Linear metric and temperature fluctuations of a charged plasma in a primordial magnetic field
Haba, Z
2015-01-01
We discuss tensor metric perturbations in a magnetic field around the homogeneous Juttner equilibrium of massless particles in an expanding universe. We solve the Liouville equation and derive the energy-momentum tensor up to linear terms in the metric and in the magnetic field.The term linear in the magnetic field is different from zero if the total charge of the primordial plasma is non-zero. We obtain an analytic formula for temperature fluctuations treating the tensor metric perturbations and the magnetic field as independent random variables. Assuming a cutoff on large momenta of the magnetic spectral function we show that the presence of the magnetic field can discriminate only low multipoles in the multipole expansion of temperature fluctuations. In such a case the term linear in the magnetic field can be more important than the quadratic one (corresponding to the fluctuations of the pure magnetic field).
Energy-momentum conservation in pre-metric electrodynamics with magnetic charges
Energy Technology Data Exchange (ETDEWEB)
Kaiser, Gerald [Center for Signals and Waves, Austin, TX (United States)
2004-07-16
A necessary and sufficient condition for energy-momentum conservation is proved within a topological, pre-metric approach to classical electrodynamics including magnetic as well as electric charges. The extended Lorentz force, consisting of mutual actions by F {approx} (E, B) on the electric current and G {approx} (H, D) on the magnetic current, can be derived from an energy-momentum 'potential' if and only if the constitutive relation G = G(F) satisfies a certain vanishing condition. The electric-magnetic reciprocity introduced by Hehl and Obukhov is shown to define a one-parameter family * {sub z} of complex structures on the product space of 2-form pairs (F, G), independent of any spacetime metric, which reduces to the product of two Hodge star operators once a Lorentzian metric is introduced. In contrast to a recent claim made in the literature, it does not define a complex structure on the space of 2-forms itself.
Material screening metrics and optimal performance of an active magnetic regenerator
Niknia, I.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Teyber, R.; Rowe, A.
2017-02-01
A variety of metrics to rank the magnetocaloric materials can be found in the literature, but a quantitative assessment showing their efficacy has not been reported. A numerical model of an active magnetic regenerator cycle is used to assess the predictive ability of a set of material metrics. The performance of eight cases of known magnetocaloric material (including first order MnFeP1-xAsx and second order materials Gd, GdDy, Tb), and 15 cases of hypothetical materials are considered. Using a fixed regenerator matrix geometry, magnetic field, and flow waveforms, the maximum exergetic cooling power of each material is identified. Several material screening metrics such as relative cooling power (RCP) are tested and a linear correlation is found between maximum RCP and the maximum exergetic cooling power. The sensitivity of performance to variations in the hot side and cold side temperatures from the conditions giving maximum exergetic power are determined.
T-Duality in $\\sigma$ Models with Kaluza-Klein Metric as Electric-Magnetic Duality
Jafarizadeh, M A
1999-01-01
It is shown that the T-duality in \\sigma-model with Kaluza-Klein metric, without or with a torsion term, can be interpreted as electric-magnetic duality for some of their solitonic solutions. Actually Buscher's duality transformation interchanges the topological and Noether charges.
Cotangent bundle quantization: Entangling of metric and magnetic field
Karasev, M V
2005-01-01
For manifolds $\\M$ of noncompact type endowed with an affine connection (for example, the Levi-Civita connection) and a closed 2-form (magnetic field) we define a Hilbert algebra structure in the space $L^2(\\TB)$ and construct an irreducible representation of this algebra in $L^2(\\M)$. This algebra is automatically extended to polynomial in momenta functions and distributions. Under some natural conditions this algebra is unique. The non-commutative product over $\\TB$ is given by an explicit integral formula. This product is exact (not formal) and is expressed in invariant geometrical terms. Our analysis reveals this product has a front, which is described in terms of geodesic triangles in $\\M$. The quantization of $\\delta$-functions induces a family of symplectic reflections in $\\TB$ and generates a magneto-geodesic connection $\\Gamma$ on $T^*\\M$. This symplectic connection entangles, on the phase space level, the original affine structure on $\\M$ and the magnetic field. In the classical approximation, the $...
Energy Technology Data Exchange (ETDEWEB)
Yost, M
1999-07-01
Epidemiological studies on extremely low frequency (ELF) magnetic fields have widely used personal or area sampling to evaluate exposures based on the time-weighted averaged flux density magnitude (TWA field). Relatively few studies have evaluated 'alternative' exposure metrics related to field characteristics such as temporal variability, frequency harmonics, vector polarisation, spatial orientation, static fields, high frequency transients, or induced electric fields. These field attributes fall into three major categories: (1) temporal characteristics of exposure intensity and timing, (2) frequency-domain characteristics, (3) spatial characteristics. The first category describes the magnitude and time history of exposure, including the TWA field metric, which most often is the focus of MF exposure assessment. The second category depicts the waveform characteristic (harmonic content), which has been relatively poorly described in most studies. The third category describes the field vector's time-space orientation and relation to static fields. Some examples of 'alternative metrics' that have been proposed based on biological mechanisms and potential measurement techniques are examined. The limited correlation of some alternative metrics with the TWA field metric in available data suggests that substantial exposure misclassification could occur if measurement protocols only focus on average field levels. (author)
Energy Technology Data Exchange (ETDEWEB)
Romero, Jesus Martin [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)
2015-05-15
The aim of this work is to apply Weitzeboeck Induced Matter Theory (WIMT) to Gullstraend-Painleve and Reissner-Nordstroem metrics in the framework of WIMT. This is a newly developed method that extends Induced Matter Theory from a curved 5D manifold using the Weitzeboeck's geometry, using the fact that the Riemann-Weitzenboeck curvature tensor is always null. We obtain the presence of currents whose interpretation can lead to the presence of stable gravito-magnetic monopoles. (orig.)
Magnetic Properties of Metric Noise Storms Associated with Coronal Mass Ejections
Institute of Scientific and Technical Information of China (English)
Ya-Yuan Wen; Jing-Xiu Wang; Yu-Zong Zhang
2007-01-01
Using Nan(c)ay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events are selected: the events of 2000 July 14,2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.
Aslan, Kerim; Gunbey, Hediye Pinar; Tomak, Leman; Ozmen, Zafer; Incesu, Lutfi
2017-07-13
The aim of this study was to investigate whether the use of combination quantitative metrics (mamillopontine distance [MPD], pontomesencephalic angle, and mesencephalon anterior-posterior/medial-lateral diameter ratios) with qualitative signs (dural enhancement, subdural collections/hematoma, venous engorgement, pituitary gland enlargements, and tonsillar herniations) provides a more accurate diagnosis of intracranial hypotension (IH). The quantitative metrics and qualitative signs of 34 patients and 34 control subjects were assessed by 2 independent observers. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of quantitative metrics and qualitative signs, and for the diagnosis of IH, optimum cutoff values of quantitative metrics were found with ROC analysis. Combined ROC curve was measured for the quantitative metrics, and qualitative signs combinations in determining diagnostic accuracy and sensitivity, specificity, and positive and negative predictive values were found, and the best model combination was formed. Whereas MPD and pontomesencephalic angle were significantly lower in patients with IH when compared with the control group (P quantitative metrics, the highest individual distinctive power was MPD with AUC of 0.947. The best accuracy in the diagnosis of IH was obtained by combination of dural enhancement, venous engorgement, and MPD with an AUC of 1.00. This study showed that the combined use of dural enhancement, venous engorgement, and MPD had diagnostic accuracy of 100 % for the diagnosis of IH. Therefore, a more accurate IH diagnosis can be provided with combination of quantitative metrics with qualitative signs.
Photometric magnetic-activity metrics tested with the Sun: application to Kepler M dwarfs
Directory of Open Access Journals (Sweden)
Mathur Savita
2014-05-01
Full Text Available The Kepler mission has been providing high-quality photometric data leading to many breakthroughs in the exoplanet search and in stellar physics. Stellar magnetic activity results from the interaction between rotation, convection, and magnetic field. Constraining these processes is important if we want to better understand stellar magnetic activity. Using the Sun, we want to test a magnetic activity index based on the analysis of the photometric response and then apply it to a sample of M dwarfs observed by Kepler. We estimate a global stellar magnetic activity index by measuring the standard deviation of the whole time series, Sph. Because stellar variability can be related to convection, pulsations or magnetism, we need to ensure that this index mostly takes into account magnetic effects. We define another stellar magnetic activity index as the average of the standard deviation of shorter subseries which lengths are determined by the rotation period of the star. This way we can ensure that the measured photometric variability is related to starspots crossing the visible stellar disc. This new index combined with a time-frequency analysis based on the Morlet wavelets allows us to determine the existence of magnetic activity cycles. We measure magnetic indexes for the Sun and for 34 M dwarfs observed by Kepler. As expected, we obtain that the sample of M dwarfs studied in this work is much more active than the Sun. Moreover, we find a small correlation between the rotation period and the magnetic index. Finally, by combining a time-frequency analysis with phase diagrams, we discover the presence of long-lived features suggesting the existence of active longitudes on the surface of these stars.
Kroon, Cindy D.
2007-01-01
Created for a Metric Day activity, Metric Madness is a board game for two to four players. Students review and practice metric vocabulary, measurement, and calculations by playing the game. Playing time is approximately twenty to thirty minutes.
Magnetically Driven Accretion Flows in the Kerr Metric IV: Dynamical Properties of the Inner Disk
Krolik, J H; Hirose, S; Krolik, Julian H.; Hawley, John F.; Hirose, Shigenobu
2004-01-01
This paper continues the analysis of a set of general relativistic 3D MHD simulations of accreting tori in the Kerr metric with different black hole spins. We focus on bound matter inside the initial pressure maximum, where the time-averaged motion of gas is inward and an accretion disk forms. We use the flows of mass, angular momentum, and energy in order to understand dynamics in this region. The sharp reduction in accretion rate with increasing black hole spin reported in Paper I of this series is explained by a strongly spin-dependent outward flux of angular momentum conveyed electromagnetically; when a/M > 0.9, this flux can be comparable to the inward angular momentum flux carried by the matter. In all cases, there is outward electromagnetic angular momentum flux throughout the flow; in other words, contrary to the assertions of traditional accretion disk theory, there is in general no "stress edge", no surface within which the stress is zero. The retardation of accretion in the inner disk by electromag...
Sparks, Rachel; Bloch, B. Nicolas; Feleppa, Ernest; Barratt, Dean; Madabhushi, Anant
2013-01-01
In this work, we present a novel, automated, registration method to fuse magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) diagnosis. Up to 40% of CaP lesions appea...
Sparks, Rachel; Bloch, B. Nicholas; Feleppa, Ernest; Barratt, Dean; Madabhushi, Anant
2013-03-01
In this work, we present a novel, automated, registration method to fuse magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) diagnosis. Up to 40% of CaP lesions appear isoechoic on TRUS, hence TRUS-guided biopsy cannot reliably target CaP lesions and is associated with a high false negative rate. MRI is better able to distinguish CaP from benign prostatic tissue, but requires special equipment and training. MRI-TRUS fusion, whereby MRI is acquired pre-operatively and aligned to TRUS during the biopsy procedure, allows for information from both modalities to be used to help guide the biopsy. The use of MRI and TRUS in combination to guide biopsy at least doubles the yield of positive biopsies. Previous work on MRI-TRUS fusion has involved aligning manually determined fiducials or prostate surfaces to achieve image registration. The accuracy of these methods is dependent on the reader's ability to determine fiducials or prostate surfaces with minimal error, which is a difficult and time-consuming task. Our novel, fully automated MRI-TRUS fusion method represents a significant advance over the current state-of-the-art because it does not require manual intervention after TRUS acquisition. All necessary preprocessing steps (i.e. delineation of the prostate on MRI) can be performed offline prior to the biopsy procedure. We evaluated our method on seven patient studies, with B-mode TRUS and a 1.5 T surface coil MRI. Our method has a root mean square error (RMSE) for expertly selected fiducials (consisting of the urethra, calcifications, and the centroids of CaP nodules) of 3.39 +/- 0.85 mm.
Sharp, P. M.; D'Amico, I.
2016-02-01
We consider a model system of two electrons confined in a two-dimensional harmonic oscillator potential, with the electrons interacting via an α / r2 potential, and subject to a magnetic field applied perpendicular to the plane of confinement. Our results show that variations in the strength of the electron-electron interaction generate a "band structure" in ground state metric spaces, which shares many characteristics with those generated as a result of varying the confinement potential. In particular, the metric spaces for wavefunctions, particle densities, and paramagnetic current densities all exhibit distinct "bands" and "gaps". The behavior of the polar angle of the bands also shares traits with that obtained by varying the confinement potential, but the behavior of the arc lengths of the bands on the metric space spheres can be seen to be different for the two cases and opposite for a large range of angular momentum values. The findings here and in Refs. [1,2] demonstrate that the "band structure" that arises in ground state metric spaces when a magnetic field is applied is a robust feature.
Klauder, J R
1998-01-01
Canonical quantization may be approached from several different starting points. The usual approaches involve promotion of c-numbers to q-numbers, or path integral constructs, each of which generally succeeds only in Cartesian coordinates. All quantization schemes that lead to Hilbert space vectors and Weyl operators---even those that eschew Cartesian coordinates---implicitly contain a metric on a flat phase space. This feature is demonstrated by studying the classical and quantum ``aggregations'', namely, the set of all facts and properties resident in all classical and quantum theories, respectively. Metrical quantization is an approach that elevates the flat phase space metric inherent in any canonical quantization to the level of a postulate. Far from being an unwanted structure, the flat phase space metric carries essential physical information. It is shown how the metric, when employed within a continuous-time regularization scheme, gives rise to an unambiguous quantization procedure that automatically ...
Energy Technology Data Exchange (ETDEWEB)
Romero, Jesús Martín, E-mail: jesusromero@conicet.gov.ar [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-05-08
The aim of this work is to apply Weitzeböck Induced Matter Theory (WIMT) to Gullstränd–Painlevé and Reissner–Nordström metrics in the framework of WIMT. This is a newly developed method that extends Induced Matter Theory from a curved 5D manifold using the Weitzeböck’s geometry, using the fact that the Riemann–Weitzenböck curvature tensor is always null. We obtain the presence of currents whose interpretation can lead to the presence of stable gravito-magnetic monopoles.
2012-11-01
As the old 'publish or perish' adage is brought into question, additional research-impact indices, known as altmetrics, are offering new evaluation alternatives. But such metrics may need to adjust to the evolution of science publishing.
Bellet, Aurelien; Sebban, Marc
2015-01-01
Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learnin
Quevedo, Hernando
2016-01-01
We review the problem of describing the gravitational field of compact stars in general relativity. We focus on the deviations from spherical symmetry which are expected to be due to rotation and to the natural deformations of mass distributions. We assume that the relativistic quadrupole moment takes into account these deviations, and consider the class of axisymmetric static and stationary quadrupolar metrics which satisfy Einstein's equations in empty space and in the presence of matter represented by a perfect fluid. We formulate the physical conditions that must be satisfied for a particular spacetime metric to describe the gravitational field of compact stars. We present a brief review of the main static and axisymmetric exact solutions of Einstein's vacuum equations, satisfying all the physical conditions. We discuss how to derive particular stationary and axisymmetric solutions with quadrupolar properties by using the solution generating techniques which correspond either to Lie symmetries and B\\"acku...
Phantom metrics with Killing spinors
Directory of Open Access Journals (Sweden)
W.A. Sabra
2015-11-01
Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.
Robertson, Stanley L
2016-01-01
Magnetic Eternally Collapsing Objects (MECO) have been proposed as the central engines of galactic black hole candidates (GBHC) and supermassive active galactic nuclei (AGN). Previous work has shown that their luminosities and spectral and timing characteristics are in good agreement with observations. These features and the formation of jets are generated primarily by the interactions of accretion disks with an intrinsically magnetic central MECO. The interaction of accretion disks with the anchored magnetic fields of the central objects permits a unified description of properties for GBHC, AGN, neutron stars in low mass x-ray binaries and dwarf novae systems. The previously published MECO models have been based on a quasistatic Schwarzschild metric of General Relativity; however, the only essential feature of this metric is its ability to produce extreme gravitational redshifts. For reasons discussed in this article, an alternative development based on a quasistatic exponential metric is considered here.
Energy Technology Data Exchange (ETDEWEB)
Ferrari, Frank, E-mail: frank.ferrari@ulb.ac.be [Service de Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, Campus de la Plaine, CP 231, 1050 Bruxelles (Belgium); Klevtsov, Semyon, E-mail: semyon.klevtsov@ulb.ac.be [Service de Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, Campus de la Plaine, CP 231, 1050 Bruxelles (Belgium); ITEP, B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation); Zelditch, Steve, E-mail: zelditch@math.northwestern.edu [Department of Mathematics, Northwestern University, Evanston, IL 60208 (United States)
2013-04-01
The purpose of this article is to propose a new method to define and calculate path integrals over metrics on a Kaehler manifold. The main idea is to use finite dimensional spaces of Bergman metrics, as an approximation to the full space of Kaehler metrics. We use the theory of large deviations to decide when a sequence of probability measures on the spaces of Bergman metrics tends to a limit measure on the space of all Kaehler metrics. Several examples are considered.
NASA science publications have used the metric system of measurement since 1970. Although NASA has maintained a metric use policy since 1979, practical constraints have restricted actual use of metric units. In 1988, an amendment to the Metric Conversion Act of 1975 required the Federal Government to adopt the metric system except where impractical. In response to Public Law 100-418 and Executive Order 12770, NASA revised its metric use policy and developed this Metric Transition Plan. NASA's goal is to use the metric system for program development and functional support activities to the greatest practical extent by the end of 1995. The introduction of the metric system into new flight programs will determine the pace of the metric transition. Transition of institutional capabilities and support functions will be phased to enable use of the metric system in flight program development and operations. Externally oriented elements of this plan will introduce and actively support use of the metric system in education, public information, and small business programs. The plan also establishes a procedure for evaluating and approving waivers and exceptions to the required use of the metric system for new programs. Coordination with other Federal agencies and departments (through the Interagency Council on Metric Policy) and industry (directly and through professional societies and interest groups) will identify sources of external support and minimize duplication of effort.
Daza, Maicol A Ochoa
2011-01-01
We introduce and develop the theory of metric sheaves. A metric sheaf $\\A$ is defined on a topological space $X$ such that each fiber is a metric model. We describe the construction of the generic model as the quotient space of the sheaf through an appropriate filter. Semantics in this model is completely controlled and understood by the forcing rules in the sheaf.
Chistyakov, Vyacheslav
2015-01-01
Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...
Metric diffusion along foliations
Walczak, Szymon M
2017-01-01
Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.
Enterprise Sustainment Metrics
The Air Force sustainment enterprise does not have metrics that . . . adequately measure key sustainment parameters, according to the 2011 National...standardized and do not contribute to the overall assessment of the sustainment enterprise . This paper explores the development of a single metric...is not feasible. To answer the question does the sustainment enterprise provide cost-effective readiness for a weapon system, a suite of metrics is
-Metric Space: A Generalization
Directory of Open Access Journals (Sweden)
Farshid Khojasteh
2013-01-01
Full Text Available We introduce the notion of -metric as a generalization of a metric by replacing the triangle inequality with a more generalized inequality. We investigate the topology of the spaces induced by a -metric and present some essential properties of it. Further, we give characterization of well-known fixed point theorems, such as the Banach and Caristi types in the context of such spaces.
Prognostic Performance Metrics
National Aeronautics and Space Administration — This chapter presents several performance metrics for offline evaluation of prognostics algorithms. A brief overview of different methods employed for performance...
Topics in Metric Approximation
Leeb, William Edward
This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.
Directory of Open Access Journals (Sweden)
Nakasho Kazuhisa
2016-09-01
Full Text Available In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness, sequential compactness, and totally boundedness with completeness in metric spaces.
Surveillance Metrics Sensitivity Study
Energy Technology Data Exchange (ETDEWEB)
Bierbaum, R; Hamada, M; Robertson, A
2011-11-01
In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.
Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.
Designed to meet the job-related metric measurement needs of students interested in transportation, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational terminology,…
Metrics for Food Distribution.
Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.
Designed to meet the job-related metric measurement needs of students interested in food distribution, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…
Metric Education Evaluation Package.
Kansky, Bob; And Others
This document was developed out of a need for a complete, carefully designed set of evaluation instruments and procedures that might be applied in metric inservice programs across the nation. Components of this package were prepared in such a way as to permit local adaptation to the evaluation of a broad spectrum of metric education activities.…
Computational visual distinctness metric
Martínez-Baena, J.; Toet, A.; Fdez-Vidal, X.R.; Garrido, A.; Rodríguez-Sánchez, R.
1998-01-01
A new computational visual distinctness metric based on principles of the early human visual system is presented. The metric is applied to quantify (1) the visual distinctness of targets in complex natural scenes and (2) the perceptual differences between compressed and uncompressed images. The new
Institute of Scientific and Technical Information of China (English)
ZHAOZhen-gang
2005-01-01
We have constructed the positive definite metric matrixes for the bounded domains of Rn and proved an inequality which is about the Jacobi matrix of a harmonic mapping on a bounded domain of Rn and the metric matrix of the same bounded domain.
Privacy Metrics and Boundaries
L-F. Pau (Louis-François)
2005-01-01
textabstractThis paper aims at defining a set of privacy metrics (quantitative and qualitative) in the case of the relation between a privacy protector ,and an information gatherer .The aims with such metrics are: -to allow to assess and compare different user scenarios and their differences; for ex
Dirac equation and the Melvin metric
Energy Technology Data Exchange (ETDEWEB)
Santos, L.C.N.; Barros, C.C. [Universidade Federal de Santa Catarina, Depto de Fisica-CFM, CP. 476, Florianopolis, SC (Brazil)
2016-10-15
A relativistic wave equation for spin 1/2 particles in the Melvin space-time, a space-time where the metric is determined by a magnetic field, is obtained. The energy levels for these particles are obtained as functions of the magnetic field and compared with the ones calculated with the Dirac equation in the flat Minkowski space-time. The numeric values for some magnetic fields of interest are shown. With these results, the effects of very intense magnetic fields on the energy levels, as intense as the ones expected to be produced in magnetars or in ultra-relativistic heavy-ion collisions, are investigated. (orig.)
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Blecher, David P
2012-01-01
The present paper is a sequel to our paper "Metric characterization of isometries and of unital operator spaces and systems". We characterize certain common objects in the theory of operator spaces (unitaries, unital operator spaces, operator systems, operator algebras, and so on), in terms which are purely linear-metric, by which we mean that they only use the vector space structure of the space and its matrix norms. In the last part we give some characterizations of operator algebras (which are not linear-metric in our strict sense described in the paper).
Characterization of Multiplicative Metric Completeness
Directory of Open Access Journals (Sweden)
Badshshah e Romer
2016-03-01
Full Text Available We established fixed point theorems in multiplicative metric spaces. The obtained results generalize Banach contraction principle in multiplicative metric spaces and also characterize completeness of the underlying multiplicative metric space.
Webb, Ted
1976-01-01
Describes the program to convert to the metric system all of General Motors Corporation products. Steps include establishing policy regarding employee-owned tools, setting up training plans, and making arrangements with suppliers. (MF)
Schweizer, B
2005-01-01
Topics include special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. 1983 edition, updated with 3 new appendixes. Includes 17 illustrations.
Carver, Gary P.
1994-05-01
The federal agencies are working with industry to ease adoption of the metric system. The goal is to help U.S. industry compete more successfully in the global marketplace, increase exports, and create new jobs. The strategy is to use federal procurement, financial assistance, and other business-related activities to encourage voluntary conversion. Based upon the positive experiences of firms and industries that have converted, federal agencies have concluded that metric use will yield long-term benefits that are beyond any one-time costs or inconveniences. It may be time for additional steps to move the Nation out of its dual-system comfort zone and continue to progress toward metrication. This report includes 'Metric Highlights in U.S. History'.
Mass Customization Measurements Metrics
DEFF Research Database (Denmark)
Nielsen, Kjeld; Brunø, Thomas Ditlev; Jørgensen, Kaj Asbjørn
2014-01-01
A recent survey has indicated that 17 % of companies have ceased mass customizing less than 1 year after initiating the effort. This paper presents measurement for a company’s mass customization performance, utilizing metrics within the three fundamental capabilities: robust process design, choice...... navigation, and solution space development. A mass customizer when assessing performance with these metrics can identify within which areas improvement would increase competitiveness the most and enable more efficient transition to mass customization....
Balvín, Radek
2013-01-01
With growing amount of data produced by users on social media the need of extraction of relevant data for marketing, research and other uses grows as well. The bachelor thesis named "Social media metrics" presents the issues of monitoring, measurement and metrics of social media. In the research part it also maps and captures the present Czech practice in measurement and monitoring of social media. I also rate the use of social media monitoring tools and usual methods of social media measurem...
Einstein Metrics on Complex Surfaces
Lebrun, C
1995-01-01
We consider compact complex surfaces with Hermitian metrics which are Einstein but not Kaehler. It is shown that the manifold must be CP2 blown up at 1,2, or 3 points, and the isometry group of the metric must contain a 2-torus. Thus the Page metric on CP2#(-CP2) is almost the only metric of this type.
Energy Technology Data Exchange (ETDEWEB)
Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott
2012-03-01
Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.
Isospectral Metrics on Projective Spaces
Rueckriemen, Ralf
2011-01-01
We construct isospectral non isometric metrics on real and complex projective space. We recall the construction using isometric torus actions by Carolyn Gordon in chapter 2. In chapter 3 we will recall some facts about complex projective space. In chapter 4 we build the isospectral metrics. Chapter 5 is devoted to the non isometry proof of the metrics built in chapter 4. In chapter 6 isospectral metrics on real projective space are derived from metrics on the sphere.
Vortices as degenerate metrics
Baptista, J M
2012-01-01
We note that the Bogomolny equation for abelian vortices is precisely the condition for invariance of the Hermitian-Einstein equation under a degenerate conformal transformation. This leads to a natural interpretation of vortices as degenerate hermitian metrics that satisfy a certain curvature equation. Using this viewpoint, we rephrase standard results about vortices and make some new observations. We note the existence of a conceptually simple, non-linear rule for superposing vortex solutions, and we describe the natural behaviour of the L^2-metric on the moduli space upon certain restrictions.
Uniformly Convex Metric Spaces
Kell Martin
2014-01-01
In this paper the theory of uniformly convex metric spaces is developed. These spaces exhibit a generalized convexity of the metric from a fixed point. Using a (nearly) uniform convexity property a simple proof of reflexivity is presented and a weak topology of such spaces is analyzed. This topology called co-convex topology agrees with the usualy weak topology in Banach spaces. An example of a $CAT(0)$-spaces with weak topology which is not Hausdorff is given. This answers questions raised b...
Sarkar, Sarben
2010-01-01
The role of Finsler-like metrics in situations where Lorentz symmetry breaking and also CPT violation are discussed. Various physical instances of such metrics both in quantum gravity and analogue systems are discussed. Both differences and similarities between the cases will be emphasised. In particular the medium of D-particles that arise in string theory will be examined. In this case the breaking of Lorentz invariance, at the level of quantum fluctuations, together with concomitant CPT in certain situations will be analysed. In particular it will be shown correlations for neutral meson pairs will be modified and a new contribution to baryogenesis will appear.
Metric-torsion preheating: cosmic dynamo mechanism?
de Andrade, L C Garcia
2014-01-01
Earlier Bassett et al [Phys Rev D 63 (2001) 023506] investigated the amplification of large scale magnetic fields during preheating and inflation in several different models. They argued that in the presence of conductivity resonance effect is weakened. From a dynamo equation in spacetimes endowed with torsion recently derived by Garcia de Andrade [Phys Lett B 711: 143 (2012)] it is shown that a in a universe with pure torsion in Minkowski spacetime the cosmological magnetic field is enhanced by ohmic or non-conductivity effect, which shows that the metric-torsion effects is worth while of being studied. In this paper we investigated the metric-torsion preheating perturbation, which leads to the seed cosmological magnetic field in the universe with torsion is of the order of $B_{seed}\\sim{10^{-37}Gauss}$ which is several orders of magnitude weaker than the decoupling value obtained from pure metric preheating of $10^{-15}Gauss$. Despite of the weakness of the magnetic field this seed field may seed the galact...
Tice, Bradley S.
Metrical phonology, a linguistic process of phonological stress assessment and diagrammatic simplification of sentence and word stress, is discussed as it is found in the English language with the intention that it may be used in second language instruction. Stress is defined by its physical and acoustical correlates, and the principles of…
1991-07-01
March 1979, pp. 121-128. Gorla, Narasimhaiah, Alan C. Benander, and Barbara A. Benander, "Debugging Effort Estimation Using Software Metrics", IEEE...Society, IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software, IEEE Std 982.2-1988, June 1989. Jones, Capers
Adaptive metric kernel regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
2000-01-01
regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...
Adaptive Metric Kernel Regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...
Institute of Scientific and Technical Information of China (English)
MA Zhi-Hao
2008-01-01
Metric of quantum states plays an important role in quantum information theory. In this letter, we find the deep connection between quantum logic theory and quantum information theory. Using the method of quantum logic, we can get a famous inequality in quantum information theory, and we answer a question raised by S. Gudder.
Engineering performance metrics
Delozier, R.; Snyder, N.
1993-03-01
Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.
Chen, Qing; Xue, Wei; Lin, Jian-Bin; Wei, Yong-Sheng; Yin, Zheng; Zeng, Ming-Hua; Kurmoo, Mohamedally; Chen, Xiao-Ming
2016-08-16
A series of highly connected metal-organic frameworks (MOFs), [Co8 (O)(OH)4 (H2 O)4 (ina)8 ](NO3 )2 ⋅2 C2 H5 OH⋅4 H2 O (1), [Co8 (O)(OH)4 (H2 O)4 (pba)8 ](NO3 )2 ⋅8 C2 H5 OH⋅28 H2 O (2), and [Co8 (O)(OH)4 (H2 O)4 (pbba)8 ](NO3 )2 ⋅guest (3), in which ina=isonicotinate, pba=4-pyridylbenzoate, and pbba=4-(pyridine-4-yl)phenylbenzoate, is reported. These MOFs contain a new secondary building unit (SBU), with a square Co4 (μ4 -O) central unit having the rare μ4 -O(2-) motif, which is decorated by the other four peripheral cobalt atoms through μ3 -OH in a windmill-like shape. This SBU holds 16 divergent connecting organic ligands, pyridyl-carboxylates, to form three different frameworks. The high porosity of desolvated 2 is shown by the efficient gas absorption of N2 , CO2 , CH4 , and H2 . In addition, 1 and 2 exhibit unusual canted antiferromagnetic behavior with spin-glass-like relaxation, with blocking temperatures that are fairly high, 20 K (1) and 10 K (2), for cobalt materials. The relationship between the metal clusters and linkers has been studied, in which the size and rotational degrees of freedom of the ligands are found to control the topology, gas sorption, and magnetic properties.
NPScape Metric GIS Data - Housing
National Park Service, Department of the Interior — NPScape housing metrics are calculated using outputs from the Spatially Explicit Regional Growth Model. Metric GIS datasets are produced seamlessly for the United...
Teukolsky, Saul A
2014-01-01
This review describes the events leading up to the discovery of the Kerr metric in 1963 and the enormous impact the discovery has had in the subsequent 50 years. The review discusses the Penrose process, the four laws of black hole mechanics, uniqueness of the solution, and the no-hair theorems. It also includes Kerr perturbation theory and its application to black hole stability and quasi-normal modes. The Kerr metric's importance in the astrophysics of quasars and accreting stellar-mass black hole systems is detailed. A theme of the review is the "miraculous" nature of the solution, both in describing in a simple analytic formula the most general rotating black hole, and in having unexpected mathematical properties that make many calculations tractable. Also included is a pedagogical derivation of the solution suitable for a first course in general relativity.
Metric adjusted skew information
DEFF Research Database (Denmark)
Hansen, Frank
2008-01-01
establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova-Chentsov functions describing the possible...... quantum statistics is a Bauer simplex and determine its extreme points. We determine a particularly simple skew information, the "¿-skew information," parametrized by a ¿ ¿ (0, 1], and show that the convex cone this family generates coincides with the set of all metric adjusted skew informations.......We extend the concept of Wigner-Yanase-Dyson skew information to something we call "metric adjusted skew information" (of a state with respect to a conserved observable). This "skew information" is intended to be a non-negative quantity bounded by the variance (of an observable in a state...
Directory of Open Access Journals (Sweden)
Linda Bennett
2013-07-01
Full Text Available Continuing purchase of AHSS resources is threatened more by library budget squeezes than that of STM resources. Librarians must justify all expenditure, but quantitative metrical analysis to assess the value to the institution of journals and specialized research databases for AHSS subjects can be inconclusive; often the number of recorded transactions is lower than for STM, as the resource may be relevant to a smaller number of users. This paper draws on a literature review and extensive primary research, including a survey of 570 librarians and academics across the Anglophone countries, findings from focus group meetings and the analysis of user behaviour at a UK university before and after the installation of the Summon discovery system. It concludes that providing a new approach to metrics can help to develop resources strategies that meet changing user needs; and that usage statistics can be complemented with supplementary ROI measures to make them more meaningful.
Learning Sequence Neighbourhood Metrics
Bayer, Justin; van der Smagt, Patrick
2011-01-01
Recurrent neural networks (RNNs) in combination with a pooling operator and the neighbourhood components analysis (NCA) objective function are able to detect the characterizing dynamics of sequences and embed them into a fixed-length vector space of arbitrary dimensionality. Subsequently, the resulting features are meaningful and can be used for visualization or nearest neighbour classification in linear time. This kind of metric learning for sequential data enables the use of algorithms tailored towards fixed length vector spaces such as R^n.
Directory of Open Access Journals (Sweden)
Todd Carpenter
2015-07-01
Full Text Available An important and timely plenary session at the 2015 UKSG Conference and Exhibition focused on the role of metrics in research assessment. The two excellent speakers had slightly divergent views.Todd Carpenter from NISO (National Information Standards Organization argued that altmetrics aren’t alt anymore and that downloads and other forms of digital interaction, including social media reference, reference tracking, personal library saving, and secondary linking activity now provide mainstream approaches to the assessment of scholarly impact. James Wilsdon is professor of science and democracy in the Science Policy Research Unit at the University of Sussex and is chair of the Independent Review of the Role of Metrics in Research Assessment commissioned by the Higher Education Funding Council in England (HEFCE. The outcome of this review will inform the work of HEFCE and the other UK higher education funding bodies as they prepare for the future of the Research Excellence Framework. He is more circumspect arguing that metrics cannot and should not be used as a substitute for informed judgement. This article provides a summary of both presentations.
Depperschmidt, Andrej; Pfaffelhuber, Peter
2011-01-01
A marked metric measure space (mmm-space) is a triple (X,r,mu), where (X,r) is a complete and separable metric space and mu is a probability measure on XxI for some Polish space I of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed I. It arises as state space in the construction of Markov processes which take values in random graphs, e.g. tree-valued dynamics describing randomly evolving genealogical structures in population models. We derive here the topological properties of the space of mmm-spaces needed to study convergence in distribution of random mmm-spaces. Extending the notion of the Gromov-weak topology introduced in (Greven, Pfaffelhuber and Winter, 2009), we define the marked Gromov-weak topology, which turns the set of mmm-spaces into a Polish space. We give a characterization of tightness for families of distributions of random mmm- spaces and identify a convergence determining algebra of functions, called polynomials.
