WorldWideScience

Sample records for voltammetry measurements show

  1. Strategies for low detection limit measurements with cyclic voltammetry.

    Science.gov (United States)

    Wiedemann, D J; Kawagoe, K T; Kennedy, R T; Ciolkowski, E L; Wightman, R M

    1991-12-15

    Cyclic voltammetry of Nafion-coated, carbon-fiber electrodes is used to detect trace concentrations of dopamine, both in a flow injection apparatus and in the brain of an anaesthetized rat. To improve signal-to-noise ratios, the sources of noise during cyclic voltammetry have been determined and strategies have been developed to decrease the noise. With the potentiostat employed, the measured noise is comparable to that expected for Johnson noise from the feedback resistor of the current transducer. Additional noise arises from the waveform generator employed and, in some cases, line noise. Line noise is discriminated against by starting each cyclic voltammogram either in phase or 180 degrees out of phase with the line frequency. When used in vivo, additional noise also arises from the physiological activity of the animal. Detection limits are found to closely correspond to those predicted on the basis of simulation of the voltammetric shape and the measured noise. Detection limits are improved by the use of appropriate analog and digital filtering, ensemble averaging, and appropriate timing of repetitive cyclic voltammograms. The combined use of these techniques enables the in vivo detection of approximately 100 nM of dopamine with a signal-to-noise ratio of 25.

  2. The redox status of experimental hemorrhagic shock as measured by cyclic voltammetry.

    Science.gov (United States)

    Mittal, Anubhav; Göke, Friederike; Flint, Richard; Loveday, Benjamin P T; Thompson, Nichola; Delahunt, Brett; Kilmartin, Paul A; Cooper, Garth J S; MacDonald, Julia; Hickey, Anthony; Windsor, John A; Phillips, Anthony R J

    2010-05-01

    Hemorrhagic shock (HS) leads to reactive oxygen species production. However, clinicians do not have access to bedside measurements of the redox status during HS. Cyclic voltammetry (CyV) is a simple electrochemical method of measuring redox status. The aims of this study were to 1) report the first application of cyclic voltammetry to measure the acute changes in serum redox status after HS, 2) to contrast it with another severe systemic disease with a different redox pathology (acute pancreatitis [AP]), and 3) to describe the response of CyV over time in a resolving model of AP. In the acute study, 24 male Wistar rats were randomized into three groups: groups 1 (control), 2 (AP), and 3 (HS). In the time-course study, 28 rats were randomized to a sham-control as well as 6 and 24 h post-AP cohorts, respectively.Cyclic voltammetry was performed using a three-electrode system. In the acute study, the first and second voltammetric peaks increased significantly in HS. In contrast, within the AP group, only the first voltammetric peak showed a significant increase. The first voltammetric peak correlated with plasma protein carbonyls (PCs) and with thiobarbituric acid-reactive substances, whereas the second voltammetric peak correlated positively with plasma protein carbonyls. In the second study, the first voltammetric peak correlated with physiological improvements. Here, we showed that serum CyV could respond to the serum redox change in HS and AP. Cyclic voltammetry warrants evaluation as a potential real-time beside measure of a patient's redox status during shock.

  3. Measuring performance at trade shows

    DEFF Research Database (Denmark)

    Hansen, Kåre

    2004-01-01

    Trade shows is an increasingly important marketing activity to many companies, but current measures of trade show performance do not adequately capture dimensions important to exhibitors. Based on the marketing literature's outcome and behavior-based control system taxonomy, a model is built...... that captures a outcome-based sales dimension and four behavior-based dimensions (i.e. information-gathering, relationship building, image building, and motivation activities). A 16-item instrument is developed for assessing exhibitors perceptions of their trade show performance. The paper presents evidence...

  4. Redox status of acute pancreatitis as measured by cyclic voltammetry: initial rodent studies to assess disease severity.

    Science.gov (United States)

    Mittal, Anubhav; Flint, Richard J; Fanous, Medhat; Delahunt, Brett; Kilmartin, Paul A; Cooper, Garth J S; Windsor, John A; Phillips, Anthony R J

    2008-03-01

    To determine whether serum antioxidant capacity as measured by the electrochemical technique cyclic voltammetry could be used to resolve differences in the severity of an inflammatory disease such as acute pancreatitis. Experimental animal study. Animal laboratory, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, New Zealand. Male Wistar rats. A total of 48 inbred male Wistar rats were studied in five experimental groups. Group 1 (baseline reference, immediate euthanasia, n = 14) had no surgical intervention. Group 2 (sham, n = 9) had identical surgical procedures to the pancreatitis groups except for the intraductal infusion. Groups 3-5 (n = 9, n = 10, and n = 6, respectively) had acute pancreatitis induced by the pancreatic intraductal infusion of 3%, 4%, or 5% sodium taurocholate, respectively. Groups 2-5 were killed after 12 hrs. Cyclic voltammetry involves scanning the voltage of a working electrode while recording the anodic current produced as the low molecular weight antioxidants in the solution are oxidized on the surface of the working electrode. The current produced is proportional to the combined concentration of the antioxidants. There was a significant positive correlation of the first cyclic voltammetric peak maximum with pancreatic histologic severity (Spearman's r = .51, p = .007) and with a number of other markers of systemic severity, notably bicarbonate (r = -.57, p = .002), base excess (r = -.65, p cyclic voltammetric peak maximum was superior at indicating the severity of the disease state compared with a standard method of total antioxidant capacity measurement. In experimental pancreatitis, the first cyclic voltammetric peak maximum showed significant correlations with histologic and systemic indices of severity. Further clinical studies are now needed to define the role of cyclic voltammetry in monitoring the progression of this and other severe illness in the critical care setting.

  5. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry.

    Science.gov (United States)

    Ndungu, Kuria

    2012-07-17

    Trace metal toxicity to aquatic biota is highly dependent on the metaĺs chemical speciation. Accordingly, metal speciation is being incorporated in to water quality criteria and toxicity regulations using the Biotic Ligand Model (BLM) but there are currently no BLM for biota in marine and estuarine waters. In this study, I compare copper speciation measurements in a typical coastal water made using Competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) to model calculations using Visual MINTEQ. Both Visual MINTEQ and BLM use similar programs to model copper interactions with dissolved organic matter-DOM (i.e., the Stockholm Humic Model and WHAM-Windermere Humic Aqueous Model, respectively). The total dissolved (14). The modeled [Cu2+] could be fitted to the experimental values better after the conditional stability constant for copper binding to fulvic acid (FA) complexes in DOM in the SHM was adjusted to account for higher concentration of strong Cu-binding sites in FA.

  6. Simultaneous measurement and quantitation of 4-hydroxyphenylacetic acid and dopamine with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Shin, Mimi; Kaplan, Sam V; Raider, Kayla D; Johnson, Michael A

    2015-05-07

    Caged compounds have been used extensively to investigate neuronal function in a variety of preparations, including cell culture, ex vivo tissue samples, and in vivo. As a first step toward electrochemically measuring the extent of caged compound photoactivation while also measuring the release of the catecholamine neurotransmitter, dopamine, fast-scan cyclic voltammetry at carbon-fiber microelectrodes (FSCV) was used to electrochemically characterize 4-hydroxyphenylacetic acid (4HPAA) in the absence and presence of dopamine. 4HPAA is a by-product formed during the process of photoactivation of p-hydroxyphenacyl-based caged compounds, such as p-hydroxyphenylglutamate (pHP-Glu). Our data suggest that the oxidation of 4HPAA occurs through the formation of a conjugated species. Moreover, we found that a triangular waveform of -0.4 V to +1.3 V to -0.4 V at 600 V s(-1), repeated every 100 ms, provided an oxidation current of 4HPAA that was enhanced with a limit of detection of 100 nM, while also allowing the detection and quantitation of dopamine within the same scan. Along with quantifying 4HPAA in biological preparations, the results from this work will allow the electrochemical measurement of photoactivation reactions that generate 4HPAA as a by-product as well as provide a framework for measuring the photorelease of electroactive by-products from caged compounds that incorporate other chromophores.

  7. Voltammetry Method Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Pereira, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Willit, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Williamson, M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-29

    The purpose of the ANL MPACT Voltammetry project is to evaluate the suitability of previously developed cyclic voltammetry techniques to provide electroanalytical measurements of actinide concentrations in realistic used fuel processing scenarios. The molten salts in these scenarios are very challenging as they include high concentrations of multiple electrochemically active species, thereby creating a variety of complications. Some of the problems that arise therein include issues related to uncompensated resistance, cylindrical diffusion, and alloying of the electrodeposited metals. Improvements to the existing voltammetry technique to account for these issues have been implemented, resulting in good measurements of actinide concentrations across a wide range of adverse conditions.

  8. Pulse Voltammetry.

    Science.gov (United States)

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  9. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Pihel, K; Walker, Q D; Wightman, R M

    1996-07-01

    Thin films of overoxidized polypyrrole have been electro-chemically coated onto carbon fiber microelectrodes and used for dopamine measurements with background-substracted, fast-scan cyclic voltammetry at a scan rate of 300 V/s. The films were stable on the electrode surface only when the electrodes were scanned to high potentials (1400 mV vs SSCE) in pH 7.4 aqueous buffer. Dopamine sensitivity and ascorbate and dihydroxyphenylacetic acid (DOPAC) rejection at the overoxidized polypyrrole-coated electrode were compared to those at carbon fiber electrodes coated with Nafion, a perfluorinated ion-exchange material. At 300 V/s, the overoxidized polypyrrole-coated electrode was almost 3 times more sensitive to dopamine than an uncoated disk electrode. Furthermore, the films were as effective as Nafion in the attenuation of the response to ascorbate and DOPAC, common interferences of dopamine in vivo. Overoxidized polypyrrole-coated electrodes maintained a stable response to dopamine for several hours when implanted in the rat brain. The electrochemical deposition procedure was effective at both elliptical and cylindrical electrodes. This is in contrast to the dip-coating procedures employed with Nafion films that lead to nonuniform coatings at cylindrical electrodes.

  10. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements.

    Science.gov (United States)

    Kirkpatrick, D C; McKinney, C J; Manis, P B; Wightman, R M

    2016-08-02

    Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations.

  11. Reinterpretation of reduction potential measurements done by linear sweep voltammetry in silicate melts

    Science.gov (United States)

    Colson, R. O.; Haskin, L. A.; Keedy, C. R.

    1991-01-01

    The equilibrium concentrations of Ni between silicate melt and Pt were determined experimentally as a function of oxygen fugacity. The results demonstrate that metallic species derived in linear sweep voltammetry experiments in silicate melts are diffusing into Pt electrodes and not into the melt, as was concluded by previoius studies. This requires reinterpretation of previous linear sweep voltammetry results and recalculation and correction of reported reduction potentials. This paper reports these corrected reduction potentials. Also reported are the activity coefficients for Ni in synthetic basalt and diopsidic melts and for Co in diopsidic melt.

  12. Cyclic Voltammetry Measurement for Cu2O Based Homostructure Thin Film

    Science.gov (United States)

    Mohamad Arifin, Nurliyana Binti; Mohamad, Fariza Binti; Sikh Anuar, Nur Fathiah Binti; Ahmad, Nabihah Binti; Nor, Nik Hisyamudin Muhd; Izaki, Masanobu

    2017-08-01

    This experiment is about fabrication of homojunction Copper Oxide (Cu2O) thin film by using electrodeposition method. The p-n homojunction Cu2O was successfully prepared by consecutively depositing p-type Cu2O layer on n-type Cu2O layer by using copper acetate based solution through potentiostatic electrodeposition. At first, the n-type Cu2O was fabricated at pH 6.2 and 6.5 with fixed potential of -0.125V vs Ag/AgCl and time deposition at 30 minutes. Cyclic voltammetry (CV) measurement was carried out on this sample to determine the ideal potential range for fabrication of p-type Cu2O on n-type Cu2O/FTO substrate. From the result, deposition potential of -0.35V and -0.4V vs Ag/AgCl were appropriated for p-type Cu2O thin film fabrication. These potential values were variable with the selected pH values of 12.0 and 12.5 to fabricate the p-type Cu2O thin film. The other parameters such as deposition time fixed at 2 hours bath temperature was set up at 60°C. It was found that the optimum potential deposition was -0.4V vs Ag/AgCl and pH value appropriate for homostructure Cu2O thin film was pH 12.5. Morphological, structural, optical and conductivity characterization of p-n homojunction Cu2O thin film was characterized using Field Emission Scanning Electron Microscopy, X-Ray Diffractometer, Ultraviolet-Visible Spectroscopy and Photoelectrochemical (PEC) cells, respectively.

  13. Cyclic Voltammetry.

    Science.gov (United States)

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  14. Cyclic Voltammetry.

    Science.gov (United States)

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  15. Square-Wave Voltammetry of Cathodic Stripping Reactions. Diagnostic Criteria, Redox Kinetic Measurements, and Analytical Applications

    OpenAIRE

    Gulaboski, Rubin; Mirceski, Valentin; Komorsky-Lovrić, Šebojka; Lovrić, Milivoj

    2004-01-01

    A comparative study of different types of cathodic stripping reactions under conditions of square-wave voltammetry is presented. Cathodic stripping processes involving reactions of second order as well as reactions coupled by adsorption of the reacting ligand are analyzed The inherent parameters, controlling the overall voltammetric behavior of each cathodic stripping electrode reaction are derived. The criteria for qualitative distinguishing of each mechanism are established as w...

  16. Interpretation of Cyclic Voltammetry Measurements of Thin Semiconductor Films for Solar Fuel Applications.

    Science.gov (United States)

    Bertoluzzi, Luca; Badia-Bou, Laura; Fabregat-Santiago, Francisco; Gimenez, Sixto; Bisquert, Juan

    2013-04-18

    A simple model is proposed that allows interpretation of the cyclic voltammetry diagrams obtained experimentally for photoactive semiconductors with surface states or catalysts used for fuel production from sunlight. When the system is limited by charge transfer from the traps/catalyst layer and by detrapping, it is shown that only one capacitive peak is observable and is not recoverable in the return voltage scan. If the system is limited only by charge transfer and not by detrapping, two symmetric capacitive peaks can be observed in the cathodic and anodic directions. The model appears as a useful tool for the swift analysis of the electronic processes that limit fuel production.

  17. Effect of pre-ischaemic conditioning on hypoxic depolarization of dopamine efflux in the rat caudate brain slice measured in real-time with fast cyclic voltammetry.

    Science.gov (United States)

    Davidson, Colin; Coomber, Ben; Gibson, Claire L; Young, Andrew M J

    2011-10-01

    Fast cyclic voltammetry can be used to measure dopamine release after oxygen and glucose deprivation (OGD) induced anoxic depolarization in vitro. Here we measure dopamine efflux with 1s time resolution, which is appropriate to measure OGD-evoked dopamine efflux accurately. In the present study, we examined whether OGD-evoked dopamine efflux could be used to show pre-ischaemic conditioning in the rat caudate brain slice. Caudate slices were exposed to 0, 2, or 10 min OGD pre-ischaemic conditioning, then 60 min later exposed to a second OGD event of 15 min duration. We measured the OGD-evoked dopamine efflux using fast cyclic voltammetry and in some experiments caudate dopamine and DOPAC tissue levels were measured using HPLC and 20 μm cryostat sections were Nissl stained to indicate neuronal loss. We found that 10 but not 2 min OGD pre-ischaemic conditioning resulted in a longer time to onset of OGD-evoked dopamine efflux on the main OGD event (475 ± 31 and 287 ± 30 s for 10 Vs 0 min pre-ischaemic conditioning respectively). Further, 10 min OGD pre-ischaemic conditioning resulted in less dopamine efflux on the second OGD event (4.23 ± 1.12 and 8.14 ± 0.82 μM for 10 Vs 0 min pre-ischaemic conditioning respectively), despite these slices having similar tissue dopamine content and DOPAC/DA ratio, and the rate of dopamine release was slower in the main OGD event (21 ± 5 and 74 ± 8 nM/s for 10 Vs 0 min pre-ischaemic conditioning respectively). These data suggest that 10 min OGD pre-ischaemic conditioning can evoke tolerance to a second OGD event and that voltammetric recording of OGD-evoked dopamine efflux is a useful model of pre-ischaemic conditioning in neuronal tissue.

  18. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Park, Jinwoo; Takmakov, Pavel; Wightman, R Mark

    2011-12-01

    Brain norepinephrine and dopamine regulate a variety of critical behaviors such as stress, learning, memory, and drug addiction. In this study, we demonstrate differences in the regulation of in vivo neurotransmission for dopamine in the anterior nucleus accumbens (NAc) and norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat. Release of the two catecholamines was measured simultaneously using fast-scan cyclic voltammetry at two different carbon-fiber microelectrodes, each implanted in the brain region of interest. Simultaneous dopamine and norepinephrine release was evoked by electrical stimulation of a region where the ventral noradrenergic bundle, the pathway of noradrenergic neurons, courses through the ventral tegmental area/substantia nigra, the origin of dopaminergic cell bodies. The release and uptake of norepinephrine in the vBNST were both significantly slower than for dopamine in the NAc. Pharmacological manipulations in the same animal demonstrated that the two catecholamines are differently regulated. The combination of a dopamine autoreceptor antagonist and amphetamine significantly increased basal extracellular dopamine whereas a norepinephrine autoreceptor antagonist and amphetamine did not change basal norepinephrine concentration. α-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, decreased electrically evoked dopamine release faster than norepinephrine. The dual-microelectrode fast-scan cyclic voltammetry technique along with anatomical and pharmacological evidence confirms that dopamine in the NAc and norepinephrine in the vBNST can be monitored selectively and simultaneously in the same animal. The high temporal and spatial resolution of the technique enabled us to examine differences in the dynamics of extracellular norepinephrine and dopamine concurrently in two different limbic structures.

  19. FIELD MEASUREMENT TECHNOLOGY FOR MERCURY IN SOIL AND SEDIMENT MTI INC'S PDV 6000 STRIPPING VOLTAMMETRY

    Science.gov (United States)

    Monitoring Technologies International Pty. Ltd. (MTI) has developed a Portable Digital Voltammeter (PDV) designed to identify and measure the concentration of heavy metal ions. MTI's PDV 6000 was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Tec...

  20. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry.

    Science.gov (United States)

    Jiang, Chuanjia; Hsu-Kim, Heileen

    2014-11-01

    The wide use of metal-based nanomaterials such as zinc oxide (ZnO) nanoparticles (NPs) has generated concerns regarding their environmental and health risks. For ZnO NPs, their toxicity in aquatic systems often depends on the release of dissolved zinc species, and the rate of dissolution is influenced by water chemistry, including the presence of zinc-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This paper reports the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved zinc in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. The effects of the deposition time and the electrochemical potential scan rate on the ASV measurement were consistent with expectations for dissolved phase measurements. The dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79 ± 19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension. Using ASV, the dissolution of ZnO NPs was studied, with or without Suwannee River Fulvic Acid (SRFA). Although SRFA diminished the ASV stripping current, dissolution of 20 nm ZnO NPs was significantly promoted at high fulvic acid to ZnO NP ratios. The ASV method described in this paper provides a useful tool for studying the dissolution kinetics of ZnO NPs in complex environmental matrices.

  1. Measurement of Donnan potentials in gels by in situ microelectrode voltammetry

    NARCIS (Netherlands)

    Davis, T.A.; Yezek, L.P.; Pinheiro, J.P.; Leeuwen, van H.P.

    2005-01-01

    This work describes the electrochemical methodology for the determination of the Donnan potential from diffusion-limited steady-state voltammograms of acrylamide gels. The technique is based upon the measurement of gel-sol systems that have reached Donnan equilibrium and contain Cd2+ as a probe ion.

  2. Impact of adsorption on scanning electrochemical microscopy voltammetry and implications for nanogap measurements

    OpenAIRE

    Tan, Sze-yin; Zhang, Jie; Bond, Alan M.; Macpherson, Julie V.; Unwin, Patrick R.

    2016-01-01

    Scanning electrochemical microscopy (SECM) is a powerful tool that enables quantitative measurements of fast electron transfer (ET) kinetics when coupled with modeling predictions from finite-element simulations. However, the advent of nanoscale and nanogap electrode geometries that have an intrinsically high surface area-to-solution volume ratio realizes the need for more rigorous data analysis procedures, as surface effects such as adsorption may play an important role. The oxidation of fer...

  3. Measurement of the ground-state distributions in bistable mechanically interlocked molecules using slow scan rate cyclic voltammetry.

    Science.gov (United States)

    Fahrenbach, Albert C; Barnes, Jonathan C; Li, Hao; Benítez, Diego; Basuray, Ashish N; Fang, Lei; Sue, Chi-Hau; Barin, Gokhan; Dey, Sanjeev K; Goddard, William A; Stoddart, J Fraser

    2011-12-20

    In donor-acceptor mechanically interlocked molecules that exhibit bistability, the relative populations of the translational isomers--present, for example, in a bistable [2]rotaxane, as well as in a couple of bistable [2]catenanes of the donor-acceptor vintage--can be elucidated by slow scan rate cyclic voltammetry. The practice of transitioning from a fast scan rate regime to a slow one permits the measurement of an intermediate redox couple that is a function of the equilibrium that exists between the two translational isomers in the case of all three mechanically interlocked molecules investigated. These intermediate redox potentials can be used to calculate the ground-state distribution constants, K. Whereas, (i) in the case of the bistable [2]rotaxane, composed of a dumbbell component containing π-electron-rich tetrathiafulvalene and dioxynaphthalene recognition sites for the ring component (namely, a tetracationic cyclophane, containing two π-electron-deficient bipyridinium units), a value for K of 10 ± 2 is calculated, (ii) in the case of the two bistable [2]catenanes--one containing a crown ether with tetrathiafulvalene and dioxynaphthalene recognition sites for the tetracationic cyclophane, and the other, tetrathiafulvalene and butadiyne recognition sites--the values for K are orders (one and three, respectively) of magnitude greater. This observation, which has also been probed by theoretical calculations, supports the hypothesis that the extra stability of one translational isomer over the other is because of the influence of the enforced side-on donor-acceptor interactions brought about by both π-electron-rich recognition sites being part of a macrocyclic polyether.

  4. Insight into the template effect of vesicles on the laccase-catalyzed oligomerization of N-phenyl-1,4-phenylenediamine from Raman spectroscopy and cyclic voltammetry measurements

    Science.gov (United States)

    Ležaić, Aleksandra Janoševic; Luginbühl, Sandra; Bajuk-Bogdanović, Danica; Pašti, Igor; Kissner, Reinhard; Rakvin, Boris; Walde, Peter; Ćirić-Marjanović, Gordana

    2016-08-01

    We report about the first Raman spectroscopy study of a vesicle-assisted enzyme-catalyzed oligomerization reaction. The aniline dimer N-phenyl-1,4-phenylenediamine (= p-aminodiphenylamine, PADPA) was oxidized and oligomerized with Trametes versicolor laccase and dissolved O2 in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) vesicles (80-100 nm diameter) as templates. The conversion of PADPA into oligomeric products, poly(PADPA), was monitored during the reaction by in situ Raman spectroscopy. The results obtained are compared with UV/vis/NIR and EPR measurements. All three complementary methods indicate that at least some of the poly(PADPA) products, formed in the presence of AOT vesicles, resemble the conductive emeraldine salt form of polyaniline (PANI-ES). The Raman measurements also show that structural units different from those of “ordinary” PANI-ES are present too. Without vesicles PANI-ES-like products are not obtained. For the first time, the as-prepared stable poly(PADPA)-AOT vesicle suspension was used directly to coat electrodes (without product isolation) for investigating redox activities of poly(PADPA) by cyclic voltammetry (CV). CV showed that poly(PADPA) produced with vesicles is redox active not only at pH 1.1-as expected for PANI-ES-but also at pH 6.0, unlike PANI-ES and poly(PADPA) synthesized without vesicles. This extended pH range of the redox activity of poly(PADPA) is important for applications.

  5. Insight into the template effect of vesicles on the laccase-catalyzed oligomerization of N-phenyl-1,4-phenylenediamine from Raman spectroscopy and cyclic voltammetry measurements.

    Science.gov (United States)

    Ležaić, Aleksandra Janoševic; Luginbühl, Sandra; Bajuk-Bogdanović, Danica; Pašti, Igor; Kissner, Reinhard; Rakvin, Boris; Walde, Peter; Ćirić-Marjanović, Gordana

    2016-08-26

    We report about the first Raman spectroscopy study of a vesicle-assisted enzyme-catalyzed oligomerization reaction. The aniline dimer N-phenyl-1,4-phenylenediamine (= p-aminodiphenylamine, PADPA) was oxidized and oligomerized with Trametes versicolor laccase and dissolved O2 in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) vesicles (80-100 nm diameter) as templates. The conversion of PADPA into oligomeric products, poly(PADPA), was monitored during the reaction by in situ Raman spectroscopy. The results obtained are compared with UV/vis/NIR and EPR measurements. All three complementary methods indicate that at least some of the poly(PADPA) products, formed in the presence of AOT vesicles, resemble the conductive emeraldine salt form of polyaniline (PANI-ES). The Raman measurements also show that structural units different from those of "ordinary" PANI-ES are present too. Without vesicles PANI-ES-like products are not obtained. For the first time, the as-prepared stable poly(PADPA)-AOT vesicle suspension was used directly to coat electrodes (without product isolation) for investigating redox activities of poly(PADPA) by cyclic voltammetry (CV). CV showed that poly(PADPA) produced with vesicles is redox active not only at pH 1.1-as expected for PANI-ES-but also at pH 6.0, unlike PANI-ES and poly(PADPA) synthesized without vesicles. This extended pH range of the redox activity of poly(PADPA) is important for applications.

  6. Affordable Cyclic Voltammetry

    Science.gov (United States)

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…

  7. Affordable Cyclic Voltammetry

    Science.gov (United States)

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…

  8. A portable cyclic voltammetry measurement system based on aptamer-based biosensor%基于核酸适体生物传感器的便携式循环伏安测试系统

    Institute of Scientific and Technical Information of China (English)

    姜利英; 胡杰; 陈青华; 王芬芬; 岳保磊

    2014-01-01

    Aiming at the problem of inconvenience to carry and difficulty with power in-field electrochemi-cal measurement,a portable cyclic voltammetry measurement system was designed based on aptamer-based biosensor developed by our laboratory.For overcoming the noise in the circuits effectively,a lock-in ampli-fier,potentiostat and program for phase sensitive detection were designed to extract weak signal.Experiment results showed that the system could implement cyclic voltammetry,which had higher SNR(signal noise ra-tio),the measurement precision of which could reach 1 μA.It had features of power saving,and simple era-tion,which could meet the requirement of in-field cyclic voltammetry measurement.%针对现场电化学测试中电化学工作站携带不便、供电困难等问题,设计了一种基于核酸适体生物传感器的便携式循环伏安测试系统。该系统采用实验室研发制备的核酸适体生物传感器设计了锁定放大电路、恒电位电路及相敏检测程序,可实现微弱信号提取,从而有效克服电路系统噪声。实验结果表明,该系统能实现循环伏安测试,具有较高的信噪比,测试精度达到1μA,省电、操作简单,能够满足现场快速准确地进行循环伏安测试的需要。

  9. Voltammetry as a Model for Teaching Chemical Instrumentation.

    Science.gov (United States)

    Gunasingham, H.; Ang, K. P.

    1985-01-01

    Voltammetry is used as a model for teaching chemical instrumentation to chemistry undergraduates at the National University of Singapore. Lists six criteria used to select a successful teaching model and shows how voltammetry satisfies each criterion. (JN)

  10. Recent Advances in Voltammetry

    Science.gov (United States)

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  11. Recent Advances in Voltammetry.

    Science.gov (United States)

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-06-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'.

  12. Cyclic Voltammetry Experiment.

    Science.gov (United States)

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  13. Cyclic Voltammetry Experiment.

    Science.gov (United States)

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  14. Cyclic voltammetry of supported BLMs

    Science.gov (United States)

    Murgasova, Renata; Sabo, Jan; Ottova, Angelica L.; Tien, H. T.

    1996-06-01

    The transfer of an electron across a bilayer lipid membrane (BLM) is one of the BLMs most exciting processes. A number of well known electron mediators have been investigated using the method of cyclic voltammetry on a Teflon coated platinum wire, the tip of which has been modified by a self-assembled bilayer lipid membrane (s-BLM). The electrical capacitance of the s-BLM system was measured as a function of frequency. The results are discussed in terms of electron transfer and redox reactions.

  15. Voltammetry of Medical Biomaterials

    OpenAIRE

    Gulaboski, Rubin; Markovski, Velo

    2015-01-01

    The use of biomaterials in the medicine, dentistry and pharmacy represents probably a major breakthrough in tackling many diseases or disabilities in the last 50 years. We refer to varios techniques that are used for the characterization of the structure and the composition of the biomaterials. Voltammetry is an electrochemical technique that helps mainly in understanding the redox properties of various biomaterials containing some suitable redox centers in their structure. We give in this le...

  16. A potentiostat featuring an integrator transimpedance amplifier for the measurement of very low currents—Proof-of-principle application in microfluidic separations and voltammetry

    Science.gov (United States)

    Koutilellis, G. D.; Economou, A.; Efstathiou, C. E.

    2016-03-01

    This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.

  17. A potentiostat featuring an integrator transimpedance amplifier for the measurement of very low currents--Proof-of-principle application in microfluidic separations and voltammetry.

    Science.gov (United States)

    Koutilellis, G D; Economou, A; Efstathiou, C E

    2016-03-01

    This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.

  18. Measuring Political Polarization: Twitter shows the two sides of Venezuela

    CERN Document Server

    Morales, A J; Losada, J C; Benito, R M

    2015-01-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Ch\\'avez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  19. Measuring political polarization: Twitter shows the two sides of Venezuela

    Science.gov (United States)

    Morales, A. J.; Borondo, J.; Losada, J. C.; Benito, R. M.

    2015-03-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Chávez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  20. Measurement of nanomolar dopamine diffusion using low-noise perfluorinated ionomer coated carbon fiber microelectrodes and high-speed cyclic voltammetry.

    Science.gov (United States)

    Rice, M E; Nicholson, C

    1989-09-01

    Several improvements in the fabrication and use of carbon fiber voltammetric microelectrodes (CFVMs) are described. These procedures did not involve oxidative treatment, but resulted in sensitivities and selectivities approaching those of treated CFVMs, without the inherent slow response times associated with the latter electrodes. To accomplish this we reduced CFVM noise by (1) improving the adhesive seal between the 8 microns o.d. carbon fiber and the glass insulation using vacuum, (2) snapping rather than cutting or beveling the fiber to be flush with the glass, and (3) using a concentrated electrolyte solution to make electrical contact with the fiber. System noise was reduced by digital smoothing and signal averaging. Selectivity of the CFVMs for dopamine over ascorbate was enhanced to better than 2000:1 by coating with Naflon, a perfluorinated cation exchange polymer, using a low (+0.5 V vs Ag/AgCl) electroplating potential. This low voltage also prevented electrode surface oxidation. To demonstrate the performance of our CFVMs, we used them in conjunction with high-speed cyclic voltammetry to accurately measure the diffusion coefficient of iontophoretically released dopamine at concentrations as low as 35 nM over distances of less than 200 microns in agarose gel.

  1. Heavy metal distribution in organic and siliceous marine sponge tissues measured by square wave anodic stripping voltammetry.

    Science.gov (United States)

    Illuminati, S; Annibaldi, A; Truzzi, C; Scarponi, G

    2016-10-15

    May sponge spicules represent a "tank" to accumulate heavy metals? In this study we test this hypothesis determining the distribution of Cd, Pb and Cu concentrations between organic and siliceous tissues in Antarctic Demospongia (Sphaerotylus antarcticus, Kirkpatrikia coulmani and Haliclona sp.) and in the Mediterranean species Petrosia ficiformis. Results show that although, in these sponges, spicules represent about 80% of the mass content, the accumulation of pollutant is lower in the spicules than in the corresponding organic fraction. The contribution of tissues to the total sponge content of Cd, Pb and Cu is respectively 99%, 82% and 97% for Antarctic sponges and 96%, 95% and 96% for P. ficiformis, similar in polar and temperate organisms. These results pave the way to a better understanding of the role of marine sponges in uptaking heavy metals and to their possible use as monitor of marine ecosystems, recommend by the Water Framework Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Asymmetric Marcus-Hush theory for voltammetry.

    Science.gov (United States)

    Laborda, Eduardo; Henstridge, Martin C; Batchelor-McAuley, Christopher; Compton, Richard G

    2013-06-21

    The current state-of-the-art in modeling the rate of electron transfer between an electroactive species and an electrode is reviewed. Experimental studies show that neither the ubiquitous Butler-Volmer model nor the more modern symmetric Marcus-Hush model are able to satisfactorily reproduce the experimental voltammetry for both solution-phase and surface-bound redox couples. These experimental deviations indicate the need for revision of the simplifying approximations used in the above models. Within this context, models encompassing asymmetry are considered which include different vibrational and solvation force constants for the electroactive species. The assumption of non-adiabatic electron transfer is also examined. These refinements have provided more satisfactory models of the electron transfer process and they enable us to gain more information about the microscopic characteristics of the system by means of simple electrochemical measurements.

  3. Total oxidant-scavenging capacities of plasma from glycogen storage disease type Ia patients as measured by cyclic voltammetry, FRAP and luminescence techniques.

    Science.gov (United States)

    Koren, E; Lipkin, J; Klar, A; Hershkovitz, E; Ginsburg, I; Kohen, R

    2009-10-01

    It has been suggested that the very low incidence of atherosclerosis in glycogen storage disease type Ia (GSD Ia) subjects might be attributed to elevated levels of uric acid, one of the potent low molecular- weight antioxidants found in plasma. The present communication describes a use of two analytical methods-cyclic voltammetry and ferric reducing ability of plasma-and also two chemiluminescence methods to evaluate the total oxidant-scavenging capacities (TOSC) of plasma from GSD Ia patients. Our results verified the elevation of TOSC in GSD Ia patients and we propose the inclusion of luminescence and cyclic voltammetry assays as reliable methods for estimating TOSC in a variety of clinical disorders. Our findings with the cyclic voltammetry method add support to the assumption that the elevated uric acid levels might be the main contributor to plasma antioxidant capacity and possible protection against atherosclerosis.

  4. Differential linear scan voltammetry: analytical performance in comparison with pulsed voltammetry techniques.

    Science.gov (United States)

    Sheth, Disha B; Gratzl, Miklós

    2013-06-01

    We report here on differential linear scan voltammetry, DLSV, that combines the working principles of linear scan voltammetry, LSV, and the numerous existing pulsed voltammetry techniques. DLSV preserves the information from continuous interrogation in voltage and high accuracy that LSV provides about electrochemical processes, and the much better sensitivity of differential pulsed techniques. DLSV also minimizes the background current compared to both LSV and pulsed voltammetry. An early version of DLSV, derivative stationary electrode polarography, DSEP, had been proposed in the 1960s but soon abandoned in favor of the emerging differential pulsed techniques. Relative to DSEP, DLSV takes advantage of the flexibility of discrete smoothing differentiation that was not available to early investigators. Also, DSEP had been explored in pure solutions and with reversible electrochemical reactions. DLSV is tested in this work in more challenging experimental contexts: the measurement of oxygen with a carbon fiber microelectrode in buffer, and with a gold microdisc electrode exposed to a live biological preparation. This work compares the analytical performance of DLSV and square wave voltammetry, the most popular pulsed voltammetry technique.

  5. Stoichiometry and Formation Constant Determination by Linear Sweep Voltammetry.

    Science.gov (United States)

    Schultz, Franklin A.

    1979-01-01

    In this paper an experiment is described in which the equilibrium constants necessary for determining the composition and distribution of lead (II)-oxalate species may be measured by linear sweep voltammetry. (Author/BB)

  6. Voltammetry: mathematical modelling and Inverse Problem

    CERN Document Server

    Koshev, N A; Kuzina, V V

    2016-01-01

    We propose the fast semi-analytical method of modelling the polarization curves in the voltammetric experiment. The method is based on usage of the special func- tions and shows a big calculation speed and a high accuracy and stability. Low computational needs of the proposed algorithm allow us to state the set of Inverse Problems of voltammetry for the reconstruction of metal ions concentrations or the other parameters of the electrolyte under investigation.

  7. Aptasensors Based on Stripping Voltammetry

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2016-07-01

    Full Text Available Aptasensors based on stripping voltammetry exhibit several advantages, such as high sensitivity and multi-target detection from stripping voltammetric technology, and high selectivity from the specific binding of apamers with targets. This review comprehensively discusses the recent accomplishments in signal amplification strategies based on nanomaterials, such as metal nanoparticles, semiconductor nanoparticles, and nanocomposite materials, which are detected by stripping voltammetry after suitable dissolution. Focus will be put in discussing multiple amplification strategies that are widely applied in aptasensors for small biomolecules, proteins, disease markers, and cancer cells.

  8. Adsorptive stripping voltammetry of antibiotics rifamycin SV and rifampicin at renewable pencil electrodes.

    Science.gov (United States)

    Kawde, Abdel-Nasser; Temerk, Yassein; Farhan, Nasser

    2014-01-01

    Adsorptive stripping voltammetry of antibiotics of rifamycin SV (RSV) and rifampicin (RIF) was investigated by cyclic voltammetry and differential pulse voltammetry using a renewable pencil graphite electrode (PGE). The nature of the oxidation process of RSV and RIF taking place at the PGE was characterized. The results show that the determination of highly sensitive oxidation peak current is the basis of a simple, accurate and rapid method for quantification of RSV and RIF in bulk forms, pharmaceutical formulations and biological fluids by differential pulse adsorptive stripping voltammetry (DPASV). Factors influencing the trace measurement of RSV and RIF at PGE are assessed. The limits of detection for the determination of RSV and RIF in bulk forms are 6.0 × 10(-8) mol/L and 1.3 × 10(-8) mol/L, respectively. Moreover, the proposed procedure was successfully applied to assay both RSV and RIF in pharmaceutical formulations and in biological fluids. The capability of the proposed procedure for simultaneous assay of antibiotics RSV-isoniazid and RIF-isoniazid was achieved. The statistical analysis and calibration curve data for trace determination of RSV and RIF are reported.

  9. Analytical possibilities of microelectrode use for stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Matysik, F.M. (Leipzig Univ. (Germany). Dept. of Chemistry); Glaeser, P. (Leipzig Univ. (Germany). Dept. of Chemistry); Werner, G. (Leipzig Univ. (Germany). Dept. of Chemistry)

    1994-07-01

    The analytical utility of microelectrodes for stripping voltammetry is discussed from several points of view. The application of microelectrodes for microanalysis is demonstrated using a novel capillary flow injection system. Heavy metals at [mu]g l[sup -1] concentrations have been determined in [mu]l-samples. The influence of electrode size and convection during the deposition period of anodic stripping voltammetry on the reproducibility of trace metal determination was studied for various types of electrodes. In the case of mercury film microelectrodes, the precision can be improved if the accumulation of the analyte is performed under quiescent conditions. Practical examples of stripping voltammetry with microelectrodes such as copper determination in whisky and trace metal measurements in drinking water are given. (orig.)

  10. Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage.

    Directory of Open Access Journals (Sweden)

    Shan Zou

    Full Text Available In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA and sodium (Nav channels trigger excitotoxic neuron death. Na(+, Ca(++ and H2O influx into affected neurons elicits swelling (increased cell volume and pathological blebbing (disassociation of the plasma membrane's bilayer from its spectrin-actomyosin matrix. Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM-based force spectroscopy upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine. Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca(++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be

  11. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    DEFF Research Database (Denmark)

    Alatraktchi, Fatima AlZahra'a; Andersen, Sandra Breum; Johansen, Helle Krogh;

    2016-01-01

    method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between -1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58-0.82 V that is unaffected by other redox-active interferents...

  12. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Breum Andersen, Sandra; Johansen, Helle Krogh;

    2016-01-01

    method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between –1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents...

  13. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    DEFF Research Database (Denmark)

    Alatraktchi, Fatima AlZahra'a; Andersen, Sandra Breum; Johansen, Helle Krogh

    2016-01-01

    method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between -1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58-0.82 V that is unaffected by other redox-active interferents...

  14. Square wave voltammetry at the dropping mercury electrode: Theory

    Science.gov (United States)

    Christie, J.H.; Turner, J.A.; Osteryoung, R.A.

    1977-01-01

    The theoretical aspects of square wave voltammetry at the dropping mercury electrode are presented. The technique involves scanning the entire potential range of interest on a single drop of a DME. Asymmetries in the waveform as well as variations in current measurement parameters are discussed. Indications are that previous uses of the waveform may not have utilized all its capabilities.

  15. Corrosive electrochemistry of jamesonite by cyclic voltammetry

    Institute of Scientific and Technical Information of China (English)

    余润兰; 胡岳华; 邱冠周; 覃文庆

    2004-01-01

    The corrosive electrochemistry of jamesonite was studied by cyclic voltammetry. Every peak in voltammograms was identified through thermodynamic calculation. The results show an irreversible electrode process by the strong adsorption of oxidation elemental sulfur on jamesonite. A deficient-metal and sulfur-rich compound is formed under the potential of 80 mV at pH 6.86. The passive action by elemental sulfur occurs from 80 to 470 mV and S2O23- , SO24- are produced at potential over 470 mV. The anodic peak producing SO24- is inhibited due to the deposition of PbSO4 at higher potential in Na2SO4 solution. The corrosive action of jamesonite becomes strong and the redox characterization similar to PbS, FeS and Sb2 S3 appears at pH 9.18.

  16. A brief review: Ultrafast electron diffractive voltammetry: General formalism and applications

    CERN Document Server

    Chang, Kiseok; Tao, Zhensheng; Han, Tzong-Ru T; Ruan, Chong-Yu

    2013-01-01

    We present a general formalism of ultrafast diffractive voltammetry approach as a contact-free tool to investigate the ultrafast surface charge dynamics in nanostructured interfaces. As case studies, the photoinduced surface charging processes in oxidized silicon surface and the hot electron dynamics in nanoparticle-decorated interface are examined based on the diffractive voltammetry framework. We identify that the charge redistribution processes appear on the surface, sub-surface, and vacuum levels when driven by intense femtosecond laser pulses. To elucidate the voltammetry contribution from different sources, we perform controlled experiments using shadow imaging techniques and N-particle simulations to aid the investigation of the photovoltage dynamics in the presence of pho- toemission. We show that voltammetry contribution associated with photoemission has a long decay tail and plays a more visible role in the nanosecond timescale, whereas the ultrafast voltammetry are dominated by local charge transfe...

  17. Kinetic study of rapid transfer of tetraethylammonium at the 1,2-dichloroethane/water interface by nanopipet voltammetry of common ions.

    Science.gov (United States)

    Wang, Yixian; Velmurugan, Jeyavel; Mirkin, Michael V; Rodgers, Patrick J; Kim, Jiyeon; Amemiya, Shigeru

    2010-01-01

    Steady-state voltammetry at the pipet-supported liquid/liquid interface has previously been used to measure kinetics of simple and facilitated ion transfer (IT) processes. Recently, we showed that the conventional experimental protocol and data analysis produce large uncertainties in kinetic parameters of rapid IT processes extracted from pipet voltammograms. Here, we used a new mode of nanopipet voltammetry, in which a transferable ion is initially present as a common ion in both liquid phases, and improved methodology for silanization of the outer pipet wall to investigate the kinetics of the rapid transfer of tetraethylammonium (TEA(+)) at the 1,2-dichloroethane/water interface. This reaction was often employed as a model system to check the IT theory. The determined standard rate constant and transfer coefficient of the TEA(+) transfer are compared with previously reported values to demonstrate limitations of conventional nanopipet voltammetry with a transferrable ion present only in one liquid phase.

  18. Measuring risk attitudes in a natural experiment: Data from the television game show Lingo

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Schotman, P.C.

    2001-01-01

    We use data from a television game show involving elementary lotteries as a natural experiment to measure risk attitudes. Unique features of our data set are the substantial monetary stakes and the large sample size. CRRA and CARA utility specifications perform approximately equally well. We find ro

  19. Measuring risk attitudes in a natural experiment: Data from the television game show LINGO

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Schotman, P.C.

    1998-01-01

    We use data from a television game show, involving elementary lotteries and substantial prize money, as a natural experiment to measure risk attitudes. We find robust evidence of substantial risk aversion. As an extension, we estimate the various models using transformations of the 'true' probabilit

  20. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode: Anodic versus Cathodic Stripping Voltammetry

    Science.gov (United States)

    Yue, Wei; Bange, Adam; Riehl, Bill L.; Riehl, Bonnie D.; Johnson, Jay M.; Papautsky, Ian; Heineman, William R.

    2013-01-01

    Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements. PMID:24235806

  1. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode: Anodic versus Cathodic Stripping Voltammetry.

    Science.gov (United States)

    Yue, Wei; Bange, Adam; Riehl, Bill L; Riehl, Bonnie D; Johnson, Jay M; Papautsky, Ian; Heineman, William R

    2012-10-01

    Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements.

  2. Added value measures in education show genetic as well as environmental influence.

    Science.gov (United States)

    Haworth, Claire M A; Asbury, Kathryn; Dale, Philip S; Plomin, Robert

    2011-02-02

    Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities.

  3. Striatal dopamine release in the rat during a cued lever-press task for food reward and the development of changes over time measured using high-speed voltammetry.

    Science.gov (United States)

    Nakazato, Taizo

    2005-09-01

    Substantia nigra dopamine neuronal activity in the primate is thought to be related to the error in predicting reward delivery. Dopamine release in rat nucleus accumbens has been shown to increase in relation to drug/food-seeking behaviour. It is not known how the release of dopamine in the striatum corresponds to the many distinct steps of a rewarded, cued task (e.g. recognizing the cue, executing the behaviour, anticipating the reward, receiving the reward) and how dopamine release then changes over time as task performance improves. To investigate dopamine release during a rewarded, cued task and the development of changes in dopamine release over time, changes in extracellular striatal dopamine concentration during a rewarded, cued lever-press task were measured a few days every week for 5 months using high-speed in vivo voltammetry. Rats were trained to press a lever after a tone to obtain a food reward. The reaction time for the lever press decreased gradually as training continued. Changes in dopamine concentration were measured in the anterior striatum (ventral portion) during the task performance after an initial 6-day familiarization period, in which the animals learned that a lever press yielded food, and a 5-week period for surgery, recovery, and electrode preparation. During the task performance, dopamine concentration started to increase just after the cue, peaked near the time of the lever press, and returned to basal levels 1-2 s after the lever press. This pattern of changes in dopamine concentration was observed over the 5 months of testing, the peak dopamine concentration increasing steadily until peaking at week 7, at which time the task performance had not yet improved significantly from week 2. By week 13, task performance had significantly improved and peak dopamine concentration had begun to subside. Thus, the increase in dopamine concentration after the cue was highest while the task was not yet perfected and subsided toward the end of the

  4. Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Jakuba, Rachel Wisniewski [Massachusetts Institute of Technology, Woods Hole Oceanographic Institution Joint Program in Chemical Oceanography, 266 Woods Hole Road, Woods Hole, MA 02543 (United States)], E-mail: jakuba.rachel@epa.gov; Moffett, James W. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543 (United States)], E-mail: jmoffett@usc.edu; Saito, Mak A. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543 (United States)

    2008-05-05

    Zinc speciation is considered to be an important determinant of the biological availability of zinc. Yet in oceanic surface waters, characterization of zinc speciation is difficult due to the low concentrations of this essential micronutrient. In this study, an anodic stripping voltammetry method previously developed for the total determination of cadmium and lead was successfully adapted to the measurement of zinc speciation. The method differs from previous zinc speciation anodic stripping voltammetry methods in that a fresh mercury film is plated with each sample aliquot. The fresh film anodic stripping voltammetry method was compared to competitive ligand exchange cathodic stripping voltammetry in a profile from the North Atlantic Ocean. Results using the fresh film anodic stripping voltammetry method were similar to those determined using the cathodic stripping voltammetry method, though ligand concentrations determined by fresh film anodic stripping voltammetry were generally slightly higher than those determined by cathodic stripping voltammetry. There did not seem to be a systematic difference between methods for the estimates of conditional stability constants. The ligand concentration in the North Atlantic profile ranged from 0.9 to 1.5 nmol L{sup -1} as determined by fresh film anodic stripping voltammetry and 0.6 to 1.3 nmol L{sup -1} as determined by cathodic stripping voltammetry. The conditional stability constants determined by fresh film anodic stripping voltammetry were 10{sup 9.8}-10{sup 10.5} and by cathodic stripping voltammetry were 10{sup 9.8}-10{sup 11.3}.

  5. Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean.

    Science.gov (United States)

    Jakuba, Rachel Wisniewski; Moffett, James W; Saito, Mak A

    2008-05-05

    Zinc speciation is considered to be an important determinant of the biological availability of zinc. Yet in oceanic surface waters, characterization of zinc speciation is difficult due to the low concentrations of this essential micronutrient. In this study, an anodic stripping voltammetry method previously developed for the total determination of cadmium and lead was successfully adapted to the measurement of zinc speciation. The method differs from previous zinc speciation anodic stripping voltammetry methods in that a fresh mercury film is plated with each sample aliquot. The fresh film anodic stripping voltammetry method was compared to competitive ligand exchange cathodic stripping voltammetry in a profile from the North Atlantic Ocean. Results using the fresh film anodic stripping voltammetry method were similar to those determined using the cathodic stripping voltammetry method, though ligand concentrations determined by fresh film anodic stripping voltammetry were generally slightly higher than those determined by cathodic stripping voltammetry. There did not seem to be a systematic difference between methods for the estimates of conditional stability constants. The ligand concentration in the North Atlantic profile ranged from 0.9 to 1.5 nmol L(-1) as determined by fresh film anodic stripping voltammetry and 0.6 to 1.3 nmol L(-1) as determined by cathodic stripping voltammetry. The conditional stability constants determined by fresh film anodic stripping voltammetry were 10(9.8)-10(10.5) and by cathodic stripping voltammetry were 10(9.8)-10(11.3).

  6. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    Directory of Open Access Journals (Sweden)

    Fatima AlZahra’a Alatraktchi

    2016-03-01

    Full Text Available Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between −1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5 from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients.

  7. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry.

    Science.gov (United States)

    Alatraktchi, Fatima AlZahra'a; Andersen, Sandra Breum; Johansen, Helle Krogh; Molin, Søren; Svendsen, Winnie E

    2016-03-19

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between -1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58-0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R² value of 0.991 across the clinically relevant concentration range of 2-100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients.

  8. Ultrafast cyclic voltammetry with asymmetrical potential scan

    Institute of Scientific and Technical Information of China (English)

    Zhi Yong Guo; Xiang Qin Lin

    2008-01-01

    Based on the perfect ohmic drop compensation by online electronic positive feedback, ultrafast cyclic voltammetry withasymmetrical potential scan is achieved for the first time, with the reduction of anthracene acting as the test system. Compared withthe traditional cyclic voltammetry utilizing symmetrical triangular waveform as the excitation one, the new method allows a simplerapproach to mechanistic analysis of ultrafast chemical reactions coupled with a charge transfer. And perhaps more important, it alsoprovides a way to eliminate the interference of the adsorbed product in dynamic monitoring.

  9. Voltammetry and In Situ Scanning Tunneling Microscopy of Cytochrome c Nitrite Reductase on Au(111)-Electrodes

    DEFF Research Database (Denmark)

    Gwyer, James; Zhang, Jingdong; Butt, Julea

    2006-01-01

    of the density and orientational distribution of NrfA molecules are disclosed. The submonolayer coverage resolved by in situ STM is readily reconciled with the failure to detect nonturnover signals in cyclic voltammetry of the NrfA films. The molecular structures show a range of lateral dimensions...... a direct approach to correlate electrocatalytic and molecular properties of the protein layer, a long-standing issue in protein film voltammetry....

  10. Linear Sweep Voltammetry of Adsorbed Neutral Red.

    Science.gov (United States)

    1982-05-01

    E. Creager, G. T. Marks, D. A. Aikens and H. H. Richtol Prepared for Publication in Journal of Electroanalytical Chemistry Rensselaer Polytechnic... Electroanalytical Chemistry It. KEY WORDS (Continue oun reverse side It necessary mid Ideneliy by block ntaibor) Neutral Red, cyclic voltammetry, adsorbed dye 20

  11. Steady state oxygen reduction and cyclic voltammetry

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Karlberg, Gustav; Jaramillo, Thomas;

    2008-01-01

    The catalytic activity of Pt and Pt3Ni for the oxygen reduction reaction is investigated by applying a Sabatier model based on density functional calculations. We investigate the role of adsorbed OH on the activity, by comparing cyclic voltammetry obtained from theory with previously published...

  12. Voltammetry at porous electrodes: A theoretical study

    CERN Document Server

    Barnes, Edward O; Li, Peilin; Compton, Richard G

    2014-01-01

    Theory is presented to simulate both chronoamperometry and cyclic voltammetry at porous electrodes fabricated by means of electro-deposition around spherical templates. A theoretical method to extract heterogeneous rate constants for quasireversible and irreversible systems is proposed by the approximation of decoupling of the diffusion within the porous electrode and of bulk diffusion to the electrode surface.

  13. Anodic Stripping Voltammetry: An Instrumental Analysis Experiment.

    Science.gov (United States)

    Wang, Joseph

    1983-01-01

    Describes an experiment designed to acquaint students with the theory and applications of anodic stripping voltammetry (ASV) as well as such ASV problems as contamination associated with trace analysis. The experimental procedure, instrumentation, and materials discussed are designed to minimize cost and keep procedures as simple as possible. (JM)

  14. Theory of linear sweep voltammetry with diffuse charge: unsupported electrolytes, thin films, and leaky membranes

    CERN Document Server

    Yan, David; Pugh, Mary C; Dawson, Francis P

    2016-01-01

    Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. No general theory of linear-sweep voltammetry is available, however, for unsupported electrolytes and for other situations where diffuse charge effects play a role. In this paper, we provide a historical review of previous models and experiments and present a comprehensive mathematical theory of voltammetry in electrochemical cells with diffuse charge. We solve the time-dependent Poisson-Nernst-Planck (PNP) equations with generalized Frumkin-Butler-Volmer (FBV) boundary conditions, and show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking electrodes, and membranes with fixed background charge. The full range of dimensionless parameters is considered, including the dimensionless Debye screening ...

  15. Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors.

    Science.gov (United States)

    Ortuño, J A; Serna, C; Molina, A; Gil, A

    2006-12-01

    The ion transfer across the water-solvent polymeric membrane interface is investigated by using a new device based on a modification of a commercial ion-selective electrode body that permits the accommodation of a platinum counter electrode inside the inner filling solution compartment and, therefore, use of a four-electrode potentiostat with ohmic drop compensation. This device is used here to apply two different double potential pulse techniques--differential pulse voltammetry and additive differential pulse voltammetry--which are more advantageous than other voltammetric techniques, such as normal pulse voltammetry or cyclic voltammetry, for the determination of the characteristic electrochemical parameters of the system. This is due to the concurrence of two factors in these double potential pulse techniques, the peak-shaped response together with a considerable reduction of undesirable current contributions.

  16. Cyclic Voltammetry And Linear Sweep Voltammetry Study Of Cyclic Tertiary Amines

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; TIAN JinPing; YIN YingWu

    2001-01-01

    @@ Cyclic six membered a-aminonitrile have proved to be very versatile synthetic intermediates and have been widely used in the construction of a large number of indole alkaloids. In order to obtain some information about the mechanisn of electrochemical synthesis of aaminonitrile. Electrochemistry behaviors that include cyclic voltammetry and linear sweep voltammetry of cyclic tertiary amines which including N-benzylpiperidine (NBP), 1-(l-Methoxycarbonyl ethyl) piperidine (MCEP), N-methylcarbonylppiperidine (NMCP), Nethylpiperidine(NEP) was studied.

