In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. (paper)

  10. First investigation of a novel 2D position-sensitive

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  11. 2D-RBUC for efficient parallel compression of residuals

    Science.gov (United States)

    Đurđević, Đorđe M.; Tartalja, Igor I.

    2018-02-01

    In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.

  12. Currency verification by a 2D infrared barcode

    International Nuclear Information System (INIS)

    Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo; Simonetti, Carla

    2010-01-01

    Nowadays all the National Central Banks are continuously studying innovative anti-counterfeiting systems for banknotes. In this note, an innovative solution is proposed, which combines the potentiality of a hylemetric approach (methodology conceptually similar to biometry), based on notes' intrinsic characteristics, with a well-known and consolidated 2D barcode identification system. In particular, in this note we propose to extract from the banknotes a univocal binary control sequence (template) and insert an encrypted version of it in a barcode printed on the same banknote. For a more acceptable look and feel of a banknote, the superposed barcode can be stamped using IR ink that is visible to near-IR image sensors. This makes the banknote verification simpler. (technical design note)

  13. Quality control in PET systems employing 2-D modular detectors

    International Nuclear Information System (INIS)

    Daghighian, F.; Hoffman, E.J.; Huang, S.C.

    1989-01-01

    Many new PET scanner designs employ 2-D detector modules to cost effectively achieve higher image and axial resolution. These systems are potentially less stable than older designs and the loss of a single photomultiplier can disable a large section of a multislice PET system. Because of these factors, it is now necessary to develop more sophisticated quality control procedures that are designed to detect problems as early as possible. The authors have developed and put into operation three automated quality control procedure that are designed to detect problems quickly with a minimum effort on the part of the user. These tests check: (1) stability of the detector modules in terms of efficiency, (2) resolution and its uniformity, (3) the reproducibility of the data

  14. Advecting Procedural Textures for 2D Flow Animation

    Science.gov (United States)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  15. 2D discontinuous piecewise linear map: Emergence of fashion cycles.

    Science.gov (United States)

    Gardini, L; Sushko, I; Matsuyama, K

    2018-05-01

    We consider a discrete-time version of the continuous-time fashion cycle model introduced in Matsuyama, 1992. Its dynamics are defined by a 2D discontinuous piecewise linear map depending on three parameters. In the parameter space of the map periodicity, regions associated with attracting cycles of different periods are organized in the period adding and period incrementing bifurcation structures. The boundaries of all the periodicity regions related to border collision bifurcations are obtained analytically in explicit form. We show the existence of several partially overlapping period incrementing structures, that is, a novelty for the considered class of maps. Moreover, we show that if the time-delay in the discrete time formulation of the model shrinks to zero, the number of period incrementing structures tends to infinity and the dynamics of the discrete time fashion cycle model converges to those of continuous-time fashion cycle model.

  16. Relativistic energy-dispersion relations of 2D rectangular lattices

    Science.gov (United States)

    Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi

    2017-04-01

    An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.

  17. TRANSITION FROM 2D TO 3D WITH GEOGEBRA

    Directory of Open Access Journals (Sweden)

    MARIA MIHAILOVA

    2014-12-01

    Full Text Available This article presents the definition of projection plane, its importance for the geometry constructions used in civil engineering and comparative analysis of three opportunities for creating a three dimensional basis, used in drawing such a plane. First method consists of transforming affine and orthonormal coordinates and its application in GeoGebra is presented. Second method, using combination of spherical and polar coordinates in space, is introduced. The third suggested method is an application of descriptive geometry for transforming 2D to 3D and a new method of forming a plane of projection, which will be used later in the reviewed example below. The example shows how GeoGebra software can be used in technical drawing used in civil engineering.

  18. An improved multicrystal 2-D BGO detector for PET

    International Nuclear Information System (INIS)

    Rogers, J.G.; Taylor, A.J.; Rahimi, M.F.; Nutt, R.; Andreaco, M.; Williams, C.W.

    1992-01-01

    In this paper, the authors evaluate and compare two new 2-D array detectors for PET. Both consist of an 8 x 8 array of small BGO crystals coupled to a 2 x 2 array of photomultiplier tubes. The depth of the crystals is 3 cm in one detector and 2 cm in the other. The 2 cm detector is obviously superior in terms of material costs, but is also superior in energy resolution per crystal, and in its ability to clearly identify the crystal containing the primary interaction. The authors present a flexible and robust algorithm for crystal identification in such array detectors. The prospect of obtaining still better spatial resolution from such block detectors, with increased numbers of crystals, is discussed

  19. Charge Transport in 2D DNA Tunnel Junction Diodes

    KAUST Repository

    Yoon, Minho; Min, Sung-Wook; Dugasani, Sreekantha Reddy; Lee, Yong Uk; Oh, Min Suk; Anthopoulos, Thomas D.; Park, Sung Ha; Im, Seongil

    2017-01-01

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.

  20. Modelling river bank erosion processes and mass failure mechanisms using 2-D depth averaged numerical model

    Science.gov (United States)

    Die Moran, Andres; El kadi Abderrezzak, Kamal; Tassi, Pablo; Herouvet, Jean-Michel

    2014-05-01

    Bank erosion is a key process that may cause a large number of economic and environmental problems (e.g. land loss, damage to structures and aquatic habitat). Stream bank erosion (toe erosion and mass failure) represents an important form of channel morphology changes and a significant source of sediment. With the advances made in computational techniques, two-dimensional (2-D) numerical models have become valuable tools for investigating flow and sediment transport in open channels at large temporal and spatial scales. However, the implementation of mass failure process in 2D numerical models is still a challenging task. In this paper, a simple, innovative algorithm is implemented in the Telemac-Mascaret modeling platform to handle bank failure: failure occurs whether the actual slope of one given bed element is higher than the internal friction angle. The unstable bed elements are rotated around an appropriate axis, ensuring mass conservation. Mass failure of a bank due to slope instability is applied at the end of each sediment transport evolution iteration, once the bed evolution due to bed load (and/or suspended load) has been computed, but before the global sediment mass balance is verified. This bank failure algorithm is successfully tested using two laboratory experimental cases. Then, bank failure in a 1:40 scale physical model of the Rhine River composed of non-uniform material is simulated. The main features of the bank erosion and failure are correctly reproduced in the numerical simulations, namely the mass wasting at the bank toe, followed by failure at the bank head, and subsequent transport of the mobilised material in an aggradation front. Volumes of eroded material obtained are of the same order of magnitude as the volumes measured during the laboratory tests.

  1. Contributions in compression of 3D medical images and 2D images

    International Nuclear Information System (INIS)

    Gaudeau, Y.

    2006-12-01

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  2. 2D magnetic texture analysis of Co-Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Bayirli, Mehmet; Karaagac, Oznur; Kockar, Hakan [Balikesir Univ. (Turkey). Physics Dept.; Alper, Mursel [Uludag Univ., Bursa (Turkey). Physics Dept.

    2017-08-01

    The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co{sup 2+} in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, M{sub p}(β) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co in the films with the change of Co{sup 2+} in the electrolyte. The coefficients of Fourier series (A{sub 0} and A{sub 2n}) were also computed for 2D films. It is seen that a systematic and small decrease in A{sub 0} and an obvious decrease in A{sub 2n} (n=1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.

  3. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    Science.gov (United States)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  4. Cell Migration in 1D and 2D Nanofiber Microenvironments.

    Science.gov (United States)

    Estabridis, Horacio M; Jana, Aniket; Nain, Amrinder; Odde, David J

    2018-03-01

    Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.

  5. 2D Dust Clusters in Theory and Experiments

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Gousein-zade, N.G.; Morfill, G.E.

    2005-01-01

    The theory is applied for more detail analysis of existing experiments of 2D dust clusters with parabolic confinement. It is shown that the equilibrium condition and the frequency of one of the modes of the cluster determines all dimensionless parameters of the cluster allowing to predict the value of other modes and compare them with existing experimental data. This comparison depends on the shielding model, the calculations starting with N = 4 cluster breathing mode predict for Debye shielding model without attraction the frequency of the antisymmetric mode in disagreement with the observed value about 6 standard deviations, while the same calculations for the non-linear screening model gives disagreement about 1 standard deviation. Including the attraction provides an agrement with observations only for non-linear screening model showing the sensitivity of cluster structure to dust attraction. The value of the obtained attractions coefficient is in reasonable agreement with the theoretically expected value. It is shown theoretically that in absence of external parabolic confinement a weak shadow attraction can provide an existence of equilibria for 2D clusters. The equilibrium radius is rapidly decreasing with an increase of the attraction coefficient and with number of grains N in a cluster. The energies of one shell clusters with different N and the energies of N - 1 grain clusters with additional grain in the center of the shell are calculated as functions of attraction coefficient. It is demonstrated that a dissociation of cluster in several smaller clusters needs less energy than a removal of one grain from the cluster. The calculations were performed for Yukawa screening and for non-linear screening and demonstrate the sensitivity of cluster structures to the screening. Frequencies of all modes are calculated up to N = 7 for one shell structure. Stable and unstable modes as well as universal magic numbers are found

  6. Comparison of 2D and 3D Experiments for IVR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Kim, Su Hyeon; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The integrity of reactor vessel is one of the prime concern in a severe accident condition. When the InVessel core melts Retention by External Reactor Vessel Cooling (IVR-ERVC) strategy is adopted as the design concept, the local heat load imposed on the reactor vessel should be identified in order to confirm the integrity of the reactor vessel. There are several studies simulating the natural convection of the oxide pool experimentally. In them, modified Ra (Ra') substitutes conventional Ra in order to represents decay heat of the core melts, due to the self-exothermic condition of the oxide pool. Difficulties in those experiments were the realization of the homogeneous self-exothermic volumetric heat sources. For this reason, the experiments using semicircular facility were also carried out instead of those of hemisphere facility [5-8]. The mean and local Nu of the lower head and the top plate were measured and correlations of the mean Nu were developed in existing studies. However, the comparisons between 2D and 3D results and phenomenological analyses have not been sufficiently performed. In this study we measured and compared the mean and local Nu using 2D and 3D Mass Transfer Experimental Rig for Oxide Pool (MassTER-OP). The experiments were carried out using cupric acid copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system based on the analogy between heat and mass transfer system. The Pr was 2,014 and Ra'H were varied from 7.15X10{sup 12} to 3.05X10{sup 15}.

  7. Imaging the motion of electrons in 2D semiconductor heterostructures

    Science.gov (United States)

    Dani, Keshav

    Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.

  8. 2D phase field modeling of sintering of silver nanoparticles

    NARCIS (Netherlands)

    Chockalingam, K.; Kouznetsova, V.; van der Sluis, O.; Geers, M.G.D.

    2016-01-01

    The sintering mechanism of silver nanoparticles is modelled by incorporating surface, volume and grain boundary diffusion in a phase field model. A direction-dependent tensorial mobility formulation is adopted, capturing the fact that diffusion mainly occurs along the directions tangential to the

  9. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    Science.gov (United States)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  10. Quantative flow measurement of the vertebro-basilar circulation for positional vertigo by using 2D phase contrast technique

    International Nuclear Information System (INIS)

    Tominaga, Satoru; Seo, Toru; Ishikura, Reiichi; Nakao, Norio; Tabuchi, Yukiko.

    1996-01-01

    Quantative measurements of blood flow in the vertebral and basilar arteries were obtained by the 2D phase contrast (2D PC) technique. In phantom study, flow velocity measured with 2D PC correlated well with actual flow velocity. Sixty-six patients were neurologically normal and 20 had positional vertigo due to vertebrobasilar insufficiency (VBI). Mean velocities (MV) were measured by using a transverse plane in the vertebral arteries at the level of C3 and in the basilar arteries at the level of the sella floor. Volume flow rates (VFR) were calculated as the product of MV and the area of the arteries whose diameters were measured on the basis of pixel counting in the histogram of the signal intensity profile. In the normal group, MV of the left vertebral artery and MV and VFR of the basilar artery showed significant declines as age progressed. In the vertigo group, MV and VFR of the basilar artery were significantly lower than in the normal group. It is concluded that 2D PC technique appears to be fast and easy to handle without cardiac gating to assess blood flow in vessels surrounded by bone tissues. (author)

  11. Quantative flow measurement of the vertebro-basilar circulation for positional vertigo by using 2D phase contrast technique

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, Satoru; Seo, Toru; Ishikura, Reiichi; Nakao, Norio [Hyogo Coll. of Medicine, Nishinomiya (Japan); Tabuchi, Yukiko

    1996-04-01

    Quantative measurements of blood flow in the vertebral and basilar arteries were obtained by the 2D phase contrast (2D PC) technique. In phantom study, flow velocity measured with 2D PC correlated well with actual flow velocity. Sixty-six patients were neurologically normal and 20 had positional vertigo due to vertebrobasilar insufficiency (VBI). Mean velocities (MV) were measured by using a transverse plane in the vertebral arteries at the level of C3 and in the basilar arteries at the level of the sella floor. Volume flow rates (VFR) were calculated as the product of MV and the area of the arteries whose diameters were measured on the basis of pixel counting in the histogram of the signal intensity profile. In the normal group, MV of the left vertebral artery and MV and VFR of the basilar artery showed significant declines as age progressed. In the vertigo group, MV and VFR of the basilar artery were significantly lower than in the normal group. It is concluded that 2D PC technique appears to be fast and easy to handle without cardiac gating to assess blood flow in vessels surrounded by bone tissues. (author).