Geometry of manifolds with area metric: Multi-metric backgrounds
Energy Technology Data Exchange (ETDEWEB)
Schuller, Frederic P. [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo N2L 2Y5 (Canada) and Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, Mexico D.F. 04510 (Mexico)]. E-mail: fschuller@perimeterinstitute.ca; Wohlfarth, Mattias N.R. [II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)]. E-mail: mattias.wohlfarth@desy.de
2006-07-24
We construct the differential geometry of smooth manifolds equipped with an algebraic curvature map acting as an area measure. Area metric geometry provides a spacetime structure suitable for the discussion of gauge theories and strings, and is considerably more general than Lorentzian geometry. Our construction of geometrically relevant objects, such as an area metric compatible connection and derived tensors, makes essential use of a decomposition theorem due to Gilkey, whereby we generate the area metric from a finite collection of metrics. Employing curvature invariants for multi-metric backgrounds we devise a class of gravity theories with inherently stringy character, and discuss gauge matter actions.
Some References on Metric Information.
National Bureau of Standards (DOC), Washington, DC.
This resource work lists metric information published by the U.S. Government and the American National Standards Institute. Also organizations marketing metric materials for education are given. A short table of conversions is included as is a listing of basic metric facts for everyday living. (LS)
Projectively related complex Finsler metrics
Aldea, Nicoleta
2011-01-01
In this paper we introduce in study the projectively related complex Finsler metrics. We prove the complex versions of the Rapcs\\'{a}k's theorem and characterize the weakly K\\"{a}hler and generalized Berwald projectively related complex Finsler metrics. The complex version of Hilbert's Fourth Problem is also pointed out. As an application, the projectiveness of a complex Randers metric is described.
A Unification of G-Metric, Partial Metric, and b-Metric Spaces
Directory of Open Access Journals (Sweden)
Nawab Hussain
2014-01-01
Full Text Available Using the concepts of G-metric, partial metric, and b-metric spaces, we define a new concept of generalized partial b-metric space. Topological and structural properties of the new space are investigated and certain fixed point theorems for contractive mappings in such spaces are obtained. Some examples are provided here to illustrate the usability of the obtained results.
Validation metrics for turbulent plasma transport
Holland, C.
2016-06-01
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.
Validation metrics for turbulent plasma transport
Energy Technology Data Exchange (ETDEWEB)
Holland, C., E-mail: chholland@ucsd.edu [Center for Energy Research, University of California, San Diego, La Jolla, California 92093-0417 (United States)
2016-06-15
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.
Degenerate pseudo-Riemannian metrics
Hervik, Sigbjorn; Yamamoto, Kei
2014-01-01
In this paper we study pseudo-Riemannian spaces with a degenerate curvature structure i.e. there exists a continuous family of metrics having identical polynomial curvature invariants. We approach this problem by utilising an idea coming from invariant theory. This involves the existence of a boost, the existence of this boost is assumed to extend to a neighbourhood. This approach proves to be very fruitful: It produces a class of metrics containing all known examples of degenerate metrics. To date, only Kundt and Walker metrics have been given, however, our study gives a plethora of examples showing that degenerate metrics extend beyond the Kundt and Walker examples. The approach also gives a useful criterion for a metric to be degenerate. Specifically, we use this to study the subclass of VSI and CSI metrics (i.e., spaces where polynomial curvature invariants are all vanishing or constants, respectively).
Spin Dynamics in Confined Magnetic Structures III
Hillebrands, Burkard
2006-01-01
This third volume of Spin Dynamics in Confined Magnetic Structures addresses central aspects of spin-dynamic phenomena, including recent new developments, on a tutorial level. Researchers will find a comprehensive compilation of the current work in the field. Introductory chapters help newcomers to understand the basic concepts. The more advanced chapters give the current state of the art of spin dynamic issues ranging from the femtosecond to the microsecond regime. This volume concentrates on new experimental techniques such as ferromagnetic-resonance-force microscopy and two-photon photoemission, as well as on aspects of precessional switching, spin-wave excitation, vortex dynamics, spin relaxation, domain-wall dynamics in nanowires and their applications to magnetic logic devices. An important chapter is devoted to the presently very hot subject of the spin-transfer torque, combining the physics of electronic transport and micromagnetics. The comprehensive presentation of these developments makes this volu...
2016-03-02
520, 2004. 16 [12] E.C. Hall and R.M. Willett. Online convex optimization in dynamic environ- ments. Selected Topics in Signal Processing, IEEE Journal...Conference on Machine Learning, pages 1160–1167. ACM, 2008. [25] Eric P Xing, Michael I Jordan, Stuart Russell, and Andrew Y Ng. Distance metric...whereBψ is any Bregman divergence and ηt is the learning rate parameter. From ( Hall & Willett, 2015) we have: Theorem 1. G` = max θ∈Θ,`∈L ‖∇f(θ)‖ φmax = 1
Metrics for Multiagent Systems
Lass, Robert N.; Sultanik, Evan A.; Regli, William C.
A Multiagent System (MAS) is a software paradigm for building large scale intelligent distributed systems. Increasingly these systems are being deployed on handheld computing devices that rely on non-traditional communications mediums such as mobile ad hoc networks and satellite links. These systems present new challenges for computer scientists in describing system performance and analyzing competing systems. This chapter surveys existing metrics that can be used to describe MASs and related components. A framework for analyzing MASs is provided and an example of how this framework might be employed is given for the domain of distributed constraint reasoning.
Sustainable chemistry metrics.
Calvo-Flores, Francisco García
2009-01-01
Green chemistry has developed mathematical parameters to describe the sustainability of chemical reactions and processes, in order to quantify their environmental impact. These parameters are related to mass and energy magnitudes, and enable analyses and numerical diagnoses of chemical reactions. The environmental impact factor (E factor), atom economy, and reaction mass efficiency have been the most influential metrics, and they are interconnected by mathematical equations. The ecodesign concept must also be considered for complex industrial syntheses, as a part of the sustainability of manufacturing processes. The aim of this Concept article is to identify the main parameters for evaluating undesirable environmental consequences.
A universal metric for ferroic energy materials.
Brück, Ekkes; Yibole, Hargen; Zhang, Lian
2016-08-13
After almost 20 years of intensive research on magnetocaloric effects near room temperature, magnetic refrigeration with first-order magnetocaloric materials has come close to real-life applications. Many materials have been discussed as potential candidates to be used in multicaloric devices. However, phase transitions in ferroic materials are often hysteretic and a metric is needed to estimate the detrimental effects of this hysteresis. We propose the coefficient of refrigerant performance, which compares the net work in a reversible cycle with the positive work on the refrigerant, as a universal metric for ferroic materials. Here, we concentrate on examples from magnetocaloric materials and only consider one barocaloric experiment. This is mainly due to lack of data on electrocaloric materials. It appears that adjusting the field-induced transitions and the hysteresis effects can minimize the losses in first-order materials.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.
Restoring the sting to metric preheating
Bassett, B A; Maartens, R; Kaiser, D I; Bassett, Bruce A.; Gordon, Chris; Maartens, Roy; Kaiser, David I.
2000-01-01
The relative growth of field and metric perturbations during preheating is sensitive to initial conditions set in the preceding inflationary phase. Recent work suggests this may protect super-Hubble metric perturbations from resonant amplification during preheating. We show that this possibility is fragile and extremely sensitive to the specific form of the interactions between the inflaton and other fields. The suppression is naturally absent in two classes of preheating in which either (1) the critical points (hence the vacua) of the effective potential during inflation are deformed away from the origin, or (2) the effective masses of fields during inflation are small but during preheating are large. Unlike the simple toy model of a g^2 \\phi^2 \\chi^2 coupling, most realistic particle physics models contain these other features. Moreover, they generically lead to both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble scales. Large-scale coherent magnetic fields may also appear naturally...
Metric-adjusted skew information
DEFF Research Database (Denmark)
Liang, Cai; Hansen, Frank
2010-01-01
We give a truly elementary proof of the convexity of metric-adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric-adjusted skew information. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipa......We give a truly elementary proof of the convexity of metric-adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric-adjusted skew information. Recently, Luo and Zhang introduced the notion of semi-quantum states...
Canonical metrics on complex manifold
Institute of Scientific and Technical Information of China (English)
YAU Shing-Tung
2008-01-01
@@ Complex manifolds are topological spaces that are covered by coordinate charts where the Coordinate changes are given by holomorphic transformations. For example, Riemann surfaces are one dimensional complex manifolds. In order to understand complex manifolds, it is useful to introduce metrics that are compatible with the complex structure. In general, we should have a pair (M, ds2M) where ds2M is the metric. The metric is said to be canonical if any biholomorphisms of the complex manifolds are automatically isometries. Such metrics can naturally be used to describe invariants of the complex structures of the manifold.
Canonical metrics on complex manifold
Institute of Scientific and Technical Information of China (English)
YAU; Shing-Tung(Yau; S.-T.)
2008-01-01
Complex manifolds are topological spaces that are covered by coordinate charts where the coordinate changes are given by holomorphic transformations.For example,Riemann surfaces are one dimensional complex manifolds.In order to understand complex manifolds,it is useful to introduce metrics that are compatible with the complex structure.In general,we should have a pair(M,ds~2_M)where ds~2_M is the metric.The metric is said to be canonical if any biholomorphisms of the complex manifolds are automatically isometries.Such metrics can naturally be used to describe invariants of the complex structures of the manifold.
The metric system: An introduction
Lumley, Susan M.
On 13 Jul. 1992, Deputy Director Duane Sewell restated the Laboratory's policy on conversion to the metric system which was established in 1974. Sewell's memo announced the Laboratory's intention to continue metric conversion on a reasonable and cost effective basis. Copies of the 1974 and 1992 Administrative Memos are contained in the Appendix. There are three primary reasons behind the Laboratory's conversion to the metric system. First, Public Law 100-418, passed in 1988, states that by the end of fiscal year 1992 the Federal Government must begin using metric units in grants, procurements, and other business transactions. Second, on 25 Jul. 1991, President George Bush signed Executive Order 12770 which urged Federal agencies to expedite conversion to metric units. Third, the contract between the University of California and the Department of Energy calls for the Laboratory to convert to the metric system. Thus, conversion to the metric system is a legal requirement and a contractual mandate with the University of California. Public Law 100-418 and Executive Order 12770 are discussed in more detail later in this section, but first they examine the reasons behind the nation's conversion to the metric system. The second part of this report is on applying the metric system.
Directory of Open Access Journals (Sweden)
Isabel Garrido
2016-04-01
Full Text Available The class of metric spaces (X,d known as small-determined spaces, introduced by Garrido and Jaramillo, are properly defined by means of some type of real-valued Lipschitz functions on X. On the other hand, B-simple metric spaces introduced by Hejcman are defined in terms of some kind of bornologies of bounded subsets of X. In this note we present a common framework where both classes of metric spaces can be studied which allows us to see not only the relationships between them but also to obtain new internal characterizations of these metric properties.
Software metrics: Software quality metrics for distributed systems. [reliability engineering
Post, J. V.
1981-01-01
Software quality metrics was extended to cover distributed computer systems. Emphasis is placed on studying embedded computer systems and on viewing them within a system life cycle. The hierarchy of quality factors, criteria, and metrics was maintained. New software quality factors were added, including survivability, expandability, and evolvability.
Metrical Phonology: German Sound System.
Tice, Bradley S.
Metrical phonology, a linguistic process of phonological stress assessment and diagrammatic simplification of sentence and word stress, is discussed as it is found in the English and German languages. The objective is to promote use of metrical phonology as a tool for enhancing instruction in stress patterns in words and sentences, particularly in…
Metrics for Hard Goods Merchandising.
Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.
Designed to meet the job-related metric measurement needs of students interested in hard goods merchandising, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…
Metrics for Soft Goods Merchandising.
Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.
Designed to meet the job-related metric measurement needs of students interested in soft goods merchandising, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…
Conversion to the Metric System
Crunkilton, John C.; Lee, Jasper S.
1974-01-01
The authors discuss background information about the metric system and explore the effect of metrication of agriculture in areas such as equipment calibration, chemical measurement, and marketing of agricultural products. Suggestions are given for possible leadership roles and approaches that agricultural education might take in converting to the…
Douglas, M R; Lukic, S; Reinbacher, R; Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene
2006-01-01
We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics, and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results.
Metric Supplement to Technical Drawing.
Henschel, Mark
This manual is intended for use in training persons whose vocations involve technical drawing to use the metric system of measurement. It could be used in a short course designed for that purpose or for individual study. The manual begins with a brief discussion of the rationale for conversion to the metric system. It then provides a…
Aksoy, Asuman Guven
2010-01-01
Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree ($T$, $d$) is a metric space such that between any two of its points there is an unique arc that is isometric to an interval in $\\mathbb{R}$. We begin our investigation by examining isometric embeddings of metric trees into Banach spaces. We then investigate the possible images $x_0=\\pi ((x_1+\\ldots+x_n)/n)$, where $\\pi$ is a contractive retraction from the ambient Banach space $X$ onto $T$ (such a $\\pi$ always exists) in order to understand the "metric" barycenter of a family of points $ x_1, \\ldots,x_n$ in a tree $T$. Further, we consider the metric properties of trees such as their type and cotype. We identify various measures of compactness of metric trees (their covering numbers, $\\epsilon$-entropy and Kolmogorov widths) and the connections between them. Additionally, we prove that the limit of the sequence of Kolmogorov...
Generalized metric spaces and mappings
Lin, Shou
2016-01-01
The idea of mutual classification of spaces and mappings is one of the main research directions of point set topology. In a systematical way, this book discusses the basic theory of generalized metric spaces by using the mapping method, and summarizes the most important research achievements, particularly those from Chinese scholars, in the theory of spaces and mappings since the 1960s. This book has three chapters, two appendices and a list of more than 400 references. The chapters are "The origin of generalized metric spaces", "Mappings on metric spaces" and "Classes of generalized metric spaces". Graduates or senior undergraduates in mathematics major can use this book as their text to study the theory of generalized metric spaces. Researchers in this field can also use this book as a valuable reference.
METRICS DEVELOPMENT FOR PATENTS.
Veiga, Daniela Francescato; Ferreira, Lydia Masako
2015-01-01
To develop a proposal for metrics for patents to be applied in assessing the postgraduate programs of Medicine III - Capes. From the reading and analysis of the 2013 area documents of all the 48 areas of Capes, a proposal for metrics for patents was developed to be applied in Medicine III programs. Except for the areas Biotechnology, Food Science, Biological Sciences III, Physical Education, Engineering I, III and IV and Interdisciplinary, most areas do not adopt a scoring system for patents. The proposal developed was based on the criteria of Biotechnology, with adaptations. In general, it will be valued, in ascending order, the deposit, the granting and licensing/production. It will also be assigned higher scores to patents registered abroad and whenever there is a participation of students. This proposal can be applied to the item Intellectual Production of the evaluation form, in subsection Technical Production/Patents. The percentage of 10% for academic programs and 40% for Masters Professionals should be maintained. The program will be scored as Very Good when it reaches 400 points or over; Good, between 200 and 399 points; Regular, between 71 and 199 points; Weak up to 70 points; Insufficient, no punctuation. Desenvolver uma proposta de métricas para patentes a serem aplicadas na avaliação dos Programas de Pós-Graduação da Área Medicina III - Capes. A partir da leitura e análise dos documentos de área de 2013 de todas as 48 Áreas da Capes, desenvolveu-se uma proposta de métricas para patentes, a ser aplicada na avaliação dos programas da área. Constatou-se que, com exceção das áreas Biotecnologia, Ciência de Alimentos, Ciências Biológicas III, Educação Física, Engenharias I, III e IV e Interdisciplinar, a maioria não adota sistema de pontuação para patentes. A proposta desenvolvida baseou-se nos critérios da Biotecnologia, com adaptações. De uma forma geral, foi valorizado, em ordem crescente, o depósito, a concessão e o
by B. Curé
2011-01-01
The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...
2008-01-01
As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.
Sharp metric obstructions for quasi-Einstein metrics
Case, Jeffrey S
2011-01-01
Using the tractor calculus to study conformally warped manifolds, we adapt results of Gover and Nurowski to give sharp metric obstructions to the existence of quasi-Einstein metrics on suitably generic manifolds. We do this by introducing an analogue of the curvature tractor, itself the tractor analogue of the curvature of the Fefferman-Graham ambient metric. We then use these obstructions to produce a tensorial invariant which is polynomial in the Riemann curvature and its divergence, and which gives the desired obstruction. In particular, this leads to a generalization to arbitrary dimensions of an algorithm due to Bartnik and Tod for finding static metrics. We also explore the consequences of this work for gradient Ricci solitons, finding an obstruction to their existence on suitably generic manifolds, and observing an interesting similarity between the nonnegativity of the curvature tractor and Hamilton's matrix Harnack inequality.
More on effective composite metrics
Heisenberg, Lavinia
2015-07-01
In this work we study different classes of effective composite metrics proposed in the context of one-loop quantum corrections in bimetric gravity. For this purpose we consider contributions of the matter loops in the form of cosmological constants and potential terms yielding two types of effective composite metrics. This guarantees a nice behavior at the quantum level. However, the theoretical consistency at the classical level needs to be ensured additionally. It turns out that among all these possible couplings, only one unique effective metric survives these criteria at the classical level.
More on effective composite metrics
Heisenberg, Lavinia
2015-01-01
In this work we study different classes of effective composite metrics proposed in the context of one-loop quantum corrections in bimetric gravity. For this purpose we consider contributions of the matter loops in form of cosmological constants and potential terms yielding two types of effective composite metrics. This guarantees a nice behaviour at the quantum level. However, the theoretical consistency at the classical level needs to be ensured additionally. It turns out that among all these possible couplings only one unique effective metric survives this criteria at the classical level.
Generalized Painleve-Gullstrand metrics
Energy Technology Data Exchange (ETDEWEB)
Lin Chunyu [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)], E-mail: l2891112@mail.ncku.edu.tw; Soo Chopin [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)], E-mail: cpsoo@mail.ncku.edu.tw
2009-02-02
An obstruction to the implementation of spatially flat Painleve-Gullstrand (PG) slicings is demonstrated, and explicitly discussed for Reissner-Nordstroem and Schwarzschild-anti-deSitter spacetimes. Generalizations of PG slicings which are not spatially flat but which remain regular at the horizons are introduced. These metrics can be obtained from standard spherically symmetric metrics by physical Lorentz boosts. With these generalized PG metrics, problematic contributions to the imaginary part of the action in the Parikh-Wilczek derivation of Hawking radiation due to the obstruction can be avoided.
Daylight metrics and energy savings
Energy Technology Data Exchange (ETDEWEB)
Mardaljevic, John; Heschong, Lisa; Lee, Eleanor
2009-12-31
The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.
Conformal Patterson-Walker metrics
Hammerl, Matthias; Šilhan, Josef; Taghavi-Chabert, Arman; Žádník, Vojtěch
2016-01-01
The classical Patterson-Walker construction of a split-signature (pseudo-)Riemannian structure from a given torsion-free affine connection is generalized to a construction of a split-signature conformal structure from a given projective class of connections. A characterization of the induced structures is obtained. We achieve a complete description of Einstein metrics in the conformal class formed by the Patterson-Walker metric. Finally, we describe all symmetries of the conformal Patterson-Walker metric. In both cases we obtain descriptions in terms of geometric data on the original structure.
Zimmerman, Marianna
1975-01-01
Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)
A unifying process capability metric
Directory of Open Access Journals (Sweden)
John Jay Flaig
2009-07-01
Full Text Available A new economic approach to process capability assessment is presented, which differs from the commonly used engineering metrics. The proposed metric consists of two economic capability measures – the expected profit and the variation in profit of the process. This dual economic metric offers a number of significant advantages over other engineering or economic metrics used in process capability analysis. First, it is easy to understand and communicate. Second, it is based on a measure of total system performance. Third, it unifies the fraction nonconforming approach and the expected loss approach. Fourth, it reflects the underlying interest of management in knowing the expected financial performance of a process and its potential variation.
Zimmerman, Marianna
1975-01-01
Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)
Coverage Metrics for Model Checking
Penix, John; Visser, Willem; Norvig, Peter (Technical Monitor)
2001-01-01
When using model checking to verify programs in practice, it is not usually possible to achieve complete coverage of the system. In this position paper we describe ongoing research within the Automated Software Engineering group at NASA Ames on the use of test coverage metrics to measure partial coverage and provide heuristic guidance for program model checking. We are specifically interested in applying and developing coverage metrics for concurrent programs that might be used to support certification of next generation avionics software.
Candelas, Philip; McOrist, Jock
2016-01-01
Heterotic vacua of string theory are realised, at large radius, by a compact threefold with vanishing first Chern class together with a choice of stable holomorphic vector bundle. These form a wide class of potentially realistic four-dimensional vacua of string theory. Despite all their phenomenological promise, there is little understanding of the metric on the moduli space of these. What is sought is the analogue of special geometry for these vacua. The metric on the moduli space is important in phenomenology as it normalises D-terms and Yukawa couplings. It is also of interest in mathematics, since it generalises the metric, first found by Kobayashi, on the space of gauge field connections, to a more general context. Here we construct this metric, correct to first order in alpha', in two ways: first by postulating a metric that is invariant under background gauge transformations of the gauge field, and also by dimensionally reducing heterotic supergravity. These methods agree and the resulting metric is Ka...
B. Curé
2012-01-01
The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...
Benoit Curé
2010-01-01
Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...
B. Curé
2012-01-01
Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...
Reproducibility of graph metrics in fMRI networks
Directory of Open Access Journals (Sweden)
Qawi K Telesford
2010-12-01
Full Text Available The reliability of graph metrics calculated in network analysis is essential to the interpretation of complex network organization. These graph metrics are used to deduce the small-world properties in networks. In this study, we investigated the test-retest reliability of graph metrics from functional magnetic resonance imaging (fMRI data collected for two runs in 45 healthy older adults. Graph metrics were calculated on data for both runs and compared using intraclass correlation coefficient (ICC statistics and Bland-Altman (BA plots. ICC scores describe the level of absolute agreement between two measurements and provide a measure of reproducibility. For mean graph metrics, ICC scores were high for clustering coefficient (ICC=0.86, global efficiency (ICC=0.83, path length (ICC=0.79, and local efficiency (ICC=0.75; the ICC score for degree was found to be low (ICC=0.29. ICC scores were also used to generate reproducibility maps in brain space to test voxel-wise reproducibility for unsmoothed and smoothed data. Reproducibility was uniform across the brain for global efficiency and path length, but was only high in network hubs for clustering coefficient, local efficiency and degree. BA plots were used to test the measurement repeatability of all graph metrics. All graph metrics fell within the limits for repeatability. Together, these results suggest that with exception of degree, mean graph metrics are reproducible and suitable for clinical studies. Further exploration is warranted to better understand reproducibility across the brain on a voxel-wise basis.
Lundquist, Marjorie
2003-03-01
Standards for protecting health from exposure to non-ionizing electromagnetic radiation treat the power density (magnitude of Poynting vector) as the biological exposure metric. For a static electric or magnetic field, the presumed metric is field strength. Scientifically valid expressions for such exposure metrics have been derived theoretically [1]. Three regimes exist for which different expressions are obtained: high frequencies (where electric and magnetic fields are tightly coupled), low frequencies (where these fields are separable), and static fields (where time derivatives are zero). Unexpected results are obtained: * There are two exposure metrics: one for thermal, another for athermal effects. * In general, these two metrics are different. Only for a plane wave is the same metric (power density) valid for both effects. * Exposure metrics used today for static fields are invalid! These findings also apply in the ionizing portion of the electromagnetic spectrum. [1] Wireless Phones and Health II: State of the Science. G. Carlo, ed. NY: Kluwer Academic Publishers, 2000; Chapter 4.
Reissner Nordstrom Metric in Unimodular Theory of Gravity
Chaturvedi, Pankaj; Singh, Dharm Veer
2016-01-01
We study the modified Reissner Nordstrom metric in the unimodular gravity. So far the spherically symmetric Einstein field equation in unimodular gravity has been studied in the absence of any source. We consider static electric and magnetic charge as source. We solve for Maxwell equations in unimodular gravitational background. We show that in unimodular gravity the electromagnetic field strength tensor is modified. We also show that the solution in unimodular gravity differs from the usual R-N metric in Einstein gravity with some corrections. We further study the thermodynamical properties of the R-N black-hole solution in this theory.
B. Curé
2012-01-01
The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...
Benoit Curé
2010-01-01
The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...
B. Curé
2013-01-01
The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...
B. Curé
2011-01-01
The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...
Projectively related metrics, Weyl nullity, and metric projectively invariant equations
Gover, A Rod
2015-01-01
A metric projective structure is a manifold equipped with the unparametrised geodesics of some pseudo-Riemannian metric. We make acomprehensive treatment of such structures in the case that there is a projective Weyl curvature nullity condition. The analysis is simplified by a fundamental and canonical 2-tensor invariant that we discover. It leads to a new canonical tractor connection for these geometries which is defined on a rank $(n+1)$-bundle. We show this connection is linked to the metrisability equations that govern the existence of metrics compatible with the structure. The fundamental 2-tensor also leads to a new class of invariant linear differential operators that are canonically associated to these geometries; included is a third equation studied by Gallot et al. We apply the results to study the metrisability equation, in the nullity setting described. We obtain strong local and global results on the nature of solutions and also on the nature of the geometries admitting such solutions, obtaining ...
Metrics for phylogenetic networks II: nodal and triplets metrics.
Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel
2009-01-01
The assessment of phylogenetic network reconstruction methods requires the ability to compare phylogenetic networks. This is the second in a series of papers devoted to the analysis and comparison of metrics for tree-child time consistent phylogenetic networks on the same set of taxa. In this paper, we generalize to phylogenetic networks two metrics that have already been introduced in the literature for phylogenetic trees: the nodal distance and the triplets distance. We prove that they are metrics on any class of tree-child time consistent phylogenetic networks on the same set of taxa, as well as some basic properties for them. To prove these results, we introduce a reduction/expansion procedure that can be used not only to establish properties of tree-child time consistent phylogenetic networks by induction, but also to generate all tree-child time consistent phylogenetic networks with a given number of leaves.
Hofacker, H.B.
1958-09-23
This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.
Energy Technology Data Exchange (ETDEWEB)
Enqvist, Kari [Physics Department, University of Helsinki, and Helsinki Institute of Physics, FIN-00014 Helsinki (Finland); Koivisto, Tomi [Institute for Theoretical Physics and Spinoza Institute, Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Rigopoulos, Gerasimos, E-mail: kari.enqvist@helsinki.fi, E-mail: T.S.Koivisto@astro.uio.no, E-mail: rigopoulos@physik.rwth-aachen.de [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen (Germany)
2012-05-01
We consider inflation within the context of what is arguably the simplest non-metric extension of Einstein gravity. There non-metricity is described by a single graviscalar field with a non-minimal kinetic coupling to the inflaton field Ψ, parameterized by a single parameter γ. There is a simple equivalent description in terms of a massless field and an inflaton with a modified potential. We discuss the implications of non-metricity for chaotic inflation and find that it significantly alters the inflaton dynamics for field values Ψ∼>M{sub P}/γ, dramatically changing the qualitative behaviour in this regime. In the equivalent single-field description this is described as a cuspy potential that forms of barrier beyond which the inflation becomes a ghost field. This imposes an upper bound on the possible number of e-folds. For the simplest chaotic inflation models, the spectral index and the tensor-to-scalar ratio receive small corrections dependent on the non-metricity parameter. We also argue that significant post-inflationary non-metricity may be generated.
Lagrange Spaces with (γ,β-Metric
Directory of Open Access Journals (Sweden)
Suresh K. Shukla
2013-01-01
Full Text Available We study Lagrange spaces with (γ,β-metric, where γ is a cubic metric and β is a 1-form. We obtain fundamental metric tensor, its inverse, Euler-Lagrange equations, semispray coefficients, and canonical nonlinear connection for a Lagrange space endowed with a (γ,β-metric. Several other properties of such space are also discussed.
B. Curé
2011-01-01
The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....
Complexity Metrics for Spreadsheet Models
Bregar, Andrej
2008-01-01
Several complexity metrics are described which are related to logic structure, data structure and size of spreadsheet models. They primarily concentrate on the dispersion of cell references and cell paths. Most metrics are newly defined, while some are adapted from traditional software engineering. Their purpose is the identification of cells which are liable to errors. In addition, they can be used to estimate the values of dependent process metrics, such as the development duration and effort, and especially to adjust the cell error rate in accordance with the contents of each individual cell, in order to accurately asses the reliability of a model. Finally, two conceptual constructs - the reference branching condition cell and the condition block - are discussed, aiming at improving the reliability, modifiability, auditability and comprehensibility of logical tests.
Complexity Metrics for Workflow Nets
DEFF Research Database (Denmark)
Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.
2009-01-01
, etc. It seems obvious that the complexity of the model contributes to design errors and a lack of understanding. It is not easy to measure complexity, however. This paper presents three complexity metrics that have been implemented in the process analysis tool ProM. The metrics are defined...... analysts have difficulties grasping the dynamics implied by a process model. Recent empirical studies show that people make numerous errors when modeling complex business processes, e.g., about 20 percent of the EPCs in the SAP reference model have design flaws resulting in potential deadlocks, livelocks...... for a subclass of Petri nets named Workflow nets, but the results can easily be applied to other languages. To demonstrate the applicability of these metrics, we have applied our approach and tool to 262 relatively complex Protos models made in the context of various student projects. This allows us to validate...
Moduli spaces of riemannian metrics
Tuschmann, Wilderich
2015-01-01
This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.
Rainbow metric from quantum gravity
Assaniousssi, Mehdi; Lewandowski, Jerzy
2014-01-01
In this letter, we describe a general mechanism for emergence of a rainbow metric from a quantum cosmological model. This idea is based on QFT on a quantum space-time. Under general assumptions, we discover that the quantum space-time on which the field propagates can be replaced by a classical space-time, whose metric depends explicitly on the energy of the field: as shown by an analysis of dispersion relations, quanta of different energy propagate on different metrics, similar to photons in a refractive material (hence the name "rainbow" used in the literature). In deriving this result, we do not consider any specific theory of quantum gravity: the qualitative behavior of high-energy particles on quantum space-time relies only on the assumption that the quantum space-time is described by a wave-function $\\Psi_o$ in a Hilbert space $\\mathcal{H}_G$.
Synthesis Array Topology Metrics in Location Characterization
Shanmugha Sundaram, GA
2015-08-01
Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm level, that form the Key Science Projects (KSPs) for the Square Kilometer Array (SKA; such as Probing the Dark Ages and the Epoch of Reionization in the course of an Evolving Universe; Galaxy Evolution, Cosmology, and Dark Energy; and the Origin and evolution of Cosmic Magnetism) a suitable interfacing of these goals has to be achieved with its optimally designed array configuration, by means of a critical evaluation of the radio imagingcapabilities and metrics. Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the SKA, for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Here, the particular discussion involves those KSPs that relate to galactic morphology and evolution, and explores their suitability as a scientific research goal from the prespective of the location-driven instrument design specification. Relative merits and adaptability with regard to either site shall be presented from invoking well-founded and established array-design and optimization principles designed into a customized software tool.
Directory of Open Access Journals (Sweden)
Bessem Samet
2013-01-01
Full Text Available In 2005, Mustafa and Sims (2006 introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many fixed point theorems on (nonsymmetric G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.
S-curvature of isotropic Berwald metrics
Institute of Scientific and Technical Information of China (English)
Akbar TAYEBI; Mehdi RAFIE-RAD
2008-01-01
Isotropic Berwald metrics are as a generalization of Berwald metrics. Shen proved that every Berwald metric is of vanishing S-curvature. In this paper, we generalize this fact and prove that every isotropic Berwald metric is of isotropic S-curvature. Let F = α + β be a Randers metric of isotropic Berwald curvature. Then it corresponds to a conformal vector field through navigation representation.
DLA Energy Biofuel Feedstock Metrics Study
2012-12-11
moderately/highly in- vasive Metric 2: Genetically modified organism ( GMO ) hazard, Yes/No and Hazard Category Metric 3: Species hybridization...4– biofuel distribution Stage # 5– biofuel use Metric 1: State inva- siveness ranking Yes Minimal Minimal No No Metric 2: GMO hazard Yes...may utilize GMO microbial or microalgae species across the applicable biofuel life cycles (stages 1–3). The following consequence Metrics 4–6 then
Thermodynamic Metrics and Optimal Paths
Energy Technology Data Exchange (ETDEWEB)
Sivak, David; Crooks, Gavin
2012-05-08
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
Separable metrics and radiating stars
Indian Academy of Sciences (India)
G Z ABEBE; S D MAHARAJ
2017-01-01
We study the junction condition relating the pressure to heat flux at the boundary of an accelerating and expanding spherically symmetric radiating star. We transform the junction condition to an ordinary differential equation by making a separability assumption on the metric functions in the space–time variables. The condition of separability on the metric functions yields several new exact solutions. A class of shear-free models is found which contains a linear equation of state and generalizes a previously obtained model. Four new shearing models are obtained; all the gravitational potentials can be written explicitly. A brief physical analysis indicates that the matter variables are well behaved.
Einstein metrics in projective geometry
Cap, A; Macbeth, H R
2012-01-01
It is well known that pseudo-Riemannian metrics in the projective class of a given torsion free affine connection can be obtained from (and are equivalent to) the solutions of a certain overdetermined projectively invariant differential equation. This equation is a special case of a so-called first BGG equation. The general theory of such equations singles out a subclass of so-called normal solutions. We prove that non-degerate normal solutions are equivalent to pseudo-Riemannian Einstein metrics in the projective class and observe that this connects to natural projective extensions of the Einstein condition.
Complexity Metrics for Workflow Nets
DEFF Research Database (Denmark)
Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.
2009-01-01
Process modeling languages such as EPCs, BPMN, flow charts, UML activity diagrams, Petri nets, etc.\\ are used to model business processes and to configure process-aware information systems. It is known that users have problems understanding these diagrams. In fact, even process engineers and system......, etc. It seems obvious that the complexity of the model contributes to design errors and a lack of understanding. It is not easy to measure complexity, however. This paper presents three complexity metrics that have been implemented in the process analysis tool ProM. The metrics are defined...
The flexibility of optical metrics
Bittencourt, Eduardo; Smolyaninov, Igor; Smolyaninova, Vera N
2015-01-01
We firstly revisit the importance, naturalness and limitations of the so-called optical metrics for describing the propagation of light rays in the limit of geometric optics. We then exemplify their flexibility and nontriviality in some nonlinear material media and in the context of nonlinear theories of the electromagnetism, both underlain by curved backgrounds, where optical metrics could be flat and impermeable membranes only to photons could be conceived, respectively. Finally, we underline and discuss the relevance and potential applications of our analyses in a broad sense, ranging from material media to compact astrophysical systems.
The Extended Edit Distance Metric
Fuad, Muhammad Marwan Muhammad
2007-01-01
Similarity search is an important problem in information retrieval. This similarity is based on a distance. Symbolic representation of time series has attracted many researchers recently, since it reduces the dimensionality of these high dimensional data objects. We propose a new distance metric that is applied to symbolic data objects and we test it on time series data bases in a classification task. We compare it to other distances that are well known in the literature for symbolic data objects. We also prove, mathematically, that our distance is metric.
