WorldWideScience

Sample records for voltammetric current response

  1. The voltammetric responses of nanometer-sized electrodes in weakly supported electrolyte: A theoretical study

    International Nuclear Information System (INIS)

    Liu Yuwen; Zhang Qianfan; Chen Shengli

    2010-01-01

    The effect of the supporting electrolyte concentration on the interfacial profiles and voltammetric responses of nanometer-sized disk electrodes have been investigated theoretically by combining the Poisson-Nernst-Planck (PNP) theory and Butler-Volmer (BV) equation. The PNP-theory is used to treat the nonlinear couplings of electric field, concentration field and dielectric field at electrochemical interface without the electroneutrality assumption that has been long adopted in various voltammetric theories for macro/microelectrodes. The BV equation is modified by using the Frumkin correction to account for the effect of the diffuse double layer potential on interfacial electron-transfer (ET) rate and by including a distance-dependent ET probability in the expression of rate constant to describe the radial heterogeneity of the ET rate constant at nanometer-sized disk electrodes. The computed voltammetric responses for disk electrodes larger than 200 nm in radii in the absence of the excess of the supporting electrolyte using the present theoretical scheme show reasonable agreements with the predications of the conventional microelectrode voltammetric theory which uses the combined Nernst-Planck equation and electroneutrality equation to describe the mixed electromigration-diffusion mass transport without including the possible effects of the diffuse double layer (Amatore et al. ). For electrodes smaller than 200 nm, however, the voltammetric responses predicated by the present theory exhibit significant deviation from the microelectrode theory. It is shown that the deviations are mainly resulted from the overlap between the diffuse double layer and the concentration depletion layer (CDL) at nanoscale electrochemical interfaces in weakly supported media, which will result in the invalidation of the electroneutrality condition in CDL, and from the radial inhomogeneity of ET probability at nanometer-sized disk electrodes.

  2. The voltammetric responses of nanometer-sized electrodes in weakly supported electrolyte: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yuwen; Zhang Qianfan [Hubei Electrochemical Power Sources Key Laboratory, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Chen Shengli, E-mail: slchen@whu.edu.c [Hubei Electrochemical Power Sources Key Laboratory, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2010-11-30

    The effect of the supporting electrolyte concentration on the interfacial profiles and voltammetric responses of nanometer-sized disk electrodes have been investigated theoretically by combining the Poisson-Nernst-Planck (PNP) theory and Butler-Volmer (BV) equation. The PNP-theory is used to treat the nonlinear couplings of electric field, concentration field and dielectric field at electrochemical interface without the electroneutrality assumption that has been long adopted in various voltammetric theories for macro/microelectrodes. The BV equation is modified by using the Frumkin correction to account for the effect of the diffuse double layer potential on interfacial electron-transfer (ET) rate and by including a distance-dependent ET probability in the expression of rate constant to describe the radial heterogeneity of the ET rate constant at nanometer-sized disk electrodes. The computed voltammetric responses for disk electrodes larger than 200 nm in radii in the absence of the excess of the supporting electrolyte using the present theoretical scheme show reasonable agreements with the predications of the conventional microelectrode voltammetric theory which uses the combined Nernst-Planck equation and electroneutrality equation to describe the mixed electromigration-diffusion mass transport without including the possible effects of the diffuse double layer (Amatore et al. ). For electrodes smaller than 200 nm, however, the voltammetric responses predicated by the present theory exhibit significant deviation from the microelectrode theory. It is shown that the deviations are mainly resulted from the overlap between the diffuse double layer and the concentration depletion layer (CDL) at nanoscale electrochemical interfaces in weakly supported media, which will result in the invalidation of the electroneutrality condition in CDL, and from the radial inhomogeneity of ET probability at nanometer-sized disk electrodes.

  3. Voltammetric detection of biological molecules using chopped carbon fiber.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.

  4. VOLTAMMETRIC DETERMINATION OF NICOTINE IN CIGARETTE ...

    African Journals Online (AJOL)

    Preferred Customer

    determination of nicotine in two brands of commercial cigarettes and ... to disruption of arteries and cardiovascular risk factors [8, 9]. Smoking .... e d. Figure 2. Cyclic voltammetric response (scan rate of 100 mV/s) of 1.0 mM nicotine at AGCE in.

  5. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-07

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision.

  6. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component.

    Science.gov (United States)

    Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi; Anzai, Jun-Ichi

    2018-01-22

    Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.

  7. Voltammetric quantitation of nitazoxanide by glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2013-12-01

    Full Text Available The present study reports voltammetric reduction of nitazoxanide in Britton–Robinson (B–R buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for quantitative determination of nitazoxanide in pharmaceutical formulation has been proposed. A squrewave peak current was linear over the nitazoxanide concentration in the range of 20–140 µg/mL. The limit of detection (LOD and limit of quantification (LOQ was calculated to be 5.23 μg/mL and 17.45 μg/mL, respectively. Keywords: Nitazoxanide, Squarewave voltammetry, Glassy carbon electrode, Pharmaceutical formulation

  8. Voltammetric determination of nicotine in cigarette tobacco at ...

    African Journals Online (AJOL)

    The electrochemical behavior of nicotine was investigated using cyclic and square wave voltammetric techniques. Electrochemical activation of glassy carbon electrode significantly increased the oxidation peak current of nicotine compared to the bare glassy carbon. At the activated glassy carbon electrode, the square ...

  9. Application of ascorbic acid 2-phosphate as a new voltammetric substrate for alkaline phosphatase determination in human serum

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2005-12-01

    Full Text Available An electrochemical assay of the enzyme alkaline phosphatase (ALP using ascorbic acid 2-phosphate (AAP as a new voltammetric substrate has been described in this paper. In the alkaline buffer solution the ALP enzymatic hydrolysis product of AAP was ascorbic acid (AA, which was an electro-active substance and had a sensitive differential pulse voltammetric (DPV oxidative response on glassy carbon electrode (GCE at +380 mV (versus Ag/AgCl, so the activity of ALP could be monitored voltammetrically of the oxidative peak current of AA. The electrochemical behaviours of AA were carefully studied and the AA standard solution could be measured by DPV method in the linear range from 10.0 to 1000.0 μmol/L with the detection limit of 8.0 μmol/L. The optimal conditions for ALP enzymatic reaction and the voltammetric detection were optimized. Under the optimal conditions the calibration curve for ALP assay exhibited a linear range from 0.4 to 2000.0 U/L with a detection limit of 0.3 U/L. This proposed method was further applied to determine the ALP content in healthy human serum and the results were in good agreement with the traditional p-nitrophenyl phosphate spectrophotometric method. The kinetic constants of enzymatic reaction were also investigated with the apparent kinetic constant Km as 2.77 mmol/L and the maximum velocity Vmax as 0.33 mol/min.

  10. Fusion of Potentiometric & Voltammetric Electronic Tongue for Classification of Black Tea Taste based on Theaflavins (TF) Content

    Science.gov (United States)

    Bhattacharyya, Nabarun; Legin, Andrey; Papieva, Irina; Sarkar, Subrata; Kirsanov, Dmitry; Kartsova, Anna; Ghosh, Arunangshu; Bandyopadhyay, Rajib

    2011-09-01

    Black tea is an extensively consumed beverage worldwide with an expanding market. The final quality of black tea depends upon number of chemical compounds present in the tea. Out of these compounds, theaflavins (TF), which is responsible for astringency in black tea, plays an important role in determining the final taste of the finished black tea. The present paper reports our effort to correlate the theaflavins contents with the voltammetric and potentiometric electronic tongue (e-tongue) data. Noble metal-based electrode array has been used for collecting data though voltammetric electronic tongue where as liquid filled membrane based electrodes have been used for potentiometric electronic tongue. Black tea samples with tea taster score and biochemical results have been collected from Tea Research Association, Tocklai, India for the analysis purpose. In this paper, voltammetric and potentiometric e-tongue responses are combined to demonstrate improvement of cluster formation among tea samples with different ranges of TF values.