  17. Cyclic Voltammetry And Linear Sweep Voltammetry Study Of Cyclic Tertiary Amines

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Ping

    2001-01-01

    Cyclic six membered a-aminonitrile have proved to be very versatile synthetic intermediates and have been widely used in the construction of a large number of indole alkaloids. In order to obtain some information about the mechanisn of electrochemical synthesis of aaminonitrile. Electrochemistry behaviors that include cyclic voltammetry and linear sweep voltammetry of cyclic tertiary amines which including N-benzylpiperidine (NBP), 1-(l-Methoxycarbonyl ethyl) piperidine (MCEP), N-methylcarbonylppiperidine (NMCP), Nethylpiperidine(NEP) was studied.……

  18. Hydrodynamic Voltammetry as a Rapid and Simple Method for Evaluating Soil Enzyme Activities

    Directory of Open Access Journals (Sweden)

    Kazuto Sazawa

    2015-03-01

    Full Text Available Soil enzymes play essential roles in catalyzing reactions necessary for nutrient cycling in the biosphere. They are also sensitive indicators of ecosystem stress, therefore their evaluation is very important in assessing soil health and quality. The standard soil enzyme assay method based on spectroscopic detection is a complicated operation that requires the removal of soil particles. The purpose of this study was to develop a new soil enzyme assay based on hydrodynamic electrochemical detection using a rotating disk electrode in a microliter droplet. The activities of enzymes were determined by measuring the electrochemical oxidation of p-aminophenol (PAP, following the enzymatic conversion of substrate-conjugated PAP. The calibration curves of β-galactosidase (β-gal, β-glucosidase (β-glu and acid phosphatase (AcP showed good linear correlation after being spiked in soils using chronoamperometry. We also performed electrochemical detection using real soils. Hydrodynamic chronoamperometry can be used to assess the AcP in soils, with a detection time of only 90 s. Linear sweep voltammetry was used to measure the amount of PAP released from β-gal and β-glu by enzymatic reaction after 60 min. For the assessment of soil enzymes, the results of hydrodynamic voltammetry assay compared favorably to those using a standard assay procedure, but this new procedure is more user-friendly, rapid and simple.

  19. Hydrodynamic voltammetry as a rapid and simple method for evaluating soil enzyme activities.

    Science.gov (United States)

    Sazawa, Kazuto; Kuramitz, Hideki

    2015-03-04

    Soil enzymes play essential roles in catalyzing reactions necessary for nutrient cycling in the biosphere. They are also sensitive indicators of ecosystem stress, therefore their evaluation is very important in assessing soil health and quality. The standard soil enzyme assay method based on spectroscopic detection is a complicated operation that requires the removal of soil particles. The purpose of this study was to develop a new soil enzyme assay based on hydrodynamic electrochemical detection using a rotating disk electrode in a microliter droplet. The activities of enzymes were determined by measuring the electrochemical oxidation of p-aminophenol (PAP), following the enzymatic conversion of substrate-conjugated PAP. The calibration curves of β-galactosidase (β-gal), β-glucosidase (β-glu) and acid phosphatase (AcP) showed good linear correlation after being spiked in soils using chronoamperometry. We also performed electrochemical detection using real soils. Hydrodynamic chronoamperometry can be used to assess the AcP in soils, with a detection time of only 90 s. Linear sweep voltammetry was used to measure the amount of PAP released from β-gal and β-glu by enzymatic reaction after 60 min. For the assessment of soil enzymes, the results of hydrodynamic voltammetry assay compared favorably to those using a standard assay procedure, but this new procedure is more user-friendly, rapid and simple.

  20. Zinc Detection in Serum by Anodic Stripping Voltammetry on Microfabricated Bismuth Electrodes.

    Science.gov (United States)

    Jothimuthu, Preetha; Wilson, Robert A; Herren, Josi; Pei, Xing; Kang, Wenjing; Daniels, Rodney; Wong, Hector; Beyette, Fred; Heineman, William R; Papautsky, Ian

    2013-02-01

    Zinc (Zn) homeostasis is required for a functional immune system. Critically ill patients often exhibit decreased Zn serum concentrations and could potentially benefit from Zn supplementation as a therapeutic strategy. However, the conventional approaches to monitoring Zn are time consuming and costly. This work reports on detection of Zn by anodic stripping voltammetry (ASV) on bismuth electrodes in a microfabricated electrochemical cell. The working potential window of the electrodeposited bismuth film electrode was investigated by cyclic voltammetry, while square wave ASV was used for measuring Zn in acetate buffer and blood serum. Conditions critical to sensing, such as preconcentration potential, preconcentration time, and buffer pH, were optimized for Zn detection. The sensor was successfully calibrated with pH 6 acetate buffer in the physiologically-relevant range of 5 μM to 50μM Zn and exhibited well-defined and highly repeatable peaks. The sensor was used to demonstrate measurement of Zn in blood serum digested in HCl. The results of this work show that Zn detection in serum is possible with smaller sample volumes (μL vs. μL) and faster turnaround time (hours vs. days) as compared with the conventional spectroscopic methods.

  1. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; Pereira, Paulo; Novara, Agata; Iserloh, Thomas; Prosdocimi, Massimo

    2015-04-01

    This contribution to the immersed worlds wish to develop the avatar that will teach the students and other scientists how to develop measurements of soil erosion, surface runoff and wetting fronts by means of simulated rainfall experiments. Rainfall simulation is a well established and knows methodology to measure the soil erosion rates and soil hydrology under controlled conditions (Cerdà 1998a; Cerdà, 1998b; Cerdà and Jurgensen, 2011; Dunkerley, 2012; Iserloh et al., 2012; Iserloh et al., 2013; Ziadat and Taimeh, 2013; Butzen et al., 2014). However, is a method that requires a long training and expertise to avoid mismanagement and mistaken. To use and avatar can help in the teaching of the technique and the dissemination of the findings. This contribution will show to other avatars how to develop an experiment with simulated rainfall and will help to take the right decision in the design of the experiments. Following the main parts of the experiments and measurements the Wildgeographer avatar must develop: 1. Determine the objectives and decide which rainfall intensity and distribution, and which plot size to be used. Choose between a laboratory or a field rainfall simulation. 2. Design of the rainfall simulator to achieve the objectives: type of rainfall simulator (sprayer or drop former) and calibrate. 3. The experiments are carried out. 4. The results are show. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A

  2. Hitchhiker's Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry.

    Science.gov (United States)

    Rodeberg, Nathan T; Sandberg, Stefan G; Johnson, Justin A; Phillips, Paul E M; Wightman, R Mark

    2017-02-15

    Fast-scan cyclic voltammetry (FSCV) has been used for over 20 years to study rapid neurotransmission in awake and behaving animals. These experiments were first carried out with carbon-fiber microelectrodes (CFMs) encased in borosilicate glass, which can be inserted into the brain through micromanipulators and guide cannulas. More recently, chronically implantable CFMs constructed with small diameter fused-silica have been introduced. These electrodes can be affixed in the brain with minimal tissue response, which permits longitudinal measurements of neurotransmission in single recording locations during behavior. Both electrode designs have been used to make novel discoveries in the fields of neurobiology, behavioral neuroscience, and psychopharmacology. The purpose of this Review is to address important considerations for the use of FSCV to study neurotransmitters in awake and behaving animals, with a focus on measurements of striatal dopamine. Common issues concerning experimental design, data collection, and calibration are addressed. When necessary, differences between the two methodologies (acute vs chronic recordings) are discussed. The topics raised in this Review are particularly important as the field moves beyond dopamine toward new neurochemicals and brain regions.

  3. Voltammetry at the Thin-Film Mercury Electrode (TFME).

    Science.gov (United States)

    Pomeroy, R. S.; And Others

    1989-01-01

    Reviewed is the use of the Thin-Film Mercury Electrode for anodic stripping voltammetry, simple voltammetry of solution cations and cathodic stripping voltammetry for the determination of an environmentally important molecule, thiourea. The construction of a simple potentiostat and applications for student laboratory courses are included. (CW)

  4. Voltammetry at the Thin-Film Mercury Electrode (TFME).

    Science.gov (United States)

    Pomeroy, R. S.; And Others

    1989-01-01

    Reviewed is the use of the Thin-Film Mercury Electrode for anodic stripping voltammetry, simple voltammetry of solution cations and cathodic stripping voltammetry for the determination of an environmentally important molecule, thiourea. The construction of a simple potentiostat and applications for student laboratory courses are included. (CW)

  5. Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry

    Directory of Open Access Journals (Sweden)

    Frantisek Jelen

    2008-01-01

    Full Text Available Using a paraffin impregnated graphite electrode (PIGE and mercury-modifiedpyrolytic graphite electrode with basal orientation (Hg-PGEb copper(II and Cu(II-DNApurine base solutions have been studied by cyclic (CV and linear sweep voltammetry(LSV in connection with elimination voltammetry with linear scan (EVLS. In chlorideand bromide solutions (pH 6, the redox process of Cu(II proceeded on PIGE with twocathodic and two anodic potentially separated signals. According to the eliminationfunction E4, the first cathodic peak corresponds to the reduction Cu(II e- → Cu(I withthe possibility of fast disproportionation 2Cu(I → Cu(II Cu(0. The E4 of the secondcathodic peak signalized an electrode process controlled by a surface reaction. Theelectrode system of Cu(II on Hg-PGEb in borate buffer (pH 9.2 was characterized by onecathodic and one anodic peak. Anodic stripping voltammetry (ASV on PIGE and cathodicstripping voltammetry (CSV on Hg-PGEb were carried out at potentials where thereduction of copper ions took place and Cu(I-purine complexes were formed. By usingASV and CSV in combination with EVLS, the sensitivity of Cu(I-purine complexdetection was enhanced relative to either ASV or CSV alone, resulting in higher peakcurrents of more than one order of magnitude. The statistical treatment of CE data wasused to determine the reproducibility of measurements. Our results show that EVLS inconnection with the stripping procedure is useful for both qualitative and quantitativemicroanalysis of purine derivatives and can also reveal details of studied electrodeprocesses.

  6. Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry.

    Science.gov (United States)

    Trnkova, Libuse; Zerzankova, Lenka; Dycka, Filip; Mikelova, Radka; Jelen, Frantisek

    2008-01-24

    Using a paraffin impregnated graphite electrode (PIGE) and mercury-modifiedpyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNApurine base solutions have been studied by cyclic (CV) and linear sweep voltammetry(LSV) in connection with elimination voltammetry with linear scan (EVLS). In chlorideand bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with twocathodic and two anodic potentially separated signals. According to the eliminationfunction E4, the first cathodic peak corresponds to the reduction Cu(II) e⁻ → Cu(I) withthe possibility of fast disproportionation 2Cu(I) → Cu(II) Cu(0). The E4 of the secondcathodic peak signalized an electrode process controlled by a surface reaction. Theelectrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by onecathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodicstripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where thereduction of copper ions took place and Cu(I)-purine complexes were formed. By usingASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complexdetection was enhanced relative to either ASV or CSV alone, resulting in higher peakcurrents of more than one order of magnitude. The statistical treatment of CE data wasused to determine the reproducibility of measurements. Our results show that EVLS inconnection with the stripping procedure is useful for both qualitative and quantitativemicroanalysis of purine derivatives and can also reveal details of studied electrodeprocesses.

  7. Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry

    Science.gov (United States)

    Trnkova, Libuse; Zerzankova, Lenka; Dycka, Filip; Mikelova, Radka; Jelen, Frantisek

    2008-01-01

    Using a paraffin impregnated graphite electrode (PIGE) and mercury-modified pyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNA purine base solutions have been studied by cyclic (CV) and linear sweep voltammetry (LSV) in connection with elimination voltammetry with linear scan (EVLS). In chloride and bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with two cathodic and two anodic potentially separated signals. According to the elimination function E4, the first cathodic peak corresponds to the reduction Cu(II) + e- → Cu(I) with the possibility of fast disproportionation 2Cu(I) → Cu(II)+ Cu(0). The E4 of the second cathodic peak signalized an electrode process controlled by a surface reaction. The electrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by one cathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodic stripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where the reduction of copper ions took place and Cu(I)-purine complexes were formed. By using ASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complex detection was enhanced relative to either ASV or CSV alone, resulting in higher peak currents of more than one order of magnitude. The statistical treatment of CE data was used to determine the reproducibility of measurements. Our results show that EVLS in connection with the stripping procedure is useful for both qualitative and quantitative microanalysis of purine derivatives and can also reveal details of studied electrode processes. PMID:27879715

  8. Evaluation of homogeneous electrocatalysts by cyclic voltammetry.

    Science.gov (United States)

    Rountree, Eric S; McCarthy, Brian D; Eisenhart, Thomas T; Dempsey, Jillian L

    2014-10-06

    The pursuit of solar fuels has motivated extensive research on molecular electrocatalysts capable of evolving hydrogen from protic solutions, reducing CO2, and oxidizing water. Determining accurate figures of merit for these catalysts requires the careful and appropriate application of electroanalytical techniques. This Viewpoint first briefly presents the fundamentals of cyclic voltammetry and highlights practical experimental considerations before focusing on the application of cyclic voltammetry for the characterization of electrocatalysts. Key metrics for comparing catalysts, including the overpotential (η), potential for catalysis (E(cat)), observed rate constant (k(obs)), and potential-dependent turnover frequency, are discussed. The cyclic voltammetric responses for a general electrocatalytic one-electron reduction of a substrate are presented along with methods to extract figures of merit from these data. The extension of this analysis to more complex electrocatalytic schemes, such as those responsible for H2 evolution and CO2 reduction, is then discussed.

  9. Multiple disadvantages among older citizens: what a multidimensional measure of poverty can show.

    Science.gov (United States)

    Callander, Emily J; Schofield, Deborah J; Shrestha, Rupendra N

    2012-01-01

    Using the newly created Freedom Poverty Measure, a multidimensional measure of poverty, it can be seen that there were 534,700 individuals who were in freedom poverty, who had either poor health or poor education in addition to having low incomes. This multidimensional disadvantage would not normally be captured by single measures of poverty, such as income poverty measures. Men were significantly less likely to be in freedom poverty than women (OR = 0.63, 95% CI: 0.54-0.74, p poverty increased with age, with those older than 85 being 2.3 times more likely to be in freedom poverty than those aged 65 to 69 years (95% CI: 1.73-3.11, p < .0001). Policy responses to address the marginalization of disadvantaged older people should take a multidisciplinary approach, addressing health inequalities in particular, not just low income.

  10. Voltage biasing, cyclic voltammetry, & electrical impedance spectroscopy for neural interfaces.

    Science.gov (United States)

    Wilks, Seth J; Richner, Tom J; Brodnick, Sarah K; Kipke, Daryl R; Williams, Justin C; Otto, Kevin J

    2012-02-24

    Electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measure properties of the electrode-tissue interface without additional invasive procedures, and can be used to monitor electrode performance over the long term. EIS measures electrical impedance at multiple frequencies, and increases in impedance indicate increased glial scar formation around the device, while cyclic voltammetry measures the charge carrying capacity of the electrode, and indicates how charge is transferred at different voltage levels. As implanted electrodes age, EIS and CV data change, and electrode sites that previously recorded spiking neurons often exhibit significantly lower efficacy for neural recording. The application of a brief voltage pulse to implanted electrode arrays, known as rejuvenation, can bring back spiking activity on otherwise silent electrode sites for a period of time. Rejuvenation alters EIS and CV, and can be monitored by these complementary methods. Typically, EIS is measured daily as an indication of the tissue response at the electrode site. If spikes are absent in a channel that previously had spikes, then CV is used to determine the charge carrying capacity of the electrode site, and rejuvenation can be applied to improve the interface efficacy. CV and EIS are then repeated to check the changes at the electrode-tissue interface, and neural recordings are collected. The overall goal of rejuvenation is to extend the functional lifetime of implanted arrays.

  11. Applications of convolution voltammetry in electroanalytical chemistry.

    Science.gov (United States)

    Bentley, Cameron L; Bond, Alan M; Hollenkamp, Anthony F; Mahon, Peter J; Zhang, Jie

    2014-02-18

    The robustness of convolution voltammetry for determining accurate values of the diffusivity (D), bulk concentration (C(b)), and stoichiometric number of electrons (n) has been demonstrated by applying the technique to a series of electrode reactions in molecular solvents and room temperature ionic liquids (RTILs). In acetonitrile, the relatively minor contribution of nonfaradaic current facilitates analysis with macrodisk electrodes, thus moderate scan rates can be used without the need to perform background subtraction to quantify the diffusivity of iodide [D = 1.75 (±0.02) × 10(-5) cm(2) s(-1)] in this solvent. In the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, background subtraction is necessary at a macrodisk electrode but can be avoided at a microdisk electrode, thereby simplifying the analytical procedure and allowing the diffusivity of iodide [D = 2.70 (±0.03) × 10(-7) cm(2) s(-1)] to be quantified. Use of a convolutive procedure which simultaneously allows D and nC(b) values to be determined is also demonstrated. Three conditions under which a technique of this kind may be applied are explored and are related to electroactive species which display slow dissolution kinetics, undergo a single multielectron transfer step, or contain multiple noninteracting redox centers using ferrocene in an RTIL, 1,4-dinitro-2,3,5,6-tetramethylbenzene, and an alkynylruthenium trimer, respectively, as examples. The results highlight the advantages of convolution voltammetry over steady-state techniques such as rotating disk electrode voltammetry and microdisk electrode voltammetry, as it is not restricted by the mode of diffusion (planar or radial), hence removing limitations on solvent viscosity, electrode geometry, and voltammetric scan rate.

  12. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry.

    Science.gov (United States)

    Yang, Weiwei; Lai, Rebecca Y

    2011-12-06

    Here we systematically characterized the sensor performance of the stem-loop probe (SLP) and linear probe (LP) electrochemical DNA sensors using alternating current voltammetry (ACV) and cyclic voltammetry (CV), with the goal of generating the set of operational criteria that best suits each sensor architecture, in addition to elucidating the signaling mechanism behind these sensors. Although the LP sensor shows slightly better % signal suppression (SS) upon hybridization with the perfect match target at 10 Hz, our frequency-dependent study suggests that it shows optimal % SS only in a very limited AC frequency range. Similar results are observed in CV studies in which the LP sensor, when compared to the SLP sensor, displays a narrower range of voltammetric scan rates where the optimal % SS can be achieved. More importantly, the difference between the two sensors' performance is particularly pronounced if the change in integrated charge (Q) upon target hybridization, rather than the peak current (I), is measured in CV. The temperature-dependent study further highlights the differences between the two sensors, where the LP sensor, owing to the flexible linear probe architecture, is more readily perturbed by temperature changes. Both SLP and LP sensors, however, show a loss of % SS when operated at elevated temperatures, despite the significant improvement in the hybridization kinetics. In conjunction with the ACV, CV, and temperature-dependent studies, the electron-transfer kinetics study provides further evidence in support of the proposed signaling mechanism of these two sensors, in which the SLP sensor's signaling efficiency and sensor performance is directly linked to the hybridization-induced conformational change in the redox-labeled probe, whereas the performance of the LP sensor relies on the hybridization-induced change in probe dynamics. © 2011 American Chemical Society

  13. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  14. Arsenic speciation in natural waters by cathodic stripping voltammetry.

    Science.gov (United States)

    Gibbon-Walsh, Kristoff; Salaün, Pascal; van den Berg, Constant M G

    2010-03-03

    Contamination of groundwater with arsenic (As) is a major health risk through contamination of drinking and irrigation water supplies. In geochemically reducing conditions As is mostly present as As(III), its most toxic species. Various methods exist to determine As in water but these are not suitable for monitoring arsenic speciation at its original pH and without preparation. We present a method that uses cathodic stripping voltammetry (CSV) to determine reactive As(III) at a vibrating, gold, microwire electrode. The As(III) is detected after adsorptive deposition of As(OH)(3)(0), followed by a potential scan to measure the reduction current from As(III) to As(0). The method is suitable for waters of pH 7-12, has an analytical range of 1 nM to 100 microM As (0.07-7500 ppb) and a limit of detection of 0.5 nM with a 60 s deposition time. The As speciation protocol involves measuring reactive As(III) by CSV at the original pH and acidification to pH 1 to determine inorganic As(III)+As(V) by anodic stripping voltammetry (ASV) using the same electrode. Total dissolved As is determined by ASV after UV-digestion at pH 1. The method was successfully tested on various raw groundwater samples from boreholes in the UK and West Bengal. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Detection of gamma-irradiation effect on DNA and protein using magnetic sensor and cyclic voltammetry.

    Science.gov (United States)

    Park, Duck-Gun; Song, Hoon; Kishore, M B; Vértesy, G; Lee, Duk-Hyun

    2013-11-01

    In this study, a magnetic sensor utilizing Planar Hall Resistance (PHR) and cyclic Voltammetry (CV) for detecting the radiation effect was fabricated. Specifically, we applied in parallel a PHR sensor and CV device to monitor the irradiation effect on DNA and protein respectively. Through parallel measurements, we demonstrated that the PHR sensor and CV are sensitive enough to measure irradiation effect. The PHR voltage decreased by magnetic nanobead labeled DNA was slightly recovered after gamma ray irradiation. The behavior of cdk inhibitor protein p21 having a sandwich structure of Au/protein G/Ab/Ag/Ab was checked by monitoring the cyclic Voltammetry signal in analyzing the gamma ray irradiation effect.

  16. Direct mass measurements of Cd isotopes show strong shell gap at N=82

    CERN Document Server

    Knöbel, R; Bosch, F; Boutin, D; Chen, L; Dimopoulou, C; Dolinskii, A; Franczak, B; Franzke, B; Geissel, H; Hausmann, M; Kozhuharov, C; Kurcewicz, J; Litvinova, S A; Martínez-Pinedo, G; Matoš, M; Mazzocco, M; Münzenberg, G; Nakajima, S; Nociforo, C; Nolden, F; Ohtsubo, T; Ozawa, A; Patyk, Z; Plaß, W R; Scheidenberger, C; Stadlmann, J; Steck, M; Sun, B; Suzuki, T; Walker, P; Weick, H; Wu, M -R; Winkler, M; Yamaguchi, T

    2015-01-01

    A $^{238}$U projectile beam was used to create cadmium isotopes via abrasion-fission at 410 MeV/u in a beryllium target at the entrance of the in-flight separator FRS at GSI. The fission fragments were separated with the FRS and injected into the isochronous storage ring ESR for mass measurements. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B$\\rho$-tagging at the dispersive central focal plane of the FRS. In the experiment with B$\\rho$-tagging the magnetic rigidity of the injected fragments was determined by an accuracy of $2\\times 10^{-4}$. A new method of data analysis, using a correlation matrix for the combined data set from both experiments, has provided mass values for 25 different isotopes for the first time. The high selectivity and sensitivity of the experiment and analysis has given access even to rare isotopes detected with a few atoms per week. In this letter we present for the $^{129,130,131}$Cd isotopes mass values directly ...

  17. Optical volume and mass measurements show that mammalian cells swell during mitosis.

    Science.gov (United States)

    Zlotek-Zlotkiewicz, Ewa; Monnier, Sylvain; Cappello, Giovanni; Le Berre, Mael; Piel, Matthieu

    2015-11-23

    The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells.

  18. Snow chemistry measurements on James Ross Island (Antarctic Peninsula) showing sea-salt aerosol modifications

    Energy Technology Data Exchange (ETDEWEB)

    Aristarain, A.J. [Instituto Antartico Argentino (Argentina). Lab. de Estratigrafia Glaciar y Geoquimica de la Nieve; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Mendoza (Argentina); Delmas, R.J. [Laboratoire de Glaciologie et Geophysique de l' Environnement du CNRS, St Martin d' Heres (France)

    2002-07-01

    The fractionation of atmospheric sea-salt has been investigated by glaciochemical analysis of the sea-salt deposited on the snow covering the small ice cap of James Ross Island, Antarctic Peninsula, at an elevation of 1640m. The data show that, generally, but not always, the sea-salt deposited at this location most likely originates directly from seawater, as is the case at lower latitudes. It is found that the original chemical composition of the sea-salt aerosol is significantly modified, in particular by the reaction of sea-salt particles in the atmosphere with acid species. A ternary diagram (sodium, chloride, sulfate) is used to enlighten the involved modification processes. The study points out the frequent formation of HCl in the regional atmosphere. (Author)

  19. Differential Pulse Anodic Stripping Voltammetry for Mercury Determination

    Directory of Open Access Journals (Sweden)

    Vereștiuc Paul C.

    2015-07-01

    Full Text Available In the present work voltammetric investigations have been performed on HgCl2 aqueous solutions prepared from a Cz 9024 reagent. Carbon paste electrode (CPE, eriochrome black T modified carbon paste electrode (MCPE/EBT and KCl 1M as background electrolyte, were involved within the experimental procedures. Cyclic voltammetry (CV has been performed in order to compare the behaviour of the two electrodes in both K3[Fe(CN6] and mercury calibration aqueous solution. Differential pulse anodic stripping voltammetry (DPASV was used to determine the most suitable parameters for mercury determination. All experiments were performed at 25 ± 1 ℃, using an electrochemical cell with three-electrodes connected to an Autolab PG STAT 302N (Metrohm-Autolab potentiostat that is equipped with Nova 1.11 software. The measured potential values were generated by using the silver chloride electrode (AgClE as reference and a platinum wire electrode as auxiliary. A series of time depending equations for the pre-concentration and concentration steps were established, with the observation that a higher sensitivity can be obtained while increasing the pre-concentration time. DPASV were drawn using the CPE in 11.16 % coriander, as mercury complex, the voltamograms signals indicating mercury oxidation, with signal intensity increasing in time.

  20. Imprinted Polymeric Film-Based Sensor for the Detection of Dopamine Using Cyclic Voltammetry

    Institute of Scientific and Technical Information of China (English)

    郭洪声; 何锡文; 李一峻

    2003-01-01

    The imprinted polymeric film was synthesized on the glass-carbon electrodes dlrectly. The response to the template molecule-dopamine and other molecules with similar structure was measured by cyclic voltammetry. The response of dopamine on imprinted electrode was much higher than that of other molecules,because of the existing of micro-cavities in polymeric rdm fitting with the size and shape of dopamine in the imprinted polymer.Experimental results showed that dopamlne can be enriched by the imprinted film, therefore increasing the sensitivity of the sensor. The imprinted film could also efface the interference of ascorbic acid, indicating that dopamine can be determined with a large excess of ascorbic acid.

  1. Diagnostic criteria for the characterization of quasireversible electron transfer reactions by cyclic square wave voltammetry.

    Science.gov (United States)

    Mann, Megan A; Helfrick, John C; Bottomley, Lawrence A

    2014-08-19

    Theory for cyclic square wave voltammetry of quasireversible electron transfer reactions is presented and experimentally verified. The impact of empirical parameters on the shape of the current-voltage curve is examined. From the trends, diagnostic criteria enabling the use of this waveform as a tool for mechanistic analysis of electrode reaction processes are presented. These criteria were experimentally confirmed using Eu(3+)/Eu(2+), a well-established quasireversible analyte. Using cyclic square wave voltammetry, both the electron transfer coefficient and rate were calculated for this analyte and found to be in excellent agreement with literature. When properly applied, these criteria will enable nonexperts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.

  2. Cyclic Square Wave Voltammetry of Surface-Confined Quasireversible Electron Transfer Reactions.

    Science.gov (United States)

    Mann, Megan A; Bottomley, Lawrence A

    2015-09-01

    The theory for cyclic square wave voltammetry of surface-confined quasireversible electrode reactions is presented and experimentally verified. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. These criteria were experimentally confirmed using two well-established surface-confined analytes. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.

  3. Boron doped diamond sensor for sensitive determination of metronidazole: Mechanistic and analytical study by cyclic voltammetry and square wave voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, Hafedh Belhadj, E-mail: hbelhadjammar@yahoo.fr; Brahim, Mabrouk Ben; Abdelhédi, Ridha; Samet, Youssef

    2016-02-01

    The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH 11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2–4.2 μmol L{sup −1}, with a detection limit of 0.065 μmol L{sup −1}. - Highlights: • SWV for the determination of MTZ • Boron-doped diamond as a new electrochemical sensor • Simple and rapid detection of MTZ • Efficiency of BDD for sensitive determination of MTZ.

  4. Boron doped diamond sensor for sensitive determination of metronidazole: Mechanistic and analytical study by cyclic voltammetry and square wave voltammetry.

    Science.gov (United States)

    Ammar, Hafedh Belhadj; Brahim, Mabrouk Ben; Abdelhédi, Ridha; Samet, Youssef

    2016-02-01

    The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2-4.2μmolL(-1), with a detection limit of 0.065μmolL(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fast voltammetry of metals at carbon-fiber microelectrodes: towards an online speciation sensor.

    Science.gov (United States)

    Pathirathna, Pavithra; Siriwardhane, Thushani; McElmurry, Shawn P; Morgan, Stephen L; Hashemi, Parastoo

    2016-11-14

    Speciation controls the chemical behavior of trace metals. Thus, there is great demand for rapid speciation analysis in a variety of fields. In this study, we describe the application of fast scan cyclic voltammetry (FSCV) and fast scan adsorption controlled voltammetry (FSCAV) to trace metal speciation analysis. We show that Cu(2+) can be detected using FSCAV in different matrices. We find that matrices with different Cu(2+) binding ability do not affect the equilibrium of Cu(2+) adsorption onto CFMs, and thus are an excellent predictor for free Cu(2+) ([Cu(2+)]free) in solution. We modelled a correlation between the FSCV response, [Cu(2+)]free and log Kf for 15 different Cu(2+) complexes. Using our model, we rapidly predicted, and verified [Cu(2+)]free and Kf of a real groundwater sample spiked with Cu(2+). We thus highlight the potential of fast voltammetry as a rapid trace metal speciation sensor.

  6. Differential Cyclic Voltammetry - a Novel Technique for Selective and Simultaneous Detection using Redox Cycling Based Sensors

    NARCIS (Netherlands)

    Odijk, M.; Wiedemair, J.; Megen, M.J.J; Olthuis, W.; Berg, van den A.

    2010-01-01

    Redox cycling (RC) is an effect that is used to amplify electrochemical signals. However, traditional techniques such as cyclic voltammetry (CV) do not provide clear insight for a mixture of multiple redox couples while RC is applied. Thus, we have developed a new measurement technique which deliver

  7. Characterization of Fe implanted yttria-stabilized zirconia by cyclic voltammetry

    NARCIS (Netherlands)

    Hassel, van B.A.; Burggraaf, A.J.

    1992-01-01

    The technique of cyclic voltammetry has been applied to study reduction and oxidation phenomena which are observed at low oxygen partial pressures during steady state current-overpotential measurements of the Au, O2(g)/Fe implanted yttria-stabilized zirconia interface. The redox potential (EO) of th

  8. Differential Cyclic Voltammetry - a Novel Technique for Selective and Simultaneous Detection using Redox Cycling Based Sensors

    NARCIS (Netherlands)

    Odijk, Mathieu; Wiedemair, Justyna; van Megen, M.J.J.; Olthuis, Wouter; van den Berg, Albert

    2010-01-01

    Redox cycling (RC) is an effect that is used to amplify electrochemical signals. However, traditional techniques such as cyclic voltammetry (CV) do not provide clear insight for a mixture of multiple redox couples while RC is applied. Thus, we have developed a new measurement technique which

  9. Characterization of Fe implanted yttria-stabilized zirconia by cyclic voltammetry

    NARCIS (Netherlands)

    van Hassel, B.A.; van Hassel, B.A.; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    The technique of cyclic voltammetry has been applied to study reduction and oxidation phenomena which are observed at low oxygen partial pressures during steady state current-overpotential measurements of the Au, O2(g)/Fe implanted yttria-stabilized zirconia interface. The redox potential (EO) of

  10. The Rise of Voltammetry: From Polarography to the Scanning Electrochemical Microscope

    Science.gov (United States)

    Bard, Allen J.

    2007-01-01

    The drooping mercury electrode (DME) was previously used to carry out electrochemical experiments but invention of polarography technique changed this. Voltammetry with DME was given the term polarography and are used in measurement of current as a function of potential at small electrodes.

  11. Kinetic Diversity of Striatal Dopamine: Evidence from a Novel Protocol for Voltammetry.

    Science.gov (United States)

    Walters, Seth H; Robbins, Elaine M; Michael, Adrian C

    2016-05-18

    In vivo voltammetry reveals substantial diversity of dopamine kinetics in the rat striatum. To substantiate this kinetic diversity, we evaluate the temporal distortion of dopamine measurements arising from the diffusion-limited adsorption of dopamine to voltammetric microelectrodes. We validate two mathematical procedures for correcting adsorptive distortion, both of which substantiate that dopamine's apparent kinetic diversity is not an adsorption artifact.

  12. Determination of chitosan by cathodic stripping voltammetry.

    Science.gov (United States)

    Lu, Guanghan; Wang, Lirong; Wang, Ruixia; Zeng, Yan; Huang, Xi

    2006-04-01

    A sensitive method for the determination of chitosan (CTS) by cathodic stripping voltammetry is presented. The method exploits a pair of oxidation-reduction peaks of CTS at -0.62 V (vs. SCE) and -0.54 V (vs. SCE), and an enhancement of the peak current of CTS observed in a 0.05 mol l(-1) potassium hydrogenphthalate buffer solution (pH 2.5). The peak current is linear with the concentration of CTS from 5.0 x 10(-7) to 1.5 x 10(-5) g ml(-1), and the detection limit is 1.0 x 10(-7) g ml(-1). We studied the characteristics and the mechanism of the electrode reaction, which proved that this process was diffusion controlled. This method was applied to determine the content of CTS in real samples with satisfactory results.

  13. Staining of wool using the reaction products of ABTS oxidation by laccase: synergetic effects of ultrasound and cyclic voltammetry.

    Science.gov (United States)

    Munteanu, Florentina-Daniela; Basto, Carlos; Gübitz, Georg M; Cavaco-Paulo, Artur

    2007-03-01

    The effects of ultrasound on 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonate) enzymatic oxidation by laccase (Trametes villosa) has been studied by means of cyclic voltammetry. The reaction was allowed to proceed in the presence of a piece of wool and the coloration depth of the wool fabric was measured by means of K/S. It was observed that cyclic voltammetry is influenced the dyeing process and higher K/S values were obtained when the cyclic voltammetry was combined with the ultrasonic irradiation. Moreover, the K/S value is the sum of the values obtained when the wool staining is done in just the presence of cyclic voltammetry or in just the presence of ultrasound. The results obtained on the indigo carmine decolourization gives information on the importance of controlling the amount of ABTS(+) formed during the ultrasonication process.

  14. Characterization studies and cyclic voltammetry on nickel(II amino acid dithiocarbamates with triphenylphosphine in the coordination sphere

    Directory of Open Access Journals (Sweden)

    SUBBIAH THIRUMARAN

    2008-02-01

    Full Text Available Nickel(II amino acid dithiocarbamate complexes of the composition [Ni(AAdtc(PPh3(NCS], [Ni(AAdtc(PPh3(CN] and [Ni(AAdtc(PPh32]ClO4 [(AAdtc = dithiocarbamate derivatives of amino acids, i.e., glycine (glydtc, L-iso-leucine (i-leudtc and L-proline (prodtc] were synthesized. The compounds were characterized by IR and electronic spectroscopy, thermal analysis, cyclic voltammetry and conductivity measurements. In the case of the mixed ligand complexes, the thioureide n(C−N values were shifted to higher wave numbers compared to [Ni(AAdtc2]. This observation shows the increased strength of the thioureide bond due to the presence of the p-accepting phosphine. Electronic spectral studies suggest square planar geometry for the complexes. Thermal analyses of the complexes are in keeping with the proposed formulae. Almost all the complexes showed signs of decay above 170 °C. At around 390 °C, the final mass corresponded to NiS. Cyclic voltammetry showed a decrease of the electron density on the nickel in the mixed ligand complexes compared to [Ni(AAdtc2].

  15. Nanoalloy electrocatalysis: simulating cyclic voltammetry from configurational thermodynamics with adsorbates.

    Science.gov (United States)

    Wang, Lin-Lin; Tan, Teck L; Johnson, Duane D

    2015-11-14

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd-Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. The method provides a more complete means to design nanoalloys for electrocatalysis.

  16. Ascorbic Acid Determination in Commercial Fruit Juice Samples by Cyclic Voltammetry

    Science.gov (United States)

    Pisoschi, Aurelia Magdalena; Danet, Andrei Florin; Kalinowski, Slawomir

    2008-01-01

    A method was developed for assessing ascorbic acid concentration in commercial fruit juice by cyclic voltammetry. The anodic oxidation peak for ascorbic acid occurs at about 490 mV on a Pt disc working electrode (versus SCE). The influence of the potential sweep speed on the peak height was studied. The obtained calibration graph shows a linear dependence between peak height and ascorbic acid concentration in the domain (0.1–10 mmol·L−1). The equation of the calibration graph was y = 6.391x + 0.1903 (where y represents the value of intensity measured for the anodic peak height, expressed as μA and x the analyte concentration, as mmol·L−1, r2 = 0.9995, r.s.d. = 1.14%, n = 10, Cascorbic acid = 2 mmol·L−1). The developed method was applied to ascorbic acid assessment in fruit juice. The ascorbic acid content determined ranged from 0.83 to 1.67 mmol·L−1 for orange juice, from 0.58 to 1.93 mmol·L−1 for lemon juice, and from 0.46 to 1.84 mmol·L−1 for grapefruit juice. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.35% and 104%. Ascorbic acid determination results obtained by cyclic voltammetry were compared with those obtained by the volumetric method with dichlorophenol indophenol. The results obtained by the two methods were in good agreement. PMID:19343183

  17. Cyclic voltammetry of fast conducting electrocatalytic films.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2015-07-15

    In the framework of contemporary energy challenges, cyclic voltammetry is a particularly useful tool for deciphering the kinetics of catalytic films. The case of fast conducting films is analyzed, whether conduction is of the ohmic type or proceeds through rapid electron hopping. The rate-limiting factors are then the diffusion of the substrate in solution and through the film as well as the catalytic reaction itself. The dimensionless combination of the characteristics of these factors allows reducing the number of actual parameters to a maximum of two. The kinetics of the system may then be fully analyzed with the help of a kinetic zone diagram. Observing the variations of the current-potential responses with operational parameters such as film thickness, the potential scan rate and substrate concentration allows a precise assessment of the interplay between these factors and of the values of the rate controlling factors. A series of thought experiments is described in order to render the kinetic analysis more palpable.

  18. Anodic stripping voltammetry enhancement by redox magnetohydrodynamics.

    Science.gov (United States)

    Clark, Emily A; Fritsch, Ingrid

    2004-04-15

    The effect of an external magnetic field on linear scan anodic stripping voltammetry (ASV) in solutions of 10(-6)-10(-7) M concentrations of lead, cadmium, and copper at mercury films on glassy carbon electrodes has been investigated. A high concentration of Hg(2+) was added to the analyte solution to induce a large cathodic current during the deposition step. Therefore, a large Lorentz force from the net flux of charge through the magnetic field resulted in convection due to magnetohydrodynamics. The faster delivery of analytes to the mercury film electrode during deposition caused an increase in the anodic stripping peaks. The effect of varying Hg(2+) concentrations (0-60 mM) and magnetic field strengths (0-1.77 T) on the enhancement of the stripping peaks was investigated. Enhancements as large as 129% for peak currents and 167% for peak areas were observed. An enhancement of approximately 100% was observed when 60 mM Fe(3+) replaced high concentrations of Hg(2+). This method of convection exhibits promise for small-volume ASV analysis with possible improved limits of detection and decreased preconcentration times.

  19. Pulse Voltammetry in Single Cells Using Platinum Microelectrodes

    Science.gov (United States)

    1991-11-22

    ring electrodes [18) in a solution of 1.OxlO’ M H2PtCl6 and 0.5 M H2SO4 and reducing platinum at 0.0 V vs SSCE for a desired deposition time. Cyclic ...E. and the range for Ed in multiple pulse voltammetry can be chosen from examination of voltammograms obtained by cyclic voltammetry or lin-ir sweep... voltametry [3,13]. As pointed out by Sinru et al. [14) the potential and time of each pulse has a direct effect on the nature of the voltammetry

  20. Electrode Calibration with a Microfluidic Flow Cell for Fast-scan Cyclic Voltammetry

    OpenAIRE

    Sinkala, Elly; McCutcheon, James E.; Schuck, Matt; Schmidt, Eric; Roitman, Mitchell F.; Eddington, David T.

    2012-01-01

    Fast-scan cyclic voltammetry (FSCV) is a common analytical electrochemistry tool used to measure chemical species. It has recently been adapted for measurement of neurotransmitters such as dopamine in awake and behaving animals (in vivo). Electrode calibration is an essential step in FSCV to relate observed current to concentration of a chemical species. However, existing methods require multiple components, which reduce the ease of calibrations. To this end, a microfluidic flow cell (µFC) wa...

  1. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    Science.gov (United States)

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

  2. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes.

    Science.gov (United States)

    Siska, Peter J; Kim, Bumki; Ji, Xiangming; Hoeksema, Megan D; Massion, Pierre P; Beckermann, Kathryn E; Wu, Jianli; Chi, Jen-Tsan; Hong, Jiyong; Rathmell, Jeffrey C

    2016-11-01

    T and B lymphocytes undergo metabolic re-programming upon activation that is essential to allow bioenergetics, cell survival, and intermediates for cell proliferation and function. To support changes in the activity of signaling pathways and to provide sufficient and necessary intracellular metabolites, uptake of extracellular nutrients increases sharply with metabolic re-programming. One result of increased metabolic activity can be reactive oxygen species (ROS), which can be toxic when accumulated in excess. Uptake of cystine allows accumulation of cysteine that is necessary for glutathione synthesis and ROS detoxification. Cystine uptake is required for T cell activation and function but measurements based on radioactive labeling do not allow analysis on single cell level. Here we show the critical role for cystine uptake in T cells using a method for measurement of cystine uptake using a novel CystineFITC probe. T cell receptor stimulation lead to upregulation of the cystine transporter xCT (SLC7a11) and increased cystine uptake in CD4+ and CD8+ human T cells. Similarly, lipopolysaccharide stimulation increased cystine uptake in human B cells. The CystineFITC probe was not toxic and could be metabolized to prevent cystine starvation induced cell death. Furthermore, blockade of xCT or competition with natural cystine decreased uptake of CystineFITC. CystineFITC is thus a versatile tool that allows measurement of cystine uptake on single cell level and shows the critical role for cystine uptake for T cell ROS regulation and activation.

  3. Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products.

    Science.gov (United States)

    José Jara-Palacios, M; Luisa Escudero-Gilete, M; Miguel Hernández-Hierro, J; Heredia, Francisco J; Hernanz, Dolores

    2017-04-01

    Grape pomace is composed of seeds, skins and stems that are an important source of phenolic substances, which have antioxidant properties and potential benefits to human health. Cyclic voltammetry (CV) has been used to measure the total antioxidant potential of different winemaking by-products. The electrochemical behavior of pomace, seeds, skins and stems was measured by CV and lipid peroxidation inhibition by thiobarbituric acid reactive substances (TBARS) method. Differences for the electrochemical parameter were found between the by-products, pomace and seeds, which presented the greatest voltammetric peak area. Furthermore, the by-products induced inhibition of lipid peroxidation in rat liver homogenates. Pomace and seeds showed higher capacity to inhibit lipid peroxidation than stems and skins, which could be because these by-products are richer in flavanols. Simple regression analyses showed that voltammetric parameters are highly correlated to the values obtained for lipid peroxidation inhibition. CV is a promising technique to estimate the total antioxidant potential of phenolic extract from winemaking by-products. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Relating cyclic voltammetry and impedance analysis in a viologen electrochromic device

    Energy Technology Data Exchange (ETDEWEB)

    Vergaz, Ricardo; Barrios, David; Sanchez-Pena, Jose-Manuel [Grupo de Displays y Aplicaciones Fotonicas, Department Tecnologia Electronica, Universidad Carlos III de Madrid, C/Butarque, 15, E28911 Leganes, Madrid (Spain); Pozo-Gonzalo, Cristina; Salsamendi, Maitane [Centre for Electrochemical Technologies (CIDETEC), Dept. Nuevos Materiales, Parque Tecnologico de San Sebastian - Paseo Miramon, 196, E-20009, San Sebastian (Spain)

    2009-12-15

    Viologens are electrochromic materials that have a wide range of coloration depending on the radical substituents. The results for a new blue viologen-based device, that has recently been patented, with an active area of 8.5 cm{sup 2} is presented in this paper. The characterization techniques used are based on optical measurements, chronoamperometry, cyclic voltammetry, and impedance spectroscopy analysis. A study of the results obtained from these measurements provides both an overview of the reactions taking place and has allowed an equivalent circuit to be developed which relates the different electrochemical parameters. The transmittance is observed to change from 80% to 15% in 600 nm for input voltages ranging from 0 to 2.5 V. However, increasing voltage beyond 1.8 V shows no optical change, thus, maintaining the voltage below this level optimizes the use of electrical current. Voltages and charges used for each redox reaction have been computed and are seen to be linearly related. The equivalent circuit generated to mimic the process has included parameters based on Warburg diffusion and double-layer capacitances. Results from this model are consistent with measurements for up to 1.8 V. Saturation of reduced species has been deduced for input voltages beyond this level. (author)

  5. Electrochemical Protease Biosensor Based on Enhanced AC Voltammetry Using Carbon Nanofiber Nanoelectrode Arrays.

    Science.gov (United States)

    Swisher, Luxi Z; Syed, Lateef U; Prior, Allan M; Madiyar, Foram R; Carlson, Kyle R; Nguyen, Thu A; Hua, Duy H; Li, Jun

    2013-02-28

    We report an electrochemical method for measuring the activity of proteases using nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). The VACNFs of ~150 nm in diameter and 3 to 5 μm in length were grown on conductive substrates and encapsulated in SiO2 matrix. After polishing and plasma etching, controlled VACNF tips are exposed to form an embedded VACNF NEA. Two types of tetrapeptides specific to cancer-mediated proteases legumain and cathepsin B are covalently attached to the exposed VACNF tip, with a ferrocene (Fc) moiety linked at the distal end. The redox signal of Fc can be measured with AC voltammetry (ACV) at ~1 kHz frequency on VACNF NEAs, showing distinct properties from macroscopic glassy carbon electrodes due to VACNF's unique interior structure. The enhanced ACV properties enable the kinetic measurements of proteolytic cleavage of the surface-attached tetrapeptides by proteases, further validated with a fluorescence assay. The data can be analyzed with a heterogeneous Michaelis-Menten model, giving "specificity constant" kcat /Km as (4.3 ± 0.8) × 10(4) M(-1)s(-1) for cathepsin B and (1.13 ± 0.38) × 10(4) M(-1)s(-1) for legumain. This method could be developed as portable multiplex electronic techniques for rapid cancer diagnosis and treatment monitoring.

  6. Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles.

    Science.gov (United States)

    Moretto, Ligia Maria; Pepe, Niki; Ugo, Paolo

    2004-04-19

    Gold nanoelectrodes ensembles (NEEs) have been prepared by electroless plating of Au nanoelectrode elements within the pores of a microporous polycarbonate template membrane. Cyclic voltammograms recorded in (ferrocenylmethyl) trimethylammonium hexafluorophosphate (FA(+) PF(6)(-)) solutions showed that these NEEs operate in the "total-overlap" response regime, giving well resolved peak shaped voltammograms. Experimental results show that the faradaic/background currents ratios at the NEE are independent on the total geometric area of the ensemble, so that NEE can be enlarged or miniaturized at pleasure without influencing the very favorable signal/noise ratio. Differential pulse voltammetry (DPV) at the NEE is optimized for direct determinations at trace levels. DPV at NEE allowed the determination (with no preconcentration) of trace amounts of FA(+), with a detection limit of 0.02muM. The use of NEE and DPV in cytochrome c (cyt c) solutions showed the possibility to observe the direct electrochemistry of submicromolar concentration of the protein, even without the need of adding any promoter or mediator.

  7. Alternating current scanning electrochemical microscopy with simultaneous fast-scan cyclic voltammetry.

    Science.gov (United States)

    Koch, Jason A; Baur, Melinda B; Woodall, Erica L; Baur, John E

    2012-11-06

    Fast-scan cyclic voltammetry (FSCV) is combined with alternating current scanning electrochemical microscopy (AC-SECM) for simultaneous measurements of impedance and faradaic current. Scan rates of 10-1000 V s(-1) were used for voltammetry, while a high-frequency (100 kHz), low-amplitude (10 mV rms) sine wave was added to the voltammetric waveform for the ac measurement. Both a lock-in amplifier and an analog circuit were used to measure the amplitude of the resultant ac signal. The effect of the added sine wave on the voltammetry at a carbon fiber electrode was investigated and found to have negligible effect. The combined FSCV and ac measurements were used to provide simultaneous chemical and topographical information about a substrate using a single carbon fiber probe. The technique is demonstrated in living cell culture, where cellular respiration and topography were simultaneously imaged without the addition of a redox mediator. This approach promises to be useful for the topographical and multidimensional chemical imaging of substrates.

  8. Dating copper-based archaeological materials using the voltammetry of microparticles

    OpenAIRE

    Doménech-Carbó, Antonio; Capelo, Sofia; Doménech-Carbó, María Teresa

    2014-01-01

    The voltammetry of microparticles, an electrochemical technique providing information on the composition of archaeological materials using an essentially non invasive analysis [1,2] was previously applied for dating lead-based materials [3,4]. It is described the application of this methodology for dating copper-based archaeological materials based on a theoretical model for long term metal corrosion [5]. Dating is based on the measurement of the voltammetric signals of cuprite and tenorite f...

  9. Cyclic Voltammetry and Impedance Spectroscopy Behavior Studies of Polyterthiophene Modified Electrode

    Directory of Open Access Journals (Sweden)

    Naima Maouche

    2011-01-01

    Full Text Available We present in this work a study of the electrochemical behaviour of terthiophene and its corresponding polymer, which is obtained electrochemically as a film by cyclic voltammetry (CV on platinum electrode. The analysis focuses essentially on the effect of two solvents acetonitrile and dichloromethane on the electrochemical behaviour of the obtained polymer. The electrochemical behavior of this material was investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS. The voltammograms show that the film of polyterthiophene can oxide and reduce in two solutions; in acetonitrile, the oxidation current intensity is more important than in dichloromethane. The impedance plots show the semicircle which is characteristic of charge-transfer resistance at the electrode/polymer interface at high frequency and the diffusion process at low frequency.

  10. Optimizing the Temporal Resolution of Fast-Scan Cyclic Voltammetry

    Science.gov (United States)

    2012-01-01

    Electrochemical detection with carbon-fiber microelectrodes has become an established method to monitor directly the release of dopamine from neurons and its uptake by the dopamine transporter. With constant potential amperometry (CPA), the measured current provides a real time view of the rapid concentration changes, but the method lacks chemical identification of the monitored species and markedly increases the difficulty of signal calibration. Monitoring with fast-scan cyclic voltammetry (FSCV) allows species identification and concentration measurements but often exhibits a delayed response time due to the time-dependent adsorption/desorption of electroactive species at the electrode. We sought to improve the temporal resolution of FSCV to make it more comparable to CPA by increasing the waveform repetition rate from 10 to 60 Hz with uncoated carbon-fiber electrodes. The faster acquisition led to diminished time delays of the recordings that tracked more closely with CPA measurements. The measurements reveal that FSCV at 10 Hz underestimates the normal rate of dopamine uptake by about 18%. However, FSCV collection at 10 and 60 Hz provide identical results when a dopamine transporter (DAT) blocker such as cocaine is bath applied. To verify further the utility of this method, we used transgenic mice that overexpress DAT. After accounting for the slight adsorption delay time, FSCV at 60 Hz adequately monitored the increased uptake rate that arose from overexpression of DAT and, again, was similar to CPA results. Furthermore, the utility of collecting data at 60 Hz was verified in an anesthetized rat by using a higher scan rate (2400 V/s) to increase sensitivity and the overall signal. PMID:22708011

  11. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    OpenAIRE

    Adib J. Samin

    2016-01-01

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level ...

  12. Controlled release of drugs from cellulose acetate matrices produced from sugarcane bagasse: monitoring by square-wave voltammetry.

    Science.gov (United States)

    Rodrigues Filho, Guimes; Almeida, Flávia; Ribeiro, Sabrina D; Tormin, Thiago F; Muñoz, Rodrigo A A; Assunção, Rosana M N; Barud, Hernane

    2016-01-01

    In this paper, cellulose triacetate (CTA) was produced from sugarcane bagasse and used as matrices for controlled release of paracetamol. Symmetric and asymmetric membranes were obtained by formulations of CTA/dichloromethane/drug and CTA/dichloromethane/water/drug, respectively, and they were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Different morphologies of membranes were observed by SEM, and the incorporation of paracetamol was confirmed by lowering of the glass transition temperature (Tg) in the DSC curves. This indicates the existence of interactions between the matrix and the drug. The evaluation of drug release was based on the electrochemical monitoring of paracetamol through its oxidation at a glassy carbon electrode surface using square-wave voltammetry (SWV), which provides fast, precise and accurate in situ measurements. The studies showed a content release of 27% and 45% by the symmetric and asymmetric membranes, respectively, during 8 h.

  13. Determination of Norfloxacin by square-wave adsorptive voltammetry on a glassy carbon electrode.

    Science.gov (United States)

    Ghoneim, M M; Radi, A; Beltagi, A M

    2001-05-01

    The adsorptive and electrochemical behavior of norfloxacin on a glassy carbon electrode were investigated by cyclic and square-wave voltammetry. Cyclic voltammetric studies indicated that the process was irreversible and fundamentally controlled by adsorption. To obtain a good sensitivity, the solution conditions and instrumental parameters were studied using square-wave voltammetry. In acetate buffer of pH 5.0, norfloxacin gave a sensitive adsorptive oxidative peak at 0.920 V (versus Ag-AgCl). Applicability to measurement of norfloxacin at submicromolar levels in urine samples was illustrated. The peak current was linear with the norfloxacin concentration in the range 5-50 microg ml(-1) urine. The detection limit was 1.1 microg ml(-1) urine.

  14. Cyclic voltammetry and RBS study of paint components

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Lynn [Center for Irradiation of Materials, Alabama A and M University, 4900 Meridian Street, P.O. Box 1447, Normal, AL 35762 (United States); Spencer, Dirk [Plant and Soil Science Department, Alabama A and M University, Normal, AL 35762-1447 (United States); Muntele, Claudiu [Center for Irradiation of Materials, Alabama A and M University, 4900 Meridian Street, P.O. Box 1447, Normal, AL 35762 (United States)]. E-mail: claudiu@cim.aamu.edu; Muntele, Iulia [Center for Irradiation of Materials, Alabama A and M University, 4900 Meridian Street, P.O. Box 1447, Normal, AL 35762 (United States); Ila, D. [Center for Irradiation of Materials, Alabama A and M University, 4900 Meridian Street, P.O. Box 1447, Normal, AL 35762 (United States)

    2007-08-15

    Heavy metals and metalloid ions are found in environmental matrices. The most toxic are lead, cadmium and mercury. These three heavy metals have no biological function and are toxic at all concentrations. Lead is one of the most insidious heavy metals and is introduced into the environment by many different means. It persists in both urban and rural settings, being found in paint chips, pottery, crystal and pharmaceutical and nutritional products. The analysis of heavy elements such as lead in soil is of particular importance [W.T. Sturges, R.M. Harrison, Sci. Total Environ. 44 (3) (1985) 225; M.L. Lepow, L. Bruckman, M. Gillette, S. Markowitz, R. Robino, J. Kapish, Environ. Res. 10 (3) (1975) 415; A.E. Daniels, J.R. Kominsky, P.J. Clark, J. Hazard. Mater. B 87 (2001) 117; G. Hutter, D. Moshman, J. Hazard. Mater. 40 (1995) 1]. In preparing the methods for lead detection in paint, we have used Rutherford backscattering spectrometry (RBS) in order to study the type and amount of heavy metal content in paint samples collected at various sites in the historic campus at A and M University (AAMU). We will show the results of our study with emphasis on comparison of what we learned about presence of lead in paints using our ion beam methods compared with the analysis of lead in paints using cyclic voltammetry.