Performance Metrics for Haptic Interfaces
Samur, Evren
2012-01-01
Haptics technology is being used more and more in different applications, such as in computer games for increased immersion, in surgical simulators to create a realistic environment for training of surgeons, in surgical robotics due to safety issues and in mobile phones to provide feedback from user action. The existence of these applications highlights a clear need to understand performance metrics for haptic interfaces and their implications on device design, use and application. Performance Metrics for Haptic Interfaces aims at meeting this need by establishing standard practices for the ev
B. Curé
2013-01-01
The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...
B. Curé
MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...
Benoit Curé
2010-01-01
The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...
Benoit Curé.
The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...
Induced optical metric in the non-impedance-matched media
Mousavi, S. A.; Roknizadeh, R.; Sahebdivan, S.
2016-11-01
In non-magnetic anisotropic media, the behavior of electromagnetic waves depends on the polarization and direction of the incident light. Therefore, to tame the unwanted wave responses such as polarization dependent reflections, the artificial impedance-matched media are suggested to be used in optical devices like invisibility cloak or super lenses. Nevertheless, developing the impedance-matched media is far from trivial in practice. In this paper, we are comparing the samples of both impedance-matched and non-impedance-matched (non-magnetic) media regarding their electromagnetic response in constructing a well-defined optical metric. In the case of similar anisotropic patterns, we show that the optical metric in an impedance-matched medium for unpolarized light is the same as the optical metric of an electrical birefringent medium when the extraordinary mode is concerned. By comparing the eikonal equation in an empty curved space-time and its counterparts in the medium, we have shown that a non-impedance-matched medium can resemble an optical metric for a particular polarization. As an example of non-impedance-matched materials, we are studying a medium with varying optical axis profile. We show that such a medium can be an alternative to impedance-matched materials in various optical devices.
Danila, Bogdan; Lobo, Francisco S N; Mak, M K
2016-01-01
We consider the internal structure and the physical properties of specific classes of neutron, quark and Bose-Einstein Condensate stars in the hybrid metric-Palatini gravity theory, which is a combination of the metric and Palatini $f(R)$ formalisms. The theory is very successful in accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and the late-time cosmic acceleration, even if the scalar field is very light. We derive the equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-Oppenheimer-Volkoff) in the framework of hybrid metric-Palatini theory, and we investigate their solutions numerically for different equations of state of neutron and quark matter, by adopting for the scalar field potential a Higgs-type form. Stellar models, described by the stiff fluid, radiation-like, the bag model and the Bose-Einstein Condensate equations of state are explicitly constructed in both General Relativity and hybrid metric-Palatini...
Ulicny, Brian; Baclawski, Ken; Magnus, Amy
2007-04-01
Blogs represent an important new arena for knowledge discovery in open source intelligence gathering. Bloggers are a vast network of human (and sometimes non-human) information sources monitoring important local and global events, and other blogs, for items of interest upon which they comment. Increasingly, issues erupt from the blog world and into the real world. In order to monitor blogging about important events, we must develop models and metrics that represent blogs correctly. The structure of blogs requires new techniques for evaluating such metrics as the relevance, specificity, credibility and timeliness of blog entries. Techniques that have been developed for standard information retrieval purposes (e.g. Google's PageRank) are suboptimal when applied to blogs because of their high degree of exophoricity, quotation, brevity, and rapidity of update. In this paper, we offer new metrics related for blog entry relevance, specificity, timeliness and credibility that we are implementing in a blog search and analysis tool for international blogs. This tools utilizes new blog-specific metrics and techniques for extracting the necessary information from blog entries automatically, using some shallow natural language processing techniques supported by background knowledge captured in domain-specific ontologies.
Socio-technical security metrics
Gollmann, D.; Herley, C.; Koenig, V.; Pieters, W.; Sasse, M.A.
2015-01-01
Report from Dagstuhl seminar 14491. This report documents the program and the outcomes of Dagstuhl Seminar 14491 “Socio-Technical Security Metrics”. In the domain of safety, metrics inform many decisions, from the height of new dikes to the design of nuclear plants. We can state, for example, that t
Leading Gainful Employment Metric Reporting
Powers, Kristina; MacPherson, Derek
2016-01-01
This chapter will address the importance of intercampus involvement in reporting of gainful employment student-level data that will be used in the calculation of gainful employment metrics by the U.S. Department of Education. The authors will discuss why building relationships within the institution is critical for effective gainful employment…
Strong metric dimension: A survey
Directory of Open Access Journals (Sweden)
Kratica Jozef
2014-01-01
Full Text Available The strong metric dimension has been a subject of considerable amount of research in recent years. This survey describes the related development by bringing together theoretical results and computational approaches, and places the recent results within their historical and scientific framework. [Projekat Ministarstva nauke Republike Srbije, br. 174010 i br. 174033
On a Schwarzschild like metric
Anastasiei, M
2011-01-01
In this short Note we would like to bring into the attention of people working in General Relativity a Schwarzschild like metric found by Professor Cleopatra Mociu\\c{t}chi in sixties. It was obtained by the A. Sommerfeld reasoning from his treatise "Elektrodynamik" but using instead of the energy conserving law from the classical Physics, the relativistic energy conserving law.
Area metric gravity and accelerating cosmology
Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N.R.
2007-01-01
Area metric manifolds emerge as effective classical backgrounds in quantum string theory and quantum gauge theory, and present a true generalization of metric geometry. Here, we consider area metric manifolds in their own right, and develop in detail the foundations of area metric differential geometry. Based on the construction of an area metric curvature scalar, which reduces in the metric-induced case to the Ricci scalar, we re-interpret the Einstein-Hilbert action as dynamics for an area metric spacetime. In contrast to modifications of general relativity based on metric geometry, no continuous deformation scale needs to be introduced; the extension to area geometry is purely structural and thus rigid. We present an intriguing prediction of area metric gravity: without dark energy or fine-tuning, the late universe exhibits a small acceleration.
Length spectra and degeneration of flat metrics
Duchin, Moon; Rafi, Kasra
2009-01-01
In this paper we consider flat metrics (semi-translation structures) on surfaces of finite type. There are two main results. The first is a complete description of when a set of simple closed curves is spectrally rigid, that is, when the length vector determines a metric among the class of flat metrics. Secondly, we give an embedding into the space of geodesic currents and use this to get a boundary for the space of flat metrics. The geometric interpretation is that flat metrics degenerate to "mixed structures" on the surface: part flat metric and part measured foliation.
Benoit Curé
The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...
B. Curé
During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...
The escape velocity and Schwarzschild metric
Murzagalieva, A G; Murzagaliev, G Z
2002-01-01
The escape velocity value in the terms of general relativity by means Schwarzschild metric is provided to make of the motion equation with Friedman cosmological model behavior build in the terms of Robertson-Worker metric. (author)
Security Metrics in Industrial Control Systems
Collier, Zachary A; Ganin, Alexander A; Kott, Alex; Linkov, Igor
2015-01-01
Risk is the best known and perhaps the best studied example within a much broader class of cyber security metrics. However, risk is not the only possible cyber security metric. Other metrics such as resilience can exist and could be potentially very valuable to defenders of ICS systems. Often, metrics are defined as measurable properties of a system that quantify the degree to which objectives of the system are achieved. Metrics can provide cyber defenders of an ICS with critical insights regarding the system. Metrics are generally acquired by analyzing relevant attributes of that system. In terms of cyber security metrics, ICSs tend to have unique features: in many cases, these systems are older technologies that were designed for functionality rather than security. They are also extremely diverse systems that have different requirements and objectives. Therefore, metrics for ICSs must be tailored to a diverse group of systems with many features and perform many different functions. In this chapter, we first...
Dimension of the boundary in different metrics
Klén, Riku
2010-01-01
On domains $\\Omega\\subset\\R^n$, we consider metrics induced by continuous densities $\\rho\\colon\\Omega\\rightarrow(0,\\infty)$ and study the Hausdorff and packing dimensions of the boundary of $\\Omega$ with respect to these metrics.
Hybrid metric-Palatini gravity
Capozziello, Salvatore; Koivisto, Tomi S; Lobo, Francisco S N; Olmo, Gonzalo J
2015-01-01
Recently, the phenomenology of f(R) gravity has been scrutinized motivated by the possibility to account for the self-accelerated cosmic expansion without invoking dark energy sources. Besides, this kind of modified gravity is capable of addressing the dynamics of several self-gravitating systems alternatively to the presence of dark matter. It has been established that both metric and Palatini versions of these theories have interesting features but also manifest severe and different downsides. A hybrid combination of theories, containing elements from both these two formalisms, turns out to be also very successful accounting for the observed phenomenology and is able to avoid some drawbacks of the original approaches. This article reviews the formulation of this hybrid metric-Palatini approach and its main achievements in passing the local tests and in applications to astrophysical and cosmological scenarios, where it provides a unified approach to the problems of dark energy and dark matter.
Hofer's metrics and boundary depth
Usher, Michael
2011-01-01
We show that if (M,\\omega) is a closed symplectic manifold which admits a nontrivial Hamiltonian vector field all of whose contractible closed orbits are constant, then Hofer's metric on the group of Hamiltonian diffeomorphisms of (M,\\omega) has infinite diameter, and indeed admits infinite-dimensional quasi-isometrically embedded normed vector spaces. A similar conclusion applies to Hofer's metric on various spaces of Lagrangian submanifolds, including those Hamiltonian-isotopic to the diagonal in M x M when M satisfies the above dynamical condition. To prove this, we use the properties of a Floer-theoretic quantity called the boundary depth, which measures the nontriviality of the boundary operator on the Floer complex in a way that encodes robust symplectic-topological information.
Projective Compactifications and Einstein metrics
Cap, Andreas
2013-01-01
For complete affine manifolds we introduce a definition of compactification based on the projective differential geometry (i.e.\\ geodesic path data) of the given connection. The definition of projective compactness involves a real parameter $\\alpha$ called the order of projective compactness. For volume preserving connections, this order is captured by a notion of volume asymptotics that we define. These ideas apply to complete pseudo-Riemannian spaces, via the Levi-Civita connection, and thus provide a notion of compactification alternative to conformal compactification. For each order $\\alpha$, we provide an asymptotic form of a metric which is sufficient for projective compactness of the given order, thus also providing many local examples. Distinguished classes of projectively compactified geometries of orders one and two are associated with Ricci-flat connections and non--Ricci--flat Einstein metrics, respectively. Conversely, these geometric conditions are shown to force the indicated order of projectiv...
Quality Metrics in Inpatient Neurology.
Dhand, Amar
2015-12-01
Quality of care in the context of inpatient neurology is the standard of performance by neurologists and the hospital system as measured against ideal models of care. There are growing regulatory pressures to define health care value through concrete quantifiable metrics linked to reimbursement. Theoretical models of quality acknowledge its multimodal character with quantitative and qualitative dimensions. For example, the Donabedian model distils quality as a phenomenon of three interconnected domains, structure-process-outcome, with each domain mutually influential. The actual measurement of quality may be implicit, as in peer review in morbidity and mortality rounds, or explicit, in which criteria are prespecified and systemized before assessment. As a practical contribution, in this article a set of candidate quality indicators for inpatient neurology based on an updated review of treatment guidelines is proposed. These quality indicators may serve as an initial blueprint for explicit quality metrics long overdue for inpatient neurology.
Marketing metrics for medical practices.
Zahaluk, David; Baum, Neil
2012-01-01
There's a saying by John Wanamaker who pontificated, "Half the money I spend on advertising is wasted; the trouble is, I don't know which half". Today you have opportunities to determine which parts of your marketing efforts are effective and what is wasted. However, you have to measure your marketing results. This article will discuss marketing metrics and how to use them to get the best bang for your marketing buck.
Multi-Metric Sustainability Analysis
Energy Technology Data Exchange (ETDEWEB)
Cowlin, Shannon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Munoz, David [Colorado School of Mines, Golden, CO (United States)
2014-12-01
A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.
Toktarbay, Saken
2015-01-01
We present a stationary generalization of the static $q-$metric, the simplest generalization of the Schwarzschild solution that contains a quadrupole parameter. It possesses three independent parameters that are related to the mass, quadrupole moment and angular momentum. We investigate the geometric and physical properties of this exact solution of Einstein's vacuum equations, and show that it can be used to describe the exterior gravitational field of rotating, axially symmetric, compact objects.
Balanced metrics on Hartogs domains
Loi, Andrea
2010-01-01
An n-dimensional strictly pseudoconvex Hartogs domain $D_F$ can be equipped with a natural Kaehler metric g_F. In this paper we prove that if m_0g_F is balanced for a given positive integer m_0 then m_0>n and (D_F, g_F) is holomorphically isometric to an open subset of the n-dimensional complex hyperbolic space.
Extremal almost-Kahler metrics
Lejmi, Mehdi
2009-01-01
We generalize the notion of the Futaki invariant and extremal vector field to the general almost-Kahler case and we prove the periodicity of the extremal vector field when the symplectic form represents an integral cohomology class modulo torsion. We give also an explicit formula of the hermitian scalar curvature which allows us to obtain examples of non-integrable extremal almost-Kahler metrics saturating LeBrun's estimates.
Sensory Metrics of Neuromechanical Trust.
Softky, William; Benford, Criscillia
2017-09-01
Today digital sources supply a historically unprecedented component of human sensorimotor data, the consumption of which is correlated with poorly understood maladies such as Internet addiction disorder and Internet gaming disorder. Because both natural and digital sensorimotor data share common mathematical descriptions, one can quantify our informational sensorimotor needs using the signal processing metrics of entropy, noise, dimensionality, continuity, latency, and bandwidth. Such metrics describe in neutral terms the informational diet human brains require to self-calibrate, allowing individuals to maintain trusting relationships. With these metrics, we define the trust humans experience using the mathematical language of computational models, that is, as a primitive statistical algorithm processing finely grained sensorimotor data from neuromechanical interaction. This definition of neuromechanical trust implies that artificial sensorimotor inputs and interactions that attract low-level attention through frequent discontinuities and enhanced coherence will decalibrate a brain's representation of its world over the long term by violating the implicit statistical contract for which self-calibration evolved. Our hypersimplified mathematical understanding of human sensorimotor processing as multiscale, continuous-time vibratory interaction allows equally broad-brush descriptions of failure modes and solutions. For example, we model addiction in general as the result of homeostatic regulation gone awry in novel environments (sign reversal) and digital dependency as a sub-case in which the decalibration caused by digital sensorimotor data spurs yet more consumption of them. We predict that institutions can use these sensorimotor metrics to quantify media richness to improve employee well-being; that dyads and family-size groups will bond and heal best through low-latency, high-resolution multisensory interaction such as shared meals and reciprocated touch; and
Toktarbay, S.; Quevedo, H.
2014-10-01
We present a stationary generalization of the static $q-$metric, the simplest generalization of the Schwarzschild solution that contains a quadrupole parameter. It possesses three independent parameters that are related to the mass, quadrupole moment and angular momentum. We investigate the geometric and physical properties of this exact solution of Einstein's vacuum equations, and show that it can be used to describe the exterior gravitational field of rotating, axially symmetric, compact objects.
GENERAL RELATIVITY AND METRIC OF LOCAL SUPERCLUSTER
Directory of Open Access Journals (Sweden)
Trunev A. P.
2013-12-01
Full Text Available It is shown that the metric of clusters of galaxies should be universal, depending only on the fundamental constants and compatible with the metric of the universe. There are examples of universal metrics obtained in Einstein's theory of gravitation. On the basis of axisymmetric solutions of Einstein’s equation proposed universal metric describing the properties of galaxies, groups and clusters of galaxies
Metrics for Finite Markov Decision Processes
Ferns, Norman; Panangaden, Prakash; Precup, Doina
2012-01-01
We present metrics for measuring the similarity of states in a finite Markov decision process (MDP). The formulation of our metrics is based on the notion of bisimulation for MDPs, with an aim towards solving discounted infinite horizon reinforcement learning tasks. Such metrics can be used to aggregate states, as well as to better structure other value function approximators (e.g., memory-based or nearest-neighbor approximators). We provide bounds that relate our metric distances to the opti...
Almost contact metric 3-submersions
Directory of Open Access Journals (Sweden)
Bill Watson
1984-01-01
Full Text Available An almost contact metric 3-submersion is a Riemannian submersion, π from an almost contact metric manifold (M4m+3,(φi,ξi,ηii=13,g onto an almost quaternionic manifold (N4n,(Jii=13,h which commutes with the structure tensors of type (1,1;i.e., π*φi=Jiπ*, for i=1,2,3. For various restrictions on ∇φi, (e.g., M is 3-Sasakian, we show corresponding limitations on the second fundamental form of the fibres and on the complete integrability of the horizontal distribution. Concommitantly, relations are derived between the Betti numbers of a compact total space and the base space. For instance, if M is 3-quasi-Saskian (dΦ=0, then b1(N≤b1(M. The respective φi-holomorphic sectional and bisectional curvature tensors are studied and several unexpected results are obtained. As an example, if X and Y are orthogonal horizontal vector fields on the 3-contact (a relatively weak structure total space of such a submersion, then the respective holomorphic bisectional curvatures satisfy: Bφi(X,Y=B′J′i(X*,Y*−2. Applications to the real differential geometry of Yarg-Milis field equations are indicated based on the fact that a principal SU(2-bundle over a compactified realized space-time can be given the structure of an almost contact metric 3-submersion.
Metrics for Event Driven Software
Directory of Open Access Journals (Sweden)
Neha Chaudhary
2016-01-01
Full Text Available The evaluation of Graphical User Interface has significant role to improve its quality. Very few metrics exists for the evaluation of Graphical User Interface. The purpose of metrics is to obtain better measurements in terms of risk management, reliability forecast, project scheduling, and cost repression. In this paper structural complexity metrics is proposed for the evaluation of Graphical User Interface. Structural complexity of Graphical User Interface is considered as an indicator of complexity. The goal of identifying structural complexity is to measure the GUI testability. In this testability evaluation the process of measuring the complexity of the user interface from testing perspective is proposed. For the GUI evaluation and calculating structural complexity an assessment process is designed which is based on types of events. A fuzzy model is developed to evaluate the structural complexity of GUI. This model takes five types of events as input and return structural complexity of GUI as output. Further a relationship is established between structural complexity and testability of event driven software. Proposed model is evaluated with four different applications. It is evident from the results that higher the complexities lower the testability of application.
Game Refinement Relations and Metrics
de Alfaro, Luca; Raman, Vishwanath; Stoelinga, Mariëlle
2008-01-01
We consider two-player games played over finite state spaces for an infinite number of rounds. At each state, the players simultaneously choose moves; the moves determine a successor state. It is often advantageous for players to choose probability distributions over moves, rather than single moves. Given a goal, for example, reach a target state, the question of winning is thus a probabilistic one: what is the maximal probability of winning from a given state? On these game structures, two fundamental notions are those of equivalences and metrics. Given a set of winning conditions, two states are equivalent if the players can win the same games with the same probability from both states. Metrics provide a bound on the difference in the probabilities of winning across states, capturing a quantitative notion of state similarity. We introduce equivalences and metrics for two-player game structures, and we show that they characterize the difference in probability of winning games whose goals are expressed in the...
Metric Education. Interpretive Report No. 1.
George Washington Univ., Washington, DC. Inst. for Educational Leadership.
This report reviews the findings of two projects funded by the National Institute of Education (NIE) ano conducted by the American Institutes for Research (AIR). The project reports, "Going Metric" and "Metric Inservice Teacher Training," document the impact of metric conversion on the educational systems of Great Britain, New Zeland, Australia,…
Metrics for Evaluation of Student Models
Pelanek, Radek
2015-01-01
Researchers use many different metrics for evaluation of performance of student models. The aim of this paper is to provide an overview of commonly used metrics, to discuss properties, advantages, and disadvantages of different metrics, to summarize current practice in educational data mining, and to provide guidance for evaluation of student…
Metrics Made Easy: A Classroom Guide - 1978.
Blau, Sharon; And Others
This classroom guide for metric education included a brief rationale and history of metrics, a preliminary metric quiz, a symbol summary, and a list of recommended instructional materials. The guide is comprised primarily of four sections covering the topics of: weight, length, volume, and temperature. Each of these sections contains goals and…
Danilǎ, Bogdan; Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.
2017-02-01
We consider the internal structure and the physical properties of specific classes of neutron, quark and Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a combination of the metric and Palatini f (R ) formalisms. It turns out that the theory is very successful in accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini theory, and we investigate their solutions numerically for different equations of state of neutron and quark matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor definition of the potential can be represented as an Clairaut differential equation, and provides an explicit form for f (R ) given by f (R )˜R +Λeff, where Λeff is an effective cosmological constant. Furthermore, stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity, thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also investigated. Interestingly enough, in the case of a constant scalar field the equation of state of the matter takes the form of the bag model equation of state describing
Crowdsourcing metrics of digital collections
Directory of Open Access Journals (Sweden)
Tuula Pääkkönen
2015-12-01
Full Text Available In the National Library of Finland (NLF there are millions of digitized newspaper and journal pages, which are openly available via the public website http://digi.kansalliskirjasto.fi. To serve users better, last year the front end was completely overhauled with its main aim in crowdsourcing features, e.g., by giving end-users the opportunity to create digital clippings and a personal scrapbook from the digital collections. But how can you know whether crowdsourcing has had an impact? How much crowdsourcing functionalities have been used so far? Did crowdsourcing work? In this paper the statistics and metrics of a recent crowdsourcing effort are analysed across the different digitized material types (newspapers, journals, ephemera. The subjects, categories and keywords given by the users are analysed to see which topics are the most appealing. Some notable public uses of the crowdsourced article clippings are highlighted. These metrics give us indications on how the end-users, based on their own interests, are investigating and using the digital collections. Therefore, the suggested metrics illustrate the versatility of the information needs of the users, varying from citizen science to research purposes. By analysing the user patterns, we can respond to the new needs of the users by making minor changes to accommodate the most active participants, while still making the service more approachable for those who are trying out the functionalities for the first time. Participation in the clippings and annotations can enrich the materials in unexpected ways and can possibly pave the way for opportunities of using crowdsourcing more also in research contexts. This creates more opportunities for the goals of open science since source data becomes available, making it possible for researchers to reach out to the general public for help. In the long term, utilizing, for example, text mining methods can allow these different end-user segments to
Benoit Curé
2013-01-01
Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...
Benoit Curé
The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...
B. Curé
The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...
Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.
2015-06-01
The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.
A nonextension result on the spectral metric
Han, Zhigang
2008-01-01
The spectral metric, defined by Schwarz and Oh using Floer-theoretical method, is a bi-invariant metric on the Hamiltonian diffeomorphism group. We show in this note that for certain symplectic manifolds, this metric can not be extended to a bi-invariant metric on the full group of symplectomorphisms. We also study the bounded isometry conjecture of Lalonde and Polterovich in the context of the spectral metric. In particular, we show that the conjecture holds for the torus with all linear symplectic forms.
Angles between Curves in Metric Measure Spaces
Directory of Open Access Journals (Sweden)
Han Bang-Xian
2017-08-01
Full Text Available The goal of the paper is to study the angle between two curves in the framework of metric (and metric measure spaces. More precisely, we give a new notion of angle between two curves in a metric space. Such a notion has a natural interplay with optimal transportation and is particularly well suited for metric measure spaces satisfying the curvature-dimension condition. Indeed one of the main results is the validity of the cosine formula on RCD*(K, N metric measure spaces. As a consequence, the new introduced notions are compatible with the corresponding classical ones for Riemannian manifolds, Ricci limit spaces and Alexandrov spaces.
Statistical Structures on Metric Path Spaces
Institute of Scientific and Technical Information of China (English)
Mircea CRASMAREANU; Cristina-Elena HRETCANU
2012-01-01
The authors extend the notion of statistical structure from Riemannian geometry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric.Two particular cases of statistical data are defined.The existence and uniqueness of a nonlinear connection corresponding to these classes is proved.Two Koszul tensors are introduced in accordance with the Riemannian approach.As applications,the authors treat the Finslerian (α,β)-metrics and the Beil metrics used in relativity and field theories while the support Riemannian metric is the Fisher-Rao metric of a statistical model.
Web metrics for library and information professionals
Stuart, David
2014-01-01
This is a practical guide to using web metrics to measure impact and demonstrate value. The web provides an opportunity to collect a host of different metrics, from those associated with social media accounts and websites to more traditional research outputs. This book is a clear guide for library and information professionals as to what web metrics are available and how to assess and use them to make informed decisions and demonstrate value. As individuals and organizations increasingly use the web in addition to traditional publishing avenues and formats, this book provides the tools to unlock web metrics and evaluate the impact of this content. The key topics covered include: bibliometrics, webometrics and web metrics; data collection tools; evaluating impact on the web; evaluating social media impact; investigating relationships between actors; exploring traditional publications in a new environment; web metrics and the web of data; the future of web metrics and the library and information professional.Th...
Anabalon, Andres
2016-01-01
In four dimensions, the most general metric admitting two Killing vectors and a rank-two Killing tensor can be parameterized by ten arbitrary functions of a single variable. We show that picking a special vierbien, reducing the system to eight functions, implies the existence of two geodesic and share-free, null congruences, generated by two principal null directions of the Weyl tensor. Thus, if the spacetime is an Einstein manifold, the Goldberg-Sachs theorem implies it is Petrov type D, and by explicit construction, is in the Carter class. Hence, our analysis provide an straightforward connection between the most general integrable structure and the Carter family of spacetimes.
Comparing Resource Adequacy Metrics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Ibanez, E.; Milligan, M.
2014-09-01
As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.
Metric scales for emotion measurement
Directory of Open Access Journals (Sweden)
Martin Junge
2016-09-01
Full Text Available The scale quality of indirect and direct scalings of the intensity of emotional experiences was investigated from the perspective of representational measurement theory. Study 1 focused on sensory pleasantness and disgust, Study 2 on surprise and amusement, and Study 3 on relief and disappointment. In each study, the emotion intensities elicited by a set of stimuli were estimated using Ordinal Difference Scaling, an indirect probabilistic scaling method based on graded pair comparisons. The obtained scale values were used to select test cases for the quadruple axiom, a central axiom of difference measurement. A parametric bootstrap test was used to decide whether the participants’ difference judgments systematically violated the axiom. Most participants passed this test. The indirect scalings of these participants were then linearly correlated with their direct emotion intensity ratings to determine whether they agreed with them up to measurement error, and hence might be metric as well. The majority of the participants did not pass this test. The findings suggest that Ordinal Difference Scaling allows to measure emotion intensity on a metric scale level for most participants. As a consequence, quantitative emotion theories become amenable to empirical test on the individual level using indirect measurements of emotional experience.
Nutku, Y.; Sheftel, M. B.
2014-02-01
This is a corrected and essentially extended version of the unpublished manuscript by Y Nutku and M Sheftel which contains new results. It is proposed to be published in honour of Y Nutku’s memory. All corrections and new results in sections 1, 2 and 4 are due to M Sheftel. We present new anti-self-dual exact solutions of the Einstein field equations with Euclidean and neutral (ultra-hyperbolic) signatures that admit only one rotational Killing vector. Such solutions of the Einstein field equations are determined by non-invariant solutions of Boyer-Finley (BF) equation. For the case of Euclidean signature such a solution of the BF equation was first constructed by Calderbank and Tod. Two years later, Martina, Sheftel and Winternitz applied the method of group foliation to the BF equation and reproduced the Calderbank-Tod solution together with new solutions for the neutral signature. In the case of Euclidean signature we obtain new metrics which asymptotically locally look like a flat space and have a non-removable singular point at the origin. In the case of ultra-hyperbolic signature there exist three inequivalent forms of metric. Only one of these can be obtained by analytic continuation from the Calderbank-Tod solution whereas the other two are new.
Metrics for building performance assurance
Energy Technology Data Exchange (ETDEWEB)
Koles, G.; Hitchcock, R.; Sherman, M.
1996-07-01
This report documents part of the work performed in phase I of a Laboratory Directors Research and Development (LDRD) funded project entitled Building Performance Assurances (BPA). The focus of the BPA effort is to transform the way buildings are built and operated in order to improve building performance by facilitating or providing tools, infrastructure, and information. The efforts described herein focus on the development of metrics with which to evaluate building performance and for which information and optimization tools need to be developed. The classes of building performance metrics reviewed are (1) Building Services (2) First Costs, (3) Operating Costs, (4) Maintenance Costs, and (5) Energy and Environmental Factors. The first category defines the direct benefits associated with buildings; the next three are different kinds of costs associated with providing those benefits; the last category includes concerns that are broader than direct costs and benefits to the building owner and building occupants. The level of detail of the various issues reflect the current state of knowledge in those scientific areas and the ability of the to determine that state of knowledge, rather than directly reflecting the importance of these issues; it intentionally does not specifically focus on energy issues. The report describes work in progress and is intended as a resource and can be used to indicate the areas needing more investigation. Other reports on BPA activities are also available.
Learning adaptive metric for robust visual tracking.
Jiang, Nan; Liu, Wenyu; Wu, Ying
2011-08-01
Matching the visual appearances of the target over consecutive image frames is the most critical issue in video-based object tracking. Choosing an appropriate distance metric for matching determines its accuracy and robustness, and thus significantly influences the tracking performance. Most existing tracking methods employ fixed pre-specified distance metrics. However, this simple treatment is problematic and limited in practice, because a pre-specified metric does not likely to guarantee the closest match to be the true target of interest. This paper presents a new tracking approach that incorporates adaptive metric learning into the framework of visual object tracking. Collecting a set of supervised training samples on-the-fly in the observed video, this new approach automatically learns the optimal distance metric for more accurate matching. The design of the learned metric ensures that the closest match is very likely to be the true target of interest based on the supervised training. Such a learned metric is discriminative and adaptive. This paper substantializes this new approach in a solid case study of adaptive-metric differential tracking, and obtains a closed-form analytical solution to motion estimation and visual tracking. Moreover, this paper extends the basic linear distance metric learning method to a more powerful nonlinear kernel metric learning method. Extensive experiments validate the effectiveness of the proposed approach, and demonstrate the improved performance of the proposed new tracking method.
Quality Metric Development Framework (qMDF
Directory of Open Access Journals (Sweden)
K. Mustafa
2005-01-01
Full Text Available Several object-oriented metrics have been developed and used in conjunction with the quality models to predict the overall quality of software. However, it may not be enough to propose metrics. The fundamental question may be of their validity, utility and reliability. It may be much significant to be sure that these metrics are really useful and for that their construct validity must be assured. Thereby, good quality metrics must be developed using a foolproof and sound framework / model. A critical review of literature on the attempts in this regard reveals that there is no standard framework or model available for such an important activity. This study presents a framework for the quality metric development called Metric Development Framework (qMDF, which is prescriptive in nature. qMDF is a general framework but it has been established specially with ideas of object-oriented metrics. qMDF has been implemented to develop a good quality design metric, as a validation of proposed framework. Finally, it is defended that adaptation of qMDF by metric developers would yield good quality metrics, while ensuring their construct validity, utility, reliability and reduced developmental effort.
From Smooth Curves to Universal Metrics
Gurses, Metin; Tekin, Bayram
2016-01-01
A special class of metrics, called universal metrics, solve all gravity theories defined by covariant field equations purely based on the metric tensor. Since we currently lack the knowledge of what the full of quantum corrected field equations of gravity are at a given microscopic length scale, these metrics are particularly important in understanding quantum fields in curved backgrounds in a consistent way. But, finding explicit universal metrics has been a hard problem as there does not seem to be a procedure for it. In this work, we overcome this difficulty and give a construction of universal metrics of d dimensional spacetime from curves constrained to live in a d-1 dimensional Minkowski spacetime or a Euclidean space.
Affine and Projective Tree Metric Theorems
Harel, Matan; Pachter, Lior
2011-01-01
The tree metric theorem provides a combinatorial four point condition that characterizes dissimilarity maps derived from pairwise compatible split systems. A similar (but weaker) four point condition characterizes dissimilarity maps derived from circular split systems (Kalmanson metrics). The tree metric theorem was first discovered in the context of phylogenetics and forms the basis of many tree reconstruction algorithms, whereas Kalmanson metrics were first considered by computer scientists, and are notable in that they are a non-trivial class of metrics for which the traveling salesman problem is tractable. We present a unifying framework for these theorems based on combinatorial structures that are used for graph planarity testing. These are (projective) PC-trees, and their affine analogs, PQ-trees. In the projective case, we generalize a number of concepts from clustering theory, including hierarchies, pyramids, ultrametrics and Robinsonian matrices, and the theorems that relate them. As with tree metric...
From smooth curves to universal metrics
Gürses, Metin; Şişman, Tahsin ćaǧrı; Tekin, Bayram
2016-08-01
A special class of metrics, called universal metrics, solves all gravity theories defined by covariant field equations purely based on the metric tensor. Since we currently lack the knowledge of what the full quantum-corrected field equations of gravity are at a given microscopic length scale, these metrics are particularly important in understanding quantum fields in curved backgrounds in a consistent way. However, finding explicit universal metrics has been a difficult problem as there does not seem to be a procedure for it. In this work, we overcome this difficulty and give a construction of universal metrics of d -dimensional spacetime from curves constrained to live in a (d -1 )-dimensional Minkowski spacetime or a Euclidean space.
Ramified optimal transportation in geodesic metric spaces
Xia, Qinglan
2009-01-01
An optimal transport path may be viewed as a geodesic in the space of probability measures under a suitable family of metrics. This geodesic may exhibit a tree-shaped branching structure in many applications such as trees, blood vessels, draining and irrigation systems. Here, we extend the study of ramified optimal transportation between probability measures from Euclidean spaces to a geodesic metric space. We investigate the existence as well as the behavior of optimal transport paths under various properties of the metric such as completeness, doubling, or curvature upper boundedness. We also introduce the transport dimension of a probability measure on a complete geodesic metric space, and show that the transport dimension of a probability measure is bounded above by the Minkowski dimension and below by the Hausdorff dimension of the measure. Moreover, we introduce a metric, called "the dimensional distance", on the space of probability measures. This metric gives a geometric meaning to the transport dimen...
The Kerr-Newman metric: A Review
Adamo, Tim
2014-01-01
The Kerr-Newman metric describes a very special rotating, charged mass and is the most general of the asymptotically flat stationary 'black hole' solutions to the Einstein-Maxwell equations of general relativity. We review the derivation of this metric from the Reissner-Nordstrom solution by means of a complex transformation algorithm and provide a brief overview of its basic geometric properties. We also include some discussion of interpretive issues, related metrics, and higher-dimensional analogues.
Common Metrics for Human-Robot Interaction
Steinfeld, Aaron; Lewis, Michael; Fong, Terrence; Scholtz, Jean; Schultz, Alan; Kaber, David; Goodrich, Michael
2006-01-01
This paper describes an effort to identify common metrics for task-oriented human-robot interaction (HRI). We begin by discussing the need for a toolkit of HRI metrics. We then describe the framework of our work and identify important biasing factors that must be taken into consideration. Finally, we present suggested common metrics for standardization and a case study. Preparation of a larger, more detailed toolkit is in progress.
A Note on Discrete Einstein Metric
Ge, Huabin
2015-01-01
In this short note, we prove that the space of all admissible piecewise linear metrics parameterized by length square on a triangulated manifolds is a convex cone. We further study Regge's Einstein-Hilbert action and give a much more reasonable definition of discrete Einstein metric than our former version in \\cite{G}. Finally, we introduce a discrete Ricci flow for three dimensional triangulated manifolds, which is closely related to the existence of discrete Einstein metrics.