  11. Voltammetric sensor for tartrazine determination in soft drinks using poly (p-aminobenzenesulfonic acid/zinc oxide nanoparticles in carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Ghasem Karim-Nezhad

    2017-04-01

    Full Text Available Zinc oxide nanoparticles (ZnO NPs and p-aminobenzenesulfonic acid (p-ABSA were used to fabricate a modified electrode, as a highly sensitive and selective voltammetric sensor, for the determination of tartrazine. A fast and easy method for the fabrication of poly p-ABSA (Pp-ABSA/ZnO NPs-carbon paste electrode (Pp-ABSA/ZnO NPs-CPE by cyclic voltammetry was used. By combining the benefits of Pp-ABSA, ZnO NPs, and CPE, the resulted modified electrode exhibited outstanding electrocatalytic activity in terms of tartrazine oxidation by giving much higher peak currents than those obtained for the unmodified CPE and also other constructed electrodes. The effects of various experimental parameters on the voltammetric response of tartrazine were investigated. At the optimum conditions, the sensor has a linear response in the concentration range of 0349–5.44 μM, a good detection sensitivity (2.2034 μA/μM, and a detection limit of 80 nM of tartrazine. The proposed electrode was used for the determination of tartrazine in soft drinks with satisfactory results.

  12. Rapid voltammetric monitoring of melatonin in the presence of tablet excipients

    International Nuclear Information System (INIS)

    Ball, Andrew T.; Patel, Bhavik Anil

    2012-01-01

    Melatonin is an important neurohormonal chemical that is responsible for regulating sleep. Melatonin dietary supplements are available and utilised to counteract the effects of jet-lag or to aid sleep. Voltammetric detection with a boron-doped diamond electrode was utilised for the rapid monitoring of individual melatonin tablets. Melatonin was oxidised at a potential of +0.8 V vs. Ag|AgCl. Voltammetric measurements were carried out without the need of excessive sample preparation steps such as filtration. However dicalcium phosphate and carboxymethyl cellulose were shown to alter the electrochemical response. Calibration responses were linear over a concentration of 2–4 mg/25 ml of melatonin and a limit of detection of 0.06 mg/25 ml was observed. Volammetric recordings were only stable for one measurement, but the electrode surface could be replenished following a single wipe of an ethanol soaked lens cloth. This new assay was capable of analysing individual melatonin tablets within a total analysis time of 2.5 min. Overall this approach provides the basis for rapid electrochemical monitoring of pharmaceutical and dietary tablets without the need for extensive sample preparation.

  13. Adsorptive stripping voltammetric determination of uranium with cephradine

    International Nuclear Information System (INIS)

    Ali, A.M.M.; Ghandour, M.A.; Khodari, M.

    1995-01-01

    Uranium adsorbed with cephradine is reduced on a hanging mercury drop electrode. This property was exploited in developing a highly sensitive stripping voltammetric procedure for the determination of uranium. A detection limit 2 x 10 -9 mol I -1 (0.5 μg I -1 ) of uranium ion is obtained with an 180 s accumulation time. Cyclic voltammetry was used to characterize the interfacial and redox behaviour. The effects of various parameters are discussed. Experimental conditions include the use of 5 x 10 -6 mol I -1 cephradine in 0.05 mol I -1 sodium perchlorate (pH ''approx ='' 6.5), an accumulation potential of 0.0 V versus SCE and a direct current stripping technique. The response is linear up to 5 x 10 -6 mol I -1 uranium and the relative standard deviation at 1 x 10 -7 mol I -1 ) UO 2+ is 4.4%. The effect of other metal ions was investigated. (author)

  14. Voltammetric method for the determination of sildenafil citrate (Viagra) in pure form and in pharmaceutical formulations.

    Science.gov (United States)

    Tyszczuk, Katarzyna; Korolczuk, Mieczyslaw

    2010-06-01

    A highly sensitive and simple voltammetric method for the determination of sildenafil citrate (SC) was developed. The method is based on the accumulation by adsorption of SC on a lead film modified glassy carbon electrode (LF/GCE) and then the reduction of SC throughout the stripping step. During the determinations of SC at the lead film electrode three adsorptive stripping voltammetric peaks at -1.2, -1.33 and -1.45V were observed. The respective response selected for identification and quantification has been evaluated with respect to the composition and pH of the supporting electrolyte, the potential and the time of the lead film formation, the potential and the time of the SC accumulation and other variables. Experimental results indicate an excellent linear correlation between the peak current and concentration in the range of 2x10(-9)-1.5x10(-7)mol/L (for peaks 1 and 2) and 1x10(-8)-1.5x10(-7)mol/L (for the peak 3). The detection limits (LOD) for SC following 30s of accumulation time were equal to 9x10(-10)mol/L (for peaks 1 and 2) and 4.5x10(-9)mol/L (for the peak 3). The method was successfully applied to the determination of SC in the tablets (Viagra 25 and Viagra 50) and average the contents were in close agreement with those quoted by the manufacturer and with those obtained by the reported spectrophotometric method and voltammetric method using a hanging mercury drop electrode. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Development of Voltammetric Double-Polymer-Modified Electrodes for Nanomolar Ion Detection for Environmental and Biological Applications

    Science.gov (United States)

    Kim, Yushin

    Qualitative and quantitative electrochemical methods for trace ion analysis of organic and inorganic species with environmental and biological attention have been developed and reported during past decades. The development of fast and accurate electrochemical methods is critical for field applications with various blocking contaminants. Voltammetric method is attractive not only to analyze selective ion species due to its characteristic based on ion lipophilicity, but also to lower the limit of detection by combining with stripping analysis. In my PhD work, I have developed and studied a highly selective and sensitive electrochemical method that can be used to characterize fundamental transport dynamics and to develop electrochemical sensors at liquid/liquid interfaces based on electrochemically-controlled ion transfer and recognition. The understanding of the kinetic and thermodynamic properties of the voltammetric ion transfer through polymer-modified ion-selective electrodes leads to realize the highly selective and sensitive analytical method. The ultrathin polymer membrane is used to maximize a current response by complete exhaustion of preconcentrated ions. Therefore, nanomolar detection is achieved and confirmed by a thermodynamic mechanism that controls the detection limit. It was also demonstrated experimentally and theoretically that more lipophilic ionic species gives a significantly lower detection limit. The voltammetric method was expanded into inexpensive and disposable applications based on pencil lead modified with the thin polymer membrane. In the other hand, micropipet/nanopipet voltammetry as an artificial cell membrane was used to study the interface between two immiscible solutions for environmental and biomedical applications. It is very useful to get quantitative kinetic and thermodynamic information by studying numerical simulations of ion transfer and diffusion. Molecular recognition and transport of heparin and low

  16. VOLTAMMETRIC INVESTIGATION OF THE DISTRIBUTION OF ...

    African Journals Online (AJOL)

    VOLTAMMETRIC INVESTIGATION OF THE DISTRIBUTION OF HYDROXO-, CHLORO-, EDTA AND CARBOHYDRATE COMPLEXES OF LEAD, CHROMIUM, ZINC, CADMIUM AND COPPER: POTENTIAL APPLICATION TO METAL SPECIATION STUDIES IN BREWERY WASTEWATER.

  17. Voltammetric sensor for tartrazine determination in soft drinks using poly (p-aminobenzenesulfonic acid)/zinc oxide nanoparticles in carbon paste electrode.

    Science.gov (United States)

    Karim-Nezhad, Ghasem; Khorablou, Zeynab; Zamani, Maryam; Seyed Dorraji, Parisa; Alamgholiloo, Mahdieh

    2017-04-01

    Zinc oxide nanoparticles (ZnO NPs) and p-aminobenzenesulfonic acid (p-ABSA) were used to fabricate a modified electrode, as a highly sensitive and selective voltammetric sensor, for the determination of tartrazine. A fast and easy method for the fabrication of poly p-ABSA (Pp-ABSA)/ZnO NPs-carbon paste electrode (Pp-ABSA/ZnO NPs-CPE) by cyclic voltammetry was used. By combining the benefits of Pp-ABSA, ZnO NPs, and CPE, the resulted modified electrode exhibited outstanding electrocatalytic activity in terms of tartrazine oxidation by giving much higher peak currents than those obtained for the unmodified CPE and also other constructed electrodes. The effects of various experimental parameters on the voltammetric response of tartrazine were investigated. At the optimum conditions, the sensor has a linear response in the concentration range of 0349-5.44 μM, a good detection sensitivity (2.2034 μA/μM), and a detection limit of 80 nM of tartrazine. The proposed electrode was used for the determination of tartrazine in soft drinks with satisfactory results. Copyright © 2016. Published by Elsevier B.V.