  15. Toward an in situ phosphate sensor in seawater using Square Wave Voltammetry.

    Science.gov (United States)

    Barus, C; Romanytsia, I; Striebig, N; Garçon, V

    2016-11-01

    A Square Wave Voltammetry electrochemical method is proposed to measure phosphate in seawater as pulse techniques offer a higher sensitivity as compared to classical cyclic voltammetry. Chronoamperometry cannot be either adapted for an in situ sensor since this method requires to have controlled convection which will be impossible in a miniaturised sensor. Tests and validation of Square Wave Voltammetry parameters have been performed using an open cell and for the first time with a small volume (<400µL) laboratory prototypes. Two designs of prototypes have been compared. Using high frequency (f=250Hz) allows to obtain a linear behaviour between 0.1 and 1µmolL(-1) with a very low limit of detection of 0.05 µmolL(-1) after 60min of complexation waiting time. In order to obtain a linear regression for a larger concentration range i.e. 0.25-4µmolL(-1), a lower frequency of 2.5Hz is needed. A limit of detection of 0.1µmolL(-1) is obtained in this case after 30min of complexation waiting time for the peak measured at E=0.12V. Changing the position of the molybdenum electrode for the complexation step and moving the detection into another electrochemical cell allow to decrease the reaction time down to 5min. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Electrochemical impedance spectroscopy and cyclic voltammetry studies of a proton exchange membrane fuel cell operated at low humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Malevich, D. [Fuel Cell Research Centre, Kingston, ON (Canada)

    2007-07-01

    This study investigated water balance issue in polymer electrolyte membrane fuel cells (PEMFCs) using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. Equivalent PEMFC circuits and microporous layers (MPL) were investigated. Bode and Nyquist plots were presented, and the effect of current density on EIS was explored. Membrane resistance, Warburg resistance, and electron transfer resistance was measured. The study also examined hydrogen underpotential deposition on platinum. Cyclic voltammetry was used to develop curves for electrochemically active surfaces and charge transfer resistance of the MPL. Polarization curves for the anode and cathode MPLs were presented along with impedance diagrams for the PEMFC operating at low humidity conditions. tabs., figs.

  17. Determination of the wine preservative sulphur dioxide with cyclic voltammetry using inkjet printed electrodes.

    Science.gov (United States)

    Schneider, Marion; Türke, Alexander; Fischer, Wolf-Joachim; Kilmartin, Paul A

    2014-09-15

    During winemaking sulphur dioxide is added to prevent undesirable reactions. However, concerns over the harmful effects of sulphites have led to legal limits being placed upon such additives. There is thus a need for simple and selective determinations of sulphur dioxide in wine, especially during winemaking. The simultaneous detection of polyphenols and sulphur dioxide, using cyclic voltammetry at inert electrodes is challenging due to close oxidation potentials. In the present study, inkjet printed electrodes were developed with a suitable voltammetric signal on which the polyphenol oxidation is suppressed and the oxidation peak height for sulphur dioxide corresponds linearly to the concentration. Different types of working electrodes were printed. Electrodes consisting of gold nanoparticles mixed with silver showed the highest sensitivity towards sulphur dioxide. Low cost production of the sensor elements and ultra fast determination of sulphur dioxide by cyclic voltammetry makes this technique very promising for the wine industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Manganese detection in marine sediments: anodic vs. cathodic stripping voltammetry.

    Science.gov (United States)

    Banks, Craig E; Kruusma, Jaanus; Moore, Ryan R; Tomcík, Peter; Peters, Judith; Davis, James; Komorsky-Lovrić, Sebojka; Compton, Richard G

    2005-01-30

    Three different electroanalytical techniques for the detection of manganese in marine sediments are evaluated. The anodic stripping voltammetry of manganese at an in situ bismuth-film-modified boron-doped diamond electrode and cathodic stripping voltammetry at a carbon paste electrode are shown to lack the required sensitivity and reproducibility whereas cathodic stripping voltammetry at a bare boron-doped diamond electrode is shown to be reliable and selective with a limit of detection, from applying a 60s accumulation period of 7.4 x 10(-7)M and a sensitivity of 0.24AM(-1). The method was used to evaluate the manganese content of marine sediments taken from Sibenik, Croatia.

  19. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.

    Science.gov (United States)

    Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y

    2014-01-31

    Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development of a cyclic voltammetry method for the detection of Clostridium novyi in black disease.

    Science.gov (United States)

    Liu, L L; Jiang, D N; Xiang, G M; Liu, C; Yu, J C; Pu, X Y

    2014-03-17

    Black disease is an acute disease of sheep and cattle. The pathogen is the obligate anaerobe, Clostridium novyi. Due to difficulties of anaerobic culturing in the country or disaster sites, a simple, rapid, and sensitive method is required. In this study, an electrochemical method, the cyclic voltammetry method, basing on loop-mediated isothermal amplification (LAMP), electrochemical ion bonding (positive dye, methylene blue), was introduced. DNA extracted from C. novyi specimens was amplified through the LAMP reaction. Then the products combined were with methylene blue, which lead to a reduction in the oxidation peak current (ipA) and the reduction peak current (ipC) of the cyclic voltammetry. The changes of ipA/ipC were real-time measured by special designed electrode, so the DNA was quantitatively detected. The results displayed that this electrochemical detection of C. novyi could be completed in 1-2 h with the lowest bacterial concentration of 10(2) colony forming units/mL, and high accuracy (96.5%), sensitivity (96%), and specificity (97%) compared to polymerase chain reation. The cyclic voltammetry method was a simple and fast method, with high sensitivity and high specificity, and has great potential to be a usable molecular tool for fast diagnosis of Black disease.

  1. Determination of tryptophan and histidine by adsorptive cathodic stripping voltammetry using H-point standard addition method.

    Science.gov (United States)

    Ensafi, Ali A; Hajian, R

    2006-11-24

    A sequential method is proposed for the determination of tryptophane and histidine by adsorptive cathodic stripping voltammetry using standard addition and H-point standard addition method (HPSAM). The complexes of copper(II) with the amino acids were accumulated onto the surface of a hanging mercury drop electrode for 60s. Then the preconcentrated complexes were reduced by square wave voltammetry and the peak currents were measured. The effect of various parameters such as pH, concentration of copper, accumulation potential, accumulation time and scan rate on the sensitivity were studied by one-at-a time and artificial neural network. Under the optimized conditions, the peak currents at about +0.05 to -0.30 V is proportional to the concentration of tryptophan and histidine over the concentration ranges of 5-220 and 100-1200 nM, respectively. Optimization of the parameters by one-at-a time showed that at accumulation potential of 0.10 V (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of tryptophan and histidine does not have any contribution to the current. The optimization results by artificial neural network showed that at accumulation potential of -0.06 V (versus Ag/AgCl) the peak current is proportional to the both concentrations of tryptophan and histidine. Therefore, the method of H-point standard addition has been used for resolving overlap voltamograms for determination of histidine in the present of tryptophane. The method was successfully applied to the determination of tryptophan and histidine in synthetic and real samples.

  2. Electrochemical characterisation and anodic stripping voltammetry at mesoporous platinum rotating disc electrodes.

    Science.gov (United States)

    Lozano-Sanchez, Pablo; Elliott, Joanne M

    2008-02-01

    Using the technique of liquid crystal templating a rotating disc electrode (RDE) was modified with a high surface area mesoporous platinum film. The surface area of the electrode was characterised by acid voltammetry, and found to be very high (ca. 86 cm(2)). Acid characterisation of the electrode produced distorted voltammograms was interpreted as being due to the extremely large surface area which produced a combination of effects such as localised pH change within the pore environment and also ohmic drop effects. Acid voltammetry in the presence of two different types of surfactant, namely Tween 20 and Triton X-100, suggested antifouling properties associated with the mesoporous deposit. Further analysis of the modified electrode using a redox couple in solution showed typical RDE behaviour although extra capacitive currents were observed due to the large surface area of the electrode. The phenomenon of underpotential deposition was exploited for the purpose of anodic stripping voltammetry and results were compared with data collected for microelectrodes. Underpotential deposition of metal ions at the mesoporous RDE was found to be similar to that at conventional platinum electrodes and mesoporous microelectrodes although the rate of surface coverage was found to be slower at a mesoporous RDE. It was found that a mesoporous RDE forms a suitable system for quantification of silver ions in solution.

  3. Differential cyclic voltammetry for selective and amplified detection

    NARCIS (Netherlands)

    Megen, M.J.J; Odijk, M.; Wiedemair, J.; Olthuis, W.; Berg, van den A.

    2012-01-01

    We propose to combine two existing electrochemical techniques, cyclic voltammetry (CV) and redox cycling (RC), in order to obtain amplified and selective detection of redox active species. This combination is achieved by applying CV waveforms to two electrodes spaced 1.20 mu m apart, with one of the

  4. Differential cyclic voltammetry for selective and amplified detection

    NARCIS (Netherlands)

    van Megen, M.J.J.; Odijk, Mathieu; Wiedemair, Justyna; Olthuis, Wouter; van den Berg, Albert

    2012-01-01

    We propose to combine two existing electrochemical techniques, cyclic voltammetry (CV) and redox cycling (RC), in order to obtain amplified and selective detection of redox active species. This combination is achieved by applying CV waveforms to two electrodes spaced 1.20 mu m apart, with one of the

  5. A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.

    Science.gov (United States)

    Baldwin, Richard P.; And Others

    1984-01-01

    Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)

  6. A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.

    Science.gov (United States)

    Baldwin, Richard P.; And Others

    1984-01-01

    Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)

  7. Half-life of the electron-capture decay of 97Ru: Precision measurement shows no temperature dependence

    CERN Document Server

    Goodwin, J R; Iacob, V E; Hardy, J C; 10.1103/PhysRevC.80.045501

    2009-01-01

    We have measured the half-life of the electron-capture (ec) decay of 97Ru in a metallic environment, both at low temperature (19K), and also at room temperature. We find the half-lives at both temperatures to be the same within 0.1%. This demonstrates that a recent claim that the ec decay half-life for 7Be changes by $0.9% +/- 0.2% under similar circumstances certainly cannot be generalized to other ec decays. Our results for the half-life of 97Ru, 2.8370(14)d at room temperature and 2.8382(14)d at 19K, are consistent with, but much more precise than, previous room-temperature measurements. In addition, we have also measured the half-lives of the beta-emitters 103Ru and 105Rh at both temperatures, and found them also to be unchanged.

  8. Show Time

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> Story: Show Time!The whole class presents the story"Under the Sea".Everyone is so excited and happy.Both Leo and Kathy show their parentsthe characters of the play."Who’s he?"asks Kathy’s mom."He’s the prince."Kathy replies."Who’s she?"asks Leo’s dad."She’s the queen."Leo replieswith a smile.

  9. Snobbish Show

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ The State Administration of Radio,Film and Television (SARFT),China's media watchdog,issued a new set of mles on June 9 that strictly regulate TV match-making shows,which have been sweeping the country's primetime programming. "Improper social and love values such as money worship should not be presented in these shows.Humiliation,verbal attacks and sex-implied vulgar content are not allowed" the new roles said.

  10. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry.

    Science.gov (United States)

    Lugo-Morales, Leyda Z; Loziuk, Philip L; Corder, Amanda K; Toups, J Vincent; Roberts, James G; McCaffrey, Katherine A; Sombers, Leslie A

    2013-09-17

    Neurotransmission occurs on a millisecond time scale, but conventional methods for monitoring nonelectroactive neurochemicals are limited by slow sampling rates. Despite a significant global market, a sensor capable of measuring the dynamics of rapidly fluctuating, nonelectroactive molecules at a single recording site with high sensitivity, electrochemical selectivity, and a subsecond response time is still lacking. To address this need, we have enabled the real-time detection of dynamic glucose fluctuations in live brain tissue using background-subtracted, fast-scan cyclic voltammetry. The novel microbiosensor consists of a simple carbon fiber surface modified with an electrodeposited chitosan hydrogel encapsulating glucose oxidase. The selectivity afforded by voltammetry enables quantitative and qualitative measurements of enzymatically generated H2O2 without the need for additional strategies to eliminate interfering agents. The microbiosensors possess a sensitivity and limit of detection for glucose of 19.4 ± 0.2 nA mM(-1) and 13.1 ± 0.7 μM, respectively. They are stable, even under deviations from physiological normoxic conditions, and show minimal interference from endogenous electroactive substances. Using this approach, we have quantitatively and selectively monitored pharmacologically evoked glucose fluctuations with unprecedented chemical and spatial resolution. Furthermore, this novel biosensing strategy is widely applicable to the immobilization of any H2O2 producing enzyme, enabling rapid monitoring of many nonelectroactive enzyme substrates.

  11. A Birth Cohort Analysis to Study Dog Walking in Adolescence Shows No Relationship with Objectively Measured Physical Activity

    Directory of Open Access Journals (Sweden)

    Carri Westgarth

    2017-05-01

    Full Text Available Physical inactivity during childhood and adolescence is a serious health concern. There are few studies of the activity undertaken by adolescents when walking with the family dog, and the effect of this on objectively measured physical activity levels. Objective measures of physical activity using accelerometers were recorded at age 11–12, 13–14, and 15–16 years in the Avon Longitudinal Study of Parents and Children (ALSPAC (ALSPAC, UK birth cohort during the 2000s. Family pet ownership was collected retrospectively using a questionnaire at age 18 years, for the ages 7, 11, 13, and 15 years. In addition, approximate frequency per week of walks undertaken with dogs were also reported. Multilevel, multivariable modeling was used to investigate the relationship between dog ownership and dog walking status, and physical activity outcomes. There were a total of 4,373 complete data observations for use in 2,055 children. Reported participation in dog walking tended to increase during adolescence, as did dog ownership. The majority of who own dogs reported walking them either 2–6 times/week (range 39–46% or never (range 27–37%. A small minority (7–8% reported walking their dog every day. Most reported never walking any other dog either (94–87%. We found no evidence for an association between dog ownership or reported dog walking, and objectively measured physical activity (counts per minute, P = 0.3, or minutes of moderate-to-vigorous physical activity, P = 0.7 during adolescence. This study provides no evidence to support a relationship between adolescent dog ownership and physical activity, and demonstrates the importance of using objective activity measures and considering dog walking rather than just dog ownership.

  12. EROBATIC SHOW

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Visitors look at plane models of the Commercial Aircraft Corp. of China, developer of the count,s first homegrown large passenger jet C919, during the Singapore Airshow on February 16. The biennial event is the largest airshow in Asia and one of the most important aviation and defense shows worldwide. A number of Chinese companies took part in the event during which Okay Airways, the first privately owned aidine in China, signed a deal to acquire 12 Boeing 737 jets.

  13. Microfluidic platform for neurotransmitter sensing based on cyclic voltammetry and dielectrophoresis for in vitro experiments.

    Science.gov (United States)

    Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine

    2015-08-01

    This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation.

  14. Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake, behaving rats.

    Science.gov (United States)

    Fortin, S M; Cone, J J; Ng-Evans, S; McCutcheon, J E; Roitman, M F

    2015-01-05

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the in vivo measurement of extracellular fluctuations in multiple chemical species. The technique is frequently utilized to sample sub-second (phasic) concentration changes of the neurotransmitter dopamine in awake and behaving rats. Phasic dopamine signaling is implicated in reinforcement, goal-directed behavior, and locomotion, and FSCV has been used to investigate how rapid changes in striatal dopamine concentration contribute to these and other behaviors. This unit describes the instrumentation and construction, implantation, and use of components required to sample and analyze dopamine concentration changes in awake rats with FSCV.

  15. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Science.gov (United States)

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  16. Thin-film voltammetry and its analytical applications: a review.

    Science.gov (United States)

    Tian, Huihui; Li, Yunchao; Shao, Huibo; Yu, Hua-Zhong

    2015-01-15

    Electrochemical reactions at the interfaces of immiscible electrolyte solutions (ITIES) are of fundamental importance in the fields of chemical, biological and pharmaceutical sciences. Four-electrode cell setup, scanning electrochemical microscopy (SECM) and thin-film voltammetry are the three most frequently used methods for studying the electrochemical processes at these interfaces. The principle, experimental design, advantages and challenges of the three methods are described and compared. The thin-film voltammetry is highlighted for its simplicity in experimental operation and kinetic data analysis. Its versatile analytical applications are discussed in detail, including the study of redox properties of hydrophobic compounds, evaluation of interfacial electron transfer kinetics, synthesis of nanoparticles/nanostructures, and illustration of cross-membrane ion transport phenomena.

  17. The effect of glassy carbon surface oxides in non-aqueous voltammetry: the case of quinones in acetonitrile.

    Science.gov (United States)

    Staley, Patrick A; Newell, Christina M; Pullman, David P; Smith, Diane K

    2014-11-04

    Glassy carbon (GC) electrodes are well-known to contain oxygenated functional groups such as phenols, carbonyls, and carboxylic acids on their surface. The effects of these groups on voltammetry in aqueous solution are well-studied, but there has been little discussion of their possible effects in nonaqueous solution. In this study, we show that the acidic functional groups, particularly phenols, are likely causes of anomalous features often seen in the voltammetry of quinones in nonaqueous solution. These features, a too small second cyclic voltammetric wave and extra current between the two waves that sometimes appears to be a small, broad third voltammetric wave, have previously been attributed to different types of dimerization. In this work, concentration-dependent voltammetry in acetonitrile rules out dimerization with a series of alkyl-benzoquinones because the anomalous features get larger as the concentration decreases. At low concentrations, solution bimolecular reactions will be relatively less important than reactions with surface groups. Addition of substoichiometric amounts of naphthol at higher quinone concentrations produces almost identical behavior as seen at low quinone concentrations with no added naphthol. This implicates hydrogen bonding and proton transfer from the surface phenolic groups as the cause of the anomalous features in quinone voltammetry at GC electrodes. This conclusion is supported by the perturbation of surface oxide coverage on GC electrodes through different electrode pretreatments.

  18. Differential Pulse Anodic Stripping Voltammetry for Mercury Determination

    OpenAIRE

    2015-01-01

    In the present work voltammetric investigations have been performed on HgCl2 aqueous solutions prepared from a Cz 9024 reagent. Carbon paste electrode (CPE), eriochrome black T modified carbon paste electrode (MCPE/EBT) and KCl 1M as background electrolyte, were involved within the experimental procedures. Cyclic voltammetry (CV) has been performed in order to compare the behaviour of the two electrodes in both K3[Fe(CN)6] and mercury calibration aqueous solution. Differential pulse anodic st...

  19. New Cyclic Voltammetry Method for Examining Phase Transitions: Simulated Results

    OpenAIRE

    2006-01-01

    We propose a new experimental technique for cyclic voltammetry, based on the first-order reversal curve (FORC) method for analysis of systems undergoing hysteresis. The advantages of this electrochemical FORC (EC-FORC) technique are demonstrated by applying it to dynamical models of electrochemical adsorption. The method can not only differentiate between discontinuous and continuous phase transitions, but can also quite accurately recover equilibrium behavior from dynamic analysis of systems...

  20. Surface Catalytic Mechanism in Square-Wave Voltammetry

    OpenAIRE

    Mirceski, Valentin; Gulaboski, Rubin

    2001-01-01

    A pseudo-first-order catalytic mechanism in which both reactant and product of the redox reaction are strongly immobilized on the electrode surface is theoretically analyzed under conditions of square-wave voltammetry (SWV). A mathematical procedure is developed for diffusionless conditions. The relationships between the properties of the voltammetric response and both the kinetic parameters of the redox reaction and the parameters of the excitement signal are studied. The phenomenon...

  1. Determination of ziram in vegetable samples by square wave voltammetry

    Institute of Scientific and Technical Information of China (English)

    Ping Qiu; Yong Nian Ni

    2008-01-01

    The electrochemical behaviour and electrode reaction mechanism of ziram (zinc-dimethyl dithiocarbamate) on a hanging mercury drop electrode were investigated in Britton-Robinson (B-R) buffer by using cyclic and square wave voltammetry (SWV).Based on these studies a voltammetric method for determination of ziram was developed and applied to determine the ziram in synthetic and spiked vegetable samples,satisfactory results were obtained in both eases.

  2. Solution voltammetry of 4 nm magnetite iron oxide nanoparticles.

    Science.gov (United States)

    Roberts, Joseph J P; Westgard, John A; Cooper, Laura M; Murray, Royce W

    2014-07-30

    The voltammetry of solution-dispersed magnetite iron oxide Fe3O4 nanoparticles is described. Their currents are controlled by nanoparticle transport rates, as shown with potential step chronoamperometry and rotated disk voltammetry. In pH 2 citrate buffer with added NaClO4 electrolyte, solution cyclic voltammetry of these nanoparticles (average diameter 4.4 ± 0.9 nm, each containing ca. 30 Fe sites) displays an electrochemically irreversible oxidation with E(PEAK) at ca. +0.52 V and an irreversible reduction with E(PEAK) at ca. +0.2 V vs Ag/AgCl reference electrode. These processes are presumed to correspond to the formal potentials for one-electron oxidation of Fe(II) and reduction of Fe(III) at their different sites in the magnetite nanoparticle structure. The heterogeneous electrode reaction rates of the nanoparticles are very slow, in the 10(-5) cm/s range. The nanoparticles are additionally characterized by a variety of tools, e.g., TEM, UV/vis, and XPS spectroscopies.

  3. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics.

    Science.gov (United States)

    Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han

    2014-06-24

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

  4. Hydrogen-bonding effect on spin-center transfer of tetrathiafulvalene-linked 6-oxophenalenoxyl evaluated using temperature-dependent cyclic voltammetry and theoretical calculations.

    Science.gov (United States)

    Nishida, Shinsuke; Fukui, Kozo; Morita, Yasushi

    2014-02-01

    The stable tetrathiafulvalene (TTF)-linked 6-oxophenalenoxyl neutral radical exhibits a spin-center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2-trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin-center transfer. Temperature-dependent cyclic voltammetry of the neutral radical using a novel low-temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin-center transfer are lowered by the hydrogen-bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen-bonding effect is a key factor for the occurrence of the spin-center transfer of TTF-linked 6-oxophenalenoxyl. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Differential pulse anodic stripping voltammetry for detection of As (III) by Chitosan-Fe(OH)3 modified glassy carbon electrode: A new approach towards speciation of arsenic.

    Science.gov (United States)

    Saha, Suparna; Sarkar, Priyabrata

    2016-09-01

    An efficient electrochemical sensor for As(III) was developed based on adsorption of arsenic on a specially modified electrodes at some applied potential and subsequent i) stripping at a fixed potential by anodic stripping voltammetry ii) analysis by generating surface plasmon resonance (SPR). The working glassy carbon electrode was modified by Chitosan-Fe(OH)3 composite and a reducing agent L-cysteine. The composite enhanced adsorption of As(III) and subsequent reduction to As(O) moieties and measurement by anodic stripping. The surface property of modified electrode was characterized by SEM, AFM, FTIR, XPS and electrochemistry was analyzed by impedance spectroscopy (EIS). Surface Plasmon resonance (SPR) was also employed to investigate the As(III) binding capability of polymer matrix. Several optimum voltammetric parameters e.g supporting electrolyte; 0.1M acetate buffer (pH 5.2) deposition potential, -0.9V; deposition time, 100s were established for anodic stripping voltammetry (ASV). A linear correlation was obtained in the range of 2-100ppb for ASV (R(2) 0.974) with limit of detection 0.072ppb. A variety of common coexistent ions such as Mn, Zn, Pb, Cu, Cd in water samples showed no interferences on the As (III) determination. The method was applied successfully to real samples collected from arsenic affected areas of West Bengal, India.

  6. Highly sensitive and selective determination of pyrazinamide at poly-L-methionine/reduced graphene oxide modified electrode by differential pulse voltammetry in human blood plasma and urine samples.

    Science.gov (United States)

    Cheemalapati, Srikanth; Devadas, Balamurugan; Chen, Shen-Ming

    2014-03-15

    In this current study we used electrochemically active film which contains poly-L-methionine (PMET) and electrochemically reduced graphene oxide (ERGO) on glassy carbon electrode (GCE) for pyrazinamide (PZM) detection. The electrocatalytic response of analyte at PMET/ERGO/GCE film was measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In addition, electrochemical impedance studies revealed that the smaller R(ct) value observed at PMET/ERGO film modified GCE which authenticates its good conductivity and faster electron transfer rate. The prepared PMET/ERGO/GCE film exhibits excellent DPV response towards PZM and the reduction peak current increased linearly with respect to PZM concentration in the linear range between 0.4 μM to 1129 μM with a sensitivity of 0.266 μA μM(-1) cm(-2). Real sample studies were carried out in human blood plasma and urine samples, which offered good recovery and revealed the promising practicality of the sensor for PZM detection. The proposed sensor displayed a good selectivity, repeatability, sensitivity with appreciable consistency and good reproducibility. In addition, the proposed electrochemical sensor showed good results towards the commercial pharmaceutical PZM samples.

  7. Electrodeposition of Iridium Oxide by Cyclic Voltammetry: Application of Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kakooei Saeid

    2014-07-01

    Full Text Available The effects of scan rate, temperature, and number of cycles on the coating thickness of IrOX electrodeposited on a stainless steel substrate by cyclic voltammetry were investigated in a statistical system. The central composite design, combined with response surface methodology, was used to study condition of electrodeposition. All fabricated electrodes were characterized using electrochemical methods. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were performed for IrOX film characterization. Results showed that scan rate significantly affects the thickness of the electrodeposited layer. Also, the number of cycles has a greater effect than temperature on the IrOX thickness.

  8. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    Science.gov (United States)

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-07-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.

  9. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection.

    Science.gov (United States)

    Ji, Daizong; Liu, Lei; Li, Shuang; Chen, Chen; Lu, Yanli; Wu, Jiajia; Liu, Qingjun

    2017-12-15

    Smartphone-based electrochemical devices have such advantages as the low price, miniaturization, and obtaining the real-time data. As a popular electrochemical method, cyclic voltammetry (CV) has shown its great practicability for quantitative detection and electrodes modification. In this study, a smartphone-based CV system with a simple method of electrode modification was constructed to perform electrochemical detections. The system was composed of these main portions: modified electrodes, portable electrochemical detector and smartphone. Among them, the detector was comprised of an energy transformation module applying the stimuli signals, and a low-cost potentiostat module for CV measurements with a Bluetooth module for transmitting data and commands. With an Application (App), the smartphone was used as the controller and displayer of the system. Through controlling of different scan rates, the smartphone-based system could perform CV detections for redox couples with test errors less than 3.8% compared to that of commercial electrochemical workstation. Also, the reduced graphene oxide (rGO) and sensitive substance could be modified by the system on the screen printed electrodes for detections. As a demonstration, 3-amino phenylboronic acid (APBA) was used as the sensitive substance to fabricate a glucose sensor. Finally, the experimental data of the system were shown the linear, sensitive, and specific responses to glucose at different doses, even in blood serum as low as about 0.026mM with 3δ/slope calculation. Thus, the system could show great potentials of detection and modification of electrodes in various fields, such as public health, water monitoring, and food quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Anodic stripping voltammetry of synthesized CdS nanoparticles at boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Mohammad; Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Saepudin, Endang [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Keio University (Japan)

    2016-04-19

    Cadmium sulphide (CdS) nanoparticles were chemically synthesized using reverse micelles microreactor methods. By using different washing treatments, UV-Vis spectroscopy showed that the absorption peaks appeared at 465 nm, 462 nm, 460 nm, and 459 nm respectively for CdS nanoparticles without and with 1, 2, and 3 times washing treatments using pure water. In comparison with the absorbance peak of bulk CdS at 512 nm, the shifted absorption peaks, indicates that the different sizes of CdS can be prepared. Anodic stripping voltammetry of the CdS nanoparticles was then studied at a boron-doped diamond electrode using 0.1 M KClO{sub 4} and 0.1 M HClO{sub 4} as the electrolytes. A scan rate of 100 mV/s with a deposition potential of -1000 mV (vs. Ag/AgCl) for 60 s at a potential scan from -1600 mV to +800 mV (vs. Ag/AgCl) was applied as the optimum condition of the measurements. Highly-accurate linear calibration curves (R{sup 2} = 0.99) in 0.1 M HClO{sub 4} with the sensitivity of 0.075 mA/mM and the limit of detection of 81 µM in 0.1 M HClO{sub 4} can be achieved, which is promising for an application of CdS nanoparticles as a label for biosensors.

  11. Anodic stripping voltammetry of gold nanoparticles at boron-doped diamond electrodes and its application in immunochromatographic strip tests.

    Science.gov (United States)

    Ivandini, Tribidasari A; Wicaksono, Wiyogo P; Saepudin, Endang; Rismetov, Bakhadir; Einaga, Yasuaki

    2015-03-01

    Anodic stripping voltammetry (ASV) of colloidal gold-nanoparticles (AuNPs) was investigated at boron-doped diamond (BDD) electrodes in 50 mM HClO4. A deposition time of 300 s at-0.2 V (vs. Ag/AgCl) was fixed as the condition for the ASV. The voltammograms showed oxidation peaks that could be attributed to the oxidation of gold. These oxidation peaks were then investigated for potential application in immunochromatographic strip tests for the selective and quantitative detection of melamine, in which AuNPs were used as the label for the antibody of melamine. Linear regression of the oxidation peak currents appeared in the concentration range from 0.05-0.6 μg/mL melamine standard, with an estimated LOD of 0.069 μg/mL and an average relative standard deviation of 8.0%. This indicated that the method could be considered as an alternative method for selective and quantitative immunochromatographic applications. The validity was examined by the measurements of melamine injected into milk samples, which showed good recovery percentages during the measurements.

  12. Measurement of the half-life of 198Au in a non-metal: High-precision measurement shows no host-material dependence

    CERN Document Server

    Goodwin, J R; Iacob, V E; Dibidad, A; Hardy, J C

    2010-01-01

    We have measured the half-life of the beta decay of 198Au to be 2.6948(9) d, with the nuclide sited in an insulating environment. Comparing this result with the half-life we measured previously with a metallic environment, we find the half-lives in both environments to be the same within 0.04%, thus contradicting a prediction that screening from a "plasma" of quasi-free electrons in a metal increases the half-life by as much as 7%.

  13. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y., E-mail: rlai2@unl.edu

    2014-01-31

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg{sup 2+}) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg{sup 2+} rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg{sup 2+}, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.

  14. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Keithley, Richard B; Wightman, R Mark

    2011-06-07

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.

  15. Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.

    Science.gov (United States)

    Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C

    2008-12-24

    The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation.

  16. Investigation of antioxidant capacity of the extracts of bilberry (VACCINUM MYRTILLIS L.) by voltammetry

    Science.gov (United States)

    Vtorushina, A. N.; Nikonova, E. D.

    2016-02-01

    This paper deals with the urgent issue of the search of new drugs based on plant raw materials that have an influence on various stages of oxidation processes occurring in the human body. The aim of this paper is to determine the antioxidant activity of the bilberry extracts that are used in the medicine practice by a cathodic voltammetry method. We consider the influence of water and alcohol bilberry extracts on the process of oxygen electroreduction. From these extracts the most activity relation to the process of cathodic oxygen reduction showed alcohol (40%) bilberry extract. It was also stated that the alcohol extract of bilberry has a greater antioxidant activity than other known antioxidants such as ascorbic acid, glucose, dihydroquercetin. Thus, after consideration of a number of plant objects, we showed the possibility of applying the method of cathodic voltammetry for the determination of total antioxidant activity of plant material and identifying and highlighting the most perspective sources of biologically active substances (BAS), as well as the ability of identifying extractants that fully extract BAS from plant raw materials. The activity data of extracts of plant raw materials gives an opportunity of establishing an effective yield phytopreparation based on bilberry that has an antioxidant effect.

  17. In situ generation and detection of methyl radical by voltammetry

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In persulfate-acetate, dimethyl sulfoxide or tert-butyl alcohol systems, in situ generation and detection of methyl free radical are realized with voltammetry. It includes the following successive processes. The persulfate S2O82- is polarographically reduced via one-electron addition to sulfate radical SO4-., the SO4-. Initiates chain reaction with acetate, dimethyl sulfoxide, or tert-butyl alcohol on the electrode surface to produce a methyl radical, and one-electron reduction of the methyl radical yields its polarographic reduction wave. In comparison with the known techniques such as ultraviolet radiolysis coupling with electron spin resonance, etc., the proposed method is simple, sensitive and selective.

  18. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry.

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J

    2016-12-09

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  19. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-12-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  20. Cathodic adsorptive stripping voltammetry of an anti-emetic agent Granisetron in pharmaceutical formulation and biological matrix

    Institute of Scientific and Technical Information of China (English)

    Rajeev Jain; Ramkishor Sharma

    2012-01-01

    Granisetron showed one well-defined reduction peak at Hanging Mercury Drop Electrode (HMDE) in the potential range from -1.3 to -1.5 V due to reduction of C=N bond. Solid-phase extraction technique was employed for extraction of Granisetron from spiked human plasma. Granisetron showed peak current enhancement of 4.45% at square-wave voltammetry and 5.33% at cyclic voltammetry as compared with the non stripping techniques. The proposed voltammetric method allowed quantification of Granisetron in pharmaceutical formulation over the target concentration range of 5-200 ng/mL with detection limit 13.63 ng/mL, whereas in human plasma 50-225 ng/mL with detection limit 11.75 ng/mL.

  1. Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Pereira; Zanoni, Maria Valnice Boldrin; Bergamini, Marcio Fernando [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual Paulista, Caixa Postal 355, 14800-900 Araraquara, S.P. (Brazil); Chiorcea-Paquim, Ana-Maria; Diculescu, Victor Constantin [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal); Oliveira Brett, Ana-Maria [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal)], E-mail: brett@ci.uc.pt

    2008-04-20

    Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks.

  2. Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis.

    Science.gov (United States)

    Bucher, Elizabeth S; Brooks, Kenneth; Verber, Matthew D; Keithley, Richard B; Owesson-White, Catarina; Carroll, Susan; Takmakov, Pavel; McKinney, Collin J; Wightman, R Mark

    2013-11-05

    Over the last several decades, fast-scan cyclic voltammetry (FSCV) has proved to be a valuable analytical tool for the real-time measurement of neurotransmitter dynamics in vitro and in vivo. Indeed, FSCV has found application in a wide variety of disciplines including electrochemistry, neurobiology, and behavioral psychology. The maturation of FSCV as an in vivo technique led users to pose increasingly complex questions that require a more sophisticated experimental design. To accommodate recent and future advances in FSCV application, our lab has developed High Definition Cyclic Voltammetry (HDCV). HDCV is an electrochemical software suite that includes data acquisition and analysis programs. The data collection program delivers greater experimental flexibility and better user feedback through live displays. It supports experiments involving multiple electrodes with customized waveforms. It is compatible with transistor-transistor logic-based systems that are used for monitoring animal behavior, and it enables simultaneous recording of electrochemical and electrophysiological data. HDCV analysis streamlines data processing with superior filtering options, seamlessly manages behavioral events, and integrates chemometric processing. Furthermore, analysis is capable of handling single files collected over extended periods of time, allowing the user to consider biological events on both subsecond and multiminute time scales. Here we describe and demonstrate the utility of HDCV for in vivo experiments.

  3. Determination of trace amounts of thallium by adsorptive cathodic stripping voltammetry with xylenol orange.

    Science.gov (United States)

    Shams, Esmaeil; Yekehtaz, Mehdi

    2002-09-01

    Trace amounts of thallium(I) can be determined using adsorptive cathodic stripping voltammetry in the presence of Xylenol Orange (XO). The reduction current of the thallium(I)-XO complex ion was measured by square-wave cathodic stripping voltammetry. The peak potential was at -0.44 V vs. Ag/AgCl. The effect of various parameters (pH, ligand concentration, accumulation potential and collection time) on the response are discussed. The response was linearly related to the thallium concentration in the range 0.5-110 ng ml(-1) and 110-2000 ng ml(-1). The limit of detection was 0.2 ng ml(-1). The relative standard deviation for the determination of 80 ng ml(-1) thallium was 2.8%. Many common anions and cations did not interfere with the determination of thallium. The interference of lead was reduced by the addition of 0.003 M sodium carbonate. The voltammetric procedure was then successfully applied to the determination of thallium in various complex samples.

  4. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  5. Cyclic voltammetry and impedance studies of electrodeposited polypyrrole nanoparticles doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, Sh. M., E-mail: shebrahim@igsr.alex.edu.e [Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Postal Code 21526, Alexandria (Egypt); Latif, M.M. Abd-El [Mubarak City for Scientific Research and Technology Applications, Institute of Advanced Technology and New Materials, Borg El-Arab City, Alexandria (Egypt); Gad, A.M.; Soliman, M.M. [Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Postal Code 21526, Alexandria (Egypt)

    2010-05-31

    Electrochemical synthesis of polypyrrole (PPY), doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPSNa), was carried out using chronoamperometric technique. Cyclic voltammetry measurements showed that the electroactivity of PPY films, doped with AMPSNa, increases with the film thickness. Scanning electron microscopy photographs revealed that the PPY particles are in the nano-scale range and that their size depends on the potential at which the PPY has formed. Electrochemical impedance spectroscopy (EIS), in the potential range of + 1.0 and - 1.0 V, revealed in the PPY film charge transfer domination with a semicircle at high frequencies, and anion diffusion dominance at low frequencies. EIS also showed that the charge transfer resistance of PPY film at - 1.0 V is lower than what is expected and that on increasing the thickness of the PPY films, the overall impedance decreases. The proposed equivalent circuit model, based on the double layer capacity and the Warburg impedance, was replaced by two constant-phase elements to fit the experimental work of this study. The values of the fractional exponent of the first constant phase element at approximately 0.5 indicate that the processes have a diffusion-limited nature.

  6. Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays.

    Science.gov (United States)

    Swisher, Luxi Z; Prior, Allan M; Shishido, Stephanie; Nguyen, Thu A; Hua, Duy H; Li, Jun

    2014-06-15

    The proteolytic activity of a cancer-related enzyme cathepsin B is measured with alternating current voltammetry (ACV) using ferrocene (Fc) labeled tetrapeptides attached to nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). This combination enables the use of high AC frequencies (~1kHz) with enhanced electrochemical signals. The specific proteolysis of the Fc-peptide by cathepsin B produces decay in the ACV peak current versus the reaction time. The exponential component of the raw data can be extracted and defined as the "extracted proteolytic signal" which allows consistent quantitative analyses using a heterogeneous Michaelis-Menten model. A "specificity constant" kcat/KM = (3.68 ± 0.50) × 10(4)M(-1)s(-1) for purified cathepsin B was obtained. The detections of cathepsin B activity in different concentrations of whole lysate of human breast tissue, tissue lysate spiked with varied concentrations of cathepsin B, and the tissue lysate after immunoprecipitation showed that there is ~13.4 nM higher cathepsin B concentration in 29.1 µg mL(-1) of whole tissue lysate than the immunoprecipitated sample. The well-defined regular VACNF NEAs by e-beam lithography show a much faster kinetics for cathepsin B proteolysis with kcat/KM = 9.2 × 10(4)M(-1)s(-1). These results illustrate the potential of this technique as a portable multiplex electronic system for cancer diagnosis by rapid protease profiling of serum or blood samples.

  7. Simultaneous determination of dopamine, uric acid, and tryptophan using an MWCNT modified carbon paste electrode by square wave voltammetry

    OpenAIRE

    BEITOLLAHI, Hadi; Mohadesi, Alireza; MAHANI, Saeedeh KHALILIZADEH

    2012-01-01

    A highly sensitive method was investigated for the simultaneous determination of dopamine (DA), uric acid (UA), and tryptophan (TRP) using a multiwall carbon nanotubes/5-amino-3',4'-dimethoxy-biphenyl-2-ol modified carbon paste electrode (5ADMBCNPE). The 5ADMBCNPE displayed excellent electrochemical catalytic activities towards the oxidation of DA, UA, and TRP. The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV), which showe...

  8. On-site fuel electroanalysis: determination of lead, copper and mercury in fuel bioethanol by anodic stripping voltammetry using screen-printed gold electrodes.

    Science.gov (United States)

    Almeida, Eduardo S; Richter, Eduardo M; Munoz, Rodrigo A A

    2014-07-21

    The potential application of commercial screen-printed gold electrodes (SPGEs) for the trace determination of lead, copper, and mercury in fuel bioethanol is demonstrated. Samples were simply diluted in 0.067 mol L(-1) HCl solution prior to square-wave anodic stripping voltammetry (SWASV) measurements recorded with a portable potentiostat. The proposed method presented a low detection limit (<2 μg L(-1)) for a 240 s deposition time, linear range between 5 and 300 μg L(-1), and adequate recovery values (96-104%) for spiked samples. This analytical method shows great promise for on-site trace metal determination in fuel bioethanol once there is no requirement for sample treatment or electrode modification.

  9. Investigation of the interaction of carbofuran and DNA by voltammetry and fluorescence with the aid of chemometrics

    Institute of Scientific and Technical Information of China (English)

    Ying Xia Wang; Yong Nian Ni; Serge Kokot

    2010-01-01

    The interactions of carbofuran and DNA were studied using voltammetry and fluorescence spectroscopy.The formation of carbofuran-DNA makes the current peak of DNA decreased by voltammetry method.The binding number(n)and constant(Ka)for complex carbofuran-DNA were calculated to be 1.06 ±0.04 and 0.11 ±0.03 mol-1 L,respectively by fluorescence measurement.Chemometrics approach,such as singular value decomposition(SVD)was used to evaluate the number of spectral species in the drug-DNA binding process.And the pure spectra and concentration profiles in the kinetic system were clearly deduced by multivariate curve resolution alternating least squares(MCR-ALS)with the initial estimates by evolving factor analysis(EFA).

  10. Thin film voltammetry of metabolic enzymes in rat liver microsomes

    Science.gov (United States)

    Krishnan, Sadagopan; Rusling, James F.

    2007-01-01

    We report herein thin film voltammetry and kinetics of electron transfer for redox proteins in rat liver microsomes for the first time. Films were made layer-by-layer from liver microsomes and polycations on pyrolytic graphite electrodes. Cyclic voltammograms were chemically reversible with a midpoint potential of −0.48 V vs SCE at 0.1 V s−1 in pH 7.0 phosphate buffer. Reduction peak potentials shifted negative at higher scan rates, and oxidation-reduction peak current ratios were ∼1 consistent with non-ideal quasireversible thin film voltammetry. Analysis of oxidation-reduction peak separations gave an average apparent surface electron transfer rate constant of 30 s−1. Absence of significant electrocatalytic reduction of O2 or H2O2 and lack of shift in midpoint potential when CO is added that indicates lack of an iron heme cofactor suggest that peaks can be attributed to oxidoreductases present in the microsomes rather than cytochrome P450 enzymes. PMID:18037986

  11. Combined characterization of bovine polyhemoglobin microcapsules by UV-Vis absorption spectroscopy and cyclic voltammetry.

    Science.gov (United States)

    Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio

    2017-03-01

    Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.

  12. DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY FOR DETERMINATION OF SOME HEAVY METALS IN URANIUM

    Directory of Open Access Journals (Sweden)

    Saryati Saryati

    2010-06-01

    Full Text Available The direct determination of some metals impurity in uranium by using differential pulse anodic stripping voltammetry (DPASV method at a hanging mercury drop electrode and in a carbonate buffer media was developed. It was found that the carbonate buffer show the strongest affinity for uranium and gives the best separation between the DPASV peaks of heavy metals impurities. The carbonate concentration markedly affects the oxidation and reduction the major and the minor constituents of the uranium samples. In 0.1 M carbonate buffer solution pH 10, copper, bismuth, thalium, lead, cadmium, zinc, could be determined without the removal of the uranium matrix. Recovery and relative standard deviation (RSD of this method was in the range of 174% - 85.2% for recovery and 36.8% - 1.2% for RSD. The larger error of analytical result was obtained for Zn at low concentration. In general, the analytic results error and RSD decreased with increasing metals concentration.   Keywords: heavy metal determination, differential pulse anodic stripping voltammetry, uranium

  13. Square wave voltammetry with multivariate calibration tools for determination of eugenol, carvacrol and thymol in honey.

    Science.gov (United States)

    Tonello, Natalia; Moressi, Marcela Beatriz; Robledo, Sebastián Noel; D'Eramo, Fabiana; Marioli, Juan Miguel

    2016-09-01

    The simultaneous determination of eugenol (EU), thymol (Ty) and carvacrol (CA) in honey samples, employing square wave voltammetry (SWV) and chemometrics tools, is informed for the first time. For this purpose, a glassy carbon electrode (GCE) was used as working electrode. The operating conditions and influencing parameters (involving several chemical and instrumental parameters) were first optimized by cyclic voltammetry (CV). Thus, the effects of the scan rate, pH and analyte concentration on the electrochemical response of the above mentioned molecules were studied. The results show that the electrochemical responses of the three compounds are very similar and that the voltammetric traces present a high degree of overlap under all the experimental conditions used in this study. Therefore, two chemometric tools were tested to obtain the multivariate calibration model. One method was the partial least squares regression (PLS-1), which assumes a linear behaviour. The other nonlinear method was an artificial neural network (ANN). In this last case we used a supervised, feed-forward network with Levenberg-Marquardt back propagation training. From the accuracies and precisions analysis between nominal and estimated concentrations calculated by using both methods, it was inferred that the ANN method was a good model to quantify EU, Ty and CA in honey samples. Recovery percentages were between 87% and 104%, except for two samples whose values were 136% and 72%. The analytical methodology was simple, fast and accurate.

  14. The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite.

    Science.gov (United States)

    Ward, Kristopher R; Lawrence, Nathan S; Hartshorne, R Seth; Compton, Richard G

    2012-05-28

    The cyclic voltammetry at electrodes composed of multiple electroactive materials, where zones of one highly active material are distributed over a substrate of a second, less active material, is investigated by simulation. The two materials are assumed to differ in terms of their electrochemical rate constants towards any given redox couple. For a one-electron oxidation or reduction, the effect on voltammetry of the size and relative surface coverages of the zones as well as the rate constant of the slower zone are considered for systems where it is much slower than the rate constant of the faster zones. The occurrence of split peak cyclic voltammetry where two peaks are observed in the forward sweep, is studied in terms of the diffusional effects present in the system. A number of surface geometries are compared: specifically the more active zones are modelled as long, thin bands, as steps in the surface, as discs, and as rings (similar to a partially blocked electrode). Similar voltammetry for the band, step and ring models is seen but the disc geometry shows significant differences. Finally, the simulation technique is applied to the modelling of highly-ordered pyrolytic graphite (HOPG) surface and experimental conditions under which it may be possible to observe split peak voltammetry are predicted.

  15. Determination of Platinum Metals in Carbonaceous Mineral Raw Materials by Stripping Voltammetry

    OpenAIRE

    Kolpakova, Nina Alexandrovna; Oskina, Yuliya Aleksandrovna; Dyachenko, Elena Nikolaevna; Pshenichkin, Anatoliy Yakovlevich

    2015-01-01

    The paper considers the possibility of determining platinum metals in mineral raw materials by stripping voltammetry on a graphite electrode modified by metals. Stripping voltammetry method is characterized by low determination limit, wide intervals of determined content and high sensitivity. As a result of the research the conditions for the determination of gold, platinum and palladium by stripping voltammetry have been selected. The comparison of the results of gold, palladium and platinum...

  16. Diagnostic Criteria for the Characterization of Electrode Reactions with Chemically Coupled Reactions Preceding the Electron Transfer by Cyclic Square Wave Voltammetry.

    Science.gov (United States)

    Helfrick, John C; Mann, Megan A; Bottomley, Lawrence A

    2016-08-18

    Theory for cyclic square wave voltammetry of electrode reactions with chemical reactions preceding the electron transfer is presented. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure reaction kinetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DNA-binding Studies of Daunorubicin in the Presence of Methylene Blue by Spectroscopy and Voltammetry Techniques

    Institute of Scientific and Technical Information of China (English)

    HAJIAN Reza; SHAMS Nafiseh; PARVIN Afsaneh

    2009-01-01

    The interaction of daunorubicin with calf thymus DNA has been investigated with the use of methylene blue dye as a spectral probe by the application of UV-Vis spectrophotometry, spectrofluorometry and voltammetry. The voltammetric behavior of daunorubicin has been investigated at a glassy carbon electrode using cyclic and differen-tial pulse voitammetry. Both UV-vis spectrophotometry and cyclic voltammetry studies confirmed the intercalation reaction. The results showed that both daunorubicin and methylene blue molecules could intercalate into the double helix of DNA. The apparent binding constant of daunorubicin with DNA has been found to be 7.8 × 104 L˙mol-1.The fluorescence signal of daunorubicin and methylene blue was quenched with DNA addition. The Stern-Volmer equation was plotted based on the quenching fluorescence signal of daunorubicin.

  18. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hamid [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Mohammad B., E-mail: mbgholivand@razi.ac.ir [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Abdolmaleki, Abbas [Department of Chemistry, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2016-09-01

    In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS–MWCNTs composite sensor (CuNS–MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800 μM with a low detection limit of 70 nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50–800 μM with the detection limit of 4.3 μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. - Highlights: • The Copper nanostructures (CuNS) were prepared by cyclic voltammetry deposition. • The CuNS-MWCNT/PGE sensor shows high activity toward hydrazine (N{sub 2}H{sub 4}). • The proposed sensor exhibits a wide linear range (0.1 to 800 μM), low detection limit (70 nM), high sensitivity and stability for hydrazine.

  19. Estimation of the composition of intermetallic compounds in LiCl-KCl molten salt by cyclic voltammetry.

    Science.gov (United States)

    Liu, Ya L; Liu, Kui; Yuan, Li Y; Chai, Zhi F; Shi, Wei Q

    2016-08-15

    In this work, the compositions of Ce-Al, Er-Al and La-Bi intermetallic compounds were estimated by the cyclic voltammetry (CV) technique. At first, CV measurements were carried out at different reverse potentials to study the co-reduction processes of Ce-Al, Er-Al and La-Bi systems. The CV curves obtained were then re-plotted with the current as a function of time, and the coulomb number of each peak was calculated. By comparing the coulomb number of the related peaks, the compositions of the Ce-Al, Er-Al and La-Bi intermetallic compounds formed in the co-reduction process could be estimated. The results showed that Al11Ce3, Al3Ce, Al2Ce and AlCe could be formed by the co-reduction of Ce(iii) and Al(iii). For the co-reduction of Er(iii) and Al(iii), Al3Er2, Al2Er and AlEr were formed. In a La(iii) and Bi(iii) co-existing system in LiCl-KCl melts, LaBi2, LaBi and Li3Bi were the major products as a result of co-reduction.

  20. Characterization of nonlinear background components in voltammetry by use of large amplitude periodic perturbations and fourier transform analysis.

    Science.gov (United States)

    Bond, Alan M; Duffy, Noel W; Elton, Darrell M; Fleming, Barry D

    2009-11-01

    Under most experimental conditions, a distinctly nonlinear background current is encountered in all forms of voltammetry which arises from the potential dependence of the capacitance. The nonlinear background current has been successfully modeled under large amplitude sinusoidal ac voltammetric conditions with a fourth order polynomial. The model was applied to a dummy cell containing a nonideal ceramic capacitor and commonly used electrodes. The nonlinearity in behavior of the background capacitance is particularly significant when considering the discrimination between the Faradaic and background contributions in the higher order harmonics resolved in ac voltammetry by Fourier transform-inverse Fourier transform approaches and in the simulation of the background current and hence double-layer capacitance as a function of potential. Typically, measurable background current under large amplitude conditions is detectable in the dc and fundamental to fourth harmonic components in large amplitude ac voltammetry. For analytical purposes, this background current can be corrected on a per harmonic basis without the need for any model. Background correction has been successfully applied to the first four harmonics for the oxidation of ferrocenemonocarboxylic acid over the concentration range of 5-500 microM in aqueous 0.5 M NaCl solution.

  1. Kinetics and Antioxidant Capacity of Proanthocyanidins Encapsulated in Zein Electrospun Fibers by Cyclic Voltammetry.

    Science.gov (United States)

    Wang, Hualin; Hao, Lilan; Niu, Baicheng; Jiang, Suwei; Cheng, Junfeng; Jiang, Shaotong

    2016-04-20

    The proanthocyanidins encapsulated in zein (zein-PA) fibers was via electrospinning technique. The kinetics and antioxidant capacity of PA from zein fibers was investigated by cyclic voltammetry. Circular dichroism was used to investigate the secondary structure change of zein and its influence on the shape of fibers. The addition of PA caused a significant increase in viscosity and made fibers wider. These hydrogen bonds between zein and PA molecules would favor the α-helix change and decrease the β-folds of zein in electrospinning solutions, leading to a round-shaped tendency of fibers and enhancing the thermal properties slightly. Zein-PA fibers showed high encapsulation efficiency close to 100%, and the encapsulated PA retained its antioxidant capacity in fibers. Zein-PA fibers showed a good controlled release toward PA, and the predominant release of PA from fibers was Fickian diffusion, which could be well described by first-order model and Hixson-Crowell model.

  2. Computer-controlled instrumentation for fast voltammetry at ultramicroelectrodes

    Science.gov (United States)

    Pospíšil, L.; Fiedler, J.; Fanelli, N.

    2000-04-01

    In this article we describe an electrochemical experimental setup for cyclic voltammetry operating from low (1 V/s) to very high (200 kV/s) scan rates. The system is designed to achieve an acceptable cost and to be user friendly for nonexperts. The instrumentation is based on a commercial arbitrary wave form generator, a digital oscilloscope, a general purpose interface bus interface to a PC, and a laboratory-built potentiostat. There are no complicated manual operations, instead the software creates dialog with an operator to control commands for the instruments. Requirements for the wave form synthesis and the data acquisition are given. Various data-smoothing methods for treating 8-bit fast scan data are evaluated. The performance was tested on the oxidation of ferrocene in acetonitrile. The estimated value of the standard heterogeneous rate constant, k0=0.8±0.1 cms-1, is in reasonable agreement with the most recent reports from other laboratories.

  3. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.

    Science.gov (United States)

    Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S

    2016-11-15

    Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed.

  4. Underpotential deposition and anodic stripping voltammetry at mesoporous microelectrodes.

    Science.gov (United States)

    Sanchez, Pablo Lozano; Elliott, Joanne M

    2005-05-01

    Using the technique of liquid crystal templating a series of high surface area mesoporous platinum microelectrodes was fabricated. The underpotential deposition of metal ions at such electrodes was found to be similar to that at conventional platinum electrodes. The phenomena of underpotential deposition, in combination with the intrinsic properties of mesoporous microelectrodes (i.e. a high surface area and efficient mass transport) was exploited for the purpose of anodic stripping voltammetry. In particular the underpotential deposition of Ag(+), Pb(2+) and Cu(2+) ions was investigated and it was found that mesoporous microelectrodes were able to quantify the concentration of ions in solution down to the ppb range. The overall behaviour of the mesoporous electrodes was found to be superior to that of conventional microelectrodes and the effects of interference by surfactants were minimal.

  5. Square-wave adsorptive cathodic stripping voltammetry of pantoprazole.

    Science.gov (United States)

    Radi, A

    2003-11-24

    Adsorption and reduction of pantoprazole were investigated by cyclic and square-wave voltammetry on a hanging mercury drop electrode in Britton-Robinson buffers at pH 2.0-11.0. The reduction process gave rise to a single peak within the entire pH range. Study of the variation of the reduction signal with solution variables such as pH and concentration of pantoprazole and instrumental variables such as accumulation time and potential, frequency, pulse height and pulse amplitude, has resulted in optimization of the reduction signal for analytical purposes. The voltammetric procedure was applied successfully to give a rapid and precise assay of pantoprazole in a tablet dosage form.

  6. Determination of Pesticide Ethion by Linear Sweep Stripping Voltammetry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The presence of the pesticide ethion was determined using an electroanalytical method, i. e. , linear sweep stripping voltammetry at a hanging mercury drop electrode in the Britton-Robbinson buffer with pH = 8. 36, based on its reduction peak observed at - 690 mV following its alkaline hydrolysis. The experimental parameters, namely, the preconcentration potential, the preconcentration time, and the scan rate were investigated and -300 mV (vs. Ag/AgCl), 270 s, and 100 mV/s were selected as the optimal values, respectively. The linear relationship between the peak current and the concentration was found to be in the range of 0. 02-0. 16 mg/L, with a detection limit of 0.0087 mg/L. The proposed method was applied to the determination of ethion in spiked vegetable and fruit samples via a preextraction with anhydrous ethanol.