The definitive guide to IT service metrics
McWhirter, Kurt
2012-01-01
Used just as they are, the metrics in this book will bring many benefits to both the IT department and the business as a whole. Details of the attributes of each metric are given, enabling you to make the right choices for your business. You may prefer and are encouraged to design and create your own metrics to bring even more value to your business - this book will show you how to do this, too.
A Metric Observer for Induction Motors Control
Directory of Open Access Journals (Sweden)
Mohamed Benbouzid
2016-01-01
Full Text Available This paper deals with metric observer application for induction motors. Firstly, assuming that stator currents and speed are measured, a metric observer is designed to estimate the rotor fluxes. Secondly, assuming that only stator currents are measured, another metric observer is derived to estimate rotor fluxes and speed. The proposed observer validity is checked throughout simulations on a 4 kW induction motor drive.
On Nakhleh's metric for reduced phylogenetic networks.
Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel
2009-01-01
We prove that Nakhleh's metric for reduced phylogenetic networks is also a metric on the classes of tree-child phylogenetic networks, semibinary tree-sibling time consistent phylogenetic networks, and multilabeled phylogenetic trees. We also prove that it separates distinguishable phylogenetic networks. In this way, it becomes the strongest dissimilarity measure for phylogenetic networks available so far. Furthermore, we propose a generalization of that metric that separates arbitrary phylogenetic networks.
Metrics for antibody therapeutics development.
Reichert, Janice M
2010-01-01
A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approved in the United States, were derived from analysis of a dataset of over 600 therapeutic mAbs that entered clinical study sponsored, at least in part, by commercial firms. The results presented provide an overview of the field and context for the evaluation of on-going and prospective mAb development programs. The expansion of therapeutic antibody use through supplemental marketing approvals and the increase in the study of therapeutics derived from alternative antibody formats are discussed.
A Metric Conceptual Space Algebra
Adams, Benjamin; Raubal, Martin
The modeling of concepts from a cognitive perspective is important for designing spatial information systems that interoperate with human users. Concept representations that are built using geometric and topological conceptual space structures are well suited for semantic similarity and concept combination operations. In addition, concepts that are more closely grounded in the physical world, such as many spatial concepts, have a natural fit with the geometric structure of conceptual spaces. Despite these apparent advantages, conceptual spaces are underutilized because existing formalizations of conceptual space theory have focused on individual aspects of the theory rather than the creation of a comprehensive algebra. In this paper we present a metric conceptual space algebra that is designed to facilitate the creation of conceptual space knowledge bases and inferencing systems. Conceptual regions are represented as convex polytopes and context is built in as a fundamental element. We demonstrate the applicability of the algebra to spatial information systems with a proof-of-concept application.
THE QUALITY METRICS OF INFORMATION SYSTEMS
Directory of Open Access Journals (Sweden)
Zora Arsovski
2008-06-01
Full Text Available Information system is a special kind of products which is depend upon great number variables related to nature, conditions during implementation and organizational clime and culture. Because that quality metrics of information system (QMIS has to reflect all previous aspects of information systems. In this paper are presented basic elements of QMIS, characteristics of implementation and operation metrics for IS, team - management quality metrics for IS and organizational aspects of quality metrics. In second part of this paper are presented results of study of QMIS in area of MIS (Management IS.
Einstein Manifolds and Extremal Kahler Metrics
LeBrun, Claude
2010-01-01
In joint work with Chen and Weber, the author has elsewhere shown that CP2#2(-CP2) admits an Einstein metric. The present paper presents a new and rather different proof of the existence of such an Einstein metric, using a variational approach which simultaneously casts new light on the related uniqueness problem. Our results include new existence theorems for extremal Kahler metrics, and these allow one to prove the above existence statement by deforming the Kahler-Einstein metric on CP2#3(-CP2) until bubbling-off occurs.
Reconstructing propagation networks with temporal similarity metrics
Liao, Hao
2014-01-01
Node similarity is a significant property driving the growth of real networks. In this paper, based on the observed spreading results we apply the node similarity metrics to reconstruct propagation networks. We find that the reconstruction accuracy of the similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, there is a range of infection rate in which the reconstruction accuracy of some similarity metrics drops to nearly zero. In order to improve the similarity-based reconstruction method, we finally propose a temporal similarity metric to take into account the time information of the spreading. The reconstruction results are remarkably improved with the new method.
Radiation-dominated area metric cosmology
Schuller, Frederic P
2007-01-01
We provide further crucial support for a refined, area metric structure of spacetime. Based on the solution of conceptual issues, such as the consistent coupling of fermions and the covariant identification of radiation fields on area metric backgrounds, we show that the radiation-dominated epoch of area metric cosmology is equivalent to that epoch in standard Einstein cosmology. This ensures, in particular, successful nucleosynthesis. This surprising result complements the previously derived prediction of a small late-time acceleration of an area metric universe.
Clark, H. Clifford; Richmond, Alan
1983-01-01
Sixth-grade students and teachers were tested to determine students' metric achievement and their teachers' attitudes toward metric instruction after seven years of regular classroom instruction. Results were somewhat disappointing. (MNS)
Information metrics (iMetrics): A research specialty with a socio-cognitive identity?
Milojević, S.; Leydesdorff, L.
2013-01-01
"Bibliometrics", "scientometrics", "informetrics", and "webometrics" can all be considered as manifestations of a single research area with similar objectives and methods, which we call "information metrics" or iMetrics. This study explores the cognitive and social distinctness of iMetrics with resp
Metric of a Slow Rotating Body with Quadrupole Moment from the Erez-Rosen Metric
Frutos-Alfaro, Francisco; Cordero-García, Iván; Ulloa-Esquivel, Oscar
2012-01-01
A metric representing a slow rotating object with quadrupole moment is obtained using the Newman-Janis formalism to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativistic astrometry and gravitational lensing problems in which a quadrupole moment has to be taken into account.
Energy Technology Data Exchange (ETDEWEB)
Kahler, S.W.; Cliver, E.W.; Cane, H.V.
1986-01-01
Shock-associated (SA) events are a class of kilometric-wavelength solar radio bursts first observed with the ISEE-3 Radio Astronomy Experiment. These fast-drift events are typically associated with metric type II bursts and hypothesized that the SA events were due to electrons accelerated by coronal shocks. Compare SA events from 1978 to 1982 with metric type II bursts and solar energetic particle (SEP) events. Most metric type II bursts are not obviously associated with SA events at 1980 kHz. Metric type II bursts associated with magnetically well connected flares and SA emission are well correlated with SEP events; those without SA emission are poorly correlated with SEP events. The largest SEP events from flares at any longitude are well correlated with SAs. These results are consistent with the hypothesis that the escaping electrons giving rise to SA emission are accelerated in coronal shocks.
A Magnetic Consistency Relation
Jain, Rajeev Kumar
2012-01-01
If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the Cosmic Microwave Background anisotropies and Large Scale Structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.
Fuzzy Set Field and Fuzzy Metric
Gebru Gebray; B. Krishna Reddy
2014-01-01
The notation of fuzzy set field is introduced. A fuzzy metric is redefined on fuzzy set field and on arbitrary fuzzy set in a field. The metric redefined is between fuzzy points and constitutes both fuzziness and crisp property of vector. In addition, a fuzzy magnitude of a fuzzy point in a field is defined.
Metrics for Automotive Merchandising, Petroleum Marketing.
Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.
Designed to meet the job-related metric measurement needs of students in automotive merchandising and petroleum marketing classes, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know…
Invariant metric for nonlinear symplectic maps
Indian Academy of Sciences (India)
Govindan Rangarajan; Minita Sachidanand
2002-03-01
In this paper, we construct an invariant metric in the space of homogeneous polynomials of a given degree (≥ 3). The homogeneous polynomials specify a nonlinear symplectic map which in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as a function of system parameters, we demonstrate that the performance of a nonlinear Hamiltonian system is enhanced.
Einstein Hermitian Metrics of Positive Sectional Curvature
Koca, Caner
2011-01-01
In this paper we will prove that the only compact 4-manifold M with an Einstein metric of positive sectional curvature which is also hermitian with respect to some complex structure on M, is the complex projective plane CP^2, with its Fubini-Study metric.
Cluster-based adaptive metric classification
Giotis, Ioannis; Petkov, Nicolai
2012-01-01
Introducing adaptive metric has been shown to improve the results of distance-based classification algorithms. Existing methods are often computationally intensive, either in the training or in the classification phase. We present a novel algorithm that we call Cluster-Based Adaptive Metric (CLAM) c
Finite Metric Spaces of Strictly Negative Type
DEFF Research Database (Denmark)
Hjorth, Poul; Lisonek, P.; Markvorsen, Steen
1998-01-01
We prove that, if a finite metric space is of strictly negative type, then its transfinite diameter is uniquely realized by the infinite extender (load vector). Finite metric spaces that have this property include all spaces on two, three, or four points, all trees, and all finite subspaces of Eu...
Slowly rotating Curzon-Chazy Metric
Montero-Camacho, Paulo; Gutierrez-Chaves, Carlos
2014-01-01
A new rotation version of the Curzon-Chazy metric is found. This new metric was obtained by means of a perturbation method, in order to include slow rotation. The solution is then proved to fulfill the Einstein field equations using a REDUCE program. Furthermore, the applications of this new solution are discussed.
Metrics for Offset Printing Press Operation.
Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.
Designed to meet the job-related metric measurement needs of offset printing press operation students, this instructional package is one of six for the communication media occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…
Fixed point theory in metric type spaces
Agarwal, Ravi P; O’Regan, Donal; Roldán-López-de-Hierro, Antonio Francisco
2015-01-01
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise natur...
Cluster-based adaptive metric classification
Giotis, Ioannis; Petkov, Nicolai
2012-01-01
Introducing adaptive metric has been shown to improve the results of distance-based classification algorithms. Existing methods are often computationally intensive, either in the training or in the classification phase. We present a novel algorithm that we call Cluster-Based Adaptive Metric (CLAM)
Discrete homology theory for metric spaces
H. Barcelo (Hélène); V. Capraro (Valerio); J. A. White; H. Barcelo (Hélène)
2014-01-01
htmlabstractWe define and study a notion of discrete homology theory for metric spaces. Instead of working with simplicial homology, our chain complexes are given by Lipschitz maps from an n n -dimensional cube to a fixed metric space. We prove that the resulting homology theory satisfies a
Program for implementing software quality metrics
Energy Technology Data Exchange (ETDEWEB)
Yule, H.P.; Riemer, C.A.
1992-04-01
This report describes a program by which the Veterans Benefit Administration (VBA) can implement metrics to measure the performance of automated data systems and demonstrate that they are improving over time. It provides a definition of quality, particularly with regard to software. Requirements for management and staff to achieve a successful metrics program are discussed. It lists the attributes of high-quality software, then describes the metrics or calculations that can be used to measure these attributes in a particular system. Case studies of some successful metrics programs used by business are presented. The report ends with suggestions on which metrics the VBA should use and the order in which they should be implemented.
Deformations of three-dimensional metrics
Pugliese, Daniela; Stornaiolo, Cosimo
2015-03-01
We examine three-dimensional metric deformations based on a tetrad transformation through the action the matrices of scalar field. We describe by this approach to deformation the results obtained by Coll et al. (Gen. Relativ. Gravit. 34:269, 2002), where it is stated that any three-dimensional metric was locally obtained as a deformation of a constant curvature metric parameterized by a 2-form. To this aim, we construct the corresponding deforming matrices and provide their classification according to the properties of the scalar and of the vector used in Coll et al. (Gen Relativ Gravit 34:269, 2002) to deform the initial metric. The resulting causal structure of the deformed geometries is examined, too. Finally we apply our results to a spherically symmetric three geometry and to a space sector of Kerr metric.
FABASOFT BEST PRACTICES AND TEST METRICS MODEL
Directory of Open Access Journals (Sweden)
Nadica Hrgarek
2007-06-01
Full Text Available Software companies have to face serious problems about how to measure the progress of test activities and quality of software products in order to estimate test completion criteria, and if the shipment milestone will be reached on time. Measurement is a key activity in testing life cycle and requires established, managed and well documented test process, defined software quality attributes, quantitative measures, and using of test management and bug tracking tools. Test metrics are a subset of software metrics (product metrics, process metrics and enable the measurement and quality improvement of test process and/or software product. The goal of this paper is to briefly present Fabasoft best practices and lessons learned during functional and system testing of big complex software products, and to describe a simple test metrics model applied to the software test process with the purpose to better control software projects, measure and increase software quality.
Smart Grid Status and Metrics Report Appendices
Energy Technology Data Exchange (ETDEWEB)
Balducci, Patrick J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonopoulos, Chrissi A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clements, Samuel L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorrissen, Willy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ruiz, Kathleen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Chris [APQC, Houston, TX (United States); Varney, Jeff [APQC, Houston, TX (United States)
2014-07-01
A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.
Topology on locally finite metric spaces
Capraro, Valerio
2011-01-01
The necessity of a theory of General Topology and, most of all, of Algebraic Topology on locally finite metric spaces comes from many areas of research in both Applied and Pure Mathematics: Molecular Biology, Mathematical Chemistry, Computer Science, Topological Graph Theory and Metric Geometry. In this paper we propose the basic notions of such a theory and some applications: we replace the classical notions of continuous function, homeomorphism and homotopic equivalence with the notions of NPP-function, NPP-local-isomorphism and NPP-homotopy (NPP stands for Nearest Point Preserving); we also introduce the notion of NPP-isomorphism. We construct three invariants under NPP-isomorphisms and, in particular, we define the fundamental group of a locally finite metric space. As first applications, we propose the following: motivated by the longstanding question whether there is a purely metric condition which extends the notion of amenability of a group to any metric space, we propose the property SN (Small Neighb...
Metrics for Polyphonic Sound Event Detection
Directory of Open Access Journals (Sweden)
Annamaria Mesaros
2016-05-01
Full Text Available This paper presents and discusses various metrics proposed for evaluation of polyphonic sound event detection systems used in realistic situations where there are typically multiple sound sources active simultaneously. The system output in this case contains overlapping events, marked as multiple sounds detected as being active at the same time. The polyphonic system output requires a suitable procedure for evaluation against a reference. Metrics from neighboring fields such as speech recognition and speaker diarization can be used, but they need to be partially redefined to deal with the overlapping events. We present a review of the most common metrics in the field and the way they are adapted and interpreted in the polyphonic case. We discuss segment-based and event-based definitions of each metric and explain the consequences of instance-based and class-based averaging using a case study. In parallel, we provide a toolbox containing implementations of presented metrics.
The metrics of science and technology
Geisler, Eliezer
2000-01-01
Dr. Geisler's far-reaching, unique book provides an encyclopedic compilation of the key metrics to measure and evaluate the impact of science and technology on academia, industry, and government. Focusing on such items as economic measures, patents, peer review, and other criteria, and supported by an extensive review of the literature, Dr. Geisler gives a thorough analysis of the strengths and weaknesses inherent in metric design, and in the use of the specific metrics he cites. His book has already received prepublication attention, and will prove especially valuable for academics in technology management, engineering, and science policy; industrial R&D executives and policymakers; government science and technology policymakers; and scientists and managers in government research and technology institutions. Geisler maintains that the application of metrics to evaluate science and technology at all levels illustrates the variety of tools we currently possess. Each metric has its own unique strengths and...
Algorithms for Game Metrics (Full Version)
Chatterjee, Krishnendu; Majumdar, Rupak; Raman, Vishwanath
2008-01-01
Simulation and bisimulation metrics for stochastic systems provide a quantitative generalization of the classical simulation and bisimulation relations. These metrics capture the similarity of states with respect to quantitative specifications written in the quantitative mu-calculus and related probabilistic logics. We show that game metrics, besides being logically characterized by the quantitative mu-calculus, also provide a bound for discounted and long-run average values of games. We then present algorithms for computing the metrics on Markov decision processes (MDPs), turn-based stochastic games, and concurrent games. For turn-based games and MDPs, we provide a polynomial-time algorithm for the computation of the one-step metric distance between states. The algorithm is based on linear programming. For concurrent games, we show that computing the exact distance between states is at least as hard as computing the value of concurrent reachability games and the square-root-sum problem in computational geome...
Geometry of manifolds with area metric
Schuller, F P
2005-01-01
We construct the differential geometry of smooth manifolds equipped with an algebraic curvature map acting as an area measure. Area metric geometry provides a spacetime structure suitable for the discussion of gauge theories and strings, and is considerably more general than Lorentzian geometry. Our construction of geometrically relevant objects, such as an area metric compatible connection and derived tensors, makes essential use of a decomposition theorem due to Gilkey, showing that a general area metric is generated by a finite collection of metrics rather than by a single one. Employing curvature invariants for area metric manifolds we devise an entirely new class of gravity theories with inherently stringy character, and discuss gauge matter actions.
String Rearrangement Metrics: A Survey
Amir, Amihood; Levy, Avivit
A basic assumption in traditional pattern matching is that the order of the elements in the given input strings is correct, while the description of the content, i.e. the description of the elements, may be erroneous. Motivated by questions that arise in Text Editing, Computational Biology, Bit Torrent and Video on Demand, and Computer Architecture, a new pattern matching paradigm was recently proposed by [2]. In this model, the pattern content remains intact, but the relative positions may change. Several papers followed the initial definition of the new paradigm. Each paper revealed new aspects in the world of string rearrangement metrics. This new unified view has already proven itself by enabling the solution of an open problem of the mathematician Cayley from 1849. It also gave better insight to problems that were already studied in different and limited situations, such as the behavior of different cost functions, and enabled deriving results for cost functions that were not yet sufficiently analyzed by previous research. At this stage, a general understanding of this new model is beginning to coalesce. The aim of this survey is to present an overview of this recent new direction of research, the problems, the methodologies, and the state-of-the-art.
Metrics for border management systems.
Energy Technology Data Exchange (ETDEWEB)
Duggan, Ruth Ann
2009-07-01
There are as many unique and disparate manifestations of border systems as there are borders to protect. Border Security is a highly complex system analysis problem with global, regional, national, sector, and border element dimensions for land, water, and air domains. The complexity increases with the multiple, and sometimes conflicting, missions for regulating the flow of people and goods across borders, while securing them for national security. These systems include frontier border surveillance, immigration management and customs functions that must operate in a variety of weather, terrain, operational conditions, cultural constraints, and geopolitical contexts. As part of a Laboratory Directed Research and Development Project 08-684 (Year 1), the team developed a reference framework to decompose this complex system into international/regional, national, and border elements levels covering customs, immigration, and border policing functions. This generalized architecture is relevant to both domestic and international borders. As part of year two of this project (09-1204), the team determined relevant relative measures to better understand border management performance. This paper describes those relative metrics and how they can be used to improve border management systems.
Entropy of continuous maps on quasi-metric spaces
Sayyari, Y.; Molaei, M.; Moghayer, S.M.
2015-01-01
The category of metric spaces is a subcategory of quasi-metric spaces. In this paper the notion of entropy for the continuous maps of a quasi-metric space is extended via spanning and separated sets. Moreover, two metric spaces that are associated to a given quasi-metric space are introduced and the
A New Metrics for Hierarchical Clustering
Institute of Scientific and Technical Information of China (English)
YANGGuangwen; SHIShuming; WANGDingxing
2003-01-01
Hierarchical clustering is a popular method of performing unsupervised learning. Some metric must be used to determine the similarity between pairs of clusters in hierarchical clustering. Traditional similarity metrics either can deal with simple shapes (i.e. spherical shapes) only or are very sensitive to outliers (the chaining effect). The main contribution of this paper is to propose some potential-based similarity metrics (APES and AMAPES) between clusters in hierarchical clustering, inspired by the concepts of the electric potential and the gravitational potential in electromagnetics and astronomy. The main features of these metrics are: the first, they have strong antijamming capability; the second, they are capable of finding clusters of different shapes such as spherical, spiral, chain, circle, sigmoid, U shape or other complex irregular shapes; the third, existing algorithms and research fruits for classical metrics can be adopted to deal with these new potential-based metrics with no or little modification. Experiments showed that the new metrics are more superior to traditional ones. Different potential functions are compared, and the sensitivity to parameters is also analyzed in this paper.
Robust Transfer Metric Learning for Image Classification.
Ding, Zhengming; Fu, Yun
2017-02-01
Metric learning has attracted increasing attention due to its critical role in image analysis and classification. Conventional metric learning always assumes that the training and test data are sampled from the same or similar distribution. However, to build an effective distance metric, we need abundant supervised knowledge (i.e., side/label information), which is generally inaccessible in practice, because of the expensive labeling cost. In this paper, we develop a robust transfer metric learning (RTML) framework to effectively assist the unlabeled target learning by transferring the knowledge from the well-labeled source domain. Specifically, RTML exploits knowledge transfer to mitigate the domain shift in two directions, i.e., sample space and feature space. In the sample space, domain-wise and class-wise adaption schemes are adopted to bridge the gap of marginal and conditional distribution disparities across two domains. In the feature space, our metric is built in a marginalized denoising fashion and low-rank constraint, which make it more robust to tackle noisy data in reality. Furthermore, we design an explicit rank constraint regularizer to replace the rank minimization NP-hard problem to guide the low-rank metric learning. Experimental results on several standard benchmarks demonstrate the effectiveness of our proposed RTML by comparing it with the state-of-the-art transfer learning and metric learning algorithms.
Altmetrics - a complement to conventional metrics.
Melero, Remedios
2015-01-01
Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Both can be employed in conjunction to offer a richer picture of an article use from immediate to long terms. Article-level metrics (ALM) is the result of the aggregation of different data sources and the collection of content from multiple social network services. Sources used for the aggregation can be broken down into five categories: usage, captures, mentions, social media and citations. Data sources depend on the tool, but they include classic metrics indicators based on citations, academic social networks (Mendeley, CiteULike, Delicious) and social media (Facebook, Twitter, blogs, or Youtube, among others). Altmetrics is not synonymous with alternative metrics. Altmetrics are normally early available and allow to assess the social impact of scholarly outputs, almost at the real time. This paper overviews briefly the meaning of altmetrics and describes some of the existing tools used to apply this new metrics: Public Library of Science--Article-Level Metrics, Altmetric, Impactstory and Plum.
Altmetrics – a complement to conventional metrics
Melero, Remedios
2015-01-01
Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Both can be employed in conjunction to offer a richer picture of an article use from immediate to long terms. Article-level metrics (ALM) is the result of the aggregation of different data sources and the collection of content from multiple social network services. Sources used for the aggregation can be broken down into five categories: usage, captures, mentions, social media and citations. Data sources depend on the tool, but they include classic metrics indicators based on citations, academic social networks (Mendeley, CiteULike, Delicious) and social media (Facebook, Twitter, blogs, or Youtube, among others). Altmetrics is not synonymous with alternative metrics. Altmetrics are normally early available and allow to assess the social impact of scholarly outputs, almost at the real time. This paper overviews briefly the meaning of altmetrics and describes some of the existing tools used to apply this new metrics: Public Library of Science - Article-Level Metrics, Altmetric, Impactstory and Plum. PMID:26110028
MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES
Directory of Open Access Journals (Sweden)
GROSU Marian C
2015-05-01
Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.
Metric Entropy of Nonautonomous Dynamical Systems
Directory of Open Access Journals (Sweden)
Kawan Christoph
2014-01-01
Full Text Available We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn; μn of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion of metric entropy. In particular, invariance with respect to appropriately defined isomorphisms, a power rule, and a Rokhlin-type inequality are proved
Finite Metric Spaces of Strictly negative Type
DEFF Research Database (Denmark)
Hjorth, Poul G.
If a finite metric space is of strictly negative type then its transfinite diameter is uniquely realized by an infinite extent (“load vector''). Finite metric spaces that have this property include all trees, and all finite subspaces of Euclidean and Hyperbolic spaces. We prove that if the distan...... matrix of a finite metric space is both hypermetric and regular, then it is of strictly negative type. We show that the strictly negative type finite subspaces of spheres are precisely those which do not contain two pairs of antipodal points....
Software metrics a rigorous and practical approach
Fenton, Norman
2014-01-01
A Framework for Managing, Measuring, and Predicting Attributes of Software Development Products and ProcessesReflecting the immense progress in the development and use of software metrics in the past decades, Software Metrics: A Rigorous and Practical Approach, Third Edition provides an up-to-date, accessible, and comprehensive introduction to software metrics. Like its popular predecessors, this third edition discusses important issues, explains essential concepts, and offers new approaches for tackling long-standing problems.New to the Third EditionThis edition contains new material relevant
Holographic computations of the Quantum Information Metric
Trivella, Andrea
2016-01-01
In this note we show how the Quantum Information Metric can be computed holographically using a perturbative approach. In particular when the deformation of the conformal field theory state is induced by a scalar operator the corresponding bulk configuration reduces to a scalar field perturbatively probing the unperturbed background. We study two concrete examples: a CFT ground state deformed by a primary operator and thermofield double state in $d=2$ deformed by a marginal operator. Finally, we generalize the bulk construction to the case of a multi dimensional parameter space and show that the Quantum Information Metric coincides with the metric of the non-linear sigma model for the corresponding scalar fields.
Generalized Painlev\\'e-Gullstrand metrics
Lin, Chun-Yu
2008-01-01
An obstruction to the implementation of spatially flat Painleve-Gullstrand(PG) slicings is demonstrated, and explicitly discussed for Reissner-Nordstrom and Schwarzschild-anti-deSitter spacetimes. Generalizations of PG slicings which are not spatially flat but which remain regular at the horizons are introduced. These metrics can be obtained from standard spherically symmetric metrics by physical Lorentz boosts. With these generalized PG metrics, problematic contributions to the imaginary part of the action in the Parikh-Wilczek derivation of Hawking radiation due to the obstruction can be avoided.
Applying Sigma Metrics to Reduce Outliers.
Litten, Joseph
2017-03-01
Sigma metrics can be used to predict assay quality, allowing easy comparison of instrument quality and predicting which tests will require minimal quality control (QC) rules to monitor the performance of the method. A Six Sigma QC program can result in fewer controls and fewer QC failures for methods with a sigma metric of 5 or better. The higher the number of methods with a sigma metric of 5 or better, the lower the costs for reagents, supplies, and control material required to monitor the performance of the methods.
p-Hausdorff度量%p-Hausdorff metric
Institute of Scientific and Technical Information of China (English)
何日高
2011-01-01
According to the properties of Firey combination,we first introduce the p-Hausdorff metric,which coincides with the well-known Hausdorff metric in the case p = 1.Then we give two important results on the p-Hausdorff metric.%根据Firey组合的属性,引入p-Hausdorff度量,特别地,当p=1时,p-Hausdorff度量就是著名的Hausdorff度量.进一步运用凸几何分析理论证明关于p-Hausdorff度量的2个重要结论.
Propagation of light in area metric backgrounds
Energy Technology Data Exchange (ETDEWEB)
Punzi, Raffaele; Wohlfarth, Mattias N R [Zentrum fuer Mathematische Physik und II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Schuller, Frederic P, E-mail: raffaele.punzi@desy.d, E-mail: fps@aei.mpg.d, E-mail: mattias.wohlfarth@desy.d [Max Planck Institut fuer Gravitationsphysik, Albert Einstein Institut, Am Muehlenberg 1, 14467 Potsdam (Germany)
2009-02-07
The propagation of light in area metric spacetimes, which naturally emerge as refined backgrounds in quantum electrodynamics and quantum gravity, is studied from first principles. In the geometric-optical limit, light rays are found to follow geodesics in a Finslerian geometry, with the Finsler norm being determined by the area metric tensor. Based on this result, and an understanding of the nonlinear relation between ray vectors and wave covectors in such refined backgrounds, we study light deflection in spherically symmetric situations and obtain experimental bounds on the non-metricity of spacetime in the solar system.
Metrics of Risk Associated with Defects Rediscovery
Miranskyy, Andriy V; Reesor, Mark
2011-01-01
Software defects rediscovered by a large number of customers affect various stakeholders and may: 1) hint at gaps in a software manufacturer's Quality Assurance (QA) processes, 2) lead to an over-load of a software manufacturer's support and maintenance teams, and 3) consume customers' resources, leading to a loss of reputation and a decrease in sales. Quantifying risk associated with the rediscovery of defects can help all of these stake-holders. In this chapter we present a set of metrics needed to quantify the risks. The metrics are designed to help: 1) the QA team to assess their processes; 2) the support and maintenance teams to allocate their resources; and 3) the customers to assess the risk associated with using the software product. The paper includes a validation case study which applies the risk metrics to industrial data. To calculate the metrics we use mathematical instruments like the heavy-tailed Kappa distribution and the G/M/k queuing model.
Classroom reconstruction of the Schwarzschild metric
Kassner, Klaus
2015-01-01
A promising way to introduce general relativity in the classroom is to study the physical predictions that follow from certain given metrics, such as the Schwarzschild one. This involves lower mathematical expenditure than an approach focusing on differential geometry in its full glory and permits to emphasize physical aspects before attacking the field equations. Even so, in terms of motivation, lacking justification of the metric employed may pose an obstacle. The paper discusses how to establish the weak-field limit of the Schwarzschild metric with a minimum of relatively simple physical assumptions. Since this does not appear sufficient to arrive at a form of the metric useful for more than the most basic predictions (gravitational redshift), the determination of a single additional parameter from experiment is admitted. An attractive experimental candidate is the measurement of the perihelion precession of Mercury, because the result was already known before the completion of general relativity. It is sh...
Flight Crew State Monitoring Metrics Project
National Aeronautics and Space Administration — eSky will develop specific crew state metrics based on the timeliness, tempo and accuracy of pilot inputs required by the H-mode Flight Control System (HFCS)....
Metrics, Media and Advertisers: Discussing Relationship
Directory of Open Access Journals (Sweden)
Marco Aurelio de Souza Rodrigues
2014-11-01
Full Text Available This study investigates how Brazilian advertisers are adapting to new media and its attention metrics. In-depth interviews were conducted with advertisers in 2009 and 2011. In 2009, new media and its metrics were celebrated as innovations that would increase advertising campaigns overall efficiency. In 2011, this perception has changed: New media’s profusion of metrics, once seen as an advantage, started to compromise its ease of use and adoption. Among its findings, this study argues that there is an opportunity for media groups willing to shift from a product-focused strategy towards a customer-centric one, through the creation of new, simple and integrative metrics.
Software Metrics Evaluation Based on Entropy
Selvarani, R; Ramachandran, Muthu; Prasad, Kamakshi
2010-01-01
Software engineering activities in the Industry has come a long way with various improve- ments brought in various stages of the software development life cycle. The complexity of modern software, the commercial constraints and the expectation for high quality products demand the accurate fault prediction based on OO design metrics in the class level in the early stages of software development. The object oriented class metrics are used as quality predictors in the entire OO software development life cycle even when a highly iterative, incremental model or agile software process is employed. Recent research has shown some of the OO design metrics are useful for predicting fault-proneness of classes. In this paper the empirical validation of a set of metrics proposed by Chidamber and Kemerer is performed to assess their ability in predicting the software quality in terms of fault proneness and degradation. We have also proposed the design complexity of object-oriented software with Weighted Methods per Class m...
Medicare Contracting - Redacted Benchmark Metric Reports
U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services has compiled aggregate national benchmark cost and workload metrics using data submitted to CMS by the AB MACs and the...
NPScape Metric GIS Data - Conservation Status
National Park Service, Department of the Interior — NPScape conservation status metrics are calculated using data from the USGS Gap Analysis Program (PAD-US), World Protected Areas Database (WDPA), and National Marine...
MPLS/VPN traffic engineering: SLA metrics
Cherkaoui, Omar; MacGibbon, Brenda; Blais, Michel; Serhrouchni, Ahmed
2001-07-01
Traffic engineering must be concerned with a broad definition of service that includes network availability, reliability and stability, as well as traditional traffic data on loss, throughput, delay and jitter. MPLS and Virtual Private Networks (VPNs) significantly contribute to security and Quality of Service (QoS) within communication networks, but there remains a need for metric measurement and evaluation. The purpose of this paper is to propose a methodology which gives a measure for LSP ( Lfew abel Switching Paths) metrics in VPN MPLS networks. We propose here a statistical method for the evaluation of those metrics. Statistical methodology is very important in this type of study since there is a large amount of data to consider. We use the notions of sample surveys, self-similar processes, linear regression, additive models and bootstrapping. The results obtained allows us to estimate the different metrics for such SLAs.
Metrics and Energy Landscapes in Irreversible Thermodynamics
Directory of Open Access Journals (Sweden)
Bjarne Andresen
2015-09-01
Full Text Available We describe how several metrics are possible in thermodynamic state space but that only one, Weinhold’s, has achieved widespread use. Lengths calculated based on this metric have been used to bound dissipation in finite-time (irreversible processes be they continuous or discrete, and described in the energy picture or the entropy picture. Examples are provided from thermodynamics of heat conversion processes as well as chemical reactions. Even losses in economics can be bounded using a thermodynamic type metric. An essential foundation for the metric is a complete equation of state including all extensive variables of the system; examples are given. Finally, the second law of thermodynamics imposes convexity on any equation of state, be it analytical or empirical.
Lorentzian Einstein metrics with prescribed conformal infinity
Enciso, Alberto
2014-01-01
We prove that there are asymptotically anti-de Sitter Einstein metrics with prescribed conformal infinity. More precisely we show that, given any suitably small perturbation $\\hat g$ of the conformal metric of the $(n+1)$-dimensional anti-de Sitter space at timelike infinity, which is given by the canonical Lorentzian metric on the $n$-dimensional cylinder, there is a Lorentzian Einstein metric on $(-T,T)\\times \\mathbb{B}^n$ whose conformal geometry is given by $\\hat g$. This is a Lorentzian counterpart of the Graham-Lee theorem in Riemannian geometry and is motivated by the holographic prescription problem in the context of the AdS/CFT correspondence in string theory.
Thermodynamic motivations of spherically symmetric static metrics
Moradpour, H
2015-01-01
Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.
Clean Cities Annual Metrics Report 2009 (Revised)
Energy Technology Data Exchange (ETDEWEB)
Johnson, C.
2011-08-01
Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.
Business model metrics: an open repository
Heikkila, M.; Bouwman, W.A.G.A.; Heikkila, J; Solaimani, S.; Janssen, W
2015-01-01
Development of successful business models has become a necessity in turbulent business environments, but compared to research on business modeling tools, attention to the role of metrics in designing business models in literature is limited. Building on existing approaches to business models and performance measurement literature, we develop a generic open repository of metrics related to core business model concepts. We validate and assess the practical value of the repository based on four ...
Multipole solutions in metric-affine gravity
Socorro, J; Macías, A; Mielke, E W; Socorro, José; Lämmerzahl, Claus; Macías, Alfredo; Mielke, Eckehard W.
1998-01-01
Above Planck energies, the spacetime might become non--Riemannian, as it is known fron string theory and inflation. Then geometries arise in which nonmetricity and torsion appear as field strengths, side by side with curvature. By gauging the affine group, a metric affine gauge theory emerges as dynamical framework. Here, by using the harmonic map ansatz, a new class of multipole like solutions in the metric affine gravity theory (MAG) is obtained.