  18. Voltammetric behavior of amfepramone (diethylpropion) at the hanging mercury drop electrode and its analytical determination in pharmaceutical formulations

    OpenAIRE

    Carvalho, Leandro M. de; Nascimento, Paulo C. do; Bohrer, Denise; Correia, Daniele; Bairros, André V. de; Pomblum, Valdeci J.; Pomblum, Solange G.

    2007-01-01

    This paper describes a systematic study of the voltammetric behavior of amfepramone at the hanging mercury drop electrode (HMDE) by cyclic (CV) and alternating current (AC) voltammetric methods. The studies showed the adsorptive behavior of amfepramone at the HMDE and were performed in H2SO4 0.1 mol L-1 (pH 1.0) and Ringer buffer (pH 11.0) as supporting electrolytes. The linear range for the amfepramone determination by differential pulse voltammetry (DPV) was 0.05 to 2.0 mg L-1 (r = 0.998) i...

  19. Sensitive voltammetric detection of yeast RNA based on its interaction with Victoria Blue B

    Directory of Open Access Journals (Sweden)

    WEI SUN

    2009-12-01

    Full Text Available Voltammetric studies of the interaction of yeast RNA (y-RNA with Victoria Blue B (VBB are described in this paper. Furthermore, a linear sweep voltammetric method for the detection of y-RNA was established. The reaction conditions, such as acidity and amount of buffer solution, the concentration of VBB, the reaction time and temperature, etc., were carefully investigated by second order derivative linear sweep voltammetry. Under the optimal conditions, the reduction peak current of VBB at –0.75 V decreased greatly after the addition of y-RNA to the solution without any shift of the reduction peak potential. Based on the decrease of the peak current, a new quantitative method for the determination of y-RNA was developed. The effects of co-existing substances on the determination were carefully investigated and three synthetic samples were determined with satisfactory results. The stoichiometry of the VBB–y-RNA complex was calculated by linear sweep voltammetry and the interaction mechanism is discussed.

  20. Anodic Voltammetric determination of gemifloxacin using screen-printed carbon electrode

    Directory of Open Access Journals (Sweden)

    Abd-Elgawad Radi

    2013-04-01

    Full Text Available The electrochemical oxidation behavior and voltammetric assay of gemifloxacin were investigated using differential-pulse and cyclic voltammetry on a screen-printed carbon electrode. The effects of pH, scan rates, and concentration of the drug on the anodic peak current were studied. Voltammograms of gemifloxacin in Tris–HCl buffer (pH 7.0 exhibited a well-defined single oxidation peak. A differential-pulse voltammetric procedure for the quantitation of gemifloxacin has been developed and suitably validated with respect to linearity, limits of detection and quantification, accuracy, precision, specificity, and robustness. The calibration was linear from 0.5 to 10.0 μM, and the limits of detection and quantification were 0.15 and 5.0 μM. Recoveries ranging from 96.26% to 103.64% were obtained. The method was successfully applied to the determination of gemifloxacin in pharmaceutical tablets without any pre-treatment. Excipients present in the tablets did not interfere in the assay. Keywords: Screen-printed carbon electrode, Voltammetry, Gemifloxacin, Pharmaceutical analysis

  1. Voltammetric Behaviour of Sulfamethoxazole on Electropolymerized-Molecularly Imprinted Overoxidized Polypyrrole

    Directory of Open Access Journals (Sweden)

    Yücel Sahin

    2008-12-01

    Full Text Available In this work, preparation of a molecularly imprinted polymer (MIP film and its recognition properties for sulfamethoxazolewere investigated. The overoxidized polypyrrole (OPPy film was prepared by the cyclic voltammetric deposition of pyrrole (Py in the presence of supporting electrolyte (tetrabutylammonium perchlorate-TBAP with and without a template molecule (sulfamethoxazole on a pencil graphite electrode (PGE. The voltammetric behaviour of sulfamethoxazole on imprinted and non-imprinted (NIP films was investigated by differential pulse voltammetry (DPV in Britton-Robinson (BR buffer solutions prepared in different ratio of acetonitrile-water binary mixture, between the pH 1.5 and 7.0. The effect of the acetonitrile-water ratio and pH, monomer and template concentrations, electropolymerization cycles on the performance of the MIP electrode was investigated and optimized. The MIP electrode exhibited the best reproducibility and highest sensitivity. The results showed that changing acetonitrile-water ratio and pH of BR buffer solution changes the oxidation peak current values. The highest anodic signal of sulfamethoxazole was obtained in BR buffer solution prepared in 50% (v/v acetonitrile-water at pH 2.5. The calibration curve for sulfamethoxazole at MIP electrode has linear region for a concentration range of 25.10-3 to 0.75 mM (R2=0.9993. The detection limit of sulfamethoxazole was found as 3.59.10-4 mM (S/N=3. The same method was also applied to determination of sulfamethoxazole in commercial pharmaceutical samples. Method precision (RSD87% were satisfactory. The proposed method is simple and quick. The polypyrrole (PPy electrodes have low response time, good mechanical stability and are disposable simple to construct.

  2. Dual Approach to Amplify Anodic Stripping Voltammetric Signals Recorded Using Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Agnieszka KRÓLICKA

    2016-12-01

    Full Text Available Screen printed electrodes plated with bismuth were used to record anodic stripping voltammograms of Pb(II, In(III and Cd(II. Using two bismuth precursors: Bi2O3 dispersed in the electrode body and Bi(III ions spiked into the tested solution it was possible to deposit bismuth layers, demonstrating exceptional ability to accumulate metals forming alloys with bismuth. The voltammetric signals were amplified by adjusting the electrode location with respect to rotating magnetic field. The electrode response was influenced by vertical and horizontal distance between the magnet center and the sensing area of screen printed electrode as well as the angle between the magnet surface and the electrode. When the electrode was moved away from the magnet center the recorded peaks were increasingly smaller and almost not affected by the presence of bismuth ions. It was shown that to obtain well-shaped signals a favourable morphology of bismuth deposits is of key importance. Hypotheses explaining processes responsible for the amplification of voltammetric signals were proposed.

  3. STUDY OF ELECTROPOLIMERIZATION PROCESSES OF PYRROLE BY CYCLIC VOLTAMMETRIC TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Adhitasari Suratman

    2010-06-01

    Full Text Available Electropolymerization processes and electrochemical properties of polypyrrole as electroactive polymer have been studied by cyclic voltammetric technique. Pyrrole was electropolymerized to form polypyrrole in water-based solvent containing sodium perchlorate as supporting electrolyte in several pH values. The pH of the solutions were varied by using Britton Robinson buffer. The results showed that oxidation potential limit of electropolymerization processes of pyrrole was 1220 mV vs Ag/AgCl reference electrode. It can be seen that cyclic voltammetric respon of polypyrrole membrane that was prepared by electropolymerization processes of pyrrole at the scanning rate of 100 mV/s was stable. While the processes of pyrrole electropolymerization carried out at the variation of pH showed that the best condition was at the pH range of 2 - 6.   Keywords: polypyrolle, electropolymer, voltammetric technique

  4. A simple, rapid and green method based on pulsed potentiostatic electrodeposition of reduced graphene oxide on glass carbon electrode for sensitive voltammetric detection of sophoridine

    International Nuclear Information System (INIS)

    Wang, Fei; Wu, Yanju; Lu, Kui; Gao, Lin; Ye, Baoxian

    2014-01-01

    Graphical abstract: A simple, rapid and green method, based on graphene nanosheets directly deposited onto a glassy carbon electrode by pulsed potentiostatic reduction of a graphene oxide colloidal solution, to build sensitive voltammetric sensor for the determination of sophoridine was presented. - Highlights: • A simple, rapid and green method to build sensitive voltammetric sensor was presented. • The proposed sensor has a high electrochemical sensitivity for determination of sophoridine. • The proposed sensor exhibited an excellent selectivity. - Abstract: A simple, rapid and green method was described for sensitive voltammetric detection of sophoridine based on graphene nanosheets directly deposited onto a glassy carbon electrode (GCE) by pulsed potentiostatic reduction of a graphene oxide (GO) colloidal solution. The resulting electrodes (PP-ERGO/GCE) were characterized by electrochemical methods and scanning electron microscopy. Moreover, the electrochemical behaviors of sophoridine at the modified electrode were investigated in detail by cyclic voltammetry (CV), chronoamperometry (CA) and chronocoulometry (CC). Compared with the bare GCE and the preparation of reduced graphene oxide (RGO) films by potentiostatic method (PM) modified GCE, PP-ERGO/GCE could intensively enhance the oxidation peak currents and decrease the overpotential of sophoridine. Under the selected conditions, the modified electrode showed a linear voltammetric response to sophoridine within the concentration range of 8.0 × 10 −7 ∼ 1.0 × 10 −4 mol L −11 , with the detection limit of 2.0 × 10 −7 mol L −1 . And, the method was also applied to detect sophoridine in spiked human urine with wonderful satisfactory