  12. 3D versus 2D Systematic Transrectal Ultrasound-Guided Prostate Biopsy: Higher Cancer Detection Rate in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Alexandre Peltier

    2013-01-01

    Full Text Available Objectives. To compare prostate cancer detection rates of extended 2D versus 3D biopsies and to further assess the clinical impact of this method in day-to-day practice. Methods. We analyzed the data of a cohort of 220 consecutive patients with no prior history of prostate cancer who underwent an initial prostate biopsy in daily practice due to an abnormal PSA and/or DRE using, respectively, the classical 2D and the new 3D systems. All the biopsies were done by a single experienced operator using the same standardized protocol. Results. There was no significant difference in terms of age, total PSA, or prostate volume between the two groups. However, cancer detection rate was significantly higher using the 3D versus the 2D system, 50% versus 34% (P<0.05. There was no statistically significant difference while comparing the 2 groups in term of nonsignificant cancer detection. Conclusion. There is reasonable evidence demonstrating the superiority of the 3D-guided biopsies in detecting prostate cancers that would have been missed using the 2D extended protocol.

  13. Development of an open source laboratory information management system for 2-D gel electrophoresis-based proteomics workflow

    Directory of Open Access Journals (Sweden)

    Toda Tosifusa

    2006-10-01

    Full Text Available Abstract Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved.

  14. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    Science.gov (United States)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  15. Nested 1D-2D approach for urban surface flood modeling

    Science.gov (United States)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  16. Effect of 3D radiotherapy planning compared to 2D planning within a conventional treatment schedule of advanced lung cancer

    International Nuclear Information System (INIS)

    Schraube, P.; Spahn, U.; Oetzel, D.; Wannenmacher, M.

    2000-01-01

    Background: The effect of 3D radiotherapy planning (3D RTP) in comparison to 2D radiotherapy planning (2D RTP) was evaluated in a usually practiced treatment schedule (starting by v./d. opposing portals, continued with computer-planned portals) for non-small-cell lung cancer. Patients and Methods: In 20 patients with locally advanced non-small-cell lung cancer the computer-planned part of the treatment schedule was calculated 2- and 3-dimensionally. Target volume were the primary tumor, the involved and the electively irradiated mediastinal lymph nodes. The results of the 2D RTP were recalculated 3-dimensionally and the mean doses to target volume and organs at risk were defined. Further, the normal tissue complications were calculated. Results: Under the prerequisite of 44 Gy maximally allowed to the spinal cord and a dose to the reference point of 50 Gy a small, but significant advantage with 2.1 Gy to the target (p=0.004) and a reduction of 3.6 Gy to the heart (p=0.05) was achievable for 3D RTP. The dose to the lungs did not differ significantly (19.7 Gy for 2D RTP, 20.3 Gy for 3D RTP). The dose to the heart was not estimated critical by NTCP (normal tissue complication probability). The NTCP for the ipsilateral lung was 16.1 and 18.7% for 2D RTP and 3D RTP, respectively. Regarding the simulator-planned ap/pa fields at the start of the radiotherapy the advantage of 3D RTP was further reduced but remained significant. Favorable with respect to the mean lung dose and the NTCP (18.7% NTCP ipsilateral lung for early onset of 3D planned radiotherapy vs 31.7% for late onset of 3D planned radiotherapy) but not significantly measurable is the early start of the treatment by computerized RTP. Conclusion: The main advantage of 3D RTP in treatment of advanced lung cancer is the better coverage of the target volume. A reduction of the mean lung dose cannot be expected. A dose escalation by 3D RTP to target volumes as described here seems not to be possible because of

  17. Pareto joint inversion of 2D magnetotelluric and gravity data

    Science.gov (United States)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where

  18. 2D/3D Visual Tracker for Rover Mast

    Science.gov (United States)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems

  19. Theory of small atomic-like 2D dust clusters

    International Nuclear Information System (INIS)

    Amiranashvili, Sh.G.; Gousein-zade, N.G.; Tsytovich, V.N.

    2002-01-01

    In several experiments atom-like dust clusters with parabolic confining potential were observed [1-3]. Here we present a general theory of 2D clusters confined by (1/2)m dω 0 2 r2 potential with arbitrary pair interaction potential depending on the inter-dust distance. It describes the equilibrium conditions, normal modes, their frequencies and possible instabilities of clusters with arbitrary N number of grains. The mono-layer clusters can have 2N frequencies of oscillations in the cluster plane among which 3 modes are trivial (ω = 0 and double degenerate frequency of oscillation in the potential well). The 2N - 3 non-trivial modes are considered. For example, for square dust cluster with potential V(r) the equilibrium is described by ω 0 2 = -(4/m) [V'(√(2)R) + V'(2R)], the frequency of radial oscillations is ω2 = (16R2/m) [V''(√(2)R) + 2V''(2R)], the two single modes frequencies are ω2 (32R2/m)V''(2R); ω2 = (16R2/m)V''(√(2)r) and one double degenerated mode frequency is ω2 = (1/m) [V'√(2)R) - V'(2R) + 4R2V''(√(2)R)] where ' corresponds to the differentiation of the potential V(r) with respect to √(r). The general stability criterion was found and investigated for N ≥ 4. The pair interaction potential V(r) is considered as a sum of different attraction and repulsion terms , including that which describe the non-screened collective and non collective attraction, the screened non-Coulomb interaction and the non-screened repulsion. The collective non-screened potential causes the absence of equilibria at certain dust cluster sizes. For screened Coulomb potential Vc(r) = (Z d 2 e2αscr/r)exp(-r/λscr) the clusters with the size R are considered. The pentagon cluster is found to be stable for R < 3.3λscr and the clusters with N ≥ 6 are found to be always unstable. The measurements of the frequencies of the cluster modes, the thresholds of cluster equilibria and the stability of the clusters can be used for detection of the dust

  20. FLOWPLOT2, 2-D, 3-D Fluid Dynamic Plots

    International Nuclear Information System (INIS)

    Cobb, C.K.; Tunstall, J.N.

    1989-01-01

    1 - Description of program or function: FLOWPLOT2 is a plotting program used with numerical or analytical fluid dynamics codes to create velocity vector plots, contour plots of up to three fluid parameters (e.g. pressure, density, and temperature), two-dimensional profile plots, three-dimensional curve plots, and/or three-dimensional surface plots for either the u or v velocity components. If the fluid dynamics code computes a transient or simulated time related solution, FLOWPLOT2 can also be used to generate these plots for any specified time interval. Multiple cases generating different plots for different time intervals may be run in one execution of the program. In addition, plots can be created for selected two- dimensional planes of three-dimensional steady-state problems. The user has the option of producing plots on CalComp or Versatec plotters or microfiche and of creating a compressed dataset before plotting. 2 - Method of solution: FLOWPLOT2 reads a dataset written by the fluid dynamics code. This dataset must be written in a specified format and must contain parametric data at the nodal points of a uniform or non-uniform rectangular grid formed by the intersection of the grid lines of the model. 3 - Restrictions on the complexity of the problem - Maxima of: 2500 nodes, 40 y-values for 2-D profile plots and 3-D curve plots, 20 contour values, 3 fluid parameters

  1. Projection-slice theorem based 2D-3D registration

    Science.gov (United States)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  2. Turbulent Dynamics of Partially-Ionized Fluids in 2D

    Science.gov (United States)

    Benavides, S.; Flierl, G.

    2017-12-01

    Ionization occurs in the upper atmospheres of Hot Jupiters, as well asthe interiors of Gas Giants, leading to Magnetohydrodynamic (MHD) effectswhich can significantly alter the flow. The interactions of these MHDregions with the non-ionized atmosphere will occur in transitionregions where only a fraction of the fluid is ionized. We areexploring the dynamics of Partially-Ionized MHD (PIMHD) using a twofluid model - one neutral and one ionized and subject to MHD -coupled by a collision, or Joule heating, term proportional to thedifference in velocities. By varying both the ionization fraction aswell as the collision frequency (coupling), we examine the parameterspace of 2D PIMHD turbulence in hopes of better understanding itscharacteristics in certain, possibly realistic, regimes. We payparticular attention to the Joule heating term and its role indissipation and energy exchange between the two species. Thisknowledge will serve as the basis to further studies in which we lookat, in a more realistic setting, the PIMHD dynamics in Gas Giant orHot Jupiter atmospheres.

  3. Entanglement entropy for descendent local operators in 2D CFTs

    International Nuclear Information System (INIS)

    Chen, Bin; Guo, Wu-Zhong; He, Song; Wu, Jie-qiang

    2015-01-01

    We mainly study the Rényi entropy and entanglement entropy of the states locally excited by the descendent operators in two dimensional conformal field theories (CFTs). In rational CFTs, we prove that the increase of entanglement entropy and Rényi entropy for a class of descendent operators, which are generated by L"("−")L̄"("−") onto the primary operator, always coincide with the logarithmic of quantum dimension of the corresponding primary operator. That means the Rényi entropy and entanglement entropy for these descendent operators are the same as the ones of their corresponding primary operator. For 2D rational CFTs with a boundary, we confirm that the Rényi entropy always coincides with the logarithmic of quantum dimension of the primary operator during some periods of the evolution. Furthermore, we consider more general descendent operators generated by ∑d_{_n__i_}_{_n__j_}(∏_iL_−_n__i∏_jL̄_−_n__j) on the primary operator. For these operators, the entanglement entropy and Rényi entropy get additional corrections, as the mixing of holomorphic and anti-holomorphic Virasoro generators enhance the entanglement. Finally, we employ perturbative CFT techniques to evaluate the Rényi entropy of the excited operators in deformed CFT. The Rényi and entanglement entropies are increased, and get contributions not only from local excited operators but also from global deformation of the theory.

  4. Topological Toughening of graphene and other 2D materials

    Science.gov (United States)

    Gao, Huajian

    It has been claimed that graphene, with the elastic modulus of 1TPa and theoretical strength as high as 130 GPa, is the strongest material. However, from an engineering point of view, it is the fracture toughness that determines the actual strength of materials, as crack-like flaws (i.e., cracks, holes, notches, corners, etc.) are inevitable in the design, fabrication, and operation of practical devices and systems. Recently, it has been demonstrated that graphene has very low fracture toughness, in fact close to that of ideally brittle solids. These findings have raised sharp questions and are calling for efforts to explore effective methods to toughen graphene. Recently, we have been exploring the potential use of topological effects to enhance the fracture toughness of graphene. For example, it has been shown that a sinusoidal graphene containing periodically distributed disclination quadrupoles can achieve a mode I fracture toughness nearly twice that of pristine graphene. Here we report working progresses on further studies of topological toughening of graphene and other 2D materials. A phase field crystal method is adopted to generate the atomic coordinates of material with specific topological patterns. We then perform molecular dynamics simulations of fracture in the designed samples, and observe a variety of toughening mechanisms, including crack tip blunting, crack trapping, ligament bridging, crack deflection and daughter crack initiation and coalescence.

  5. 2D metal carbides and nitrides (MXenes) for energy storage

    KAUST Repository

    Anasori, Babak; Lukatskaya, Maria R.; Gogotsi, Yury

    2017-01-01

    The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.

  6. BFV-BRST quantization of 2D supergravity

    International Nuclear Information System (INIS)

    Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.

    1995-02-01

    Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of 2D supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity super-multiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-lightcone gauge-fixing, where the super-curvature equations (δ - 3 g ++ =δ - 2 χ ++ =0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp (1,2) current algebra symmetry in a transparent manner. (author)

  7. Dynamics and Chemistry in Jovian Atmospheres: 2D Hydrodynamical Simulations

    Science.gov (United States)

    Bordwell, B. R.; Brown, B. P.; Oishi, J.

    2016-12-01

    A key component of our understanding of the formation and evolution of planetary systems is chemical composition. Problematically, however, in the atmospheres of cooler gas giants, dynamics on the same timescale as chemical reactions pull molecular abundances out of thermochemical equilibrium. These disequilibrium abundances are treated using what is known as the "quench" approximation, based upon the mixing length theory of convection. The validity of this approximation is questionable, though, as the atmospheres of gas giants encompass two distinct dynamic regimes: convective and radiative. To resolve this issue, we conduct 2D hydrodynamical simulations using the state-of-the-art pseudospectral simulation framework Dedalus. In these simulations, we solve the fully compressible equations of fluid motion in a local slab geometry that mimics the structure of a planetary atmosphere (convective zone underlying a radiative zone). Through the inclusion of passive tracers, we explore the transport properties of both regimes, and assess the validity of the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes, and generate prescriptions for the observational community. By providing insight into mixing and feedback mechanisms in Jovian atmospheres, this research lays a solid foundation for future global simulations and the construction of physically-sound models for current and future observations.

  8. Thermodynamics of the localized D2-D6 system

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Reino, Marta [Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 (United States)]. E-mail: marta@brandeis.edu; Naculich, Stephen G. [Department of Physics, Bowdoin College, Brunswick, ME 04011 (United States)]. E-mail: naculich@bowdoin.edu; Schnitzer, Howard J. [Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 (United States)]. E-mail: schnitzer@brandeis.edu

    2005-05-02

    An exact fully-localized extremal supergravity solution for N{sub 2} D2-branes and N{sub 6} D6-branes, which is dual to 3-dimensional supersymmetric SU(N{sub 2}) gauge theory with N{sub 6} fundamentals, was found by Cherkis and Hashimoto. In order to consider the thermal properties of the gauge theory we present the non-extremal extension of this solution to first order in an expansion near the core of the D6-branes. We compute the Hawking temperature and the black-brane horizon area/entropy. The leading-order entropy, which is proportional to N{sub 2}{sup 3/2}N{sub 6}{sup 1/2}T{sub H}{sup 2}, is not corrected to first order in the expansion. This result is consistent with the analogous weak-coupling result at the correspondence point N{sub 2} similar to N{sub 6}.