Metric Diophantine approximation on homogeneous varieties
Ghosh, Anish; Nevo, Amos
2012-01-01
We develop the metric theory of Diophantine approximation on homogeneous varieties of semisimple algebraic groups and prove results analogous to the classical Khinchin and Jarnik theorems. In full generality our results establish simultaneous Diophantine approximation with respect to several completions, and Diophantine approximation over general number fields using S-algebraic integers. In several important examples, the metric results we obtain are optimal. The proof uses quantitative equidistribution properties of suitable averaging operators, which are derived from spectral bounds in automorphic representations.
Canonical metrics on Cartan--Hartogs domains
Zedda, Michela
2011-01-01
In this paper we address two problems concerning a family of domains $M_{\\Omega}(\\mu) \\subset \\C^n$, called Cartan-Hartogs domains, endowed with a natural Kaehler metric $g(\\mu)$. The first one is determining when the metric $g(\\mu)$ is extremal (in the sense of Calabi), while the second one studies when the coefficient $a_2$ in the Engli\\v{s} expansion of Rawnsley $\\epsilon$-function associated to $g(\\mu)$ is constant.
METRICS IN ORGANIZATIONAL CENTRALIZATION AND DECENTRALIZATION
Vladimir Modrak; Sorin Mihai Radu; Jan Modrak
2014-01-01
Continual improvement of business processes requires, apart from other efforts, to develop effective metrics, by which managers and/or process engineers will be able to manage the organization's growth. Obviously, there are plenty measures that can be taken to optimize processes. Once effective metrics are identified, the assessment team should do what works best for them. In this paper, an organizational “centralization” or “decentralization” is a matter of interest. The dichotomous term “ce...
Modeling Languages: metrics and assessing tools
Fonte, Daniela; Boas, Ismael Vilas; Azevedo, José; Peixoto, José João; Faria, Pedro; Silva, Pedro; Sá, Tiago de, 1990-; Costa, Ulisses; da Cruz, Daniela; Henriques, Pedro Rangel
2012-01-01
Any traditional engineering field has metrics to rigorously assess the quality of their products. Engineers know that the output must satisfy the requirements, must comply with the production and market rules, and must be competitive. Professionals in the new field of software engineering started a few years ago to define metrics to appraise their product: individual programs and software systems. This concern motivates the need to assess not only the outcome but also the process and tools em...
GRC GSFC TDRSS Waveform Metrics Report
Mortensen, Dale J.
2013-01-01
The report presents software metrics and porting metrics for the GGT Waveform. The porting was from a ground-based COTS SDR, the SDR-3000, to the CoNNeCT JPL SDR. The report does not address any of the Operating Environment (OE) software development, nor the original TDRSS waveform development at GSFC for the COTS SDR. With regard to STRS, the report presents compliance data and lessons learned.
Constrained Metric Learning by Permutation Inducing Isometries.
Bosveld, Joel; Mahmood, Arif; Huynh, Du Q; Noakes, Lyle
2016-01-01
The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.
Dynamical Systems on Spectral Metric Spaces
Bellissard, Jean V; Reihani, Kamran
2010-01-01
Let (A,H,D) be a spectral triple, namely: A is a C*-algebra, H is a Hilbert space on which A acts and D is a selfadjoint operator with compact resolvent such that the set of elements of A having a bounded commutator with D is dense. A spectral metric space, the noncommutative analog of a complete metric space, is a spectral triple (A,H,D) with additional properties which guaranty that the Connes metric induces the weak*-topology on the state space of A. A *-automorphism respecting the metric defined a dynamical system. This article gives various answers to the question: is there a canonical spectral triple based upon the crossed product algebra AxZ, characterizing the metric properties of the dynamical system ? If $\\alpha$ is the noncommutative analog of an isometry the answer is yes. Otherwise, the metric bundle construction of Connes and Moscovici is used to replace (A,$\\alpha$) by an equivalent dynamical system acting isometrically. The difficulties relating to the non compactness of this new system are di...
Positive Semidefinite Metric Learning with Boosting
Shen, Chunhua; Wang, Lei; Hengel, Anton van den
2009-01-01
The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \\BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \\BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \\BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classi...
Isometry groups of proper metric spaces
Niemiec, Piotr
2012-01-01
Given a locally compact Polish space X, a necessary and sufficient condition for a group G of homeomorphisms of X to be the full isometry group of (X,d) for some proper metric d on X is given. It is shown that every locally compact Polish group G acts freely on GxY as the full isometry group of GxY with respect to a certain proper metric on GxY, where Y is an arbitrary locally compact Polish space with (card(G),card(Y)) different from (1,2). Locally compact Polish groups which act effectively and almost transitively on complete metric spaces as full isometry groups are characterized. Locally compact Polish non-Abelian groups on which every left invariant metric is automatically right invariant are characterized and fully classified. It is demonstrated that for every locally compact Polish space X having more than two points the set of proper metrics d such that Iso(X,d) = {id} is dense in the space of all proper metrics on X.
Bi-metric pseudo-Finslerian spacetimes
Skakala, Jozef; Visser, Matt
2011-08-01
Finsler spacetimes have become increasingly popular within the theoretical physics community over the last two decades. However, because physicists need to use pseudo-Finsler structures to describe propagation of signals, there will be nonzero null vectors in both the tangent and cotangent spaces — this causes significant problems in that many of the mathematical results normally obtained for "usual" (Euclidean signature) Finsler structures either do not apply, or require significant modifications to their formulation and/or proof. We shall first provide a few basic definitions, explicitly demonstrating the interpretation of bi-metric theories in terms of pseudo-Finsler norms. We shall then discuss the tricky issues that arise when trying to construct an appropriate pseudo-Finsler metric appropriate to bi-metric spacetimes. Whereas in Euclidian signature the construction of the Finsler metric typically fails only at the zero vector, in Lorentzian signature the Finsler metric is typically ill-defined on the entire null cone. Consequently it is not a good idea to try to encode bi-metricity into pseudo-Finsler geometry. One has to be very careful when applying the concept of pseudo-Finsler geometry in physics.
Kofroň, David
2016-01-01
We present the separation of the Teukolsky master equation for the test field of arbitrary spin on the background of the rotating C-metric. We also summarize and simplify some known results about Debye potentials of these fields on type D background. The equation for the Debye potential is also separated. Solving for the Debye potential of the electromagnetic field we show that on the extremely rotating C-metric no magnetic field can penetrate through the outer black hole horizon --- we thus recover the Meissner effect for the C-metric.
Analysis of reliability metrics and quality enhancement measures in current density imaging.
Foomany, F H; Beheshti, M; Magtibay, K; Masse, S; Foltz, W; Sevaptsidis, E; Lai, P; Jaffray, D A; Krishnan, S; Nanthakumar, K; Umapathy, K
2013-01-01
Low frequency current density imaging (LFCDI) is a magnetic resonance imaging (MRI) technique which enables calculation of current pathways within the medium of study. The induced current produces a magnetic flux which presents itself in phase images obtained through MRI scanning. A class of LFCDI challenges arises from the subject rotation requirement, which calls for reliability analysis metrics and specific image registration techniques. In this study these challenges are formulated and in light of proposed discussions, the reliability analysis of calculation of current pathways in a designed phantom and a pig heart is presented. The current passed is measured with less than 5% error for phantom, using CDI method. It is shown that Gauss's law for magnetism can be treated as reliability metric in matching the images in two orientations. For the phantom and pig heart the usefulness of image registration for mitigation of rotation errors is demonstrated. The reliability metric provides a good representation of the degree of correspondence between images in two orientations for phantom and pig heart. In our CDI experiments this metric produced values of 95% and 26%, for phantom, and 88% and 75% for pig heart, for mismatch rotations of 0 and 20 degrees respectively.
Flowing liquid crystal simulating the Schwarzschild metric
Energy Technology Data Exchange (ETDEWEB)
Pereira, Erms R.; Moraes, Fernando [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)
2009-07-01
Full text. We show how to simulate the equatorial section of the Schwarzschild metric through a flowing liquid crystal in its nematic phase. Inside a liquid crystal in the nematic phase, a traveling light ray feels an effective metric, whose properties are linked to perpendicular and parallel refractive indexes, no e ne respectively, of the rod-like molecule of the liquid crystal. As these indexes depend on the scalar order parameter of the liquid crystal, the Beris-Edwards hydrodynamic theory is used to connect the order parameter with the velocity of a liquid crystal flow at each point. This way we calculate a radial velocity profile that simulates the equatorial section of the Schwarzschild metric in the nematic phase of the liquid crystal. This work will be presented in the following way. First, we show the effective metric that describes the light propagation around a (k = 1; c = 0) disclination defect of the nematic phase of a liquid crystalline sample and how this light propagation can be described by the order parameter q of the liquid crystalline material. Afterwards, we consider the liquid crystal flowing radially and we use the Beris-Edwards theory to analyze the dependence of the order parameter of the material with the flowing velocity module. In these two cases we consider the more general situation of three space dimensions. Finally, we employ the result from the second part in the first and we compare with the Schwarzschild metric written in isotropic coordinates. (author)
Future of the PCI Readmission Metric.
Wasfy, Jason H; Yeh, Robert W
2016-03-01
Between 2013 and 2014, the Centers for Medicare and Medicaid Services and the National Cardiovascular Data Registry publically reported risk-adjusted 30-day readmission rates after percutaneous coronary intervention (PCI) as a pilot project. A key strength of this public reporting effort included risk adjustment with clinical rather than administrative data. Furthermore, because readmission after PCI is common, expensive, and preventable, this metric has substantial potential to improve quality and value in American cardiology care. Despite this, concerns about the metric exist. For example, few PCI readmissions are caused by procedural complications, limiting the extent to which improved procedural technique can reduce readmissions. Also, similar to other readmission measures, PCI readmission is associated with socioeconomic status and race. Accordingly, the metric may unfairly penalize hospitals that care for underserved patients. Perhaps in the context of these limitations, Centers for Medicare and Medicaid Services has not yet included PCI readmission among metrics that determine Medicare financial penalties. Nevertheless, provider organizations may still wish to focus on this metric to improve value for cardiology patients. PCI readmission is associated with low-risk chest discomfort and patient anxiety. Therefore, patient education, improved triage mechanisms, and improved care coordination offer opportunities to minimize PCI readmissions. Because PCI readmission is common and costly, reducing PCI readmission offers provider organizations a compelling target to improve the quality of care, and also performance in contracts involve shared financial risk.
Implementing the Data Center Energy Productivity Metric
Energy Technology Data Exchange (ETDEWEB)
Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.
2012-10-01
As data centers proliferate in both size and number, their energy efficiency is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high performance computing data center. We found that DCeP was successful in clearly distinguishing between different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve (or even maximize) energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and among data centers.
Cleanroom Energy Efficiency: Metrics and Benchmarks
Energy Technology Data Exchange (ETDEWEB)
International SEMATECH Manufacturing Initiative; Mathew, Paul A.; Tschudi, William; Sartor, Dale; Beasley, James
2010-07-07
Cleanrooms are among the most energy-intensive types of facilities. This is primarily due to the cleanliness requirements that result in high airflow rates and system static pressures, as well as process requirements that result in high cooling loads. Various studies have shown that there is a wide range of cleanroom energy efficiencies and that facility managers may not be aware of how energy efficient their cleanroom facility can be relative to other cleanroom facilities with the same cleanliness requirements. Metrics and benchmarks are an effective way to compare one facility to another and to track the performance of a given facility over time. This article presents the key metrics and benchmarks that facility managers can use to assess, track, and manage their cleanroom energy efficiency or to set energy efficiency targets for new construction. These include system-level metrics such as air change rates, air handling W/cfm, and filter pressure drops. Operational data are presented from over 20 different cleanrooms that were benchmarked with these metrics and that are part of the cleanroom benchmark dataset maintained by Lawrence Berkeley National Laboratory (LBNL). Overall production efficiency metrics for cleanrooms in 28 semiconductor manufacturing facilities in the United States and recorded in the Fabs21 database are also presented.
SOFTWARE METRICS VALIDATION METHODOLOGIES IN SOFTWARE ENGINEERING
Directory of Open Access Journals (Sweden)
K.P. Srinivasan
2014-12-01
Full Text Available In the software measurement validations, assessing the validation of software metrics in software engineering is a very difficult task due to lack of theoretical methodology and empirical methodology [41, 44, 45]. During recent years, there have been a number of researchers addressing the issue of validating software metrics. At present, software metrics are validated theoretically using properties of measures. Further, software measurement plays an important role in understanding and controlling software development practices and products. The major requirement in software measurement is that the measures must represent accurately those attributes they purport to quantify and validation is critical to the success of software measurement. Normally, validation is a collection of analysis and testing activities across the full life cycle and complements the efforts of other quality engineering functions and validation is a critical task in any engineering project. Further, validation objective is to discover defects in a system and assess whether or not the system is useful and usable in operational situation. In the case of software engineering, validation is one of the software engineering disciplines that help build quality into software. The major objective of software validation process is to determine that the software performs its intended functions correctly and provides information about its quality and reliability. This paper discusses the validation methodology, techniques and different properties of measures that are used for software metrics validation. In most cases, theoretical and empirical validations are conducted for software metrics validations in software engineering [1-50].
Metric for Estimating Congruity between Quantum Images
Directory of Open Access Journals (Sweden)
Abdullah M. Iliyasu
2016-10-01
Full Text Available An enhanced quantum-based image fidelity metric, the QIFM metric, is proposed as a tool to assess the “congruity” between two or more quantum images. The often confounding contrariety that distinguishes between classical and quantum information processing makes the widely accepted peak-signal-to-noise-ratio (PSNR ill-suited for use in the quantum computing framework, whereas the prohibitive cost of the probability-based similarity score makes it imprudent for use as an effective image quality metric. Unlike the aforementioned image quality measures, the proposed QIFM metric is calibrated as a pixel difference-based image quality measure that is sensitive to the intricacies inherent to quantum image processing (QIP. As proposed, the QIFM is configured with in-built non-destructive measurement units that preserve the coherence necessary for quantum computation. This design moderates the cost of executing the QIFM in order to estimate congruity between two or more quantum images. A statistical analysis also shows that our proposed QIFM metric has a better correlation with digital expectation of likeness between images than other available quantum image quality measures. Therefore, the QIFM offers a competent substitute for the PSNR as an image quality measure in the quantum computing framework thereby providing a tool to effectively assess fidelity between images in quantum watermarking, quantum movie aggregation and other applications in QIP.
Homology-independent metrics for comparative genomics.
Coutinho, Tarcisio José Domingos; Franco, Glória Regina; Lobo, Francisco Pereira
2015-01-01
A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of "genomic dark matter" with no significant similarity - and, consequently, no inferred homology to any other known sequence - from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference.
Codes in W*-Metric Spaces: Theory and Examples
Bumgardner, Christopher J.
2011-01-01
We introduce a "W*"-metric space, which is a particular approach to non-commutative metric spaces where a "quantum metric" is defined on a von Neumann algebra. We generalize the notion of a quantum code and quantum error correction to the setting of finite dimensional "W*"-metric spaces, which includes codes and error correction for classical…
g-Weak Contraction in Ordered Cone Rectangular Metric Spaces
Directory of Open Access Journals (Sweden)
S. K. Malhotra
2013-01-01
Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.
Demonstration of the Symmetry Properties of Gravitational Metric Fields
Institute of Scientific and Technical Information of China (English)
邵亮; H.NODA; 邵丹; 邵常贵
2002-01-01
We calculate some Wilson loop functionals in a static sphere-symmetrical diagonal metric field and a gravitational metric field established by a cosmic string. Using the direction change of vector when it is parallel transported in the metric field of cosmic string, the cone symmetry of the metric field is shown.
34 CFR 74.15 - Metric system of measurement.
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Metric system of measurement. 74.15 Section 74.15... Metric system of measurement. The Metric Conversion Act, as amended by the Omnibus Trade and Competitiveness Act (15 U.S.C. 205) declares that the metric system is the preferred measurement system for...
When is a metric not a metric? Remarks on direct curve comparison in bioequivalence studies.
Jawień, Wojciech
2009-06-01
The majority of measures proposed to date for direct curve comparison in bioequivalence studies were investigated. These measures have often been called metrics, but in most cases this was incorrect in the mathematical sense. It was demonstrated, with a set of counter-examples, that the axioms of a metric are fulfilled only for the integral p-metric and some of its transforms. The Rescigno index and two other measures devised by Polli and McLean are the semi-metrics, lacking the triangle inequality, while others also lack symmetry. The use of the p-metric is therefore recommended, and statistical analysis is suggested as a point at which the scaling of differences might be carried out.
Single Kerr-Schild metrics: a double view
Energy Technology Data Exchange (ETDEWEB)
McIntosh, C.B.G.; Hickman, M.S.
1988-08-01
Real-vacuum single Kerr-Schild (ISKS) metrics are discussed and new results proved. It is shown that if they Weyl tensor of such a metric has a twist-free expanding principal null direction, then it belongs to the Schwarzchild family of metrics-there are no Petrov type-II Robinson-Trautman metrics of Kerr-Schild type. If such a metric has twist then it belongs either to the Kerr family or else its Weyl tensor is of Petrov type II. The main part of the paper is concerned with complexified versions of Kerr-Schild metrics. The general real ISKS metric is written in double Kerr-Schild (IDKS) form. The H and l potentials which generate IDKS metrics are determined for the general vacuum ISKS metric and given explicitly for the Schwarzchild and Kerr families of metrics.
Evaluating and Estimating the WCET Criticality Metric
DEFF Research Database (Denmark)
Jordan, Alexander
2014-01-01
Static analysis tools that are used for worst-case execution time (WCET) analysis of real-time software just provide partial information on an analyzed program. Only the longest-executing path, which currently determines the WCET bound is indicated to the programmer. This limited view can prevent...... a programmer (or compiler) from targeting optimizations the right way. A possible resort is to use a metric that targets WCET and which can be efficiently computed for all code parts of a program. Similar to dynamic profiling techniques, which execute code with input that is typically expected...... to estimate the Criticality metric, by relaxing the precision of WCET analysis. Through this, we can reduce analysis time by orders of magnitude, while only introducing minor error. To evaluate our estimation approach and share our garnered experience using the metric, we evaluate real-time programs, which...
SOCIAL METRICS APPLIED TO SMART TOURISM
Directory of Open Access Journals (Sweden)
O. Cervantes
2016-09-01
Full Text Available We present a strategy to make productive use of semantically-related social data, from a user-centered semantic network, in order to help users (tourists and citizens in general to discover cultural heritage, points of interest and available services in a smart city. This data can be used to personalize recommendations in a smart tourism application. Our approach is based on flow centrality metrics typically used in social network analysis: flow betweenness, flow closeness and eccentricity. These metrics are useful to discover relevant nodes within the network yielding nodes that can be interpreted as suggestions (venues or services to users. We describe the semantic network built on graph model, as well as social metrics algorithms used to produce recommendations. We also present challenges and results from a prototypical implementation applied to the case study of the City of Puebla, Mexico.
Social Metrics Applied to Smart Tourism
Cervantes, O.; Gutiérrez, E.; Gutiérrez, F.; Sánchez, J. A.
2016-09-01
We present a strategy to make productive use of semantically-related social data, from a user-centered semantic network, in order to help users (tourists and citizens in general) to discover cultural heritage, points of interest and available services in a smart city. This data can be used to personalize recommendations in a smart tourism application. Our approach is based on flow centrality metrics typically used in social network analysis: flow betweenness, flow closeness and eccentricity. These metrics are useful to discover relevant nodes within the network yielding nodes that can be interpreted as suggestions (venues or services) to users. We describe the semantic network built on graph model, as well as social metrics algorithms used to produce recommendations. We also present challenges and results from a prototypical implementation applied to the case study of the City of Puebla, Mexico.
Metric learning for automatic sleep stage classification.
Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung
2013-01-01
We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.
Robust Metric Learning by Smooth Optimization
Huang, Kaizhu; Xu, Zenglin; Liu, Cheng-Lin
2012-01-01
Most existing distance metric learning methods assume perfect side information that is usually given in pairwise or triplet constraints. Instead, in many real-world applications, the constraints are derived from side information, such as users' implicit feedbacks and citations among articles. As a result, these constraints are usually noisy and contain many mistakes. In this work, we aim to learn a distance metric from noisy constraints by robust optimization in a worst-case scenario, to which we refer as robust metric learning. We formulate the learning task initially as a combinatorial optimization problem, and show that it can be elegantly transformed to a convex programming problem. We present an efficient learning algorithm based on smooth optimization [7]. It has a worst-case convergence rate of O(1/{\\surd}{\\varepsilon}) for smooth optimization problems, where {\\varepsilon} is the desired error of the approximate solution. Finally, our empirical study with UCI data sets demonstrate the effectiveness of ...
Rainbow Rindler metric and Unruh effect
Yadav, Gaurav; Majhi, Bibhas Ranjan
2016-01-01
The energy of a particle moving on a spacetime, in principle, can affect the background metric. The modifications to it depend on the ratio of energy of the particle and the Planck energy, known as rainbow gravity. Here we find the explicit expressions for the coordinate transformations from rainbow Minkowski spacetime to accelerated frame. The corresponding metric is also obtained which we call as rainbow-Rindler metric. So far we are aware of, no body has done it in a concrete manner. Here this is found from the first principle and hence all the parameters are properly identified. The advantage of this is that the calculated Unruh temperature is compatible with the Hawking temperature of the rainbow black hole horizon, obtained earlier. Since the accelerated frame has several importance in revealing various properties of gravity, we believe that the present result will not only fill that gap, but also help to explore different aspects of rainbow gravity paradigm.
Enhanced Accident Tolerant LWR Fuels: Metrics Development
Energy Technology Data Exchange (ETDEWEB)
Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone
2013-09-01
The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.
Development of testing metrics for military robotics
Resendes, Raymond J.
1993-05-01
The use of robotics or unmanned systems offers significant benefits to the military user by enhancing mobility, logistics, material handling, command and control, reconnaissance, and protection. The evaluation and selection process for the procurement of an unmanned robotic system involves comparison of performance and physical characteristics such as operating environment, application, payloads and performance criteria. Testing an unmanned system for operation in an unstructured environment using emerging technologies, which have not yet been fully tested, presents unique challenges for the testing community. Standard metrics, test procedures, terminologies, and methodologies simplify comparison of different systems. A procedure was developed to standardize the test and evaluation process for UGVs. This procedure breaks the UGV into three components: the platform, the payload, and the command and control link. Standardized metrics were developed for these components which permit unbiased comparison of different systems. The development of these metrics and their application will be presented.
Dissertation: Geodesics of Random Riemannian Metrics
LaGatta, Tom
2011-01-01
We introduce Riemannian First-Passage Percolation (Riemannian FPP) as a new model of random differential geometry, by considering a random, smooth Riemannian metric on $\\mathbb R^d$. We are motivated in our study by the random geometry of first-passage percolation (FPP), a lattice model which was developed to model fluid flow through porous media. By adapting techniques from standard FPP, we prove a shape theorem for our model, which says that large balls under this metric converge to a deterministic shape under rescaling. As a consequence, we show that smooth random Riemannian metrics are geodesically complete with probability one. In differential geometry, geodesics are curves which locally minimize length. They need not do so globally: consider great circles on a sphere. For lattice models of FPP, there are many open questions related to minimizing geodesics; similarly, it is interesting from a geometric perspective when geodesics are globally minimizing. In the present study, we show that for any fixed st...
Metric Learning for Hyperspectral Image Segmentation
Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca
2011-01-01
We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.
Metric perturbations in Einstein-Cartan Cosmology
Garcia de Andrade, L C
2002-01-01
Metric perturbations the stability of solution of Einstein-Cartan cosmology (ECC) are given. The first addresses the stability of solutions of Einstein-Cartan (EC) cosmological model against Einstein static universe background. In this solution we show that the metric is stable against first-order perturbations and correspond to acoustic oscillations. The second example deals with the stability of de Sitter metric also against first-order perturbations. Torsion and shear are also computed in these cases. The resultant perturbed anisotropic spacetime with torsion is only de Sitter along one direction or is unperturbed along one direction and perturbed against the other two. Cartan torsion contributes to the frequency of oscillations in the model. Therefore gravitational waves could be triggered by the spin-torsion scalar density .
Steiner trees for fixed orientation metrics
DEFF Research Database (Denmark)
Brazil, Marcus; Zachariasen, Martin
2009-01-01
We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to s = 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide...... a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation...... metric generalises to the fixed orientation metric. Finally, we give an O(s n) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with n terminal leaves....
On 2-dimensional Kaehler metrics with one holomorphic isometry
Chimento, Samuele
2016-01-01
We show how to write any Kaehler metric of complex dimension 2 admitting a holomorphic isometry as a simple 1-real-function deformation of a Gibbons-Hawking metric. Hyper-Kaehler metrics with a tri-holomorphic isometry (Gibbons-Hawking metrics) or with a mono-holomorphic isometry are recovered for particular values of the additional function. The new general metric can be used as an Ansatz in several interesting physical problems.
Boolean metric spaces and Boolean algebraic varieties
Avilés, Antonio
2009-01-01
The concepts of Boolean metric space and convex combination are used to characterize polynomial maps in a class of commutative Von Neumann regular rings including Boolean rings and p-rings, that we have called CFG-rings. In those rings, the study of the category of algebraic varieties (i.e. sets of solutions to a finite number of polynomial equations with polynomial maps as morphisms) is equivalent to the study of a class of Boolean metric spaces, that we call here CFG-spaces.
Geons and the quantum information metric
Sinamuli, Musema; Mann, Robert B.
2017-07-01
We investigate the proposed duality between a quantum information metric in a CFTd +1 and the volume of a maximum time slice in the dual AdSd +2 for topological geons. Examining the specific cases of Banados-Teitelboim-Zannelli (BTZ) black holes and planar Schwarzschild-anti-de Sitter black holes, along with their geon counterparts, we find that the proposed duality relation for geons is the same apart from a factor of 4. The information metric therefore provides a probe of the topology of the bulk spacetime.
Metric-affine gravitation theory and superpotentials
Energy Technology Data Exchange (ETDEWEB)
Giachetta, G.; Mangiarotti, L.; Saltarelli, A. [Camerino, Univ. (Italy). Dipt. di Matematica e Fisica
1997-05-01
They consider a metric-affine theory of gravity in which the dynamical fields are the Lorentzian metrics and the non-symmetric linear connections on the worked manifold X. Working with a Lagrangian density which is invariant under general covariant transformations and using standard tools of the calculus of variations, they study the corresponding currents. They find that the superpotential takes a nice form involving the torsion of the linear connection in a simple way and generalizing the well-known Komar superpotential. A feature of our approach is the use of the Poincare`-Cartan form in relation to the first variational formula of the calculus of variations.
Cohesion Metrics for Ontology Design and Application
Directory of Open Access Journals (Sweden)
Haining Yao
2005-01-01
Full Text Available Recently, domain specific ontology development has been driven by research on the Semantic Web. Ontologies have been suggested for use in many application areas targeted by the Semantic Web, such as dynamic web service composition and general web service matching. Fundamental characteristics of these ontologies must be determined in order to effectively make use of them: for example, Sirin, Hendler and Parsia have suggested that determining fundamental characteristics of ontologies is important for dynamic web service composition. Our research examines cohesion metrics for ontologies. The cohesion metrics examine the fundamental quality of cohesion as it relates to ontologies.
Enhanced Data Representation by Kernel Metric Learning for Dementia Diagnosis
Directory of Open Access Journals (Sweden)
David Cárdenas-Peña
2017-07-01
Full Text Available Alzheimer's disease (AD is the kind of dementia that affects the most people around the world. Therefore, an early identification supporting effective treatments is required to increase the life quality of a wide number of patients. Recently, computer-aided diagnosis tools for dementia using Magnetic Resonance Imaging scans have been successfully proposed to discriminate between patients with AD, mild cognitive impairment, and healthy controls. Most of the attention has been given to the clinical data, provided by initiatives as the ADNI, supporting reliable researches on intervention, prevention, and treatments of AD. Therefore, there is a need for improving the performance of classification machines. In this paper, we propose a kernel framework for learning metrics that enhances conventional machines and supports the diagnosis of dementia. Our framework aims at building discriminative spaces through the maximization of center kernel alignment function, aiming at improving the discrimination of the three considered neurological classes. The proposed metric learning performance is evaluated on the widely-known ADNI database using three supervised classification machines (k-nn, SVM and NNs for multi-class and bi-class scenarios from structural MRIs. Specifically, from ADNI collection 286 AD patients, 379 MCI patients and 231 healthy controls are used for development and validation of our proposed metric learning framework. For the experimental validation, we split the data into two subsets: 30% of subjects used like a blindfolded assessment and 70% employed for parameter tuning. Then, in the preprocessing stage, each structural MRI scan a total of 310 morphological measurements are automatically extracted from by FreeSurfer software package and concatenated to build an input feature matrix. Obtained test performance results, show that including a supervised metric learning improves the compared baseline classifiers in both scenarios. In the multi
Enhanced Data Representation by Kernel Metric Learning for Dementia Diagnosis.
Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German
2017-01-01
Alzheimer's disease (AD) is the kind of dementia that affects the most people around the world. Therefore, an early identification supporting effective treatments is required to increase the life quality of a wide number of patients. Recently, computer-aided diagnosis tools for dementia using Magnetic Resonance Imaging scans have been successfully proposed to discriminate between patients with AD, mild cognitive impairment, and healthy controls. Most of the attention has been given to the clinical data, provided by initiatives as the ADNI, supporting reliable researches on intervention, prevention, and treatments of AD. Therefore, there is a need for improving the performance of classification machines. In this paper, we propose a kernel framework for learning metrics that enhances conventional machines and supports the diagnosis of dementia. Our framework aims at building discriminative spaces through the maximization of center kernel alignment function, aiming at improving the discrimination of the three considered neurological classes. The proposed metric learning performance is evaluated on the widely-known ADNI database using three supervised classification machines (k-nn, SVM and NNs) for multi-class and bi-class scenarios from structural MRIs. Specifically, from ADNI collection 286 AD patients, 379 MCI patients and 231 healthy controls are used for development and validation of our proposed metric learning framework. For the experimental validation, we split the data into two subsets: 30% of subjects used like a blindfolded assessment and 70% employed for parameter tuning. Then, in the preprocessing stage, each structural MRI scan a total of 310 morphological measurements are automatically extracted from by FreeSurfer software package and concatenated to build an input feature matrix. Obtained test performance results, show that including a supervised metric learning improves the compared baseline classifiers in both scenarios. In the multi-class scenario
Business model metrics: an open repository
Heikkila, M.; Bouwman, W.A.G.A.; Heikkila, J.; Solaimani, S.; Janssen, W.
2015-01-01
Development of successful business models has become a necessity in turbulent business environments, but compared to research on business modeling tools, attention to the role of metrics in designing business models in literature is limited. Building on existing approaches to business models and
Vehicle Integrated Prognostic Reasoner (VIPR) Metric Report
Cornhill, Dennis; Bharadwaj, Raj; Mylaraswamy, Dinkar
2013-01-01
This document outlines a set of metrics for evaluating the diagnostic and prognostic schemes developed for the Vehicle Integrated Prognostic Reasoner (VIPR), a system-level reasoner that encompasses the multiple levels of large, complex systems such as those for aircraft and spacecraft. VIPR health managers are organized hierarchically and operate together to derive diagnostic and prognostic inferences from symptoms and conditions reported by a set of diagnostic and prognostic monitors. For layered reasoners such as VIPR, the overall performance cannot be evaluated by metrics solely directed toward timely detection and accuracy of estimation of the faults in individual components. Among other factors, overall vehicle reasoner performance is governed by the effectiveness of the communication schemes between monitors and reasoners in the architecture, and the ability to propagate and fuse relevant information to make accurate, consistent, and timely predictions at different levels of the reasoner hierarchy. We outline an extended set of diagnostic and prognostics metrics that can be broadly categorized as evaluation measures for diagnostic coverage, prognostic coverage, accuracy of inferences, latency in making inferences, computational cost, and sensitivity to different fault and degradation conditions. We report metrics from Monte Carlo experiments using two variations of an aircraft reference model that supported both flat and hierarchical reasoning.
Rainbow metric formalism and Relative Locality
Loret, Niccoló
2015-01-01
This proceeding is based on a talk prepared for the XIII Marcell Grossmann meeting. We summarise some results of work in progress in collaboration with Giovanni Amelino-Camelia about momentum dependent (Rainbow) metrics in a Relative Locality framework and we show that this formalism is equivalent to the Hamiltonian formalization of Relative Locality obtained in arXiv:1102.4637.
Colliding waves in metric-affine gravity
García, A; Macías, A; Mielke, E W; Socorro, J; García, Alberto; Lämmerzahl, Claus; Macías, Alfredo; Mielke, Eckehard W.; Socorro, José
1998-01-01
We generalize the formulation of the colliding gravitational waves to metric-affine theories and present an example of such kind of exact solutions. The plane waves are equipped with five symmetries and the resulting geometry after the collision possesses two spacelike Killing vectors.
Thermodynamical properties of metric fluctuations during inflation
Bellini, M
2001-01-01
I study a thermodynamical approach to scalar metric perturbations during the inflationary stage. In the power-law expanding universe here studied, I find a negative heat capacity as a manifestation of superexponential growing for the number of states in super Hubble scales. The power spectrum depends on the Gibbons-Hawking and Hagedorn temperatures.
Business model metrics: an open repository
Heikkila, M.; Bouwman, W.A.G.A.; Heikkila, J.; Solaimani, S.; Janssen, W.
2015-01-01
Development of successful business models has become a necessity in turbulent business environments, but compared to research on business modeling tools, attention to the role of metrics in designing business models in literature is limited. Building on existing approaches to business models and per
Metric Conversion and the School Shop
Jackman, Arthur A.
1976-01-01
Cost of metric conversion in school shops is examined, and the author categories all the shops in the school and gives useful information on which shops are the easiest to convert, which are most complicated, where resistance is most likely to be met, and where conversion is most urgent. The math department is seen as catalyst. (Editor/HD)
Outsourced Similarity Search on Metric Data Assets
DEFF Research Database (Denmark)
Yiu, Man Lung; Assent, Ira; Jensen, Christian S.
2012-01-01
This paper considers a cloud computing setting in which similarity querying of metric data is outsourced to a service provider. The data is to be revealed only to trusted users, not to the service provider or anyone else. Users query the server for the most similar data objects to a query example...
Calabi–Yau metrics and string compactification
Directory of Open Access Journals (Sweden)
Michael R. Douglas
2015-09-01
Full Text Available Yau proved an existence theorem for Ricci-flat Kähler metrics in the 1970s, but we still have no closed form expressions for them. Nevertheless there are several ways to get approximate expressions, both numerical and analytical. We survey some of this work and explain how it can be used to obtain physical predictions from superstring theory.
Metrical musings on Littlewood and friends
DEFF Research Database (Denmark)
Haynes, A.; Jensen, Jonas Lindstrøm; Kristensen, Simon
We prove a metrical result on a family of conjectures related to the Littlewood conjecture, namely the original Littlewood conjecture, the mixed Littlewood conjecture of de Mathan and Teulié and a hybrid between a conjecture of Cassels and the Littlewood conjecture. It is shown that the set of nu...
Metrical categories in infancy and adulthood.