  7. Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium.

    Science.gov (United States)

    Rusinek, Cory A; Bange, Adam; Papautsky, Ian; Heineman, William R

    2015-06-16

    Cloud point extraction (CPE) is a well-established technique for the preconcentration of hydrophobic species from water without the use of organic solvents. Subsequent analysis is then typically performed via atomic absorption spectroscopy (AAS), UV-vis spectroscopy, or high performance liquid chromatography (HPLC). However, the suitability of CPE for electroanalytical methods such as stripping voltammetry has not been reported. We demonstrate the use of CPE for electroanalysis using the determination of cadmium (Cd(2+)) by anodic stripping voltammetry (ASV). Rather than using the chelating agents which are commonly used in CPE to form a hydrophobic, extractable metal complex, we used iodide and sulfuric acid to neutralize the charge on Cd(2+) to form an extractable ion pair. This offers good selectivity for Cd(2+) as no interferences were observed from other heavy metal ions. Triton X-114 was chosen as the surfactant for the extraction because its cloud point temperature is near room temperature (22-25 °C). Bare glassy carbon (GC), bismuth-coated glassy carbon (Bi-GC), and mercury-coated glassy carbon (Hg-GC) electrodes were compared for the CPE-ASV. A detection limit for Cd(2+) of 1.7 nM (0.2 ppb) was obtained with the Hg-GC electrode. ASV with CPE gave a 20x decrease (4.0 ppb) in the detection limit compared to ASV without CPE. The suitability of this procedure for the analysis of tap and river water samples was demonstrated. This simple, versatile, environmentally friendly, and cost-effective extraction method is potentially applicable to a wide variety of transition metals and organic compounds that are amenable to detection by electroanalytical methods.

  8. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor.

    Science.gov (United States)

    Heydari, Hamid; Gholivand, Mohammad B; Abdolmaleki, Abbas

    2016-09-01

    In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS-MWCNTs composite sensor (CuNS-MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800μM with a low detection limit of 70nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50-800μM with the detection limit of 4.3μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. Copyright © 2016. Published by Elsevier B.V.

  9. Differential pulse and square-wave cathodic stripping voltammetry of xanthine and xanthosine at a mercury electrode.

    Science.gov (United States)

    Temerk, Y M; Kamal, M M; Ahmed, G A W; Ibrahim, H S M

    2003-08-01

    The surface activity of xanthine (Xan) and xanthosine (Xano) at a hanging mercury drop electrode (HMDE) was studied using out-of-phase ac and cyclic dc voltammetry. The results show that Xan and Xano were strongly adsorbed and chemically interacted with the charged mercury surface, which is the prerequisite step for applying the cathodic adsorptive stripping voltammetric determination of such biologically important compounds. Differential pulse cathodic adsorptive stripping voltammetry (DPCASV) and square-wave cathodic adsorptive stripping voltammetry (SWCASV) were applied for the ultratrace determination of Xan and Xano compounds. Moreover, a rapid and sensitive controlled adsorptive accumulation of Cu(II) complexes of both compounds provided the basis of a direct stripping voltammetric determination of such compounds to submicromolar and nanomolar levels. Operational and solution conditions for the quantitative ultratrace determination of Xan and Xano were optimized in absence and presence of Cu(II). The calibration curve data were subjected to least-squares refinements. The effects of several types of inorganic and organic interfering species on the determination of Xan or Xano were considered.

  10. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2012-05-01

    Full Text Available Multiwalled carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA by square-wave voltammetry (SWV. The oxidation of ascorbic acid at the modified glassy carbon electrode showed a peak potential at 315 mV, about 80 mV lower than that observed at the bare (unmodified electrode. The peak current was about threefold higher than the response at the bare electrode. Replicate measurements of peak currents showed good precision (3% rsd. Peak currents increased with increasing ascorbic acid concentration (dynamic range = 0.0047–5.0 mmol/L and displayed good linearity (R2 = 0.994. The limit of detection was 1.4 μmol/L AA, while the limit of quantitation was 4.7 μmol/L AA. The modified electrode was applied to the determination of the amount of ascorbic acid in four brands of commercial orange-juice products. The measured content agreed well (96–104% with the product label claim for all brands tested. Recovery tests on spiked samples of orange juice showed good recovery (99–104%. The reliability of the SWV method was validated by conducting parallel experiments based on high-performance liquid chromatography (HPLC with absorbance detection. The observed mean AA contents of the commercial orange juice samples obtained by the two methods were compared statistically and were found to have no significant difference (P = 0.05.

  11. Determination of antioxidant activity of spices and their active principles by differential pulse voltammetry.

    Science.gov (United States)

    Palma, Alberto; Ruiz Montoya, Mercedes; Arteaga, Jesús F; Rodríguez Mellado, Jose M

    2014-01-22

    The anodic oxidation of mercury in the presence of hydrogen peroxide in differential pulse voltammetry (DPV) was used to determine the antioxidant (AO) character of radical scavengers. Hydroperoxide radical is formed at the potentials of the oxidation peak on mercury electrodes, such radical reacting with the antioxidants in different extension. The parameter C10 (antioxidant concentration at which the peak area decreases by 10%) is used to measure the scavenging activity of the individual antioxidants. To establish the scavenging activity of antioxidant mixtures as a whole, the parameter, μ10 as the reverse of V10, V10 being the volume necessary to decrease the peak area in DPV by 10%, was selected. Higher μ10 values correspond to higher scavenging activity. The studies have been extended to aqueous extracts of some species. The results may be useful in explaining the effect of spices in vitro and in vivo studies.

  12. Evaluating the Passivation of Corrosion of API-X100 Steel with Cyclic Voltammetry

    Science.gov (United States)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2017-10-01

    In this research, cyclic voltammetry, in oxygen-free low bicarbonate-carbonate solutions, was used to study the corrosion reactions of a high-strength steel, API-X100. With cycles of different scan ranges, the effects of cycling, transpassivation, and cathodic reduction on the electrochemistry of the passive films were analyzed. It was found that carbonate in higher concentrations reduces the anodic activity and the cathodic reactions of the surface. Bicarbonate in small concentrations in solutions that contained low carbonate concentrations catalyzed dissolution and disrupted the formation of the passive films, in reference to the measured anodic currents. From the experiments, there was electrochemical evidence that with more cycles, the passive films were growing thicker, the transpassivation deteriorated the passive films, and during the cathodic reduction, the dissolution was occurring at lower potentials to facilitate later the passivation at higher potentials.

  13. Selective method for the determination of gold by anodic stripping voltammetry.

    Science.gov (United States)

    Korolczuk, M

    1996-12-01

    A highly selective method for the deter- mination of gold by anodic stripping voltammetry is described. For preconcentration a glassy carbon electrode, activated by deposition of small amounts of gold before the measurement, is proposed. The Au(3+) reduction process at such an electrode is effective starting with the potential +0.4 V vs. Ag/AgCl electrode. A linear dependence of the current of the gold stripping peak on the gold concentration was obtained in the range from 5x10(-8) to 1x10(-6) mol/l. The relative standard deviation for 2x10(-7) mol/l HAuCl(4) was 4.2% (n=5). The detection limit was 4x10(-9) mol/l. The accuracy of the method was verified by the determination of gold in reference materials.

  14. Cathodic stripping voltammetry of trace Mn(II) at carbon film electrodes.

    Science.gov (United States)

    Filipe, Olga M S; Brett, Christopher M A

    2003-12-04

    A sensitive voltammetric method is presented for the determination of tract levels of Mn (II) using carbon film electrodes fabricated from carbon resistors of 2 Omega. Determination of manganese was made by square wave cathodic stripping voltammetry (CSV), with deposition of manganese as manganese dioxide. Chronoamperometric experiments were made to study MnO(2) nucleation and growth. As a result, it was found to be necessary to perform electrode conditioning at a more positive potential to initiate MnO(2) nucleation. Under optimised conditions the detection limit obtained was 4 nM and the relative standard deviation for eight measurements of 0.22 nM was 5.3%. Interferences from various metal ions on the response CSV of Mn(II) were investigated, namely Cd(II), Ni(II), Cu(II), Cr(VI), Pb(II), Zn(II) and Fe(II). Application to environmental samples was demonstrated.

  15. Detection of aniline at boron-doped diamond electrodes with cathodic stripping voltammetry.

    Science.gov (United States)

    Spătaru, Tanţa; Spătaru, Nicolae; Fujishima, Akira

    2007-09-15

    Boron-doped diamond (BDD) electrodes were used to investigate the possibility of detecting aniline by linear-sweep cathodic stripping voltammetry. It was found that the dimeric species (p-aminodiphenylamine and benzidine) formed by anodic oxidation of aniline during the accumulation period are involved in electrochemically reversible redox processes and, in acidic media, the shape of the stripping voltammetric response is suitable for aniline detection in the micromolar concentration range. The low background current of conductive diamond is an advantage compared to other electrode materials and allows a detection limit of 1muM. Weak adsorption properties and the extreme electrochemical stability are additional advantages of BDD and it was found that, even after long-time measurements, the electrode surface can regain its initial activity by an anodic polarization in the potential region of water decomposition.

  16. Investigations on the use of anodic stripping voltammetry for the analyses of lead in saline environments

    Energy Technology Data Exchange (ETDEWEB)

    Case, C.W.

    1978-08-01

    Research is reported directed to modification of the anodic stripping voltammetry (ASV) analytic method in order to acquire data for lead from ambient sea water conditions, and development of a chemical model which uses these data to identify inorganic lead species for saline environments. Laboratory and field samples were analyzed for lead partitioning in: (a) KCl electrolyte solutions; (b) I.A.P.S.O. Standard Sea Water; (c) seawater samples from Quatsino Sound, British Columbia; (d) a series of seawater samples from San Francisco Bay; and (e) seawater samples from the Gulf of Mexico. The electrochemical traits of the lead species and the ASV oxidation potential expression are the fundamental constituents of the chemical model. The model uses the data from the analyses to provide the mass balance relationships for lead partitioned among the major anions in seawater. The laboratory analyses of KCl electrolyte and Standard Seawater give the following results. The modified ASV method and chemical model provide information on ambient labile and non-labile inorganic lead complexes in these saline solutions down to the parts-per-billion level. No purge and the simple electrodes cause some erratic behavior and spurious potentials, but the data are reproducible. In addition to Pb/sup 2 +/, the most dominant measured lead species in order include PbCO/sub 3//sup 0/, PbSO/sub 4//sup 0/, PbCl/sup +/, and Pb(NO/sub 3/)/sub 2//sup 0/ from the lead additions solution. The analyses of the field samples give the following results. Samples were taken from the partially anoxic basin in Quatsino Sound, British Columbia with one successful analysis which is for somewhat normal dissolved oxygen conditions. Data show that lead is partitioned among Pb/sup 2 +/, Pb(OH)/sub 2//sup 0/, PbCO/sub 3//sup 0/, and PbSO/sub 4//sup 0/. The analyses with purge for the San Francisco Bay water partitions lead among Pb/sup 2 +/, PbCO/sub 3//sup 0/, PbSO/sub 4//sup 0/, PbCl/sup +/, and Pb

  17. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.

    Science.gov (United States)

    Smith, Amanda R; Garris, Paul A; Casto, Joseph M

    2015-01-01

    Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of

  18. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.;

    2007-01-01

    A long-standing issue in protein film voltammetry (PFV), particularly electrocatalytic voltammetry of redox enzyme monolayers, is the variability of protein adsorption modes, reflected in distributions of catalytic activity of the adsorbed protein/enzyme molecules. Use of well-defined, atomically...

  19. Electrochemical characterization of lithium ferrite electrodes through cyclic voltammetry and Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Manley, M.; Cook, W. [Univ. of New Brunswick, Dept. of Chemical Engineering, Fredericton, New Brunswick (Canada)

    2013-07-01

    Lithium ferrite, a mixed spinel with the formula, Fe[Li{sub 0.5}Fe{sub 1.5}]O{sub 4} or LiFe{sub 5}O{sub 8}, has been synthesized and characterized in both its ordered (α) and disordered (β) phases. In an effort to scope the electrochemical activity lithium ferrite in lithium hydroxide solutions, the powders produced were compressed into pellets and tested with cyclic voltammetry and the surface of the electrodes were analyzed with laser Raman spectroscopy. Results of the initial electrochemical testing showed good correlation with Nernstian behavior and exhibited quasi-reversible behaviour. The redox mechanism involves the breakdown of lithium ferrite into hematite, a hybrid lithiated-hematite oxide and lithium ions under the alkaline conditions tested. By comparing the equilibrium potential of the redox process with proposed reaction schemes and examining the reaction products using the laser Raman microprobe, the proposed redox mechanism could be verified. (author)

  20. Mathematical Modelling of the Electrode Process of Azithromycin Using Cyclic Voltammetry at Hanging Mercury Drop Electrode

    Directory of Open Access Journals (Sweden)

    Maha F. Tutunji

    2002-11-01

    Full Text Available A theoretical treatment is presented to predict the kinetic behaviour of azithromycin at the surface of hanging mercury drop electrode using cyclic voltammetry. A model is developed to incorporate the occurrence of adsorption of the oxidized and reduced species of azithromycin at the surface of mercury drop electrode. An analytical solution was obtained using MATHEMATICA (V-3, Wolfram Research, Inc. to predict the cyclic voltammetric profiles by calculating the currents resulting after applying variable potentials ranging –1.9 to –1.3 V versus Ag/AgCl. Simulation runs at different initial concentrations of azithromycin and different scan rates showed good agreement with experimental findings. However, this model should be modified to describe a multilayer adsorption with irreversible electrochemical reaction.

  1. Electrochemical characterization of gelatinized starch dispersions: voltammetry and electrochemical impedance spectroscopy on platinum surface.

    Science.gov (United States)

    Hernandez-Jaimes, C; Lobato-Calleros, C; Sosa, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2015-06-25

    The electrochemical properties of gelatinized starch dispersions (GSD; 5% w/w) from different botanical sources were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests over a platinum surface. The phenomenological modelling of EIS data using equivalent circuits indicated that after gelatinization the electrical resistance was determined mainly by the resistance of insoluble material (i.e., ghosts). Sonication of the GSD disrupted the ghost microstructure, and produced an increase in electrical conductivity by reducing the resistance of the insoluble material. The CV data showed three oxidation peaks at potentials where glucose solutions displayed oxidation waves. It is postulated that hydrolysis at the bulk and electrocatalyzed oxidation on the Pt-surface are reactions involved in the starch transformation. Starches peak intensity increased with the amylose content, suggesting that the amylose-rich matrix played an important role in the charge transfer in the electrolytic system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Square Wave Voltammetry: An Alternative Technique to Determinate Piroxicam Release Profiles from Nanostructured Lipid Carriers.

    Science.gov (United States)

    Otarola, Jessica; Garrido, Mariano; Correa, N Mariano; Molina, Patricia G

    2016-08-04

    A new, simple, and fast electrochemical (EC) method has been developed to determine the release profile of piroxicam, a nonsteroidal anti-inflammatory drug, loaded in a drug delivery system based on nanostructured lipid carriers (NLCs). For the first time, the samples were analyzed by using square wave voltammetry, a sensitive EC technique. The piroxicam EC responses allow us to propose a model that explains the experimental results and to subsequently determine the amount of drug loaded into the NLCs formulation as a function of time. In vitro drug release studies showed prolonged drug release (up to 5 days), releasing 60 % of the incorporated drug. The proposed method is a promising and stable alternative for the study of different drug delivery systems.

  3. Determination of Soil Base—Soluble Se by Anodic Stripping Voltammetry with Aurum Thin—Film Electrode

    Institute of Scientific and Technical Information of China (English)

    YANGZENG; HEYING; 等

    1994-01-01

    Determination of soil Se by anodic stripping voltammetry(ASV) with aurum thin-film electrode(ATFE)overcomes the interference of gold peak with selenium peak,and thus has a higher sensitivity with the miniumum detectable concentration being 0.017μg/mL,the standard deviation of the measured results leww than 0.012μg/g,the coefficient of variation lwoer than 10% ,and the recovery rate between 86% to 103%.Besides the measurement conditions,the digestion of soil sample was also studied in detail.

  4. Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry.

    Science.gov (United States)

    Oh, Yoonbae; Park, Cheonho; Kim, Do Hyoung; Shin, Hojin; Kang, Yu Min; DeWaele, Mark; Lee, Jeyeon; Min, Hoon-Ki; Blaha, Charles D; Bennet, Kevin E; Kim, In Young; Lee, Kendall H; Jang, Dong Pyo

    2016-11-15

    Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.

  5. Application of thin-shielded mercury microelectrodes in anodic stripping voltammetry.

    Science.gov (United States)

    Daniele, Salvatore; Bragato, Carlo; Baldo, M Antonietta; Ciani, Ilenia

    2008-10-19

    The performance in anodic stripping voltammetry (ASV) of hemispherical mercury microelectrodes, fabricated by electrodeposition of liquid mercury on the surface of Pt microdisks which were surrounded by a rather thick or thin insulating shield, was compared. The Pt microdisks were produced by sealing a wire of 25 microm diameter into a glass capillary, and by coating the cylindrical length of the Pt wire with a cathodic electrophoretic paint. The ratio of the overall tip radius b, to the basal radius of the electrode a, so-called RG=b/a, was equal to 110+/-10 and 1.52+/-0.01 for the thick- and thin-shielded microdisk, respectively. The mercury microelectrodes were characterized by cyclic voltammetry at 1 mVs(-1), in 1mM Ru(NH(3))(6)(3+) aqueous solution. The steady-state voltammogram recorded with the thin-shielded mercury microelectrode displayed less hysteresis, while the steady-state current was about 30% higher than that of the thicker one. This was a consequence of the additional flux due to diffusion from behind the plane of the electrode. The flux enhancement, which was operative at the thin-shielded mercury microelectrode during the deposition step in the ASV experiments, allowed recording stripping peaks for Cd and Pb, which resulted about 32% larger than those recorded at the thicker shielded mercury microelectrode, under same experimental conditions. The usefulness of the thin-shielded mercury microelectrode for ASV measurements in real samples was verified by determining the content of heavy metal ions released in the pore water (pH 4.5) of a soil slurry.

  6. The dynamics of charge transfer with and without a barrier: A very simplified model of cyclic voltammetry.

    Science.gov (United States)

    Ouyang, Wenjun; Subotnik, Joseph E

    2017-05-07

    Using the Anderson-Holstein model, we investigate charge transfer dynamics between a molecule and a metal surface for two extreme cases. (i) With a large barrier, we show that the dynamics follow a single exponential decay as expected; (ii) without any barrier, we show that the dynamics are more complicated. On the one hand, if the metal-molecule coupling is small, single exponential dynamics persist. On the other hand, when the coupling between the metal and the molecule is large, the dynamics follow a biexponential decay. We analyze the dynamics using the Smoluchowski equation, develop a simple model, and explore the consequences of biexponential dynamics for a hypothetical cyclic voltammetry experiment.

  7. In vivo histamine voltammetry in the mouse premammillary nucleus.

    Science.gov (United States)

    Samaranayake, Srimal; Abdalla, Aya; Robke, Rhiannon; Wood, Kevin M; Zeqja, Anisa; Hashemi, Parastoo

    2015-06-07

    Histamine plays a major role in the mediation of allergic reactions such as peripheral inflammation. This classical monoamine is also a neurotransmitter involved in the central nervous system but its role in this context is poorly understood. Studying histamine neurotransmission is important due to its implications in many neurological disorders. The sensitivity, selectivity and high temporal resolution of fast scan cyclic voltammetry (FSCV) offer many advantages for studying electroactive neurotransmitters. Histamine has previously been studied with FSCV; however, the lack of a robust Faradaic electrochemical signal makes it difficult to selectively identify histamine in complex media, as found in vivo. In this work, we optimize an electrochemical waveform that provides a stimulation-locked and unique electrochemical signal towards histamine. We describe in vitro waveform optimization and a novel in vivo physiological model for stimulating histamine release in the mouse premammillary nucleus via stimulation of the medial forebrain bundle. We demonstrate that a robust signal can be used to effectively identify histamine and characterize its in vivo kinetics.

  8. Cyclic voltammetry of apple fruits: Memristors in vivo.

    Science.gov (United States)

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Blockmon, Avery L; Reedus, Jada; Volkova, Maya I

    2016-12-01

    A memristor is a resistor with memory that exhibits a pinched hysteretic relationship in cyclic voltammetry. Recently, we have found memristors in the electrical circuitry of plants and seeds. There are no publications in literature about the possible existence of memristors and electrical differentiators in fruits. Here we found that the electrostimulation of Golden Delicious or Arkansas Black apple fruits by bipolar periodic waves induces hysteresis loops with pinched points in cyclic voltammograms at low frequencies between 0.1MHz and 1MHz. At high frequencies of 1kHz, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=V/R for ideal memristors because the amplitude of electrical current depends on capacitance of a fruit's tissue and electrodes, frequency and direction of scanning. Electrostimulation of electrical circuits in apple fruits by periodic voltage waves also induces electrotonic potential propagation due to cell-to-cell electrical coupling with electrical differentiators. A differentiator is an electrical circuit in which the output of the circuit is approximately directly proportional to the rate of change of the input. The information gained from electrostimulation can be used to elucidate and to observe electrochemical and electrophysiological properties of electrical circuits in fruits.

  9. Fully printed flexible and disposable wireless cyclic voltammetry tag.

    Science.gov (United States)

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-29

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  10. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn.

    Science.gov (United States)

    Linkosalo, Tapio; Heikkinen, Juha; Pulkkinen, Pertti; Mäkipää, Raisa

    2014-01-01

    We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  11. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn

    Directory of Open Access Journals (Sweden)

    Tapio eLinkosalo

    2014-06-01

    Full Text Available We studied the photosynthetic activity of Scots pine (Pinus sylvestris L. and Norway spruce (Picea abies [L.] Karst in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 13 times per week. We began by measuring shoots present in late winter (i.e., March 2013 before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only.We analysed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence.The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 20132014 was unusually mild and similar to future conditions predicted by global warming models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  12. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid.

    Science.gov (United States)

    Yang, Guangming; Li, Ling; Jiang, Jinhe; Yang, Yunhui

    2012-08-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02×10(-7)-5.23×10(-4) mol L(-1) and 1.43×10(-7)-4.64×10(-4) mol L(-1), the detection limits were 1.12×10(-8) mol L(-1) and 2.24×10(-8) mol L(-1), respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Method of evaluation of electron transfer kinetics of a surface-confined redox system by means of Fourier transformed square wave voltammetry.

    Science.gov (United States)

    Huang, Xinjian; Wang, Lishi; Liao, Shijun

    2008-07-15

    A new form of Fourier transformed square wave voltammetry (FT-SWV) is proposed to simplify and accelerate the electron transfer kinetics evaluation procedures for surface-confined redox systems. Even harmonic frequencies, which are derived from the nonlinear Faradaic response, will arise in the power spectrum after Fourier transformation of the current response of FT-SWV. The profile of the even harmonic power spectra is bell-shaped and shows a maximum at a certain frequency. The electrode kinetics-dependent maximum and the corresponding frequency are equivalent to the so-called "quasi-reversible maximum" and "critical frequency" (fmax) in traditional SWV, respectively. The critical frequency can be regarded as a frequency that is synchronized to the electron transfer rate constant (k(0)). As a result, it can serve as a probe of k(0) by means of a very simple equation, k(0) = kmax fmax. Compared with traditional cyclic voltammetry, square wave voltammetry, alternating current voltammetry, and several other voltammetric techniques, this method exhibits great advantages for its simplicity, rapidity, and sensitivity.

  14. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation.

    Science.gov (United States)

    Chang, Su-Youne; Kim, Inyong; Marsh, Michael P; Jang, Dong Pyo; Hwang, Sun-Chul; Van Gompel, Jamie J; Goerss, Stephan J; Kimble, Christopher J; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2012-08-01

    Essential tremor is often markedly reduced during deep brain stimulation simply by implanting the stimulating electrode before activating neurostimulation. Referred to as the microthalamotomy effect, the mechanisms of this unexpected consequence are thought to be related to microlesioning targeted brain tissue, that is, a microscopic version of tissue ablation in thalamotomy. An alternate possibility is that implanting the electrode induces immediate neurochemical release. Herein, we report the experiment performing with real-time fast-scan cyclic voltammetry to quantify neurotransmitter concentrations in human subjects with essential tremor during deep brain stimulation. The results show that the microthalamotomy effect is accompanied by local neurochemical changes, including adenosine release.

  15. Electrochemical Deposition of Si-Ca/P on Nanotube Formed Beta Ti Alloy by Cyclic Voltammetry Method.

    Science.gov (United States)

    Jeong, Yong-Hoon; Choe, Han-Cheol

    2015-08-01

    The purpose of this study was to investigate electrochemical deposition of Si-Ca/P on nanotube formed Ti-35Nb-10Zr alloy by cyclic voltammetry method. Electrochemical deposition of Si substituted Ca/P was performed by pulsing the applied potential on nanotube formed surface. The surface characteristics were observed by field-emission scanning electron microscopy, X-ray diffractometer, and potentiodynamic polarization test. The phase structure and surface morphologies of Si-Ca/P deposition were affected by deposition cycles. From the anodic polarization test, nanotube formed surface at 20 V showed the high corrosion resistance with lower value of Icorr, I300, and Ipass.

  16. Application of normal pulse voltammetry to the kinetic study of formic acid oxidation on a carbon supported Pd electrocatalyst

    Science.gov (United States)

    Wang, Yujiao; Wu, Xiaochen; Wu, Bing; Gao, Ying

    The kinetic parameters of formic acid oxidation on a carbon supported Pd electrode, such as the charge transfer coefficient (α) and apparent diffusion coefficient (D) are obtained by applying the technique of normal pulse voltammetry. The standard rate constant (k 0) of formic acid oxidation on a Pd/C electrode is estimated. The results show that formic acid oxidation is more sensitive to temperature at relatively high potential because the activation energy is significantly increased as the potential rose above 0.6 V.

  17. Anodal Transcranial Direct Current Stimulation Shows Minimal, Measure-Specific Effects on Dynamic Postural Control in Young and Older Adults: A Double Blind, Sham-Controlled Study.

    Science.gov (United States)

    Craig, Chesney E; Doumas, Michail

    2017-01-01

    We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18-35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition-M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant's body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS' growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control.

  18. Analysis of conservative tracer measurement results using the Frechet distribution at planted horizontal subsurface flow constructed wetlands filled with coarse gravel and showing the effect of clogging processes.

    Science.gov (United States)

    Dittrich, Ernő; Klincsik, Mihály

    2015-11-01

    A mathematical process, developed in Maple environment, has been successful in decreasing the error of measurement results and in the precise calculation of the moments of corrected tracer functions. It was proved that with this process, the measured tracer results of horizontal subsurface flow constructed wetlands filled with coarse gravel (HSFCW-C) can be fitted more accurately than with the conventionally used distribution functions (Gaussian, Lognormal, Fick (Inverse Gaussian) and Gamma). This statement is true only for the planted HSFCW-Cs. The analysis of unplanted HSFCW-Cs needs more research. The result of the analysis shows that the conventional solutions (completely stirred series tank reactor (CSTR) model and convection-dispersion transport (CDT) model) cannot describe these types of transport processes with sufficient accuracy. These outcomes can help in developing better process descriptions of very difficult transport processes in HSFCW-Cs. Furthermore, a new mathematical process can be developed for the calculation of real hydraulic residence time (HRT) and dispersion coefficient values. The presented method can be generalized to other kinds of hydraulic environments.

  19. Electrolyte Effects on the Cyclic Voltammetry of TCNQ (Tetracyanoquinodimethane) and TCNE (Tetracyanoethylene).

    Science.gov (United States)

    1986-07-30

    to form two radical anions. In this note we report a study by cyclic voltammetry of the reductions of TCNQ and TCNE to their radical anions and dianions at platinum and glassy carbon electrodes in acetonitrile.

  20. Catalytic hydrogen evolution in cathodic stripping voltammetry on a mercury electrode in the presence of cobalt(II) ion and phenylthiourea or thiourea.

    Science.gov (United States)

    Spătaru, N; Bănica, F G

    2001-11-01

    The system Co(II)-phenylthiourea (PTU)-borax buffer was investigated by cathodic stripping voltammetry (CSV) at a hanging mercury drop electrode. The results of the voltammetric measurements showed that the presence of both PTU and Co(II) gives rise to a new irreversible peak at about -1.5 V. Based upon our previous results obtained in the study of other sulfur compounds and the sulfide ion itself, the peak was ascribed to the catalytic hydrogen evolution superimposed on the reduction of the coordinated Co(II) ion. The catalyst itself is a Co(II) complex with the sulfide ion produced by the decomposition of the analyte during the deposition step. The influence of PTU and cobalt concentration, accumulation conditions and stripping parameters was investigated and complementary data on thiourea are included. The results showed that the measurement of the catalytic hydrogen evolution peak current can be used as a basis for a simple, accurate and rapid method for the determination of PTU within the concentration range 10-100 nM. The catalytic method is relatively free of interferences and could be a suitable alternative for cases in which the stripping peak due to mercury ion reduction in the accumulated mercury compound is disturbed by some interference.

  1. Robotic voltammetry with carbon nanotube-based sensors: a superb blend for convenient high-quality antimicrobial trace analysis

    Science.gov (United States)

    Theanponkrang, Somjai; Suginta, Wipa; Weingart, Helge; Winterhalter, Mathias; Schulte, Albert

    2015-01-01

    A new automated pharmacoanalytical technique for convenient quantification of redox-active antibiotics has been established by combining the benefits of a carbon nanotube (CNT) sensor modification with electrocatalytic activity for analyte detection with the merits of a robotic electrochemical device that is capable of sequential nonmanual sample measurements in 24-well microtiter plates. Norfloxacin (NFX) and ciprofloxacin (CFX), two standard fluoroquinolone antibiotics, were used in automated calibration measurements by differential pulse voltammetry (DPV) and accomplished were linear ranges of 1–10 μM and 2–100 μM for NFX and CFX, respectively. The lowest detectable levels were estimated to be 0.3±0.1 μM (n=7) for NFX and 1.6±0.1 μM (n=7) for CFX. In standard solutions or tablet samples of known content, both analytes could be quantified with the robotic DPV microtiter plate assay, with recoveries within ±4% of 100%. And recoveries were as good when NFX was evaluated in human serum samples with added NFX. The use of simple instrumentation, convenience in execution, and high effectiveness in analyte quantitation suggest the merger between automated microtiter plate voltammetry and CNT-supported electrochemical drug detection as a novel methodology for antibiotic testing in pharmaceutical and clinical research and quality control laboratories. PMID:25670899

  2. Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry.

    Science.gov (United States)

    Sinkala, Elly; McCutcheon, James E; Schuck, Matthew J; Schmidt, Eric; Roitman, Mitchell F; Eddington, David T

    2012-07-07

    Fast-scan cyclic voltammetry (FSCV) is a common analytical electrochemistry tool used to measure chemical species. It has recently been adapted for measurement of neurotransmitters such as dopamine in awake and behaving animals (in vivo). Electrode calibration is an essential step in FSCV to relate observed current to concentration of a chemical species. However, existing methods require multiple components, which reduce the ease of calibrations. To this end, a microfluidic flow cell (μFC) was developed as a simple device to switch between buffer and buffer with a known concentration of the analyte of interest--in this case dopamine--in a microfluidic Y-channel. The ability to quickly switch solutions yielded electrode calibrations with faster rise times and that were more stable at peak current values. The μFC reduced the number of external electrical components and produced linear calibrations over a range of concentrations. To demonstrate this, an electrode calibrated with the μFC was used in FSCV recordings from a rat during the delivery of food reward--a stimulus that reliably evokes a brief increase in current due to the oxidation of dopamine. Using the linear calibration, dopamine concentrations were determined from the current responses evoked during the behavioral task. The μFC is able to easily and quickly calibrate FSCV electrode responses to chemical species for both in vitro and in vivo experiments.

  3. Iron organic speciation determination in rainwater using cathodic stripping voltammetry.

    Science.gov (United States)

    Cheize, Marie; Sarthou, Géraldine; Croot, Peter L; Bucciarelli, Eva; Baudoux, Anne-Claire; Baker, Alex R

    2012-07-29

    A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17±0.05 nM (n=14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10-70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52-6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of β'(Fe(3+)(NN)(3)) increased linearly with increasing pH according to log β'(Fe(3+)(NN)(3)) (salinity=2.9, T=20 °C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 μM of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2±4.1 nM equivalent of Fe(III) to 336.2±19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe(3+), varied from 21.1±0.2 to 22.8±0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Violence and TV Shows

    OpenAIRE

    ÖZTÜRK, Yrd. Doç. Dr. Şinasi

    2008-01-01

    This study aims to discuss theories on theviolent effects of TV shows on viewers, especiallyon children. Therefore, this study includes a briefdiscussion of definitions of violence, discussionof violence theories, main results of researcheson televised violence, measuring TV violence,perception of televised violence, individualdifferences and reactions to TV violence,aggressiveness and preferences for TV violence.

  5. Determination of ultra trace amount of enrofloxacin by adsorptive cathodic stripping voltammetry using copper(II) as an intermediate.

    Science.gov (United States)

    Ensaifi, Ali A; Khayamian, T; Taei, M

    2009-05-15

    In this work, a simple and sensitive electroanalytical method was developed for the determination of enrofloxacin (ENRO) by adsorptive cathodic stripping voltammetry (ADSV) using Cu(II) as a suitable probe. The complex of copper(II) with ENRO was accumulated at the surface of a hanging mercury drop electrode at -0.10 V for 40 s. Then, the preconcentrated complex was reduced and the peak current was measured using square wave voltammetry (SWV). The optimization of experimental variables was conducted by experimental design and support vector machine (SVM) modeling. The model was used to find optimized values for the factors such as pH, Cu(II) concentration and accumulation potential. Under the optimized conditions, the peak current at -0.30 V is proportional to the concentration of ENRO over the range of 10.0-80.0 nmol L(-1) with a detection limit of 0.33 nmol L(-1). The influence of potential interfering substances on the determination of ENRO was examined. The method was successfully applied to determination of ENRO in plasma and pharmaceutical samples.

  6. Lead detection using micro/nanocrystalline boron-doped diamond by square-wave anodic stripping voltammetry.

    Science.gov (United States)

    Arantes, Tatiane M; Sardinha, André; Baldan, Mauricio R; Cristovan, Fernando H; Ferreira, Neidenei G

    2014-10-01

    Monitoring heavy metal ion levels in water is essential for human health and safety. Electroanalytical techniques have presented important features to detect toxic trace heavy metals in the environment due to their high sensitivity associated with their easy operational procedures. Square-wave voltammetry is a powerful electrochemical technique that may be applied to both electrokinetic and analytical measurements, and the analysis of the characteristic parameters of this technique also enables the mechanism and kinetic evaluation of the electrochemical process under study. In this work, we present a complete optimized study on the heavy metal detection using diamond electrodes. It was analyzed the influence of the morphology characteristics as well as the doping level on micro/nanocrystalline boron-doped diamond films by means of square-wave anodic stripping voltammetry (SWASV) technique. The SWASV parameters were optimized for all films, considering that their kinetic response is dependent on the morphology and/or doping level. The films presented reversible results for the Lead [Pb (II)] system studied. The Pb (II) analysis was performed in ammonium acetate buffer at pH 4.5, varying the lead concentration in the range from 1 to 10 μg L(-1). The analytical responses were obtained for the four electrodes. However, the best low limit detection and reproducibility was found for boron doped nanocrystalline diamond electrodes (BDND) doped with 2000 mg L(-1) in B/C ratio.

  7. Anodic Stripping Voltammetry with Pencil Graphite Electrode for Determination of Chromium (III)

    Science.gov (United States)

    Wyantuti, S.; Hafidza, R. A.; Ishmayana, S.; Hartati, Y. W.

    2017-02-01

    Chromium is required as micronutrient that has roles in insulin metabolism and blood glucose level regulation. Chromium (III) deficiency can cause hyperglycemia and glycosuria. However, a high amount of chromium in body can cause allergic reaction, organ damage, and even death because of its toxicity. Chromium is commonly used in steel industries. Simultaneously with the development of industry, the waste disposal that can endanger environment also increased. Therefore, a sensitive and specific analysis method for chromium detection is required. Stripping voltammetry is one of the voltammetric methods that is commonly used for heavy metal analysis due to the very low limit of detection (sub ppb). The present study was conducted to develop an analysis method for chromium (III) determination using pencil graphite electrode. Quantitative determination was performed for chromium (III) which measured at -0.8 to +1.0 V with deposition time for 60 s and 50 mV/s scan rate. Stripping voltammetric analysis of chromium (III) using pencil graphite electrode gave linear range at 12.5 to 75 ppm with limit of detection of 0.31 ppm.

  8. Probing electric fields inside microfluidic channels during electroosmotic flow with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Forry, Samuel P; Murray, Jacqueline R; Heien, Michael L A V; Locascio, Laurie E; Wightman, R Mark

    2004-09-01

    Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used in microfluidic channels. This method offers the advantage that it can resolve electroactive species not separated in the channel. In addition, this method provides a route to investigate the distribution of applied electrophoretic fields in microfluidic channels. To probe this, microelectrodes were inserted at various distances into channels and cyclic voltammograms recorded at 300 V/s were repeated at 0.1-s intervals. The use of a battery-powered laptop computer and potentiostat provided galvanic isolation between the applied electrophoretic field and the electrochemical measurements. In the absence of an external field, the peak potential for oxidation of the test solute, Ru(bpy)3(2+), was virtually unaltered by insertion of the microelectrode tip into the channel. When an electrophoretic field was applied, the peak potential for Ru(bpy)3(2+) oxidation shifted to more positive potentials in a manner that was directly proportional to the field in the channel. The shifts in peak potential observed with FSCV enabled direct compensation of the applied electrochemical potential. This approach was used to explore the electrophoretic field at the channel terminus. It was found to persist for more than 50 microm from the channel terminus. In addition, the degree of analyte dispersion was found to depend critically on the electrode position outside the channel.

  9. Elimination Voltammetry with Linear Scan as a New Detection Method for DNA Sensors

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2005-11-01

    Full Text Available The paper describes successful coupling of adsorptive transfer stripping (AdTS andelimination voltammetry with linear scan (EVLS for the resolution of reduction signals of cytosine (Cand adenine (A residues in hetero-oligodeoxynucleotides (ODNs. Short ODNs (9-mers and 20-merswere adsorbed from a small volume on a hanging mercury drop electrode (HMDE. After washing ofthe ODN-modified electrode by water and its transferring to an electrochemical cell, voltammetric curves were measured. The AdTS EVLS was able to determine of C/A ratio of ODNs through theelimination function conserving the diffusion current component and eliminating kinetic and chargingcurrent components. This function, which provides the elimination signal in a peak-counterpeak form,increased the current sensitivity for A and C resolution, and for the recognition of bases sequences inODN chains. Optimal conditions of elimination experiments such as pH, time of adsorption, and scanrate were found. The combination of EVLS with AdTS procedure can be considered as a newdetection method in a DNA sensor.

  10. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    Science.gov (United States)

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  11. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  12. Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron.

    Science.gov (United States)

    Laglera, Luis M; Battaglia, Gianluca; van den Berg, Constant M G

    2007-09-05

    A new voltammetric method is presented for the measurement of humic substances (HS) in natural waters. The method is based on catalytic cathodic stripping voltammetry (CSV) and makes use of adsorptive properties of iron-HS complexes on the mercury drop electrode at natural pH. A fulvic acid standard (IHSS) was used to confirm the voltammetric response (peak potential and sensitivity) for the HS for natural water samples. Optimized conditions included the linear-sweep mode, deposition at -0.1 V, pH buffered at 8 and a scan rate of 50 mV s(-1). At a deposition time of 240 s in the presence of 10 nM iron and 30 mM bromate, the detection limit was 5 microg L(-1) HS in seawater, which could be lowered further by an increase in the bromate concentration, or in the adsorption time. The method was used to determine HS in the Irish Sea which were found to occur at levels between 60 and 600 microg L(-1). The new method is sufficiently sensitive to detect the low HS content in oceanic samples and has implications to the study of iron speciation.

  13. Determination of total gaseous selenium in atmosphere by honeycomb denuder/differential pulse cathodic stripping voltammetry.

    Science.gov (United States)

    Zhang, Bicheng; Xu, Hui; Yu, Jimmy C

    2002-05-16

    A new analytical method has been developed for the determination of total gaseous selenium in the atmosphere by honeycomb denuder collection followed by differential pulse cathodic stripping voltammetry (DPCSV) measurement. Gaseous selenium was collected in a denuder coating solution containing 2% HNO(3) and 2% glycerine. The soluble product, selenious acid, was then extracted by water for DPCSV analysis. The collection efficiency for gaseous selenium was 99.1% at a flow rate of 1 l min(-1) for 3 h. Excellent linearity in DPCSV was maintained up to Se concentration of 40 ng ml(-1). This was equivalent to a working concentration of 220 ng m(-3) of selenium in the atmosphere. A precision of 1.26% RSD (n=5) for 5 ng Se was obtained, and the detection limit (3sigma) and the quantitative determination limit were estimated to be 0.96 and 3.19 ng m(-3). The average recovery of selenium in three standard samples prepared by independent digestion of NIST SRM 1648 (Urban Particulate Matter) using our analytical system was 99.0%. The total content of gaseous selenium in the atmosphere of our laboratories was 3.2-4.4 ng m(-3).

  14. SQUARE WAVE CATHODIC STRIPPING VOLTAMMETRY ADSORPTIVE FOR NICKEL AND COBALT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Saryati Saryati

    2010-06-01

    Full Text Available The adsorptive stripping voltammetric determination of Ni and Co based on adsorption of the Ni/Co and dimethylglioxime (DMG complex on a hanging mercury drop electrode is studied. The reduction current of the adsorbed DMG complex is measured by square wave cathodic stripping voltammetry method. The effect of various parameters such as ligand concentration, pH of supporting electrolytic, adsorption potential and adsorption time on the current peak of Ni and Co voltammogram were studied. Optimum condition of this method are supporting electrolyte pH 9, DMG concentration 5×10 -4 M, adsorption potential -0.7 V vs Ag/AgCl and adsorption time 180 second. A linier relationship between the current peak and Ni or Co concentration was obtained in the range 5 - 30 ng/mL and the detection limit 0.6 ng/ml for both Ni and Co. The recovery of Ni and Co were 98.11-104.17% using standard biological materials with RSD 2.59 - 10.37%. Based on ";t"; test can be conclude that the result are nearly equal to the standard reference material.   Keywords: adsorptive stripping voltammetric, dimethylglioxime complex, nickel, cobalt

  15. Rapid determination of picomolar titanium in seawater with catalytic cathodic stripping voltammetry.

    Science.gov (United States)

    Croot, Peter L

    2011-08-15

    Titanium (Ti) is present as a trace element in seawater at extremely low concentrations (5-350 pM, where 1 pM = 10(-12) mol L(-1)) throughout the water column. Presently, little is known about the marine biogeochemistry of Ti and there is a distinct lack of oceanic measurements of Ti , because of the combined difficulties of trace-metal clean sampling for an element at such low levels and the lack of a suitable shipboard method of analysis. Here, a new cathodic stripping voltammetry procedure is presented for the rapid determination of Ti at pM concentrations in seawater that is capable of being used directly at sea. This method utilizes the catalytic enhancement of the reduction of the complex formed between Cupferron (N-nitrosophenylhydroxylamine) and Ti(IV). While Cupferron itself acts as both a complexing agent and an oxidizing agent, it was found that the optimal sensitivity was with bromate as an auxiliary oxidant. An advantage of this method is that it is useable over the pH range of 5.5-8. Under the conditions employed in this work, detection limits ranged from 5 pM to 12 pM. This new catalytic method is significantly more sensitive than existing methods and has been extensively tested at sea in the Atlantic and Southern Oceans.

  16. Cathodic stripping voltammetry of nickel: sonoelectrochemical exploitation of the Ni(III)/Ni(II) couple.

    Science.gov (United States)

    Davis, James; Vaughan, D Huw; Stirling, David; Nei, Lembit; Compton, Richard G

    2002-07-19

    The exploitation of the Ni(III)/Ni(II) transition as a means of quantifying the concentration of nickel within industrial samples was assessed. The methodology relies upon the reagentless electrodeposition of Ni onto a glassy carbon electrode and the subsequent oxidative conversion of the metallic layer to Ni(III). The analytical signal is derived from a cathodic stripping protocol in which the reduction of the Ni(III) layer to Ni(II) is monitored through the use of square wave voltammetry. The procedure was refined through the introduction of an ultrasonic source which served to both enhance the deposition of nickel and to remove the nickel hydroxide layer that results from the measurement process. A well-defined stripping peak was observed at +0.7 V (vs. Agmid R:AgCl) with the response found to be linear over the range 50 nM to 1 muM (based on a 30 s deposition time). Other metal ions such as Cu(II), Mn(II), Cr(III), Pb(II), Cd(II), Zn(II), Fe(III) and Co(II) did not interfere with the response when present in hundred fold excess. The viability of the technique was evaluated through the determination of nickel within a commercial copper nickel alloy and validated through an independent comparison with a standard ICP-AES protocol.

  17. Study on surface acid-base property of carboxylic acid-terminated self-assembled monolayers by cyclic voltammetry and electro-chemical impedance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    罗立强; 程志亮; 杨秀荣; 汪尔康

    2000-01-01

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the surface acid-base property of carboxylic acid-terminated self-assembled monolayers (SAMs). A carboxylic acid-terminated thiol, such as thioctic acid (1,2-dithiolane-3-pentanoic acid), was self-assembled on gold electrodes. Electron transfer between the bulk solution and the SAM modified electrode was studied at different pH using Fe(CN)63 as a probe. The surface pK. of thioctic acid was determined by cyclic voltammetry and electrochemical impedance spectroscopy to be 5.6±0.1 and 5.8±0.1, respectively. The method is compared with other methods of monolayer pK.measurement.

  18. A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat.

    Science.gov (United States)

    Cheng, Ka Yu; Cord-Ruwisch, Ralf; Ho, Goen

    2009-02-01

    Electrochemically active bacteria in a microbial fuel cell (MFC) usually exist as a biofilm attached to an electrode surface. Conventional cyclic voltammetry using potentiostat is considered as a powerful and reliable method to study electrochemical behavior of MFC biofilm. In this paper, we introduce a new approach to evaluate redox behavior of an electro-active MFC biofilm without using a potentiostat. Analogous to a conventional cyclic voltammetry study, we controlled the biofilm-electrode potential by computer-feedback controlling the external resistance of an operating MFC. In this way, the MFC can still operate as a "fuel cell" without being "interrupted" by an external device (i.e. potentiostat) that normally does not belong to the system. Relationship between current and biofilm-electrode potential was obtained and showed agreement with a potentiostat-controlled method under similar experimental conditions. The method could be added to our technical repertoire for analysis of bacterial mediator involved in the exocellular electron transfer of a MFC-biofilm, and it could potentially serve as a practical process monitoring method for MFC operation. The application of computer-control components should be further explored to facilitate control, diagnosis as well as optimization of MFC processes.

  19. Amperometric detection of gold by differential pulse voltammetry using a DNA biosensor

    Institute of Scientific and Technical Information of China (English)

    GAN Ning; WANG Zhiying; XU Weiming; PAN Jianguo

    2007-01-01

    A DNA biosensor with [Ru(DA-bpy)3]Cl2(DA-bpy:4,4'-diamino-2,2'-bipyridine) (RuL) as the electrochemical probe was prepared on pyrolytic graphite electrode (PGE) through the supramolecular interaction between RuL complex and DNA template. Cyclic voltammetry of RuL-DNA film showed a pair of stable and reversible peaks corresponding to the Ru(Ⅲ)/Ru(Ⅱ) redox potential of-0.165 V versus Ag|AgCl in pH 7.4 0.1 mol· L-1 Tris-HCl. The electron transfer was expected across the double-strand DNA by an "electron tunneling" mechanism. When the DNA biosensor was immerged in gold (Ⅲ) buffer solution, the current peak signal (Ⅰ) of the RuL-DNA supramolecular depressed and △Ⅰ was linear in the concentration range of Au ion from 1 × 10-7 to 2 × 10-5 mol·L-1 with a regression coefficient of 0.9879. The detection limit was 5 × 10-8 mol·L-1. The developed procedures were applied to the analysis of synthetic samples of real materials with good sensitivity and selectivity.

  20. Evaluation of PEMFC System Contaminants on the Performance of Pt Catalyst via Cyclic Voltammetry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Macomber, C.; Dinh, H. N.

    2012-07-01

    Using electrochemical cyclic voltammetry as a quick ex-situ screening tool, the impact of the extracted solution and the individual leachable constituents from prospective BOP component materials on the performance and recoverability of the platinum catalyst were evaluated. Taking an extract from Zytel{trademark} HTN51G35HSLR (PPA) as an example, the major leachable organic components are caprolactam and 1,6 hexanediol. While these organic compounds by themselves do poison the Pt catalyst to some extent, such influence is mostly recoverable by means of potential holding and potential cycling. The extracted solution, however, shows a more drastic poisoning effect and it was not recoverable. Therefore the non-recoverable poisoning effect observed for the extracted solution is not from the two organic species studied. This demonstrates the complexity of such a contaminant study. Inorganic compounds that are known poisons like sulfur even in very low concentrations, may have a more dominant effect on the Pt catalyst and the recoverability.

  1. Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry.

    Science.gov (United States)

    Supalkova, Veronika; Beklova, Miroslava; Baloun, Jiri; Singer, Christoph; Sures, Bernd; Adam, Vojtech; Huska, Dalibor; Pikula, Jiri; Rauscherova, Libuse; Havel, Ladislav; Zehnalek, Josef; Kizek, Rene

    2008-02-01

    Within the context of application of platinum derivates based effective cytostatics, we can suppose that these risk metals can get into aquatic ecosystems where they can show biologic availability for food chain. In the present work we report on investigation of affecting of duckweed (Lemna minor) by various doses of cisplatin (0, 5, 10, 20, 40, 80 and 160 microM) for 4 days. The toxic influence of cisplatin was evaluated on the basis of growth inhibition expressed as number of leaves, growth rate, and total amount of biomass. The result value of 96hEC50, calculated from growth inhibition with comparison of growth rates, was 6.93 microM. Moreover we aimed on determination of cisplatin content using differential pulse voltammetry. The highest content of cisplatin (320 ng g(-1) of fresh weight) was determined in plants treated by 80 microM at the second day of treatment. Plants protect themselves against heavy metals by means of synthesis of cysteine-rich peptides such as glutathione and phytochelatins. Thus thiol determination in the treated plants by means of Brdicka reaction followed. The marked increase in thiol concentration detected is associated with defence reaction of the plant against stress caused by cisplatin.

  2. Characterization and DNA binding studies of unexplored imidazolidines by electronic absorption spectroscopy and cyclic voltammetry.

    Science.gov (United States)

    Shah, Afzal; Nosheen, Erum; Munir, Shamsa; Badshah, Amin; Qureshi, Rumana; Rehman, Zia-Ur-; Muhammad, Niaz; Hussain, Hidayat

    2013-03-05

    UV-Vis spectroscopic behavior of four imidazolidine derivatives i.e., [5-benzylideneimidazolidine-2,4-dione (NBI), 5-(2-hydroxybenzylidene)imidazolidine-2,4-dione (HBI), 5-(4-methoxybenzylidene)imidazolidine-2,4-dione (MBI) and 5-(3,4-di-methoxybenzylidene)imidazolidine-2,4-dione (DBI)] was studied in a wide pH range. Spectroscopic response of the studied compounds was found sensitive to pH and the attached substituents. Incited by anti-tumor activity, structural miscellany and biological applications of imidazolidines, the DNA binding affinity of some novel derivatives of this class of compounds was examined by cyclic voltammetry (CV) and UV-Vis spectroscopy at pH values of blood (7.4) and lysosomes (4.5). The CV results showed the following order of binding strength: KNBI (6.40×10(6)M(-1))>KHBI (1.77×10(5)M(-1))>KMBI (2.06×10(4)M(-1))>KDBI (1.01×10(4)M(-1)) at pH 7.4. The same order was also obtained from UV-Vis spectroscopy. The greater affinity of NBI justified its preferred candidature as an effective anti-cancer drug. The DNA binding propensity of these compounds was found comparable or greater than most of the clinically used anticancer drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor.

    Science.gov (United States)

    Mishra, Rupesh K; Hayat, Akhtar; Catanante, Gaëlle; Istamboulie, Georges; Marty, Jean-Louis

    2016-02-01

    In this work, we propose for the first time a sensitive Ochratoxin A (OTA) detection in cocoa beans using competitive aptasensor by differential pulse voltammetry (DPV). In the proposed method, biotin labeled and free OTA competed to bind with immobilized aptamer onto the surface of a screen printed carbon electrode (SPCE), and percentage binding was calculated. The detection was performed after adding avidin-ALP to perform avidin-biotin reaction; the signal was generated through a suitable substrate 1-naphthyl phosphate (1-NP), for alkaline phosphatase (ALP). The cocoa samples were extracted and purified using molecular imprinted polymer (MIP) columns specifically designed for OTA. The developed aptasensor showed a good linearity in the range 0.15-5 ng/mL with the limit of detection (LOD) 0.07 ng/mL and 3.7% relative standard deviation (RSD). The aptasensor displayed good recovery values in the range 82.1-85% with 3.87% RSD, thus, demonstrated the efficiency of proposed aptasensor for such matrices.

  4. Cyclic voltammetry investigation of diffusion of ferrocene within propylene carbonate organogel formed by gelator

    Energy Technology Data Exchange (ETDEWEB)

    Feng Guilong; Xiong Yun; Wang Hong [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074 (China); Yang Yajiang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074 (China)], E-mail: yjyang@mail.hust.edu.cn

    2008-11-30

    Propylene carbonate organogel containing LiClO{sub 4} was formed in the presence of gelator bis-(4-stearoylaminophenyl) methane (BSAPM). The electrochemical behavior and diffusion of ferrocene (Fc) and ferricenium (Fc{sup +}) entrapped within the organogel was investigated by cyclic voltammetry. The Fc molecules still show redox activity within the organogels in comparison with corresponding solutions of propylene carbonate containing LiClO{sub 4}. The shape of the cyclic voltammograms of the Fc electrooxidation in organogel was similar to that in corresponding solutions. The results indicated that redox reactions of Fc/Fc{sup +} were a quasi-reversible process of diffusion-controlled single electron transfer in organogels. The diffusion coefficients of Fc and Fc{sup +} in organogels decreased with an increase of the concentration of gelator BSAPM, but increased with an increase of temperature. The temperature dependence of the diffusion coefficient in organogels followed classical Arrhenius equation. The activation energy in organogels was found of no difference from that in corresponding solutions.

  5. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.

    Science.gov (United States)

    He, Yadong; Huang, Jingsong; Sumpter, Bobby G; Kornyshev, Alexei A; Qiao, Rui

    2015-01-02

    Understanding the dynamic charge storage in nanoporous electrodes with room-temperature ionic liquid electrolytes is essential for optimizing them to achieve supercapacitors with high energy and power densities. Herein, we report coarse-grained molecular dynamics simulations of the cyclic voltammetry of supercapacitors featuring subnanometer pores and model ionic liquids. We show that the cyclic charging and discharging of nanopores are governed by the interplay between the external field-driven ion transport and the sloshing dynamics of ions inside of the pore. The ion occupancy along the pore length depends strongly on the scan rate and varies cyclically during charging/discharging. Unlike that at equilibrium conditions or low scan rates, charge storage at high scan rates is dominated by counterions while the contribution by co-ions is marginal or negative. These observations help explain the perm-selective charge storage observed experimentally. We clarify the mechanisms underlying these dynamic phenomena and quantify their effects on the efficiency of the dynamic charge storage in nanopores.

  6. Coulometric differential FFT admittance voltammetry determination of Amlodipine in pharmaceutical formulation by nano-composite electrode.