  9. Automated human skull landmarking with 2D Gabor wavelets

    Science.gov (United States)

    de Jong, Markus A.; Gül, Atilla; de Gijt, Jan Pieter; Koudstaal, Maarten J.; Kayser, Manfred; Wolvius, Eppo B.; Böhringer, Stefan

    2018-05-01

    Landmarking of CT scans is an important step in the alignment of skulls that is key in surgery planning, pre-/post-surgery comparisons, and morphometric studies. We present a novel method for automatically locating anatomical landmarks on the surface of cone beam CT-based image models of human skulls using 2D Gabor wavelets and ensemble learning. The algorithm is validated via human inter- and intra-rater comparisons on a set of 39 scans and a skull superimposition experiment with an established surgery planning software (Maxilim). Automatic landmarking results in an accuracy of 1–2 mm for a subset of landmarks around the nose area as compared to a gold standard derived from human raters. These landmarks are located in eye sockets and lower jaw, which is competitive with or surpasses inter-rater variability. The well-performing landmark subsets allow for the automation of skull superimposition in clinical applications. Our approach delivers accurate results, has modest training requirements (training set size of 30–40 items) and is generic, so that landmark sets can be easily expanded or modified to accommodate shifting landmark interests, which are important requirements for the landmarking of larger cohorts.

  10. 2D deblending using the multi-scale shaping scheme

    Science.gov (United States)

    Li, Qun; Ban, Xingan; Gong, Renbin; Li, Jinnuo; Ge, Qiang; Zu, Shaohuan

    2018-01-01

    Deblending can be posed as an inversion problem, which is ill-posed and requires constraint to obtain unique and stable solution. In blended record, signal is coherent, whereas interference is incoherent in some domains (e.g., common receiver domain and common offset domain). Due to the different sparsity, coefficients of signal and interference locate in different curvelet scale domains and have different amplitudes. Take into account the two differences, we propose a 2D multi-scale shaping scheme to constrain the sparsity to separate the blended record. In the domain where signal concentrates, the multi-scale scheme passes all the coefficients representing signal, while, in the domain where interference focuses, the multi-scale scheme suppresses the coefficients representing interference. Because the interference is suppressed evidently at each iteration, the constraint of multi-scale shaping operator in all scale domains are weak to guarantee the convergence of algorithm. We evaluate the performance of the multi-scale shaping scheme and the traditional global shaping scheme by using two synthetic and one field data examples.

  11. VAM2D: Variably saturated analysis model in two dimensions

    International Nuclear Information System (INIS)

    Huyakorn, P.S.; Kool, J.B.; Wu, Y.S.

    1991-10-01

    This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs

  12. Functionalization of 2D transition metal dichalcogenides for biomedical applications

    International Nuclear Information System (INIS)

    Li, Zibiao; Wong, Swee Liang

    2017-01-01

    Recent research has revealed a gamut of interesting properties present in layered two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as photoluminescence, comparatively high electron mobility, flexibility, mechanical strength and relatively low toxicity. The large surface to area ratio inherent in these materials also allows easy functionalization and maximal interaction with the external environment. Due to its unique physical and chemical properties, much work has been done in tailoring TMDCs through chemical functionalization for use in a diverse range of biomedical applications as biosensors, drug delivery carriers or even as therapeutic agents. In this review, current progress on the different types of TMDC functionalization for various biological applications will be presented and its future outlook will be discussed. - Highlights: • The different functionalization strategies and approaches of transition metal dichalcogenides are reviewed. • Properties of transition metal dichalcogenides useful for biomedical usage and their methods of synthesis are introduced. • Functionalization approaches are presented according to material type and their different application purpose is discussed.

  13. Random 2D Composites and the Generalized Method of Schwarz

    Directory of Open Access Journals (Sweden)

    Vladimir Mityushev

    2015-01-01

    Full Text Available Two-phase composites with nonoverlapping inclusions randomly embedded in matrix are investigated. A straightforward approach is applied to estimate the effective properties of random 2D composites. First, deterministic boundary value problems are solved for all locations of inclusions, that is, for all events of the considered probabilistic space C by the generalized method of Schwarz. Second, the effective properties are calculated in analytical form and averaged over C. This method is related to the traditional method based on the average probabilistic values involving the n-point correlation functions. However, we avoid computation of the correlation functions and compute their weighted moments of high orders by an indirect method which does not address the correlation functions. The effective properties are exactly expressed through these moments. It is proved that the generalized method of Schwarz converges for an arbitrary multiply connected doubly periodic domain and for an arbitrary contrast parameter. The proposed method yields an algorithm which can be applied with symbolic computations. The Torquato-Milton parameter ζ1 is exactly written for circular inclusions.

  14. The future of 2D metrology for display manufacturing

    Science.gov (United States)

    Sandstrom, Tor; Wahlsten, Mikael; Park, Youngjin

    2016-10-01

    The race to 800 PPI and higher in mobile devices and the transition to OLED displays are driving a dramatic development of mask quality: resolution, CDU, registration, and complexity. 2D metrology for large area masks is necessary and must follow the roadmap. Driving forces in the market place point to continued development of even more dense displays. State-of-the-art metrology has proven itself capable of overlay below 40 nm and registration below 65 nm for G6 masks. Future developments include incoming and recurrent measurements of pellicalized masks at the panel maker's factory site. Standardization of coordinate systems across supplier networks is feasible. This will enable better yield and production economy for both mask and panel maker. Better distortion correction methods will give better registration on the panels and relax the flatness requirements of the mask blanks. If panels are measured together with masks and the results are used to characterize the aligners, further quality and yield improvements are possible. Possible future developments include in-cell metrology and integration with other instruments in the same platform.

  15. 2D metal carbides and nitrides (MXenes) for energy storage

    KAUST Repository

    Anasori, Babak

    2017-01-17

    The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.

  16. A 2D nonlinear inversion of well-seismic data

    International Nuclear Information System (INIS)

    Métivier, Ludovic; Lailly, Patrick; Delprat-Jannaud, Florence; Halpern, Laurence

    2011-01-01

    Well-seismic data such as vertical seismic profiles are supposed to provide detailed information about the elastic properties of the subsurface at the vicinity of the well. Heterogeneity of sedimentary terrains can lead to far from negligible multiple scattering, one of the manifestations of the nonlinearity involved in the mapping between elastic parameters and seismic data. We present a 2D extension of an existing 1D nonlinear inversion technique in the context of acoustic wave propagation. In the case of a subsurface with gentle lateral variations, we propose a regularization technique which aims at ensuring the stability of the inversion in a context where the recorded seismic waves provide a very poor illumination of the subsurface. We deal with a huge size inverse problem. Special care has been taken for its numerical solution, regarding both the choice of the algorithms and the implementation on a cluster-based supercomputer. Our tests on synthetic data show the effectiveness of our regularization. They also show that our efforts in accounting for the nonlinearities are rewarded by an exceptional seismic resolution at distances of about 100 m from the well. They also show that the result is not very sensitive to errors in the estimation of the velocity distribution, as far as these errors remain realistic in the context of a medium with gentle lateral variations

  17. Detection of circular telomeric DNA without 2D gel electrophoresis.

    Science.gov (United States)

    Dlaska, Margit; Anderl, Conrad; Eisterer, Wolfgang; Bechter, Oliver E

    2008-09-01

    The end of linear chromosomes forms a lasso-like structure called the t-loop. Such t-loops resemble a DNA recombination intermediate, where the single-stranded 3' overhang is arrested in a stretch of duplex DNA. Presumably, such a t-loop can also be deleted via a recombination process. This would result in the occurrence of circular extrachromosomal telomeric DNA (t-circles), which are known to be abundantly present in immortal cells engaging the recombination-based alternative lengthening of telomeres pathway (ALT pathway). Little is known about the basic mechanism of telomeric recombination in these cells and what ultimately causes the generation of such t-circles. Current standard procedures for detecting these molecules involve 2D gel electrophoresis or electron microscopy. However, both methods are labor intense and sophisticated to perform. Here, we present a simpler, faster, and equally sensitive method for detecting t-circles. Our approach is a telomere restriction fragment assay that involves the enzymatic preservation of circular DNA with Klenow enzyme followed by Bal31 degradation of the remaining linear DNA molecules. We show that with this approach t-circles can be detected in ALT cell lines, whereas no t-circles are present in telomerase-positive cell lines. We consider our approach a valid method in which t-circle generation is the experimental readout.

  18. Ab initio modeling of 2D layered organohalide lead perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio, E-mail: maurizio.cossi@uniupo.it [Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria (Italy)

    2016-04-28

    A number of 2D layered perovskites A{sub 2}PbI{sub 4} and BPbI{sub 4}, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another’s place.

  19. 2D modelling and its applications in engineering

    International Nuclear Information System (INIS)

    Altinbalik, M. Tahir; İRSEL, Gürkan

    2013-01-01

    A model, in computer aided engineering applications, may be created by either using a two- dimensional or a three-dimensional design depending on the purpose of design. What matters most in this regard is the selection of a right method to meet system solution requirements in the most economical way. Manufacturability of a design that is developed by utilising computer aided engineering is important, but usability of the data obtained in the course of design works in the production is also equally important. In the applications consisting of such production operations as CNC or plasma cutting, two-dimensional designs can be directly used in production. These machines are equipped with interfaces which converts two-dimensional drawings into codes. In this way, a design can be directly transferred to production, and any arrangements during production process can be synchronously evaluated. As a result of this, investment expenses will be lowered, and thus the costs can be reduced to some extent. In the presented study, we have studied two-dimensional design applications and requirements. We created a two-dimensional design for a part for which a three-dimensional model have previously been generated, and then, we transferred this design to plasma cutting machine, and thus, the operation has been realized experimentally. Key words: Plasma Cutting, 2D modelling, flexibility

  20. Color constancy in 3D-2D face recognition

    Science.gov (United States)

    Meyer, Manuel; Riess, Christian; Angelopoulou, Elli; Evangelopoulos, Georgios; Kakadiaris, Ioannis A.

    2013-05-01

    Face is one of the most popular biometric modalities. However, up to now, color is rarely actively used in face recognition. Yet, it is well-known that when a person recognizes a face, color cues can become as important as shape, especially when combined with the ability of people to identify the color of objects independent of illuminant color variations. In this paper, we examine the feasibility and effect of explicitly embedding illuminant color information in face recognition systems. We empirically examine the theoretical maximum gain of including known illuminant color to a 3D-2D face recognition system. We also investigate the impact of using computational color constancy methods for estimating the illuminant color, which is then incorporated into the face recognition framework. Our experiments show that under close-to-ideal illumination estimates, one can improve face recognition rates by 16%. When the illuminant color is algorithmically estimated, the improvement is approximately 5%. These results suggest that color constancy has a positive impact on face recognition, but the accuracy of the illuminant color estimate has a considerable effect on its benefits.

  1. 2D Semiconductors for Valley-Polarized LEDs and Photodetectors

    Science.gov (United States)

    Yu, Ting

    The recently discovered two-dimensional (2D) semiconductors, such as transitional-metal-dichalcogenide monolayers, have aroused great interest due to the underlying quantum physics and the appealing optoelectronic applications like atomically thin light-emitting diodes (LEDs) and photodetectors. On the one hand, valley-polarized electroluminescence and photocurrent from such monolayers have not caused enough attention but highly demanded as building blocks for the new generation valleytronic applications. On the other hand, most reports on these devices are based on the mechanically exfoliated small samples. Considering real applications, a strategy which could offer mass-product and high compatibility to the current planar processes is greatly demanded. Large-area samples prepared by chemical vapour deposition (CVD) are perfect candidates towards such a goal. Here, we report electrically tunable valley-polarized electroluminescence and the selective spin-valley-coupled photocurrent in optoelectronic devices based on monolayer WS2 and MoS2 grown by CVD, exhibiting large electroluminescence and photocurrent dichroisms of 81% and 60%, respectively. The controllable valley polarization and emission components of the electroluminescence have been realized by varying electrical injection of carriers. For the observed helicity-dependent photocurrent, the circular photogalvanic effect at resonant excitations has been found to take the dominant responsibility.

  2. 2D electron systems viewed through an RF spectrometer

    International Nuclear Information System (INIS)

    Andrei, E.Y.

    1994-01-01

    Electrons trapped at the liquid helium-vacuum interface are an almost ideal realization of a 2D electron system. I will describe experiments probing the in-plane as well as the out-of-plane motion of the electrons. The former have emphasized the dynamics and thermodynamics of the electronic motion within the plane to understand the nature of the liquid-solid transition and to outline its phase boundary. The latter have studied the escape out of the electron layer and provided an opportunity to observe tunneling in a clean and well-characterized system as well as to measure the effects of correlations on the tunneling process. More recently experiments in the presence of a magnetic field transverse to the direction of tunneling have revealed several novel phenomena associated with the magnetic coupling between the in-plane and the out-of-plane electronic motions. Together, these experiments helped uncover the multi-faceted physics that can be found in this system. (orig.)

  3. Structure of solid H2-D2 mixtures

    International Nuclear Information System (INIS)

    Krupskij, I.N.; Kovalenko, S.I.; Krajnyukova, N.V.