Hannon, Erin E; Trehub, Sandra E
2005-01-01
Intrinsic perceptual biases for simple duration ratios are thought to constrain the organization of rhythmic patterns in music. We tested that hypothesis by exposing listeners to folk melodies differing in metrical structure (simple or complex duration ratios), then testing them on alterations that preserved or violated the original metrical structure. Simple meters predominate in North American music, but complex meters are common in many other musical cultures. In Experiment 1, North American adults rated structure-violating alterations as less similar to the original version than structure-preserving alterations for simple-meter patterns but not for complex-meter patterns. In Experiment 2, adults of Bulgarian or Macedonian origin provided differential ratings to structure-violating and structure-preserving alterations in complex- as well as simple-meter contexts. In Experiment 3, 6-month-old infants responded differentially to structure-violating and structure-preserving alterations in both metrical contexts. These findings imply that the metrical biases of North American adults reflect enculturation processes rather than processing predispositions for simple meters.
Gravity Dual of Quantum Information Metric
Miyaji, Masamichi; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento
2015-01-01
We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an AdS spacetime when the perturbation is exactly marginal. We confirm our claim in several examples.
Strong Ideal Convergence in Probabilistic Metric Spaces
Indian Academy of Sciences (India)
Celaleddin Şençimen; Serpil Pehlivan
2009-06-01
In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this space and investigate some properties of these concepts.
Performance Metrics Research Project - Final Report
Energy Technology Data Exchange (ETDEWEB)
Deru, M.; Torcellini, P.
2005-10-01
NREL began work for DOE on this project to standardize the measurement and characterization of building energy performance. NREL's primary research objectives were to determine which performance metrics have greatest value for determining energy performance and to develop standard definitions and methods of measuring and reporting that performance.
On Decomposable Measures Induced by Metrics
Directory of Open Access Journals (Sweden)
Dong Qiu
2012-01-01
Full Text Available We prove that for a given normalized compact metric space it can induce a σ-max-superdecomposable measure, by constructing a Hausdorff pseudometric on its power set. We also prove that the restriction of this set function to the algebra of all measurable sets is a σ-max-decomposable measure. Finally we conclude this paper with two open problems.
Business model metrics: an open repository
Heikkila, M.; Bouwman, W.A.G.A.; Heikkila, J.; Solaimani, S.; Janssen, W.
2015-01-01
Development of successful business models has become a necessity in turbulent business environments, but compared to research on business modeling tools, attention to the role of metrics in designing business models in literature is limited. Building on existing approaches to business models and per
The LSST metrics analysis framework (MAF)
Jones, R. L.; Yoachim, Peter; Chandrasekharan, Srinivasan; Connolly, Andrew J.; Cook, Kem H.; Ivezic, Željko; Krughoff, K. S.; Petry, Catherine; Ridgway, Stephen T.
2014-07-01
We describe the Metrics Analysis Framework (MAF), an open-source python framework developed to provide a user-friendly, customizable, easily-extensible set of tools for analyzing data sets. MAF is part of the Large Synoptic Survey Telescope (LSST) Simulations effort. Its initial goal is to provide a tool to evaluate LSST Operations Simulation (OpSim) simulated surveys to help understand the effects of telescope scheduling on survey performance, however MAF can be applied to a much wider range of datasets. The building blocks of the framework are Metrics (algorithms to analyze a given quantity of data), Slicers (subdividing the overall data set into smaller data slices as relevant for each Metric), and Database classes (to access the dataset and read data into memory). We describe how these building blocks work together, and provide an example of using MAF to evaluate different dithering strategies. We also outline how users can write their own custom Metrics and use these within the framework.
A new universal colour image fidelity metric
Toet, A.; Lucassen, M.P.
2003-01-01
We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated colour space. The resulting colour image fidelity metric quantifies the distortion of a processed colour image relative to its original version. We evaluated the new colour image fi
Assessing Software Quality Through Visualised Cohesion Metrics
Directory of Open Access Journals (Sweden)
Timothy Shih
2001-05-01
Full Text Available Cohesion is one of the most important factors for software quality as well as maintainability, reliability and reusability. Module cohesion is defined as a quality attribute that seeks for measuring the singleness of the purpose of a module. The module of poor quality can be a serious obstacle to the system quality. In order to design a good software quality, software managers and engineers need to introduce cohesion metrics to measure and produce desirable software. A highly cohesion software is thought to be a desirable constructing. In this paper, we propose a function-oriented cohesion metrics based on the analysis of live variables, live span and the visualization of processing element dependency graph. We give six typical cohesion examples to be measured as our experiments and justification. Therefore, a well-defined, well-normalized, well-visualized and well-experimented cohesion metrics is proposed to indicate and thus enhance software cohesion strength. Furthermore, this cohesion metrics can be easily incorporated with software CASE tool to help software engineers to improve software quality.
On A Schwarszchild-Like Metric
Anastasiei, Mihai; Gottlieb, Ioan
2012-12-01
In this short Note we would like to bring into the attention of people working in General Relativity a Schwarzschild like metric found by Professor Cleopatra Mociuţchi in sixties. It was obtained by the A. Sommerfeld reasoning from his treatise "Elektrodynamik" but using instead of the energy conserving law from the classical Physics, the relativistic energy conserving law.
DIGITAL MARKETING: SUCCESS METRICS, FUTURE TRENDS
Preeti Kaushik
2017-01-01
Abstract – Business Marketing is one of the prospective which has been tremendously affected by digital world in last few years. Digital marketing refers to doing advertising through digital channels. This paper provides detailed study of metrics to measure success of digital marketing platform and glimpse of future of technologies by 2020.
Clean Cities 2011 Annual Metrics Report
Energy Technology Data Exchange (ETDEWEB)
Johnson, C.
2012-12-01
This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.
Clean Cities 2010 Annual Metrics Report
Energy Technology Data Exchange (ETDEWEB)
Johnson, C.
2012-10-01
This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.
Nonunital Spectral Triples Associated to Degenerate Metrics
Rennie, A.
We show that one can define (p,∞)-summable spectral triples using degenerate metrics on smooth manifolds. Furthermore, these triples satisfy Connes-Moscovici's discrete and finite dimension spectrum hypothesis, allowing one to use the Local Index Theorem [1] to compute the pairing with K-theory. We demonstrate this with a concrete example.
Calabi-Yau metrics and string compactification
Douglas, Michael R
2015-01-01
Yau proved an existence theorem for Ricci-flat K\\"ahler metrics in the 1970's, but we still have no closed form expressions for them. Nevertheless there are several ways to get approximate expressions, both numerical and analytical. We survey some of this work and explain how it can be used to obtain physical predictions from superstring theory.
Calabi-Yau metrics and string compactification
Douglas, Michael R.
2015-09-01
Yau proved an existence theorem for Ricci-flat Kähler metrics in the 1970s, but we still have no closed form expressions for them. Nevertheless there are several ways to get approximate expressions, both numerical and analytical. We survey some of this work and explain how it can be used to obtain physical predictions from superstring theory.
A Novel Performance Metric for Building an Optimized Classifier
Directory of Open Access Journals (Sweden)
Mohammad Hossin
2011-01-01
Full Text Available Problem statement: Typically, the accuracy metric is often applied for optimizing the heuristic or stochastic classification models. However, the use of accuracy metric might lead the searching process to the sub-optimal solutions due to its less discriminating values and it is also not robust to the changes of class distribution. Approach: To solve these detrimental effects, we propose a novel performance metric which combines the beneficial properties of accuracy metric with the extended recall and precision metrics. We call this new performance metric as Optimized Accuracy with Recall-Precision (OARP. Results: In this study, we demonstrate that the OARP metric is theoretically better than the accuracy metric using four generated examples. We also demonstrate empirically that a naïve stochastic classification algorithm, which is Monte Carlo Sampling (MCS algorithm trained with the OARP metric, is able to obtain better predictive results than the one trained with the conventional accuracy metric. Additionally, the t-test analysis also shows a clear advantage of the MCS model trained with the OARP metric over the accuracy metric alone for all binary data sets. Conclusion: The experiments have proved that the OARP metric leads stochastic classifiers such as the MCS towards a better training model, which in turn will improve the predictive results of any heuristic or stochastic classification models.
Observation of a Metric Type N Solar Radio Burst
Kong, Xiangliang; Feng, Shiwei; Du, Guohui; Li, Chuanyang; Koval, Artem; Vasanth, V; Wang, Bing; Guo, Fan; Li, Gang
2016-01-01
Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter "N" in the radio dynamic spectrum and reveal a magnetic mirror effect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature ($>$10$^9$ K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations of the three branches at a given frequency increase gradually, may due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite sense of polarization. We also find that the sense of p...
How to evaluate objective video quality metrics reliably
DEFF Research Database (Denmark)
Korhonen, Jari; Burini, Nino; You, Junyong
2012-01-01
The typical procedure for evaluating the performance of different objective quality metrics and indices involves comparisons between subjective quality ratings and the quality indices obtained using the objective metrics in question on the known video sequences. Several correlation indicators can...
Regular black hole metrics and the weak energy condition
Energy Technology Data Exchange (ETDEWEB)
Balart, Leonardo, E-mail: leonardo.balart@ufrontera.cl [I.C.B. – Institut Carnot de Bourgogne, UMR 5209, CNRS, Faculté des Sciences Mirande, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Departamento de Ciencias Físicas, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Vagenas, Elias C., E-mail: elias.vagenas@ku.edu.kw [Theoretical Physics Group, Department of Physics, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)
2014-03-07
In this work we construct a family of spherically symmetric, static, charged regular black hole metrics in the context of Einstein-nonlinear electrodynamics theory. The construction of the charged regular black hole metrics is based on three requirements: (a) the weak energy condition should be satisfied, (b) the energy–momentum tensor should have the symmetry T{sub 0}{sup 0}=T{sub 1}{sup 1}, and (c) these metrics have to asymptotically behave as the Reissner–Nordström black hole metric. In addition, these charged regular black hole metrics depend on two parameters which for specific values yield regular black hole metrics that already exist in the literature. Furthermore, by relaxing the third requirement, we construct more general regular black hole metrics which do not behave asymptotically as a Reissner–Nordström black hole metric.
Structural Properties of Hard Metric TSP Inputs
Mömke, Tobias
The metric traveling salesman problem is one of the most prominent APX-complete optimization problems. An important particularity of this problem is that there is a large gap between the known upper bound and lower bound on the approximability (assuming P ≠ NP). In fact, despite more than 30 years of research, no one could find a better approximation algorithm than the 1.5-approximation provided by Christofides. The situation is similar for a related problem, the metric Hamiltonian path problem, where the start and the end of the path are prespecified: the best approximation ratio up to date is 5/3 by an algorithm presented by Hoogeveen almost 20 years ago.
Metric-Aware Secure Service Orchestration
Directory of Open Access Journals (Sweden)
Gabriele Costa
2012-12-01
Full Text Available Secure orchestration is an important concern in the internet of service. Next to providing the required functionality the composite services must also provide a reasonable level of security in order to protect sensitive data. Thus, the orchestrator has a need to check whether the complex service is able to satisfy certain properties. Some properties are expressed with metrics for precise definition of requirements. Thus, the problem is to analyse the values of metrics for a complex business process. In this paper we extend our previous work on analysis of secure orchestration with quantifiable properties. We show how to define, verify and enforce quantitative security requirements in one framework with other security properties. The proposed approach should help to select the most suitable service architecture and guarantee fulfilment of the declared security requirements.
Machine Learning for ATLAS DDM Network Metrics
Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf
2016-01-01
The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.
Metric for Early Measurement of Software Complexity
Directory of Open Access Journals (Sweden)
Ghazal Keshavarz,
2011-06-01
Full Text Available Software quality depends on several factors such as on time delivery; within budget and fulfilling user's needs. Complexity is one of the most important factors that may affect the quality. Therefore, measuring and controlling the complexity result in improving the quality. So far, most of the researches have tried to identify and measure the complexity in design and code phase. However, whenwe have the code or design for software, it is too late to control complexity. In this article, with emphasis on Requirement Engineering process, we analyze the causes of software complexity, particularly in the first phase of software development, and propose a requirement based metric. This metric enables a software engineer to measure the complexity before actual design and implementation and choosestrategies that are appropriate to the software complexity degree, thus saving on cost and human resource wastage and, more importantly, leading to lower maintenance costs.
A Taxonomy of Metrics for Hosted Databases
Directory of Open Access Journals (Sweden)
Jordan Shropshire
2006-04-01
Full Text Available The past three years has seen exponential growth in the number of organizations who have elected to entrust core information technology functions to application service providers. Of particular interest is the outsourcing of critical systems such as corporate databases. Major banks and financial service firms are contracting with third party organizations, sometimes overseas, for their database needs. These sophisticated contracts require careful supervision by both parties. Due to the complexities of web- based applications and the complicated nature of databases, an entire class of software suites has been developed to measure the quality of service the database is providing. This article investigates the performance metrics which have evolved to satisfy this need and describes a taxonomy of performance metrics for hosted databases.
Infinitesimally Lipschitz functions on metric spaces
Durand, E
2009-01-01
For a metric space $X$, we study the space $D^{\\infty}(X)$ of bounded functions on $X$ whose infinitesimal Lipschitz constant is uniformly bounded. $D^{\\infty}(X)$ is compared with the space $\\LIP^{\\infty}(X)$ of bounded Lipschitz functions on $X$, in terms of different properties regarding the geometry of $X$. We also obtain a Banach-Stone theorem in this context. In the case of a metric measure space, we also compare $D^{\\infty}(X)$ with the Newtonian-Sobolev space $N^{1, \\infty}(X)$. In particular, if $X$ supports a doubling measure and satisfies a local Poincar{\\'e} inequality, we obtain that $D^{\\infty}(X)=N^{1, \\infty}(X)$.
Derived Metric Tensors for Flow Surface Visualization.
Obermaier, H; Joy, K I
2012-12-01
Integral flow surfaces constitute a widely used flow visualization tool due to their capability to convey important flow information such as fluid transport, mixing, and domain segmentation. Current flow surface rendering techniques limit their expressiveness, however, by focusing virtually exclusively on displacement visualization, visually neglecting the more complex notion of deformation such as shearing and stretching that is central to the field of continuum mechanics. To incorporate this information into the flow surface visualization and analysis process, we derive a metric tensor field that encodes local surface deformations as induced by the velocity gradient of the underlying flow field. We demonstrate how properties of the resulting metric tensor field are capable of enhancing present surface visualization and generation methods and develop novel surface querying, sampling, and visualization techniques. The provided results show how this step towards unifying classic flow visualization and more advanced concepts from continuum mechanics enables more detailed and improved flow analysis.
Metrics and causality on Moyal planes
Franco, Nicolas
2015-01-01
Metrics structures stemming from the Connes distance promote Moyal planes to the status of quantum metric spaces. We discuss this aspect in the light of recent developments, emphasizing the role of Moyal planes as representative examples of a recently introduced notion of quantum (noncommutative) locally compact space. We move then to the framework of Lorentzian noncommutative geometry and we examine the possibility of defining a notion of causality on Moyal plane, which is somewhat controversial in the area of mathematical physics. We show the actual existence of causal relations between the elements of a particular class of pure (coherent) states on Moyal plane with related causal structure similar to the one of the usual Minkowski space, up to the notion of locality.
Enhancing U.S. Coast Guard Metrics
2015-01-01
Enhancing U.S. Coast Guard Metrics Scott Savitz, Henry H. Willis , Aaron C. Davenport, Martina Melliand, William Sasser, Elizabeth Tencza, Dulani...evaluate their utility in other contexts. 6 See Stephanie Young, Henry H. Willis , Melinda Moore, and Jeffrey Engstrom, Measuring Cooperative...front cost of the USS Gerald R. Ford aircraft carrier . U.S. Air Force, “United States Air Force Fiscal Year 2015 Budget Overview,” Washington, D.C
The Planck Vacuum and the Schwarzschild Metrics
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-07-01
Full Text Available The Planck vacuum (PV is assumed to be the source of the visible universe. So under conditions of sufficient stress, there must exist a pathway through which energy from the PV can travel into this universe. Conversely, the passage of energy from the visible universe to the PV must also exist under the same stressful conditions. The following examines two versions of the Schwarzschild metric equation for compatability with this open-pathway idea.
Metrics and Its Function in Poetry
Institute of Scientific and Technical Information of China (English)
XIAO Zhong-qiong; CHEN Min-jie
2013-01-01
Poetry is a special combination of musical and linguistic qualities-of sounds both regarded as pure sound and as mean-ingful speech. Part of the pleasure of poetry lies in its relationship with music. Metrics, including rhythm and meter, is an impor-tant method for poetry to express poetic sentiment. Through the introduction of poetic language and typical examples, the writer of this paper tries to discuss the relationship between sound and meaning.
Autonomous Exploration Using an Information Gain Metric
2016-03-01
quantified by computing the entropy of the robot’s a posteriori pose estimate. The robot’s pose history along its trajectory is captured by the mapping...man-portable robot system. The robot was equipped with additional computing hardware to increase the capabilities of the platform. Similarly, the...Laboratory Autonomous Exploration Using an Information Gain Metric by Nicholas C Fung, Jason M Gregory, and John G Rogers Computational and
Asymptotic properties of the C-Metric
Sladek, Pavel
2010-01-01
The aim of this article is to analyze the asymptotic properties of the C-metric, using a general method specified in work of Tafel and coworkers, [1], [2], [3]. By finding an appropriate conformal factor $\\Omega$, it allows the investigation of the asymptotic properties of a given asymptotically flat spacetime. The news function and Bondi mass aspect are computed, their general properties are analyzed, as well as the small mass, small acceleration, small and large Bondi time limits.
Ocean Model Assessment with Lagrangian Metrics
2016-06-07
Ocean Model Assessment With Lagrangian Metrics” Pearn P. Niiler Scripps Institution of Oceanography 9500 Gilman Drive MC 0213 La Jolla, CA...project are to aid in the development of accurate modeling of upper ocean circulation by using data on circulation observations to test models . These tests...or metrics, will be statistical measures of model and data comparisons. It is believed that having accurate models of upper ocean currents will
Teleparallel Gravitational Energy in the Gamma Metric
Salti, M
2006-01-01
The Moller energy(due to matter and fields including gravity) distribution of the gamma metric is studied in tele-parallel gravity. The result is the same as those obtained in general relativity by Virbhadra in the Weinberg complex and Yang-Radincshi in the Moller definition. Our result is also independent of the three teleparallel dimensionless coupling constants, which means that it is valid not only in the teleparallel equivalent of general relativity, but also in any teleparallel model.
Menger curvature and rectifiability in metric spaces
2012-01-01
We show that for any metric space $X$ the condition \\[ \\int_X\\int_X\\int_X c(z_1,z_2,z_3)^2\\, d\\Hm z_1\\, d\\Hm z_2\\, d\\Hm z_3 < \\infty, \\] where $c(z_1,z_2,z_3)$ is the Menger curvature of the triple $(z_1,z_2,z_3)$, guarantees that $X$ is rectifiable.
A Metrics Approach for Collaborative Systems
Directory of Open Access Journals (Sweden)
Cristian CIUREA
2009-01-01
Full Text Available This article presents different types of collaborative systems, their structure and classification. This paper defines the concept of virtual campus as a collaborative system. It builds architecture for virtual campus oriented on collaborative training processes. It analyses the quality characteristics of collaborative systems and propose techniques for metrics construction and validation in order to evaluate them. The article analyzes different ways to increase the efficiency and the performance level in collaborative banking systems.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Smart Grid Status and Metrics Report
Energy Technology Data Exchange (ETDEWEB)
Balducci, Patrick J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-07-01
To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.
Metric Development for Continuous Process Improvement
2011-03-01
improve the bottom line of an organization. The first step of this process is to solicit the key performance indicators ( KPIs ) that best reflect the...organization’s mission. The second step is to use and/or develop metrics based on those KPIs to measure the organization’s mission performance today...The third step is to capture the trends of those KPIs over time to see if the organization is getting better or worse. The final step is to
What can article-level metrics do for you?
Fenner, Martin
2013-10-01
Article-level metrics (ALMs) provide a wide range of metrics about the uptake of an individual journal article by the scientific community after publication. They include citations, usage statistics, discussions in online comments and social media, social bookmarking, and recommendations. In this essay, we describe why article-level metrics are an important extension of traditional citation-based journal metrics and provide a number of example from ALM data collected for PLOS Biology.
Decomposition-based transfer distance metric learning for image classification.
Luo, Yong; Liu, Tongliang; Tao, Dacheng; Xu, Chao
2014-09-01
Distance metric learning (DML) is a critical factor for image analysis and pattern recognition. To learn a robust distance metric for a target task, we need abundant side information (i.e., the similarity/dissimilarity pairwise constraints over the labeled data), which is usually unavailable in practice due to the high labeling cost. This paper considers the transfer learning setting by exploiting the large quantity of side information from certain related, but different source tasks to help with target metric learning (with only a little side information). The state-of-the-art metric learning algorithms usually fail in this setting because the data distributions of the source task and target task are often quite different. We address this problem by assuming that the target distance metric lies in the space spanned by the eigenvectors of the source metrics (or other randomly generated bases). The target metric is represented as a combination of the base metrics, which are computed using the decomposed components of the source metrics (or simply a set of random bases); we call the proposed method, decomposition-based transfer DML (DTDML). In particular, DTDML learns a sparse combination of the base metrics to construct the target metric by forcing the target metric to be close to an integration of the source metrics. The main advantage of the proposed method compared with existing transfer metric learning approaches is that we directly learn the base metric coefficients instead of the target metric. To this end, far fewer variables need to be learned. We therefore obtain more reliable solutions given the limited side information and the optimization tends to be faster. Experiments on the popular handwritten image (digit, letter) classification and challenge natural image annotation tasks demonstrate the effectiveness of the proposed method.
Ghost free massive gravity with singular reference metrics
Zhang, Hongsheng; Li, Xin-Zhou
2016-06-01
An auxiliary metric (reference metric) is inevitable in massive gravity theory. In the scenario of the gauge/gravity duality, massive gravity with a singular reference metric is used to study momentum dissipation, which describes the electric and heat conductivity for normal conductors. We demonstrate in detail that the de Rham-Gabadadze-Tolley (dRGT) massive gravity with a singular reference metric is ghost free.
The Development and Demonstration of The Metric Assessment Tool
1993-09-01
motivate continuous improvement and likewise quality. Attributen of MNaninafui Metrica Section Overview. The importance of metrics cannot be overstated...some of the attributes of meaningful measures discussed earlier in this chapter. The Metrica Handbook. This guide is utilized by a variety of Air...Metric Assessment Tool. 3-8 Metrica Belaction The metric assessment tool was designed to apply to any type of metric. Two criteria were established for
Semantic maps as metrics on meanings
Directory of Open Access Journals (Sweden)
Michael Cysouw
2010-01-01
Full Text Available By using the world?s linguistic diversity, the study of meaning can be transformed from an introspective inquiry into a subject of empirical investigation. For this to be possible, the notion of meaning has to be operationalized by defining the meaning of an expression as the collection of all contexts in which the expression can be used. Under this definition, meaning can be empirically investigated by sampling contexts. A semantic map is a technique to show the relations between such sampled contextual occurrences. Or, formulated more technically, a semantic map is a visualization of a metric on contexts sampled to represent a domain of meaning. Or, put more succinctly, a semantic map is a metric on meaning. To establish such a metric, a notion of (dissimilarity is needed. The similarity between two meanings can be empirically investigated by looking at their encoding in many different languages. The more similar these encodings, in language after language, the more similar the contexts. So, to investigate the similarity between two contextualized meanings, only judgments about the similarity between expressions within the structure of individual languages are needed. As an example of this approach, data on cross-linguistic variation in inchoative/causative alternations from Haspelmath (1993 is reanalyzed.
An information theoretic approach for privacy metrics
Directory of Open Access Journals (Sweden)
Michele Bezzi
2010-12-01
Full Text Available Organizations often need to release microdata without revealing sensitive information. To this scope, data are anonymized and, to assess the quality of the process, various privacy metrics have been proposed, such as k-anonymity, l-diversity, and t-closeness. These metrics are able to capture different aspects of the disclosure risk, imposing minimal requirements on the association of an individual with the sensitive attributes. If we want to combine them in a optimization problem, we need a common framework able to express all these privacy conditions. Previous studies proposed the notion of mutual information to measure the different kinds of disclosure risks and the utility, but, since mutual information is an average quantity, it is not able to completely express these conditions on single records. We introduce here the notion of one-symbol information (i.e., the contribution to mutual information by a single record that allows to express and compare the disclosure risk metrics. In addition, we obtain a relation between the risk values t and l, which can be used for parameter setting. We also show, by numerical experiments, how l-diversity and t-closeness can be represented in terms of two different, but equally acceptable, conditions on the information gain..
A computational imaging target specific detectivity metric
Preece, Bradley L.; Nehmetallah, George
2017-05-01
Due to the large quantity of low-cost, high-speed computational processing available today, computational imaging (CI) systems are expected to have a major role for next generation multifunctional cameras. The purpose of this work is to quantify the performance of theses CI systems in a standardized manner. Due to the diversity of CI system designs that are available today or proposed in the near future, significant challenges in modeling and calculating a standardized detection signal-to-noise ratio (SNR) to measure the performance of these systems. In this paper, we developed a path forward for a standardized detectivity metric for CI systems. The detectivity metric is designed to evaluate the performance of a CI system searching for a specific known target or signal of interest, and is defined as the optimal linear matched filter SNR, similar to the Hotelling SNR, calculated in computational space with special considerations for standardization. Therefore, the detectivity metric is designed to be flexible, in order to handle various types of CI systems and specific targets, while keeping the complexity and assumptions of the systems to a minimum.
Statistical estimation of ozone exposure metrics
Blankenship, Erin E.; Stefanski, L. A.
Data from recent experiments at North Carolina State University and other locations provide a unique opportunity to study the effect of ambient ozone on the growth of clover. The data consist of hourly ozone measurements over a 140 day growing season at eight sites in the US, coupled with clover growth response data measured every 28 days. The objective is to model an indicator of clover growth as a function of ozone exposure. A common strategy for dealing with the numerous hourly ozone measurements is to reduce these to a single summary measurement, a so-called exposure metric, for the growth period of interest. However, the mean ozone value is not necessarily the best summarization, as it is widely believed that low levels of ozone have a negligible effect on growth, whereas peak ozone values are deleterious to plant growth. There are also suspected interactions with available sunlight, temperature and humidity. A number of exposure metrics have been proposed that reflect these beliefs by assigning different weights to ozone values according to magnitude, time of day, temperature and humidity. These weighting schemes generally depend on parameters that have, to date, been subjectively determined. We propose a statistical approach based on profile likelihoods to estimate the parameters in these exposure metrics.
Stability of extremal metrics under complex deformations
Rollin, Yann; Tipler, Carl
2011-01-01
Let $(\\mathcal {X},\\Omega)$ be a closed polarized complex manifold, $g$ be an extremal metric on $\\mathcal X$ that represents the K\\"ahler class $\\Omega$, and $G$ be a compact connected subgroup of the isometry group $Isom(\\mathcal{X},g)$. Assume that the Futaki invariant relative to $G$ is nondegenerate at $g$. Consider a smooth family $(\\mathcal{M}\\to B)$ of polarized complex deformations of $(\\mathcal{X},\\Omega)\\simeq (\\mathcal{M}_0,\\Theta_0)$ provided with a holomorphic action of $G$. Then for every $t\\in B$ sufficiently small, there exists an $h^{1,1}(\\cX)$-dimensional family of extremal K\\"ahler metrics on $\\mathcal{M}_t$ whose K\\"ahler classes are arbitrarily close to $\\Theta_t$. We apply this deformation theory to analyze the Mukai-Umemura 3-fold and its complex deformations. In particular, we prove that there are certain complex deformation of the Mukai-Umemura 3-folds which have extremal metric of non constant scalar curvature with Kaehler class $c_1$.
Multi-Armed Bandits in Metric Spaces
Kleinberg, Robert; Upfal, Eli
2008-01-01
In a multi-armed bandit problem, an online algorithm chooses from a set of strategies in a sequence of trials so as to maximize the total payoff of the chosen strategies. While the performance of bandit algorithms with a small finite strategy set is quite well understood, bandit problems with large strategy sets are still a topic of very active investigation, motivated by practical applications such as online auctions and web advertisement. The goal of such research is to identify broad and natural classes of strategy sets and payoff functions which enable the design of efficient solutions. In this work we study a very general setting for the multi-armed bandit problem in which the strategies form a metric space, and the payoff function satisfies a Lipschitz condition with respect to the metric. We refer to this problem as the "Lipschitz MAB problem". We present a complete solution for the multi-armed problem in this setting. That is, for every metric space (L,X) we define an isometry invariant which bounds f...
Security Metrics: A Solution in Search of a Problem
Rosenblatt, Joel
2008-01-01
Computer security is one of the most complicated and challenging fields in technology today. A security metrics program provides a major benefit: looking at the metrics on a regular basis offers early clues to changes in attack patterns or environmental factors that may require changes in security strategy. The term "security metrics" loosely…
FIXED POINT RESULTS ON METRIC-TYPE SPACES
Institute of Scientific and Technical Information of China (English)
Monica COSENTINO; Peyman SALIMI; Pasquale VETRO
2014-01-01
In this paper we obtain fixed point and common fixed point theorems for self-mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an application to integral equations are given to illustrate the usability of the obtained results.
Geodesics in the space of K\\"ahler cone metrics
Calama, Simone
2012-01-01
In this paper, we prove the existence and uniqueness of the weak cone geodesics in the space of K\\"ahler cone metrics by solving the singular, homogeneous complex Monge-Amp\\`{e}re equation. As an application, we prove the metric space structure of the appropriate subspace of the space of K\\"ahler cone metrics.
Meter Detection in Symbolic Music Using Inner Metric Analysis
de Haas, W.B.|info:eu-repo/dai/nl/304841250; Volk, A.|info:eu-repo/dai/nl/304842117
2016-01-01
In this paper we present PRIMA: a new model tailored to symbolic music that detects the meter and the first downbeat position of a piece. Given onset data, the metrical structure of a piece is interpreted using the Inner Metric Analysis (IMA) model. IMA identifies the strong and weak metrical
Graev metrics on free products and HNN extensions
DEFF Research Database (Denmark)
Slutsky, Konstantin
2014-01-01
We give a construction of two-sided invariant metrics on free products (possibly with amalgamation) of groups with two-sided invariant metrics and, under certain conditions, on HNN extensions of such groups. Our approach is similar to the Graev's construction of metrics on free groups over pointed...
Tide or Tsunami? The Impact of Metrics on Scholarly Research
Bonnell, Andrew G.
2016-01-01
Australian universities are increasingly resorting to the use of journal metrics such as impact factors and ranking lists in appraisal and promotion processes, and are starting to set quantitative "performance expectations" which make use of such journal-based metrics. The widespread use and misuse of research metrics is leading to…
22 CFR 226.15 - Metric system of measurement.
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Metric system of measurement. 226.15 Section....S. NON-GOVERNMENTAL ORGANIZATIONS Pre-award Requirements § 226.15 Metric system of measurement. (a...) declares that the metric system is the preferred measurement system for U.S. trade and commerce....
45 CFR 74.15 - Metric system of measurement.
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Metric system of measurement. 74.15 Section 74.15... ORGANIZATIONS, AND COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 74.15 Metric system of measurement. The... that the metric system is the preferred measurement system for U.S. trade and commerce. The...
22 CFR 145.15 - Metric system of measurement.
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Metric system of measurement. 145.15 Section... system of measurement. The Metric Conversion Act, as amended by the Omnibus Trade and Competitiveness Act (15 U.S.C. 205) declares that the metric system is the preferred measurement system for U.S. trade...
32 CFR 22.530 - Metric system of measurement.
2010-07-01
... CFR, 1991 Comp., p. 343), states that: (1) The metric system is the preferred measurement system for U... 32 National Defense 1 2010-07-01 2010-07-01 false Metric system of measurement. 22.530 Section 22... of measurement. (a) Statutory requirement. The Metric Conversion Act of 1975, as amended by...
40 CFR 30.15 - Metric system of measurement.
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Metric system of measurement. 30.15... measurement. The Metric Conversion Act, as amended by the Omnibus Trade and Competitiveness Act (15 U.S.C. 205), declares that the metric system is the preferred measurement system for U.S. trade and commerce. The...
15 CFR 14.15 - Metric system of measurement.
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Metric system of measurement. 14.15... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.15 Metric system of measurement. The Metric Conversion... system is the preferred measurement system for U.S. trade and commerce. The Act requires each...
36 CFR 1210.15 - Metric system of measurement.
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Metric system of measurement... system of measurement. The Metric Conversion Act, as amended by the Omnibus Trade and Competitiveness Act (15 U.S.C. 205) declares that the metric system is the preferred measurement system for U.S. trade...
32 CFR 32.15 - Metric system of measurement.
2010-07-01
... comply with requirements concerning the use of the metric system at 32 CFR 22.530. ... 32 National Defense 1 2010-07-01 2010-07-01 false Metric system of measurement. 32.15 Section 32..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 32.15 Metric system of...
Comparison of routing metrics for wireless mesh networks
CSIR Research Space (South Africa)
Nxumalo, SL
2011-09-01
Full Text Available A number of routing metrics exist in wireless networks. These routing metrics were originally designed for mobile ad hoc networks (MANETs). When Wireless Mesh Networks (WMNs) came into being, an idea of introducing and using these routing metrics...
Stability results for generalized contractions in partial metric spaces
Directory of Open Access Journals (Sweden)
Fatma Al- Sirehy
2012-07-01
Full Text Available In 1994, Mathews [7] introduced the notion of partial metric spaces as a part of his study of denotational semantics of data.ow networks and obtained a generalization of the Banach contraction principle in partial metric spaces. In this paper, we prove stability results in partial metric spaces.
Term Based Comparison Metrics for Controlled and Uncontrolled Indexing Languages
Good, B. M.; Tennis, J. T.
2009-01-01
Introduction: We define a collection of metrics for describing and comparing sets of terms in controlled and uncontrolled indexing languages and then show how these metrics can be used to characterize a set of languages spanning folksonomies, ontologies and thesauri. Method: Metrics for term set characterization and comparison were identified and…
Almost-isometry between Teichm\\"{u}ller metric and length-spectra metric on moduli space
Liu, Lixin
2010-01-01
We prove an analogue of Farb-Masur's theorem that the length-spectra metric on moduli space is "almost isometric" to a simple model $\\mathcal {V}(S)$ which is induced by the cone metric over the complex of curves. As an application, we know that the Teichm\\"{u}ller metric and the length-spectra metric are "almost isometric" on moduli space, while they are not even quasi-isometric on Teichm\\"{u}ller space.
Pragmatic security metrics applying metametrics to information security
Brotby, W Krag
2013-01-01
Other books on information security metrics discuss number theory and statistics in academic terms. Light on mathematics and heavy on utility, PRAGMATIC Security Metrics: Applying Metametrics to Information Security breaks the mold. This is the ultimate how-to-do-it guide for security metrics.Packed with time-saving tips, the book offers easy-to-follow guidance for those struggling with security metrics. Step by step, it clearly explains how to specify, develop, use, and maintain an information security measurement system (a comprehensive suite of metrics) to
Critical review of the levelised cost of energy metric
Directory of Open Access Journals (Sweden)
Sklar-Chik, M. D.
2016-12-01
Full Text Available The purpose of this paper is to critically review the ‘levelised cost of energy’ metric used in electricity project development. This metric is widely used, because it is a simple metric to calculate the cost per unit of electricity for a given technology connected to the electricity network. However, it neglects certain key terms such as inflation, integration costs, and system costs. The implications of incorporating these additional costs would provide a more comprehensive metric for evaluating electricity generation projects, and for the system as a whole. It is therefore recommended to refine the metric for the South African context.