    Science.gov (United States)

    Norouzi, Parviz; Gupta, Vinod Kumar; Larijani, Bagher; Rasoolipour, Solmaz; Faridbod, Farnoush; Ganjali, Mohammad R

    2015-01-01

    An electrochemical detection technique based on combination of was coulometric differential fast Fourier transformation admittance voltammetry (CDFFTAV) and nano-composite film modified glassy carbon electrode was successfully applied for sensitive determination of Amlodipine. The nano-composite film was made by a mixture of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), multiwall carbon nanotube and Au nanoparticles as electrochemical mediators. Studies reveal that the irreversible oxidation of Amlodipine was highly facile on the electrode surface. The electrochemical response was established on calculation of the charge under the admittance peak, which was obtained by discrete integration of the admittance response in a selected potential range, obtained in a flow injection analysis. Once established the best operative optimum conditions, the resulting nano-composite film electrode showed a catalytic effect on the oxidation of the analyte. The response is linear in the Amlodipine concentration range of 1.0 × 10(-9) to 2.0 × 10(-7)M with a detection limit of 1.25 × 10(-10)M. Moreover, the proposed technique exhibited high sensitivity, fast response time (less than 6s) and long-term stability and reproducibility around 96%, and it was successfully used to the determination of Amlodipine content in the pharmaceutical formulation.

  7. Determination of Sulpiride by Linear Sweep Stripping Voltammetry at a Mercury Electrode

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper reports the electrochemical properties of sulpiride at a mercury electrode, especially its adsorptive characteristic. Sulpiride dissolved in a supporting electrolyte of a McIlvaine buffer at pH 6.8 represents a sensitive and well defined reduction wave by linear sweep stripping voltammetry. This method is based on the pre-concentration and the reduction of sulpiride at a hung mercury drop electrode. The reduction peak potential is -1.72 V(vs. Ag-AgCl) and the peak current is proportional to the concentration of sulpiride in the range of 0.1-0.6 μg/mL. The detection limit is 0.025 μg/mL obtained under the experimental conditions selected in this work. The electrochemical properties of this system were investigated, and the proposed method was applied to the determination of sulpiride in pharmaceutical tablets with satisfactory results. It was compared well with the UV spectrophotometric method, showing a superior sensitivity.

  8. Advantages of using a mercury coated, micro-wire, electrode in adsorptive cathodic stripping voltammetry.

    Science.gov (United States)

    Gun, Jenny; Salaün, Pascal; van den Berg, Constant M G

    2006-06-30

    A mercury coated, gold, micro-wire electrode is used here for the determination of iron in seawater by catalytic cathodic stripping voltammetry (CSV) with a limit of detection of 0.1 nM Fe at a 60s adsorption time. It was found that the electrode surface is stable for extended periods of analyses (at least five days) and that it is reactivated by briefly (2s) applying a negative potential prior to each scan. Advantages of this electrode over mercury drop electrodes are that metallic mercury use is eliminated and that it can be readily used for flow analysis. This is demonstrated here by the determination of iron in seawater by continuous flow analysis. It is likely that this method can be extended to other elements. Experiments using bismuth coated, carbon fibre, electrodes showed that the bismuth catalyses the oxidation of the important oxidants bromate and hydrogen peroxide, which makes it impossible to use bismuth based electrodes for catalytic CSV involving these oxidants. For this reason mercury coated electrodes retain a major advantage for catalytic voltammetric analyses.

  9. Determination of trace cobalt concentrations in human serum by adsorptive stripping voltammetry.

    Science.gov (United States)

    Kajic, Petra; Milosev, Ingrid; Pihlar, Boris; Pisot, Venceslav

    2003-01-01

    The goal of our study was to develop an accurate and reliable method for determining trace cobalt concentrations in human serum. The method was used to determine cobalt in the sera of healthy persons and patients with orthopaedic implants containing cobalt - a possible source of systemic release of cobalt into the human body. This goal is of vital interest since cobalt and its compounds are classified by IARC as potentially carcinogenic to humans. We used an electrochemical method, adsorptive stripping voltammetry (AdSV), which made possible the low detection limit and high sensitivity needed for measurements in human serum. The serum was acid digested by a combination of H2SO4, HNO3 and H2O2 in a 10 mL Kjeldhal flask. The digested sample was then dissolved in 0.1 mol/L ammonia buffer, pH 9.0 +/- 0.2. The determination is based on the adsorptive collection of the complex of cobalt (II) with dimethylglyoxime on a hanging mercury drop electrode (HMDE). The optimum values of adsorption potential and time were determined to be -0.8 V and 60 s. The optimisation of the sample digestion protocol and measurement procedures ensured the reliable assessment of low cobalt concentrations, down to 0.03 microg/L. The mean concentration of serum cobalt in four healthy persons was 0.11 +/- 0.06 microg/L, and in four patients with total hip replacements 0.34 +/- 0.07 microg/L. This method will be used routinely for measuring serum cobalt levels in patients with total hip replacements.

  10. Nitrite detection in meat products samples by square-wave voltammetry at a new single walled carbon naonotubes--myoglobin modified electrode.

    Science.gov (United States)

    Turdean, Graziella L; Szabo, Gabriella

    2015-07-15

    A new modified electrode was realized in a simple way, consisting by the immobilization of a myoglobin (My) - single walled carbon nanotubes (SWCNT) mixture on the surface of a graphite electrode with a Nafion film. The cyclic voltammetry investigations realized with the obtained electrode (G/My-SWCNT/Nafion) showed a voltammetric signal due to a one-step redox reaction of the surface-confined myoglobin, in a deaerated 0.1 M phosphate buffer, pH 7. Also, the G/My-SWCNT/Nafion modified electrode demonstrated a great potential for the analytical determination of nitrite ions by square-wave voltammetry and an alternative for the already existing methods. The use of the sensor for the detection of nitrite ions in samples of meat products leads to comparable results with those obtained with the standard Griess spectrophotometric assay (ISO 2918/1975), proving the suitability of using immobilized myoglobin as electrocatalyst in the nitrite reduction process.

  11. Adsorptive stripping voltammetry of trimethoprim: mechanistic studies and application to the fast determination in pharmaceutical suspensions.

    Science.gov (United States)

    Carapuça, Helena M; Cabral, David J; Rocha, Luciana S

    2005-06-15

    The adsorptive stripping voltammetric behaviour of trimethoprim (TMP) was studied at pH 3.8 and 7.0 by linear-sweep (LS) and cyclic voltammetry at the hanging mercury drop electrode. The charges and surface concentrations of the protonated TMP species were determined at both pH values. Taking advantage of the adsorption features of TMP fast voltammetric techniques (LS and square-wave (SW) voltammetry) were applied to the determination of TMP at the 10(-7)mol dm(-3) concentration level (pH 3.8). For these concentrations the relative standard deviations were cathodic stripping voltammetry originated a very fast and sensitive method for the direct analysis of TMP in pharmaceutical suspensions without any matrix effects or interference from sulfamethoxazole. No sample pre-treatments or solvent extraction procedures were needed. The quantitative results were in agreement with the data supplied by the manufacturer.

  12. Anodic stripping voltammetry with gold electrodes as an alternative method for the routine determination of mercury in fish. Comparison with spectroscopic approaches.

    Science.gov (United States)

    Giacomino, Agnese; Ruo Redda, Andrea; Squadrone, Stefania; Rizzi, Marco; Abete, Maria Cesarina; La Gioia, Carmela; Toniolo, Rosanna; Abollino, Ornella; Malandrino, Mery

    2017-04-15

    The applicability to the determination of mercury in tuna of square wave anodic stripping voltammetry (SW-ASV) conducted at both solid gold electrode (SGE) and a gold nanoparticle-modified glassy carbon electrode (AuNPs-GCE) was demonstrated. Mercury content in two certified materials and in ten samples of canned tuna was measured. The performances of the electrodes were compared with one another as well as with two spectroscopic techniques, namely cold vapour atomic absorption spectroscopy (CV-AAS) and a direct mercury analyser (DMA). The results found pointed out that both SW-ASV approaches were suitable and easy-to-use method to monitor mercury concentration in tunas, since they allowed accurate quantification at concentration values lower than the maximum admissible level in this matrix ([Hg]=1mg/kgwet weight,ww). In particular, mercury detection at the AuNPs-GCE showed a LOQ in fish-matrix of 0.1μg/l, corresponding to 0.06mg/kgww, with performance comparable to that of DMA.

  13. Whole scalp resting state EEG of oscillatory brain activity shows no parametric relationship with psychoacoustic and psychosocial assessment of tinnitus: A repeated measures study.

    Science.gov (United States)

    Pierzycki, Robert H; McNamara, Adam J; Hoare, Derek J; Hall, Deborah A

    2016-01-01

    Tinnitus is a perception of sound that can occur in the absence of an external stimulus. A brief review of electroencephalography (EEG) and magnetoencephalography (MEG) literature demonstrates that there is no clear relationship between tinnitus presence and frequency band power in whole scalp or source oscillatory activity. Yet a preconception persists that such a relationship exists and that resting state EEG could be utilised as an outcome measure for clinical trials of tinnitus interventions, e.g. as a neurophysiological marker of therapeutic benefit. To address this issue, we first examined the test-retest correlation of EEG band power measures in tinnitus patients (n = 42). Second we examined the evidence for a parametric relationship between numerous commonly used tinnitus variables (psychoacoustic and psychosocial) and whole scalp EEG power spectra, directly and after applying factor reduction techniques. Test-retest correlation for both EEG band power measures and tinnitus variables were high. Yet we found no relationship between whole scalp EEG band powers and psychoacoustic or psychosocial variables. We conclude from these data that resting state whole scalp EEG should not be used as a biomarker for tinnitus and that greater caution should be exercised in regard to reporting of findings to avoid confirmation bias. The data was collected during a randomised controlled trial registered at ClinicalTrials.gov (Identifier: NCT01541969).

  14. Cathodic adsorptive stripping square-wave voltammetry of the anti-inflammatory drug meloxicam.

    Science.gov (United States)

    Radi, A E; Ghoneim, M; Beltagi, A

    2001-10-01

    The adsorptive behavior of the anti-inflammatory drug meloxicam was studied by cyclic, differentia-pulse and square-wave voltammetry on a hanging mercury drop electrode (HMDE). The drug was accumulated at HMDE and a well-defined stripping peak current was obtained at -1.42 V vs. Ag/AgCl (saturated KCl) electrode in acetate buffer solution (pH 5.0). A voltammetric procedure was developed for the determination of meloxicam using square-wave cathodic adsorptive stripping voltammetry (SW-CASV). The optimum working conditions for the determination of the drug were established. The analysis of meloxicam in human plasma was carried out satisfactorily.

  15. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2014-08-05

    Fast-scan cyclic voltammetry (FSCV) is an electrochemistry technique which allows subsecond detection of neurotransmitters in vivo. Adenosine detection using FSCV has become increasingly popular but can be difficult because of interfering agents which oxidize at or near the same potential as adenosine. Triangle shaped waveforms are traditionally used for FSCV, but modified waveforms have been introduced to maximize analyte sensitivity and provide stability at high scan rates. Here, a modified sawhorse waveform was used to maximize the time for adenosine oxidation and to manipulate the shapes of cyclic voltammograms (CVs) of analytes which oxidize at the switching potential. The optimized waveform consists of scanning at 400 V/s from -0.4 to 1.35 V and holding briefly for 1.0 ms followed by a ramp back down to -0.4 V. This waveform allows the use of a lower switching potential for adenosine detection. Hydrogen peroxide and ATP also oxidize at the switching potential and can interfere with adenosine measurements in vivo; however, their CVs were altered with the sawhorse waveform and they could be distinguished from adenosine. Principal component analysis (PCA) was used to determine that the sawhorse waveform was better than the triangle waveform at discriminating between adenosine, hydrogen peroxide, and ATP. In slices, mechanically evoked adenosine was identified with PCA and changes in the ratio of ATP to adenosine were observed after manipulation of ATP metabolism by POM-1. The sawhorse waveform is useful for adenosine, hydrogen peroxide, and ATP discrimination and will facilitate more confident measurements of these analytes in vivo.

  16. A flow cell for transient voltammetry and in situ grazing incidence X-ray diffraction characterization of electrocrystallized cadmium(II) tetracyanoquinodimethane

    Energy Technology Data Exchange (ETDEWEB)

    Veder, Jean-Pierre [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Nafady, Ayman [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Clarke, Graeme [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Williams, Ross P. [Centre for Materials Research, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); De Marco, Roland, E-mail: r.demarco@curtin.edu.a [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Bond, Alan M. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia)

    2011-01-01

    An easy to fabricate and versatile cell that can be used with a variety of electrochemical techniques, also meeting the stringent requirement for undertaking cyclic voltammetry under transient conditions in in situ electrocrystallization studies and total external reflection X-ray analysis, has been developed. Application is demonstrated through an in situ synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) characterization of electrocrystallized cadmium (II)-tetracyanoquinodimethane material, Cd(TCNQ){sub 2}, from acetonitrile (0.1 mol dm{sup -3} [NBu{sub 4}][PF{sub 6}]). Importantly, this versatile cell design makes SR-GIXRD suitable for almost any combination of total external reflection X-ray analysis (e.g., GIXRF and GIXRD) and electrochemical perturbation, also allowing its application in acidic, basic, aqueous, non-aqueous, low and high flow pressure conditions. Nevertheless, the cell design separates the functions of transient voltammetry and SR-GIXRD measurements, viz., voltammetry is performed at high flow rates with a substantially distended window to minimize the IR (Ohmic) drop of the electrolyte, while SR-GIXRD is undertaken using stop-flow conditions with a very thin layer of electrolyte to minimize X-ray absorption and scattering by the solution.

  17. Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: a first-principles study.

    Science.gov (United States)

    Sarkar, Tanmay; Kumar, Parveen; Bharadwaj, Mridula Dixit; Waghmare, Umesh

    2016-04-14

    A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood. Here, we present a theoretical cyclic voltammetry as a tool based on first-principles calculations, and uncover structural transformations that occur during Li(+)/Na(+) insertion (x) into (Lix/Nax)NH4V4O10. Structural distortions associated with single-phase and multi-phase structural changes during the insertion of Li(+)/Na(+), identified through the analysis of voltage profile and theoretical cyclic voltammetry are in agreement with the reported experimental electrochemical measurements on δ-NH4V4O10. We obtain an insight into its electronic structure with a lower band gap that is responsible for the high rate capability of (Lix/Nax) δ-NH4V4O10. The scheme of theoretical cyclic voltammetry presented here will be useful for addressing issues of cyclability and energy rate in other electrode materials.

  18. Electrochemical determination of closantel in the commercial formulation by square-wave adsorptive stripping voltammetry.

    Science.gov (United States)

    Brycht, Mariola; Nosal-Wiercińska, Agnieszka; Sipa, Karolina; Rudnicki, Konrad; Skrzypek, Sławomira

    2017-01-01

    In this paper, the square-wave adsorptive stripping voltammetric (SWAdSV) determination of the veterinary drug closantel using a renewable silver amalgam film electrode (Hg(Ag)FE) is presented. As observed in SWAdSV, closantel provided one well-shaped reduction peak suitable for analytical purposes at potential ca. -1.4 V in the Britton-Robinson (B-R) buffer at pH 7.0. At optimal conditions, the SWAdSV response of Hg(Ag)FE for determining closantel was linear over two concentration ranges of 5.0 × 10(-8) to 2.0 × 10(-7) mol dm(-3) and 2.0 × 10(-7) to 1.2 × 10(-6) mol dm(-3) with a detection limit of 1.1 × 10(-8) mol dm(-3). In addition, a relevance of the developed SWAdSV method was successfully verified by the quantitative analysis of closantel in the commercial formulation Closamectin Pour-On with satisfactory results (RSD = 5.8%, recovery = 101.8%). The results showed that the developed procedure can be adequate for screening purposes. Also, the electrochemical behavior of closantel was characterized by cyclic voltammetry, and it was found that closantel exhibited a quasi-reversible behavior with cathodic peak on the forward scan at ca. -1.4 V and anodic peak on the reverse scan at ca. -1.35 V vs. Ag/AgCl in B-R buffer, pH 7.0. As the obtained results showed that the electrode mechanism of closantel is controlled by the adsorption, the effect of adsorption was studied using the electrochemical impedance spectroscopy technique.

  19. Lab-on-a-Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry of Zinc

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Yue, Wei; Bange, Adam; Heineman, William R.; Papautsky, Ian

    2013-01-01

    In this work, we report on the development of a lab-on-a-chip electrochemical sensor that uses an evaporated bismuth electrode to detect zinc using square wave anodic stripping voltammetry. The microscale electrochemical cell consists of a bismuth working electrode, an integrated silver/silver chloride reference electrode, and a gold auxiliary electrode. The sensor demonstrated linear response in 0.1 M acetate buffer at pH 6 with zinc concentrations ranging from 1 μM to 30 μM and a calculated detection limit of 60 nM. The sensor was also able to successfully detect zinc in a bovine serum extract and the results were verified with independent AAS measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time and high accuracy at low concentrations of analyte. PMID:24436575

  20. Flight and wind-tunnel measurements showing base drag reduction provided by a trailing disk for high Reynolds number turbulent flow for subsonic and transonic Mach numbers

    Science.gov (United States)

    Powers, Sheryll Goecke; Huffman, Jarrett K.; Fox, Charles H., Jr.

    1986-01-01

    The effectiveness of a trailing disk, or trapped vortex concept, in reducing the base drag of a large body of revolution was studied from measurements made both in flight and in a wind tunnel. Pressure data obtained for the flight experiment, and both pressure and force balance data were obtained for the wind tunnel experiment. The flight test also included data obtained from a hemispherical base. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93 and to Reynolds numbers up to 80 times greater than for earlier studies. For the trailing disk data from the flight experiment, the maximum decrease in base drag ranged form 0.08 to 0.07 as Mach number increased from 0.70 to 0.93. Aircraft angles of attack ranged from 3.9 to 6.6 deg for the flight data. For the trailing disk data from the wind tunnel experiment, the maximum decrease in base and total drag ranged from 0.08 to 0.05 for the approximately 0 deg angle of attack data as Mach number increased from 0.30 to 0.82.

  1. Robotic voltammetry with carbon nanotube-based sensors: a superb blend for convenient high-quality antimicrobial trace analysis

    Directory of Open Access Journals (Sweden)

    Theanponkrang S

    2015-01-01

    Full Text Available Somjai Theanponkrang,1,2 Wipa Suginta,2,3 Helge Weingart,4 Mathias Winterhalter,4 Albert Schulte1,2 1School of Chemistry, 2Biochemistry–Electrochemistry Research Unit, Institute of Science, 3School of Biochemistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand; 4Life Sciences, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany Abstract: A new automated pharmacoanalytical technique for convenient quantification of redox-active antibiotics has been established by combining the benefits of a carbon nanotube (CNT sensor modification with electrocatalytic activity for analyte detection with the merits of a robotic electrochemical device that is capable of sequential nonmanual sample measurements in 24-well microtiter plates. Norfloxacin (NFX and ciprofloxacin (CFX, two standard fluoroquinolone antibiotics, were used in automated calibration measurements by differential pulse voltammetry (DPV and accomplished were linear ranges of 1–10 µM and 2–100 µM for NFX and CFX, respectively. The lowest detectable levels were estimated to be 0.3±0.1 µM (n=7 for NFX and 1.6±0.1 µM (n=7 for CFX. In standard solutions or tablet samples of known content, both analytes could be quantified with the robotic DPV microtiter plate assay, with recoveries within ±4% of 100%. And recoveries were as good when NFX was evaluated in human serum samples with added NFX. The use of simple instrumentation, convenience in execution, and high effectiveness in analyte quantitation suggest the merger between automated microtiter plate voltammetry and CNT-supported electrochemical drug detection as a novel methodology for antibiotic testing in pharmaceutical and clinical research and quality control laboratories. Keywords: antibiotics, electroanalysis, automation, microtiter plates, pharmaceutical screening, pharmacoanalytics

  2. Theory of linear sweep voltammetry with diffuse charge: Unsupported electrolytes, thin films, and leaky membranes

    Science.gov (United States)

    Yan, David; Bazant, Martin Z.; Biesheuvel, P. M.; Pugh, Mary C.; Dawson, Francis P.

    2017-03-01

    Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. In this paper, we provide a comprehensive mathematical theory of voltammetry in electrochemical cells with unsupported electrolytes and for other situations where diffuse charge effects play a role, and present analytical and simulated solutions of the time-dependent Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions for a 1:1 electrolyte and a simple reaction. Using these solutions, we construct theoretical and simulated current-voltage curves for liquid and solid thin films, membranes with fixed background charge, and cells with blocking electrodes. The full range of dimensionless parameters is considered, including the dimensionless Debye screening length (scaled to the electrode separation), Damkohler number (ratio of characteristic diffusion and reaction times), and dimensionless sweep rate (scaled to the thermal voltage per diffusion time). The analysis focuses on the coupling of Faradaic reactions and diffuse charge dynamics, although capacitive charging of the electrical double layers is also studied, for early time transients at reactive electrodes and for nonreactive blocking electrodes. Our work highlights cases where diffuse charge effects are important in the context of voltammetry, and illustrates which regimes can be approximated using simple analytical expressions and which require more careful consideration.

  3. Development and Use of a Cyclic Voltammetry Simulator to Introduce Undergraduate Students to Electrochemical Simulations

    Science.gov (United States)

    Brown, Jay H.

    2015-01-01

    Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes…

  4. Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment

    Science.gov (United States)

    Messersmith, Stephania J.

    2014-01-01

    An upper-division undergraduate chemistry experiment is described which utilizes DigiSim software to simulate cyclic voltammetry (CV). Four mechanisms were studied: a reversible electron transfer with no subsequent or proceeding chemical reactions, a reversible electron transfer followed by a reversible chemical reaction, a reversible chemical…

  5. Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry.

    NARCIS (Netherlands)

    Hoeben, F.J.M.; Heller, I.; Albracht, S.P.J.; Dekker, C.; Lemay, S.G.; Heering, H.A.

    2008-01-01

    We report on the use of polymyxin (PM), a cyclic cationic lipodecapeptide, as an electrode modifier for studying protein film voltammetry (PFV) on Au and single-walled carbon nanotube (SWNT) electrodes. Pretreating the electrodes with PM allows for the subsequent immobilization of an active

  6. Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry.

    NARCIS (Netherlands)

    Hoeben, F.J.M.; Heller, I.; Albracht, S.P.J.; Dekker, C.; Lemay, S.G.; Heering, H.A.

    2008-01-01

    We report on the use of polymyxin (PM), a cyclic cationic lipodecapeptide, as an electrode modifier for studying protein film voltammetry (PFV) on Au and single-walled carbon nanotube (SWNT) electrodes. Pretreating the electrodes with PM allows for the subsequent immobilization of an active submonol

  7. Development and Use of a Cyclic Voltammetry Simulator to Introduce Undergraduate Students to Electrochemical Simulations

    Science.gov (United States)

    Brown, Jay H.

    2015-01-01

    Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes…

  8. Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry

    Science.gov (United States)

    Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.

    2004-01-01

    The undergraduate chemistry club of the Southwest Minnesota State University offers assistance in lead-testing through the anodic stripping voltammetry (ASV) technique to elementary and secondary schools. Emphasis is given to this community service activity, which has increased club membership, and promoted discussion of water quality problems in…

  9. Determination of bosentan in pharmaceutical preparations by linear sweep, square wave and differential pulse voltammetry methods.

    Science.gov (United States)

    Atila, Alptug; Yilmaz, Bilal

    2015-01-01

    In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation.

  10. THE TRANSFER OF TMA+ ION AT THE WATERN NITROBENZENE INTERFACE USING SEMI-DIFFERENTIAL CYCLIC VOLTAMMETRY

    Institute of Scientific and Technical Information of China (English)

    范瑞溪; 王小平

    1990-01-01

    This paper describes the investigation of the electrochemical phenomena of TMA+ transfer at the w/nb interface using semi-differential cyclic voltammetry. The expressions for the peak potential, half-wave width and peak current are derived. All the experimental results are in good agreement with the theoretical ones.

  11. Adsorptive Stripping Voltammetry of Environmental Indicators: Determination of Zinc in Algae

    Science.gov (United States)

    Collado-Sanchez, C.; Hernandez-Brito, J. J.; Perez-Pena, J.; Torres-Padron, M. E.; Gelado-Caballero, M. D.

    2005-01-01

    A method for sample preparation and for the determination of average zinc content in algae using adsorptive stripping voltammetry are described. The students gain important didactic advantages through metal determination in environmental matrices, which include carrying out clean protocols for sampling and handling, and digesting samples using…

  12. Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment

    Science.gov (United States)

    Messersmith, Stephania J.

    2014-01-01

    An upper-division undergraduate chemistry experiment is described which utilizes DigiSim software to simulate cyclic voltammetry (CV). Four mechanisms were studied: a reversible electron transfer with no subsequent or proceeding chemical reactions, a reversible electron transfer followed by a reversible chemical reaction, a reversible chemical…

  13. Monolayer Assemblies of a De Novo Designed 4-alpha-Helix Bundle Carboprotein and Its Sulfur Anchor Fragment on Au(111) Surfaces Addressed by Voltammetry and In Situ Scanning Tunneling Microscopy

    DEFF Research Database (Denmark)

    Brask, Jesper; Wackerbarth, Hainer; Jensen, Knud J.

    2003-01-01

    carboprotein without thiol anchor have been prepared and investigated for comparison. Cyclic and differential pulse voltammetry (DPV) of the proteins show desorption peaks around -750 mV (SCE), whereas the thiol anchor desorption peak is at -685 mV. The peaks are by far the highest for thiol monomeric 4-R...

  14. Hypothyroid patients showing shortened responsiveness to oral iodized oil have paradoxically low serum thyroglobulin and low thyroid reserve. Thyroglobulin/thyrotropin ratio as a measure of thyroid damage.

    Science.gov (United States)

    Contempre, B; Duale, G L; Gervy, C; Alexandre, J; Vanovervelt, N; Dumont, J E

    1996-03-01

    In Central Africa, all of northern Zaire is very severely deficient in iodine. A peculiar feature of this endemia is that iodine deficiency and the ensuing thyroid gland stimulation not only leads to goitre formation but also to progressive thyroid involution and to myxoedematous cretinism. An iodine supplementation trial based on oral administration of small doses of iodine was made in 81 schoolchildren. All of them received a small dose of iodine (0.1 ml containing 48 mg) per os and the thyroid status was followed during 4 months. Blood and urine samples were collected at the start of the study, then 2 weeks, 2 months and 4 months after iodine administration. Before iodine supplementation the mean urinary iodine level was 0.18 +/- 0.02 micromol/l, and 10% of the subjects had a urinary iodine level below 0.08 micromol/l. Fifty-two percent of the subjects had a serum thyrotropin (TSH) level above 10 mU/l. All the subjects responded to the administration of iodine. and all of them recovered a euthyroid status. Most of them were still euthyroid at the end of the study. However. within 4 or even 2 months, some subjects (15 % of the total) reverted to hypothyroidism. At the entry of the study these subjects were all hypothyroid and had elevated TSH and paradoxically low serum thyroglobulin (TG) values. In myxoedematous cretins living in the same area, even lower serum TG levels were found. Together with the absence of goitre, a paradoxically low serum TG Suggests a low thyroid reserve, and in the present case a reduced amount of functional thyroid tissue. We show that the serum TG/TSH ratio may be used as a predictive index of thyroid reserve and of positive response to iodine administration. These data further suggest that thyroid damage is not confined to myxoedematous cretins. but is widely distributed in the phenotypically normal population. Widely distributed thyroid damage may render iodine prophylaxis based on oral administration unpredictable.

  15. Binding and conformational changes of human serum albumin upon interaction with 4-aminoantipyrine studied by spectroscopic methods and cyclic voltammetry.

    Science.gov (United States)

    Gowda, Jayant I; Nandibewoor, Sharanappa T

    2014-04-24

    The interactions of 4-aminoantipyrine (AAP) with human serum albumin (HSA) have been studied by UV-visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The binding of 4-aminoantipyrine quenches the HSA fluorescence, revealing a 1:1 interaction with a binding constant of about 10(5) M(-1). The experimental results showed that AAP effectively quenched the intrinsic fluorescence of HSA via dynamic type of quenching. In addition, according to the synchronous fluorescence spectra of HSA in presence of 4-aminoantipyrine, the tryptophan residue of the proteins are most perturbed by the binding process. The number of binding sites, the binding constant, site probe study, some common metal ions effect and the thermodynamic parameters were calculated.

  16. Microdetermination of human serum albumin by differential pulse voltammetry at a L-cysteine modified silver electrode

    Indian Academy of Sciences (India)

    Liyuan Lu; Yanqin Zi; Hongling Wang

    2008-07-01

    A simple and highly sensitive electrochemical method for the determination of human serum albumin (HSA) using differential pulse voltammetry (DPV), based on a silver electrode modified with a self-assembled monolayer of L-cysteine, was developed. L-cysteine can be modified onto a silver electrode by covalent bonding through the sulfur to give stable and long-lived chemical electrodes. This electrode showed good sensitivity, selectivity, reproducibility and time stability in the determination of trace amounts of HSA by DPV technique. The detection limit can be as low as 4 × 10-17 mol/L. The optimum conditions for the determination were carefully investigated. This method had been applied to the determination of HSA in human serum samples. The results were in agreement with those given in standard method.

  17. Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord.

    Science.gov (United States)

    Pyakurel, Poojan; Privman Champaloux, Eve; Venton, B Jill

    2016-08-17

    Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. A FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular, and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval ventral nerve cord. Repeated stimulations were stable with 2 or 5 min interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting that they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain.

  18. Deposition of selenium thin layers on gold surfaces from sulphuric acid media: Studies using electrochemical quartz crystal microbalance, cyclic voltammetry and AFM

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Murilo Feitosa [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, 13566-590 Sao Carlos, SP (Brazil); Pedrosa, Valber A., E-mail: vzp0002@auburn.ed [Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849 (United States); Spinola Machado, Sergio Antonio [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, 13566-590 Sao Carlos, SP (Brazil)

    2010-01-01

    In this paper we report here new considerations about the relationship between the mass and charge variations (m/z relationship) in underpotential deposition (UPD), bulk deposition and also in the H{sub 2}Se formation reaction. Nanogravimetric experiments were able to show the adsorption of H{sub 2}SeO{sub 3} on the AuO surface prior to the voltammetric sweep and that, after the AuO reduction, 0.40 monolayer of H{sub 2}SeO{sub 3} remains adsorbed on the newly reduced Au surface, which was enough to gives rise to the UPD layer. The UPD results indicate that the maximum coverage with Se{sub ads} on polycrystalline gold surface corresponds to approximately 0.40 monolayer, in good agreement with charge density results. The cyclic voltammetry experiments demonstrated that the amount of bulk Se obtained during the potential scan to approximately 2 Se monolayers, which was further confirmed by electrochemical quartz crystal microbalance (EQCM) measurements that pointed out a mass variation corresponding of 3 monolayers of Se. In addition, the Se thin films were obtained by chronoamperometric experiments, where the Au electrode was polarized at +0.10 V during different times in 1.0 M H{sub 2}SO{sub 4} + 1.0 mM SeO{sub 2}. The topologic aspects of the electrodeposits were observed in Atomic Force Microscope (AFM) measurements. Finally, in highly negative potential polarizations, the H{sub 2}Se formation was analyzed by voltammetric and nanogravimetric measurements. These finding brings a new light on the selenium electrodeposition and point up to a proposed electrochemical model for molecule controlled surface engineering.

  19. Supercapacitive evaluation of carbon black/exfoliated graphite/MnO{sub 2} ternary nanocomposite electrode by continuous cyclic voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, Hamid Reza, E-mail: hrnaderi@ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Norouzi, Parviz, E-mail: norouzi@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-01

    A new ternary nanocomposite was prepared by using MnO{sub 2}, carbon black (CB), and exfoliated graphite (EG) through a sonochemical method. In this process, the MnO{sub 2} nanoparticles was anchored on the mixture of CB and EG to maximize the specific capacitances of these materials. Structure and morphology of the CB/EG/MnO{sub 2} nanocomposites were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the CB/EG/MnO{sub 2} nanocomposites with different content of MnO{sub 2} were studied by cyclic voltammetry (CV), fast Fourier transformation continuous cyclic voltammetry (FFTCCV) technique, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS). The best nanocomposite electrode displayed specific capacitance of 364 F g{sup −1} at the scan rate of 2 mV s{sup −1} in 0.5 M Na{sub 2}SO{sub 4} aqueous solution, which is higher than pure MnO{sub 2} (289 F g{sup −1}). The capacitance stability of the nanocomposite electrode was studied by FFTCCV at the scan rate of 500 mV s{sup −1}. The result shows that after recording 4000 CVs, the specific capacitance of the nanocomposite decline only 5%. Furthermore, the nanocomposite electrode showed higher energy density than MnO{sub 2} electrode. - Highlights: • MnO{sub 2}/exfoliated graphite/Carbon black nanocomposites were synthesized by ultrasonic vibration. • The best nanocomposite electrode exhibits specific capacitance of 364 F g{sup −1} in 2 mV s{sup −1}. • The stability of the nanocomposite electrode was study FFTCCV technique. • The capacitance decreases only 5.2% of initial capacitance after 4000 cycles.

  20. Investigation of the reduction process of dopamine using paired pulse voltammetry

    Science.gov (United States)

    Kim, Do Hyoung; Oh, Yoonbae; Shin, Hojin; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.; Kim, In Young; Jang, Dong Pyo

    2014-01-01

    The oxidation of dopamine (DA) around +0.6V potential in anodic sweep and its reduction around −0.1V in cathodic sweep at a relatively fast scanning rate (300 V/s or greater) have been used for identification of DA oxidation in fast-scan cyclic voltammetry (FSCV). However, compared to the oxidation peak of DA, the reduction peak has not been fully examined in analytical studies, although it has been used as one of the representative features to identify DA. In this study, the reduction process of DA was investigated using paired pulse voltammetry (PPV), which consists of two identical triangle-shaped waveforms, separated by a short interval at the holding potential. Especially, the discrepancies between the magnitude of the oxidation and reduction peaks of DA were investigated based on three factors: (1) the instant desorption of the DA oxidation product (dopamine-o-quinone: DOQ) after production, (2) the effect of the holding potential on the reduction process, and (3) the rate-limited reduction process of DA. For the first test, the triangle waveform FSCV experiment was performed on DA with various scanrates (from 400 to 1000 V/s) and durations of switching potentials of the triangle waveform (from 0.0 to 6.0 ms) in order to vary the duration between the applied oxidation potential at +0.6V and the reduction potential at −0.2V. As a result, the ratio of reduction over oxidation peak current response decreased as the duration became longer. To evaluate the effect of holding potentials during the reduction process, FSCV experiments were conducted with holding potential from 0.0V to −0.8V. We found that more negative holding potentials lead to larger amount of reduction process. For evaluation of the rate-limited reduction process of DA, PPV with a 1Hz repetition rate and various delays (2, 8, 20, 40 and 80ms) between the paired scans were utilized to determine how much reduction process occurred during the holding potential (−0.4V). These tests showed that

  1. Investigation of the reduction process of dopamine using paired pulse voltammetry.

    Science.gov (United States)

    Kim, Do Hyoung; Oh, Yoonbae; Shin, Hojin; Blaha, Charles D; Bennet, Kevin E; Lee, Kendall H; Kim, In Young; Jang, Dong Pyo

    2014-03-15

    The oxidation of dopamine (DA) around +0.6V potential in anodic sweep and its reduction around -0.1V in cathodic sweep at a relatively fast scanning rate (300 V/s or greater) have been used for identification of DA oxidation in fast-scan cyclic voltammetry (FSCV). However, compared to the oxidation peak of DA, the reduction peak has not been fully examined in analytical studies, although it has been used as one of the representative features to identify DA. In this study, the reduction process of DA was investigated using paired pulse voltammetry (PPV), which consists of two identical triangle-shaped waveforms, separated by a short interval at the holding potential. Especially, the discrepancies between the magnitude of the oxidation and reduction peaks of DA were investigated based on three factors: (1) the instant desorption of the DA oxidation product (dopamine-o-quinone: DOQ) after production, (2) the effect of the holding potential on the reduction process, and (3) the rate-limited reduction process of DA. For the first test, the triangle waveform FSCV experiment was performed on DA with various scanrates (from 400 to 1000 V/s) and durations of switching potentials of the triangle waveform (from 0.0 to 6.0 ms) in order to vary the duration between the applied oxidation potential at +0.6V and the reduction potential at -0.2V. As a result, the ratio of reduction over oxidation peak current response decreased as the duration became longer. To evaluate the effect of holding potentials during the reduction process, FSCV experiments were conducted with holding potential from 0.0V to -0.8V. We found that more negative holding potentials lead to larger amount of reduction process. For evaluation of the rate-limited reduction process of DA, PPV with a 1Hz repetition rate and various delays (2, 8, 20, 40 and 80ms) between the paired scans were utilized to determine how much reduction process occurred during the holding potential (-0.4V). These tests showed that

  2. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guangming, E-mail: yangguangmingbs@126.com [Department of Resources and Environment, Baoshan University, Baoshan 678000 (China); Li Ling [Department of Resources and Environment, Baoshan University, Baoshan 678000 (China); Jiang Jinhe; Yang Yunhui [College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092 (China)

    2012-08-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02 Multiplication-Sign 10{sup -7}-5.23 Multiplication-Sign 10{sup -4} mol L{sup -1} and 1.43 Multiplication-Sign 10{sup -7}-4.64 Multiplication-Sign 10{sup -4} mol L{sup -1}, the detection limits were 1.12 Multiplication-Sign 10{sup -8} mol L{sup -1} and 2.24 Multiplication-Sign 10{sup -8} mol L{sup -1}, respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. - Graphical abstract: The schematic diagram of formation of Au nanotube arrays (a) and the stepwise procedure of the sensor (b). Highlights: Black-Right-Pointing-Pointer Gold nanotubes array has been synthesized by cyclic voltammetry. Black-Right-Pointing-Pointer The mechanism of deposition of gold nanotube has been discussed. Black-Right-Pointing-Pointer A determination of ascorbic acid and uric acid was constructed by gold array. Black-Right-Pointing-Pointer A satisfied determination of samples can be obtained by this sensor.

  3. Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory.

    Science.gov (United States)

    Zhang, Di; Chu, Le; Liu, Yixiang; Wang, Aili; Ji, Baoping; Wu, Wei; Zhou, Feng; Wei, Ying; Cheng, Qian; Cai, Shengbao; Xie, Liyang; Jia, Gang

    2011-09-28

    Flavonoids often show inconsistent antioxidant activities (AAs) depending on the assay used. The electrochemical properties of 14 flavonoid standards in cyclic voltammetry [area under anodic wave (Q) and oxidant peak potentials (Epa)] and the structural parameters [bond dissociation enthalpy (BDE) and ionization potential (IP)] were investigated. They were compared with the results of four spectrophotometric assays, namely, diphenyl-1-picrylhydrazyl (DPPH), Folin-Ciocalteu reagent (FCR), ferric reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC), to analyze the chemical reasons for the varying AAs of flavonoids under different assays. Using the cyclic voltammetry method, the AAs of the flavonoids in the DPPH, FCR, and FRAP assays were mainly determined by the ease of charge transferring in the first oxidation step. Meanwhile, the results of TEAC assays were primarily influenced by the amount of charge transfer in the multiple oxidation steps (MOS) of flavonoids. In the theoretical calculation, the BDE values of the selected flavonoids had considerably higher correlations with the results of the DPPH assay (r2=0.89) compared with the other three assays, which indicates that the oxidant-scavenging reaction of the tested flavonoids in the DPPH assay is closer to a hydrogen atom transfer mechanism. Neither the IP values nor BDE values had satisfactory correlation with the AAs of the flavonoids in the TEAC assay (r2=0.57, r2=0.54, respectively), Therefore, complex reaction mechanisms underlie this method and appropriate structural descriptors for reflecting the AAs of flavonoids based on MOS (e.g., TEAC values) need further investigation.

  4. Is microwave digestion using TFM vessels a suitable preparation method for Pt determination in biological samples by adsorptive cathodic stripping voltammetry?

    Science.gov (United States)

    Haus, Nadine; Eybe, Tanja; Zimmermann, Sonja; Sures, Bernd

    2009-03-02

    The occurrence of Pt in environmental matrices is increasing since the introduction of automobile catalytic converters. Given that Pt is bioavailable and causes biological effects in plants and animals, respective biomonitoring programs are in high demand. But the analytical methods for conducting such programs have not yet been sufficiently established. Therefore, a study was carried out to develop a microwave digestion of biological samples, which allows a rapid determination of Pt by adsorptive cathodic stripping voltammetry. A high pressure microwave system was used and the digestion was performed in HNO(3) and HCl. After digestion the HNO(3) was evaporated with a microwave assisted vacuum concentration set. The study resulted in a procedural detection limit of 37.5 ng L(-1) and a relative standard deviation of 18%. A recovery study resulted in a Pt loss below 5%. The microwave assisted evaporation of HNO(3) performed satisfactorily and up to 500 mL of the sample solution could be used for the voltammetric measurements without any effect on the peak heights. A direct comparison of Pt concentrations conducted after microwave digestion and digestion by high pressure ashing showed similar values. However, these promising results were not persistent throughout the repeated analysis using the same Teflon vessels. The vessels did not endure the harsh conditions and due to aging processes the Pt loss consistently increased until Pt determination in environmental relevant concentrations became impossible. Quartz vessels could not be employed as an alternative to the Teflon vessels, due to a lack of compatibility with the vacuum concentration system. Consequently, the results of this paper show that there is a need for further development of more resistant Teflon materials.

  5. Whether metal (Pb, Cd, Zn) binding property of natural organic matter is source-dependent-A study based on spectroscopy, potentiometry, and voltammetry

    Science.gov (United States)

    Chen, W.; Gueguen, C.; Smith, S.

    2016-02-01

    Natural organic matter (NOM) is a complex molecule of diverse ligands that essentially regulates metal speciation and toxicity. NOM source is heterogeneous, but can be operationally classified into allochthonous, autochthonous, and intermediate between these two groups. Whether the metal binding property (i.e. affinity and capacity) is NOM-source dependent however, remains unclear. The answer of this question is helpful for environmental modeling. If metal binding properties are sensitive to NOM source, then models used to determine metal speciation will need to be revised to take some measurement of NOM quality into consideration. In this study, different sources of NOM were collected for the study of Pb, Cd, and Zn binding. The NOM properties were characterized by different techniques from different chemistry indexes, including acidity chemistry, optical spectroscopy for component and structure, and cathodic stripping voltammetry for thiol determination. Absence of Gradient and Nernstian Equilibrium Stripping was used to selectively determine the concentration of free metal ion for binding isotherm. A model based on continuous site distribution was used to describe this binding isotherm. By best fitting the binding isotherm into the model using a regularized optimization, a conditional affinity spectrum was derived. Comparing binding isotherm and affinity spectrum between NOM samples showed that Pb binding was more dependent on NOM sources than Cd and Zn binding. Under the same binding condition (i.e. DOC, pH and ionic strength), allochthonous NOM mostly showed higher binding level (i.e. up to 3 log unit of bound species concentration) and stronger binding affinity for Pb than autochthonous NOM. This tendency however, was not obvious for Cd and Zn. Humic-like content probably contributed the most significant factor for Pb binding discrimination. Thiol content may be another important factor to differentiate metal binding affinity and capacity between NOM samples.

  6. Detection of food additives by voltammetry at the liquid-liquid interface.

    Science.gov (United States)

    Herzog, Grégoire; Kam, Victor; Berduque, Alfonso; Arrigan, Damien W M

    2008-06-25

    Electrochemistry at the liquid-liquid interface enables the detection of nonredoxactive species with electroanalytical techniques. In this work, the electrochemical behavior of two food additives, aspartame and acesulfame K, was investigated. Both ions were found to undergo ion-transfer voltammetry at the liquid-liquid interface. Differential pulse voltammetry was used for the preparation of calibration curves over the concentration range of 30-350 microM with a detection limit of 30 microM. The standard addition method was applied to the determination of their concentrations in food and beverage samples such as sweeteners and sugar-free beverages. Selective electrochemically modulated liquid-liquid extraction of these species in both laboratory solutions and in beverage samples was also demonstrated. These results indicate the suitability of liquid-liquid electrochemistry as an analytical approach in food analysis.

  7. New Cyclic Voltammetry Method for Examining Phase Transitions on Electrodes: Simulated Results

    Science.gov (United States)

    Abou Hamad, Ibrahim; Robb, Daniel; Rikvold, Per Arne

    2007-03-01

    We propose a new experimental technique for cyclic voltammetry, based on the first-order reversal curve (FORC) method for analysis of systems undergoing hysteresis. The advantages of this technique are demonstrated by applying it to dynamical models of electrochemical adsorption. The method can not only differentiate between discontinuous and continuous phase transitions, but can also quite accurately recover equilibrium behavior from dynamic analysis of systems with a continuous phase transition. The FORC diagram for a discontinuous phase transition is characterized by a negative (unstable) region separating two positive (stable) regions, while such a negative region does not exist for continuous phase transitions. Experimental data for Electrochemical FORC (EC-FORC) analysis could easily be obtained by simple reprogramming of a potentiostat designed for conventional cyclic-voltammetry experiments.I. Abou Hamad, D.T. Robb, P.A. Rikvold, J. Electroanal. Chem., in press.

  8. EC-FORC: A New Cyclic Voltammetry Based Method for Examining Phase Transitions and Predicting Equilibrium

    CERN Document Server

    Hamad, Ibrahim Abou; Novotny, Mark A; Rikvold, Per Arne

    2007-01-01

    We propose a new, cyclic-voltammetry based experimental technique that can not only differentiate between discontinuous and continuous phase transitions in an adsorbate layer, but also quite accurately recover equilibrium behavior from dynamic analysis of systems with a continuous phase transition. The Electrochemical first-order reversal curve (EC-FORC) diagram for a discontinuous phase transition (nucleation and growth), such as occurs in underpotential deposition, is characterized by a negative region, while such a region does not exist for a continuous phase transition, such as occurs in the electrosorption of Br on Ag(100). Moreover, for systems with a continuous phase transition, the minima of the individual EC-FORCs trace the equilibrium curve, even at very high scan rates. Since obtaining experimental data for the EC-FORC method would require only a simple reprogramming of the potentiostat used in conventional cyclic-voltammetry experiments, we believe that this method has significant potential for ea...

  9. Electrochemical-Voltammetry Behavior of Several Aromatic Aldehydes in Acid Solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The electrochemical-voltammetry behavior of vanillin, heliotropin, anisaldehyde on the surface ofPt, Au electrodes in acid solution has been studied by means of the electrochemical cyclic voltammetry method. I was found that the electrochemical processes of them are irreversible on both Pt and Au elec-trodes. The electrochemical activity of vanillin is stronger than heliotropin's and heliotropin's is stronger than, anisaldehyde's on Pt electrode. While the electrochemical activity of anisaldehyde is stronger than heliotropin's and vanillin's is the weakest on Au. The results indicate that when they are used as additives for electroplating, they must be consumptive, and it will improve the leveling ability of plating solution and brightness of the deposition layer.

  10. Anodic stripping voltammetry of silver nanoparticles: aggregation leads to incomplete stripping.

    Science.gov (United States)

    Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

    2015-02-01

    The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of 'partial oxidation' and 'inactivation' of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes.

  11. Facilitated ion transfer of protonated primary organic amines studied by square wave voltammetry and chronoamperometry.

    Science.gov (United States)

    Torralba, E; Ortuño, J A; Molina, A; Serna, C; Karimian, F

    2014-05-15

    The transfer of the protonated forms of heptylamine, octylamine, decylamine, procaine and procainamide facilitated by dibenzo-18-crown-6 from water to a solvent polymeric membrane has been investigated by using cyclic square wave voltammetry. The experimental voltammograms obtained are in good agreement with theoretical predictions. The values of the standard ion transfer potential, complexation constant and diffusion coefficient in water have been obtained from these experiments, and have been used to draw some conclusions about the lipophilicity of these species and the relative stability of the organic ammonium complexes with dibenzo-18-crown-6. The results have been compared with those provided by linear sweep voltammetry. Calibration graphs were obtained with both techniques. An interesting chronoamperometric method for the determination of the diffusion coefficient of the target ion in the membrane has been developed and applied to all these protonated amines.

  12. Voltametria de onda quadrada. Segunda parte: aplicações Square wave voltammetry. Second part: applications

    Directory of Open Access Journals (Sweden)

    Djenaine de Souza

    2004-10-01

    Full Text Available The aim of this work is to discuss some selected applications of square wave voltammetry published in the last five years. The applications focused here cover several electroanalytical fields such as: determination of pesticides; molecules with biological activity; metals and other environmental pollutants. Special attention is given to the work developed in the Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos - IQSC - USP concerning the utilization of square wave voltammetry, with different kinds of electrodes, for the determination of pesticides in natural waters and active principles in pharmaceutical formulations. The new methodology is simple, fast and sensitive when compared with the traditional ones such as chromatography and spectrophotometry. The satisfactory results obtained provide alternative procedures for the quality control of drugs and the monitoring of pesticides in natural environments.

  13. EC-FORC: A New Cyclic Voltammetry Based Method for Examining Phase Transitions and Predicting Equilibrium

    OpenAIRE

    2007-01-01

    We propose a new, cyclic-voltammetry based experimental technique that can not only differentiate between discontinuous and continuous phase transitions in an adsorbate layer, but also quite accurately recover equilibrium behavior from dynamic analysis of systems with a continuous phase transition. The Electrochemical first-order reversal curve (EC-FORC) diagram for a discontinuous phase transition (nucleation and growth), such as occurs in underpotential deposition, is characterized by a neg...

  14. Detection of heavy metals in biological samples through anodic stripping voltammetry

    OpenAIRE

    Buzea, Vlad; Florescu, Monica; Badea, Mihaela

    2012-01-01

    The toxicological aspects due to the presence of heavy metals in biological samples impose to have accurate and rapid methods for their detection. This paper is aimed to review approaches to anodic stripping voltammetry (ASV) determination of several heavy metals (lead, cadmium, copper, mercury, zinc) in biological matrices (blood, urine, saliva, tissue sample). Analytical performances (LOD, data linearity range, sensitivity) of the reviewed methods were presented for several electrochemical ...

  15. New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry

    OpenAIRE

    Gulaboski, Rubin; Mirceski, Valentin

    2015-01-01

    Several new theoretical aspects of the electrocatalytic (regenerative) EC’ mechanism under conditions of square-wave (SWV) and staircase cyclic voltammetry (SCV) are presented. Elaborating the effect of the rate of the catalytic reaction in the diffusion-controlled catalytic mechanism (diffusional EC’ mechanism) and surface catalytic mechanism (surface EC’ mechanism), we refer to several phenomena related to the shift of the position and the half-peak width of the net peak in ...

  16. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique

    OpenAIRE

    MARTÍNEZ GIL, PABLO; Laguarda Miró, Nicolás; Soto Camino, Juan; Masot Peris, Rafael

    2013-01-01

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in count...

  17. Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing

    Science.gov (United States)

    Chung, Deborah D. L.; Shui, Xiaoping; Frysz, Christine A.

    1993-01-01

    Hairy carbon is a new material developed by growing submicron carbon filaments on conventional carbon substrates. Typical substrate materials include carbon black, graphite powder, carbon fibers, and glassy carbon. A catalyst is used to initiate hair growth with carbonaceous gases serving as the carbon source. To study the electrochemical behavior of hairy carbons, cyclic voltammetry (CV) and discharge testing were conducted. In both cases, hairy carbon results surpassed those of the substrate material alone.

  18. A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.

    Science.gov (United States)

    Ramsson, Eric S

    2016-01-01

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.

  19. Cathodic stripping voltammetry of trace Mn(II) at carbon film electrodes

    OpenAIRE

    Filipe, Olga M. S.; Brett,Christopher M.A.

    2003-01-01

    A sensitive voltammetric method is presented for the determination of tract levels of Mn (II) using carbon film electrodes fabricated from carbon resistors of 2 [Omega]. Determination of manganese was made by square wave cathodic stripping voltammetry (CSV), with deposition of manganese as manganese dioxide. Chronoamperometric experiments were made to study MnO2 nucleation and growth. As a result, it was found to be necessary to perform electrode conditioning at a more positive potential to i...

  20. Cathodic stripping voltammetry of cysteine using silver and copper solid amalgam electrodes.

    Science.gov (United States)

    Yosypchuk, B; Novotný, L

    2002-04-01

    Silver and copper solid amalgam electrodes (modified with mercury meniscus and based on amalgamation of fine metallic powder) have been successfully tested for cathodic stripping voltammetry of cysteine. In the case of the silver solid amalgam electrode AgSAE the relative standard deviation (RSD) and the detection limit (3 SD) reached +/-2.3% and 3x10(-9) mol l(-1) cysteine, respectively.

  1. Porosity Study of Hybrid Silica Mesostructure in Aluminium Oxide Membrane Columnar by Cyclic Voltammetry Method

    Directory of Open Access Journals (Sweden)

    M.N. Jalil

    2011-12-01

    Full Text Available Silica mesostructure has been grown within with a porous aluminium oxide membrane columnar material (hybrid-AOM. This was prepared using a sol-gel technique with Pluronic P123 triblock copolymer as the structure-directing agent and tetraethyl orthosilicate as the inorganic source. The porosity of the hybrid-AOM after ethanol extraction was calculated from the cyclic voltammetry response of a neutral probe (FcMeOH, using Randles-Sevčik equation.

  2. Graphene electroanalysis: inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene.

    Science.gov (United States)

    Brownson, Dale A C; Lacombe, Alexandre C; Kampouris, Dimitrios K; Banks, Craig E

    2012-01-21

    We explore the use of surfactant free graphene towards the electroanalytical sensing of cadmium(II) ions via anodic stripping voltammetry. In line with literature methodologies, we modify an electrode substrate which exhibits relatively fast electron transfer with commercially available graphene which is free from surfactants. Surprisingly, we find that graphene reduces the analytical performance and hence inhibits the electrochemical detection of cadmium(II) ions, with calibration plots in model aqueous solutions revealing no advantages of employing graphene in this analytical context.

  3. Preparation and Cyclic Voltammetry Characterization Of Cu-dipyridyl Imprinted Polymer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Polymer capable of specific binding to Cu-dipyridyl complex was prepared by molecular imprinting technology.The binding specificity of the polymer to the template (Cu-dipyridyl complex) was investigated by cyclic voltametric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution.Factors that influence rebinding of the imprinted polymer were explored.The result demonstrated that the cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.

  4. Simultaneous identification of lead pigments and binding media in paint samples using voltammetry of microparticles

    OpenAIRE

    DOMENECH CARBO, ANTONIO; Domenech Carbo, Mª Teresa; Mas Barberà, Xavier; Ciarrocci, Julia

    2007-01-01

    Voltammetry of microparticles is applied to the simultaneous determination of lead pigments and binding media in paint samples. The mechanical attachment of a few nanograms of sample to a paraffin-impregnated graphite electrode produced well-defined square wave voltammetric responses for model paint specimens containing lead white, minium and Naples yellow associated with linseed, sunflower and poppy oils and casein, egg, and bovine gelatin. The use of a multiparametric fitting of the electro...

  5. Electrochemical Studies of 1,4-Bis[2-(2-pyridyl)-vinyl] Benzene and 1,4-Bis[2-(4-pyridyl) vinyl] Benzene Laser Dyes via Cyclic Voltammetry, Convolutive Voltammetry and Digital Simulation Methods

    Institute of Scientific and Technical Information of China (English)

    EL-DALY, Samy A; EL-HALLAG,Ibrahirn S; EBEED, Ezeiny M; GHONEIM, Mohamed M

    2009-01-01

    Electrochemical properties of two diolefinic laser dyes namely 1,4-bis[2-(2-pyddyl)-vinyl] benzene (2PVB) and 1,4-bis[2-(4-pyridyl) vinyl] benzene (4PVB) have been investigated using cyclic voltammetry and convolutive voltammetry combined with digital simulation at a platinum electrode in 0.1 mol/L tetrabutyl ammonium perchlo-rate (TBAP) in the two different solvents acetonitrile (CH3CN) and dimethylformamide (DMF). The species were reduced via consumption of two sequential electrons to form radical anion and dianion. In switching the potential to positive direction, the two compounds were oxidized by loss of one electron, which was followed by a fast isomeri-sation process. The electrode reaction pathway and the electrochemical parameters of the investigated compounds were determined using cyclic voltammetry. The extracted electrochemical parameters were verified and confirmed via digital simulation and convolutive voltammetry methods.