    1978-01-01

    The structure of vapor deposited H 2 -D 2 solid mixtures is investigated. The electron-diffraction examination has been carried out in the temperature range from 2.3K up to the sample sublimation temperature, taking place in case of H 2 at T approximately 5K and D 2 -at T approximately 7K. On the basis of the difractogramm obtained it is shown that in solid films of pure components a FCC structure with parameters asub(Hsub(2))=5.310+-0.01A and asub(Osub(2))=5.100+-0.005A is realized, the structure being metastable in the temperature range. The existence of non-limitted solubility in solid two-component condensates is stated. The decay absence at T approximately 5K, when molecula mobility is enough for the transition of metastable FCC structure into HCP, is in good agreement with the results of experimental and theoretical estimations, according to which the decay critical temperature should not exceed 4K. The existance of the continuous series of solutions at lower temperatures is explained by a small coefficient value of a volumetric and surface diffusion of molecula as well

  4. 2D modelling and its applications in engineering

    Energy Technology Data Exchange (ETDEWEB)

    Altinbalik, M. Tahir; İRSEL, Gürkan [Trakya University, Faculty of Engineering and Architecture Mechanical Engineering Department, Edİrne (Turkey)

    2013-07-01

    A model, in computer aided engineering applications, may be created by either using a two- dimensional or a three-dimensional design depending on the purpose of design. What matters most in this regard is the selection of a right method to meet system solution requirements in the most economical way. Manufacturability of a design that is developed by utilising computer aided engineering is important, but usability of the data obtained in the course of design works in the production is also equally important. In the applications consisting of such production operations as CNC or plasma cutting, two-dimensional designs can be directly used in production. These machines are equipped with interfaces which converts two-dimensional drawings into codes. In this way, a design can be directly transferred to production, and any arrangements during production process can be synchronously evaluated. As a result of this, investment expenses will be lowered, and thus the costs can be reduced to some extent. In the presented study, we have studied two-dimensional design applications and requirements. We created a two-dimensional design for a part for which a three-dimensional model have previously been generated, and then, we transferred this design to plasma cutting machine, and thus, the operation has been realized experimentally. Key words: Plasma Cutting, 2D modelling, flexibility.

  5. Numerical simulation of rock cutting using 2D AUTODYN

    International Nuclear Information System (INIS)

    Woldemichael, D E; Rani, A M Abdul; Lemma, T A; Altaf, K

    2015-01-01

    In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force. (paper)

  6. Tracking plastics in the Mediterranean: 2D Lagrangian model.

    Science.gov (United States)

    Liubartseva, S; Coppini, G; Lecci, R; Clementi, E

    2018-04-01

    Drift of floating debris is studied with a 2D Lagrangian model with stochastic beaching and sedimentation of plastics. An ensemble of >10 10 virtual particles is tracked from anthropogenic sources (coastal human populations, rivers, shipping lanes) to environmental destinations (sea surface, coastlines, seabed). Daily analyses of ocean currents and waves provided by CMEMS at a horizontal resolution of 1/16° are used to force the plastics. High spatio-temporal variability in sea-surface plastic concentrations without any stable long-term accumulations is found. Substantial accumulation of plastics is detected on coastlines and the sea bottom. The most contaminated areas are in the Cilician subbasin, Catalan Sea, and near the Po River Delta. Also, highly polluted local patches in the vicinity of sources with limited circulation are identified. An inverse problem solution, used to quantify the origins of plastics, shows that plastic pollution of every Mediterranean country is caused primarily by its own terrestrial sources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of Froude number and geometry on water entry of a 2-D ellipse

    Science.gov (United States)

    Zhang, Xu; Liu, Pei-qing; Qu, Qiu-lin; Wang, Rui; Agarwal, Ramesh K.

    2018-05-01

    By using the finite volume method with volume of fluid model and global dynamic mesh technique, the effects of Froude number and geometry on the water entry process of a 2-D ellipse are investigated numerically. For the time history of the vertical force, the computational fluid dynamics (CFD) results match the experimental data much better than the classical potential-flow theories due to the consideration of the viscosity, turbulence, surface tension, gravity, and compressibility. The results show that the position of peak pressure on ellipse shifts from the spray root to the bottom of ellipse at a critical time. The critical time changes with the geometry and Froude number. By studying the vertical force, the ellipse water entry process can be divided into the initial and late stages based on the critical dimensionless time of about 0.1. The geometry of the ellipse plays a dominant role in the initial stage, while the Froude number is more important in the late stage of entry. The classical Wagner theory is extended to the ellipse water entry, and the predicted maximum value of vertical force coefficient in the initial stage is 4πa/b that matches the CFD results very well, where a and b are the horizontal axis and vertical axis of the ellipse parallel and perpendicular to the initial calm water surface, respectively.

  8. Ovarian morphology in polycystic ovary syndrome: estimates from 2D and 3D ultrasound and magnetic resonance imaging and their correlation to anti-Müllerian hormone.

    Science.gov (United States)

    Nylander, Malin; Frøssing, Signe; Bjerre, Anne H; Chabanova, Elizaveta; Clausen, Helle V; Faber, Jens; Skouby, Sven O

    2017-08-01

    Background Due to improved ultrasound scanners, new three-dimensional (3D) modalities, and novel Anti-Müllerian hormone (AMH)-assays, the ultrasound criteria for polycystic ovarian morphology are under debate and the appropriate thresholds are often requested. Purpose To quantify the differences in estimates of ovarian volume and antral follicle count (AFC) from two-dimensional (2D) and 3D transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI). Material and Methods A cross-sectional study on 66 overweight women with polycystic ovary syndrome (PCOS) according to Rotterdam criteria. Ovarian volume and AFC were estimated from MRI, 2D TVUS, and 3D TVUS, and serum AMH levels were assessed. Bland-Altman statistics were used for comparison. Results Participants had a median age of 29 years (age range, 19-44 years) with a mean BMI of 32.7 kg/m 2 (SD 4.5). Ovarian volume from 2D TVUS was 1.48 mL (95% confidence interval [CI], 0.94-2.03; P ovarian volume and AFC as compared with 3D TVUS and MRI. Serum AMH correlated best with AFC from 3D TVUS, followed by MRI and 2D TVUS. The advantage of 3D TVUS might be of minor clinical importance when diagnosing PCOS, but useful when the actual AFC are of interest, e.g. in fertility counseling and research.

  9. Validation of accuracy and stability of numerical simulation for 2-D heat transfer system by an entropy production approach

    Directory of Open Access Journals (Sweden)

    Brohi Ali Anwar

    2017-01-01

    Full Text Available The entropy production in 2-D heat transfer system has been analyzed systematically by using the finite volume method, to develop new criteria for the numerical simulation in case of multidimensional systems, with the aid of the CFD codes. The steady-state heat conduction problem has been investigated for entropy production, and the entropy production profile has been calculated based upon the current approach. From results for 2-D heat conduction, it can be found that the stability of entropy production profile exhibits a better agreement with the exact solution accordingly, and the current approach is effective for measuring the accuracy and stability of numerical simulations for heat transfer problems.

  10. High performance shallow water kernels for parallel overland flow simulations based on FullSWOF2D

    KAUST Repository

    Wittmann, Roland

    2017-01-25

    We describe code optimization and parallelization procedures applied to the sequential overland flow solver FullSWOF2D. Major difficulties when simulating overland flows comprise dealing with high resolution datasets of large scale areas which either cannot be computed on a single node either due to limited amount of memory or due to too many (time step) iterations resulting from the CFL condition. We address these issues in terms of two major contributions. First, we demonstrate a generic step-by-step transformation of the second order finite volume scheme in FullSWOF2D towards MPI parallelization. Second, the computational kernels are optimized by the use of templates and a portable vectorization approach. We discuss the load imbalance of the flux computation due to dry and wet cells and propose a solution using an efficient cell counting approach. Finally, scalability results are shown for different test scenarios along with a flood simulation benchmark using the Shaheen II supercomputer.

  11. Extremes of 2d Coulomb gas: universal intermediate deviation regime

    Science.gov (United States)

    Lacroix-A-Chez-Toine, Bertrand; Grabsch, Aurélien; Majumdar, Satya N.; Schehr, Grégory

    2018-01-01

    In this paper, we study the extreme statistics in the complex Ginibre ensemble of N × N random matrices with complex Gaussian entries, but with no other symmetries. All the N eigenvalues are complex random variables and their joint distribution can be interpreted as a 2d Coulomb gas with a logarithmic repulsion between any pair of particles and in presence of a confining harmonic potential v(r) \\propto r2 . We study the statistics of the eigenvalue with the largest modulus r\\max in the complex plane. The typical and large fluctuations of r\\max around its mean had been studied before, and they match smoothly to the right of the mean. However, it remained a puzzle to understand why the large and typical fluctuations to the left of the mean did not match. In this paper, we show that there is indeed an intermediate fluctuation regime that interpolates smoothly between the large and the typical fluctuations to the left of the mean. Moreover, we compute explicitly this ‘intermediate deviation function’ (IDF) and show that it is universal, i.e. independent of the confining potential v(r) as long as it is spherically symmetric and increases faster than \\ln r2 for large r with an unbounded support. If the confining potential v(r) has a finite support, i.e. becomes infinite beyond a finite radius, we show via explicit computation that the corresponding IDF is different. Interestingly, in the borderline case where the confining potential grows very slowly as v(r) ∼ \\ln r2 for r \\gg 1 with an unbounded support, the intermediate regime disappears and there is a smooth matching between the central part and the left large deviation regime.

  12. Self-leveling 2D DPN probe arrays

    Science.gov (United States)

    Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike

    2010-02-01

    Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.

  13. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops

    Directory of Open Access Journals (Sweden)

    Jordi Llop

    2016-09-01

    Full Text Available Canopy characterization is essential for pesticide dosage adjustment according to vegetation volume and density. It is especially important for fresh exportable vegetables like greenhouse tomatoes. These plants are thin and tall and are planted in pairs, which makes their characterization with electronic methods difficult. Therefore, the accuracy of the terrestrial 2D LiDAR sensor is evaluated for determining canopy parameters related to volume and density and established useful correlations between manual and electronic parameters for leaf area estimation. Experiments were performed in three commercial tomato greenhouses with a paired plantation system. In the electronic characterization, a LiDAR sensor scanned the plant pairs from both sides. The canopy height, canopy width, canopy volume, and leaf area were obtained. From these, other important parameters were calculated, like the tree row volume, leaf wall area, leaf area index, and leaf area density. Manual measurements were found to overestimate the parameters compared with the LiDAR sensor. The canopy volume estimated with the scanner was found to be reliable for estimating the canopy height, volume, and density. Moreover, the LiDAR scanner could assess the high variability in canopy density along rows and hence is an important tool for generating canopy maps.

  14. Automated fetal brain segmentation from 2D MRI slices for motion correction.

    Science.gov (United States)

    Keraudren, K; Kuklisova-Murgasova, M; Kyriakopoulou, V; Malamateniou, C; Rutherford, M A; Kainz, B; Hajnal, J V; Rueckert, D

    2014-11-01

    Motion correction is a key element for imaging the fetal brain in-utero using Magnetic Resonance Imaging (MRI). Maternal breathing can introduce motion, but a larger effect is frequently due to fetal movement within the womb. Consequently, imaging is frequently performed slice-by-slice using single shot techniques, which are then combined into volumetric images using slice-to-volume reconstruction methods (SVR). For successful SVR, a key preprocessing step is to isolate fetal brain tissues from maternal anatomy before correcting for the motion of the fetal head. This has hitherto been a manual or semi-automatic procedure. We propose an automatic method to localize and segment the brain of the fetus when the image data is acquired as stacks of 2D slices with anatomy misaligned due to fetal motion. We combine this segmentation process with a robust motion correction method, enabling the segmentation to be refined as the reconstruction proceeds. The fetal brain localization process uses Maximally Stable Extremal Regions (MSER), which are classified using a Bag-of-Words model with Scale-Invariant Feature Transform (SIFT) features. The segmentation process is a patch-based propagation of the MSER regions selected during detection, combined with a Conditional Random Field (CRF). The gestational age (GA) is used to incorporate prior knowledge about the size and volume of the fetal brain into the detection and segmentation process. The method was tested in a ten-fold cross-validation experiment on 66 datasets of healthy fetuses whose GA ranged from 22 to 39 weeks. In 85% of the tested cases, our proposed method produced a motion corrected volume of a relevant quality for clinical diagnosis, thus removing the need for manually delineating the contours of the brain before motion correction. Our method automatically generated as a side-product a segmentation of the reconstructed fetal brain with a mean Dice score of 93%, which can be used for further processing. Copyright

  15. Scanning laser beam displays based on a 2D MEMS

    Science.gov (United States)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  16. CYP2D6 and CYP2C19 in Papua New Guinea: High frequency of previously uncharacterized CYP2D6 alleles and heterozygote excess.