  5. Voltammetric determination of heparin based on its interaction with malachite green

    Directory of Open Access Journals (Sweden)

    Xueliang Niu

    2008-08-01

    Full Text Available In this paper malachite green (MG was used as a bioprobe to determine heparin concentration by linear sweep voltammetry on the dropping mercury working electrode (DME. In Britton-Robinson (B-R buffer solution of pH 1.5, MG had a well-defined second order derivative linear sweep voltammetric reductive peak at –0.618 V (vs. SCE. After the addition of heparin into the MG solution, the reductive peak current decreased apparently without the movement of peak potential. Based on the difference of the peak current, a new voltammetric method for the determination of heparin was established. The conditions for the binding reaction and the electrochemical detection were optimized. Under the selected experimental conditions the difference of peak current was directly proportional to the concentration of heparin in the range from 0.3 to 10.0 mg/L with the linear regression equation as ∆ip″ (nA = 360.19 C (mg/L + 178.88 (n = 15, γ = 0.998 and the detection limit as 0.28 mg/L (3σ. The effects of coexisting substances such as metal ions, amino acids on the determination of heparin were investigated and the results showed that this method had good selectivity. This method was further applied to determine the heparin content in heparin sodium injection samples with satisfactory results and good recovery. The stoichiometry of the biocomplex was calculated by the electrochemical method and the binding mechanism was further discussed.

  6. Determination of total polyphenol index in wines employing a voltammetric electronic tongue

    International Nuclear Information System (INIS)

    Cetó, Xavier; Gutiérrez, Juan Manuel; Gutiérrez, Manuel; Céspedes, Francisco; Capdevila, Josefina; Mínguez, Santiago; Jiménez-Jorquera, Cecilia; Valle, Manel del

    2012-01-01

    Highlights: ► Array of voltammetric sensors modified with nanoparticles or conducting polymers. ► It has been applied in wine analysis to predict polyphenol content index. ► Uses data processing tools such as discrete wavelet transform and artificial neural network. ► Identification of phenolics like gallic acid, catechin, caffeic acid, catechol. ► Predicted polyphenol index agrees with Folin–Ciocalteau method and I 280 index. - Abstract: This work reports the application of a voltammetric electronic tongue system (ET) made from an array of modified graphite-epoxy composites plus a gold microelectrode in the qualitative and quantitative analysis of polyphenols found in wine. Wine samples were analyzed using cyclic voltammetry without any sample pretreatment. The obtained responses were preprocessed employing discrete wavelet transform (DWT) in order to compress and extract significant features from the voltammetric signals, and the obtained approximation coefficients fed a multivariate calibration method (artificial neural network-ANN-or partial least squares-PLS-) which accomplished the quantification of total polyphenol content. External test subset samples results were compared with the ones obtained with the Folin–Ciocalteu (FC) method and UV absorbance polyphenol index (I 280 ) as reference values, with highly significant correlation coefficients of 0.979 and 0.963 in the range from 50 to 2400 mg L −1 gallic acid equivalents, respectively. In a separate experiment, qualitative discrimination of different polyphenols found in wine was also assessed by principal component analysis (PCA).

  7. Novel approach for the voltammetric evaluation of antioxidant activity using DPPH·-modified electrode

    International Nuclear Information System (INIS)

    Ziyatdinova, Guzel; Snegureva, Yulia; Budnikov, Herman

    2017-01-01

    Highlights: •Voltammetric characteristics of DPPH· immobilized on the electrode surface is studied. •DPPH·/CeO 2 -CPB/GCE gives reversible one electron highly sensitive radical reduction. •DPV on DPPH·/CeO 2 -CPB/GCE is developed for the antioxidants activity evaluation. •Natural phenolic antioxidants and medicinal herbs extracts are investigated. •Good agreement of DPV and standard method data is obtained. -- Abstract: The electrochemical behavior of 2,2-diphenyl-1-picrylhydrazyl (DPPH·) immobilized on the electrode surface has been studied. Bare glassy carbon electrode (GCE) and modified with dispersions of CeO 2 nanoparticles in water (CeO 2 -H 2 O/GCE) and cationic surfactant cetylpyridinium bromide medium (CeO 2 -CPB/GCE) has been investigated as a platform for the DPPH· immobilization. The best voltammetric characteristics (peak potential separation of 70 mV, system reversibility with currents ratio of 0.98 and the highest peaks currents) have been observed on CeO 2 -CPB/GCE. The effect of CeO 2 nanoparticles concentration has been evaluated. Scanning electron microscopy and electrochemical impedance spectroscopy have been applied for the electrode characterization. DPPH·/CeO 2 -CPB/GCE has been used for the estimation of the antioxidants activity of natural phenolic antioxidants (quercetin, tannin, catechin and ferulic acid) expressed as the EC 50 parameter according to differential pulse voltammetric (DPV) data. The EC 50 decreased in the following order: quercetin (29 ± 1 μM), tannin (29 ± 4 μM), catechin (117 ± 4 μM) and ferulic acid (731 ± 17 μM). These data are in a good agreement with the results of standard spectrophotometric determination. The developed approach has been successfully applied for the antioxidant activity evaluation of medicinal herbs tinctures, infusions and decoctions.

  8. New molecular imprinted voltammetric sensor for determination of ochratoxin A.

    Science.gov (United States)

    Yola, Mehmet Lütfi; Gupta, Vinod Kumar; Atar, Necip

    2016-04-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100mM phenol as monomer in the presence of phosphate buffer solution (pH6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10(-11) - 1.5 × 10(-9)M and 1.6 × 10(-11) M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Determination of total polyphenol index in wines employing a voltammetric electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Ceto, Xavier [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra (Spain); Gutierrez, Juan Manuel [Bioelectronics Section, Department of Electrical Engineering, CINVESTAV, 07360 Mexico D.F. (Mexico); Gutierrez, Manuel [Instituto de Microelectronica de Barcelona (IMB-CNM), CSIC, 08193 Bellaterra (Spain); Cespedes, Francisco [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra (Spain); Capdevila, Josefina; Minguez, Santiago [Estacio de Viticultura i Enologia, INCAVI, Vilafranca del Penedes (Spain); Jimenez-Jorquera, Cecilia [Instituto de Microelectronica de Barcelona (IMB-CNM), CSIC, 08193 Bellaterra (Spain); Valle, Manel del, E-mail: manel.delvalle@uab.cat [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra (Spain)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Array of voltammetric sensors modified with nanoparticles or conducting polymers. Black-Right-Pointing-Pointer It has been applied in wine analysis to predict polyphenol content index. Black-Right-Pointing-Pointer Uses data processing tools such as discrete wavelet transform and artificial neural network. Black-Right-Pointing-Pointer Identification of phenolics like gallic acid, catechin, caffeic acid, catechol. Black-Right-Pointing-Pointer Predicted polyphenol index agrees with Folin-Ciocalteau method and I{sub 280} index. - Abstract: This work reports the application of a voltammetric electronic tongue system (ET) made from an array of modified graphite-epoxy composites plus a gold microelectrode in the qualitative and quantitative analysis of polyphenols found in wine. Wine samples were analyzed using cyclic voltammetry without any sample pretreatment. The obtained responses were preprocessed employing discrete wavelet transform (DWT) in order to compress and extract significant features from the voltammetric signals, and the obtained approximation coefficients fed a multivariate calibration method (artificial neural network-ANN-or partial least squares-PLS-) which accomplished the quantification of total polyphenol content. External test subset samples results were compared with the ones obtained with the Folin-Ciocalteu (FC) method and UV absorbance polyphenol index (I{sub 280}) as reference values, with highly significant correlation coefficients of 0.979 and 0.963 in the range from 50 to 2400 mg L{sup -1} gallic acid equivalents, respectively. In a separate experiment, qualitative discrimination of different polyphenols found in wine was also assessed by principal component analysis (PCA).