  6. Study on the adsorptive catalytic voltammetry of aloe-emodin at a carbon paste electrode

    Institute of Scientific and Technical Information of China (English)

    LI; Ju'nan; GAO; Peng; LI; Xiangling; YAN; Zhihong; MAO; Xu

    2005-01-01

    A new catalytic voltammetric method for the determination of anthraqunone medicines at a carbon paste electrode (CPE) was described for the first time. The mechanism of the catalytic reaction was investigated by using linear sweep voltammetry, cyclic voltammetry, constant potential electrolysis and so on. The experiment results indicate that aloe-emodin was efficiently accumulated at a CPE by adsorption. In the following potential scan, aloe-emodin was reduced to homologous anthrahydroquinone compound, then the compound was immediately oxidized to aloe-emodin by the dissolved oxygen, and the aloe-emodin was again reduced at the CPE. As a result, a cyclic catalytic reaction was established. But a reversible redox reaction of aloe-emodin can only be observed at a mercury electrode, no catalytic reaction occurs there. A sensitive catalytic voltammetric peak of aloe-emodin was obtained at about -0.60 V (vs. SCE) in 0.56 mol/L NH3-NH4Cl buffer (pH 8.9). The proposed method was applied to the determination of aloe-emodin in the Radix Rhei with satisfactory results. The determination results were in good agreement with reference values obtained by the HPLC. The adsorptive catalytic voltammetry for the determination of organic compound at CPE, chemically modified electrode and other solid electrodes could be significant in the studies on pharmacology, pharmacodynamics, toxicity of medicine, clinical medicine and biochemistry.

  7. Catalytic mechanism in cyclic voltammetry at disc electrodes: an analytical solution.

    Science.gov (United States)

    Molina, Angela; González, Joaquín; Laborda, Eduardo; Wang, Yijun; Compton, Richard G

    2011-08-28

    The theory of cyclic voltammetry at disc electrodes and microelectrodes is developed for a system where the electroactive reactant is regenerated in solution using a catalyst. This catalytic process is of wide importance, not least in chemical sensing, and it can be characterized by the resulting peak current which is always larger than that of a simple electrochemical reaction; in contrast the reverse peak is always relatively diminished in size. From the theoretical point of view, the problem involves a complex physical situation with two-dimensional mass transport and non-uniform surface gradients. Because of this complexity, hitherto the treatment of this problem has been tackled mainly by means of numerical methods and so no analytical expression was available for the transient response of the catalytic mechanism in cyclic voltammetry when disc electrodes, the most popular practical geometry, are used. In this work, this gap is filled by presenting an analytical solution for the application of any sequence of potential pulses and, in particular, for cyclic voltammetry. The induction principle is applied to demonstrate mathematically that the superposition principle applies whatever the geometry of the electrode, which enabled us to obtain an analytical equation valid whatever the electrode size and the kinetics of the catalytic reaction. The theoretical results obtained are applied to the experimental study of the electrocatalytic Fenton reaction, determining the rate constant of the reduction of hydrogen peroxide by iron(II).

  8. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  9. Double preconcentration of trace amounts of cadmium in nail samples and measurement by differential pulse voltammetry.

    Science.gov (United States)

    Shahi, Somayeh; Nateghi, Mohammad Reza

    2015-04-01

    Cadion was coated on carbon powder and used as a solid phase for selective extraction and preconcentration of cadmium ions. Complexed cadmium ions were eluted from solid phase by 5 mL, nitric acid (2.0 M) with the flow rate of 2 mL min(-1).The resulted solution was used for accumulation of the cadmium metal at the surface of the carbon paste electrode at -1.3 V reduction potential. Finally, cadmium was reoxidized and the differential pulse voltammogram recorded at the potential range of -0.55 to -0.2 V. Calibration graph was plotted in the concentration range of 0.5-50 μg L(-1) of cadmium. Detection limit 0.06 μg L(-1) was calculated based on the 3 Sb/m. The RSD was 9.13 % (n = 4) for cadmium concentration of 10 μg L(-1) with preconcentration factor of 100. Method was successfully used for the determination of cadmium in finger nail samples and after spiking the samples, the recoveries were evaluated >96 %.

  10. MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)

    Science.gov (United States)

    A sulfide identification protocol was developed to quantify specific metal sulfides that could exist in river water. Using a series of acid additions, nitrogen purges, and voltammetric analyses, metal sulfides were identified and semiquantified in three specific gr...

  11. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle.

    Science.gov (United States)

    Garris, Paul A; Ensman, Robert; Poehlman, John; Alexander, Andy; Langley, Paul E; Sandberg, Stefan G; Greco, Phillip G; Wightman, R Mark; Rebec, George V

    2004-12-30

    Fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) provides exquisite temporal and spatial resolution for monitoring brain chemistry. The utility of this approach has recently been demonstrated by measuring sub-second dopamine changes associated with behavior. However, one drawback is the cable link between animal and recording equipment that restricts behavior and precludes monitoring in complex environments. As a first step towards developing new instrumentation to overcome this technical limitation, the goal of the present study was to establish proof of principle for the wireless transmission of FSCV at a CFM. Proof of principle was evaluated in terms of measurement stability, fidelity, and susceptibility to ambient electrical noise. Bluetooth digital telemetry provided bi-directional communication between remote and home-base units and stable, high-fidelity data transfer comparable to conventional, wired systems when tested using a dummy cell (i.e., a resistor and capacitor in series simulating electrical properties of a CFM), and dopamine measurements with flow injection analysis and in the anesthetized rat with electrical stimulation. The wireless system was also less susceptible to interference from ambient electrical noise. Taken together, the present findings establish proof of principle for the wireless transmission of FSCV at a CFM.

  12. Background Signal as an in Situ Predictor of Dopamine Oxidation Potential: Improving Interpretation of Fast-Scan Cyclic Voltammetry Data.

    Science.gov (United States)

    Meunier, Carl J; Roberts, James G; McCarty, Gregory S; Sombers, Leslie A

    2017-02-15

    Background-subtracted fast-scan cyclic voltammetry (FSCV) has emerged as a powerful analytical technique for monitoring subsecond molecular fluctuations in live brain tissue. Despite increasing utilization of FSCV, efforts to improve the accuracy of quantification have been limited due to the complexity of the technique and the dynamic recording environment. It is clear that variable electrode performance renders calibration necessary for accurate quantification; however, the nature of in vivo measurements can make conventional postcalibration difficult, or even impossible. Analyte-specific voltammograms and scaling factors that are critical for quantification can shift or fluctuate in vivo. This is largely due to impedance changes, and the effects of impedance on these measurements have not been characterized. We have previously reported that the background current can be used to predict electrode-specific scaling factors in situ. In this work, we employ model circuits to investigate the impact of impedance on FSCV measurements. Additionally, we take another step toward in situ electrode calibration by using the oxidation potential of quinones on the electrode surface to accurately predict the oxidation potential for dopamine at any point in an electrochemical experiment, as both are dependent on impedance. The model, validated both in adrenal slice and live brain tissue, enables information encoded in the shape of the background voltammogram to determine electrochemical parameters that are critical for accurate quantification. This improves data interpretation and provides a significant next step toward more automated methods for in vivo data analysis.

  13. Cadmium speciation assessed by voltammetry, ion exchange and geochemical calculation in soil solutions collected after soil rewetting.

    Science.gov (United States)

    Cornu, J Y; Parat, C; Schneider, A; Authier, L; Dauthieu, M; Sappin-Didier, V; Denaix, L

    2009-07-01

    Analytical techniques and speciation models have been developed to characterize the speciation of Cd in soil solution. They provide an estimate of operationally defined species of Cd that need to be compared, especially for soil solutions highly concentrated in organic matter as are the solutions collected after soil rewetting. This work deals with the comparison between the speciation of Cd measured by anodic stripping voltammetry (ASV) and ion exchange and the speciation of Cd calculated using Visual MINTEQ. The aim of this study was to quantify and explain the differences in Cd speciation observed between the three approaches. Cd speciation was assessed in soil solutions collected 4, 8, 24, 48, 96 and 144h after the rewetting of an air-dried contaminated soil. To optimize the computed speciation of Cd, other physico-chemical parameters were followed (e.g. pH, ionic strength and the concentrations of major anions, major cations and dissolved organic carbon) and a brief characterisation of dissolved organic matter (DOM) was performed. The discrepancy between model predictions and analytical measurements highlighted the need for caution in the interpretation of geochemical speciated data for Cd. The major result of this study was that a characterization of DOM based on its specific UV-absorbance at 254 nm improved the accuracy of model predictions. Another finding is that labile Cd complexes, even organic, may have been included in the electrochemically labile fraction of Cd measured by ASV.

  14. Theoretical and experimental study of redox processes combined with adsorption phenomena under conditions of square-wave voltammetry

    OpenAIRE

    Gulaboski, Rubin

    2001-01-01

    Theoretical models of four electrode reactions coupled with adsorption phenomena under conditions of square-wave voltammetry are developed: simple surface redox reaction, surface catalytic reaction, cathodic stripping reaction of I order, and cathodic stripping reaction of II order.

  15. Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices.

    Science.gov (United States)

    Ferris, Mark J; Calipari, Erin S; Yorgason, Jordan T; Jones, Sara R

    2013-05-15

    Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration.

  16. Single-Use Disposable Electrochemical Label-Free Immunosensor for Detection of Glycated Hemoglobin (HbA1c) Using Differential Pulse Voltammetry (DPV).

    Science.gov (United States)

    Molazemhosseini, Alireza; Magagnin, Luca; Vena, Pasquale; Liu, Chung-Chiun

    2016-07-01

    A single-use disposable in vitro electrochemical immunosensor for the detection of HbA1c in undiluted human serum using differential pulse voltammetry (DPV) was developed. A three-electrode configuration electrochemical biosensor consisted of 10-nm-thin gold film working and counter electrodes and a thick-film printed Ag/AgCl reference electrode was fabricated on a polyethylene terephthalate (PET) substrate. Micro-fabrication techniques including sputtering vapor deposition and thick-film printing were used to fabricate the biosensor. This was a roll-to-roll cost-effective manufacturing process making the single-use disposable in vitro HbA1c biosensor a reality. Self-assembled monolayers of 3-Mercaptopropionic acid (MPA) were employed to covalently immobilize anti-HbA1c on the surface of gold electrodes. Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) confirmed the excellent coverage of MPA-SAM and the upward orientation of carboxylic groups. The hindering effect of HbA1c on the ferricyanide/ferrocyanide electron transfer reaction was exploited as the HbA1c detection mechanism. The biosensor showed a linear range of 7.5-20 µg/mL of HbA1c in 0.1 M PBS. Using undiluted human serum as the test medium, the biosensor presented an excellent linear behavior (R² = 0.999) in the range of 0.1-0.25 mg/mL of HbA1c. The potential application of this biosensor for in vitro measurement of HbA1c for diabetic management was demonstrated.

  17. Ferrocene-Boronic Acid-Fructose Binding Based on Dual-Plate Generator-Collector Voltammetry and Square-Wave Voltammetry.

    Science.gov (United States)

    Li, Meng; Xu, Su-Ying; Gross, Andrew J; Hammond, Jules L; Estrela, Pedro; Weber, James; Lacina, Karel; James, Tony D; Marken, Frank

    2015-06-10

    The interaction of ferrocene-boronic acid with fructose is investigated in aqueous 0.1 m phosphate buffer at pH 7, 8 and 9. Two voltammetric methods, based on 1) a dual-plate generator-collector micro-trench electrode (steady state) and 2) a square-wave voltammetry (transient) method, are applied and compared in terms of mechanistic resolution. A combination of experimental data is employed to obtain new insights into the binding rates and the cumulative binding constants for both the reduced ferrocene-boronic acid (pH dependent and weakly binding) and for the oxidised ferrocene-boronic acid (pH independent and strongly binding).

  18. The Great Cometary Show

    Science.gov (United States)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  19. Nanostructured ZnO in a Metglas/ZnO/Hemoglobin Modified Electrode to Detect the Oxidation of the Hemoglobin Simultaneously by Cyclic Voltammetry and Magnetoelastic Resonance.

    Science.gov (United States)

    Sagasti, Ariane; Bouropoulos, Nikolaos; Kouzoudis, Dimitris; Panagiotopoulos, Apostolos; Topoglidis, Emmanuel; Gutiérrez, Jon

    2017-07-25

    In the present work, a nanostructured ZnO layer was synthesized onto a Metglas magnetoelastic ribbon to immobilize hemoglobin (Hb) on it and study the Hb's electrochemical behavior towards hydrogen peroxide. Hb oxidation by H₂O₂ was monitored simultaneously by two different techniques: Cyclic Voltammetry (CV) and Magnetoelastic Resonance (MR). The Metglas/ZnO/Hb system was simultaneously used as a working electrode for the CV scans and as a magnetoelastic sensor excited by external coils, which drive it to resonance and interrogate it. The ZnO nanoparticles for the ZnO layer were grown hydrothermally and fully characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and photoluminescence (PL). Additionally, the ZnO layer's elastic modulus was measured using a new method, which makes use of the Metglas substrate. For the detection experiments, the electrochemical cell was performed with a glass vial, where the three electrodes (working, counter and reference) were immersed into PBS (Phosphate Buffer Solution) solution and small H₂O₂ drops were added, one at a time. CV scans were taken every 30 s and 5 min after the addition of each drop and meanwhile a magnetoelastic measurement was taken by the external coils. The CV plots reveal direct electrochemical behavior of Hb and display good electrocatalytic response to the reduction of H₂O₂. The measured catalysis currents increase linearly with the H₂O₂ concentration in a wide range of 25-350 μM with a correlation coefficient 0.99. The detection limit is 25-50 μM. Moreover, the Metglas/ZnO/Hb electrode displays rapid response (30 s) to H₂O₂, and exhibits good stability and reproducibility of the measurements. On the other hand, the magnetoelastic measurements show a small linear mass increase versus the H₂O₂ concentration with a slope of 152 ng/μM, which is probably due to H₂O₂ adsorption in ZnO during the electrochemical reaction. No such effects were detected during

  20. Improving Reproducibility of Lab-on-a-Chip Sensor with Bismuth Working Electrode for Determining Zn in Serum by Anodic Stripping Voltammetry

    Science.gov (United States)

    Pei, Xing; Kang, Wenjing; Yue, Wei; Bange, Adam; Heineman, William R.; Papautsky, Ian

    2014-01-01

    This work reports on the continuing development of a lab-on-a-chip electrochemical sensor for determination of zinc in blood serum using square wave anodic stripping voltammetry. The microscale sensor consists of a three electrode system, including an environmentally friendly bismuth working electrode, an integrated silver/silver chloride reference electrode, and a gold auxiliary electrode. The sensor demonstrates a linear response in 0.1 M acetate buffer at pH 6 for zinc concentrations in the 1–30 μM range. By optimizing bismuth film deposition and better control of the fabrication process, repeatability of the sensor was improved, reducing variability from 42% to <2%. Through optimization of electrolyte and stripping voltammetry parameters, limit of detection was greatly improved to 60 nM. The optimized sensor was also able to measure zinc in the extracted blood serum. Ultimately, with integrated sample preparation, the sensor will permit rapid (min) measurements of zinc from a sub-mL sample (a few drops of blood) for clinical applications. PMID:24729629

  1. Characterization of Local pH Changes in Brain Using Fast-Scan Cyclic Voltammetry with Carbon Microelectrodes

    Science.gov (United States)

    Takmakov, Pavel; Zachek, Matthew K.; Keithley, Richard B.; Bucher, Elizabeth; McCarty, Gregory S.; Wightman, R. Mark

    2010-01-01

    Transient local pH changes in the brain are important markers of neural activity that can be used to follow metabolic processes that underlie the biological basis of behavior, learning and memory. There are few methods that can measure pH fluctuations with sufficient time resolution in freely moving animals. Previously, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used for the measurement of such pH transients. However, the origin of the potential dependent current in the cyclic voltammograms for pH changes recorded in vivo was unclear. The current work explored the nature of these peaks and established the origin for some of them. A peak relating to the capacitive nature of the pH CV was identified. Adsorption of electrochemically inert species, such as aromatic amines and calcium could suppress this peak, and is the origin for inconsistencies regarding in vivo and in vitro data. Also, we identified an extra peak in the in vivo pH CV relating to the presence of 3,4-dihydroxyacetic acid (DOPAC) in the brain extracellular fluid. To evaluate the in vivo performance of the carbon-fiber sensor, carbon dioxide inhalation by an anesthetized rat was used to induce brain acidosis induced by hypercapnia. Hypercapnia is demonstrated to be a useful tool to induce robust in vivo pH changes, allowing confirmation of the pH signal observed with FSCV. PMID:21047096

  2. The Health Show

    OpenAIRE

    Swann, David

    2011-01-01

    Dr David Swann interviewed on The Health Show, Series 1, Episode 5, 2011 for BBC World about the award-winning 21st Century Nursing Bag. BBC World News reaches 241million people every week, available in 296 million homes, 1.8 million hotel rooms and has the highest average viewership on a weekday of any international news channel. The Health Show is a new 26-part series for BBC World News covering the most important news stories from around the world.

  3. A Fashion Show

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>Story: The yearly fashion show day.The children take turns to walk on the stage and show the class their favorite clothes.Now it’s Joe’s and Phoebe’s turn.Joe walks on the stage and says,“My shorts are blue.Do you like my blue shorts?”On the other side of the stage, Phoebe is wearing her favorite pink skirt.“My skirt is pink.Do you like my pink skirt?”asks

  4. How to overcome inter-electrode variability and instability to quantify dissolved oxygen, Fe(II), mn(II), and S(−II) in undisturbed soils and sediments using voltammetry

    OpenAIRE

    2012-01-01

    Abstract Background Although uniquely capable of measuring multiple redox constituents nearly simultaneously with no or minimal sample pretreatment, voltammetry is currently underutilized in characterizing redox conditions in aquatic and terrestrial systems. Investigation of undisturbed media such as pore water requires a solid-state electrode, and such electrodes can be difficult to fabricate reproducibly. An approach to determine the concentrations of electroactive constituents using indire...

  5. On not showing scalps

    DEFF Research Database (Denmark)

    Marselis, Randi Lorenz

    2016-01-01

    proposed by Janet Marstine, the editor of the Routledge Companion to Museum Ethics, I show how the museum succeeded in engaging users in questions of museum ethics. However, this specific debate on human remains in museums developed into an encounter between a global, museological discourse...

  6. Honored Teacher Shows Commitment.

    Science.gov (United States)

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  7. A Visionary Show

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Seduction. Distinction. Relax. Pulsation. These are the "style universes" on display at Première Vision, heralded as "The World’s Premiere Fabric Show." Started more than 35 years ago by 15 French weavers, Première Vision has expanded beyond its

  8. Honored Teacher Shows Commitment.

    Science.gov (United States)

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  9. Sampled-current voltammetry at microdisk electrodes: kinetic information from pseudo steady state voltammograms.

    Science.gov (United States)

    Perry, Samuel C; Al Shandoudi, Laila M; Denuault, Guy

    2014-10-07

    In sampled-current voltammetry (SCV), current transients acquired after stepping the potential along the redox wave of interest are sampled at a fixed time to produce a sigmoidal current-potential curve akin to a pseudo steady state voltammogram. Repeating the sampling for different times yields a family of sampled-current voltammograms, one for each time scale. The concept has been used to describe the current-time-potential relationship at planar electrodes but rarely employed as an electroanalytical method except in normal pulse voltammetry where the chronoamperograms are sampled once to produce a single voltammogram. Here we combine the unique properties of microdisk electrodes with SCV and report a simple protocol to analyze and compare the microdisk sampled-current voltammograms irrespective of sampling time. This is particularly useful for microelectrodes where cyclic voltammograms change shape as the mass transport regime evolves from planar diffusion at short times to hemispherical diffusion at long times. We also combine microdisk sampled-current voltammetry (MSCV) with a conditioning waveform to produce voltammograms where each data point is recorded with the same electrode history and demonstrate that the waveform is crucial to obtaining reliable sampled-current voltammograms below 100 ms. To facilitate qualitative analysis of the voltammograms, we convert the current-potential data recorded at different time scales into a unique sigmoidal curve, which clearly highlights kinetic complications. To quantitatively model the MSCVs, we derive an analytical expression which accounts for the diffusion regime and kinetic parameters. The procedure is validated with the reduction of Ru(NH3)6(3+), a model one electron outer sphere process, and applied to the derivation of the kinetic parameters for the reduction of Fe(3+) on Pt microdisks. The methodology reported here is easily implemented on computer controlled electrochemical workstations as a new

  10. The determination of heavy metals in human gallstone by anodic stripping voltammetry; Analyse des metaux lourds contenus dans les calculs de la vesicule biliaire

    Energy Technology Data Exchange (ETDEWEB)

    Bouropoulos, N.; Koutsoukos, P.G.; Karavias, D. [Patras Univ. (Greece). Dept. of Inorganic Chemistry

    1996-04-01

    The accumulation of heavy metals in human tissues is indicative of exposure to toxic substances and analysis for their concentration levels in pathological situations may be correlated with the respective problems. In this work, anodic stripping voltammetry was applied to the analysis of the heavy metal content of human gallstones extracted surgically from patients coming from the region of south-western Greece. The stones were analysed for lead, copper cadmium zinc. The results obtained did not show any correlation of the analytical concentration of the heavy metals with the cholesterol or bilirubin content of the stones. Copper was found to be present in high concentrations while the mole fractions of cadmium and lead in the stones showed a linear log-log relationship with the total heavy metal concentration. The simplicity of the instrumentation involved, the extremely high sensitivity of the method and the high accuracy obtained make anodic stripping voltammetry a useful tool for the further investigation of the role of heavy metals in the pathogenesis of gallstones. (authors) 15 refs.

  11. Hydrodynamic sono-voltammetry of ferrocene in [Tf2N]- based ionic liquid media.

    Science.gov (United States)

    Costa, Cédric; Doche, Marie-Laure; Hihn, Jean-Yves; Bisel, Isabelle; Moisy, Philippe; Lévêque, Jean-Marc

    2010-02-01

    The present work deals with the hydrodynamic behavior of several room-temperature ionic liquids presenting the same bis(trifluoromethanesulfonyles)imide anion, associated with four different cations: 1-butyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, N-trimethyl-N-propylammonium and 1-butyl-1-methylpyrrolidinium cations. Steady state voltammetry was used as an electrochemical technique to characterize mass transfer in both silent and sonicated conditions, using a rotating disk electrode. Results obtained in RTILs media are compared to those acquired in synthetic solutions of controlled viscosity, in order to develop a better understanding of the phenomena involved in such media.

  12. Pulse radiolysis and cyclic voltammetry studies of redox properties of phenothiazine radicals

    Energy Technology Data Exchange (ETDEWEB)

    Madej, Edyta [Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom)]. E-mail: madej@gci.ac.uk; Wardman, Peter [Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom)

    2006-09-15

    One-electron transfer equilibria between seven phenothiazines were characterized by pulse radiolysis, producing radical-cations via oxidation by Br{sub 2} {sup .-} or (SCN){sub 2} {sup .-} radicals. The reduction potentials of the phenothiazine radicals were determined by cyclic voltammetry. As an independent check, the redox equilibrium between one phenothiazine and the redox indicator ABTS was investigated. The data establish phenothiazines as useful indicators for radical redox properties. However, there are potential problems of aggregation, additional reactions with Br{sup -}/Br{sub 2} {sup .-} and reactivity of the radicals towards buffers or other nucleophiles.

  13. Theory of Square-Wave Voltammetry of Two-Electron Reduction with the Adsorption of Intermediate

    Directory of Open Access Journals (Sweden)

    Milivoj Lovric

    2012-01-01

    Full Text Available Thermodynamically unstable intermediate of fast and reversible two-electron electrode reaction can be stabilized by the adsorption to the electrode surface. In square-wave voltammetry of this reaction mechanism, the split response may appear if the electrode surface is not completely covered by the adsorbed intermediate. The dependence of the difference between the net peak potentials of the prepeak and postpeak on the square-wave frequency is analyzed theoretically. This relationship can be used for the estimation of adsorption constant.

  14. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  15. Simultaneous Determination of Bismuth and Copper by Square Wave Voltammetry in The Presence of Ethylenediaminetetraacedic Acid

    OpenAIRE

    HASDEMİR, Erdoğan; KARABODUK, Kuddusi

    2010-01-01

    A sensitive and selective method for the simultaneous determination of copper and bismuth by square wave voltammetry (SWV) was developed using ethylenediaminetetraacedic acid (EDTA) as complexing agent. Factors affecting the pH and concentrations ratios of copper and bismuth were investigated. Optimal analytical conditions were  found to be: pH of 8.0, the ratio of [Cu2+]/[Bi3+] was 0.13-2.5. The limit of detection (3δ) was 1.26 × 10-7 mol dm-3 for copper,  1.30×10...

  16. Rapid Kinetics and Relative Reactivity of Some Five Membered Aromatic Heterocycles using Hydrodynamic Voltammetry

    Directory of Open Access Journals (Sweden)

    S. B. Walke

    2015-12-01

    Full Text Available Kinetics of the bromination of imidazole, pyrazole and thiazole by molecular bromine and N-bromosuccinimide has been studied in aqueous medium. Since the reactions are rapid special technique namely, hydrodyanamic voltammetry has been employed to follow the course of the reactions. These reactions follow second order kinetics. The comparative kinetic data determines the reactivity order for these heterocycles towards the bromination using two different brominating reagents. The study justifies the stereochemical principles ascertaining the relative reactivity of these heterocycles quantitatively using kinetics as an investigational tool.

  17. APPLICATION OF PRINCIPAL COMPONENTS ANALYSIS IN THE STUDY OF ADSORPTIVE VOLTAMMETRY OF METALICS IONS

    Directory of Open Access Journals (Sweden)

    Leandra de Oliveira Cruz da Silva

    2010-01-01

    Full Text Available The adsorptive stripping voltammetry with differential pulse cathodic through the use of a mixture of complexing agents dimethylglyoxime and oxine was used for an exploratory study simultaneously of ions cadmium, cobalt, copper, nickel, lead and zinc. Were obtained voltammograms of the 64 individual solutions used in planning and current data were submitted to principal component analysis (PCA, allowing to characterize the trends of the solutions of metal ions studied. The system can be described in eight principal components that explained 98.32% of variance. Since the first three principal components accumulated approximately 85.46% of the total variance.

  18. General theory of cathodic and anodic stripping voltammetry at solid electrodes: mathematical modeling and numerical simulations.

    Science.gov (United States)

    Ward Jones, Sarah E; Chevallier, François G; Paddon, Christopher A; Compton, Richard G

    2007-06-01

    Theory is presented to describe the voltammetric signals associated with the stripping phase of stripping voltammetry at solid electrodes. Three mathematical models are considered, and the importance of the hemispherical diffusion associated with electrochemical dissolution of particles in the micrometer range is investigated. Model A considers a "monolayer" system where the coverage at a specific point cannot exceed a maximum value. Model B considers a thin layer of metal or metal oxide, but in contrast to model A, the maximum surface coverage is not restricted. Model C represents the stripping of a "thick layer" where the deposition is also unrestricted.

  19. Detection of iron(III)-binding ligands originating from marine phytoplankton using cathodic stripping voltammetry.

    Science.gov (United States)

    Hasegawa, Hiroshi; Maki, Teruya; Asano, Kohnosuke; Ueda, Kentaro; Ueda, Kazumasa

    2004-01-01

    The sample preparation and analytical methodology are described for detecting biologically produced iron(III)-binding ligands in laboratory cultures of coastal marine phytoplankton. The iron(III)-binding ligands from the culture media were purified by passage through a column packing with a hydrophobic absorbent. The concentrations and stability constants of the ligands were determined by adsorptive cathodic stripping voltammetry with competitive ligand equilibration. The analytical results of the cultivated cultures suggest that eukaryotic phytoplankton would produce iron(III)-binding ligands in analogy with other microorganisms.

  20. Anodic stripping voltammetry of nickel ions and nickel hydroxide nanoparticles at boron-doped diamond electrodes

    Science.gov (United States)

    Musyarofah, N. R. R.; Gunlazuardi, J.; Einaga, Y.; Ivandini, T. A.

    2017-04-01

    Anodic stripping voltammetry (ASV) of nickel ions in phosphate buffer solution (PBS) have been investigated at boron-doped diamond (BDD) electrodes. The deposition potential at 0.1 V (vs. Ag/AgCl) for 300 s in 0.1 M PBS pH 3 was found as the optimum condition. The condition was applied for the determination of nickel contained in nickel hydroxide nanoparticles. A linear calibration curve can be achieved of Ni(OH)2-NPs in the concentration range of x to x mM with an estimated limit of detection (LOD) of 5.73 × 10-6 mol/L.

  1. Linear-sweep voltammetry of a soluble redox couple in a cylindrical electrode

    Science.gov (United States)

    Weidner, John W.

    1991-01-01

    An approach is described for using the linear sweep voltammetry (LSV) technique to study the kinetics of flooded porous electrodes by assuming a porous electrode as a collection of identical noninterconnected cylindrical pores that are filled with electrolyte. This assumption makes possible to study the behavior of this ideal electrode as that of a single pore. Alternatively, for an electrode of a given pore-size distribution, it is possible to predict the performance of different pore sizes and then combine the performance values.

  2. Shanghai Shows Its Heart

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The city known as China’s economic powerhouse showed a more caring face as host of the Special Olympic Games Between October 2 and 11,the Special Olympics Summer Games were hosted in Shanghai,the first time the 40-year-old athletic com- petition for people with intellectual disabilities came to a developing country. This Special Olympics was also larger than all previous games in temps of the number of athletes.

  3. Poly(ester sulphonic acid) coated mercury thin film electrodes: characterization and application in batch injection analysis stripping voltammetry of heavy metal ions.

    Science.gov (United States)

    Brett, C M; Fungaro, D A

    2000-01-10

    Mercury-thin film electrodes coated with a thin film of poly(ester sulphonic acid) (PESA) have been investigated for application in the analysis of trace heavy metals by square wave anodic stripping voltammetry using the batch injection analysis (BIA) technique. Different polymer dispersion concentrations in water/acetone mixed solvent are investigated and are characterised by electrochemical impedance measurements on glassy carbon and on mercury film electrodes. The influence of electrolyte anion, acetate or nitrate, on polymer film properties is demonstrated, acetate buffer being shown to be preferable for stripping voltammetry applications. Although stripping currents are between 30 and 70% less at the coated than at bare mercury thin film electrodes, the influence of model surfactants on stripping response is shown to be very small. The effect of the composition of the modifier film dispersion on calibration plots is shown; however, detection limits of around 5 nM are found for all modified electrodes tested. This coated electrode is an alternative to Nafion-coated mercury thin film electrodes for the analysis of trace metals in complex matrices, particularly useful when there is a high concentration of non-ionic detergents.

  4. Preparation and Evaluation of Acetabularia-Modified Carbon Paste Electrode in Anodic Stripping Voltammetry of Copper and Lead Ions

    Directory of Open Access Journals (Sweden)

    Muhammad Raziq Rahimi Kooh

    2013-01-01

    Full Text Available Seaweed is well known about for potential in chelating heavy metals. In this study, carbon paste electrodes were fabricated with siphonous seaweed Acetabularia acetabulum as the modifiers to sense lead (II and copper (II by square-wave anodic stripping voltammetry. Various scan rates and deposition potentials were measured to obtain the optimal peak current for Pb(II and Cu(II. Optimum conditions of Acetabularia-CPE for sensing Pb(II were at the scan rate of 75 mV/s and deposition potential of −800 mV, while for Cu(II sensing were at 100 mV/s and −300 mV, respectively. The electrodes were characterized by the duration of accumulation time, preconcentration over a range of standards, supporting electrolyte, and standard solutions of various pH values. Interference studies were carried out. Both Zn(II and Cu(II were found to interfere with Pb(II sensing, whereas only Zn(II causes interference with Cu(II sensing. The electrode was found to have good regeneration ability via electrochemical cleaning. Preliminary testing of complex samples such as NPK fertilisers, black soil, and sea salt samples was included.

  5. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data.

    Science.gov (United States)

    Rodeberg, Nathan T; Johnson, Justin A; Bucher, Elizabeth S; Wightman, R Mark

    2016-11-16

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS.

  6. Effect of ohmic, mass-transfer, and kinetic resistances on linear-sweep voltammetry in a cylindrical-pore electrode

    Science.gov (United States)

    Weidner, John W.; Fedkiw, Peter S.

    1991-01-01

    A means is presented to account for the effect of ohmic, mass-transfer, and kinetic resistances on linear-sweep voltammograms by modeling a pore in a porous matrix as a cylindrical-pore electrode, and solving the mass and charge conservation equations in the context of this geometry for the simply redox reaction O + ne(-) yield R where both O and R are soluble species. Both analytical and numerical techniques are used to solve the governing equations. The calculated peak currents and potentials are correlated by empirical formulas to the measurable parameters: sweep rate, concentration of the redox species, diffusion coefficient, conductivity of the electrolyte, and pore dimensions. Using the correlations, a methodology is established for determining if the redox reaction kinetics are irreversible or reversible (Nernstian). If the reaction is irreversible, it is shown how the standard rate constant and the transfer coefficient may be extracted from linear-sweep voltammetry data, or, if the reaction is reversible, how the number of electrons transferred may be deduced.

  7. Fabrication and Demonstration of Mercury Disc-Well Probes for Stripping-Based Cyclic Voltammetry Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Barton, Zachary J; Rodríguez-López, Joaquín

    2017-03-07

    Scanning electrochemical microscopy (SECM) is a rising technique for the study of energy storage materials. Hg-based probes allow the extension of SECM investigations to ionic processes, but the risk of irreversible Hg amalgam saturation limits their operation to rapid timescales and dilute analyte solutions. Here, we report a novel fabrication protocol for Hg disc-well ultramicroelectrodes (UMEs), which retain access to stripping information but are less susceptible to amalgam saturation than traditional Hg sphere-caps or thin-films. The amalgamation and stripping behaviors of Hg disc-well UMEs are compared to those of traditional Hg sphere-cap UMEs and corroborated with data from finite element simulations. The improved protection against amalgam saturation allows Hg disc-wells to operate safely in highly concentrated environments at long timescales. The utility of the probes for bulk measurements extends also to SECM studies, where the disc geometry facilitates small tip-substrate gaps and improves both spatial and temporal resolution. Because they can carry out slow, high-resolution anodic stripping voltammetry approaches and imaging in concentrated solutions, Hg disc-well electrodes fill a new analytical niche for studies of ionic reactivity and are a valuable addition to the electrochemical toolbox.

  8. Probing the electrochemical properties of TiO{sub 2}/graphene composite by cyclic voltammetry and impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Pankaj [Department of Physics, Marwadi Education Foundation, Rajkot 360003 (India); Pandey, Kavita; Bhatt, Parth [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); Tripathi, Brijesh, E-mail: brijesh.tripathi@sse.pdpu.ac.in [School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); Pandey, Manoj Kumar; Kumar, Manoj [School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India)

    2016-04-15

    Highlights: • Role of TiO{sub 2}/graphene composite in charge transport within supercapacitors. • DC and AC characterization to investigate voltage dependence of charge transport. • Physical insight into the electrochemistry of electrode–electrolyte interface. - Abstract: This work describes the role of graphene in charge transport and diffusion mechanism at TiO{sub 2}/graphene electrode–electrolyte interface. To explore the mechanism, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used. The CV results depict that TiO{sub 2} and TiO{sub 2}/graphene electrodes behave differently in terms of charge transport and ion adsorption under the steady state conditions. The performance of TiO{sub 2} electrode–electrolyte interface is mainly limited by the charge transport and pseudo-capacitive effects while the response of TiO{sub 2}/graphene electrode–electrolyte interface is mainly dominated by the double layer capacitive effects. The EIS measurement leads to the direct determination of broad range of parameters, i.e. series resistance, charge transport, rate capability and ion diffusion. The experimental results and their analysis will have a significant impact on understanding the role of graphene in the electrochemical response of an electrode–electrolyte interface.

  9. Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry.

    Science.gov (United States)

    Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R

    2016-06-15

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.

  10. Determination of Cr (in small quantities) by adsorptive stripping voltammetry: a comparative study of square wave versus differential pulse

    Energy Technology Data Exchange (ETDEWEB)

    Misiego, A.Sanchez; Carra, R.M.Garcia-Monco; Carracedo, P.Ambel; Torre, M.E.Majado [Departamento de Quimica Analitica y Electroquimica, Universidad de Extremadura, 06071, Badajoz (Spain)

    2003-08-01

    The usefulness of an analytical method must be measured according to its practical application possibilities. A comparative study has been carried out here between the SW (working in an open atmosphere) and DP (working with de-aerated solutions) variants of catalytic-stripping adsorptive voltammetry applied to the determination of chromium traces in triethylenetetraminehexaacetic acid (TTHA) medium. In order to optimise the analytical signal, accumulation potential, nitrate ion concentration, pH, and TTHA concentration parameters were evaluated. Four linearity ranges were established within the interval 0.5-2000 nmol L{sup -1} chromium concentration in the cell, each with the recommended accumulation time. Quality parameters such as repeatability, linear regression, validity limits, precision, and sensitivity were evaluated. The SW variant is significantly advantageous when the chromium concentration in cell is less than 10 nmol L{sup -1} and even more if analysis time, cost, and being able to work in an open atmosphere are considered. The results are comparable to those obtained using GTAAS. Employing a CRM (tomato leaves), the accuracy is 1-4%. The proposed procedure, using tree leaves as samples, has been successfully tested for the possible monitoring of chromium contamination of the atmosphere. (orig.)

  11. SENSING OF PROSTATE SPESIFIC ANTIGEN BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY OF GOLD NANOPARTICLE - SILVER ENHANCED LABELS

    Directory of Open Access Journals (Sweden)

    Rika Endara Safitri

    2016-09-01

    Full Text Available A sensitive prostate specific antigen (PSA detection method based on peptide cleavage and silver enhancement of gold nanoparticle (AuNP has been developed. PSA is serine protease produced by both normal prostate glandular cells and prostate cancer cells. PSA widely used as a biomarker for prostate cancer (PCa. The activity of PSA was detected by following mechanism: first, some immobilized peptide on the bottom of wellplate was undergo cleaving process via biotin-avidin interaction, leaving short peptide (without thiol group that could not form a link with gold nanoparticle. Meanwhile, the remaining peptide which not undergo such process could self-assemble with AuNPs, followed by autocatalytic reduction with silver enhancement solutions to silver metal (Ag. The Ag content on AuNPs was determined by differential pulse anodic stripping voltammetry, after axidation of Ag metal to Ag+ ions, using screen printed carbon electrode. The measurement conditions and immunoassay components had been optimized in this study. The detection of PSA was successfully carried out by this method with limit detection value of 152.204 ng/mL, but further development is necessary to improve the limit detection value.

  12. The cyclic renewable mercury film silver based electrode for determination of molybdenum(VI) traces using adsorptive stripping voltammetry.

    Science.gov (United States)

    Piech, Robert; Baś, Bogusław; Kubiak, Władysław W

    2008-07-15

    The new cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of molybdenum(VI) traces using differential pulse adsorptive cathodic stripping voltammetry (DP AdSV) is presented. The Hg(Ag)FE electrode is characterized by very good surface reproducibility (measurement cycles). The preparation of the Hg(Ag)FE is very simple and its operation may be controlled automatically. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (192 ng L(-1)) to 200 nM (19 microg L(-1)) for an accumulation time of 15s, with correlation coefficient of 0.9995. For a Hg(Ag)FE with a surface area of 3.5mm(2) the detection limit for an accumulation time of 60s is as low as 8 ng L(-1). The repeatability of the method at a concentration level of the analyte as low as 2.4 microg L(-1), expressed as R.S.D. is 1.3% (n=7). The proposed method was successfully applied and validated by studying the certified reference material TMRAIN-95 and simultaneous recovering of Mo(VI) from spiked water and sediment samples.

  13. Not a "reality" show.

    Science.gov (United States)

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  14. Development and Characterization of Carbon-Fiber Microbiosensors for Fast-Scan Cyclic Voltammetry

    Science.gov (United States)

    Lugo-Morales, Leyda Zoraida

    Electrochemistry has been shown to be a robust tool in neuroscience. The use of carbon-fiber microelectrodes coupled with background-subtracted fast-scan cyclic voltammetry (FSCV) offers high sensitivity, selectivity, as well as the spatial and temporal resolution necessary for monitoring rapid fluctuations of electroactive molecules in live brain tissue. Dopamine (DA) is a neurotransmitter playing a key role in the regulation of reward and motivated behavior. FSCV has been used to understand DA dynamics and how these underlie discrete aspects of brain function. The methodological aspects of real-time DA detection at carbon-fiber microelectrodes using FSCV in anesthetized and awake animals are presented. Furthermore, the combination of FSCV with other neuroanalytical techniques is also explained. The advantages of FSCV and carbon-fiber microelectrodes can be expanded to the detection of non-electroactive analytes. This broadens the scope of FSCV such that it can be used to investigate how changes in non-electroactive chemicals underlie disease, cognition, and behavior. Carbon-fiber microelectrodes can be modified with an enzyme to monitor non-electroactive molecules, generating an electroactive product (usually hydrogen peroxide, H2O2). The first voltammetric detection of H2O 2 at bare carbon-fiber microelectrodes using FSCV has recently been reported. Thus, an avenue exists to utilize FSCV at enzyme-modified microelectrodes to voltammetrically identify and quantify non-electroactive analytes in real-time. Such an approach will overcome many limitations associated with the traditional amperometric detection scheme, which lacks electrochemical selectivity. Electrodeposition of the biopolymer chitosan with glucose oxidase (GOx) at the carbon surface yields a stable, sensitive, and selective glucose microbiosensor that has been utilized to detect glucose fluctuations in vivo with unprecedented speed. This new method has revealed the first rapid glucose fluctuations in

  15. Showing Value (Editorial

    Directory of Open Access Journals (Sweden)

    Denise Koufogiannakis

    2009-06-01

    Full Text Available When Su Cleyle and I first decided to start Evidence Based Library and Information Practice, one of the things we agreed upon immediately was that the journal be open access. We knew that a major obstacle to librarians using the research literature was that they did not have access to the research literature. Although Su and I are both academic librarians who can access a wide variety of library and information literature from our institutions, we belong to a profession where not everyone has equal access to the research in our field. Without such access to our own body of literature, how can we ever hope for practitioners to use research evidence in their decision making? It would have been contradictory to the principles of evidence based library and information practice to do otherwise.One of the specific groups we thought could use such an open access venue for discovering research literature was school librarians. School librarians are often isolated and lacking access to the research literature that may help them prove to stakeholders the importance of their libraries and their role within schools. Certainly, school libraries have been in decline and the use of evidence to show value is needed. As Ken Haycock noted in his 2003 report, The Crisis in Canada’s School Libraries: The Case for Reform and Reinvestment, “Across the country, teacher-librarians are losing their jobs or being reassigned. Collections are becoming depleted owing to budget cuts. Some principals believe that in the age of the Internet and the classroom workstation, the school library is an artifact” (9. Within this context, school librarians are looking to our research literature for evidence of the impact that school library programs have on learning outcomes and student success. They are integrating that evidence into their practice, and reflecting upon what can be improved locally. They are focusing on students and showing the impact of school libraries and

  16. Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric

    2014-11-18

    Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 μm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.

  17. Catalytic Adsorptive Stripping Voltammetry at a Carbon Paste Electrode for the Determination of Amiodarone

    Institute of Scientific and Technical Information of China (English)

    LIU Ning; GAO Wei; SONG Jun-Feng

    2006-01-01

    Voltammetry using solid electrodes usually suffers from the contamination due to the deposition of the redox products of analytes on the electrode surface. The contamination has resulted in poor reproducibility and overelaborate operation procedures. The use of the chemical catalysis of oxidant on the reduction product of analyte not only can eliminate the contamination of analyte to solid electrodes but also can improve the faradaic response of analyte. This work introduced both the catalysis of oxidant K2S2O8 and the enhancement of surfactant Triton X-100 on the faraday response of amiodarone into an adsorptive stripping voltammetry at a carbon paste electrode for the determination of amiodarone. The method exhibits high sensitivity, good reproducibility and simple operation procedure. In 0.2 mol·L-1 HOAc-NaOAc buffer (pH=5.3) containing 2.2 × 10-2 mol·L-1 K2S2O8 and 0.002% Triton X-100, the 2.5th-order derivative stripping peak current of the catalytic wave at 0.3 V (vs. Ag/AgCl) is rectilinear to amiodarone concentration in the range of 2.0× 10-10-2.3× 10-8 mol·L-1 with a detection limit of 1.5× l0-10 mol·L-1 after accumulation at 0 V for 30 s.

  18. Determination of copper in whole blood by differential pulse adsorptive stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Tarik Attar

    2014-02-01

    Full Text Available A selective and sensitive method for determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The method is based on adsorptive accumulation of the complexes of Cu (II ions with benzenesulfonyl hydrazide onto hanging mercury drop electrode (HMDE, followed by the reduction of the adsorbed species by differential pulse cathodic stripping voltammetry. The effect of various parameters such as supporting electrolyte, concentration of benzenesulfonyl hydrazide, accumulation potential, accumulation time and stirring rate on the selectivity and sensitivity were studied. The optimum conditions for determination of copper include perchloric acid 0.03 M, concentration of benzenesulfonyl hydrazide 7.5×10-5 M, the accumulation potential of -350 mV (vs. Ag/AgCl, the accumulation time of 50 s, and the scan rate of 50 mV s-1. Under optimized conditions, linear calibration curves were established for the concentration of Cu (II in the range of 0.62-275 ng mL-1, with detection limit of 0.186 ng mL-1 for Cu (II. The procedure was successfully applied to the determination of copper ion in whole blood samples.

  19. Accurate analytical expressions for stripping voltammetry in the Henry adsorption limit.

    Science.gov (United States)

    Calvente, Juan José; Andreu, Rafael

    2011-08-15

    A strategy is developed to derive accurate analytical expressions for low-coverage cathodic stripping voltammetry. The procedure relies on the observation that diffusion affects the location of simulated voltammetric waves but not their shape, provided that physisorption of the analyte is negligible. As a proof of the generality of the proposed approach and having in mind the stripping of thiols, analytical solutions are derived for the cathodic stripping of monomers, dimers, and a mixture of monomers and dimers, whose reliability is proved by their comparison with numerically simulated voltammograms. Application to the deposition and reductive desorption of mercaptoacetic acid at a mercury electrode demonstrates that these approximate solutions can be used to get insights into the interfacial organization of incipient films. For this particular system, a transition from monomeric to dimeric behavior is identified upon increasing the thiol surface concentration. Further generalization of the proposed methodology is achieved by deriving an approximate analytical solution for thin-layer anodic stripping voltammetry, which is satisfactorily compared to the existing summation series solution.

  20. Determination of trace amounts of morphine in human plasma by anodic adsorptive stripping differential pulse voltammetry

    Institute of Scientific and Technical Information of China (English)

    Ali Niazi; Ateesa Yazdanipour

    2008-01-01

    New adsorptive anodic differential pulse stripping voltammetry method for the direct determination of morphine at trace levels in human plasma of addicts is proposed.The procedure involves an adsorptive accumulation of morphine on a HMDE,followed by oxidation of adsorbed morphine by voltammetry scan using differential pulse modulation.The optimum conditions for the analysis of morphine are pH 10.5,Eacc of - 100 mV (vs.Ag/AgCl),and tacc of 120 s.The peak current is proportional to the concentration of morphine,and a linear calibration graph is obtained at 0.01-3.10 μg mL-1.A relative standard deviation of 1.06% (n=5) was obtained,and the limit of detection was 3 ng mL- 1.The capability of the method for the analysis of real samples was evaluated by the determination of morphine in spiked human plasma and addicts human plasma with satisfactory results.

  1. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    Science.gov (United States)

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  2. Electrochemical Studies of Betti Base and Its Copper(II Complex by Cyclic and Elimination Voltammetry

    Directory of Open Access Journals (Sweden)

    Shardul Bhatt

    2013-01-01

    Full Text Available The electrochemical behavior of Betti base 1-(α-amino benzyl-2-naphthol (BB and its copper(II complex by cyclic and elimination voltammetry (EVLS is reported in the present study. The cyclic voltammetric studies carried out at a glassy carbon working electrode, Ag/Ag+ reference electrode (0.01 M AgNO3 in acetonitrile in DCM at 100 mV/sec, 200 mV/sec, and 400 mV/sec scan rates indicated a preceding chemical oxidation of the adsorbed BB species to form an iminium ion followed by formation of a carbanion via two-step quasireversible reduction. The suggested reaction mechanism has been supported by the elimination voltammetry. The CV and EVLS studies revealed Cu(IIBB complex to undergo a chemical or a surface reaction before electron transfer from the electrode at −0.49 V to form Cu(IBB species. The oxidation of Cu(IBB species has been observed to be CV silent.

  3. Public medical shows.

    Science.gov (United States)

    Walusinski, Olivier

    2014-01-01

    In the second half of the 19th century, Jean-Martin Charcot (1825-1893) became famous for the quality of his teaching and his innovative neurological discoveries, bringing many French and foreign students to Paris. A hunger for recognition, together with progressive and anticlerical ideals, led Charcot to invite writers, journalists, and politicians to his lessons, during which he presented the results of his work on hysteria. These events became public performances, for which physicians and patients were transformed into actors. Major newspapers ran accounts of these consultations, more like theatrical shows in some respects. The resultant enthusiasm prompted other physicians in Paris and throughout France to try and imitate them. We will compare the form and substance of Charcot's lessons with those given by Jules-Bernard Luys (1828-1897), Victor Dumontpallier (1826-1899), Ambroise-Auguste Liébault (1823-1904), Hippolyte Bernheim (1840-1919), Joseph Grasset (1849-1918), and Albert Pitres (1848-1928). We will also note their impact on contemporary cinema and theatre.

  4. Electrochemical determination of resveratrol in dietary supplements at a boron-doped diamond electrode in the presence of hexadecyltrimethylammonium bromide using square-wave adsorptive stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Yardim Yavuz

    2017-01-01

    Full Text Available A sensitive electroanalytical methodology for the determination of resveratrol is presented for the first time using adsorptive stripping voltammetry at a bare boron-doped diamond (BDD electrode. In cyclic voltammetry, resveratrol shows one irreversible and an adsorption-controlled oxidation peak at a BDD electrode. The voltammetric results indicated that in the presence of hexadecyl trimethyl ammonium bromide, the BDD electrode remarkably enhanced the oxidation of resveratrol, which leads to an improvement in the peak current with a shift of the peak potential to more positive values. Using the square-wave stripping mode, the compound yielded a well-defined voltammetric response in 0.1 M nitric acid solution containing 100 μmol L-1 hexadecyl trimethyl ammonium bromide at 0.74 V (vs. Ag/AgCl, after 60 s accumulation at the open-circuit condition. A linear calibration graph was obtained in the concentration range 0.025 to 60.0 μg mL-1, with a detection limit of 0.0063 μg mL-1. The applicability of the proposed method was verified by analysis of resveratrol in commercial dietary supplements.

  5. Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step.

    Science.gov (United States)

    Laffont, Laure; Hezard, Teddy; Gros, Pierre; Heimbürger, Lars-Eric; Sonke, Jeroen E; Behra, Philippe; Evrard, David

    2015-08-15

    Gold nanoparticles (AuNPs) were deposited on a glassy carbon (GC) substrate by constant potential electrolysis and characterized by cyclic voltammetry in H2SO4 and field emission gun scanning electron microscopy (FEG-SEM). The modified AuNPs-GC electrode was used for low Hg(II) concentration detection using a Square Wave Anodic Stripping Voltammetry (SWASV) procedure which included a chloride desorption step. The comparison of the obtained results with our previous work in which no desorption step was used showed that this latter step significantly improved the analytical performances, providing a three time higher sensitivity and a limit of detection of 80pM for 300s preconcentration, as well as a lower average standard deviation. The influence of chloride concentration on the AuNPs-GC electrode response to Hg(II) trace amounts was also studied and its optimal value confirmed to be in the 10(-2)M range. Finally, the AuNPs-GC electrode was used for the determination of Hg(II) in a natural groundwater sample from south of France. By using a preconcentration time of 3000s, a Hg(II) concentration of 19±3pM was found, which compared well with the result obtained by cold vapor atomic fluorescence spectroscopy (22±2pM).

  6. Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy.

    Science.gov (United States)

    Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun

    2014-02-01

    The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo. © 2013.

  7. The Graphene/l-Cysteine/Gold-Modified Electrode for the Differential Pulse Stripping Voltammetry Detection of Trace Levels of Cadmium

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-06-01

    Full Text Available Cadmium(II is a common water pollutant with high toxicity. It is of significant importance for detecting aqueous contaminants accurately, as these contaminants are harmful to human health and environment. This paper describes the fabrication, characterization, and application of an environment-friendly graphene (Gr/l-cysteine/gold electrode to detect trace levels of cadmium (Cd by differential pulse stripping voltammetry (DPSV. The influence of hydrogen overflow was decreased and the current response was enhanced because the modified graphene extended the potential range of the electrode. The Gr/l-cysteine/gold electrode showed high electrochemical conductivity, producing a marked increase in anodic peak currents (vs. the glass carbon electrode (GCE and boron-doped diamond (BDD electrode. The calculated detection limits are 1.15, 0.30, and 1.42 µg/L, and the sensitivities go up to 0.18, 21.69, and 152.0 nA·mm−2·µg−1·L for, respectively, the BDD electrode, the GCE, and the Gr/l-cysteine/gold electrode. It was shown that the Gr/l-cysteine/gold-modified electrode is an effective means for obtaining highly selective and sensitive electrodes to detect trace levels of cadmium.

  8. Simultaneous determination of paracetamol and ibuprofen in pharmaceutical samples by differential pulse voltammetry using a boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Amanda B.; Guimaraes, Carlos F.R.C.; Verly, Rodrigo M.; Silva, Leonardo M. da [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil). Departamento de Quimica; Torres, Livia M.F.C.; Carvalho Junior, Alvaro D.; Santos, Wallans T. P. dos, E-mail: wallanst@ufvjm.edu.br [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil). Departamento de Farmacia

    2014-03-15

    This work presents a simple, fast and low-cost methodology for the simultaneous determination of paracetamol (PC) and ibuprofen (IB) in pharmaceutical formulations by differential pulse voltammetry using a boron-doped diamond (BDD) electrode. A well-defined oxidation peak was observed using the BDD electrode for each analyte (0.85 V for PC and 1.72 V for IB (vs. Ag/AgCl)) in 0.1 mol L{sup -1} H{sub 2}SO{sub 4} solution containing 10% (v/v) of ethanol. Calibration curves for the simultaneous determination of PC and IB showed a linear response for both drugs in a concentration range of 20 to 400 μmol L{sup -1} (r{sup 2} = 0.999), with a detection limit of 7.1 μmol L{sup -1} for PC and 3.8 μmol L{sup -1} for IB. The addition-recovery studies in samples were about 100% and the results were validated by chromatographic methods. (author)

  9. Redox properties of catechins and enriched green tea extracts effectively preserve L-5-methyltetrahydrofolate: assessment using cyclic voltammetry analysis.