    Science.gov (United States)

    von Ahsen, Nicolas; Tzvetkov, Mladen; Karunajeewa, Harin A; Gomorrai, Servina; Ura, Alice; Brockmöller, Jürgen; Davis, Timothy M E; Mueller, Ivo; Ilett, Kenneth F; Oellerich, Michael

    2010-08-18

    A high frequency of previously unknown CYP2D6 alleles have been reported in Oceania populations. Genetic and functional properties of these alleles remain unknown. We performed analyses of the genetic variability of CYP2D6 and CYP2C19 genes using AmpliChip genotyping in cohorts from two distinct Papua New Guinea (PNG) populations (Kunjingini, n=88; Alexishafen, n=84) focussing on the genetic characterisation of PNG-specific alleles by re-sequencing. Previously unknown CYP2D6 alleles have population frequencies of 24% (Kunjingini) and 12% (Alexishafen). An allele similar to CYP2D6*1, but carrying the 1661G>C substitution, was the second most frequent CYP2D6 allele (20% Kunjingini and 10% Alexishafen population frequency). Sequencing suggests the CYP2D6* 1661G>C allele originated from a cross-over between CYP2D6*1 and *2 and thus is predicted to confer fully active CYP2D6 enzyme. Two additional predicted full activity alleles [1661G>C;4180G>C] and 31G>A were found in the Kunjingini cohort (frequencies 3 c/c and 1%, respectively) and a novel predicted reduced activity allele [100C>T;1039C>T] was found in the Alexishafen cohort (frequency 2%). A high frequency of ultra-rapid (15%) and notably low frequencies of intermediate and poor CYP2D6 metabolizers (exogamy and recent introduction of alleles by migration that are yet to reach HWE in relatively isolated populations. The CYP2D6*1661 allele common in Oceania may be regarded as functionally equivalent to the full activity CYP2D6*1 allele.

  17. Transition from 2-D radiotherapy to 3-D conformal and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    2008-05-01

    Cancer is one of the leading causes of death globally and radiotherapy is currently an essential component in the management of cancer patients, either alone or in combination with surgery or chemotherapy, both for cure or palliation. It is now recognized that safe and effective radiotherapy service needs not only substantial capital investment in radiotherapy equipment and specially designed facilities but also continuous investment in maintenance and upgrading of the equipment to comply with the technical progress, but also in training the staff. The recent IAEA-TECDOC publication 'Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects' provides general guidelines for designing and implementing radiotherapy services in Member States. Advances in computer technology have enabled the possibility of transitioning from basic 2- dimensional treatment planning and delivery (2-D radiotherapy) to a more sophisticated approach with 3-dimensional conformal radiotherapy (3-D CRT). Whereas 2-D radiotherapy can be applied with simple equipment, infrastructure and training, transfer to 3-D conformal treatments requires more resources in technology, equipment, staff and training. A novel radiation treatment approach using Intensity Modulated Radiation Therapy (IMRT) that optimizes the delivery of radiation to irregularly shaped tumour volumes demands even more sophisticated equipment and seamless teamwork, and consequentially more resources, advanced training and more time for treatment planning and verification of dose delivery than 3-D CRT. Whereas 3-D CRT can be considered as a standard, IMRT is still evolving. Due to the increased interest of Member States to the modern application of radiotherapy the IAEA has received a number of requests for guidance coming from radiotherapy departments that wish to upgrade their facilities to 3-D CRT and IMRT through Technical Cooperation programme. These requests are expected to increase

  18. Data of evolutionary structure change: 1ONAD-2D3PD [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3PD 1ONA 2D3P D D ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT.../entryChain> 1ONA D 1ONAD

  19. Data of evolutionary structure change: 1ONAD-2D3RB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3RB 1ONA 2D3R D B ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...pdbID>1ONA D 1ONAD TRVSSNGSPQG

  20. Polyethylene glycol 3350 based colon cleaning protocol: 2 d vs 4 d head to head comparison.

    Science.gov (United States)

    Elitsur, Rotem; Butcher, Lisa; Vicki, Lund; Elitsur, Yoram

    2013-04-16

    To compare between 2 and 4 d colon cleansing protocols. Children who were scheduled for colonoscopy procedure (2010-2012) for various medical reasons, were recruited from the pediatric gastroenterology clinic at Marshall University School of Medicine, Huntington, WV. Exclusion criteria were patients who were allergic to the medication used in the protocols [polyethylene glycol (PEG) 3350, Bisacodyl], or children with metabolic or renal diseases. Two PEG 3350 protocols for 4 d (A) and 2 d (B) were prescribed as previously described. A questionnaire describing the volume of PEG consumed, clinical data, and side effects were recorded. Colon preparation was graded by two observers according to previously described method. Rate of adequate colon preparation. A total of 78 patients were considered for final calculation (group A: 40, group B: 38). Age and stool consistency at the last day was comparable in both groups, but the number of stools/day was significantly higher in group B (P = 0.001). Adequate colon preparation was reached in 57.5% (A) and 73.6% (B), respectively (P = 0.206). Side effects were minimal and comparable in both groups. There was no difference in children's age, stool characteristics, or side effects between the children with adequate or inadequate colon preparation. Correlation and agreement between observers was excellent (Pearson correlation = 0.972, kappa = 1.0). No difference between protocols was observed, but the 2 d protocol was superior for its shorter time. Direct comparison between different colon cleansing protocols is crucial in order to establish the "gold standard" protocol for children.

  1. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors

    Science.gov (United States)

    Barzegar, Abolfazl; Jafari Mousavi, Somaye; Hamidi, Hossein; Sadeghi, Mehdi

    2017-09-01

    The protease of human immunodeficiency virus1 (HIV-PR) is an essential enzyme for antiviral treatments. Carbon nanostructures of fullerene derivatives, have nanoscale dimension with a diameter comparable to the diameter of the active site of HIV-PR which would in turn inhibit HIV. In this research, two dimensional quantitative structure-activity relationships (2D-QSAR) of fullerene derivatives against HIV-PR activity were employed as a powerful tool for elucidation the relationships between structure and experimental observations. QSAR study of 49 fullerene derivatives was performed by employing stepwise-MLR, GAPLS-MLR, and PCA-MLR models for variable (descriptor) selection and model construction. QSAR models were obtained with higher ability to predict the activity of the fullerene derivatives against HIV-PR by a correlation coefficient (R2training) of 0.942, 0.89, and 0.87 as well as R2test values of 0.791, 0.67and 0.674 for stepwise-MLR, GAPLS-MLR, and PCA -MLR models, respectively. Leave-one-out cross-validated correlation coefficient (R2CV) and Y-randomization methods confirmed the models robustness. The descriptors indicated that the HIV-PR inhibition depends on the van der Waals volumes, polarizability, bond order between two atoms and electronegativities of fullerenes derivatives. 2D-QSAR simulation without needing receptor's active site geometry, resulted in useful descriptors mainly denoting ;C60 backbone-functional groups; and ;C60 functional groups; properties. Both properties in fullerene refer to the ligand fitness and improvement van der Waals interactions with HIV-PR active site. Therefore, the QSAR models can be used in the search for novel HIV-PR inhibitors based on fullerene derivatives.

  2. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    Science.gov (United States)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  3. Targeted 2D/3D registration using ray normalization and a hybrid optimizer

    International Nuclear Information System (INIS)

    Dey, Joyoni; Napel, Sandy

    2006-01-01

    X-ray images are often used to guide minimally invasive procedures in interventional radiology. The use of a preoperatively obtained 3D volume can enhance the visualization needed for guiding catheters and other surgical devices. However, for intraoperative usefulness, the 3D dataset needs to be registered to the 2D x-ray images of the patient. We investigated the effect of targeting subvolumes of interest in the 3D datasets and registering the projections with C-arm x-ray images. We developed an intensity-based 2D/3D rigid-body registration using a Monte Carlo-based hybrid algorithm as the optimizer, using a single view for registration. Pattern intensity (PI) and mutual information (MI) were two metrics tested. We used normalization of the rays to address the problems due to truncation in 3D necessary for targeting. We tested the algorithm on a C-arm x-ray image of a pig's head and a 3D dataset reconstructed from multiple views of the C-arm. PI and MI were comparable in performance. For two subvolumes starting with a set of initial poses from +/-15 mm in x, from +/-3 mm (random), in y and z and +/-4 deg in the three angles, the robustness was 94% for PI and 91% for MI, with accuracy of 2.4 mm (PI) and 2.6 mm (MI), using the hybrid algorithm. The hybrid optimizer, when compared with a standard Powell's direction set method, increased the robustness from 59% (Powell) to 94% (hybrid). Another set of 50 random initial conditions from [+/-20] mm in x,y,z and [+/-10] deg in the three angles, yielded robustness of 84% (hybrid) versus 38% (Powell) using PI as metric, with accuracies 2.1 mm (hybrid) versus 2.0 mm (Powell)

  4. Evaluation of the entropy consistent euler flux on 1D and 2D test problems

    Science.gov (United States)

    Roslan, Nur Khairunnisa Hanisah; Ismail, Farzad

    2012-06-01

    Perhaps most CFD simulations may yield good predictions of pressure and velocity when compared to experimental data. Unfortunately, these results will most likely not adhere to the second law of thermodynamics hence comprising the authenticity of predicted data. Currently, the test of a good CFD code is to check how much entropy is generated in a smooth flow and hope that the numerical entropy produced is of the correct sign when a shock is encountered. Herein, a shock capturing code written in C++ based on a recent entropy consistent Euler flux is developed to simulate 1D and 2D flows. Unlike other finite volume schemes in commercial CFD code, this entropy consistent flux (EC) function precisely satisfies the discrete second law of thermodynamics. This EC flux has an entropy-conserved part, preserving entropy for smooth flows and a numerical diffusion part that will accurately produce the proper amount of entropy, consistent with the second law. Several numerical simulations of the entropy consistent flux have been tested on two dimensional test cases. The first case is a Mach 3 flow over a forward facing step. The second case is a flow over a NACA 0012 airfoil while the third case is a hypersonic flow passing over a 2D cylinder. Local flow quantities such as velocity and pressure are analyzed and then compared with mainly the Roe flux. The results herein show that the EC flux does not capture the unphysical rarefaction shock unlike the Roe-flux and does not easily succumb to the carbuncle phenomenon. In addition, the EC flux maintains good performance in cases where the Roe flux is known to be superior.

  5. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.

    Science.gov (United States)

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2008-04-01

    The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

  6. New 2D adaptive mesh refinement algorithm based on conservative finite-differences with staggered grid

    Science.gov (United States)

    Gerya, T.; Duretz, T.; May, D. A.

    2012-04-01

    We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same

  7. Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences.

    Science.gov (United States)

    Gloger, Oliver; Bülow, Robin; Tönnies, Klaus; Völzke, Henry

    2017-11-24

    We aimed to develop the first fully automated 3D gallbladder segmentation approach to perform volumetric analysis in volume data of magnetic resonance (MR) cholangiopancreatography (MRCP) sequences. Volumetric gallbladder analysis is performed for non-contrast-enhanced and secretin-enhanced MRCP sequences. Native and secretin-enhanced MRCP volume data were produced with a 1.5-T MR system. Images of coronal maximum intensity projections (MIP) are used to automatically compute 2D characteristic shape features of the gallbladder in the MIP images. A gallbladder shape space is generated to derive 3D gallbladder shape features, which are then combined with 2D gallbladder shape features in a support vector machine approach to detect gallbladder regions in MRCP volume data. A region-based level set approach is used for fine segmentation. Volumetric analysis is performed for both sequences to calculate gallbladder volume differences between both sequences. The approach presented achieves segmentation results with mean Dice coefficients of 0.917 in non-contrast-enhanced sequences and 0.904 in secretin-enhanced sequences. This is the first approach developed to detect and segment gallbladders in MR-based volume data automatically in both sequences. It can be used to perform gallbladder volume determination in epidemiological studies and to detect abnormal gallbladder volumes or shapes. The positive volume differences between both sequences may indicate the quantity of the pancreatobiliary reflux.

  8. CD4+ NKG2D+ T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-01-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417

  9. CD4(+) NKG2D(+) T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice.

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-03-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. © 2013 John Wiley & Sons Ltd.

  10. Magnetometry and transport studies of 2D systems

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.P

    1999-06-01

    This thesis presents measurements of the magnetisation and magnetotransport of two-dimensional electron and hole systems, at low temperatures and high magnetic fields. When the magnetic field is swept through a resistivity minimum associated with the quantum Hall effect, circulating 'eddy' currents are induced in the 2D electron system. These currents may be large enough to cause breakdown of the quantum Hall effect. Breakdown has been examined in high-mobility electron and hole samples, by recording the magnetic moments associated with these eddy currents, and the results have been compared to breakdown models. Eddy currents observed at fractional quantum Hall effect (FQHE) filling factors have been used to determine the FQHE gap energy. The measured value is far closer to theoretical predictions than the results of conventional measurements: this is thought to be because breakdown arises through inter-Landau-level tunnelling, which is local on the scale of the disorder. A series of quantum Hall effect measurements have been performed on a low density sample. Depopulating the Landau levels by applying an increasing gate voltage allowed the numbers of localised and extended states to be counted at each magnetic field. The number of extended states may the be plotted as a function of reducing magnetic field. In certain circumstances, the number of extended states drops to zero before the magnetic field is zero: the system is entirely localised for a range of small fields, consistent with the theories of levitation of extended states. The idea that each Landau level contains only one extended state is also challenged. Measurements of the equilibrium magnetisation of a 2DES may be used to give insight into the shape of the electron density of states. Results are presented of the de Haas - van Alphen oscillations of a very high mobility, low density sample, in which magnetisation oscillations are observed at odd as well as even integer filling factors. The

  11. Creating virtual electrodes with 2D current steering

    Science.gov (United States)

    Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.

    2018-06-01

    Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p  >  0.05 neural spread: one-way ANOVA on Ranks, p  >  0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number

  12. Solar radio emissions: 2D full PIC simulations

    Science.gov (United States)

    Pierre, H.; Sgattoni, A.; Briand, C.; Amiranoff, F.; Riconda, C.