Energy Technology Data Exchange (ETDEWEB)
Hansen, C., E-mail: hansec@uw.edu [PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Columbia University, New York, New York 10027 (United States); Victor, B.; Morgan, K.; Hossack, A.; Sutherland, D. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); Jarboe, T.; Nelson, B. A. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Marklin, G. [PSI-Center, University of Washington, Seattle, Washington 98195 (United States)
2015-05-15
We present application of three scalar metrics derived from the Biorthogonal Decomposition (BD) technique to evaluate the level of agreement between macroscopic plasma dynamics in different data sets. BD decomposes large data sets, as produced by distributed diagnostic arrays, into principal mode structures without assumptions on spatial or temporal structure. These metrics have been applied to validation of the Hall-MHD model using experimental data from the Helicity Injected Torus with Steady Inductive helicity injection experiment. Each metric provides a measure of correlation between mode structures extracted from experimental data and simulations for an array of 192 surface-mounted magnetic probes. Numerical validation studies have been performed using the NIMROD code, where the injectors are modeled as boundary conditions on the flux conserver, and the PSI-TET code, where the entire plasma volume is treated. Initial results from a comprehensive validation study of high performance operation with different injector frequencies are presented, illustrating application of the BD method. Using a simplified (constant, uniform density and temperature) Hall-MHD model, simulation results agree with experimental observation for two of the three defined metrics when the injectors are driven with a frequency of 14.5 kHz.
Hansen, N H; Sobel, E; Davanipour, Z; Gillette, L M; Niiranen, J; Wilson, B W
2000-01-01
Recently published studies indicate that having worked in occupations that involve moderate to high electromagnetic field (EMF) exposure is a risk factor for neurodegenerative diseases, including Alzheimer's disease. In these studies, the occupational groups most over-represented for EMF exposure comprised seamstresses, dressmakers, and tailors. Future epidemiologic studies designed to evaluate the possibility of a causal relationship between exposure to EMF and a neuro degenerative disease endpoint such as incidence of Alzheimer's disease, will benefit from the measurement of electromagnetic field metrics with potential biological relevance. Data collection methodology in such studies would be highly dependent upon how the metrics are defined. In this research the authors developed and demonstrated (1) protocols for collecting EMF exposure data suitable for estimating a variety of exposure metrics that may have biological relevance, and (2) analytical methods for calculation of these metrics. The authors show how exposure might be estimated under each of the three prominent EMF health-effects mechanism theories and evaluate the assertion that relative exposure ranking is dependent on which mechanism is assumed. The authors also performed AC RMS magnetic flux density measurements, confirming previously reported findings. The results indicate that seamstresses, as an occupational group, should be considered for study of the possible health effects of long-term EMF exposure.
Hansen, C.; Victor, B.; Morgan, K.; Jarboe, T.; Hossack, A.; Marklin, G.; Nelson, B. A.; Sutherland, D.
2015-05-01
We present application of three scalar metrics derived from the Biorthogonal Decomposition (BD) technique to evaluate the level of agreement between macroscopic plasma dynamics in different data sets. BD decomposes large data sets, as produced by distributed diagnostic arrays, into principal mode structures without assumptions on spatial or temporal structure. These metrics have been applied to validation of the Hall-MHD model using experimental data from the Helicity Injected Torus with Steady Inductive helicity injection experiment. Each metric provides a measure of correlation between mode structures extracted from experimental data and simulations for an array of 192 surface-mounted magnetic probes. Numerical validation studies have been performed using the NIMROD code, where the injectors are modeled as boundary conditions on the flux conserver, and the PSI-TET code, where the entire plasma volume is treated. Initial results from a comprehensive validation study of high performance operation with different injector frequencies are presented, illustrating application of the BD method. Using a simplified (constant, uniform density and temperature) Hall-MHD model, simulation results agree with experimental observation for two of the three defined metrics when the injectors are driven with a frequency of 14.5 kHz.
Complete Calabi-Yau metrics from Kahler metrics in D=4
Leston, Mauricio
2010-01-01
In [20]-[22] there was developed a method for constructing a class of Calabi-Yau metrics in D=6 with a hamiltonian isometry, which require a 4-dimensional hyperkahler structure as initial input. Particular solutions of the resulting non linear equation corresponding to complete Calabi-Yau metrics were found in [22], but surprisingly the equation gets harder to solve for general hyperkahler structures due to the non trivial curvature of the Ricci flat 4-metric. In the present letter we suggest that the complications due to the choice of the hyperkahler structure may be avoided. We carefully analyze the assumptions made in those references and we work out a construction which do not require such initial input. This is also generalized to higher dimensions. It should be emphasized that there is nothing wrong with the use of hyperkahler structures as a solution generating technique, what is pointed out here is that this method is just optional.
Metrics for phylogenetic networks I: generalizations of the Robinson-Foulds metric.
Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel
2009-01-01
The assessment of phylogenetic network reconstruction methods requires the ability to compare phylogenetic networks. This is the first in a series of papers devoted to the analysis and comparison of metrics for tree-child time consistent phylogenetic networks on the same set of taxa. In this paper, we study three metrics that have already been introduced in the literature: the Robinson-Foulds distance, the tripartitions distance and the mu-distance. They generalize to networks the classical Robinson-Foulds or partition distance for phylogenetic trees. We analyze the behavior of these metrics by studying their least and largest values and when they achieve them. As a by-product of this study, we obtain tight bounds on the size of a tree-child time consistent phylogenetic network.
Classification in medical images using adaptive metric k-NN
Chen, C.; Chernoff, K.; Karemore, G.; Lo, P.; Nielsen, M.; Lauze, F.
2010-03-01
The performance of the k-nearest neighborhoods (k-NN) classifier is highly dependent on the distance metric used to identify the k nearest neighbors of the query points. The standard Euclidean distance is commonly used in practice. This paper investigates the performance of k-NN classifier with respect to different adaptive metrics in the context of medical imaging. We propose using adaptive metrics such that the structure of the data is better described, introducing some unsupervised learning knowledge in k-NN. We investigated four different metrics are estimated: a theoretical metric based on the assumption that images are drawn from Brownian Image Model (BIM), the normalized metric based on variance of the data, the empirical metric is based on the empirical covariance matrix of the unlabeled data, and an optimized metric obtained by minimizing the classification error. The spectral structure of the empirical covariance also leads to Principal Component Analysis (PCA) performed on it which results the subspace metrics. The metrics are evaluated on two data sets: lateral X-rays of the lumbar aortic/spine region, where we use k-NN for performing abdominal aorta calcification detection; and mammograms, where we use k-NN for breast cancer risk assessment. The results show that appropriate choice of metric can improve classification.
A new class of metrics for spike trains.
Rusu, Cătălin V; Florian, Răzvan V
2014-02-01
The distance between a pair of spike trains, quantifying the differences between them, can be measured using various metrics. Here we introduce a new class of spike train metrics, inspired by the Pompeiu-Hausdorff distance, and compare them with existing metrics. Some of our new metrics (the modulus-metric and the max-metric) have characteristics that are qualitatively different from those of classical metrics like the van Rossum distance or the Victor and Purpura distance. The modulus-metric and the max-metric are particularly suitable for measuring distances between spike trains where information is encoded in bursts, but the number and the timing of spikes inside a burst do not carry information. The modulus-metric does not depend on any parameters and can be computed using a fast algorithm whose time depends linearly on the number of spikes in the two spike trains. We also introduce localized versions of the new metrics, which could have the biologically relevant interpretation of measuring the differences between spike trains as they are perceived at a particular moment in time by a neuron receiving these spike trains.
Goal-Driven Definition of Product Metrics Based on Properties
Briand, Lionel; Morasca, Sandro; Basili, Victor R.
1995-01-01
Defining product metrics requires a rigorous and disciplined approach, because useful metrics depend, to a very large extent, on one's goals and assumptions about the studied software process. Unlike in more mature scientific fields, it appears difficult to devise a "universal" set of metrics in software engineering, that can be used across application environments. We propose an approach for the definition of product metrics which is driven by the experimental goals of measurement, expressed via the Goal/Question/Metric (GQM) paradigm, and is based on the mathematical properties of the metrics. This approach integrates several research contributions from the literature into a consistent, practical and rigorous approach. The approach we outline should not be considered as a complete and definitive solution, but as a starting point for discussion about a product metric definition approach widely accepted in the software engineering community. At this point, we intend to provide an intellectual process that we think is necessary to define sound software product metrics. A precise and complete documentation of such an approach will provide the information needed to make the assessment and reuse of a new metric possible. Thus, product metrics are supported by a solid theory which facilitates their review and refinement. Moreover, their definition is made less exploratory and, as a consequence, one is less likely to identify spurious correlations between process and product metrics.
Inheritance Hierarchy Based Reuse & Reusability Metrics in OOSD
Directory of Open Access Journals (Sweden)
Nasib S. Gill,
2011-06-01
Full Text Available Reuse and reusability are two major aspects in object oriented software which can be measured from inheritance hierarchy. Reusability is the prerequisite of reuse but both may or may not bemeasured using same metric. This paper characterizes metrics of reuse and reusability in Object Oriented Software Development (OOSD. Reuse metrics compute the extent to which classes have been reused and reusability metrics computes the extent to which classes can be reused. In this paper five new metrics namely- Breadth of Inheritance Tree (BIT, Method Reuse Per Inheritance Relation (MRPIR,Attribute Reuse Per Inheritance Relation (ARPIR, Generality of Class (GC and Reuse Probability (RP have been proposed. These metrics help to evaluate reuse and reusability of object oriented software.Four extensively validated existing object oriented metrics, namely- Depth of Inheritance Tree (DIT, Number of Children (NOC, Method Inheritance Factor (MIF and Attribute Inheritance Factor (AIFhave been selected and investigated for comparison with proposed metrics. All metrics can be computed from inheritance hierarchies and classified according to their characteristics. Further, metrics areevaluated against a case study. These metrics are helpful in comparing alternative inheritance hierarchies at design time to select best alternative, so that the development time and cost can be reduced.
THE ROLE OF ARTICLE LEVEL METRICS IN SCIENTIFIC PUBLISHING
Directory of Open Access Journals (Sweden)
Vladimir TRAJKOVSKI
2016-04-01
Full Text Available Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Article-level metrics (ALMs provide a wide range of metrics about the uptake of an individual journal article by the scientific community after publication. They include citations, statistics of usage, discussions in online comments and social media, social bookmarking, and recommendations. In this editorial, the role of article level metrics in publishing scientific papers has been described. Article-Level Metrics (ALMs are rapidly emerging as important tools to quantify how individual articles are being discussed, shared, and used. Data sources depend on the tool, but they include classic metrics indicators depending on citations, academic social networks (Mendeley, CiteULike, Delicious and social media (Facebook, Twitter, blogs, and Youtube. The most popular tools used to apply this new metrics are: Public Library of Science - Article-Level Metrics, Altmetric, Impactstory and Plum Analytics. Journal Impact Factor (JIF does not consider impact or influence beyond citations count as this count reflected only through Thomson Reuters’ Web of Science® database. JIF provides indicator related to the journal, but not related to a published paper. Thus, altmetrics now becomes an alternative metrics for performance assessment of individual scientists and their contributed scholarly publications. Macedonian scholarly publishers have to work on implementing of article level metrics in their e-journals. It is the way to increase their visibility and impact in the world of science.
Metrication: An economic wake-up call for US industry
Carver, G. P.
1993-03-01
As the international standard of measurement, the metric system is one key to success in the global marketplace. International standards have become an important factor in international economic competition. Non-metric products are becoming increasingly unacceptable in world markets that favor metric products. Procurement is the primary federal tool for encouraging and helping U.S. industry to convert voluntarily to the metric system. Besides the perceived unwillingness of the customer, certain regulatory language, and certain legal definitions in some states, there are no major impediments to conversion of the remaining non-metric industries to metric usage. Instead, there are good reasons for changing, including an opportunity to rethink many industry standards and to take advantage of size standardization. Also, when the remaining industries adopt the metric system, they will come into conformance with federal agencies engaged in similar activities.
The mathematics of non-linear metrics for nested networks
Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian
2016-10-01
Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.
Agile Metrics: Progress Monitoring of Agile Contractors
2014-01-01
3 4 5 6 7 8 Story Points Delivered by the Team Sprint Number Bar Chart of Velocity CMU/SEI-2013-TN-029 | 13 In this fictional case, the ‘back...counter to tenets of Agile methods. Velocity is a local measure, used by an individual development team to gauge the realism of commitments they make. The...is a metric primarily intended to guide the development team itself to understand the realism in delivery commitments. The feed- back provided at the
Rotating Black Holes and the Kerr Metric
Kerr, Roy Patrick
2008-10-01
Since it was first discovered in 1963 the Kerr metric has been used by relativists as a test-bed for conjectures on worm-holes, time travel, closed time-like loops, and the existence or otherwise of global Cauchy surfaces. More importantly, it has also used by astrophysicists to investigate the effects of collapsed objects on their local environments. These two groups of applications should not be confused. Astrophysical Black Holes are not the same as the Kruskal solution and its generalisations.
Invariant distances and metrics in complex analysis
Jarnicki, Marek
2013-01-01
As in the field of ""Invariant Distances and Metrics in Complex Analysis"" there was and is a continuous progress this is the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other met
Dust ball physics and the Schwarzschild metric
Kassner, Klaus
2017-08-01
A physics-first derivation of the Schwarzschild metric is given. Gravitation is described in terms of the effects of tidal forces (or of spacetime curvature) on the volume of a small ball of test particles (a dust ball), freely falling after all particles were at rest with respect to each other initially. Because this formulation avoids the use of tensors, neither advanced tensor calculus nor sophisticated differential geometry are needed in the calculation. The derivation is not lengthy and it has visual appeal, so it may be useful in teaching.
Energy Metrics for State Government Buildings
Michael, Trevor
Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation
Metric Gauge Fields in Deformed Special Relativity
Cardone, F; Petrucci, A
2014-01-01
We show that, in the framework of Deformed Special Relativity (DSR), namely a (four-dimensional) generalization of the (local) space-time struc- ture based on an energy-dependent "deformation" of the usual Minkowski geometry, two kinds of gauge symmetries arise, whose spaces either coin- cide with the deformed Minkowski space or are just internal spaces to it. This is why we named them "metric gauge theories". In the case of the internal gauge ?elds, they are a consequence of the deformed Minkowski space (DMS) possessing the structure of a generalized Lagrange space. Such a geometrical structure allows one to de?ne curvature and torsion in the DMS.
Constrained metric variations and emergent equilibrium surfaces
Guven, Jemal; Vázquez-Montejo, Pablo
2013-09-01
Any surface is completely characterized by a metric and a symmetric tensor satisfying the Gauss-Codazzi-Mainardi equations (GCM), which identifies the latter as its curvature. We demonstrate that physical questions relating to a surface described by any Hamiltonian involving only surface degrees of freedom can be phrased completely in terms of these tensors without explicit reference to the ambient space: the surface is an emergent entity. Lagrange multipliers are introduced to impose GCM as constraints on these variables and equations describing stationary surface states derived. The behavior of these multipliers is explored for minimal surfaces, showing how their singularities correlate with surface instabilities.
Constrained metric variations and emergent equilibrium surfaces
Energy Technology Data Exchange (ETDEWEB)
Guven, Jemal, E-mail: jemal@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, 04510 México, D.F. (Mexico); Vázquez-Montejo, Pablo, E-mail: pvazquez@correo.cua.uam.mx [Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa, C.P. 01120, México, D.F. (Mexico)
2013-09-16
Any surface is completely characterized by a metric and a symmetric tensor satisfying the Gauss–Codazzi–Mainardi equations (GCM), which identifies the latter as its curvature. We demonstrate that physical questions relating to a surface described by any Hamiltonian involving only surface degrees of freedom can be phrased completely in terms of these tensors without explicit reference to the ambient space: the surface is an emergent entity. Lagrange multipliers are introduced to impose GCM as constraints on these variables and equations describing stationary surface states derived. The behavior of these multipliers is explored for minimal surfaces, showing how their singularities correlate with surface instabilities.
Speech intelligibility metrics in small unoccupied classrooms
Cruikshank, Matthew E.; Carney, Melinda J.; Cheenne, Dominique J.
2005-04-01
Nine small volume classrooms in schools located in the Chicago suburbs were tested to quantify speech intelligibility at various seat locations. Several popular intelligibility metrics were investigated, including Speech Transmission Index (STI), %Alcons, Signal to Noise Ratios (SNR), and 80 ms Useful/Detrimental Ratios (U80). Incorrect STI values were experienced in high noise environments, while the U80s and the SNRs were found to be the most accurate methodologies. Test results are evaluated against the guidelines of ANSI S12.60-2002, and match the data from previous research.
Metric propositional neighborhood logics on natural numbers
DEFF Research Database (Denmark)
Bresolin, Davide; Della Monica, Dario; Goranko, Valentin
2013-01-01
Metric Propositional Neighborhood Logic (MPNL) over natural numbers. MPNL features two modalities referring, respectively, to an interval that is “met by” the current one and to an interval that “meets” the current one, plus an infinite set of length constraints, regarded as atomic propositions...... is decidable in double exponential time and expressively complete with respect to a well-defined sub-fragment of the two-variable fragment FO2[N,=,numbers. Moreover, we show that MPNL can be extended in a natural way...
Towards a Reconstruction of General Bulk Metrics
Engelhardt, Netta
2016-01-01
We prove that the metric of a general holographic spacetime can be reconstructed (up to an overall conformal factor) from distinguished spatial slices - "light-cone cuts" - of the conformal boundary. Our prescription is covariant and applies to bulk points in causal contact with the boundary. Furthermore, we describe a procedure for determining the light-cone cuts corresponding to bulk points in the causal wedge of the boundary in terms of the divergences of correlators in the dual field theory. Possible extensions for determining the conformal factor and including the cuts of points outside of the causal wedge are discussed. We also comment on implications for subregion/subregion duality.
Learning Objects Reusability Effectiveness Metric (LOREM
Directory of Open Access Journals (Sweden)
Torky Ibrahim Sultan
2014-03-01
Full Text Available In this research we aim to propose an advanced metric to evaluate the effectiveness of learning objects in order to be reused in new contexts. By the way learning objects reusability is achieving economic benefits from educational technology as it saving time and improving quality, but in case of choosing unsuitable learning object it may be less benefit than creating the learning object from scratch. Actually learning objects reusability can facilitate systems development and adaptation. By surveying the current evaluation metrics, we found that while they cover essential aspects, they enables all reviewers of learning objects to evaluate all criteria without paying attention to their roles in creating the learning object which affect their capability to evaluate specific criteria. Our proposed Approach (LOREM is evaluating learning objects based on a group of Aspects which measure their level of effectiveness in order to be reused in other contexts. LOREM classifies reviewers into 3 categories; 1. Academic Group: (Subject Expert Matter “SME” and Instructor. 2. Technical Group: (Instructional Designer “ID”, LO Developer and LO Designer. 3. Students group. The authorization of reviewers in these several categories are differentiated according to reviewer's type, e.g., (Instructor, LO Developer and their area of expert (their expertise subjects for academic and students reviewers.
Hausdorff metric in the fuzzy environment
Directory of Open Access Journals (Sweden)
Laura Victoria Forero Vega
2016-10-01
Full Text Available Context: intuitively, the concept the set has been established as a collection of different elements, that is, a set is determined via the relationship of membership of an element of a universe as a whole. The situation, of course, is whether or does not belong; in a diffuse to each element subset of the universe it is associated with a degree of membership, which is a number between 0 and 1. The fuzzy subsets are established as a correspondence between each element of the universe and a degree of membership. Method: the study was based on previous work as articles or books, where authors present ideas about the importance of fuzzy subsets and the need to create with them new theories and spaces. Results: by combining two theories, a new study environment that allows state that corresponds Hausdorff distance, extends and adjusts the notion of distance between nonempty compact subsets in the environment of metrics spaces, more accurately generated in (Rn; du. Conclusions: the construction carried out allows a metric space with several qualities, where we can say that are the object consequence initial study.
Network Community Detection on Metric Space
Directory of Open Access Journals (Sweden)
Suman Saha
2015-08-01
Full Text Available Community detection in a complex network is an important problem of much interest in recent years. In general, a community detection algorithm chooses an objective function and captures the communities of the network by optimizing the objective function, and then, one uses various heuristics to solve the optimization problem to extract the interesting communities for the user. In this article, we demonstrate the procedure to transform a graph into points of a metric space and develop the methods of community detection with the help of a metric defined for a pair of points. We have also studied and analyzed the community structure of the network therein. The results obtained with our approach are very competitive with most of the well-known algorithms in the literature, and this is justified over the large collection of datasets. On the other hand, it can be observed that time taken by our algorithm is quite less compared to other methods and justifies the theoretical findings.
Fanpage metrics analysis. "Study on content engagement"
Rahman, Zoha; Suberamanian, Kumaran; Zanuddin, Hasmah Binti; Moghavvemi, Sedigheh; Nasir, Mohd Hairul Nizam Bin Md
2016-08-01
Social Media is now determined as an excellent communicative tool to connect directly with consumers. One of the most significant ways to connect with the consumers through these Social Networking Sites (SNS) is to create a facebook fanpage with brand contents and to place different posts periodically on these fanpages. In measuring social networking sites' effectiveness, corporate houses are now analyzing metrics in terms of calculating engagement rate, number of comments/share and likings in fanpages. So now, it is very important for the marketers to know the effectiveness of different contents or posts of fanpages in order to increase the fan responsiveness and engagement rate in the fan pages. In the study the authors have analyzed total 1834 brand posts from 17 international brands of Electronics companies. Data of 9 months (From December 2014 to August 2015) have been collected for analyses, which were available online in the Brand' fan pages. An econometrics analysis is conducted using Eviews 9, to determine the impact of different contents on fanpage engagement. The study picked the four most frequently posted content to determine their impact on PTA (people Talking About) metrics and Fanpage engagement activities.
Value of the Company and Marketing Metrics
Directory of Open Access Journals (Sweden)
André Luiz Ramos
2013-12-01
Full Text Available Thinking marketing strategies from a resource-based perspective (Barney, 1991, proposing assets as either tangible, organizational and human, and from Constantin and Luch’s vision (1994, where strategic resources can be tanbigle or intangible, internal or external to the firm, raises a research approach on Marketing and Finance. According to Srivastava, Shervani and Fahey (1998 there are 3 market assets types, which generate firm value. Firm value can be measured by discounted cashflow, compromising marketing activities with value generation forcasts (Anderson, 1982; Day, Fahey, 1988; Doyle, 2000; Rust et al., 2004a. The economic value of marketing strategies and marketing metrics are calling strategy researchers’ and marketing managers’ attention, making clear the need for building a bridge able to articulate marketing and finance form a strategic perspective. This article proposes an analytical framework based on different scientific approaches envolving risk and return promoted by marketing strategies and points out advances concerning both methodological approaches and marketing strategies and its impact on firm metrics and value, usgin Srinivasan and Hanssens (2009 as a start point.
Defining a Standard Metric for Electricity Savings
Energy Technology Data Exchange (ETDEWEB)
Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst
2009-03-01
The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.
Harmonic gauge perturbations of the Schwarzschild metric
Berndtson, Mark V
1996-01-01
The satellite observatory LISA will be capable of detecting gravitational waves from extreme mass ratio inspirals (EMRIs), such as a small black hole orbiting a supermassive black hole. The gravitational effects of the much smaller mass can be treated as the perturbation of a known background metric, here the Schwarzschild metric. The perturbed Einstein field equations form a system of ten coupled partial differential equations. We solve the equations in the harmonic gauge, also called the Lorentz gauge or Lorenz gauge. Using separation of variables and Fourier transforms, we write the frequency domain solutions in terms of six radial functions which satisfy decoupled ordinary differential equations. The six functions are the Zerilli and five generalized Regge-Wheeler functions of spin 2,1,0. We use the solutions to calculate the gravitational self-force for circular orbits. The self-force gives the first order perturbative corrections to the equations of motion. Section 1.2 of the thesis has a more detailed ...
Hausdorff metric BV discontinuity of sweeping processes
Klein, Olaf; Recupero, Vincenzo
2016-06-01
Sweeping processes are a class of evolution differential inclusions arising in elastoplasticity and were introduced by J.J. Moreau in the early seventies. The solution operator of the sweeping processes represents a relevant example of rate independent operator. As a particular case we get the so called play operator, which is a typical example of a hysteresis operator. The continuity properties of these operators were studied in several works. In this note we address the continuity with respect to the strict metric in the space of functions of bounded variation with values in the metric space of closed convex subsets of a Hilbert space. We provide counterexamples showing that for all BV-formulations of the sweeping process the corresponding solution operator is not continuous when its domain is endowed with the strict topology of BV and its codomain is endowed with the L1-topology. This is at variance with the play operator which has a BV-extension that is continuous in this case.
Classifier-assisted metric for chromosome pairing.
Ventura, Rodrigo; Khmelinskii, Artem; Sanches, J
2010-01-01
Cytogenetics plays a central role in the detection of chromosomal abnormalities and in the diagnosis of genetic diseases. A karyogram is an image representation of human chromosomes arranged in order of decreasing size and paired in 23 classes. In this paper we propose an approach to automatically pair the chromosomes into a karyogram, using the information obtained in a rough SVM-based classification step, to help the pairing process mainly based on similarity metrics between the chromosomes. Using a set of geometric and band pattern features extracted from the chromosome images, the algorithm is formulated on a Bayesian framework, combining the similarity metric with the results from the classifier. The solution is obtained solving a mixed integer program. Two datasets with contrasting quality levels and 836 chromosomes each were used to test and validate the algorithm. Relevant improvements with respect to the algorithm described by the authors in [1] were obtained with average paring rates above 92%, close to the rates obtained by human operators.
Two-Basket Approach and Emission Metrics
Tanaka, K.; Schmale, J.; von Schneidemesser, E.
2013-12-01
Cutting the emissions of Short-Lived Climate-Forcing Air Pollutants (SLCPs) gains increasing global attention as a mitigation policy option because of direct benefits for climate and co-benefits such as improvements in air quality. Including SLCPs as target components to abate within a single basket (e.g. the Kyoto Protocol) would, however, face issues with regard to: i) additional assumptions that are required to compare SLCP emissions and CO2 emissions within a basket in terms of climatic effects, especially because of the difference in lifetimes, ii) the accountability of non-climatic effects in the emission trading between SLCPs and CO2. The idea of a two-basket approach was originally proposed as a climatic analogue to the Montreal Protocol dealing with ozone depleting substances (Jackson 2009; Daniel et al. 2012; Smith et al. 2013). In a two-basket approach, emissions are allowed to be traded within a basket but not across the baskets. While this approach potentially ensures scientifically supported emission trading (e.g. (Smith et al. 2013)), this approach leaves open the important issue of how to determine the relative weight between two baskets. Determining the weight cannot be answered by science alone, as the question involves a value judgment as stressed in metric studies (e.g. (Tanaka et al. 2010; Tanaka et al. 2013)). We discuss emission metrics in the context of a two-basket approach and present policy implications of such an approach. In a two-basket approach, the weight between two baskets needs to be determined a priori or exogenously. Here, an opportunity arises to present synergetic policy options targeted at mitigating climate change and air pollution simultaneously. In other words, this could be a strategy to encourage policymakers to consider cross-cutting issues. Under a two-basket climate policy, policymakers would be exposed to questions such as: - What type of damages caused by climate change does one choose to avoid? - To what extent
The universal cut function and type II metrics
Energy Technology Data Exchange (ETDEWEB)
Kozameh, Carlos [FaMaF, University of Cordoba, Cordoba (Argentina); Newman, E T [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Santiago-Santiago, J G [Facultad de Ciencias Fisico Matematicas de la Universidad Autonoma de Puebla, Apartado Postal 1152, 72001, Puebla, Pue. (Mexico); Silva-Ortigoza, Gilberto [Facultad de Ciencias Fisico Matematicas de la Universidad Autonoma de Puebla, Apartado Postal 1152, 72001, Puebla, Pue. (Mexico)
2007-04-21
In analogy with classical electromagnetic theory, where one determines the total charge and both electric and magnetic multipole moments of a source from certain surface integrals of the asymptotic (or far) fields, it has been known for many years-from the work of Hermann Bondi-that the energy and momentum of gravitational sources could be determined by similar integrals of the asymptotic Weyl tensor. Recently, we observed that there were certain overlooked structures, defined at future null infinity, that allowed one to determine (or define) further properties of both electromagnetic and gravitating sources. These structures, families of complex 'slices' or 'cuts' of Penrose's I{sup +}, are referred to as universal cut functions. In particular, one can define from these structures a (complex) centre of mass (and centre of charge) and its equations of motion-with rather surprising consequences. It appears as if these asymptotic structures contain, in their imaginary part, a well-defined total spin-angular momentum of the source. We apply these ideas to the type II algebraically special metrics, both twisting and twist free.
Quantum Hall effect, Quillen metric and holomorphic anomaly
Klevtsov, Semyon; Marinescu, George; Wiegmann, Paul
2015-01-01
We study the generating functional, the adiabatic curvature and the adiabatic phase for the integer quantum Hall effect (QHE) on a compact Riemann surface. For the generating functional we derive its asymptotic expansion for the large flux of the magnetic field, i.e., for the large degree k of the positive Hermitian line bundle $L^k$. The expansion consists of the anomalous and exact terms. The anomalous terms are the leading terms of the expansion. This part is responsible for the quantization of the adiabatic transport coefficients in QHE. We then identify the anomalous part of the expansion with the Quillen metric on the determinant line bundle, and the subleading exact part with the asymptotics of the regularized spectral determinant of the Laplacian for the line bundle $L^k$, at large k. Finally, we show how the generating functional of the integer QHE is related to the gauge and gravitational (2+1)d Chern-Simons functionals. We observe the relation between the Bismut-Gillet-Soul\\'e curvature formula for...
Measurable Control System Security through Ideal Driven Technical Metrics
Energy Technology Data Exchange (ETDEWEB)
Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor
2008-01-01
The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based
Bounova, Gergana; de Weck, Olivier
2012-01-01
This study is an overview of network topology metrics and a computational approach to analyzing graph topology via multiple-metric analysis on graph ensembles. The paper cautions against studying single metrics or combining disparate graph ensembles from different domains to extract global patterns. This is because there often exists considerable diversity among graphs that share any given topology metric, patterns vary depending on the underlying graph construction model, and many real data sets are not actual statistical ensembles. As real data examples, we present five airline ensembles, comprising temporal snapshots of networks of similar topology. Wikipedia language networks are shown as an example of a nontemporal ensemble. General patterns in metric correlations, as well as exceptions, are discussed by representing the data sets via hierarchically clustered correlation heat maps. Most topology metrics are not independent and their correlation patterns vary across ensembles. In general, density-related metrics and graph distance-based metrics cluster and the two groups are orthogonal to each other. Metrics based on degree-degree correlations have the highest variance across ensembles and cluster the different data sets on par with principal component analysis. Namely, the degree correlation, the s metric, their elasticities, and the rich club moments appear to be most useful in distinguishing topologies.
On the importance of metrics in practical applications
Directory of Open Access Journals (Sweden)
Joan-Gerard Camarena
2011-06-01
Full Text Available Students motivation for learning mathematical concepts can be increased when showing the usefulness of these concepts in practical problems. One important mathematical concept is the concept of metric space and, more related to the applications, the concept of metric function. In this work we aim to illustrate how important is to appropriately choose the metric when dealing with a practical problem. In particular, we focus on the problem of detection of noisy pixels in colour images. In this context, it is very important to appropriately measure the distances and similarities between the image pixels, which is done by means of an appropriate metric. We study the performance of different metrics, including recent fuzzy metrics, within a specific filter to show that it is indeed a critical choice to appropriately solve the task.
Metrics for assessing improvements in primary health care.
Stange, Kurt C; Etz, Rebecca S; Gullett, Heidi; Sweeney, Sarah A; Miller, William L; Jaén, Carlos Roberto; Crabtree, Benjamin F; Nutting, Paul A; Glasgow, Russell E
2014-01-01
Metrics focus attention on what is important. Balanced metrics of primary health care inform purpose and aspiration as well as performance. Purpose in primary health care is about improving the health of people and populations in their community contexts. It is informed by metrics that include long-term, meaning- and relationship-focused perspectives. Aspirational uses of metrics inspire evolving insights and iterative improvement, using a collaborative, developmental perspective. Performance metrics assess the complex interactions among primary care tenets of accessibility, a whole-person focus, integration and coordination of care, and ongoing relationships with individuals, families, and communities; primary health care principles of inclusion and equity, a focus on people's needs, multilevel integration of health, collaborative policy dialogue, and stakeholder participation; basic and goal-directed health care, prioritization, development, and multilevel health outcomes. Environments that support reflection, development, and collaborative action are necessary for metrics to advance health and minimize unintended consequences.
Warm inflation and scalar perturbations of the metric
Bellini, M
2001-01-01
A second-order expansion for the quantum fluctuations of the matter field was considered in the framework of the warm inflation scenario. The friction and Hubble parameters were expended by means of a semiclassical approach. The fluctuations of the Hubble parameter generates fluctuations of the metric. These metric fluctuations produce an effective term of curvature. The power spectrum for the metric fluctuations can be calculated on the infrared sector.
Nearest-neighbor Entropy Estimators with Weak Metrics
Timofeev, Evgeniy
2012-01-01
A problem of improving the accuracy of nonparametric entropy estimation for a stationary ergodic process is considered. New weak metrics are introduced and relations between metrics, measures, and entropy are discussed. Based on weak metrics, a new nearest-neighbor entropy estimator is constructed and has a parameter with which the estimator is optimized to reduce its bias. It is shown that estimator's variance is upper-bounded by a nearly optimal Cramer-Rao lower bound.
Report on metric study tour to Republic of South Africa
Energy Technology Data Exchange (ETDEWEB)
Laner, F. J.
1978-01-01
The modernized metric system, known universally as the International System of Units (abbreviated SI under the French name) was renamed in 1960 by the world body on standards. A map shows 98 percent of the world using or moving toward adoption of SI units. Only the countries of Burma, Liberia, Brunei, and Southern Yemen are nonmetric. The author describes a two-week session in Pretoria and Johannesburg on metrication, followed by additional meetings on metrication in Rhodesia. (MCW)
"Assessment of different bioequivalent metrics in Rifampin bioequivalence study "
"Rouini MR; Tajer Zadeh H; Valad Khani M "
2002-01-01
The use of secondary metrics has become special interest in bioequivalency studies. The applicability of partial area method, truncated AUC and Cmax/AUC has been argued by many authors. This study aims to evaluate the possible superiority of these metrics to primary metrics (i.e. AUCinf, Cmax and Tmax). The suitability of truncated AUC for assessment of absorption extent as well as Cmax/AUC and partial AUC for the evaluation of absorption rate in bioequivalency determination was investigated ...
Topological Anosov Maps of Non-compact Metric Spaces
Institute of Scientific and Technical Information of China (English)
YANG Run-sheng
2001-01-01
Let X be a metric space. We say that a continuous surjection f: X→X is a topological Anosov map ( abbrev. TA-map) if f is expansive and has pseudo-orbit tracing property with respect to some compatible metric for X. This paper studies the properties of TA-maps of non-compact metric spaces and gives some conditions for the map to be topologically mixing.