    Science.gov (United States)

    Rozoy, Elodie; Araya-Farias, Monica; Simard, Stéphan; Kitts, David; Lessard, Jean; Bazinet, Laurent

    2013-06-01

    A cyclic voltammetry (CV) study was performed in pH 5.5 Britton-Robinson buffer at room temperature to study the stability of 1mM l-5-methyltetrahydrofolate (l-5-MTHF) in combination with epigallocatechin-gallate-enriched extract (EGCGe) and epigallocatechin-enriched extract (EGCe). The combination of l-5-MTHF with enriched catechin extracts provided enhanced stability of l-5-MTHF over a period of 12h under ambient air conditions at pH 5.5. CV experiments showed that increasing the concentrations of EGCGe or EGCe extracts from 80 to 400mg/L produced a decrease in the second oxidation peak of l-5-MTHF. Thus, we calculated that l-5-MTHF remained at nearly 90% when in the presence of enriched tea extracts, compared to 74% without the tea antioxidants. The catechins responsible for this preservation were EGCG and C, confirmed by LC-MS. Compared to covalent link only low interaction (hydrogen bonds) between the different catechins present in the tea extract would stabilise l-5-MTHF. Rather, it was hypothesised that EGCGe and EGCe were effective agents to preserve l-5-MTHF, through a mechanism that also involved the redox potential of catechins to maintain l-5-MTHF in its reduced form.

  10. Simultaneous determination of trace uranium(VI) and zinc(II) by adsorptive cathodic stripping voltammetry with aluminon ligand.

    Science.gov (United States)

    Cha, K W; Park, C I; Park, S H

    2000-09-05

    Uranium(VI) complexed with aluminon (3-[bis(3-carboxy-4-hydroxy-phenyl)methylene]-6-oxo-1,4-cyclohexadiene-1-carboxylic acid triammonium salt) was determined by adsorptive cathodic stripping voltammetry (ACSV) using a hanging mercury drop electrode. Trace uranium(VI) and zinc(II) can be simultaneously determined in a single scan in the presence of aluminon and urea. Optimal conditions were found to be: accumulation time; 180-200 s, accumulation potential; 50 mV versus Ag/AgCl, scan rate; 40 mV s(-1), supporting electrolyte; 0.1 M sodium acetate buffer at pH 6.5-7.0, and concentration of aluminon; 1x10(-6) M. The linear range of uranium(VI) and zinc(II) were observed over the concentration range 2-33 and 30-120 ng ml(-1), respectively. The detection limit (S/N=3) are 0.2 ng ml(-1) (uranium) and 30 ng ml(-1) (zinc). A good reproducibility shows RSDs of 2.5-4.0% (n=10). The procedure offers high selectivity, with the presence of urea masking some metal ions.

  11. Direct determination of cadmium and lead in pharmaceutical ingredients using anodic stripping voltammetry in aqueous and DMSO/water solutions.

    Science.gov (United States)

    Rosolina, Samuel M; Chambers, James Q; Lee, Carlos W; Xue, Zi-Ling

    2015-09-17

    A new electrochemical method has been developed to detect and quantify the elemental impurities, cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)), either simultaneously or individually in pharmaceutical matrices. The electro-analytical approach, involving the use of anodic stripping voltammetry (ASV) on an unmodified glassy carbon electrode, was performed in both aqueous and in a 95/5 dimethyl sulfoxide (DMSO)/water solutions, without acid digestion or dry ashing to remove organic matrices. Limits of detection (LODs) in the μg L(-1) [or parts per billion (ppb), mass/volume] range were obtained for both heavy metals - in the presence and absence of representative pharmaceutical components. To the best of our knowledge, the work demonstrates the first analysis of heavy metals in DMSO/water solutions through ASV. The strong reproducibility and stability of the sensing platform, as well as obviation of sample pretreatment show the promise of utilizing ASV as a sensitive, robust, and inexpensive alternative to inductively-coupled-plasma (ICP)-based approaches for the analysis of elemental impurities in, e.g., pharmaceutical-related matrices.

  12. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations.

    Science.gov (United States)

    Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo

    2016-10-27

    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.

  13. Characterization of a 32 μm diameter carbon fiber electrode for in vivo fast-scan cyclic voltammetry.

    Science.gov (United States)

    Chadchankar, Heramb; Yavich, Leonid

    2012-11-15

    Carbon fiber electrodes (CFE) are commonly used for in vivo detection of catecholamines due to their excellent electrochemical properties and biocompatibility. Fast-scan cyclic voltammetry (FSCV) combined with CFEs permits the detection of catecholamines such as dopamine (DA) with high specificity and reliability. However, advances in neuroscience constantly demand sensors with greater sensitivities and selectivities. This study investigated an untreated CFE of 32 μm diameter and 300 μm exposed length for detection of DA using FSCV. Despite the larger area of the working electrode, we observed only a small increase in the background current in comparison with the commonly used CFE of 7 μm diameter and 100 μm exposed length. The sensitivity of the 32 μm CFE was 9 times greater than that of the 7 μm CFE. These larger electrodes exhibited good linearity and a 6 fold higher signal-to-noise ratio than 7 μm CFEs in vitro. The 32 μm CFE showed significantly better selectivity for DA in preference to 3,4-dihydroxyphenylacetic acid than the 7 μm CFE and similar selectivity to the 7 μm CFE for ascorbic and homovanillic acid. The electrodes displayed good temporal resolution and electrochemical stability in both in vitro and in vivo tests. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cyclic voitammetry, convolutive voltammetry, chrono-potentiometry and digital simulation studies of [Pt(C≡C tol)_2(dppm)_2Ir(CO)_2]~+PF_6~- complex

    Institute of Scientific and Technical Information of China (English)

    El-Hallag S Ibrahim

    2009-01-01

    The electrochemical behaviour of the heterobimetallic complex [Pt(C≡C tol)_2(dppm)_2-Ir(CO)_2]~+PF_6~-was studied via cyclic voltammetry, convolutive voltammetry and chronopotentiometry at glassy carbon electrode in dichloromethane solution. The electrochemical parameters calculated from experimental data were tested and confirmed by matching the experimental cyclic voltammograms with the simu-lated data. It was found that convolutive voltammetry provided higher sensitivity, better resolution and more accurate method for determination of the electrochemical parameters than ordinary cyclic volt-ammetry.

  15. Determination of mobile form contents of Zn, Cd, Pb and Cu in soil extracts by combined stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Nedeltcheva, T. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria)]. E-mail: nedel@uctm.edu; Atanassova, M. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria); Dimitrov, J. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria); Stanislavova, L. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria)

    2005-01-10

    The amount of mobile forms of Zn, Pb, Cd and Cu in extracts obtained by treating soil samples with ammonium nitrate were determined by an appropriate combination of anodic and cathodic stripping voltammetry with hanging mercury drop electrode. Every analysis required three mercury drops: on the first one, zinc was determined; on the second, cadmium and lead; on the third, copper was determined. Zinc, lead and cadmium were determined by conventional differential-pulse anodic stripping voltammetry. For copper determination, adsorptive differential-pulse cathodic stripping voltammetry with amalgamation using chloride ions as a complexing agent was applied. The standard deviation of the results was from 1 to 10% depending on the metal content in the sample. Voltammetric results were in good agreement with the AAS analysis. No microwave digestion of soil extracts was necessary.

  16. The influence of the capping agent on the oxidation of silver nanoparticles: nano-impacts versus stripping voltammetry.

    Science.gov (United States)

    Toh, Her Shuang; Jurkschat, Kerstin; Compton, Richard G

    2015-02-09

    The influence of capping agents on the oxidation of silver nanoparticles was studied by using the electrochemical techniques of anodic stripping voltammetry and anodic particle coulometry ("nano-impacts"). Five spherical silver nanoparticles each with a different capping agent (branched polyethylenimine (BPEI), citrate, lipoic acid, polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP)) were used to perform comparative experiments. In all cases, regardless of the capping agent, complete oxidation of the single nanoparticles was seen in anodic particle coulometry. The successful quantitative detection of the silver nanoparticle size displays the potential application of anodic particle coulometry for nanoparticle characterisation. In contrast, for anodic stripping voltammetry using nanoparticles drop casting, it was observed that the capping agent has a very significant effect on the extent of silver oxidation. All five samples gave a low oxidative charge corresponding to partial oxidation. It is concluded that the use of anodic stripping voltammetry to quantify nanoparticles is unreliable, and this is attributed to nanoparticle aggregation.

  17. Acid/base and hydrogen bonding effects on the proton-coupled electron transfer of quinones and hydroquinones in acetonitrile: Mechanistic investigation by voltammetry, {sup 1}H NMR and computation

    Energy Technology Data Exchange (ETDEWEB)

    Alligrant, Timothy M. [Department of Chemistry, Virginia Commonwealth University, 1001 West Main St., P.O. Box 842006, Richmond, VA 23284 (United States); Hackett, John C. [Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, P.O. Box 980133, Richmond, VA 23219 (United States); Alvarez, Julio C., E-mail: jcalvarez2@vcu.ed [Department of Chemistry, Virginia Commonwealth University, 1001 West Main St., P.O. Box 842006, Richmond, VA 23284 (United States)

    2010-09-01

    This report seeks to address the role of hydrogen bonding with Bronsted acids and bases in proton-coupled electron transfer (PCET) as it pertains to concerted or stepwise pathways of quinone (Q) and hydroquinone (QH{sub 2}) electrochemistry. This study was performed using a series of techniques that included cyclic voltammetry (CV), digital simulations, computational chemistry and {sup 1}H NMR. Hydrogen bonding was inferred by a decrease in diffusion coefficient (D) values measured using a pulsed gradient echo- (PGE-) {sup 1}H NMR technique. Changes of 40.8% and 37.9% in D values were only noted after the addition of two equivalents of acetate to 1,4-hydroquinone (1,4-QH{sub 2}) and catechol (1,2-QH{sub 2}), respectively. In contrast, the D values for the addition of selected amines (pyridine, N,N-diisopropylethylamine and triethylamine) changed only 3.2% on average. Quantum mechanical calculations were conducted to determine the pK{sub a} of all quinoid species to serve as a starting point for the determination of equilibrium constants in voltammetric simulations. Simulations indicate that 1,4-benzoquinone undergoes stepwise electron-proton transfer upon addition of acetic acid, N-ethyldiisopropylammonium perchlorate and pyridinium nitrate and were simulated without the presence of hydrogen bonds. The QH{sub 2} compounds show stepwise proton-electron transfers after addition of the both the conjugate amines and acetate.

  18. Protein film voltammetry and co-factor electron transfer dynamics in spinach photosystem II core complex.

    Science.gov (United States)

    Zhang, Yun; Magdaong, Nikki; Frank, Harry A; Rusling, James F

    2014-05-01

    Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (Em = -0.47 V, all vs. NHE, at pH 6), quinones (-0.12 V), and the manganese (Mn) cluster (Em = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The -0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the -0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.

  19. CYCLIC VOLTAMMETRY STUDIES OF COPPER (II AND TELLURIUM (IV IONS IN ACIDIC AQUEOUS SOLUTIONS FOR THIN FILM DEPOSITION

    Directory of Open Access Journals (Sweden)

    SARAVANAN NAGALINGAM

    2014-05-01

    Full Text Available Cyclic voltammetry studies of copper (II and tellurium (IV ions in acidic aqueous solutions were carried out to determine the optimum condition for copper telluride thin film deposition. The voltammetry studies include reversible scans at different solution pH. Based on the voltammogram, suitable deposition conditions was determined to be in the range of -0.35 V to -0.45 V versus Ag/AgCl at pH values between 2.0 to 2.2 under non diffusion-limited conditions.

  20. Determination of para-arsanilic acid with improved diazotization reaction using differential pulse cathodic stripping voltammetry in aqueous system.

    Science.gov (United States)

    Misni, Marpongahtun; Sathishkumar, Palanivel; Ahamad, Rahmalan; MohdYusoff, Abdull Rahim

    2015-01-01

    Para-arsanilic acid (p-ASA) has been widely used in the poultry industry to promote growth and prevent dysentery. It is excreted unchanged in the manure and released into non-target sites causing organoarsenic pollution risk to the environment and living system. Therefore, simple and effective analytical strategies are demanded for determining the samples that contain p-ASA. However, direct determination of both p-ASA and ortho-arsanilic acid (o-ASA) using differential pulse cathodic stripping voltammetry (DPCSV) gives the similar voltammograms that directly hamper the analysis used by the DPCSV technique. In this study, a method to determine and differentiate p-ASA from o-ASA via diazotization and coupling reaction of the amine groups followed by the direct DPCSV determination of diazo compounds is presented. The diazotization reaction carried out at pH 1.5 and 0 ± 1°C for 10 min showed two reduction peaks in DPCSV at-70 mV and -440 mV vs. Ag/AgCl (KCl 3 M). However, when the diazotization reaction was performed at pH 12.5 and 0 ± 1°C for 40 min, a coloured azo compound was produced and the DPCSV showed only one reduction peak that appeared at -600 mV vs. Ag/AgCl (3 M of KCl). The results of this study show that only p-ASA compound gave a reduction peak, whereas o-ASA compound did not give any peak. The detection limit of p-ASA was found to be 4 × 10(-8 )M. As a result, the proposed electro-analytical technique might be a good candidate to determine and differentiate the p-ASA present in the poultry and environmental samples.

  1. Spectroscopic properties and cyclic voltammetry on a series of meso-tetra( p-alkylamidophenyl)porphyrin liquid crystals and their Mn complexes

    Science.gov (United States)

    Sun, Erjun; Shi, Yuhua; Zhang, Ping; Zhou, Mi; Zhang, Yihua; Tang, Xuexin; Shi, Tongshun

    2008-10-01

    A series of meso-tetra( p-alkylamidophenyl)porphyrin ligands and their manganese(III) complexes are reported in this paper. The mesomorphism was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) and the results show that only the porphyrin ligands with long side chains show liquid crystalline behavior, and they exhibit a high phase transition temperature and a broad mesophase temperature span. Furthermore, we investigated the properties of the compounds by means of UV-vis spectra, infrared spectra, Resonance Raman spectra, fluorescence spectra, thermal analysis and cyclic voltammetry. These studies indicate that the length of side chains has little effect on the properties of porphyrin compounds. According to thermal studies, the decomposition of porphyrin ligand and Mn complex is a continuous process.

  2. Studies on the Nucleophilicity and Scavenge of Superoxide Ion by Cyclic Voltammetry

    Institute of Scientific and Technical Information of China (English)

    Wei Ying-liang; Dang Xue-ping; Hu Sheng-shui

    2003-01-01

    Superoxide ion was generated by the electrochemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenerated-superoxide ion by cyclic voltammetry. The nucleophilic displacement reactions of superoxide ion with ethyl acetate and diethyl adipate were discussed and the reason for remarkable influence of diethyl adipate was elucidated. The scavenging activity of ascorbic acid was evaluated and the result allowed the conclusion that the scavenging ability of ascorbic acid is much lower in DMSO than in aqueous phase. UV-spectrum of electrogenerated superoxide ion in DMSO exhibited a single absorption band with λmax at 275 nm, which certified further that the method of electrogeneration was reliable and superoxide ion was stable in DMSO.

  3. Studies on the Nucleophilicity and Scavenge of Superoxide Ion by Cyclic Voltammetry

    Institute of Scientific and Technical Information of China (English)

    WeiYing-liang; DangXue-ping; HuSheng-shui

    2003-01-01

    Superoxide ion was generated by the electro-chemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenemted-superoxide ion by cyclic voltammetry. The nucleophilic displacement reactions of superoxide ion with ethyl acetate and diethyl adipate were discussed and the reason for remarkable influence of diethyl adipate was elucidated. The scavenging activity of ascorbic acid was evaluated and the result allowed the conclusion that the scavenging ability of ascorbic acid is much lower in DMSO than in aqueous phasc UV-spectrum of electrogenerated superoxide ion in DMSO exhibited a single absorption band with λmax at 275 nm, which certified further that the method of electrogeneration was reliable and superoxide ion was stable in DMSO.

  4. Electrooxidation of morin hydrate at a Pt electrode studied by cyclic voltammetry.

    Science.gov (United States)

    Masek, Anna; Chrzescijanska, Ewa; Zaborski, Marian

    2014-04-01

    The process and the kinetics of the electrochemical oxidation of morin in an anhydrous electrolyte have been investigated using cyclic and differential pulse voltammetry. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the three aromatic rings. The oxidation of the 2',4'dihydroxy moiety at the B ring of morin occurs first, at very low positive potentials, and is a one-electron, one-proton irreversible reaction. The rate constant, electron transfer coefficient and diffusion coefficients involved in the electrochemical oxidation of morin were determined. The influence of the deprotonation of the ring B hydroxyl moiety is related to the electron/proton donating capacity of morin and to its radical scavenging antioxidant activity.

  5. Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices.

    Science.gov (United States)

    Patel, Jyoti C; Rice, Margaret E

    2013-01-01

    Brain dopamine pathways serve wide-ranging functions including the control of movement, reward, cognition, learning, and mood. Consequently, dysfunction of dopamine transmission has been implicated in clinical conditions such as Parkinson's disease, schizophrenia, addiction, and depression. Establishing factors that regulate dopamine release can provide novel insights into dopaminergic communication under normal conditions, as well as in animal models of disease in the brain. Here we describe methods for the study of somatodendritic and axonal dopamine release in brain slice preparations. Topics covered include preparation and calibration of carbon-fiber microelectrodes for use with fast-scan cyclic voltammetry, preparation of midbrain and forebrain slices, and procedures of eliciting and recording electrically evoked dopamine release from in vitro brain slices.

  6. Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots.

    Science.gov (United States)

    Osipovich, Nikolai P; Poznyak, Sergei K; Lesnyak, Vladimir; Gaponik, Nikolai

    2016-04-21

    The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH.

  7. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    Science.gov (United States)

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Determination of diclofenac in pharmaceutical preparations by voltammetry and gas chromatography methods

    Institute of Scientific and Technical Information of China (English)

    Bilal Yilmaz; Ulvihan Ciltas

    2015-01-01

    Rapid, sensitive and specific methods were developed for the determination of diclofenac in pharmaceutical preparations by linear sweep voltammetry (LSV) and gas chromatography (GC) with mass spectrometry (MS) detection. The linearity was established over the concentration range of 5–35μg/mL for LSV and 0.25–5μg/mL for GC–MS method. The intra- and inter-day relative standard deviation (RSD) was less than 4.39% and 4.62% for LSV and GC–MS, respectively. Limits of quantification (LOQ) were determined as 4.8 and 0.15μg/mL for LSV and GC–MS, respectively. No interference was found from tablet excipients at the selected assay conditions. The methods were applied for the quality control of commercial diclofenac dosage forms to quantify the drug and to check the formulation content uniformity.

  9. Investigation on Concentrated V(IV)/V(V) Redox Reaction by Rotating Disc Voltammetry

    Institute of Scientific and Technical Information of China (English)

    WEN Yue-Hua; ZHANG Hua-Min; QIAN Peng; MA Hai-Peng; YI Bao-Lian; YANG Yu-Sheng

    2007-01-01

    The kinetic characteristics of the concentrated V(IV)/V(V) couple have been studied at a glassy carbon electrode in sulfuric acid using rotating-disc electrode and cyclic voltammetry. The kinetics of the V(IV)/V(V) redox couple reaction was found to be electrochemically quasi-reversible with the slower kinetics for the V(V) reduction than that for the V(IV) oxidation. And, dependence of diffusion coefficients and kinetic parameters of V(IV) species on the V(IV) and H25O4 concentration was investigated. It is shown that the concentration of active species V(IV)centration, the diffusion coefficients of V(IV) were gradually reduced whereas its kinetics was improved considerably,espicially in the case of Ⅴ(Ⅳ)and H2SO4 up to 2 and 4 mol·L-1.

  10. CO adsorption on electrode of Pt nanoparticles investigated by cyclic voltammetry and in situ FTIR spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Pt nanoparticles were prepared by the chemical reduction method. The average diameter of Pt nanoparticles was determined to be 2.5 nm by TEM. The electrochemical properties of Pt nanoparticles were studied by cyclic voltammetry. In comparison with massive Pt, the oxidation current peak of CO adsorbed on Pt nanoparticles is broader. Twin adsorbates of CO on Pt nanoparticles were determined by in situ FTIRS for the first time. It has revealed that the linear and twin-bonded CO can be converted into bridge-bonded CO with the variation of electrode potential. A series of special properties of Pt nanoparticles, such as enhanced IR absorption of CO adsorbates, were also observed.

  11. The versatility of salicylaldehyde thiosemicarbazone in the determination of copper in blood using adsorptive stripping voltammetry.

    Science.gov (United States)

    Mahajan, Rakesh Kumar; Walia, T P S; Sumanjit; Lobana, T S

    2005-10-15

    The adsorptive cathodic stripping voltammetry technique (AdCSV) is used to determine copper(II) using salicylaldehyde thiosemicarbazone (N, S- donor) as a complexing agent on hanging mercury drop electrode at pH 9.3. Variable factors affecting the response, i.e. the concentration of ligand, pH, adsorption potential and adsorption time are assessed and optimized. The adsorbed complex of copper(II) and salicylaldehyde thiosemicarbazone gives a well defined cathodic stripping peak current at -0.35 V, which has been used for the determination of copper in the concentration range of 7.85 x 10(-9) to 8.00 x 10(-6)M with accumulation time of 360 s at -0.1 V versus Ag/AgCl. This technique has been applied for the determination of copper in various digested samples of whole blood at trace levels.

  12. Determination of Lamotrigine in Pharmaceutical Preparations by Adsorptive Stripping Voltammetry Using Screen Printed Electrodes

    Science.gov (United States)

    Domínguez-Renedo, Olga; Calvo, M. Encarnación Burgoa; Arcos-Martínez, M. Julia

    2008-01-01

    This paper describes a procedure that has been optimized for the determination of lamotrigine by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) using carbon screen-printed electrodes (CSPE) and mercury coated carbon screen-printed electrodes. Selection of the experimental parameters was made using experimental design methodology. The detection limit found was 5.0 × 10-6 M and 2.0 × 10-6 M for the non modified and Hg modified CSPE, respectively. In terms of reproducibility, the precision of the above mentioned methods was calculated in %RSD values at 9.83% for CSPE and 2.73% for Hg-CSPE. The Hg-coated CSPEs developed in this work were successfully applied in the determination of lamotrigine in pharmaceutical preparations. PMID:27879931

  13. Estimation of Heavy Metals in Multivitamin Tablets by Differential Pulse Anodic Stripping Voltammetry

    Directory of Open Access Journals (Sweden)

    Kumar Rohit Raj

    2010-01-01

    Full Text Available Differential pulse anodic stripping voltammetry (DPASV was applied for the simultaneous determination of zinc and copper in multivitamin tablet (supradyn and centrum. Determination of the metals was made in ammonium acetate buffer (pH 4.5 with a scan rate of 0.01 V/s by Hanging Mercury Dropping Electrode (HMDE.The solution was stirred during electrolysis at -1.3 V for 300 s in the potential range of -1.3 to + 0.1 V. Concentrations of zinc and copper in supradyn drug sample were found to be 1.80 and 2.9 mg/tablet and for centrum drug sample were found to be 4.6 and 0.94 mg/tablet respectively.

  14. Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry.

    Science.gov (United States)

    Obata, H; van den Berg, C M

    2001-06-01

    A new procedure for the direct determination of picomolar levels of iron in seawater is presented. Cathodic stripping voltammetry (CSV) is preceded by adsorptive accumulation of the iron(III)-2,3-dihydroxynaphthalene (DHN) complex from seawater, containing 20 microM DHN at pH 8.0, onto a static mercury drop electrode, followed by reduction of the adsorbed species. The reduction current is catalytically enhanced by the presence of 20 mM bromate. Optimized conditions include a 60-s adsorption period at -0.1 V and a voltammetric scan using sampled dc modulation at 10 Hz. In these conditions, a detection limit of 13 pM iron in seawater was achieved which can be lowered further by extending the adsorption time to 300 s. The new catalytic CSV method is approximately 5 times more sensitive than existing CSV methods and was tested on samples from the Atlantic Ocean.

  15. Determination of Lamotrigine in Pharmaceutical Preparations by Adsorptive Stripping Voltammetry Using Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    M. Julia Arcos-Martínez

    2008-07-01

    Full Text Available This paper describes a procedure that has been optimized for the determination of lamotrigine by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV using carbon screen-printed electrodes (CSPE and mercury coated carbon screen-printed electrodes. Selection of the experimental parameters was made using experimental design methodology. The detection limit found was 5.0 x 10-6 M and 2.0 x 10-6 M for the non modified and Hg modified CSPE, respectively. In terms of reproducibility, the precision of the above mentioned methods was calculated in %RSD values at 9.83% for CSPE and 2.73% for Hg-CSPE. The Hg-coated CSPEs developed in this work were successfully applied in the determination of lamotrigine in pharmaceutical preparations.

  16. Lead migration from toys by anodic stripping voltammetry using a bismuth film electrode.

    Science.gov (United States)

    Leal, M Fernanda C; Catarino, Rita I L; Pimenta, Adriana M; Souto, M Renata S; Afonso, Christelle S; Fernandes, Ana F Q

    2016-09-02

    Metals may be released from toys via saliva during mouthing, via sweat during dermal contact, or via gastric and intestinal fluids after partial or whole ingestion. In this study, we determined the lead migration from toys bought on the Portuguese market for children below 3 years of age. The lead migration was performed according to the European Committee for Standardization EN 71-3, which proposes a 2-hour migration test that simulates human gastric conditions. The voltammetric determination of migrated lead was performed by anodic stripping voltammetry (ASV) at a bismuth film electrode (BiFE). For all the analyzed toys, the values of migrated lead did not exceed the limits imposed by the European Committee for Standardization EN 71-3 (90 mg kg(-1)) and by the EU Directive 2009/48/EC (13.5 mg kg(-1)) on the safety of toys.

  17. Electroanalytical Determination of Danofloxacin in Biological Samples Using Square Wave Voltammetry

    Directory of Open Access Journals (Sweden)

    Chirley Vanessa Boone

    2014-10-01

    Full Text Available The voltammetric behavior of danofloxacin (DFX has been studied, in aqueous solution, on a glassy carbon electrode using square wave voltammetry (SWV as electroanalytical technique. After optimization of the experimental conditions, DFX was analyzed in spiked biologic samples using a Britton-Robinson buffer with pH = 5.0 as the supporting electrolyte. Oxidation occurs at 0.98 V vs. Ag/AgCl in a two-electron process controlled by adsorption of the electrogenerated products on the electrode surface. A acceptable recovery was obtained for assay of spiked biologic samples, with value of 98.7% for the swine urine and 95.3 % for the bovine urine.

  18. Voltammetry and fluorescence studies on the interaction between Eu (phen)33+ and DNA

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The binding mode of Eu(phen) 33+ with DNA is studied by fluorescence and voltammetric methods. From theScatchard graph and the fluorescence quenching phenomenon, it is concluded that the mode of interaction betweenEu(phen) 33+ and DNA is intercalation bind by inserting the phen π-π conjugate surface between the base pairs of theDNA duplex. Voltammetry was used to confirm the results obtained from the fluorescence method, the result from bothmethods agrees with each other. The binding constant (K) and the binding site size (ns) were calculated from voltammetricdata such as the shifts in potential and limiting currents in the process of adding DNA, according to the positive shifts ofpeak potential. It was considered that the complex of the +2 ion interacted more favorably with the nucleotide bases thanthat of the +3 ion by hydrophobic interaction.

  19. Rapid Screening Method for Detecting Ethinyl Estradiol in Natural Water Employing Voltammetry

    Directory of Open Access Journals (Sweden)

    Chalder Nogueira Nunes

    2016-01-01

    Full Text Available 17α-Ethinyl estradiol (EE2, which is used worldwide in the treatment of some cancers and as a contraceptive, is often found in aquatic systems and is considered a pharmaceutically active compound (PhACs in the environment. Current methods for the determination of this compound, such as chromatography, are expensive and lengthy and require large amounts of toxic organic solvents. In this work, a voltammetric procedure is developed and validated as a screening tool for detecting EE2 in water samples without prior extraction, clean-up, or derivatization steps. Application of the method we elaborate here to EE2 analysis is unprecedented. EE2 detection was carried out using differential pulse adsorptive cathodic stripping voltammetry (DP AdCSV with a hanging mercury drop electrode (HMDE in pH 7.0 Britton-Robinson buffer. The electrochemical process of EE2 reduction was investigated by cyclic voltammetry at different scan rates. Electroreduction of the hormone on a mercury electrode exhibited a peak at −1.16±0.02 V versus Ag/AgCl. The experimental parameters were as follows: −0.7 V accumulation potential, 150 s accumulation time, and 60 mV s−1 scan rate. The limit of detection was 0.49 μg L−1 for a preconcentration time of 150 s. Relative standard deviations were less than 13%. The method was applied to the detection of EE2 in water samples with recoveries ranging from 93.7 to 102.5%.

  20. Bare and Polymer-Coated Indium Tin Oxide as Working Electrodes for Manganese Cathodic Stripping Voltammetry.

    Science.gov (United States)

    Rusinek, Cory A; Bange, Adam; Warren, Mercedes; Kang, Wenjing; Nahan, Keaton; Papautsky, Ian; Heineman, William R

    2016-04-19

    Though an essential metal in the body, manganese (Mn) has a number of health implications when found in excess that are magnified by chronic exposure. These health complications include neurotoxicity, memory loss, infertility in males, and development of a neurologic psychiatric disorder, manganism. Thus, trace detection in environmental samples is increasingly important. Few electrode materials are able to reach the negative reductive potential of Mn required for anodic stripping voltammetry (ASV), so cathodic stripping voltammetry (CSV) has been shown to be a viable alternative. We demonstrate Mn CSV using an indium tin oxide (ITO) working electrode both bare and coated with a sulfonated charge selective polymer film, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-sulfonate (SSEBS). ITO itself proved to be an excellent electrode material for Mn CSV, achieving a calculated detection limit of 5 nM (0.3 ppb) with a deposition time of 3 min. Coating the ITO with the SSEBS polymer was found to increase the sensitivity and lower the detection limit to 1 nM (0.06 ppb). This polymer modified electrode offers excellent selectivity for Mn as no interferences were observed from other metal ions tested (Zn(2+), Cd(2+), Pb(2+), In(3+), Sb(3+), Al(3+), Ba(2+), Co(2+), Cu(2+), Ni(3+), Bi(3+), and Sn(2+)) except Fe(2+), which was found to interfere with the analytical signal for Mn(2+) at a ratio 20:1 (Fe(2+)/Mn(2+)). The applicability of this procedure to the analysis of tap, river, and pond water samples was demonstrated. This simple, sensitive analytical method using ITO and SSEBS-ITO could be applied to a number of electroactive transition metals detectable by CSV.

  1. Direct determination of molybdenum in seawater by adsorption cathodic stripping square-wave voltammetry.

    Science.gov (United States)

    Sun, Y C; Mierzwa, J; Lan, C R

    2000-06-30

    A reliable and very sensitive procedure for the determination of trace levels of molybdenum in seawater is proposed. The complex of molybdenum with 8-hydroxyquinoline (Oxine) is analyzed by cathodic stripping square-wave voltammetry based on the adsorption collection onto a hanging mercury drop electrode (HMDE). This procedure of molybdenum determination was found to be more favorable than differential pulse cathodic stripping voltammetry because of inherently faster scan rate and much better linearity obtained through the one-peak (instead of one-of-two peaks) calibration. The variation of polarographic peak and peak current with a pH, adsorption time, adsorption potential, and some instrumental parameters such as scan rate and pulse height were optimized. The alteration of polarographic wave and its likely mechanism are also discussed. The relationship between peak current and molybdenum concentration is linear up to 150 mug l(-1). Under the optimal analytical conditions, the determination limit of 0.5 mug l(-1) Mo was reached after 60 s of the stirred collection. The estimated detection limit is better than 0.1 mug l(-1) of Mo. The applicability of this method to analysis of seawater was assessed by the determination of molybdenum in two certified reference seawater samples (CASS-2 and NASS-2) and the comparison of the analytical results for real seawater samples (study on a vertical distribution of Mo in the seawater column) with the results obtained by Zeeman-corrected electrothermal atomization atomic absorption spectrometry (Zeeman ETAAS). A good agreement between two used methods of molybdenum determination was obtained.

  2. Rapid Screening Method for Detecting Ethinyl Estradiol in Natural Water Employing Voltammetry

    Science.gov (United States)

    2016-01-01

    17α-Ethinyl estradiol (EE2), which is used worldwide in the treatment of some cancers and as a contraceptive, is often found in aquatic systems and is considered a pharmaceutically active compound (PhACs) in the environment. Current methods for the determination of this compound, such as chromatography, are expensive and lengthy and require large amounts of toxic organic solvents. In this work, a voltammetric procedure is developed and validated as a screening tool for detecting EE2 in water samples without prior extraction, clean-up, or derivatization steps. Application of the method we elaborate here to EE2 analysis is unprecedented. EE2 detection was carried out using differential pulse adsorptive cathodic stripping voltammetry (DP AdCSV) with a hanging mercury drop electrode (HMDE) in pH 7.0 Britton-Robinson buffer. The electrochemical process of EE2 reduction was investigated by cyclic voltammetry at different scan rates. Electroreduction of the hormone on a mercury electrode exhibited a peak at −1.16 ± 0.02 V versus Ag/AgCl. The experimental parameters were as follows: −0.7 V accumulation potential, 150 s accumulation time, and 60 mV s−1 scan rate. The limit of detection was 0.49 μg L−1 for a preconcentration time of 150 s. Relative standard deviations were less than 13%. The method was applied to the detection of EE2 in water samples with recoveries ranging from 93.7 to 102.5%. PMID:27738548

  3. Trace and selective determination of cobalt(II in water and salt samples using cathodic adsorptive stripping voltammetry in the presence of pyrogallol red

    Directory of Open Access Journals (Sweden)

    Hasanpour Foroozan

    2013-01-01

    Full Text Available A sensitive and selective procedure is presented for voltammetric determination of cobalt. The procedure involves an adsorptive accumulation of cobalt pyrogallol red (PGR complex on stationary mercury drop electrode, followed by cathodic stripping voltammetry measurement of reduction current of adsorbed complex at -1.17 V (vs. Ag/AgCl. The optimum conditions for determination of cobalt include pH 11.0, 35 μM pyrogallol red, an accumulation potential of -0.9 V (vs. Ag/AgCl and scan rate 80 mVs-1. The peak current is proportional to the concentration of cobalt over the concentration range of 5.0 to 280 ng mL-1 with a detection limit of 1 ng mL-1 with an accumulation time of 140 s. The method was applied for the determination of cobalt in analytical grade NaCl and water samples.

  4. Casimir experiments showing saturation effects

    CERN Document Server

    Sernelius, Bo E

    2009-01-01

    We address several different Casimir experiments where theory and experiment disagree. First out is the classical Casimir force measurement between two metal half spaces; here both in the form of the torsion pendulum experiment by Lamoreaux and in the form of the Casimir pressure measurement between a gold sphere and a gold plate as performed by Decca et al.; theory predicts a large negative thermal correction, absent in the high precision experiments. The third experiment is the measurement of the Casimir force between a metal plate and a laser irradiated semiconductor membrane as performed by Chen et al.; the change in force with laser intensity is larger than predicted by theory. The fourth experiment is the measurement of the Casimir force between an atom and a wall in the form of the measurement by Obrecht et al. of the change in oscillation frequency of a 87 Rb Bose-Einstein condensate trapped to a fused silica wall; the change is smaller than predicted by theory. We show that saturation effects can exp...

  5. Determinate BH4- of Solutions by Cyclic Voltammetry%循环伏安法测定硼氢根离子

    Institute of Scientific and Technical Information of China (English)

    陶松; 房春晖; 房艳; 周永全; 朱发岩; 戈海文; 许沙; 陈巧玲

    2012-01-01

    主要用圆盘Au电极的电化学循环伏安法定量分析强碱性溶液中BH4-的浓度.实验采用三电极体系,工作电极为Au电极,参考电极为Hg/HgO电极,分别用铂、石墨作辅助电极,测定了在碱性体系中,不同浓度NaBH4溶液的循环伏安图,得到相应浓度下峰值电流值,并讨论了在同一浓度下扫描速度对BH4-氧化电流的影响.实验还测量了以镍电极、铂电极为工作电极时溶液的循环伏安图,并与Au电极结果做了对比.结果表明,BH4-在Au电极上活性最高,Au电极做工作电极的三电极体系测量BH4-离子浓度是一种简单、快速的方法,在测定范围内(10-4~10-2mol/L)线性关系良好.%In this paper,the disk Au electrode of electrochemistry cyclic voltammetry was used to determine the concentration of BH4- in strong alkaline solutions. The 3-electrode system was used in the experiment, the working electrode is Au,the reference electrode is Hg/HgO,and the auxiliary electrode is Pt or C, respectively, different concentration of NaBH4 were tested in alkaline solutions. We obtain the peak current of correspond concentration and discuss the influence of different scanning speeds at the same concentration. The cyclic voltammograms of NaBH4 solution on Ni, Pt electrode was also obtained and contrast to the Au electrode, the result shows that BH/ has the highest activities on Au electrode. It is a simple and fast way to determine BH4- of 3-electrode system with Au as working electrode and the liner relation is good in the measurement range.

  6. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats

    Science.gov (United States)

    Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous

  7. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.

    Science.gov (United States)

    Li, Yu-Ting; Wickens, Jeffery R; Huang, Yi-Ling; Pan, Wynn H T; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg(-1) cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning

  8. Enhanced dopamine release by dopamine transport inhibitors described by a restricted diffusion model and fast scan cyclic voltammetry

    Science.gov (United States)

    Hoffman, Alexander F.; Spivak, Charles E.; Lupica, Carl R.

    2016-01-01

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple, 5 parameter, two compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using non-linear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altered Ca2+/Mg2+ ratio or tetrodotoxin (TTX), reduced the release parameter with no effect on the uptake parameter. The DAT inhibitors methylenedioxypyrovalerone (MDPV), cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa-opioid receptor (KOR) agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734

  9. The redox thermodynamics and kinetics of flavonoid rutin adsorbed at glassy carbon electrodes by stripping square wave voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Aragao Catunda, Francisco Eduardo; Araujo, Marcelo Francisco de [Departamento de Quimica, Instituto de Ciencias Exactas, Universidad Federal Rural do Rio de Janeiro, BR 465 KM 07, 23890-000, Seropedica, RJ (Brazil); Granero, Adrian Marcelo; Arevalo, Fernando Javier [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3 - (5800), Rio Cuarto (Argentina); Carvalho, Mario Geraldo de [Departamento de Quimica, Instituto de Ciencias Exactas, Universidad Federal Rural do Rio de Janeiro, BR 465 KM 07, 23890-000, Seropedica, RJ (Brazil); Zon, Maria Alicia, E-mail: azon@exa.unrc.edu.ar [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3 - (5800), Rio Cuarto (Argentina); Fernandez, Hector, E-mail: hfernandez@exa.unrc.edu.ar [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3 - (5800), Rio Cuarto (Argentina)

    2011-11-30

    Highlights: > Adsorptive accumulation of rutin is studied at glassy carbon (GC) electrodes. > The Frumkin adsorption isotherm described the specific interaction. > Gibbs free energy of adsorption and the interaction parameter were determined. > Thermodynamics and kinetics of the surface redox process were characterized by SWV. > Detection limit for rutin was 2 x 10{sup -8} mol dm{sup -3} (12 ppb). - Abstract: The adsorptive accumulation of rutin (RU) at glassy carbon (GC) electrodes in 10% ethanol + 90% 1 mol dm{sup -3} HClO{sub 4} aqueous solution is studied by using cyclic (CV) and square wave (SWV) voltammetries. The Frumkin adsorption isotherm best described the specific interaction of rutin with carbon electrodes. By fitting the experimental data, values of -31.9 kJ mol{sup -1} and 0.54 {+-} 0.02 were obtained for the Gibbs free energy of adsorption and the interaction parameter, respectively. SWV fully characterized the thermodynamics and kinetics of the surface redox process, using a combination of the 'quasi-reversible maximum' and the 'splitting of SW peaks' methods. Average values of 0.644 {+-} 0.003 V and 0.44 {+-} 0.02 were obtained for the formal potential and the anodic transfer coefficient, respectively. Moreover, a formal rate constant of 6.1 x 10{sup 2} s{sup -1} was obtained. SWV was also employed to generate calibration curves. The lowest concentration of RU experimentally measured for a signal-to-noise ratio of 3:1 was 2 x 10{sup -8} mol dm{sup -3} (12 ppb).

  10. Cyclic voltammetry using silver as cathode material: a simple method for determining electro and chemical features and solubility values of CO2 in ionic liquids.

    Science.gov (United States)

    Reche, Irene; Gallardo, Iluminada; Guirado, Gonzalo

    2015-01-28

    A report is presented on the use of cyclic voltammetry using silver as a working electrode. The combined electrocatalytic properties of silver and ionic liquids allow cyclic voltammetry to be turned into an ideal tool for the rapid and accurate access to diffusion coefficient values and solubility values of carbon dioxide in ionic liquids under standard conditions.

  11. Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes

    DEFF Research Database (Denmark)

    Climent, Victor; Zhang, Jingdong; Friis, Esben Peter

    2012-01-01

    to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111...... American Chemical Society....

  12. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    We have studied the adsorption and electrocatalysis of the redox metalloenzyme blue copper nitrite reductase from Achromobacter xylosoxidans (AxCuNiR) on single-crystal Au(111)-electrode surfaces modified by a self-assembled monolayer of cysteamine. A combination of cyclic voltammetry and in situ...... biotechnology at the monolayer and toward the single-molecule level....

  13. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    We have studied the adsorption and electrocatalysis of the redox metalloenzyme blue copper nitrite reductase from Achromobacter xylosoxidans (AxCuNiR) on single-crystal Au(111)-electrode surfaces modified by a self-assembled monolayer of cysteamine. A combination of cyclic voltammetry and in situ...

  14. Initial stages of anodic oxidation of silver in sodium hydroxide solution studied by potential sweep voltammetry and ellipsometry

    NARCIS (Netherlands)

    Droog, J.M.M.; Alderliesten, P.T.; Bootsma, G.A.

    1979-01-01

    The first stages of the oxidation of polycrystalline silver electrodes in NaOH solutions were studied by potential sweep voltammetry and ellipsometry. Formation of bulk Ag2O was found to be preceded by dissolution of silver species and deposition of a surface oxide. The equilibrium oxide coverage de

  15. Mapping Activity Variations for Ru2O3 in Lunar Volcanic Green Glass Analogs Using Differential Pulse Voltammetry

    Science.gov (United States)

    Malum, K. M.; Colson, R. O.; Sawarynski, M.

    2001-01-01

    Using differential pulse voltammetry, we are mapping variations in activities for NiO and Ru2O3 as a function of compositional variation for compositions centered around an Apollo 15 green glass analog. Additional information is contained in the original extended abstract.

  16. Experimentation and numerical modeling of cyclic voltammetry for electrochemical micro-sized sensors under the influence of electrolyte flow

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Quan, Xueling; Evgrafov, A.

    2016-01-01

    In this study, we perform experimental studies as well as simulations for cyclic voltammetry(CV) of the redox couple FeIII(CN)63-/FeII(CN)64- on a gold plated ECC biosensor encapsulated by a microfluidic system. We examine the effect of flow rate, scan rate, varying supporting electrolyte, exchan...

  17. Children’s School-Breakfast Reports and School-Lunch Reports (in 24-hour Dietary Recalls): Conventional and Reporting-Error-Sensitive Measures Show Inconsistent Accuracy Results for Retention Interval and for Breakfast Location

    Science.gov (United States)

    Baxter, Suzanne Domel; Guinn, Caroline H.; Smith, Albert F.; Hitchcock, David B.; Royer, Julie A.; Puryear, Megan P.; Collins, Kathleen L.; Smith, Alyssa L.

    2017-01-01

    Validation-study data were analyzed to investigate retention interval (RI) and prompt effects on accuracy of fourth-grade children’s reports of school-breakfast and school-lunch (in 24-hour recalls), and accuracy of school-breakfast reports by breakfast location (classroom; cafeteria). Randomly-selected fourth-grade children at 10 schools in four districts were observed eating school-provided breakfast and lunch, and interviewed under one of eight conditions (two RIs [short (prior-24-hour recall obtained in afternoon); long (previous-day recall obtained in morning)] crossed with four prompts [forward (distant-to-recent), meal-name (breakfast, etc.), open (no instructions), reverse (recent-to-distant)]). Each condition had 60 children (half girls). Of 480 children, 355 and 409 reported meals satisfying criteria for reports of school-breakfast and school-lunch, respectively. For breakfast and lunch separately, a conventional measure—report rate—and reporting-error-sensitive measures—correspondence rate and inflation ratio—were calculated for energy per meal-reporting child. Correspondence rate and inflation ratio—but not report rate—showed better accuracy for school-breakfast and school-lunch reports with the short than long RI; this pattern was not found for some prompts for each sex. Correspondence rate and inflation ratio showed better school-breakfast report accuracy for the classroom than cafeteria location for each prompt, but report rate showed the opposite. For each RI, correspondence rate and inflation ratio showed better accuracy for lunch than breakfast, but report rate showed the opposite. When choosing RI and prompts for recalls, researchers and practitioners should select short RIs to maximize accuracy. Recommendations for prompt selections are less clear. As report rates distort validation-study accuracy conclusions, reporting-error-sensitive measures are recommended. PMID:26865356

  18. SQUID magnetometry combined with in situ cyclic voltammetry: A case study of tunable magnetism of [Formula: see text]-Fe2O3 nanoparticles.

    Science.gov (United States)

    Topolovec, Stefan; Jerabek, Peter; Szabó, Dorothée Vinga; Krenn, Heinz; Würschum, Roland

    2013-03-01

    SQUID magnetometry combined with in situ cyclic voltammetry by means of a three-electrode chemical cell opens up novel potentials for studying correlations between electrochemical processes and magnetic behaviour. The combination of these methods shows that the charge-induced variation of the magnetic moment of nanocrystalline maghemite ([Formula: see text]-Fe2O3) of about 4% strongly depends on the voltage regime of charging. Upon positive charging, the charge-induced variation of the magnetic moment is suppressed due to adsorption layers. The pronounced charge-sensitivity of the magnetic moment in the regime of negative charging may either be associated with a redox reaction or with charge-induced variations of the magnetic anisotropy or magnetoelastic coupling.

  19. The Study of a New Method to Determine Copper Ion by Square-Wave Voltammetry-Extraction Iodometry at the Liquid/Liquid Interfaces

    Science.gov (United States)

    Shi, Changyan; Xie, Shaoai; Jia, Jinping

    2008-01-01

    A new method of indirect determination of Cu2+ was developed based on square-wave voltammetry by the oxidation of iodide in organic solvent at the liquid/liquid (L/L) interface. The limit of detection for the determination of Cu2+ in this method was found to be 5 × 10−4 mol/L, and the concentration ranged up to 1 × 10−2 mol/L gave a linear limiting current versus concentration response. For the same simulated wastewater, this method showed high accuracy compared with the result tested by sodium diethyldithiocarbamate extraction spectrophotometry. This approach could be applied to the indirect determination of the oxidative heavy metals in the industrial wastewater. PMID:19096710

  20. Cyclic voltammetry study of Ce(IV/Ce(III redox couple and Ce(IV-F complex in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    J. G. He

    2016-10-01

    Full Text Available In this paper the electrochemical behaviors of Ce(IV/Ce(III redox couple and Ce(IV - F complex in sulfuric acid medium were studied by cyclic voltammetry using a platinum electrode. Both of the Ce(IV/Ce(III couple in Ce(IV solution and Ce(IV - F complex is a quasi-reversible process, and gives a linear correlation between the peak potentials and square root of scan rates, showing that the kinetics of the overall process is diffusion controlled. The complexation of cerium(IV and fluoride is favorable for the oxidation of Ce(III. The kinetic parameters such as diffusion coefficients, anodic transfer coefficients and rate constants were studied.

  1. Applicability of 2-hydroxybenzaldehyde benzoylhydrazone in the determination of trace metals by adsorptive cathodic stripping voltammetry: relevancy of simultaneous determinations.

    Science.gov (United States)

    Espada-Bellido, Estrella; Galindo-Riaño, M Dolores; Aouarram, Abdellah; García-Vargas, Manuel

    2009-07-01

    The applicability of 2-hydroxybenzaldehyde benzoylhydrazone (2-HBBH) for determining Cd(II), Cu(II), Pb(II) and Bi(III) ions by adsorptive cathodic stripping voltammetry was studied. The sensitivity of metal reduction peak currents was highly enhanced with the addition of 2-HBBH to metallic solutions, showing the adsorptive characteristics of the complexes. Variable factors affecting the response (mainly: the influences of pH, supporting electrolyte and deposition potential on selectivity and sensitivity) were investigated. Limits of detection suitable for trace analysis were obtained: 0.28 microg L(-1) for Cd(II) at pH 10; 0.026 microg L(-1) for Pb(II) at pH 9; 0.285 microg L(-1) for Bi(III) at pH 8 and 0.051 microg L(-1) for Cu(II) at pH 9.5. Simultaneous determinations of two groups of elements, consisting of Cd(II)-Pb(II)-Cu(II) and Cd(II)-Pb(II)-Bi(III), at pH 9.5 and 9, respectively, were described with good resolution and sensitivities. Metals were quantified at concentrations in the range from 0.5 to 14 microg L(-1). The RSD at a concentration level of 5 microg L(-1) of metal was 4.28% for Cd(II), 2.99% for Pb(II), 4.82% for Bi(III) and 1.35% for Cu(II). The method was applied to the simultaneous determination of metals in certified reference water (TMDA-62) and in synthetic water samples with satisfactory results.

  2. Conductive Polymer Microelectrodes for on-chip measurement of transmitter release from living cells

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Matteucci, Marco; Taboryski, Rafael J.

    2012-01-01

    driven cell trapping inside closed chip devices. Conductive polymer microelectrodes were used to measure transmitter release using electrochemical methods such as cyclic voltammetry and constant potential amperometry. By measuring the oxidation current at a cyclic voltammogram, the concentration...

  3. Detailed electrochemical studies of the tetraruthenium polyoxometalate water oxidation catalyst in acidic media: identification of an extended oxidation series using Fourier transformed alternating current voltammetry.

    Science.gov (United States)

    Lee, Chong-Yong; Guo, Si-Xuan; Murphy, Aidan F; McCormac, Timothy; Zhang, Jie; Bond, Alan M; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2012-11-05

    The electrochemistry of the water oxidation catalyst, Rb(8)K(2)[{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(γ-SiW(10)O(36))(2)] (Rb(8)K(2)-1(0)) has been studied in the presence and absence of potassium cations in both hydrochloric and sulfuric acid solutions by transient direct current (dc) cyclic voltammetry, a steady state dc method in the rotating disk configuration and the kinetically sensitive technique of Fourier transformed large-amplitude alternating current (ac) voltammetry. In acidic media, the presence of potassium ions affects the kinetics (apparent rate of electron transfer) and thermodynamics (reversible potentials) of the eight processes (A'/A to H/H') that are readily detected under dc voltammetric conditions. The six most positive processes (A'/A to F/F'), each involve a one electron ruthenium based charge transfer step (A'/A, B'/B are Ru(IV/V) oxidation and C/C' to F/F' are Ru(IV/III) reduction). The apparent rate of electron transfer of the ruthenium centers in sulfuric acid is higher than in hydrochloric acid. The addition of potassium cations increases the apparent rates and gives rise to a small shift of reversible potential. Simulations of the Fourier transformed ac voltammetry method show that the B'/B, E/E', and F/F' processes are quasi-reversible, while the others are close to reversible. A third Ru(IV/V) oxidation process is observed just prior to the positive potential limit via dc methods. Importantly, the ability of the higher harmonic components of the ac method to discriminate against the irreversible background solvent process allows this (process I) as well as an additional fourth reversible ruthenium based process (J) to be readily identified. The steady-state rotating disk electrode (RDE) method confirmed that all four Ru-centers in Rb(8)K(2)-1(0) are in oxidation state IV. The dc and ac data indicate that reversible potentials of the four ruthenium centers are evenly spaced, which may be relevant to understanding of the water oxidation

  4. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode.

    Science.gov (United States)

    Madrakian, Tayyebeh; Soleimani, Mohammad; Afkhami, Abbas

    2014-09-01

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87V and 1.1V vs. Ag/AgCl for MPM and an oxidation peak at 0.87V vs. Ag/AgCl for MPA in phosphate buffer solution of pH5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0×10(-6) to 1.6×10(-4)molL(-1) and 2.5×10(-6)molL(-1) to 6.0×10(-5)molL(-1) for MPM and MPA, respectively. The detection limit was found to be 9.0×10(-7)molL(-1) and 4.0×10(-7)molL(-1) for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples.

  5. Thorium effect on the oxidation of uranium: Photoelectron spectroscopy (XPS/UPS) and cyclic voltammetry (CV) investigation on (U1 - xThx)O2 (x = 0 to 1) thin films

    Science.gov (United States)

    Cakir, P.; Eloirdi, R.; Huber, F.; Konings, R. J. M.; Gouder, T.

    2017-01-01

    Thin films of U1- xThxO2 (x = 0 to 1) have been deposited via reactive DC sputter technique and characterized by X-ray/Ultra-violet Photoelectron Spectroscopy (XPS/UPS), X-ray Powder Diffractometer (XRD) and Cyclic Voltammetry (CV) in order to understand the effect of Thorium on the oxidation mechanism. During the deposition, the competition between uranium and thorium for oxidation showed that thorium has a much higher affinity for oxygen. Deposition conditions, time and temperature were also the subject of this study, to look at the homogeneity and the stability of the films. While core level and valence band spectra were not altered by the time of deposition, temperature was affecting the oxidation state of uranium and the valence band due to the mobility increase of oxygen through the film. X-ray diffraction patterns, core level spectra obtained for U1 - xThxO2 versus the composition showed that lattice parameters follow the Vegard's law and together with the binding energies of U-4f and Th-4f are in good agreement with literature data obtained on bulk compounds. To study the effect of thorium on the oxidation of U1 - xThxO2 films, we used CV experiments at neutral pH of a NaCl solution in contact with air. The results indicated that thorium has an effect on the uranium oxidation as demonstrated by the decrease of the current of the oxidation peak of uranium. XPS measurements made before and after the CV, showed a relative enrichment of thorium at the extent of uranium at the surface supporting the formation at a longer term of a thorium protective layer at the surface of uranium-thorium mixed oxide.

  6. Enriched alloy layer on an Al-Cu alloy studied by cyclic voltammetry

    Science.gov (United States)

    García Vergara, S. J.; Blanco Pinzon, C. E.; Skeldon, P.

    2017-01-01

    The behaviour of enriched Al-0.7at.%Cu alloy is investigated using cyclic voltammetry. Enriched alloy layers at the interface between the alloy/oxide film were developed by alkaline etching at 5mAcm-2 in 0.1M sodium hydroxide solution at 298K, with the time of etching determining the extent of enrichment. Cyclic voltammograms were recorded at a scan rate of 10mV s-1 in naturally aerated 0.1M ammonium pentaborate solution at 298K. The current overshoot of the enriched alloys was different from that for non-enriched alloy. The latter material revealed the usual single peaks, which are very similar. In contrast, the overshoot comprised two or more components for the enriched alloys. The behaviour is suggested to be associated with the atomic bonding of aluminium in copper-rich and aluminium-rich regions of the enriched alloy layer, with influence on the activation potentials for oxidation of aluminium.

  7. Determination of Selenium in infant formula by differential pulse cathodic stripping voltammetry

    Directory of Open Access Journals (Sweden)

    "Oveisi MR

    2002-07-01

    Full Text Available Selenium as a nonmetallic chemical element has received high attention of biologists because of its dual role as an essential trace nutrient and a toxic element. This interest has created a need for reliable analytical methods for determination of selenium. In this investigation determination of selenium by differential pulse cathodic stripping voltammetry and the influence of various parameters such as deposition potentials, deposition time. Cu concentration pH, etc. on selenium peak in voltammogram are described. Determination of selenium was accomplished in mixture of acetic acid, hydrochloric acid and sodium chloride buffer (pH=1 with a scan rate of 60 mv/s and a pulse height of 100 my by hanging mercury drop electrode (HMDE as working electrode. The solution was stirred during pre-electrolysis at - 350 mv (vs SCE for 30 s and the potential was scanned between - 350 mv and - 800 mv. The determination limit of the method was 0.005 mg/kg for the sample. The calibration curves were linear in the range of 0-30 μg/L (R2=0.996, p<0.001. Repeatability of the method at concentrations of 30 and 0.5 μg/L were 2.5 and 10.5% respectively.