    2016-12-01

    Solar radio emissions are electromagnetic waves observed at the local plasma frequency and/or at twice the plasma frequency. To describe their origin a multi-stage model has been proposed by Ginzburg & Zhelezniakov (1958) and further developed by several authors, which consider a succession of non-linear three-wave interaction processes. Electron beams accelerated by solar flares travel in the interplanetary plasma and provide the free energy for the development of plasma instabilities. The model describes how part of the free energy of these beams can be transformed in a succession of plasma waves and eventually into electromagnetic waves. Following the work of Thurgood & Tsiklauri (2015) we performed several 2D Particle In Cell simulations. The simulations follow the entire set of processes from the electron beam propagation in the background plasma to the generation of the electromagnetic waves in particular the 2ωp emission, including the excitation of the low frequency waves. As suggested by Thurgood & Tsiklauri (2015) it is possible to identify regimes where the radiation emission can be directly linked to the electron beams. Our attention was devoted to estimate the conversion efficiency from electron kinetic energy to the em energy, and the growth rate of the several processes which can be identified. We studied the emission angles of the 2ωpradiation and compared them with the theoretical predictions of Willes et. al. (1995). We also show the role played by some numerical parameters i.e. the size and shape of the simulation box. This work is the first step to prepare laser-plasma experiments. V. L. Ginzburg, V. V. Zhelezniakov On the Possible Mechanisms of Sporadic Solar Radio Emission (Radiation in an Isotropic Plasma) Soviet Astronomy, Vol. 2, p.653 (1958) J. O. Thurgood and D. Tsiklauri Self-consistent particle-in-cell simulations of funda- mental and harmonic plasma radio emission mechanisms. Astronomy & Astrophysics 584, A83 (2015). A. Willes, P

  13. Regularity of the 3D Navier-Stokes equations with viewpoint of 2D flow

    Science.gov (United States)

    Bae, Hyeong-Ohk

    2018-04-01

    The regularity of 2D Navier-Stokes flow is well known. In this article we study the relationship of 3D and 2D flow, and the regularity of the 3D Naiver-Stokes equations with viewpoint of 2D equations. We consider the problem in the Cartesian and in the cylindrical coordinates.

  14. 3-D Imaging using Row–Column-Addressed 2-D Arrays with a Diverging Lens: Phantom Study

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Beers, Christopher

    2017-01-01

    A double-curved diverging lens over a flat row– column-addressed (RCA) 2-D array can extend its inherent rectilinear 3-D imaging field-of-view (FOV) to a curvilinear volume region, which is necessary for applications such as abdominal and cardiac imaging. A concave lens with radius of 12.7 mm...... was manufactured using RTV664 silicone. The diverging properties of the lens were evaluated based on measurements on several phantoms. The measured 6 dB FOV in contact with a material similar to human soft tissue was less than 15% different from the theoretical predictions, i.e., a curvilinear FOV of 32...

  15. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Wei, Jun; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-01-01

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  16. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    International Nuclear Information System (INIS)

    Kraloua, B.; Hennad, A.

    2008-01-01

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  17. A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets

    Directory of Open Access Journals (Sweden)

    M. C. Schwartz

    2017-08-01

    Full Text Available This paper addresses two straightforward questions. First, how similar are the statistics of cirrus particle size distribution (PSD datasets collected using the Two-Dimensional Stereo (2D-S probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS 2-D Cloud (2DC and 2-D Precipitation (2DP probes? Second, how similar are the datasets when shatter-correcting post-processing is applied to the 2DC datasets? To answer these questions, a database of measured and parameterized cirrus PSDs – constructed from measurements taken during the Small Particles in Cirrus (SPARTICUS; Mid-latitude Airborne Cirrus Properties Experiment (MACPEX; and Tropical Composition, Cloud, and Climate Coupling (TC4 flight campaigns – is used.Bulk cloud quantities are computed from the 2D-S database in three ways: first, directly from the 2D-S data; second, by applying the 2D-S data to ice PSD parameterizations developed using sets of cirrus measurements collected using the older PMS probes; and third, by applying the 2D-S data to a similar parameterization developed using the 2D-S data themselves. This is done so that measurements of the same cloud volumes by parameterized versions of the 2DC and 2D-S can be compared with one another. It is thereby seen – given the same cloud field and given the same assumptions concerning ice crystal cross-sectional area, density, and radar cross section – that the parameterized 2D-S and the parameterized 2DC predict similar distributions of inferred shortwave extinction coefficient, ice water content, and 94 GHz radar reflectivity. However, the parameterization of the 2DC based on uncorrected data predicts a statistically significantly higher number of total ice crystals and a larger ratio of small ice crystals to large ice crystals than does the parameterized 2D-S. The 2DC parameterization based on shatter-corrected data also predicts statistically different numbers of ice crystals than does the

  18. A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets

    Science.gov (United States)

    Schwartz, M. Christian

    2017-08-01

    This paper addresses two straightforward questions. First, how similar are the statistics of cirrus particle size distribution (PSD) datasets collected using the Two-Dimensional Stereo (2D-S) probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS) 2-D Cloud (2DC) and 2-D Precipitation (2DP) probes? Second, how similar are the datasets when shatter-correcting post-processing is applied to the 2DC datasets? To answer these questions, a database of measured and parameterized cirrus PSDs - constructed from measurements taken during the Small Particles in Cirrus (SPARTICUS); Mid-latitude Airborne Cirrus Properties Experiment (MACPEX); and Tropical Composition, Cloud, and Climate Coupling (TC4) flight campaigns - is used.Bulk cloud quantities are computed from the 2D-S database in three ways: first, directly from the 2D-S data; second, by applying the 2D-S data to ice PSD parameterizations developed using sets of cirrus measurements collected using the older PMS probes; and third, by applying the 2D-S data to a similar parameterization developed using the 2D-S data themselves. This is done so that measurements of the same cloud volumes by parameterized versions of the 2DC and 2D-S can be compared with one another. It is thereby seen - given the same cloud field and given the same assumptions concerning ice crystal cross-sectional area, density, and radar cross section - that the parameterized 2D-S and the parameterized 2DC predict similar distributions of inferred shortwave extinction coefficient, ice water content, and 94 GHz radar reflectivity. However, the parameterization of the 2DC based on uncorrected data predicts a statistically significantly higher number of total ice crystals and a larger ratio of small ice crystals to large ice crystals than does the parameterized 2D-S. The 2DC parameterization based on shatter-corrected data also predicts statistically different numbers of ice crystals than does the parameterized 2D-S, but the

  19. From 2D-sprite to skeletal animation : boosting the performance of a mobile application

    OpenAIRE

    Lehtonen, Jenni

    2016-01-01

    This thesis focuses on 2D animation in video games and programs for creating the animations. The purpose was to find the most efficient way to make 2D animations for games, and the best program for making them. At first, the thesis presents different 2D animation methods which have been used in games during their history. For this purpose, the animation methods and a number of 2D games from different decades were researched. The thesis then presents different 2D animation programs and...

  20. Confidentiality of 2D Code using Infrared with Cell-level Error Correction

    Directory of Open Access Journals (Sweden)

    Nobuyuki Teraura

    2013-03-01

    Full Text Available Optical information media printed on paper use printing materials to absorb visible light. There is a 2D code, which may be encrypted but also can possibly be copied. Hence, we envisage an information medium that cannot possibly be copied and thereby offers high security. At the surface, the normal 2D code is printed. The inner layers consist of 2D codes printed using a variety of materials, which absorb certain distinct wavelengths, to form a multilayered 2D code. Information can be distributed among the 2D codes forming the inner layers of the multiplex. Additionally, error correction at cell level can be introduced.

  1. Computational methods for 2D materials: discovery, property characterization, and application design.

    Science.gov (United States)

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  2. Nucleation front instability in two-dimensional (2D) nanosheet gadolinium-doped cerium oxide (CGO) formation

    DEFF Research Database (Denmark)

    Marani, Debora; Moraes, Leticia Poras Reis; Gualandris, Fabrizio

    2018-01-01

    Herein we report for the first time the synthesis of ceramic–organic three-dimensional (3D) layered gadolinium-doped cerium oxide (Ce1−XGdXO2−δ, CGO) and its exfoliation into two-dimensional (2D) nanosheets. We adopt a water-based synthetic route via a homogenous precipitation approach at low...... temperatures (10–80 °C). The reaction conditions are tuned to investigate the effects of thermal energy on the final morphology. A low temperature (40 °C) morphological transition from nanoparticles (1D) to two-dimensional (2D) nanosheets is observed and associated with a low thermal energy transition of ca. 2.......6 kJ mol−1. For the 3D-layered material, exfoliation experiments are conducted in water/ethanol solutions. Systems at volume fractions ranging from 0.15 to 0.35 are demonstrated to promote under ultrasonic treatment the delamination into 2D nanosheets....

  3. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach

    International Nuclear Information System (INIS)

    Ramazani, A.; Mukherjee, K.; Quade, H.; Prahl, U.; Bleck, W.

    2013-01-01

    A microstructure-based approach by means of representative volume elements (RVEs) is employed to evaluate the flow curve of DP steels using virtual tensile tests. Microstructures with different martensite fractions and morphologies are studied in two- and three-dimensional approaches. Micro sections of DP microstructures with various amounts of martensite have been converted to 2D RVEs, while 3D RVEs were constructed statistically with randomly distributed phases. A dislocation-based model is used to describe the flow curve of each ferrite and martensite phase separately as a function of carbon partitioning and microstructural features. Numerical tensile tests of RVE were carried out using the ABAQUS/Standard code to predict the flow behaviour of DP steels. It is observed that 2D plane strain modelling gives an underpredicted flow curve for DP steels, while the 3D modelling gives a quantitatively reasonable description of flow curve in comparison to the experimental data. In this work, a von Mises stress correlation factor σ 3D /σ 2D has been identified to compare the predicted flow curves of these two dimensionalities showing a third order polynomial relation with respect to martensite fraction and a second order polynomial relation with respect to equivalent plastic strain, respectively. The quantification of this polynomial correlation factor is performed based on laboratory-annealed DP600 chemistry with varying martensite content and it is validated for industrially produced DP qualities with various chemistry, strength level and martensite fraction.

  4. 2D Bayesian automated tilted-ring fitting of disc galaxies in large H I galaxy surveys: 2DBAT

    Science.gov (United States)

    Oh, Se-Heon; Staveley-Smith, Lister; Spekkens, Kristine; Kamphuis, Peter; Koribalski, Bärbel S.

    2018-01-01

    We present a novel algorithm based on a Bayesian method for 2D tilted-ring analysis of disc galaxy velocity fields. Compared to the conventional algorithms based on a chi-squared minimization procedure, this new Bayesian-based algorithm suffers less from local minima of the model parameters even with highly multimodal posterior distributions. Moreover, the Bayesian analysis, implemented via Markov Chain Monte Carlo sampling, only requires broad ranges of posterior distributions of the parameters, which makes the fitting procedure fully automated. This feature will be essential when performing kinematic analysis on the large number of resolved galaxies expected to be detected in neutral hydrogen (H I) surveys with the Square Kilometre Array and its pathfinders. The so-called 2D Bayesian Automated Tilted-ring fitter (2DBAT) implements Bayesian fits of 2D tilted-ring models in order to derive rotation curves of galaxies. We explore 2DBAT performance on (a) artificial H I data cubes built based on representative rotation curves of intermediate-mass and massive spiral galaxies, and (b) Australia Telescope Compact Array H I data from the Local Volume H I Survey. We find that 2DBAT works best for well-resolved galaxies with intermediate inclinations (20° < i < 70°), complementing 3D techniques better suited to modelling inclined galaxies.

  5. A low temperature investigation of the gas-phase N(2D) + NO reaction. Towards a viable source of N(2D) atoms for kinetic studies in astrochemistry.

    Science.gov (United States)

    Nuñez-Reyes, Dianailys; Hickson, Kevin M

    2018-06-18

    The gas-phase reaction of metastable atomic nitrogen N(2D) with nitric oxide has been investigated over the 296-50 K temperature range using a supersonic flow reactor. As N(2D) could not be produced photolytically in the present work, these excited state atoms were generated instead through the C(3P) + NO → N(2D) + CO reaction while C(3P) atoms were created in situ by the 266 nm pulsed laser photolysis of CBr4 precursor molecules. The kinetics of N(2D) atoms were followed on-resonance by vacuum ultraviolet laser induced fluorescence at 116.7 nm. The measured rate constants for the N(2D) + NO reaction are in excellent agreement with most of the earlier work at room temperature and represent the only available kinetic data for this process below 296 K. The rate constants are seen to increase slightly as the temperature falls to 100 K with a more substantial increase at even lower temperature; a finding which is not reproduced by theoretical work. The prospects for using this chemical source of N(2D) atoms in future studies of a wide range of N(2D) atom reactions are discussed.