Rainbow metric from quantum gravity: anisotropic cosmology
Assanioussi, Mehdi
2016-01-01
In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter $\\beta$ in the modified dispersion relation of the modes. Hence inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [arXiv:1412.6000], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.
Metrics correlation and analysis service (MCAS)
Energy Technology Data Exchange (ETDEWEB)
Baranovski, Andrew; Dykstra, Dave; Garzoglio, Gabriele; Hesselroth, Ted; Mhashilkar, Parag; Levshina, Tanya; /Fermilab
2009-05-01
The complexity of Grid workflow activities and their associated software stacks inevitably involves multiple organizations, ownership, and deployment domains. In this setting, important and common tasks such as the correlation and display of metrics and debugging information (fundamental ingredients of troubleshooting) are challenged by the informational entropy inherent to independently maintained and operated software components. Because such an information 'pond' is disorganized, it a difficult environment for business intelligence analysis i.e. troubleshooting, incident investigation and trend spotting. The mission of the MCAS project is to deliver a software solution to help with adaptation, retrieval, correlation, and display of workflow-driven data and of type-agnostic events, generated by disjoint middleware.
Nonintegrability of the Zipoy-Voorhees metric
Lukes-Gerakopoulos, Georgios
2012-08-01
The low frequency gravitational wave detectors like the evolved Laser Interferometer Space Antenna/New Gravitational Wave Observatory (eLISA/NGO) will give us the opportunity to test whether the supermassive compact objects lying at the centers of galaxies are indeed Kerr black holes. One way to do such a test is to compare the gravitational wave signals with templates of perturbed black hole spacetimes, the so-called bumpy black hole spacetimes. The Zipoy-Voorhees (ZV) spacetime (known also as the γ spacetime) can be included in the bumpy black hole family, since it can be considered as a perturbation of the Schwarzschild spacetime background. Several authors have suggested that the ZV metric corresponds to an integrable system. Contrary to this integrability conjecture, the present article shows by numerical examples that, in general, ZV belongs to the family of nonintegrable systems.
Recurrence Metrics and Time Varying Light Cones
Singh-Modgil, M
2005-01-01
It is shown by explicit construction of new metrics, that General Relativity can solve the exact Poinc$\\acute{a}$re recurrence problem. In these solutions, the light cone, flips periodically between past and future, due to a periodically alternating arrow of the proper time. The geodesics in these universes show periodic Loschmidt's velocity reversion $v \\to -v$, at critical points, which leads to recurrence. However, the matter tensors of some of these solutions exhibit unusual properties - such as, periodic variations in density and pressure. While this is to be expected in periodic models, the physical basis for such a variation is not clear. Present paper therefore can be regarded as an extension of Tipler's "no go theorem for recurrence in an expanding universe", to other space-time geometries.
MESUR metrics from scholarly usage of resources
CERN. Geneva; Van de Sompel, Herbert
2007-01-01
Usage data is increasingly regarded as a valuable resource in the assessment of scholarly communication items. However, the development of quantitative, usage-based indicators of scholarly impact is still in its infancy. The Digital Library Research & Prototyping Team at the Los Alamos National Laboratory's Research library has therefore started a program to expand the set of usage-based tools for the assessment of scholarly communication items. The two-year MESUR project, funded by the Andrew W. Mellon Foundation, aims to define and validate a range of usage-based impact metrics, and issue guidelines with regards to their characteristics and proper application. The MESUR project is constructing a large-scale semantic model of the scholarly community that seamlessly integrates a wide range of bibliographic, citation and usage data. Functioning as a reference data set, this model is analyzed to characterize the intricate networks of typed relationships that exist in the scholarly community. The resulting c...
Dust ball physics and the Schwarzschild metric
Kassner, Klaus
2016-01-01
A physics-first derivation of the Schwarzschild metric is given. Gravitation is described in terms of the effects of tidal forces (or of spacetime curvature) on the volume of a small ball of test particles (a dust ball), freely falling after all particles were at rest with respect to each other initially. The possibility to express Einstein's equation this way and some of its ramifications have been enjoyably discussed by Baez and Bunn [Am. J. Phys. 73, 644 (2005)]. Since the formulation avoids the use of tensors, neither advanced tensor calculus nor sophisticated differential geometry are needed in the calculation. The derivation is not lengthy and it has visual appeal, so it may be useful in teaching.
Rainbow metric from quantum gravity: Anisotropic cosmology
Assanioussi, Mehdi; Dapor, Andrea
2017-03-01
In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter β in the modified dispersion relation of the modes, hence, inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015), 10.1016/j.physletb.2015.10.043], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.
Clean Cities 2013 Annual Metrics Report
Energy Technology Data Exchange (ETDEWEB)
Johnson, C.; Singer, M.
2014-10-01
Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.
Metric projection for dynamic multiplex networks
Jurman, Giuseppe
2016-01-01
Evolving multiplex networks are a powerful model for representing the dynamics along time of different phenomena, such as social networks, power grids, biological pathways. However, exploring the structure of the multiplex network time series is still an open problem. Here we propose a two-steps strategy to tackle this problem based on the concept of distance (metric) between networks. Given a multiplex graph, first a network of networks is built for each time steps, and then a real valued time series is obtained by the sequence of (simple) networks by evaluating the distance from the first element of the series. The effectiveness of this approach in detecting the occurring changes along the original time series is shown on a synthetic example first, and then on the Gulf dataset of political events.
Towards a reconstruction of general bulk metrics
Engelhardt, Netta; Horowitz, Gary T.
2017-01-01
We prove that the metric of a general holographic spacetime can be reconstructed (up to an overall conformal factor) from distinguished spatial slices—‘light-cone cuts’—of the conformal boundary. Our prescription is covariant and applies to bulk points in causal contact with the boundary. Furthermore, we describe a procedure for determining the light-cone cuts corresponding to bulk points in the causal wedge of the boundary in terms of the divergences of correlators in the dual field theory. Possible extensions for determining the conformal factor and including the cuts of points outside of the causal wedge are discussed. We also comment on implications for subregion/subregion duality.
Black Holes, Holography and Moduli Space Metric
Sen-Gupta, K; Gupta, Kumar S.; Sen, Siddhartha
2007-01-01
String theory can accommodate black holes with the black hole parameters related to string moduli. It is a well known but remarkable feature that the near horizon geometry of a large class of black holes arising from string theory contains a BTZ part. A mathematical theorem (Sullivan's Theorem) relates the three dimensional geometry of the BTZ metric to the conformal structures of a two dimensional space, thus providing a precise kinematic statement of holography. Using this theorem it is possible to argue that the string moduli space in this region has to have negative curvature from the BTZ part of the associated spacetime. This is consistent with a recent conjecture of Ooguri and Vafa on string moduli space.
Economic metrics for wind energy projects
Directory of Open Access Journals (Sweden)
Wagner Sousa de Oliveira, Antonio Jorge Fernandes, Joaquim Jose Borges Gouveia
2011-11-01
Full Text Available This paper presents an overview of economic metrics for wind energy projects. The attractiveness of the proposed wind energy can vary considerably between evaluation of the private and public sector. The financing structure is very important influencing factor for the attractiveness of wind energy project. In many cases, the economic activities practiced by economic agents of financing the project in order to earn sufficient income to meet the investors‘ needs and other economic agents involved. They are also characterized the assessment indicators and economic-financial management of projects implemented renewable energy exclusively for onshore wind energy systems. All indicators presented should be used in economic engineering analysis to meet specific information needs for decision making in situations of investment opportunity for renewable energy projects.
Development of Technology Transfer Economic Growth Metrics
Mastrangelo, Christina M.
1998-01-01
The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.
Quantitative metric theory of continued fractions
Indian Academy of Sciences (India)
J Hančl; A Haddley; P Lertchoosakul; R Nair
2016-05-01
Quantitative versions of the central results of the metric theory of continued fractions were given primarily by C. De Vroedt. In this paper we give improvements of the bounds involved . For a real number , let $$x=c_0+\\dfrac{1}{c_1+\\dfrac{1}{c_2+\\dfrac{1}{c_3+\\dfrac{1}{c_4+_\\ddots}}}}.$$ A sample result we prove is that given $\\epsilon > 0$, $$(c_1(x)\\cdots c_n(x))^{\\frac{1}{n}}=\\prod^\\infty_{k=1}\\left( 1+\\frac{1}{k(k+2)}\\right)^{\\frac{\\log \\, k}{\\log \\, 2}}+o\\left(n^{-\\frac{1}{2}}(\\log \\, n)^{\\frac{3}{2}}(\\log \\, \\log \\, n)^{\\frac{1}{2}+\\epsilon}\\right)$$
Clean Cities 2014 Annual Metrics Report
Energy Technology Data Exchange (ETDEWEB)
Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2015-12-22
Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2014 Annual Metrics Report.
Outsourced similarity search on metric data assets
Yiu, Man Lung
2012-02-01
This paper considers a cloud computing setting in which similarity querying of metric data is outsourced to a service provider. The data is to be revealed only to trusted users, not to the service provider or anyone else. Users query the server for the most similar data objects to a query example. Outsourcing offers the data owner scalability and a low-initial investment. The need for privacy may be due to the data being sensitive (e.g., in medicine), valuable (e.g., in astronomy), or otherwise confidential. Given this setting, the paper presents techniques that transform the data prior to supplying it to the service provider for similarity queries on the transformed data. Our techniques provide interesting trade-offs between query cost and accuracy. They are then further extended to offer an intuitive privacy guarantee. Empirical studies with real data demonstrate that the techniques are capable of offering privacy while enabling efficient and accurate processing of similarity queries.
Relativistic gas in a Schwarzschild metric
Kremer, Gilberto M
2013-01-01
A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle's model for the collision operator of the Boltzmann equation is employed. The transport coefficients of bulk and shear viscosities and thermal conductivity are determined from the Chapman-Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperatures) and ultra-relativistic (high temperatures) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that -- in the absence of an acceleration field -- a stat...
A possible molecular metric for biological evolvability
Indian Academy of Sciences (India)
Aditya Mittal; B Jayaram
2012-07-01
Proteins manifest themselves as phenotypic traits, retained or lost in living systems via evolutionary pressures. Simply put, survival is essentially the ability of a living system to synthesize a functional protein that allows for a response to environmental perturbations (adaptation). Loss of functional proteins leads to extinction. Currently there are no universally applicable quantitative metrics at the molecular level for either measuring ‘evolvability’ of life or for assessing the conditions under which a living system would go extinct and why. In this work, we show emergence of the first such metric by utilizing the recently discovered stoichiometric margin of life for all known naturally occurring (and functional) proteins. The constraint of having well-defined stoichiometries of the 20 amino acids in naturally occurring protein sequences requires utilization of the full scope of degeneracy in the genetic code, i.e. usage of all codons coding for an amino acid, by only 11 of the 20 amino acids. This shows that the non-availability of individual codons for these 11 amino acids would disturb the fine stoichiometric balance resulting in non-functional proteins and hence extinction. Remarkably, these amino acids are found in close proximity of any given amino acid in the backbones of thousands of known crystal structures of folded proteins. On the other hand, stoichiometry of the remaining 9 amino acids, found to be farther/distal from any given amino acid in backbones of folded proteins, is maintained independent of the number of codons available to synthesize them, thereby providing some robustness and hence survivability.
3-manifolds with(out) metrics of nonpositive curvature
Leeb, B
1994-01-01
In the context of Thurstons geometrisation program we address the question which compact aspherical 3-manifolds admit Riemannian metrics of nonpositive curvature. We show that non-geometric Haken manifolds generically, but not always, admit such metrics. More precisely, we prove that a Haken manifold with, possibly empty, boundary of zero Euler characteristic admits metrics of nonpositive curvature if the boundary is non-empty or if at least one atoroidal component occurs in its canonical topological decomposition. Our arguments are based on Thurstons Hyperbolisation Theorem. We give examples of closed graph-manifolds with linear gluing graph and arbitrarily many Seifert components which do not admit metrics of nonpositive curvature.
Bibliometrics: tracking research impact by selecting the appropriate metrics
Agarwal, Ashok; Durairajanayagam, Damayanthi; Tatagari, Sindhuja; Esteves, Sandro C; Harlev, Avi; Henkel, Ralf; Roychoudhury, Shubhadeep; Homa, Sheryl; Puchalt, Nicolás Garrido; Ramasamy, Ranjith; Majzoub, Ahmad; Ly, Kim Dao; Tvrda, Eva; Assidi, Mourad; Kesari, Kavindra; Sharma, Reecha; Banihani, Saleem; Ko, Edmund; Abu-Elmagd, Muhammad; Gosalvez, Jaime; Bashiri, Asher
2016-01-01
Traditionally, the success of a researcher is assessed by the number of publications he or she publishes in peer-reviewed, indexed, high impact journals. This essential yardstick, often referred to as the impact of a specific researcher, is assessed through the use of various metrics. While researchers may be acquainted with such matrices, many do not know how to use them to enhance their careers. In addition to these metrics, a number of other factors should be taken into consideration to objectively evaluate a scientist's profile as a researcher and academician. Moreover, each metric has its own limitations that need to be considered when selecting an appropriate metric for evaluation. This paper provides a broad overview of the wide array of metrics currently in use in academia and research. Popular metrics are discussed and defined, including traditional metrics and article-level metrics, some of which are applied to researchers for a greater understanding of a particular concept, including varicocele that is the thematic area of this Special Issue of Asian Journal of Andrology. We recommend the combined use of quantitative and qualitative evaluation using judiciously selected metrics for a more objective assessment of scholarly output and research impact. PMID:26806079
Hua domains and complete Einstein-K(a)hler metric
Institute of Scientific and Technical Information of China (English)
YIN Wei-ping
2006-01-01
The first part of this paper we talk about the story of how to introduce the Hua domains and summarize the main results on Hua domains.The second part,the explicit complete Einstein-K(a)hler metric on the special type of Hua domains is given and the sharp estimate of holomorphic sectional curvature under this metric is also obtained.In the meantime we also prove that the complete Einstein-K(a)hler metric is equivalent to the Bergman metric on the special type of Hua domain.
Can rigidly rotating polytropes be sources of the Kerr metric?
Martín, J; Ruiz, E
2007-01-01
We use a recent result by Cabezas et al. to build up an approximate solution to the gravitational field created by a rigidly rotating polytrope. We solve the linearized Einstein equations inside and outside the surface of zero pressure including second-order corrections due to rotational motion to get an asymptotically flat metric in a global harmonic coordinate system. We prove that if the metric and their first derivatives are continuous on the matching surface up to this order of approximation, the multipole moments of this metric cannot be fitted to those of the Kerr metric.
Balanced metrics on Cartan and Cartan-Hartogs domains
Loi, Andrea
2010-01-01
This paper consists of two results dealing with balanced metrics (in S. Donaldson terminology) on nonconpact complex manifolds. In the first one we describe all balanced metrics on Cartan domains. In the second one we show that the only Cartan-Hartogs domain which admits a balanced metric is the complex hyperbolic space. By combining these results with those obtained in [13] (Kaehler-Einstein submanifolds of the infinite dimensional projective space, to appear in Mathematische Annalen) we also provide the first example of complete, Kaehler-Einstein and projectively induced metric g such that $\\alpha g$ is not balanced for all $\\alpha >0$.
Using Metrics to Drive Innovations in Green Chemistry and Engineering
Presentation examines selected green chemistry breakthroughs by industrial leaders, and discusses tools and metrics companies are using to assess their sustainable and green chemistry and engineering efforts.
Robustness Metrics: Consolidating the multiple approaches to quantify Robustness
DEFF Research Database (Denmark)
Göhler, Simon Moritz; Eifler, Tobias; Howard, Thomas J.
2016-01-01
determined to be conceptually different from one another. The metrics were classified by their meaning and interpretation based on the types of information necessary to calculate the metrics. Four different classes were identified: 1) Sensitivity robustness metrics; 2) Size of feasible design space...... and to remove the ambiguities of the term robustness. By applying an exemplar metric from each class to a case study, the differences between the classes were further highlighted.These classes form the basis for the definition of four specific sub-definitions of robustness, namely the ‘robust concept’, ‘robust...
Lipschitz correspondence between metric measure spaces and random distance matrices
Gadgil, Siddhartha
2011-01-01
Given a metric space with a Borel probability measure, for each integer $N$ we obtain a probability distribution on $N\\times N$ distance matrices by considering the distances between pairs of points in a sample consisting of $N$ points chosen indepenedently from the metric space with respect to the given measure. We show that this gives an asymptotically bi-Lipschitz relation between metric measure spaces and the corresponding distance matrices. This is an effective version of a result of Vershik that metric measure spaces are determined by associated distributions on infinite random matrices.
The nature of spacetime in bigravity: two metrics or none?
Akrami, Yashar; Solomon, Adam R
2014-01-01
Matter can be consistently coupled to two metrics at once. This is allowed in the most general ghost-free, bimetric theory of gravity, and it unlocks an additional symmetry with respect to the exchange of the metrics. This double coupling, however, raises the problem of identifying the observables of the theory. It is shown that there is no physical metric to which matter would universally couple, and that moreover such an effective metric generically does not exist even for an individual matter species. A resolution is suggested in the context of Finsler geometry.
Synthetic neuronal datasets for benchmarking directed functional connectivity metrics
National Research Council Canada - National Science Library
Rodrigues, João; Andrade, Alexandre
2015-01-01
Background. Datasets consisting of synthetic neural data generated with quantifiable and controlled parameters are a valuable asset in the process of testing and validating directed functional connectivity metrics...
Bibliometrics: tracking research impact by selecting the appropriate metrics.
Agarwal, Ashok; Durairajanayagam, Damayanthi; Tatagari, Sindhuja; Esteves, Sandro C; Harlev, Avi; Henkel, Ralf; Roychoudhury, Shubhadeep; Homa, Sheryl; Puchalt, Nicolás Garrido; Ramasamy, Ranjith; Majzoub, Ahmad; Ly, Kim Dao; Tvrda, Eva; Assidi, Mourad; Kesari, Kavindra; Sharma, Reecha; Banihani, Saleem; Ko, Edmund; Abu-Elmagd, Muhammad; Gosalvez, Jaime; Bashiri, Asher
2016-01-01
Traditionally, the success of a researcher is assessed by the number of publications he or she publishes in peer-reviewed, indexed, high impact journals. This essential yardstick, often referred to as the impact of a specific researcher, is assessed through the use of various metrics. While researchers may be acquainted with such matrices, many do not know how to use them to enhance their careers. In addition to these metrics, a number of other factors should be taken into consideration to objectively evaluate a scientist's profile as a researcher and academician. Moreover, each metric has its own limitations that need to be considered when selecting an appropriate metric for evaluation. This paper provides a broad overview of the wide array of metrics currently in use in academia and research. Popular metrics are discussed and defined, including traditional metrics and article-level metrics, some of which are applied to researchers for a greater understanding of a particular concept, including varicocele that is the thematic area of this Special Issue of Asian Journal of Andrology. We recommend the combined use of quantitative and qualitative evaluation using judiciously selected metrics for a more objective assessment of scholarly output and research impact.
Equivalence of Gromov-Prohorov- and Gromov's Box-Metric on the Space of Metric Measure Spaces
Löhr, Wolfgang
2011-01-01
Stochastic processes with values in the space of metric measure spaces (complete separable metric spaces equipped with a probability measure) are becoming more and more important in probability theory, especially for the modelling of evolutionary systems, where at each time the whole phylogenetic tree is considered. Greven, Pfaffelhuber and Winter introduced the Gromov-Prohorov metric d_{GPW} on the space of metric measure spaces and showed that it induces the Gromov-weak topology. They also conjectured that this topology coincides with the topology induced by Gromov's Box_1 metric. In this note, we show that this is indeed true, and the metrics are even bi-Lipschitz equivalent. More precisely, d_{GPW}= 1/2 Box_{1/2} and hence d_{GPW} <= Box_1 <= 2d_{GPW}.
Aldrovandi, Ettore
2004-01-01
We introduce a model for Hermitian holormorphic Deligne cohomology on a projective algebraic manifold which allows to incorporate singular hermitian structures along a normal crossing divisor. In the case of a projective curve, the cup-product in cohomology is shown to correspond to a generalization of the Deligne pairing to line bundles with "good" hermitian metrics in the sense of Mumford and others. A particular case is that of the tangent bundle of the curve twisted by the negative of the...
Nakano, T.; Oogane, M.; Furuichi, T.; Ando, Y.
2017-01-01
We developed CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) with a perpendicularly magnetized synthetic antiferromagnetic (p-SAF) reference layer for magnetic sensor applications. The MTJs exhibited linear tunnel magnetoresistance curves to out-of-plane applied magnetic fields with dynamic ranges more than ±2.5 kOe, which are wider than those in CoFeB/MgO/CoFeB-MTJs reported to date. The performance metrics of MTJ sensors, i.e., sensitivity and nonlinearity, depend significantly on the anisotropy field of the free layer. We explained the dependences by a simple model based on the Stoner-Wohlfarth and Slonczewski models, which gives us a guideline to design the sensor performance metrics. These findings demonstrated that MTJs with a p-SAF reference layer are promising candidates for wide-dynamic-range magnetic sensors.
Presic-Boyd-Wong Type Results in Ordered Metric Spaces
Directory of Open Access Journals (Sweden)
Satish Shukla
2014-04-01
Full Text Available The purpose of this paper is to prove some Presic-Boyd-Wong type fixed point theorems in ordered metric spaces. The results of this paper generalize the famous results of Presic and Boyd-Wong in ordered metric spaces. We also initiate the homotopy result in product spaces. Some examples are provided which illustrate the results proved herein.
The Caratheodory and Kobayashi metrics and applications in complex analysis
Krantz, Steven G.
2006-01-01
The Caratheodory and Kobayashi metrics have proved to be important tools in the function theory of several complex variables. But they are less familiar in the context of one complex variable. Our purpose here is to gather in one place the basic ideas about these important invariant metrics for domains in the plane and to provide some illuminating examples and applications.
Comparative Study of Trace Metrics between Bibliometrics and Patentometrics
Directory of Open Access Journals (Sweden)
Fred Y. Ye
2016-06-01
Full Text Available Purpose: To comprehensively evaluate the overall performance of a group or an individual in both bibliometrics and patentometrics. Design/methodology/approach: Trace metrics were applied to the top 30 universities in the 2014 Academic Ranking of World Universities (ARWU — computer sciences, the top 30 ESI highly cited papers in the computer sciences field in 2014, as well as the top 30 assignees and the top 30 most cited patents in the National Bureau of Economic Research (NBER computer hardware and software category. Findings: We found that, by applying trace metrics, the research or marketing impact efficiency, at both group and individual levels, was clearly observed. Furthermore, trace metrics were more sensitive to the different publication-citation distributions than the average citation and h-index were. Research limitations: Trace metrics considered publications with zero citations as negative contributions. One should clarify how he/she evaluates a zero-citation paper or patent before applying trace metrics. Practical implications: Decision makers could regularly examinine the performance of their university/company by applying trace metrics and adjust their policies accordingly. Originality/value: Trace metrics could be applied both in bibliometrics and patentometrics and provide a comprehensive view. Moreover, the high sensitivity and unique impact efficiency view provided by trace metrics can facilitate decision makers in examining and adjusting their policies.
Caristi Fixed Point Theorem in Metric Spaces with a Graph
Directory of Open Access Journals (Sweden)
M. R. Alfuraidan
2014-01-01
Full Text Available We discuss Caristi’s fixed point theorem for mappings defined on a metric space endowed with a graph. This work should be seen as a generalization of the classical Caristi’s fixed point theorem. It extends some recent works on the extension of Banach contraction principle to metric spaces with graph.
48 CFR 711.002-70 - Metric system waivers.
2010-10-01
... the Office of Small and Disadvantaged Business Utilization (SDB) will be obtained prior to... each fiscal year, each USAID/W procurement activity and each Mission will submit a copy of the metric waiver log for the year to the USAID Metric Executive. (Mission logs are to be consolidated in a Mission...
24 CFR 84.15 - Metric system of measurement.
2010-04-01
... business-related activities. Metric implementation may take longer where the use of the system is initially... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Metric system of measurement. 84.15 Section 84.15 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...
An axially symmetric solution of metric-affine gravity
Vlachynsky, E J; Obukhov, Yu N; Hehl, F W
1996-01-01
We present an exact stationary {\\it axially symmetric} vacuum solution of metric-affine gravity (MAG) which generalises the recently reported spherically symmetric solution. Besides the metric, it carries nonmetricity and torsion as post-Riemannian geometrical structures. The parameters of the solution are interpreted as mass and angular momentum and as dilation, shear and spin charges.
Choosing the Greenest Synthesis: A Multivariate Metric Green Chemistry Exercise
Mercer, Sean M.; Andraos, John; Jessop, Philip G.
2012-01-01
The ability to correctly identify the greenest of several syntheses is a particularly useful asset for young chemists in the growing green economy. The famous univariate metrics atom economy and environmental factor provide insufficient information to allow for a proper selection of a green process. Multivariate metrics, such as those used in…
TOPOLOGICAL AND METRICAL CONDITIONS FOR COLLET-ECKMANN UNIMODAL MAPS
Institute of Scientific and Technical Information of China (English)
王兰宇
2001-01-01
In this paper we prove that Sands' topological condition for Collet-Eckmann maps implies Tsujii's metrical condition; on the other hand, if a Collet-Eckmann map satisfies Tsujii's metrical condition, then it satisfies Sands' topologicaJ condition. Thus we obtain three different versions of Benedicks-Carleson Theorem by using topological conditions.
16 CFR 500.18 - SI metric prefixes.
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false SI metric prefixes. 500.18 Section 500.18 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR... PACKAGING AND LABELING ACT § 500.18 SI metric prefixes. The following chart indicates SI prefixes that...
Adapting the M3 Surveillance Metrics for an Unknown Baseline
Energy Technology Data Exchange (ETDEWEB)
Hamada, Michael Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Abes, Jeff I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jaramillo, Brandon Michael Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-30
The original M_{3} surveillance metrics assume that the baseline is known. In this article, adapted M_{3} metrics are presented when the baseline is not known and estimated by available data. Deciding on how much available data is enough is also discussed.
Texture-based Visualization of Metrics on Software Architectures
Byelas, Heorhiy; Telea, Alexandru; Spencer, SN
2008-01-01
We present a method that combines textures, blending, and scattered-data interpolation to visualize several metrics defined on overlapping areas-of-interest on UML class diagrams. We aim to simplify the task of visually correlating the distribution and outlier values of a multivariate metric dataset
Ingoing Eddington-Finkelstein Metric of an Evaporating Black Hole
Abdolrahimi, Shohreh; Tzounis, Christos
2016-01-01
We present an approximate time-dependent metric in ingoing Eddington-Finkelstein coordinates for an evaporating black hole as a first-order perturbation of the Schwarzschild metric, using the linearized back reaction from a realistic approximation to the stress-energy tensor for the Hawking radiation in the Unruh quantum state.
Recovering the spacetime metric from a holographic dual
Engelhardt, Netta
2016-01-01
We review our recent proposal to use certain spatial cross-sections of the boundary at infinity -- light-cone cuts -- to recover the conformal metric in the bulk. We discuss some extensions of this work, including how to obtain the conformal metric near the horizon of a collapsing black hole. We also show how to obtain the conformal factor under certain conditions.
Performance evaluation of routing metrics for wireless mesh networks
CSIR Research Space (South Africa)
Nxumalo, SL
2009-08-01
Full Text Available for WMN. The routing metrics have not been compared with QoS parameters. This paper is a work in progress of the project in which researchers want to compare the performance of different routing metrics in WMN using a wireless test bed. Researchers...
Evaluating hydrological model performance using information theory-based metrics
The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic m...
Socio-Technical Security Metrics (Dagstuhl Seminar 14491)
Gollmann, Dieter; Herley, Cormac; Koenig, Vincent; Pieters, Wolter; Sasse, Martina Angela
2015-01-01
This report documents the program and the outcomes of Dagstuhl Seminar 14491 "Socio-Technical Security Metrics". In the domain of safety, metrics inform many decisions, from the height of new dikes to the design of nuclear plants. We can state, for example, that the dikes should be high enough to gu
The Continued Search for Nonarbitrary Metrics in Psychology
Embretson, Susan E.
2006-01-01
H. Blanton and J. Jaccard examined the arbitrariness of metrics in the context of 2 current issues: (a) the measurement of racial prejudice and (b) the establishment of clinically significant change. According to Blanton and Jaccard, although research findings are not undermined by arbitrary metrics, individual scores and score changes may not be…
Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics
Energy Technology Data Exchange (ETDEWEB)
Martinez-Morales, J.L. [Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, A. P. 273, Admon. de correos 3, C. P. 62251 Cuernavaca, Morelos (Mexico)
2006-09-01
Properties of the eigentensors of the Lichnerowicz Laplacian for the Euclidean Schwarzschild metric are discussed together with possible applications to the linear stability of higher-dimensional instantons. The main statement of the article is that any eigentensor of the Lichnerowicz operator in a Euclidean (possibly higher-dimensional) Schwarzschild metric is essentially singular at infinity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Probabilistic G-Metric space and some fixed point results
Directory of Open Access Journals (Sweden)
A. R. Janfada
2013-01-01
Full Text Available In this note we introduce the notions of generalized probabilistic metric spaces and generalized Menger probabilistic metric spaces. After making our elementary observations and proving some basic properties of these spaces, we are going to prove some fixed point result in these spaces.
FIXED POINTS THEOREMS IN MULTI-METRIC SPACES
Directory of Open Access Journals (Sweden)
Laurentiu I. Calmutchi
2011-07-01
Full Text Available The aim of the present article is to give some general methods inthe fixed point theory for mappings of general topological spaces. Using the notions of the multi-metric space and of the E-metric space, we proved the analogous of several classical theorems: Banach fixed point principle, Theorems of Edelstein, Meyers, Janos etc.
38 CFR 49.15 - Metric system of measurement.
2010-07-01
... measurement. 49.15 Section 49.15 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS... measurement. The Metric Conversion Act, as amended by the Omnibus Trade and Competitiveness Act (15 U.S.C. 205) declares that the metric system is the preferred measurement system for U.S. trade and commerce. The...
2 CFR 215.15 - Metric system of measurement.
2010-01-01
... Programs” (56 FR 35801, 3 CFR, 1991 Comp., p. 343). ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Metric system of measurement. 215.15 Section... measurement. The Metric Conversion Act, as amended by the Omnibus Trade and Competitiveness Act (15 U.S.C....
coincidentally commuting mappings in D-metric spaces
Directory of Open Access Journals (Sweden)
B. C. Dhage
2003-01-01
pairs of a single-valued and a multivalued coincidentally commuting mappings in D-metric spaces satisfying a certain generalized contraction condition. Our result generalizes more than a dozen known fixed-point theorems in D-metric spaces including those of Dhage (2000 and Rhoades (1996.
Per-patch metric learning for robust image matching
Karaoglu, S.; Everts, I.; van Gemert, J.C.; Gevers, T.
2015-01-01
We propose a patch-specific metric learning method to improve matching performance of local descriptors. Existing methodologies typically focus on invariance, by completely considering, or completely disregarding all variations. We propose a metric learning method that is robust to only a range of
10 CFR 600.115 - Metric system of measurement.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Metric system of measurement. 600.115 Section 600.115 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES Uniform..., Hospitals, and Other Nonprofit Organizations Pre-Award Requirements § 600.115 Metric system of...
Extension of contractive maps in the Menger probabilistic metric space
Energy Technology Data Exchange (ETDEWEB)
Razani, Abdolrahman [Department of Mathematics, Faculty of Science, Imam Khomeini International University, P.O. Box 34194-288 Qazvin (Iran, Islamic Republic of)]. E-mail: razani@ipm.ir; Fouladgar, Kaveh [Stanford University, Mathematics Building 380, 450 Serra Mall, Stanford, CA 94305-2125 (United States)]. E-mail: kfouladgar@yahoo.com
2007-12-15
In this article, the topological properties of the Menger probabilistic metric spaces and the mappings between these spaces are studied. In addition, contractive and k-contractive mappings are introduced. As an application, a new fixed point theorem in a chainable Menger probabilistic metric space is proved.
Integration using invariant operators Conformally flat radiation metrics
Edgar, S B
1999-01-01
A new method is presented for obtaining the general conformally flat radiation metric by using the differential operators of Machado Ramos and Vickers (a generalisation of the GHP operators) which are invariant under null rotations and spin and boosts. The solution is found by constructing involutive tables of these derivatives applied to the quantities which arise in the Karlhede classification of metrics.
Modified gravity from the nonperturbative quantization of a metric
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Folomeev, Vladimir [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Kleihaus, Burkhard; Kunz, Jutta [Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany)
2015-04-01
Based on certain assumptions for the expectation value of a product of the quantum fluctuating metric at two points, the gravitational and scalar field Lagrangians are evaluated. Assuming a vanishing expectation value of the first-order terms of the metric, the calculations are performed with an accuracy of second order. It is shown that such quantum corrections give rise to modified gravity. (orig.)
Choosing the Greenest Synthesis: A Multivariate Metric Green Chemistry Exercise
Mercer, Sean M.; Andraos, John; Jessop, Philip G.
2012-01-01
The ability to correctly identify the greenest of several syntheses is a particularly useful asset for young chemists in the growing green economy. The famous univariate metrics atom economy and environmental factor provide insufficient information to allow for a proper selection of a green process. Multivariate metrics, such as those used in…
A Practical Method for Collecting Social Media Campaign Metrics
Gharis, Laurie W.; Hightower, Mary F.
2017-01-01
Today's Extension professionals are tasked with more work and fewer resources. Integrating social media campaigns into outreach efforts can be an efficient way to meet work demands. If resources go toward social media, a practical method for collecting metrics is needed. Collecting metrics adds one more task to the workloads of Extension…
QoS Metrics for Cloud Computing Services Evaluation
Directory of Open Access Journals (Sweden)
Amid Khatibi Bardsiri
2014-11-01
Full Text Available Cloud systems are transforming the Information Technology trade by facultative the companies to provide admission to their structure and also software products to the membership foundation. Because of the vast range within the delivered Cloud solutions, from the customer’s perspective of an aspect, it's emerged as troublesome to decide whose providers they need to utilize and then what's the thought of his or her option. Especially, employing suitable metrics is vital in assessing practices. Nevertheless, to the most popular of our knowledge, there's no methodical explanation relating to metrics for estimating Cloud products and services. QoS (Quality of Service metrics playing an important role in selecting Cloud providers and also optimizing resource utilization efficiency. While many reports have got to devote to exploitation QoS metrics, relatively not much equipment supports the remark and investigation of QoS metrics of Cloud programs. To guarantee a specialized product is published, describing metrics for assessing the QoS might be an essential necessity. So, this text suggests various QoS metrics for service vendors, especially thinking about the consumer’s worry. This article provides the metrics list may stand to help the future study and also assessment within the field of Cloud service's evaluation.
Metrics for Evaluating Conventional and Renewable Energy Technologies (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Mann, M. K.
2013-01-01
With numerous options for the future of natural gas, how do we know we're going down the right path? How do we designate a metric to measure and demonstrate change and progress, and how does that metric incorporate all stakeholders and scenarios?
Practical Diagnostics for Evaluating Residential Commissioning Metrics
Energy Technology Data Exchange (ETDEWEB)
Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max
2002-06-11
In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24