  8. Detecting Naturally-Produced Sulfide Nanoparticles by Adsorptive, Cathodic Stripping Voltammetry.

    Science.gov (United States)

    Helz, G. R.; Krznaric, D.; Bura-Nakic, E.; Ciglenecki, I.

    2007-12-01

    Growing evidence implies that metal sulfide nanoparticles of natural origin exist in some aquatic environments. These nanoparticles could play important roles as mediators of trace metal nutrition and toxicity. Thermodynamics suggests that in sulfidic environments (total transition metaltotal sulfide) the most insoluble metal sulfide (usually Hg or Cu) will form the predominant sulfide nanoparticle. New experimental methods for detecting and distinguishing between such nanoparticles are needed. We report that mercury electrodes effectively preconcentrate a number of different metal sulfide nanoparticles, enabling their detection by adsorptive cathodic stripping voltammetry. Voltammetrically, nanoparticulate analytes differ fundamentally from dissolved analytes; e.g. analyte accumulation is very sensitive to electrolyte composition and concentration in accord with the Schulze-Hardy Rule. EDTA or acid treatment of samples is useful for distinguishing highly insoluble nanoparticles (HgS, CuS) from FeS. Nanoparticulate sulfur potentially interferes. Supersaturated solutions can generate artifactual analyte on Hg electrode surfaces. Despite such potential pitfalls, progress is encouraging. Preliminary, qualitative results from natural waters will be reported.

  9. Diamond microelectrodes and CMOS microelectronics for wireless transmission of fast-scan cyclic voltammetry.

    Science.gov (United States)

    Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram

    2007-01-01

    This paper reports on technology development at the sensor and circuit levels for wireless transmission of fast-scan cyclic voltammetry (FSCV) in neurochemical detection. Heavily conductive, boron-doped diamond is selectively deposited onto the polished tip of a tungsten microelectrode to fabricate versatile, implantable, micro-needle microprobes capable of neurochemical sensing in the brain. In addition, an integrated circuit is fabricated in a 0.5-microm CMOS technology for processing and wireless transmission of the electrochemical signals corresponding to extracellular concentration changes of various neurotransmitters. The chip consists of a current-based, second-order, front-end SigmaDelta ADC and an on-chip, RF-FSK transmitter at the back-end. The ADC core and the transmitter consume 22microA and 400microA, respectively, from a 2.6-V power supply. Major electroactive neurotransmitters such as serotonin and dopamine in micromolar concentration have been wirelessly recorded at 433MHz using 300-V/s FSCV in flow injection analysis experiments.

  10. Myoglobin immobilization on electrodeposited nanometer-scale nickel oxide particles and direct voltammetry.

    Science.gov (United States)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Ahadi, Sara; Saboury, Ali Akbar

    2008-04-01

    Prosperity of information on the reactions of redox-active sites in proteins can be attained by voltammetric studies in which the protein sample is located on a suitable surface. This work reports the presentation of myoglobin/nickel oxide nanoparticles/glassy carbon (Mb/NiO NPs/GC) electrode, ready by electrochemical deposition of the NiO NPs on glassy carbon electrode and myoglobin immobilization on their surfaces by the potential cycling method. Images of electrodeposited NiO NPs on the surface of glassy carbon electrode were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A pair of well-defined redox peaks for Mb(Fe(III)-Fe(II)) was obtained at the prepared electrode by direct electron transfer between the protein and nanoparticles. Electrochemical parameters of immobilized myoglobin such as formal potential (E(0')), charge transfer coefficient (alpha) and apparent heterogeneous electron transfer rate constant (k(s)) were estimated by cyclic voltammetry and nonlinear regression analysis. Biocatalytic activity was exemplified at the prepared electrode for reduction of hydrogen peroxide.

  11. Cyclic voltammetry studies of n-type polymers with non-alternant fluoranthene units

    Energy Technology Data Exchange (ETDEWEB)

    Angulo, Gonzalo [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Kapturkiewicz, Andrzej [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)], E-mail: akaptur@ichf.edu.pl; Palmaerts, Arne [Hasselt University, Institute for Materials Research (IMO), Agoralaan, Building D, B-3590 Diepenbeek (Belgium); Lutsen, Laurence [IMEC, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Cleij, Thomas J. [Hasselt University, Institute for Materials Research (IMO), Agoralaan, Building D, B-3590 Diepenbeek (Belgium); Vanderzande, Dirk [Hasselt University, Institute for Materials Research (IMO), Agoralaan, Building D, B-3590 Diepenbeek (Belgium); IMEC, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

    2009-02-01

    Poly(p-fluoranthenevinylenes) and their dithiocarbamate precursors have been deposited on indium-tin oxide electrodes and electrochemical properties of the obtained films have been investigated by means of cyclic voltammetry studies in acetonitrile solutions containing 0.1 M (n-C{sub 4}H{sub 9}){sub 4}NBF{sub 4} as supporting electrolyte. It has been found that all investigated polymers display well pronounced n-doping processes. Electrochemical reduction of the dithiocarbamate precursors seems to be associated with C-S bond cleavage with elimination of -SC(S)N(C{sub 2}H{sub 5}){sub 2} group. In view of UV-vis spectroscopic data the obtained products, tentatively identified as polymers containing fluoranthene units connected by -CH{sub 2}-CH{sub 2}- bridges, are somewhat less conjugated than the corresponding poly(p-fluoranthenevinylenes). Reversible electrochemical reduction of poly(p-fluoranthenethanes) occurs at potentials only somewhat (ca. 0.1 V) more negative as found for their poly(p-fluoranthenevinylenes) analogues suggesting relatively weak coupling between fluoranthene kernels in both kinds of investigated polymers.

  12. Fast-scan cyclic voltammetry analysis of dynamic serotonin reponses to acute escitalopram.

    Science.gov (United States)

    Wood, Kevin M; Hashemi, Parastoo

    2013-05-15

    The treatment of depression with selective serotonin reuptake inhibitors, SSRIs, is important to study on a neurochemical level because of the therapeutic variability experienced by many depressed patients. We employed the rapid temporal capabilities of fast scan cyclic voltammetry at carbon fiber microelectrodes to study the effects of a popular SSRI, escitalopram (ESCIT), marketed as Lexapro, on serotonin in mice. We report novel, dynamic serotonin behavior after acute ESCIT doses, characterized by a rapid increase in stimulated serotonin release and a gradual rise in serotonin clearance over 120 min. Dynamic changes after acute SSRI doses may be clinically relevant to the pathology of increased depression or suicidality after onset of antidepressant treatment. Due to the short-term variability of serotonin responses after acute ESCIT, we outline difficulties in creating dose response curves and we suggest effective means to visualize dynamic serotonin changes after SSRIs. Correlating chemical serotonin patterns to clinical findings will allow a finer understanding of SSRI mechanisms, ultimately providing a platform for reducing therapeutic variability.

  13. Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data.

    Science.gov (United States)

    Johnson, Justin A; Rodeberg, Nathan T; Wightman, R Mark

    2016-03-16

    The use of principal component regression, a multivariate calibration method, in the analysis of in vivo fast-scan cyclic voltammetry data allows for separation of overlapping signal contributions, permitting evaluation of the temporal dynamics of multiple neurotransmitters simultaneously. To accomplish this, the technique relies on information about current-concentration relationships across the scan-potential window gained from analysis of training sets. The ability of the constructed models to resolve analytes depends critically on the quality of these data. Recently, the use of standard training sets obtained under conditions other than those of the experimental data collection (e.g., with different electrodes, animals, or equipment) has been reported. This study evaluates the analyte resolution capabilities of models constructed using this approach from both a theoretical and experimental viewpoint. A detailed discussion of the theory of principal component regression is provided to inform this discussion. The findings demonstrate that the use of standard training sets leads to misassignment of the current-concentration relationships across the scan-potential window. This directly results in poor analyte resolution and, consequently, inaccurate quantitation, which may lead to erroneous conclusions being drawn from experimental data. Thus, it is strongly advocated that training sets be obtained under the experimental conditions to allow for accurate data analysis.

  14. Determination of diclofenac using electromembrane extraction coupled with stripping FFT continuous cyclic voltammetry.

    Science.gov (United States)

    Mofidi, Zahra; Norouzi, Parviz; Seidi, Shahram; Ganjali, Mohammad Reza

    2017-06-15

    For the first time, on-line and ultra-sensitive determination of trace amount of diclofenac in whole blood sample was performed by coupling of electromembrane extraction (EME) and stripping fast Fourier transform continuous cyclic voltammetry (SFFTCCV). In SFFTCCV, the potential waveform was continuously applied on a carbon paste electrode and the electrode response was obtained by subtracting the background current and integrating the current in potential range of the analyte oxidation. A central composite design was used for the optimization of the parameters influencing the extraction efficiency. By applying a DC potential of 20 V during 28 min of extraction, diclofenac was migrated from the sample solution (pH 5), into a thin layer of 1-octanol immobilized in the pores of a porous flat sheet membrane and then into the acceptor solution (pH 7). The method presented a good linearity within the range of 5-1000 ng mL(-1) with a determination coefficient of 0.993 in whole blood samples. Limits of detection (LOD) and quantification (LOQ) were found to be 1.0 ng mL(-1) and 5.0 ng mL(-1) respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry.

    Science.gov (United States)

    Johnson, Justin A; Hobbs, Caddy N; Wightman, R Mark

    2017-06-06

    Due to its high spatiotemporal resolution, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes enables the localized in vivo monitoring of subsecond fluctuations in electroactive neurotransmitter concentrations. In practice, resolution of the analytical signal relies on digital background subtraction for removal of the large current due to charging of the electrical double layer as well as surface faradaic reactions. However, fluctuations in this background current often occur with changes in the electrode state or ionic environment, leading to nonspecific contributions to the FSCV data that confound data analysis. Here, we both explore the origin of such shifts seen with local changes in cations and develop a model to account for their shape. Further, we describe a convolution-based method for removal of the differential capacitive contributions to the FSCV current. The method relies on the use of a small-amplitude pulse made prior to the FSCV sweep that probes the impedance of the system. To predict the nonfaradaic current response to the voltammetric sweep, the step current response is differentiated to provide an estimate of the system's impulse response function and is used to convolute the applied waveform. The generated prediction is then subtracted from the observed current to the voltammetric sweep, removing artifacts associated with electrode impedance changes. The technique is demonstrated to remove select contributions from capacitive characteristics changes of the electrode both in vitro (i.e., in flow-injection analysis) and in vivo (i.e., during a spreading depression event in an anesthetized rat).

  16. Determination of water in room temperature ionic liquids by cathodic stripping voltammetry at a gold electrode.

    Science.gov (United States)

    Zhao, Chuan; Bond, Alan M; Lu, Xunyu

    2012-03-20

    An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product.

  17. Underpotential Deposition Study and Determination of Bismuth on Gold Electrode by Using Voltammetry

    Institute of Scientific and Technical Information of China (English)

    DU,Yong-Ling(杜永令); WANG,Chun-Ming(王春明)

    2002-01-01

    The cyclic voltammetry (CV) and the semidifferential anodic stripping voltanmetry (SdASV) were used for investigation of bismuth(Ⅲ) underpotential deposition (UPD) on gold electrode. Based on the excellent electrochemical properties of Au/Bi UPD system, a new method for determining bismuth (Ⅲ)was established. A solution of 0.1 mol/L HNO3 was selected as the supporting electrolyte. Factors affecting the Bi(Ⅲ) UPD and stripping steps were investigated and an opthmized analytical procedure was developed. The calibration plots for Bi(Ⅲ) concentration in the range 1.25 × 10-8-1.0 × 10-7 mol/L were obtained. The detection limit, calculated as three times the standard deviation of the analytical signal of 8.3×10-8 mol/L for a 90 s electrodeposition at 0.00 V (while the solution magnetically stirred at a speed of 300 rpm), was 7.5× 10-9 mol/ L. For8 successive determinations of 1.25 × 10-7 mol/L Bi(Ⅲ), the obtained RSD (relative standard deviation) was 0.4%. The developed method was applied to bismuth determining in medicine and urine samples. The analytical results were compared with that of atomic emission spectrometry (AES) method.

  18. Determination of copper speciation in highway stormwater runoff using competitive ligand exchange - Adsorptive cathodic stripping voltammetry.

    Science.gov (United States)

    Nason, Jeffrey A; Sprick, Matthew S; Bloomquist, Don J

    2012-11-01

    Low concentrations of dissolved copper have been shown to adversely affect the olfactory system of salmonid species, impairing their ability to avoid predators and likely increasing mortality. These studies have resulted in increased regulatory scrutiny of stormwater discharges to surface waters inhabited by threatened and endangered salmonid species. Because it is primarily the free ionic (Cu(2+)) and weakly complexed forms of copper that are bioavailable, it is critical to understand the speciation of copper in stormwater. This paper reports on the characterization of copper binding ligands and copper speciation in composite samples of highway stormwater runoff collected at four sites in Oregon, USA using competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE-ACSV). Although the concentration and strength of copper binding ligands in stormwater varied considerable between sites and storms, the vast majority (>99.9%) of the total dissolved copper in composite samples was complexed by organic ligands in stormwater. Although total dissolved copper concentrations range from 2 to 20 μg/L, the analytically determined free ionic copper concentrations did not exceed 10(-10) M (6.3 ng/L) in any of the fully characterized samples, suggesting that much of the copper in highway stormwater is not bioavailable. Analytically determined free ionic copper concentrations were compared with those predicted by a readily available chemical equilibrium models and found to be in reasonable agreement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Determination of the leaching of polymeric ion-selective membrane components by stripping voltammetry.

    Science.gov (United States)

    Paczosa-Bator, Beata; Piech, Robert; Lewenstam, Andrzej

    2010-05-15

    This paper focuses on the quantitative determination of the loss of the components from plastic membranes of ion-selective electrodes (ISEs) during contact with aqueous bathing solutions. The leaching processes, which affect the ISE responses, are rarely characterized by independent methods. For this purpose, differential pulse cathodic stripping voltammetry (DP CSV) is used. This method, owing to its high sensitivity, acceptable recovery and accuracy, is a good tool to characterize the kinetics of leakage of the lipophilic salts. Sodium tetraphenylborate (NaTPB) leakage from the PVC-based sodium-selective membrane containing two different plasticizers, o-nitrophenyl octyl ether (o-NPOE) or di(2-ethylhexyl) sebacate (DOS) is presented. Correlation between the rate of leaching of the lipophilic salt and dielectric constants of the plasticizers is observed. The data obtained by DP CSV correlate well with potentiometric and electrochemical impedance responses. The observed outflow of TPB(-) is associated with decreasing potentiometric sensitivity to sodium and increasing bulk membrane resistance.

  20. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene.

    Science.gov (United States)

    van den Berg, Constant M G

    2006-01-01

    The chemical speciation of iron in seawater is determined by cathodic stripping voltammetry using 2,3-dihydroxynaphthalene (DHN) as adsorptive and competing ligand. The optimized conditions include a DHN concentration of 0.5-1 microM, seawater at its original pH of 8, and equilibration overnight. The alpha-coefficient for DHN (=[FeDHN]/[Fe']) was calibrated against EDTA giving values of 166 for 0.5 microM DHN and 366 at 1 microM DHN and a value of 8.51 +/- 0.07 for log K'(Fe'DHN). The dissociation of the natural iron species FeL was found to have a characteristic reaction time of 50 min, indicating that titrations should be equilibrated overnight rather than the shorter periods sometimes used onboard ship. The method was applied to samples from the Pacific giving ligand concentrations of 1.1 and 1.6 nM for deep and surface waters, respectively, with an average value for log K'(FeL) of 11.9 +/- 0.3 compared to a value of 11.5 for the siderophore deferoxamine. The results are similar to those obtained previously for similar samples, but the new method has much greater sensitivity for iron than previous methods, leading to lower limits of detection and shorter analysis time.

  1. Electrochemical analysis of the alanine phenylthiohydantoin derivative by cathodic stripping voltammetry.

    Science.gov (United States)

    Vilaseca, C; Quintana, M C; Vicente, J; Hernández, P; Hernández, L

    2008-08-01

    A square-wave cathodic stripping voltammetry method for alanine determination as its phenylthiohydantoin (PTH-alanine) derivative is developed. To this end, all the chemical and instrumental variables affecting the determination of PTH-alanine are optimized. From studies of the mechanisms governing the electrochemical response of PTH-alanine, it was concluded that it is an electrochemically irreversible system with a diffusive-adsorptive reduction phenomenon. Under optimal conditions, the variation of analytical signal (I(p)) with PTH-alanine concentration is linear in the 2.4x10(-8)-4.8x10(-7) M range, with a LOD of 1.2x10(-8) M and a LOQ of 4.2x10(-8) M, a RSD (%) less than 11%, and a E(r) (%) less than 10%. The optimized method was applied to the determination of PTH-alanine obtained from a synthetic protein after Edman reaction and the results were corroborated by high-performance liquid chromatography with UV detection.

  2. Quantification of sub-nanomolar levels of Penicillin G by differential pulse adsorptive stripping voltammetry.

    Science.gov (United States)

    Abbasi, S; Khodarahmian, K; Farmany, A

    2012-02-01

    A novel selective and sensitive method is developed for determination of Penicillin G by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV). Penicillin G gave well-resolved diffusion-controlled cathodic peaks at -0.42 and -0.584 V, respectively (vs Ag/AgCl) in pH 7.50 of borate buffer. Optimal conditions were obtained as pH 7.50, accumulation potential of -0.2 V (vs Ag/AgCl), accumulation time of 120 s, and scan rate of 100 mV/s. Under the optimized conditions, a linear calibration curve was established for the concentration of Penicillin G in the range of 0.007-2.13 µg/ml with a detection limit of 0.000717 µg/ml. The procedure was successfully applied to the determination of Penicillin G in various medicine and biological samples. The relative standard deviation of the method at 0.05 and 0.5 µg/ml Penicillin G, for 10 runs, was 2.55% and 2.06%, respectively. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Direct analysis of palladium in active pharmaceutical ingredients by anodic stripping voltammetry.

    Science.gov (United States)

    Rosolina, Samuel M; Chambers, James Q; Xue, Zi-Ling

    2016-03-31

    Anodic stripping voltammetry, a classical electroanalytical method has been optimized to analyze trace Pd(II) in active pharmaceutical ingredient matrices. The electroanalytical approach with an unmodified glassy carbon electrode was performed in both aqueous and 95% DMSO/5% water (95/5 DMSO/H2O) solutions, without pretreatment such as acid digestion or dry ashing to remove the organics. Limits of detection (LODs) in the presence of caffeine and ketoprofen were determined to be 11 and 9.6 μg g(-1), with a relative standard deviation (RSD) of 5.7% and 2.3%, respectively. This method is simple, highly reproducible, sensitive, and robust. The instrumentation has the potential to be portable and the obviation of sample pretreatment makes it an ideal approach for determining lost catalytic metals in pharmaceutical-related industries. Furthermore, the simultaneous detection of Pd(II) with Cd(II) and Pb(II) in the low μg L(-1) range indicates that this system is capable of simultaneous multi-analyte analysis in a variety of matrices.

  4. Determination of Anionic Surfactants Using Atomic Absorption Spectrometry and Anodic Stripping Voltammetry

    Science.gov (United States)

    John, Richard; Lord, Daniel

    1999-09-01

    An experiment has been developed for our undergraduate analytical chemistry course that demonstrates the indirect analysis of anionic surfactants by techniques normally associated with metal ion determination; that is, atomic absorption spectroscopy (AAS) and anodic stripping voltammetry (ASV). The method involves the formation of an extractable complex between the synthetic surfactant anion and the bis(ethylenediamine)diaqua copper(II) cation. This complex is extracted into chloroform and then back-extracted into dilute acid. The resulting Cu(II) ions are determined by AAS and ASV. Students are required to determine the concentration of a pre-prepared "unknown" anionic surfactant solution and to collect and analyze a real sample of their choice. After the two extraction processes, students typically obtain close to 100% analytical recovery. Correlation between student AAS and ASV results is very good, indicating that any errors that occur probably result from their technique (dilutions, extractions, preparation of standards, etc.) rather than from the end analyses. The experiment is a valuable demonstration of the following analytical principles: indirect analysis; compleximetric analysis; liquid-liquid (solvent) extraction; back-extraction (into dilute acid); analytical recovery; and metal ion analysis using flame-AAS and ASV.

  5. Probing the conformation and 2D-distribution of pyrene-terminated redox-labeled poly(ethylene glycol) chains end-adsorbed on HOPG using cyclic voltammetry and atomic force electrochemical microscopy.

    Science.gov (United States)

    Anne, Agnès; Bahri, Mohamed Ali; Chovin, Arnaud; Demaille, Christophe; Taofifenua, Cécilia

    2014-03-14

    The present paper aims at illustrating how end-attachment of water-soluble flexible chains bearing a terminal functional group onto graphene-like surfaces has to be carefully tuned to ensure the proper positioning of the functional moiety with respect to the anchoring surface. The model experimental system considered here consists of a layer of poly(ethylene glycol) (PEG) chains, bearing an adsorbing pyrene foot and a ferrocene (Fc) redox functional head, self-assembled onto highly oriented pyrolytic graphite (HOPG). Cyclic voltammetry is used to accurately measure the chain coverage and gain insights into the microenvironment experienced by the Fc heads. Molecule-touching atomic force electrochemical microscopy (Mt/AFM-SECM) is used to simultaneously probe the chain conformation and the position of the Fc heads within the layer, and also to map the 2D-distribution of the chains over the surface. This multiscale electrochemical approach allows us to show that whereas Fc-PEG-pyrene readily self-assembles to form extremely homogeneous layers, the strongly hydrophobic nature of graphite planes results in a complex coverage-dependent structure of the PEG layer due to the interaction of the ferrocene label with the HOPG surface. It is shown that, even though pyrene is known to adsorb particularly strongly onto HOPG, the more weakly adsorbing terminal ferrocene can also act as the chain anchoring moiety especially at low coverage. However we show that beyond a critical coverage value the Fc-PEG-pyrene chains adopt an ideal "foot-on" end-attached conformation allowing the Fc head to explore a volume away from the surface solely limited by the PEG chain elasticity.

  6. How to overcome inter-electrode variability and instability to quantify dissolved oxygen, Fe(II), mn(II), and S(−II) in undisturbed soils and sediments using voltammetry

    Science.gov (United States)

    Slowey, Aaron J.; Marvin-DiPasquale, Mark

    2012-01-01

    Background - Although uniquely capable of measuring multiple redox constituents nearly simultaneously with no or minimal sample pretreatment, voltammetry is currently underutilized in characterizing redox conditions in aquatic and terrestrial systems. Investigation of undisturbed media such as pore water requires a solid-state electrode, and such electrodes can be difficult to fabricate reproducibly. An approach to determine the concentrations of electroactive constituents using indirectly calibrated electrodes has been developed, but the protocol for and accuracy of this approach—the pilot ion method—has not been documented in detail.

  7. Anodic stripping voltammetry at in situ bismuth-plated carbon and gold microdisc electrodes in variable electrolyte content unstirred solutions.

    Science.gov (United States)

    Baldrianova, L; Svancara, I; Economou, A; Sotiropoulos, S

    2006-10-27

    Carbon and gold microdisc electrodes (30 and 10 microm, respectively) have been tested as substrates for in situ bismuth film plating from unstirred solutions of variable acetate buffer content and were subsequently used in the anodic stripping voltammetry determination of Pb(II) and Cd(II) ions. The effects of Bi(III) concentration, analyte accumulation time, stirring as well as supporting electrolyte content have been studied. Under optimal conditions good voltammetric responses were obtained by means of square wave anodic stripping voltammetry in unstirred analyte solutions of 5 x 10(-8) to 10(-6)M, even in the absence of added buffer. In an indicative application, Pb(II) ion levels were determined in tap water using bismuth-plated carbon microdisc electrodes.

  8. Quantification of the Vasoactive Agent Buflomedil HCl in Pharmaceutical Formulation and Human Serum by Stripping Voltammetry and Liquid Chromatography.

    Science.gov (United States)

    El-Desoky, Hanaa S; Ghoneim, Mohamed M; Abdel-Galeil, Mohamed M

    2010-06-01

    Buflomedil HCl, was reduced at the mercury electrode in buffered solutions of various pH values (2-11) via a single 2-electron irreversible step corresponding to reduction of its C=O double bond. Buflomedil HCl has interfacial adsorptive behavior onto the mercury electrode surface and a monolayer surface coverage of 2.37 × 10-10 mol cm-2 was estimated. Each adsorbed buflomedil HCl molecule was found to occupy an area of 0.69 nm2 onto the HMDE surface. Differential-pulse (DP), liner-sweep (LS) and square-wave (SW) adsorptive cathodic stripping voltammetry (AdCSV) methods were described for its determination in the bulk form. The sensitivity of the described electro-analytical methods increases in the direction: DP-AdCSV voltammetry method is much more sensitive than the described chromatographic one. However the described chromatographic method is substantially simpler, faster and more sensitive than the previously reported HPLC methods.

  9. Voltammetric Study and Determination of Phenylephrine Hydrochloride at INP-Nafion-Modified CPE Sensor Employing Differential Pulse Voltammetry

    Directory of Open Access Journals (Sweden)

    Zeinab Pourghobadi

    2014-03-01

    Full Text Available In this study, describes the voltammetric oxidation and determination of phenylephrine (PHE hydrochloride at a new chemically modified electrode. Iron nanoparticle (INPs was dispersed in Nafion solution to obtain a INP-Nafion-modified CPE for the voltammetric analysis of PHE .The electrochemical behaviour of PHE on INP-Nafion-modified CPE was studied, using cyclic voltammetry as a diagnostic technique. The effects of amount of INPs-Nafion dispersion, pH, and scan rate on the response of modified electrode for the oxidation of PHE were investigated. Using differential pulse voltammetry (DPV, the modified electrode indicated a dynamic linear range for quantitative determination of PHE in the range of 5 μM−130 μM, and the detection limit was estimated to be 0.76 μM. The method was developed for the determination of PHE in pharmaceutical samples with satisfactory results.

  10. Determination of genotoxic effects of methidathion alkaline hydrolysis in human lymphocytes using the micronucleus assay and square-wave voltammetry.

    Science.gov (United States)

    Stivaktakis, Polychronis D; Giannakopoulos, Evangelos; Vlastos, Dimitris; Matthopoulos, Demetrios P

    2017-02-01

    The interaction of pesticides with environmental factors, such as pH, may result in alterations of their physicochemical properties and should be taken into consideration in regard to their classification. This study investigates the genotoxicity of methidathion and its alkaline hydrolysis by-products in cultured human lymphocytes, using the square-wave voltammetry (square wave-adsorptive cathodic stripping voltammetry (SW-AdCSV) technique) and the cytokinesis block micronucleus assay (CBMN assay). According to the SW-AdCSV data the alkaline hydrolysis of methidathion results in two new molecules, one non-electro-active and a second electro-active which is more genotoxic than methidathion itself in cultured human lymphocytes, inducing higher micronuclei frequencies. The present study confirms the SW-AdCSV technique as a voltammetric method which can successfully simulates the electrodynamics of the cellular membrane.

  11. Study of corrosion in steel sculptures by means of solid state voltammetry at paraffin-impregnated graphite electrodes

    OpenAIRE

    DOMENECH CARBO, ANTONIO; Roig Salom, José Luís; Domenech Carbo, Mª Teresa

    2006-01-01

    Solid-state voltammetry is used for studying the composition of corrosion products in a series of sculptures from the Contemporary Sculpture Collection of the Universidad Politècnica de Valencia (Spain). Upon attachment to paraffin-impregnated graphite electrodes, well-defined voltammetric responses were obtained upon immersion in 0.10 M HCl. A hematite with a variable degree of hydration and crystallinity, accompanied by FeO(OH) forms, is identified as the main corrosion product. La volta...

  12. Investigation of Inclusion Complexes Between α-Cyclodextrin and Ferrocene by ESI-MSn and Cyclic Voltammetry

    Institute of Scientific and Technical Information of China (English)

    GUO Li-min; LIU Zhi-qiang; LIU Shu-ying

    2005-01-01

    @@ The inclusion complexes of α-cyclodextrin(α-CD) and FcCO2(CH2)18 (FcSH) and their self-assembled monolayers(SAMs) on gold surface were investigated by electrospray tandem ionization mass spectrometry(ESI-MSn) and cyclic voltammetry, respectively. The interfacial electrochemical response of the SAMs is related to the way in which the inclusion complexes formed.

  13. Determination of Antimony (III) in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode

    OpenAIRE

    Olga Domínguez-Renedo; M. Julia Arcos-Martínez; M. Jesús Gómez González

    2009-01-01

    This paper describes a procedure for the determination of antimony (III) by differential pulse anodic stripping voltammetry using a mercury film screen-printed electrode as the working electrode. The procedure has been optimized using experimental design methodology. Under these conditions, in terms of Residual Standard Deviation (RSD), the repeatability (3.81 %) and the reproducibility (5.07 %) of the constructed electrodes were both analyzed. The detection limit for Sb (III) was calculated ...

  14. Cell-based chip for the detection of anticancer effect on HeLa cells using cyclic voltammetry.

    Science.gov (United States)

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Kim, Hyunhee; Oh, Byung-Keun; Choi, Jeong-Woo

    2009-01-01

    HeLa cells directly immobilized on gold-patterned silicon substrate were used to assess the biological toxicity of anticancer drugs (hydroxyurea and cyclophosphamide). Immobilization of HeLa cells was confirmed by optical microscopy, and cell growth, viability and drug-related toxicity were examined by cyclic voltammetry and potentiometric stripping analysis. The voltammetric behaviors of HeLa cells displayed a quasi-reversible pattern with the peak current exhibiting a linear relationship with cell number. The attached living cells were exposed to different concentrations of hydroxyurea and cyclophosphamide as anticancer drugs, which induced the change of cyclic voltammetry current peak. As the exposed concentration of anticancer drugs was increased, the change of current peak was increased, which indicates the decrease of cell viability. Trypan Blue dyeing was performed to confirm the results of the effect of anticancer drugs on the cell viability which was obtained from cyclic voltammetry assay. The proposed direct cell immobilization method technique can be applied to the fabrication of cell chip for diagnosis, drug detection, and on-site monitoring.

  15. Femtomolar Detection of Silver Nanoparticles by Flow-Enhanced Direct-Impact Voltammetry at a Microelectrode Array.

    Science.gov (United States)

    Sokolov, Stanislav V; Bartlett, Thomas R; Fair, Peter; Fletcher, Stephen; Compton, Richard G

    2016-09-06

    We report the femtomolar detection of silver (Ag) nanoparticles by direct-impact voltammetry. This is achieved through the use of a random array of microelectrodes (RAM) integrated into a purpose-built flow cell, allowing combined diffusion and convection to the electrode surface. A coupled RAM-flow cell system is implemented and is shown to give reproducible wall-jet type flow characteristics, using potassium ferrocyanide as a molecular redox species. The calibrated flow system is then used to detect and quantitatively size Ag nanoparticles at femtomolar concentrations. Under flow conditions, it is found the nanoparticle impact frequency increases linearly with the volumetric flow rate. The resulting limit of detection is more than 2 orders of magnitude smaller than the previous detection limit for direct-impact voltammetry (900 fM) [J. Ellison et al. Sens. Actuators, B 2014, 200, 47], and is more than 30 times smaller than the previous detection limit for mediated-impact voltammetry (83 fM) [T. M. Alligrant et al. Langmuir 2014, 30, 13462].

  16. Speciation study of aluminium in beverages by Competitive Ligand Exchange-Adsorptive Stripping Voltammetry.

    Science.gov (United States)

    Magnier, A; Fekete, V; Van Loco, J; Bolle, F; Elskens, M

    2014-05-01

    Competitive Ligand Exchange-Adsorptive Stripping Voltammetry (CLE-AdSV) was used for determining the speciation of aluminium in commonly consumed beverages (water, tea, infusion, coffee, orange juice, tomato juice, beer and red wine). Aluminium determination involves the adsorption of Al-complexes with the ligand cupferron onto a hanging mercury drop electrode. All samples were studied at pH 6.5 with an accumulation step at -0.60 V (all potential values in the paper are given versus the Ag/AgCl, [KCl]=3 M reference electrode) during 60 s, and a final cupferron concentration of 4 × 10(-4)M. These conditions were used to establish (i) the concentration of electro-labile aluminium, (ii) the range of ligand concentrations and (iii) the conditional stability constants of beverage samples using titration procedures. The results based on Ruzic plots were compared to computer simulation with Visual MINTEQ. This comparison suggests that labile monomeric Al-forms and soluble organic complexes of low molecular weight can be quantified by the CLE-AdSV procedure. Overall the relative uncertainties on the determination of the electro-active Al fraction and the complexing parameters, i.e., concentration and conditional stability constant of natural ligands in the samples, are less than 15%. Thanks to these results, information on Al bioavailability in beverages was collected and discussed. This study also illustrates the value of computer simulations when complex, time-consuming voltammetric techniques are applied. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Anodic passivation of tin by alkanethiol self-assembled monolayers examined by cyclic voltammetry and coulometry.

    Science.gov (United States)

    Worley, Barrett C; Ricks, William A; Prendergast, Michael P; Gregory, Brian W; Collins, Ross; Cassimus, John J; Thompson, Raymond G

    2013-10-22

    The self-assembly of medium chain length alkanethiol monolayers on polycrystalline Sn electrodes has been investigated by cyclic voltammetry and coulometry. These studies have been performed in order to ascertain the conditions under which their oxidative deposition can be achieved directly on the oxide-free Sn surface, and the extent to which these electrochemically prepared self-assembled monolayers (SAMs) act as barriers to surface oxide growth. This work has shown that the potentials for their oxidative deposition are more cathodic (by 100-200 mV) than those for Sn surface oxidation and that the passivating abilities of these SAMs improve with increasing film thickness (or chain length). Oxidative desorption potentials for these films have been observed to shift more positively, and in a highly linear fashion, with increasing film thickness (~75 mV/CH2). Although reductive desorption potentials for the SAMs are in close proximity to those for reduction of the surface oxide (SnOx), little or no SnOx formation occurs unless the potential is made sufficiently anodic that the monolayers start to be removed oxidatively. Our coulometric data indicate that the charge involved with alkanethiol reductive desorption or oxidative deposition is consistent with the formation of a close-packed monolayer, given uncertainties attributable to surface roughness and heterogeneity phenomena. These experiments also reveal that the quantity of charge passed during oxidative desorption is significantly larger than what would be predicted for simple alkylsulfinate or alkylsulfonate formation, suggesting that oxidative removal involves a more complex oxidation mechanism. Analogous chronocoulometric experiments for short-chain alkanethiols on polycrystalline Au electrodes have evidenced similar oxidative charge densities. This implies that the mechanism for oxidative desorption on both surfaces may be very similar, despite the significant differences in the inherent dissolution

  18. Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data.

    Science.gov (United States)

    Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K

    2015-03-02

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Determination of tryptamine in foods using square wave adsorptive stripping voltammetry.

    Science.gov (United States)

    Costa, Daniel J E; Martínez, Ana M; Ribeiro, Williame F; Bichinho, Kátia M; Di Nezio, María Susana; Pistonesi, Marcelo F; Araujo, Mario C U

    2016-07-01

    Tryptamine, a biogenic amine, is an indole derivative with an electrophilic substituent at the C3 position of the pyrrole ring of the indole moiety. The electrochemical oxidation of tryptamine was investigated using glassy carbon electrode (GCE), and focusing on trace level determination in food products by square wave adsorptive stripping voltammetry (SWAdSV). The electrochemical responses of tryptamine were evaluated using differing voltammetric techniques over a wide pH range, a quasi-reversible electron-transfer to redox system represented by coupled peaks P1-P3, and an irreversible reaction for peak P2 were demonstrated. The proton and electron counts associated with the oxidation reactions were estimated. The nature of the mass transfer process was predominantly diffusion-limited for the oxidation process of P1, the most selective and sensitive analytical response (acetate buffer solution pH 5.3), being used for the development of SWAdSV method, under optimum conditions. The excellent response allowed the development of an electroanalytical method with a linear response range of from 4.7-54.5)×10(-)(8)molL(-1), low detection limit (0.8×10(-)(9)molL(-)(1)), and quantification limit (2.7×10(-9)molL(-1)), and acceptable levels of repeatability (3.6%), and reproducibility (3.8%). Tryptamine content was determined in bananas, tomatoes, cheese (mozzarella and gorgonzola), and cold meats (chicken sausage and pepperoni sausage), yielding recoveries above 90%, with excellent analytical performance using simple and low cost instrumentation.

  20. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dansby-Sparks, Royce; Chambers, James Q. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 (United States); Xue Ziling, E-mail: xue@ion.chem.utk.edu [Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 (United States)

    2009-06-08

    An electrochemical technique has been developed for ultra-trace (ng L{sup -1}) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire electrodes (MWEs, 100 {mu}m) in the presence of gallic acid (GA) and bromate ion. A potential of -0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0-1000 ng L{sup -1} range (2 min deposition), with a detection limit of 0.88 ng L{sup -1}. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ng L{sup -1} level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP).

  1. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes.

    Science.gov (United States)

    Dansby-Sparks, Royce; Chambers, James Q; Xue, Zi-Ling

    2009-06-08

    An electrochemical technique has been developed for ultra-trace (ng L(-1)) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire electrodes (MWEs, 100 microm) in the presence of gallic acid (GA) and bromate ion. A potential of -0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0-1000 ng L(-1) range (2 min deposition), with a detection limit of 0.88 ng L(-1). The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ng L(-1) level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP).

  2. Simultaneous determination of textile dyes by Adsorptive Cathodic Stripping Voltammetry - doi: 10.4025/actascitechnol.v35i2.16595

    National Research Council Canada - National Science Library

    Lidia Brizola Santos; Fernando Santos Domingues; Fernando Rosseto; Vitor de Cinque Almeida; Juliana Carla Garcia; Nilson Evelázio de Souza

    2013-01-01

    The Adsorptive Cathodic Stripping Voltammetry (ACSV - differential pulse) proved to be an efficient method in the separation and quantification of two reactive textile dyes, Procion Yellow (PY) and Procion Red (PR...

  3. Determination of Total Iodine Concentration in Aquatic Environments Using Cathodic Stripping Voltammetry Combined with Sodium Hypochlorite (NaClO) Oxidation

    National Research Council Canada - National Science Library

    SATOH, Yuhi; OTOSAKA, Shigeyoshi; SUZUKI, Takashi

    2014-01-01

    An easy and fast method for the determination of total iodine in environmental samples by cathodic stripping voltammetry combined with sodium-hydrochlorous-induced oxidation (NaClO oxidation) has been developed...

  4. Extraction of arsenic as the diethyl dithiophosphate complex with supercritical fluid and quantitation by cathodic stripping voltammetry.

    Science.gov (United States)

    Arancibia, Verónica; López, Alex; Zúñiga, M Carolina; Segura, Rodrigo

    2006-02-28

    The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO(2). Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)(3) were achieved when the experiments were carried out at a pressure of 2500psi, a temperature of 90 degrees C, 2.0mL of methanol, 20.0min of static extraction and 5.0min of dynamic extraction in the presence of 18mg of ADDTP. Analysis of arsenic was made using 150mgL(-1) of Cu(II) in 1M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of -0.50V and the intermetallic compound Cu(x)As(y) was reduced at a potential of -0.77 to -0.82V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)(3) solution was linear from 0.8 to 12.5mugL(-1) of arsenic (LOD 0.5mugL(-1), R=0.9992, t(acc)=60s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10+/-0.18mgkg(-1); pulp 3.83+/-0.19mgkg(-1) and juice 0.71+/-0.09mgL(-1); arsenic in carrots was: skin 2.15+/-0.09mgkg(-1); pulp 0.59+/-0.11mgkg(-1) and juice 0.71+/-0.03mgL(-1). Arsenic in water were: Chiu-Chiu 0.08mgL(-1), Inacaliri 1.12mgL(-1), and Salado river 0.17+/-0.07mgL(-1).

  5. Highly sensitive determination of mercury using copper enhancer by diamond electrode coupled with sequential injection–anodic stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Chaiyo, Sudkate [Department of Chemistry, Faculty of Science, Srinakharinwirot University (Thailand); Chailapakul, Orawon [Department of Chemistry, Faculty of Science, Chulalongkorn University (Thailand); Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University (Thailand); Siangproh, Weena, E-mail: weena@swu.ac.th [Department of Chemistry, Faculty of Science, Srinakharinwirot University (Thailand)

    2014-12-10

    Highlights: • Highly sensitive determination of Hg(II) using SI–ASV-BDD was achieved. • Electrochemical detection of Hg(II) using Cu(II) enhancer was accomplished. • LOD and LOQ were found to be very low at 40.0 ppt and 135.0 ppt. • This method was successfully applied for determination of Hg(II) in real samples. - Abstract: A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s{sup −1}. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL{sup −1} and 5.0–60.0 ng mL{sup −1}). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL{sup −1}. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL{sup −1}, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg

  6. A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV).

    Science.gov (United States)

    Dai, Yifan; Molazemhosseini, Alireza; Liu, Chung Chiun

    2017-02-19

    A single-use, in vitro biosensor for the detection of T-Tau protein in phosphate-buffer saline (PBS) and undiluted human serum was designed, manufactured, and tested. Differential pulse voltammetry (DPV) served as the transduction mechanism. This biosensor consisted of three electrodes: working, counter, and reference electrodes fabricated on a PET sheet. Both working and counter electrodes were thin gold film, 10 nm in thickness. Laser ablation technique was used to define the size and structure of the biosensor. The biosensor was produced using cost-effective roll-to-roll process. Self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA) were employed to covalently immobilize the anti-T-Tau (T-Tau antibody) on the gold working electrode. A carbodiimide conjugation approach using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) cross-linked anti-T-Tau to the carboxylic groups on one end of the MPA. A T-Tau protein ladder with six isoforms was used in this study. The anti-T-Tau concentration used was 500,000 pg/mL. The T-Tau protein concentration ranged from 1000 pg/mL to 100,000 pg/mL. DPV measurements showed excellent responses, with a good calibration curve. Thus, a practical tool for simple detection of T-Tau protein, a biomarker of neuro-degenerative disorders, has been successfully developed. This tool could also be extended to detect other biomarkers for neuro-degenerative disorders, such as P-Tau protein and β-amyloid 42.

  7. 1,4-Di-N-oxide quinoxaline-2-carboxamide: Cyclic voltammetry and relationship between electrochemical behavior, structure and anti-tuberculosis activity

    OpenAIRE

    Moreno-Viguri, E. (Elsa); Perez-Silanes, S. (Silvia); Gouravaram, S. (S.); Macharam, A. (Abinav); Ancizu, S. (Saioa); Torres, E; Aldana, I.; Monge, A; Crawford, P.W. (Philip W.)

    2011-01-01

    To gain insight into the mechanism of action, the redox properties of 37 quinoxaline-2-carboxamide 1,4-di-N-oxides with varying degrees of anti-tuberculosis activity were studied in dimethylformamide (DMF) using cyclic voltammetry and first derivative cyclic voltammetry. For all compounds studied, electrochemical reduction in DMF is consistent with the reduction of the N-oxide functionality to form a radical anion. The influence of molecular structure on reduction potential is addressed and i...

  8. Determination of ultra-trace amounts of silver in water by differential pulse anodic stripping voltammetry using a new modified carbon paste electrode.

    Science.gov (United States)

    El-Mai, Hafida; Espada-Bellido, Estrella; Stitou, Mostafa; García-Vargas, Manuel; Galindo-Riaño, Maria Dolores

    2016-05-01

    A highly sensitive and selective new procedure for the determination of silver in aqueous media was developed using a modified carbon paste electrode (MCPE) by differential pulse anodic stripping voltammetry (DPASV). The modified electrode was based on the incorporation of 2-hydroxybenzaldehyde benzoylhydrazone (2-HBBH) in the carbon paste electrode. Silver ions were preconcentrated on the modified electrode at open-circuit by complexation with the ligand and reduced to zero valent at a potential of 0V, and followed by the reoxidation of adsorbed ions onto the electrode by scanning the potential in a positive direction. The oxidation peak of Ag(I) was observed at 0.2V (versus Ag/AgCl). The analysis of Ag(I) was carried out in a cell containing the sample solution (20mL) buffered by 0.1molL(-1) K2HPO4/NaOH at pH 5.5 in aqueous solution and nitric acid (pH 1) in real water samples. The optimum conditions for the analysis of silver include a reduction potential of 0V and a pulse amplitude of 100mV, among others. The optimum carbon paste composition was found to be 14.1% (w/w) 2-HBBH, 56.2% (w/w) graphite powder and 29.7% (w/w) paraffin oil. Differential pulse anodic stripping voltammetric response was used as the analytical signal. Under the selected conditions, the voltammetric signal was proportional to the Ag(I) concentration in the range of 0.001-100μgL(-1) with favorable limits of detection and quantification of 1.1ngL(-1) and 3.7ngL(-1) after 3min of accumulation time, respectively. By increasing the accumulation time to 10min, detection and quantification limits can be further improved up to 0.1ngL(-1) and 0.34ngL(-1), respectively. In addition, the results showed a highly reproducible procedure showing a relative standard deviation of 1.5% for 12 replicate measurements. Many coexisting metal ions were investigated and very few interferences were found on the determination of Ag(I). The proposed method was validated using certified reference estuarine waters

  9. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry

    Science.gov (United States)

    Bledsoe, Jonathan M.; Kimble, Christopher J.; Covey, Daniel P.; Blaha, Charles D.; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M.; Horne, April; Bennet, Kevin E.; Lee, Kendall H.; Garris, Paul A.

    2009-01-01

    Object Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. Methods The FSCV study consisted of a triangle wave scanned between −0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 μm) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by ~ 100 μm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. Results The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer

  10. Nonadditivity of Faradaic currents and modification of capacitance currents in the voltammetry of mixtures of ferrocene and the cobaltocenium cation in protic and aprotic ionic liquids.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J; Zhao, Chuan; Burgar, Iko; Kennedy, Gareth; Bond, Alan M

    2009-06-17

    Unexpected nonadditivity of currents encountered in the electrochemistry of mixtures of ferrocene (Fc) and cobaltocenium cation (Cc(+)) as the PF(6)(-) salt has been investigated by direct current (dc) and Fourier-transformed alternating current (ac) cyclic voltammetry in two aprotic (1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate) and three protic (triethylammonium formate, bis(2-hydroxyethyl)ammonium acetate, and triethylammonium acetate) ionic liquids (ILs). The voltammetry of the individual Fc(0/+) and Cc(+/0) couples always exhibits near-Nernstian behavior at glassy carbon and gold electrodes. As expected for an ideal process, the reversible formal potentials and diffusion coefficients at 23 +/- 1 degrees C in each IL determined from measurement on individual Fc and Cc(+) solutions were found to be independent of electrode material, concentration, and technique used for the measurement. However, when Fc and Cc(+) were simultaneously present, the dc and ac peak currents per unit concentration for the Fc(0/+) and Cc(+/0) processes were found to be significantly enhanced in both aprotic and protic ILs. Thus, the apparent diffusion coefficient values calculated for Fc and Cc(+) were respectively found to be about 25 and 35% larger than those determined individually in the aprotic ILs. A similar change in the Fc(0/+) mass transport characteristics was observed upon addition of tetrabutylammonium hexafluorophosphate (Bu(4)NPF(6)), and the double layer capacitance also varied in distinctly different ways when Fc and Cc(+) were present individually or in mixtures. Importantly, the nonadditivity of Faradaic current is not associated with a change in viscosity or from electron exchange as found when some solutes are added to ILs. The observation that the (1)H NMR T(1) relaxation times for the proton resonance in Cc(+) also are modified in mixed systems implies that specific interaction with aggregates of the constituent

  11. Design of a dual-mode electrochemical measurement and analysis system.

    Science.gov (United States)

    Yang, Jr-Fu; Wei, Chia-Ling; Wu, Jian-Fu; Liu, Bin-Da

    2013-01-01

    A dual-mode electrochemical measurement and analysis system is proposed. This system includes a dual-mode chip, which was designed and fabricated by using TSMC 0.35 µm 3.3 V/5 V 2P4M mixed-signal CMOS process. Two electrochemical measurement and analysis methods, chronopotentiometry and voltammetry, can be performed by using the proposed chip and system. The proposed chip and system are verified successfully by performing voltammetry and chronopotentiometry on solutions.

  12. Resolution of quaternary mixtures of cadaverine, histamine, putrescine and tyramine by the square wave voltammetry and partial least squares method.

    Science.gov (United States)

    Henao-Escobar, W; Domínguez-Renedo, O; Alonso-Lomillo, M A; Arcos-Martínez, M J

    2015-10-01

    This work presents the simultaneous determination of cadaverine, histamine, putrescine and tyramine by square wave voltammetry using a boron-doped diamond electrode. A multivariate calibration method based on partial least square regressions has allowed the resolution of the very high overlapped voltammetric signals obtained for the analyzed biogenic amines. Prediction errors lower than 9% have been obtained when concentration of quaternary mixtures were calculated. The developed procedure has been applied in the analysis of ham samples, which results are in good agreement with those obtained using the standard HPLC method.

  13. Direct Electrochemical Evidence of the Dissociation and Adsorption Behavior of Acetonitrile at Gold Electrodes by Ultrafast Voltammetry

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ultrafast cyclic voltammetry was used to study the redox behavior of a gold electrode in acetonitrile. The direct electrochemical evidence of the dissociation and adsorption behavior of acetonitrile at gold electrodes was found. It could be stated that two consecutive redox paths are involved, each with a special adsorption state acting as the reaction intermediate. The mean value,obtained of the electron-transfer rate constant of the second path, was 1.3 × 105 s-1 with a standard deviation of 0.24 × 105 s-1.

  14. Physicists show what really matters

    CERN Multimedia

    MacIlwain, C

    2001-01-01

    Researchers at SLAC have successfully measured a parameter that may explain the preponderance of matter over antimatter in the Universe. The finding confirms the existence of the overall asymmetry, known as charge-parity violation (1/2 page).

  15. The Evaluation of Rate Constants for Rapid Electrode Reactions by Using Microelectrode Voltammetry: Virtues of Measurement at Lower Temperature

    Science.gov (United States)

    1992-02-28

    Prepared for Publication in the Journal of Electroanalytical Chemistry Purdue University Department of Chemistry D T IC West Lafayette, Indiana 47907...REFERENCES 1. R.M. Wightman, D.O. Wipf, in " Electroanalytical Chemistry - A Series of Advances", A.J. Bard, editor, Marcel Dekker, New York, Vol. 15

  16. The Influence of Uncompensated Solution Resistance on the Determination and Standard Electrochemical Rate Constants Using Cyclic Voltammetry, and Some Comparisons with AC Voltammetry.

    Science.gov (United States)

    1987-09-25

    rate constants, k2r using cyclic voltametry . The res tss are expressed in terms of systematic deviations oP sapparent measured" rate constants, k~b(app...Classification) The Influence of Uncompensated Solution Resistance on the Determination and Standard Electro- - . chemical Rate Constants Using Cyclic ...Year MonhOy SAGE COUNT FIELD GROUP Sue-GROUP digital simulation analysis, uncompensated solution resis- I A tance, electrochemical rate constants, cyclic

  17. 循环伏安法测定铁胺络合物还原强度%Determinations in Reducing Degree of Iron-Amine Complex by Cyclic Voltammetry

    Institute of Scientific and Technical Information of China (English)

    赖宇坤; 王炜

    2011-01-01

    研究了以循环伏安法测定铁胺络合物还原强度的准确度及其影响因素,优化阴极电解液(包括硝酸铁、三乙醇胺、氢氧化钠、硝酸钙).实验表明,由循环伏安法测定的铁胺络合物还原强度与浸染染色法测得的比较,前者准确度好、稳定性高,而且操作方便快捷,在电化学还原染色生产和质量控制中具有重要的应用价值.%The veracity and influence factors in reducing degree on iron-amine complex were tested by cyclic voltammetry. The types of cathode electrolytes including ferric nitrate, triethanolamine, sodium hydroxide and calcium nitrate were optimized. Compared with dip-dyeing coloration method, the cyclic voltammetry method can be used to measure the reducing degree of iron-amine complex more accurately with better stability, easier and faster operation. Potential applications of cyclic voltammetric determination method can be found in the fields of electro-chemical dye production and related quality control.

  18. An improved ELISA for the determination of southern bean mosaic virus with linear sweep voltammetry detection based on new system of PAP-H2O2-HRP

    Institute of Scientific and Technical Information of China (English)

    ZHANG, Shu-Sheng; JIAO, Kui; CHEN, Hong-Yuan; ZHANG, Cheng-Liang; ZHANG, Zuo-Fang

    2000-01-01

    An improved enzyme-linked immunosorbent assay (ELISA)for the determination of southern bean mosaic virus (SBMV)with linear sweep voltammetry based on a new system of paminophenol (PAP)-H2O2-horseradish peroxidase (HRP) has firstly been developed. The enzymatic product 3-[ (4-hydrox-yphenyl) amino ] -4- (2-amino-5-hydroxyphenyl) -6- [ (4-hydrox-yphenyl)imino]-2,4-cyclohexadiene-1-one, produced from the oxidation of PAP with H2O2 catalyzed by HRP, yielded a sensitive linear sweep voltammetric response at - 0.45 V (vs.SCE) in Britton-Robinson (BR) buffer solution. Based on the voltammetric peak, HRP can be measured with a detection limit of 0.4 mU/L and a linear range of 1.0-1.0 × 102 mU/L. The detection limit for the SBMV is 8.0 ng/mL and the highest dilution ratio for the detection of infected leaf sap is 1:1.5× 105.

  19. Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer on a gold electrode surface studied by cyclic voltammetry, electrochemical quartz microbalance, and electrochemical atomic force microscopy.

    Science.gov (United States)

    Masuda, Takuya; Ikeda, Kota; Uosaki, Kohei

    2013-02-19

    Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer (PFSI) on a gold electrode was investigated by cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), and electrochemical atomic force microscopy (EC-AFM) in a Nafion (i.e., PFSI) dispersed aqueous solution without any other electrolyte. It was found that PFSI serves as an electrolyte and that electrochemical measurements can be performed in this solution without any significant IR drop. PFSI molecules were adsorbed on the Au surface in the lying-down configuration in the potential range between 0 and 0.45 V, the amount of adsorbed PFSI increased when the potential was made more positive than 0.75 V, and the adsorbed PFSI fully desorbed from the surface at potentials more positive than 1.4 V where gold oxide was formed. Once the gold oxide had been reduced, PFSI readsorbed on the surface, albeit slowly. PFSI desorbed from the surface as the potential was made more negative than 0 V. These processes took place reversibly.

  20. Ultramicroband array electrode. 1. Analysis of mercury in contaminated soils and flue gas exposed samples using a gold-plated iridium portable system by anodic stripping voltammetry.

    Science.gov (United States)

    Xiao, Li; Dietze, William; Nyasulu, Frazier; Mibeck, Blaise A F

    2006-07-15

    The applicability of a gold-plated iridium Nano-Band array ultramicroelectrode (6 microm by 0.2 microm, 64-microm interspacing, 100 electrode bands) in the analysis of mercury using a portable system is demonstrated by anodic stripping voltammetry in real-life samples. Optimized measurement parameters, 0.1 M HCl electrolyte, plating potential of 0 mV, and staircase scan mode were identified. The dynamic linear range is 10-180 ppb at 5-s deposition time with 1.5 microC of gold plated. The experimental detection limit for Hg2+ in 0.1 M HCl was 0.5 ppb at a deposition time of 4 min and a scan rate of 10 V/s. Real-life samples, such as flue gas exposed samples from flue gas simulators could be analyzed within 5 min using the method of standard additions. We identified a field-portable extraction procedure for soil samples using 1:1 concentrated HNO3/30% H2O2 mixture, compatible with ASV and the iridium electrode. The detection limit for soils is 1 ppm. The results obtained using ASV are in good agreement with reference values using cold vapor atomic absorption for the sample matrixes studied here. To our knowledge, this is the first mercury application using a reusable iridium array ultramicroelectrode. The portable potentiostat is less than 500 g, and together with the portable digestion method, makes the Nano-Band Explorer system field applicable.