  6. Comparison Between Digital and Synthetic 2D Mammograms in Breast Density Interpretation.

    Science.gov (United States)

    Alshafeiy, Taghreed I; Wadih, Antoine; Nicholson, Brandi T; Rochman, Carrie M; Peppard, Heather R; Patrie, James T; Harvey, Jennifer A

    2017-07-01

    The purpose of this study was to compare assessments of breast density on synthetic 2D images as compared with digital 2D mammograms. This retrospective study included consecutive women undergoing screening with digital 2D mammography and tomosynthesis during May 2015 with a negative or benign outcome. In separate reading sessions, three radiologists with 5-25 years of clinical experience and 1 year of experience with synthetic 2D mammography read digital 2D and synthetic 2D images and assigned breast density categories according to the 5th edition of BI-RADS. Inter- and intrareader agreement was assessed for each BI-RADS density assessment and combined dense and nondense categories using percent agreement and Cohen kappa coefficient for consensus and all reads. A total of 309 patients met study inclusion criteria. Agreement between consensus BI-RADS density categories assigned for digital and synthetic 2D mammography was 80.3% (95% CI, 75.4-84.5%) with κ = 0.73 (95% CI, 0.66-0.79). For combined dense and nondense categories, agreement reached 91.9% (95% CI, 88.2-94.7%). For consensus readings, similar numbers of patients were shifted between nondense and dense categories (11 and 14, respectively) with the synthetic 2D compared with digital 2D mammography. Interreader differences were apparent; assignment to dense categories was greater with digital 2D mammography for reader 1 (odds ratio [OR], 1.26; p = 0.002), the same for reader 2 (OR, 0.91; p = 0.262), and greater with synthetic 2D mammography for reader 3 (OR, 0.86; p = 0.033). Overall, synthetic 2D mammography is comparable with digital 2D mammography in assessment of breast density, though there is some variability by reader. Practices can readily adopt synthetic 2D mammography without concern that it will affect density assessment and subsequent recommendations for supplemental screening.

  7. Prediction of DVH parameter changes due to setup errors for breast cancer treatment based on 2D portal dosimetry

    International Nuclear Information System (INIS)

    Nijsten, S. M. J. J. G.; Elmpt, W. J. C. van; Mijnheer, B. J.; Minken, A. W. H.; Persoon, L. C. G. G.; Lambin, P.; Dekker, A. L. A. J.

    2009-01-01

    Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V 90 and V 95 larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our

  8. Visual grading of 2D and 3D functional MRI compared with image-based descriptive measures

    Energy Technology Data Exchange (ETDEWEB)

    Ragnehed, Mattias [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences, Division of Radiological Sciences/Radiology, Faculty of Health Sciences, Linkoeping (Sweden); Leinhard, Olof Dahlqvist; Pihlsgaard, Johan; Lundberg, Peter [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Division of Radiological Sciences, Radiation Physics, IMH, Linkoeping (Sweden); Wirell, Staffan [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Soekjer, Hannibal; Faegerstam, Patrik [Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Jiang, Bo [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Smedby, Oerjan; Engstroem, Maria [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden)

    2010-03-15

    A prerequisite for successful clinical use of functional magnetic resonance imaging (fMRI) is the selection of an appropriate imaging sequence. The aim of this study was to compare 2D and 3D fMRI sequences using different image quality assessment methods. Descriptive image measures, such as activation volume and temporal signal-to-noise ratio (TSNR), were compared with results from visual grading characteristics (VGC) analysis of the fMRI results. Significant differences in activation volume and TSNR were not directly reflected by differences in VGC scores. The results suggest that better performance on descriptive image measures is not always an indicator of improved diagnostic quality of the fMRI results. In addition to descriptive image measures, it is important to include measures of diagnostic quality when comparing different fMRI data acquisition methods. (orig.)

  9. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    Science.gov (United States)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing

  10. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  11. "3D fusion" echocardiography improves 3D left ventricular assessment: comparison with 2D contrast echocardiography.

    Science.gov (United States)

    Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul

    2015-02-01

    Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.

  12. Collective properties of 2D magnetoexcitons interacting with plasmons

    International Nuclear Information System (INIS)

    Dumanov, Evghenij

    2009-01-01

    shown that in the electron-hole system exists a possibility of different virtual quasi-energy complexes with different free energies and rates damping formation, which in fact depend on their free energies. We have found out such equations of motion for operators of density fluctuations which permits obtain plasma oscillations without damping in our approximation for the Green function. The intra-Landau level excitations of the two-dimensional electron-hole liquid are characterized by two branches of the energy spectrum. One of them is the acoustical plasmon type branch with the linear dispersion law in the range of small wave vectors and monotonically increasing with saturation behavior at higher wave vectors. The second branch of the elementary excitations is an optical-plasmon branch with quadratic dispersion law at small wave vectors with a roton-type dispersion at intermediary wave vectors and with a similar behavior as the acoustical branch at higher wave vectors. It is essential that there exist density oscillations within the LLL, even though 2D system is under the influence of strong perpendicular magnetic field and quasi-particles have no kinetic energy. Energy spectrum of collective elementary excitations in the ground state of the system, representing the Bose-Einstein condensation of magnetoexcitons, consists of excitonic energy branches accompanied by plasmon satellites and pure plasma branches. It is important to note, that concentration corrections of excitonic branches of spectrum appear in the form of plasmon satellites and actually the system has exciton-plasmon branches and pure plasma branches of spectrum. Excitonic component of exciton-plasmon branches has an energy gap defined by the value of chemical potential, which in conditions of metastable dielectric liquid phase has negative values, depending on the filling factor. An energy gap in the spectrum results from the energy required for detachment of magnetic exciton from the composition of

  13. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Daniel, E-mail: daniel.simmons@nottingham.ac.uk; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications. - Graphical abstract:.

  14. Extracting a mix parameter from 2D radiography of variable density flow

    Science.gov (United States)

    Kurien, Susan; Doss, Forrest; Livescu, Daniel

    2017-11-01

    A methodology is presented for extracting quantities related to the statistical description of the mixing state from the 2D radiographic image of a flow. X-ray attenuation through a target flow is given by the Beer-Lambert law which exponentially damps the incident beam intensity by a factor proportional to the density, opacity and thickness of the target. By making reasonable assumptions for the mean density, opacity and effective thickness of the target flow, we estimate the contribution of density fluctuations to the attenuation. The fluctuations thus inferred may be used to form the correlation of density and specific-volume, averaged across the thickness of the flow in the direction of the beam. This correlation function, denoted by b in RANS modeling, quantifies turbulent mixing in variable density flows. The scheme is tested using DNS data computed for variable-density buoyancy-driven mixing. We quantify the deficits in the extracted value of b due to target thickness, Atwood number, and modeled noise in the incident beam. This analysis corroborates the proposed scheme to infer the mix parameter from thin targets at moderate to low Atwood numbers. The scheme is then applied to an image of counter-shear flow obtained from experiments at the National Ignition Facility. US Department of Energy.

  15. Correlation of ultrasound estimated placental volume and umbilical cord blood volume in term pregnancy.

    Science.gov (United States)

    Pannopnut, Papinwit; Kitporntheranunt, Maethaphan; Paritakul, Panwara; Kongsomboon, Kittipong

    2015-01-01

    To investigate the correlation between ultrasound measured placental volume and collected umbilical cord blood (UCB) volume in term pregnancy. An observational cross-sectional study of term singleton pregnant women in the labor ward at Maha Chakri Sirindhorn Medical Center was conducted. Placental thickness, height, and width were measured using two-dimensional (2D) ultrasound and calculated for placental volume using the volumetric mathematic model. After the delivery of the baby, UCB was collected and measured for its volume immediately. Then, birth weight, placental weight, and the actual placental volume were analyzed. The Pearson's correlation was used to determine the correlation between each two variables. A total of 35 pregnant women were eligible for the study. The mean and standard deviation of estimated placental volume and actual placental volume were 534±180 mL and 575±118 mL, respectively. The median UCB volume was 140 mL (range 98-220 mL). The UCB volume did not have a statistically significant correlation with the estimated placental volume (correlation coefficient 0.15; p=0.37). However, the UCB volume was significantly correlated with the actual placental volume (correlation coefficient 0.62; pcorrelation coefficient 0.38; p=0.02). The estimated placental volume by 2D ultrasound was not significantly correlated with the UCB volume. Further studies to establish the correlation between the UCB volume and the estimated placental volume using other types of placental imaging may be needed.

  16. Rapid fusion of 2D X-ray fluoroscopy with 3D multislice CT for image-guided electrophysiology procedures

    Science.gov (United States)

    Zagorchev, Lyubomir; Manzke, Robert; Cury, Ricardo; Reddy, Vivek Y.; Chan, Raymond C.

    2007-03-01

    Interventional cardiac electrophysiology (EP) procedures are typically performed under X-ray fluoroscopy for visualizing catheters and EP devices relative to other highly-attenuating structures such as the thoracic spine and ribs. These projections do not however contain information about soft-tissue anatomy and there is a recognized need for fusion of conventional fluoroscopy with pre-operatively acquired cardiac multislice computed tomography (MSCT) volumes. Rapid 2D-3D integration in this application would allow for real-time visualization of all catheters present within the thorax in relation to the cardiovascular anatomy visible in MSCT. We present a method for rapid fusion of 2D X-ray fluoroscopy with 3DMSCT that can facilitate EP mapping and interventional procedures by reducing the need for intra-operative contrast injections to visualize heart chambers and specialized systems to track catheters within the cardiovascular anatomy. We use hardware-accelerated ray-casting to compute digitally reconstructed radiographs (DRRs) from the MSCT volume and iteratively optimize the rigid-body pose of the volumetric data to maximize the similarity between the MSCT-derived DRR and the intra-operative X-ray projection data.

  17. Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy.

    Science.gov (United States)

    Prajapati, Kushal; Perez, Cynthia; Rojas, Lourdes Beatriz Plaza; Burke, Brianna; Guevara-Patino, Jose A

    2018-02-05

    Natural killer group 2 member D (NKG2D) is a type II transmembrane receptor. NKG2D is present on NK cells in both mice and humans, whereas it is constitutively expressed on CD8 + T cells in humans but only expressed upon T-cell activation in mice. NKG2D is a promiscuous receptor that recognizes stress-induced surface ligands. In NK cells, NKG2D signaling is sufficient to unleash the killing response; in CD8 + T cells, this requires concurrent activation of the T-cell receptor (TCR). In this case, the function of NKG2D is to authenticate the recognition of a stressed target and enhance TCR signaling. CD28 has been established as an archetype provider of costimulation during T-cell priming. It has become apparent, however, that signals from other costimulatory receptors, such as NKG2D, are required for optimal T-cell function outside the priming phase. This review will focus on the similarities and differences between NKG2D and CD28; less well-described characteristics of NKG2D, such as the potential role of NKG2D in CD8 + T-cell memory formation, cancer immunity and autoimmunity; and the opportunities for targeting NKG2D in immunotherapy.Cellular and Molecular Immunology advance online publication, 5 February 2018; doi:10.1038/cmi.2017.161.

  18. Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications.

    Science.gov (United States)

    Feng, Feng; Wu, Junchi; Wu, Changzheng; Xie, Yi

    2015-02-11

    Recent years have witnessed great developments in inorganic 2D nanomaterials for their unique dimensional confinement and diverse electronic energy bands. Precisely regulating their intrinsic electrical behaviors would bring superior electrical conductivity, rendering 2D nanomaterials ideal candidates for active materials in electrochemical applications when combined with the excellent reaction activity from the inorganic lattice. This Concept focuses on highly conducting inorganic 2D nanomaterials, including intrinsic metallic 2D nanomaterials and artificial highly conductive 2D nanomaterials. The intrinsic metallicity of 2D nanomaterials is derived from their closely packed atomic structures that ensure maximum overlapping of electron orbitals, while artificial highly conductive 2D nanomaterials could be achieved by designed methodologies of surface modification, intralayer ion doping, and lattice strain, in which atomic-scale structural modulation plays a vital role in realizing conducting behaviors. Benefiting from fast electron transfer, high reaction activity, as well as large surface areas arising from the 2D inorganic lattice, highly conducting 2D nanomaterials open up prospects for enhancing performance in electrochemical catalysis and electrochemical capacitors. Conductive 2D inorganic nanomaterials promise higher efficiency for electrochemical applications of energy conversion and storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage

    Science.gov (United States)

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki

    2014-01-01

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010

  20. Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    Directory of Open Access Journals (Sweden)

    Jimenez-Perez Miriam I

    2012-02-01

    Full Text Available Abstract Background Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity. Results We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT. Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells. Conclusions Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells.

  1. Lessons from Cuba for Global Precision Medicine: CYP2D6 Genotype Is Not a Robust Predictor of CYP2D6 Ultrarapid Metabolism.

    Science.gov (United States)

    Dorado, Pedro; González, Idilio; Naranjo, María Eugenia G; de Andrés, Fernando; Peñas-Lledó, Eva María; Calzadilla, Luis Ramón; LLerena, Adrián

    2017-01-01

    A long-standing question and dilemma in precision medicine is whether and to what extent genotyping or phenotyping drug metabolizing enzymes such as CYP2D6 can be used in real-life global clinical and societal settings. Although in an ideal world using both genotype and phenotype biomarkers are desirable, this is not always feasible for economic and practical reasons. Moreover, an additional barrier for clinical implementation of precision medicine is the lack of correlation between genotype and phenotype, considering that most of the current methods include only genotyping. Thus, the present study evaluated, using dextromethorphan as a phenotyping probe, the relationship between CYP2D6 phenotype and CYP2D6 genotype, especially for the ultrarapid metabolizer (UM) phenotype. We report in this study, to the best of our knowledge, the first comparative clinical pharmacogenomics study in a Cuban population sample (N = 174 healthy volunteers) and show that the CYP2D6 genotype is not a robust predictor of the CYP2D6 ultrarapid metabolizer (mUM) status in Cubans. Importantly, the ultrarapid CYP2D6 phenotype can result in a host of health outcomes, such as drug resistance associated with subtherapeutic drug concentrations, overexposure to active drug metabolites, and altered sensitivity to certain human diseases by virtue of altered metabolism of endogenous substrates of CYP2D6. Hence, phenotyping tests for CYP2D6 UMs appear to be a particular necessity for precision medicine in the Cuban population. Finally, in consideration of ethical and inclusive representation in global science, we recommend further precision medicine biomarker research and funding in support of neglected or understudied populations worldwide.