  10. Adsorptive stripping voltammetric determination of triprolidine hydrochloride in pharmaceutical tablets.

    Science.gov (United States)

    Zayed, S I M; Habib, I H I

    2005-01-01

    The electrochemical behavior of antihistaminic drug, viz. triprolidine hydrochloride (TripCl), at a hanging mercury drop electrode (HMDE) is investigated. Chemical and electrical parameters affecting the adsorptive voltammetric measurements are optimized. Different modes of sweep, viz. direct current DC, normal pulse NP, differential pulse DP and square wave SW modes, over the potential range from -800 to -1400 mV, are used in the presence of 0.04 M Britton-Robinson buffer pH 11, with accumulation time 30 s, scan rate 50 mV/s and pulse amplitude 50 mV. The reduction process is irreversible and involved the transfer of two electrons and two protons. Their responses are linear over the concentration range 15-157 ng/ml with average correlation coefficient 0.9998, while the detection limit is 2.64, 6.24, 8.80 and 2.12 ng/ml for DC, DP, SW and NP mode, respectively. The differential pulse method has been applied successfully for the determination of the drug in Egyptian pharmaceutical preparation with mean recovery 99.55+/-0.67%.

  11. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  12. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  13. Extraction or adsorption? Voltammetric assessment of protamine transfer at ionophore-based polymeric membranes.

    Science.gov (United States)

    Garada, Mohammed B; Kabagambe, Benjamin; Amemiya, Shigeru

    2015-01-01

    Cation-exchange extraction of polypeptide protamine from water into an ionophore-based polymeric membrane has been hypothesized as the origin of a potentiometric sensor response to this important heparin antidote. Here, we apply ion-transfer voltammetry not only to confirm protamine extraction into ionophore-doped polymeric membranes but also to reveal protamine adsorption at the membrane/water interface. Protamine adsorption is thermodynamically more favorable than protamine extraction as shown by cyclic voltammetry at plasticized poly(vinyl chloride) membranes containing dinonylnaphthalenesulfonate as a protamine-selective ionophore. Reversible adsorption of protamine at low concentrations down to 0.038 μg/mL is demonstrated by stripping voltammetry. Adsorptive preconcentration of protamine at the membrane/water interface is quantitatively modeled by using the Frumkin adsorption isotherm. We apply this model to ensure that stripping voltammograms are based on desorption of all protamine molecules that are transferred across the interface during a preconcentration step. In comparison to adsorption, voltammetric extraction of protamine requires ∼0.2 V more negative potentials, where a potentiometric super-Nernstian response to protamine is also observed. This agreement confirms that the potentiometric protamine response is based on protamine extraction. The voltammetrically reversible protamine extraction results in an apparently irreversible potentiometric response to protamine because back-extraction of protamine from the membrane extremely slows down at the mixed potential based on cation-exchange extraction of protamine. Significantly, this study demonstrates the advantages of ion-transfer voltammetry over potentiometry to quantitatively and mechanistically assess protamine transfer at ionophore-based polymeric membranes as foundation for reversible, selective, and sensitive detection of protamine.

  14. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    Science.gov (United States)

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Anodic stripping voltammetric determination of silver ion at a carbon paste electrode modified with carbon nanotubes

    International Nuclear Information System (INIS)

    Tashkhourian, J.; Javadi, S.; Ana, F.N.

    2011-01-01

    A carbon paste electrode (CPE) was modified with multi-wall carbon nanotubes and successfully applied to the determination of silver ion by differential pulse anodic stripping voltammetry. Compared to a conventional CPE, a remarkably improved peak current response and sensitivity is observed. The analytical procedure consisted of an open circuit accumulation step for 2 min in -0.4 V, this followed by an anodic potential scan between +0.2 and + 0.6 V to obtain the voltammetric peak. The oxidation peak current is proportional to the concentration of silver ion in the range from 1.0 x 10 -8 to 1.0 x 10 -5 mol L -1 , with a detection limit of 1.8 x 10 -9 mol L -1 after an accumulation time of 120 s. The relative standard deviation for 7 successive determinations of Ag(I) at 0.1 μM concentration is 1.99%. The procedure was validated by determining Ag(I) in natural waters. (author)

  16. Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    A new chemically modified glassy carbon electrode based on bismuth film coated mesoporous silica nanoparticles was developed and evaluated for reliable quantification of trace Pb 2+ and Cd 2+ by anodic stripping square wave voltammetry in natural water samples. Compared with conventional bismuth film electrodes or bismuth nanoparticles modified electrodes, this electrode exhibited significantly improved sensitivity and stability for Pb 2+ and Cd 2+ detection. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 2-150 μg L −1 with a detect limit of 0.2 μg L −1 for Pb 2+ , and 0.6 μg L −1 for Cd 2+ for 120s deposition. Good reproducibility was achieved on both single and equally prepared electrodes. In addition, scanning electron microscopy reveals that fibril-like bismuth structures were formed on silica nanoparticles, which could be responsible for the improved voltammetric performance due to the enhanced surface area. Finally, the developed electrode was applied to determine Pb 2+ and Cd 2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb 2+ and Cd 2+

  17. Determination of fenitrothion in water using a voltammetric sensor based on a polymer-modified glassy carbon electrode.

    Science.gov (United States)

    Amare, Meareg; Abicho, Samuel; Admassie, Shimelis

    2014-01-01

    A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.

  18. Thick-film voltammetric pH-sensors with internal indicator and reference species

    DEFF Research Database (Denmark)

    Musa, Arnaud Emmanuel; Alonso-Lomillo, María Asunción; del Campo, Francisco Javier

    2012-01-01

    , low cost and ease of fabrication. More importantly, as opposed to conventional voltammetric systems where the height of the voltammetric peaks is taken into account to quantify the amount of a species of interest, here, the difference between the peak potential of the indicator species and the peak...... potential of the reference species is used. Thus, this measurement principle makes the electrochemical system presented here less dependent on the potential of the reference electrode (RE), as is often the case in other electrochemical systems. The developed system displays very promising performances...

  19. Discrimination of Rice with Different Pretreatment Methods by Using a Voltammetric Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Li Wang

    2015-07-01

    Full Text Available In this study, an application of a voltammetric electronic tongue for discrimination and prediction of different varieties of rice was investigated. Different pretreatment methods were selected, which were subsequently used for the discrimination of different varieties of rice and prediction of unknown rice samples. To this aim, a voltammetric array of sensors based on metallic electrodes was used as the sensing part. The different samples were analyzed by cyclic voltammetry with two sample-pretreatment methods. Discriminant Factorial Analysis was used to visualize the different categories of rice samples; however, radial basis function (RBF artificial neural network with leave-one-out cross-validation method was employed for prediction modeling. The collected signal data were first compressed employing fast Fourier transform (FFT and then significant features were extracted from the voltammetric signals. The experimental results indicated that the sample solutions obtained by the non-crushed pretreatment method could efficiently meet the effect of discrimination and recognition. The satisfactory prediction results of voltammetric electronic tongue based on RBF artificial neural network were obtained with less than five-fold dilution of the sample solution. The main objective of this study was to develop primary research on the application of an electronic tongue system for the discrimination and prediction of solid foods and provide an objective assessment tool for the food industry.

  20. New molecular imprinted voltammetric sensor for determination of ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Gupta, Vinod Kumar, E-mail: vinodfcy@iitr.ac.in [Indian Institute of Technology, Department of Chemistry, Roorkee, Roorkee 247667 (India); Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-04-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100 mM phenol as monomer in the presence of phosphate buffer solution (pH 6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10{sup −11} − 1.5 × 10{sup −9} M and 1.6 × 10{sup −11} M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. - Highlights: • Ochratoxin A-imprinted electrochemical sensor is developed for the sensitive detection of ochratoxin A • The nanomaterial and ochratoxin A-imprinted surfaces were characterized by several methods • Ochratoxin A-imprinted electrochemical sensor is sensitive and selective in analysis of food • Ochratoxin A-imprinted electrochemical sensor is preferred to the other methods.

  1. New molecular imprinted voltammetric sensor for determination of ochratoxin A

    International Nuclear Information System (INIS)

    Yola, Mehmet Lütfi; Gupta, Vinod Kumar; Atar, Necip

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100 mM phenol as monomer in the presence of phosphate buffer solution (pH 6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10"−"1"1 − 1.5 × 10"−"9 M and 1.6 × 10"−"1"1 M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. - Highlights: • Ochratoxin A-imprinted electrochemical sensor is developed for the sensitive detection of ochratoxin A • The nanomaterial and ochratoxin A-imprinted surfaces were characterized by several methods • Ochratoxin A-imprinted electrochemical sensor is sensitive and selective in analysis of food • Ochratoxin A-imprinted electrochemical sensor is preferred to the other methods

  2. Adsorptive Stripping Voltammetric Determination of Hydroquinone using an Electrochemically Pretreated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Abdul Niaz1,

    2008-12-01

    Full Text Available A simple and efficient adsorptive stripping voltammetric (AdSV method was developed for the determination of hydroquinone at an electrochemically pretreated glassy carbon (GC electrode in waste water. Various parameters such as solvent system, accumulation potential, accumulation time and scan rate were optimized. The electrochemically pretreated GC electrode showed good response towards hydroquinone determination by using AdSV. Under the optimized conditions the peak current showed good linear relationship with the hydroquinone concentration in the range of 0.5-4.0mg L-1 and 5-30mg L-1. The 60/40 methanol/water composition was found to be the best solvent system and 0.05mol L-1 H2SO4 was found as useful supporting electrolyte concentration. The accumulation time was 60 s and the detection limit was 50µg L-1. The developed method was successfully applied for the determination of hydroquinone in polymeric industrial discharge samples waste photographic developer solution and cream sample without any significant effect of surface fouling.

  3. Voltammetric estimation of the content of antibiotics in veterinary preparations

    Directory of Open Access Journals (Sweden)

    Slepchenko Galina

    2016-01-01

    Full Text Available The voltammetric method for determination of tylosin tartrate, gentamicin sulfate, and cefalexin in veterinary preparations was for the first time developed. Electrochemical behavior of these antibiotics on the mercury film electrode was studied, and the working conditions (background electrolyte, deposition potential were defined for getting analytical signals using the voltammetry. The methods of real objects preparation for determination of tylosin tartrate, gentamicin sulfate, and cefalexin were offered. The techniques for the voltammetric determination of antibiotics in the veterinary preparations may be used in cefalexin ranging from 0.1 to 2.0 g/dm3, tylosin tartrate in the range from 0.1 to 1.7 g/dm3, and gentamicin sulfate from 0.1 to 1.5 g/dm3 (Sr is not more than 25 %

  4. Differential pulse voltammetric determination of salbutamol sulfate in syrup pharmaceutical formulation using poly(4-amino-3-hydroxynaphthalene sulfonic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Meareg Amare

    2017-10-01

    Full Text Available A new method for determination of salbutamol sulfate has been developed using poly(4-amino-3-hydroxynaphthalene sulfonic acid/GCE. Cyclic voltammetric investigation of the electrochemical behavior of salbutamol sulfate at the polymer modified glassy carbon unveiled electrocatalytic activity of the modifier towards irreversible oxidation of salbutamol sulfate. Dependence of peak current predominantly on scan rate than on square root of scan rate, and peak potential shift with pH demonstrated that oxidation of salbutamol sulfate at the polymer modified electrode follows adsorption reaction kinetics with proton participation.Under optimized solution and differential pulse voltammetric parameters, the oxidative peak current showed linear dependence on salbutamol sulfate concentration in the range 0.2 to 8 μM with method detection limit (3s/m and determination coefficient (R2 of 6.8 × 10−8 M and 0.99786, respectively. Low method detection limit, relatively wide linear range, and recovery results of spiked standard salbutamol sulfate in syrup samples in the range 96.7–98.9% validated the method for determination of salbutamol sulfate in pharmaceutical formulations.Differential pulse voltammetric analysis of salbutamol sulfate syrup formulation for its salbutamol sulfate content revealed 98.8 to 99.3% of the labeled value confirming the applicability of the developed method for determination of salbutamol sulfate in real samples. Keywords: Electrochemistry, Analytical chemistry

  5. application of ascorbic acid 2-phosphate as a new voltammetric

    African Journals Online (AJOL)

    a

    acid 2-phosphate (AAP) as a new voltammetric substrate has been described in this paper. In the alkaline buffer .... ALP labeled goat anti-rabbit ..... Classical Michaelis-Menten kinetic experiments were carried out to measure the maximum.

  6. Cathodic adsorptive stripping voltammetric determination of Ribavirin in pharmaceutical dosage form, urine and serum

    Directory of Open Access Journals (Sweden)

    Ahmed A. Abdel Gaber

    2017-05-01

    Full Text Available A sensitive, simple and rapid square-wave adsorptive stripping voltammetric method was developed and validated for the determination of Ribavirin in pharmaceutical formulations. The proposed method was based on the electrochemical reduction of Ribavirin at a hanging mercury drop electrode in Britton Robinson buffer at pH 10. A well-defined peak was observed at 880 mV with 30 s of accumulation time and 50 mV of accumulation potential. Under these optimized conditions, the square-wave adsorptive stripping voltammetric peak current showed a linear correlation on drug concentration over the range of 1 × 10−10–2 × 10−7 mol L−1 with a correlation coefficient of 0.9995 for the proposed method. The detection and quantitation limits for this method were 2.02 × 10−10 and 6.80 × 10−10 mol L−1, respectively. The results obtained for intra-day and inter-day precision (as RSD % were between 0.447% and 1.024%. This method was applied successfully for the determination of Ribavirin in its pharmaceutical dosage forms with mean recoveries of 99.68 ± 0.13 with RSD % of 0.81% and 99.20 ± 0.24 with RSD % of 0.49% for two concentrations 5 × 10−9 and 5 × 10−8 mol L−1, respectively for 200 mg capsules. The results obtained from the developed square-wave adsorptive stripping voltammetric method were compared with those obtained by the analytical method reported in the literature.

  7. Electropolymerized supramolecular tetraruthenated porphyrins applied as a voltammetric sensor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Monize M. da; Ribeiro, Gabriel H.; Faria, Anizio M. de; Bogado, Andre L.; Dinelli, Luis R., E-mail: dinelli@pontal.ufu.br [Universidade Federal de Uberlandia (UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal; Batista, Alzir A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-11-15

    Porphyrin 5,10,15,20-Tetra(4-pyridyl)manganese(III), [Mn-TPyP(H{sub 2}O){sub 2}]PF{sub 6}, and electropolymerized supramolecular porphyrins (ESP), {l_brace}Mn-TPyP(H{sub 2}O){sub 2}[RuCl{sub 3}(dppb)]{sub 4}{r_brace}PF{sub 6} (dppb = 1,4-bis(diphenylphosphine)butane), were synthesized and characterized. A thin solid film of ESP was obtained on a glass carbon electrode surface by a cyclic voltammetry method. The peak current increased with the number of voltammetric cycles, which shows a typical behavior of the species being adsorbed on the surface of the electrode. Cyclic voltammetry was also employed for acetaminophen quantification using an ESP modified electrode. The modified electrode shows a linear relationship between the anodic peak current and the concentration of acetaminophen (in the rage 0.05 to 0.7 mmol L{sup -1}. The performance of the modified electrode was verified by the determination of acetaminophen in a commercial pharmaceutical product and the results were in good agreement with those obtained by a control HPLC method. (author)

  8. Voltammetric determination of zirconium using azo compounds

    International Nuclear Information System (INIS)

    Orshulyak, O.O.; Levitskaya, G.D.

    2008-01-01

    The optimum conditions for zirconium complexation with azo compounds are found. The applicability of Eriochrome Red B, Calcon, and Calcion to the voltammetric determination of zirconium, total Zr(IV) and Hf(IV), and Zr(IV) in the presence of Zn(II), Cu(II), Cd(II), Ni(II), or Ti(IV) is demonstrated. The developed procedures are used to determine zirconium in a terbium alloy and in an alloy for airplane wheel drums [ru

  9. Electrochemical Investigation of Catechol at Poly(niacinamide Modified Carbon Paste Electrode: A Voltammetric Study

    Directory of Open Access Journals (Sweden)

    A. B. Teradale

    2016-01-01

    Full Text Available A polymeric thin film modified electrode, that is, poly(niacinamide modified carbon paste electrode (MCPE, was developed for the electrochemical determination of catechol (CC by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE, the poly(niacinamide MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M and limit of quantification (10S/M were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.