  2. Metal-Free 2D/2D Phosphorene/g-C3 N4 Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Ran, Jingrun; Guo, Weiwei; Wang, Hailong; Zhu, Bicheng; Yu, Jiaguo; Qiao, Shi-Zhang

    2018-04-30

    The generation of green hydrogen (H 2 ) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H 2 production is a highly promising strategy for solar-to-H 2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal-free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal-free phosphorene/graphitic carbon nitride (g-C 3 N 4 ) is fabricated. The phosphorene/g-C 3 N 4 nanocomposite shows an enhanced visible-light photocatalytic H 2 production activity of 571 µmol h -1 g -1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron-based X-ray absorption near-edge structure, and theoretical calculations. This work not only reports a new metal-free phosphorene/g-C 3 N 4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Export of earthquake-triggered landslides in active mountain ranges: insights from 2D morphodynamic modelling.

    Science.gov (United States)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe

    2016-04-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment

  4. Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects

    Science.gov (United States)

    Zhao, Yipeng; Zhang, Zhe; Ouyang, Gang

    2018-04-01

    Band engineering of 2D transition-metal dichalcogenides (2D-TMDs) is a vital task for their applications in electronic and optoelectronic nanodevices. In this study, we investigate the joint effect from size and composition contributions on the band shift of 2D-TMD alloys in terms of atomic bond relaxation consideration. A theoretical model is proposed to pursue the underlying mechanism, which can connect the band offset with the atomic bonding identities in the 2D-TMD alloys. We reveal that the bandgap of 2D-TMD alloys presents a bowing shape owing to the size-dependent interaction among atoms and shows blue shift or red shift due to different intermixing of components. It is demonstrated that both size and composition can be performed as the useful methods to modulate the band shift, which suggests an effective way to realize the desirable properties of 2D-TMD alloys.

  5. Multiple-canister flow and transport code in 2-dimensional space. MCFT2D: user's manual

    International Nuclear Information System (INIS)

    Lim, Doo-Hyun

    2006-03-01

    A two-dimensional numerical code, MCFT2D (Multiple-Canister Flow and Transport code in 2-Dimensional space), has been developed for groundwater flow and radionuclide transport analyses in a water-saturated high-level radioactive waste (HLW) repository with multiple canisters. A multiple-canister configuration and a non-uniform flow field of the host rock are incorporated in the MCFT2D code. Effects of heterogeneous flow field of the host rock on migration of nuclides can be investigated using MCFT2D. The MCFT2D enables to take into account the various degrees of the dependency of canister configuration for nuclide migration in a water-saturated HLW repository, while the dependency was assumed to be either independent or perfectly dependent in previous studies. This report presents features of the MCFT2D code, numerical simulation using MCFT2D code, and graphical representation of the numerical results. (author)

  6. The SH2D2A gene and susceptibility to multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, A.R.; Smestad, C.; Lie, B.A.

    2008-01-01

    We previously reported an association between the SH2D2A gene encoding TSAd and multiple sclerosis (MS). Here a total of 2128 Nordic MS patients and 2004 controls were genotyped for the SH2D2A promoter GA repeat polymorphism and rs926103 encoding a serine to asparagine substitution at amino acid...... that the SH2D2A gene may contribute to susceptibility to MS Udgivelsesdato: 2008/7/15...

  7. Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradien

    OpenAIRE

    Mahmudah, Dewi Erla; Naf'an, Muhammad Zidny

    2017-01-01

    In this paper we focus on solution of 2D Poisson equation numerically. 2D Poisson equation is a partial differential equation of second order elliptical type. This equation is a particular form or non-homogeneous form of the Laplace equation. The solution of 2D Poisson equation is performed numerically using Gauss Seidel method and Conjugate Gradient method. The result is the value using Gauss Seidel method and Conjugate Gradient method is same. But, consider the iteration process, the conver...

  8. 2D:4D digit ratio predicts delay of gratification in preschoolers.

    Directory of Open Access Journals (Sweden)

    Sergio Da Silva

    Full Text Available We replicate the Stanford marshmallow experiment with a sample of 141 preschoolers and find a correlation between lack of self-control and 2D:4D digit ratio. Children with low 2D:4D digit ratio are less likely to delay gratification. Low 2D:4D digit ratio may indicate high fetal testosterone. If this hypothesis is true, our finding means high fetal testosterone children are less likely to delay gratification.

  9. The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension

    Science.gov (United States)

    Rayanto, Yudi Hari; Rusmawan, Putu Ngurah

    2016-01-01

    The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…

  10. Comparison of 2D and 3D Vision Gaze with Simultaneous Measurements of Accommodation and Convergence

    OpenAIRE

    Hori, Hiroki; Shiomi, Tomoki; Hasegawa, Satoshi; Takada, Hiroki; Omori, Masako; Matsuura, Yasuyuki; Ishio, Hiromu; Miyao, Masaru

    2014-01-01

    Accommodation and convergence were measured simultaneously while subjects viewed 2D and 3D images. The aim was to compare fixation distances between accommodation and convergence in young subjects while they viewed 2D and 3D images. Measurements were made three times, 40 seconds each, using 2D and 3D images. The result suggests that ocular functions during viewing of 3D images are very similar to those during natural viewing. Previously established and widely used theories, such that within a...

  11. Dose-response relationships of propranolol in Chinese subjects with different CYP2D6 genotypes.

    Science.gov (United States)

    Huang, Chin-Wei; Lai, Ming-Liang; Lin, Min-Shung; Lee, Hwei-Ling; Huang, Jin-Ding

    2003-01-01

    For clinical treatment, a smaller dosage of propranolol is often used among Chinese people. Propranolol is metabolized by polymorphic CYP2D6. We postulate that the lower propranolol dosage in Chinese is due to a slower CYP2D6 metabolism. A majority of the Chinese population has the nucleotide T188 in the CYP2D6 gene (CYP2D6*10) instead of C188 (CYP2D6*1), which most white subjects have. Chinese subjects of different CYP2D6*1/CYP2D6*10 genotypes have been shown to have different propranolol pharmacokinetic characteristics. In this study, we compared the beta-blockade effects of propranolol in Chinese subjects of the two different CYP2D6 genotypes. Based on the nucleotide 188 genotypes, two groups of 10 healthy subjects each were selected. Each subject was given a 10-, 20-, or 40-mg rac-propranolol tablet three times a day for 3 days in 3 different phases. Heart rate and blood pressure were measured in both supine and upright positions. The heart rate was also determined during treadmill exercise test. Plasma concentration of S-propranolol at 2 hrs after the last-dose administration was measured. Despite therebeing higher S-propranolol plasma concentration in CYP2D6*10 subjects than in CYP2D6*1 subjects at 10- and 20-mg dosage, the dose-response relationship was not significantly different in these subjects. Our results do not support the hypothesis that CYP2D6*1/CYP2D6*10 polymorphism may affect the beta-blockade effect of propranolol in Chinese subjects.

  12. 2D seismic tomography of Somma- Vesuvius. Description of the experiment and preliminary results.

    Directory of Open Access Journals (Sweden)

    G. Milano

    1996-06-01

    Full Text Available A multidisciplinary project for the investigation of Mt. Vesuvius Structure was started in 1993. The core of the project is represented by a high resolution seismic tomography study by using controlled and natura1 sources. The main research objective is to investigate the feeding system of the vo1cano and to retrieve details of the upper crustal structure in the area. A first 2D using seismic experiment was performed in May 1994, with the aim of studing the feasibility of lIsing tomographic techniques for exploring the vo1cano interiors. Particularly, this experiment was designed to obtain information on the optimal sources-receivers configuration and on the depth extension of the volume sampled by shot-generated seismic waves. 66 three-component seismic stations and 16 single-component analogue instruments were installed by several Italian and French groups to record signals generated by three on-land, underground explosions. Sources and geophones were deployed along a 30-km NW-SE profile passing through the volcano crater. Receivers were placed at an average spacing of 250 m in the middle of the recording line and at 500 m outside. The arrival time data base was complemented by first P and S readings of micro earthquakes which occurred in the recent past within the volcano. The first arrival data set was preliminary used to determine the shallow structure of the volcano by applying Thurber's (1983 tomographic inversion technique. This analysis shows evidence for a high-velocity body which extends vertically from about 400 m below the crater down to at least 3000 m and for a shallow 300-500 m thick low-velocity cover which borders the edifice. Data from the distant shot show evidence for arrivals of deep reflected/converted phases and provide information on the deeper structure under the volcano. The results from the interpretation of 2D data are used for planning a 3D tomographic survey which will be cauied out in 1996.

  13. Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT.

    Science.gov (United States)

    Yu, Lifeng; Chen, Baiyu; Kofler, James M; Favazza, Christopher P; Leng, Shuai; Kupinski, Matthew A; McCollough, Cynthia H

    2017-08-01

    Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e., multislice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multislice reading, and to determine if the 2D model observer still correlate well with human observer performance in multislice reading. A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at five dose levels (CTDI vol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multislice channelized Hotelling observer (CHO_MS), which integrates multislice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multislice viewing performance and the two CHO models. Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode [Pearson product-moment correlation coefficient R = 0.972, 95% confidence

  14. Correlation between a 2D Channelized Hotelling Observer and Human Observers in a Low-contrast Detection Task with Multi-slice Reading in CT

    Science.gov (United States)

    Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.

    2017-01-01

    Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0

  15. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  16. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material

    Science.gov (United States)

    Xing, Wenyu; Chen, Yangyang; Odenthal, Patrick M.; Zhang, Xiao; Yuan, Wei; Su, Tang; Song, Qi; Wang, Tianyu; Zhong, Jiangnan; Jia, Shuang; Xie, X. C.; Li, Yan; Han, Wei

    2017-06-01

    The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nano-electronic devices. Since the first isolation of graphene, a Dirac material, a large family of new functional 2D materials have been discovered and characterized, including insulating 2D boron nitride, semiconducting 2D transition metal dichalcogenides and black phosphorus, and superconducting 2D bismuth strontium calcium copper oxide, molybdenum disulphide and niobium selenide, etc. Here, we report the identification of ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few nanometers, which provides a very important piece to the van der Waals structures consisting of various 2D materials. We further demonstrate the giant modulation of the channel resistance of 2D CGT devices via electric field effect. Our results illustrate the gate voltage tunability of 2D CGT and the potential of CGT, a ferromagnetic 2D material, as a new functional quantum material for applications in future nanoelectronics and spintronics.

  17. The Relationship Between Digit Ratio (2D:4D) and Sexual Orientation in Men from China.

    Science.gov (United States)

    Xu, Yin; Zheng, Yong

    2016-04-01

    We examined the relationship between 2D:4D digit ratio and sexual orientation in men from China and analyzed the influences of the components used to assess sexual orientation and the criteria used to classify individuals as homosexual on this relationship. A total of 309 male and 110 female participants took part in a web-based survey. Our results showed that heterosexual men had a significantly lower 2D:4D than heterosexual women and exclusively homosexual men had a significantly higher left 2D:4D than heterosexual men whereas only exclusively homosexual men had a significantly higher right 2D:4D than heterosexual men when sexual orientation was assessed via sexual attraction. The left 2D:4D showed a significant positive correlation with sexual identity, sexual attraction, and sexual behavior, and the right 2D:4D showed a significant positive correlation with sexual attraction. The effect sizes for differences in 2D:4D between homosexual and heterosexual men varied according to criteria used to classify individuals as homosexual and sexual orientation components; the more stringent the criteria (scores closer to the homosexual category), the larger the effect sizes; further, sexual attraction yielded the largest effect size. There were no significant effects of age and latitude on Chinese 2D:4D. This study contributes to the current understanding of the relationship between 2D:4D and male sexual orientation.

  18. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    Science.gov (United States)

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the

  19. Noise suppression system of OCDMA with spectral/spatial 2D hybrid code

    Science.gov (United States)

    Matem, Rima; Aljunid, S. A.; Junita, M. N.; Rashidi, C. B. M.; Shihab Aqrab, Israa

    2017-11-01

    In this paper, we propose a novel 2D spectral/spatial hybrid code based on 1D ZCC and 1D MD where the both present a zero cross correlation property analyzed and the influence of the noise of optical as Phase Induced Intensity Noise (PIIN), shot and thermal noise. This new code is shown effectively to mitigate the PIIN and suppresses MAI. Using 2D ZCC/MD code the performance of the system can be improved in term of as well as to support more simultaneous users compared of the 2D FCC/MDW and 2D DPDC codes.

  20. Noise suppression system of OCDMA with spectral/spatial 2D hybrid code

    Directory of Open Access Journals (Sweden)

    Matem Rima

    2017-01-01

    Full Text Available In this paper, we propose a novel 2D spectral/spatial hybrid code based on 1D ZCC and 1D MD where the both present a zero cross correlation property analyzed and the influence of the noise of optical as Phase Induced Intensity Noise (PIIN, shot and thermal noise. This new code is shown effectively to mitigate the PIIN and suppresses MAI. Using 2D ZCC/MD code the performance of the system can be improved in term of as well as to support more simultaneous users compared of the 2D FCC/MDW and 2D DPDC codes.