  10. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, F. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Neto, M.M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal) and Departamento de Quimica Agricola e Ambiental, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon (Portugal)]. E-mail: mm.neto@netcabo.pt; Rocha, M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Fonseca, I.T.E. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal)

    2006-10-10

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode.

  11. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    International Nuclear Information System (INIS)

    Ribeiro, F.; Neto, M.M.M.; Rocha, M.M.; Fonseca, I.T.E.

    2006-01-01

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode

  12. Voltammetric method to determine chromium (III) in potable water at level of ultra plans

    International Nuclear Information System (INIS)

    Jimenez B, Irene; Alvarado G, Ana L.

    2004-01-01

    It was established an analytical methodology to determine Cr (III) in drinking water using a voltammetric technique of Differential Pulse Cathodic Stripping Voltammetry with an Adsorptive Preconcentration of a complex Cr(III)-diethiltriaminpentaceticacid (Cr-DTPA) in a mercury drop. A dissolution of sodium nitrate was used as a supporting electrolyte. The optimized voltammetric parameters were: adsorption time, scan rate, absorption potential, p H, complex agent and sodium nitrate concentration. The linear range of the methodology is between 20 ng/L and 60 ng/L and the detection and quantification limits are 13 ng/L and 20 ng/L respectively. (Author) [es

  13. ENHANCEMENT OF THE SENSITIVITY AND SELECTIVITY OF THE VOLTAMMETRIC SENSOR FOR URIC ACID USING MOLECULARLY IMPRINTED POLYMER

    Directory of Open Access Journals (Sweden)

    Miratul Khasanah

    2010-12-01

    Full Text Available The sensitivity and selectivity of voltammetric sensor for uric acid can be improved by modifying the working electrode using a polymer with a molecular template (molecularly imprinted polymer, MIP. Polymer and MIP was synthesized from methacrylic acid (MAA as monomer, ethylene glycol dimethacrylic acid (EGDMA as cross-linker, uric acid (UA as template and the results were characterized by various methods. The poly-MAA formation was identified by a decrease in the intensity of infrared (IR spectra at ~1540 cm-1 (C=C and an increase at ~1700 cm-1 (C=O compared to the IR spectra of the MAA and EGDMA. The SEM analysis showed that the cavity of polymer is small enough (~ 0.1 µm and homogeneous. Establishment of MIP was carried out by extracting of the uric acid from the polymer network. The IR spectra of MIP exhibited the decrease in intensity at ~1700 cm-1 (C=O compared to the non imprinted polymer (NIP. The data of BET analysis showed that polymer pore size increase slightly from 37.71 Å to 38.02 Å after the extraction process of uric acid from the polymer network. Its may be due to incomplete extraction of uric acid from the polymer network. Modifications of hanging mercury drop electrode using MIP made from MAA, EGDMA, and UA with a mole ratio of 1:3:1 produced a sensitive and selective voltammetric sensor for uric acid. The sensitivity obtained was 16.405 nA L/µg. The presence of ascorbic acid in equal concentration with uric acid decreased the current response of only 0.08%. Compared to HMDE electrode, the sensitivity and selectivity of the HMDE-MIP sensor enhanced about 100 and 700 times, respectively. The detection limit was found to be 5.94 x10-10 M.

  14. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems.

    Science.gov (United States)

    Jain, Rajeev; Yadav, Rajeev Kumar

    2012-04-01

    Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, Britton-Robinson (BR) buffer of pH 2.5. The effect of surfactants like sodium lauryl sulfate (SLS), cetyl trimethyl ammonium bromide (CTAB) and Tween 20 was studied. Among these surfactants SLS showed significant enhancement in reduction peak. The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coefficient of 0.99.

  15. Imprinted polymer-modified hanging mercury drop electrode for differential pulse cathodic stripping voltammetric analysis of creatine.

    Science.gov (United States)

    Lakshmi, Dhana; Sharma, Piyush S; Prasad, Bhim B

    2007-06-15

    The molecularly imprinted polymer [poly(p-aminobenzoicacid-co-1,2-dichloroethane)] film casting was made on the surface of a hanging mercury drop electrode by drop-coating method for the selective and sensitive evaluation of creatine in water, blood serum and pharmaceutical samples. The molecular recognition of creatine by the imprinted polymer was found to be specific via non-covalent (electrostatic) imprinting. The creatine binding could easily be detected by differential pulse, cathodic stripping voltammetric signal at optimised operational conditions: accumulation potential -0.01 V (versus Ag/AgCl), polymer deposition time 15s, template accumulation time 60s, pH 7.1 (supporting electrolyte< or =5 x 10(-4)M NaOH), scan rate 10 mV s(-1), pulse amplitude 25 mV. The modified sensor in the present study was found to be highly reproducible and selective with detection limit 0.11 ng mL(-1) of creatine. Cross-reactivity studies revealed no response to the addition of urea, creatinine and phenylalanine; however, some insignificant magnitude of current was observed for tryptophan and histidine in the test samples.

  16. Manganese dioxide-graphene nanocomposite film modified electrode as a sensitive voltammetric sensor of indomethacin detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuxia; Zhang, Zhenfa; Zhang, Cuizong; Huang, Wei; Liang, Caiyun; Peng, Jinyun [Guangxi Normal University for Nationalities, Chongzuo (China)

    2016-08-15

    Excess amount of analgesic and anti-inflammatory drug, such as indomethacin, often leads to serious gastrointestinal complications; therefore, amount of such active compound should be regulated in commercial drugs. This study proposes an efficient analytical technique to detect indomethacin selectively. We prepared and investigated electrochemical properties of a manganese dioxide-graphene nanocomposite film modified glassy carbon electrode (MnO{sub 2}-Gr/GCE). The behavior of the modified electrode as electrocatalyst towards indomethacin oxidation was also examined. The cyclic voltammetric results reveal that the electrocatalytic activity for the oxidation of indomethacin can significantly be enhanced on the MnO{sub 2}-Gr/GCE. Indomethacin exhibited a sensitive anodic peak at about 0.90 V at MnO{sub 2}-Gr/GCE. The data obtained from differential pulse voltammetry showed that the anodic peak currents were linearly dependent on the indomethacin concentrations in the range of 1.0 X 10{sup -7} to 2.5 X 10{sup -5} mol/L with a detection limit of 3.2 X 10{sup -8} mol/L (S/N = 3). Most importantly, the proposed method shows efficient and selective sensing of indomethacin in commercial harmaceutical formulations. This is the first report of a voltammetric sensor for indomethacin using MnO{sub 2}-Gr/GCE. We believe that this new method can be commercialized for routine applications in laboratories.

  17. Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode

    International Nuclear Information System (INIS)

    Chen, Xuemin; Ren, Tongqing; Ma, Ming; Wang, Zhengguo; Zhan, Guoqing; Li, Chunya

    2013-01-01

    Highlights: • Single-walled carbon nanotubes (SWCNTs)-ionic liquid (IL) nanocomposite fabrication. • SWCNTs-Poly-IL film modified electrode was prepared and characterized. • Voltammetric behaviors of bisphenol A were investigated thoroughly. • Sensitive voltammetric method for bisphenol A determination was developed. -- Abstract: Using carboxylic acid-functionalized single walled carbon nanotubes (SWCNTs-COO − ) as an anion and 3-butyl-1-[3-(N-pyrrolyl)propyl]imidazolium as a cation, a novel SWCNTs-COO-ionic liquid (SWCNTs-COO-IL) nanocomposite was fabricated successfully. The as-prepared SWCNTs-COO-IL nanocomposite was confirmed with transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis, FTIR and Raman spectroscopy. The SWCNTs-COO-IL nanocomposite was coated onto a glassy carbon electrode surface followed by cyclic voltammetric scanning to fabricate a SWCNTs/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode (SWCNTs/Poly-IL/GCE). Scanning electron microscope and electrochemical impedance spectroscopy were used to characterize SWCNTs/Poly-IL/GCE. Electrochemical behaviors of bisphenol A (BPA) at the SWCNTs/Poly-IL/GCE were investigated thoroughly. It was found that an obvious oxidation peak appeared without reduction peak in the reverse scanning, indicating an irreversible electrochemical process. The oxidation peak currents of BPA were linearly related to scan rate in the range of 20–300 mV s −1 , suggesting an adsorption controlled process rather than a diffusion controlled process. Differential pulse voltammetry was employed for the voltammetric sensing of BPA. Experimental conditions such as film thickness, pH value, accumulation potential and time that influence the analytical performance of the SWCNTs/Poly-IL/GCE were optimized. Under optimal conditions, the oxidation peak current was linearly related to BPA concentration in the range of 5.0 × 10 −9 to 3.0 × 10 −5 mol L

  18. Electrochemistry of moexipril: experimental and computational approach and voltammetric determination.

    Science.gov (United States)

    Taşdemir, Hüdai I; Kiliç, E

    2014-09-01

    The electrochemistry of moexipril (MOE) was studied by electrochemical methods with theoretical calculations performed at B3LYP/6-31 + G (d)//AM1. Cyclic voltammetric studies were carried out based on a reversible and adsorption-controlled reduction peak at -1.35 V on a hanging mercury drop electrode (HMDE). Concurrently irreversible diffusion-controlled oxidation peak at 1.15 V on glassy carbon electrode (GCE) was also employed. Potential values are according to Ag/AgCI, (3.0 M KCI) and measurements were performed in Britton-Robinson buffer of pH 5.5. Tentative electrode mechanisms were proposed according to experimental results and ab-initio calculations. Square-wave adsorptive stripping voltammetric methods have been developed and validated for quantification of MOE in pharmaceutical preparations. Linear working range was established as 0.03-1.35 microM for HMDE and 0.2-20.0 microM for GCE. Limit of quantification (LOQ) was calculated to be 0.032 and 0.47 microM for HMDE and GCE, respectively. Methods were successfully applied to assay the drug in tablets by calibration and standard addition methods with good recoveries between 97.1% and 106.2% having relative standard deviation less than 10%.

  19. VOLTAMMETRIC BEHAVIOR OF SOME STEELS IN AQUEOUS SOLUTIONS OF HNO3

    Directory of Open Access Journals (Sweden)

    Gheorghe Nemtoi

    2011-06-01

    Full Text Available The corrosion process of some steels immersed in HNO3 solutions of different concentrations by means of voltammetric measurements was investigated. For different values of the corrosion potential, or of the contact time: solid steel-aggressive medium, several equations of the type: I = f (E were proposed, only for linear domains of the voltammograms.

  20. Direct voltammetric analysis of DNA modified with enzymatically incorporated 7-deazapurines

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Hana; Horáková Brázdilová, Petra; Fojtová, Miloslava; Fojta, Miroslav

    2010-01-01

    Roč. 82, č. 16 (2010), s. 6807-6813 ISSN 0003-2700 R&D Projects: GA AV ČR(CZ) IAA400040901; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : modified DNA * 7-deazapurines * voltammetric analysis Subject RIV: BO - Biophysics Impact factor: 5.874, year: 2010

  1. Adsorptive stripping voltammetric determination of trace amounts of lead in environmental water samples with complicated matrix

    Directory of Open Access Journals (Sweden)

    Grabarczyk M.

    2013-04-01

    Full Text Available A sensitive, simple and fast adsorptive stripping voltammetric procedure for trace determination of lead in environmental water samples has been developed. The method is based on adsorptive accumulation of the Pb(II-cupferron complex onto a hanging mercury drop electrode, followed by the reduction of the adsorbed species by a voltammetric scan using differential pulse modulation. The interference from surface active substances was eliminated by adsorption of interferents onto an Amberlite XAD-16 resin. Optimumconditions for removing the surfactants by mixing the analysed sample with resin were evaluated. The accuracy of the method was tested by analyzing certified reference material (SPS-WW1 Waste Water.

  2. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-04-01

    Full Text Available Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, Britton–Robinson (BR buffer of pH 2.5. The effect of surfactants like sodium lauryl sulfate (SLS, cetyl trimethyl ammonium bromide (CTAB and Tween 20 was studied. Among these surfactants SLS showed significant enhancement in reduction peak. The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coefficient of 0.99. Keywords: Midazolam, Voltammetry, Surfactant, Glassy carbon electrode, Parenteral dosage form

  3. Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide

    International Nuclear Information System (INIS)

    Zhao, F.; Wang, F.; Zhao, W.; Zhou, J.; Liu, Y.; Zou, L.; Ye, B.

    2011-01-01

    We report on a voltammetric sensor for caffeine that is based on a glassy carbon electrode modified with Nafion and graphene oxide (GO). It exhibits a good affinity for caffeine (resulting from the presence of Nafion), and excellent electrochemical response (resulting from the pressence of GO) for the oxidation of caffeine. The electrode enables the determination of caffeine in the range from 4.0 x 10 -7 to 8.0 x 10 -5 mol L -1 , with a detection limit of 2.0 x 10 -7 mol L -1 . The sensor displays good stability, reproducibility, and high sensitivity. It was successfully applied to the quantitative determination of caffeine in beverages. (author)

  4. Square Wave Voltammetric Determination of 2-Thiouracil in Pharmaceuticals and Real Samples Using Glassy Carbon Electrode

    OpenAIRE

    Naveen M. Gokavi; Vijay P. Pattar; Atmanand M. Bagoji; Sharanappa T. Nandibewoor

    2013-01-01

    A simple and rapid method was developed using cyclic and square wave voltammetric techniques for the determination of trace-level sulfur containing compound, 2-thiouracil, at a glassy carbon electrode. 2-thiouracil produced two anodic peaks at 0.334 V and 1.421 V and a cathodic peak at −0.534 V. The square wave voltammetry of 2-thiouracil gave a good linear response in the range of 1–20 μM with a detection limit of 0.16 μM and quantification limit of 0.53 μM (0.0679 μg/g), which is in good ag...

  5. Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical response to tetrabromobisphenol A

    International Nuclear Information System (INIS)

    Wang, Yanying; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Li, Chunya; Wu, Kangbing

    2016-01-01

    Cysteine (Cys) was electrochemically deposited on a glassy carbon electrode (GCE) by cyclic voltammetry. The poly-Cys modified electrode was placed in a solution of gold nanorods (GNRs) to induced self-assembly of the GNRs. The GNRs/poly-Cys/GCEs were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. A voltammetric study on tetrabromobisphenol A (TBBPA) with this GCE showed the current response to be enhanced by a factor of 11 compared to a non-modified GCE. Based on these findings, a square wave voltammetric assay was worked out. Under optimized conditions, a linear relationship between the oxidation peak current and TBBPA is found for the 10 nM to 10 μM concentration range. The detection limit is 3.2 nM (at an S/N ratio of 3). The electrode was successfully applied to the determination of TBBPA in spiked tap water and lake water samples. (author)

  6. On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes

    Science.gov (United States)

    Georén, Peter; Lindbergh, Göran

    In previous studies a novel amphiphilic co-polymer was developed for use in lithium-ion batteries. In order to evaluate the electrochemical stability of that electrolyte and compare it with others, a voltammetric method was applied on a set of electrolytes with different salts, solvents and polymers. However, initially the voltammetric methodology was studied. Platinum was found to be the most suited electrode material, experiencing no significant interfering reactions and a proper diffusion-controlled kinetic behaviour when sweep rate was varied. Furthermore, the influence on the voltammograms of adding water traces to the electrolytes was studied. It could be established that the oxidation peak around 3.8 V versus Li was related to water reactions. It was concluded that quantitative voltage values of the stability limits were difficult to assess using voltammetry. On the other hand, the method seemed well suited for comparison of electrolytes and to investigate the influences of electrolyte components on the stability. The voltammetric results varied little between the different electrolytes evaluated and the anodic and cathodic limits, as defined here, were in the range of 1 and 4.5 V vs. Li, respectively. Although the novel polymer did not affect the stability limit significantly it seemed to promote the breakdown reaction rate in all electrolytes tested. Furthermore, the use of LiTFSI salt reduced the stability window.

  7. Electrochemistry and determination of cefdinir by voltammetric and computational approaches

    Directory of Open Access Journals (Sweden)

    İbrahim Hüdai Taşdemir

    2014-12-01

    Full Text Available The oxidation and reduction behavior of cefdinir (CEF was studied by experimental methods and computational calculations at B3LYP/6-31+G (d//AM1. Voltammetric studies were carried out based on two irreversible reduction peaks at approximately −0.5 and −1.2 V on a hanging mercury drop electrode (HMDE and on one irreversible oxidation peak at approximately 1.0 V on a glassy carbon electrode (GCE versus Ag/AgCl, KCl (3.0M in Britton–Robinson (BR buffer at pH 4.2 and 5.0, respectively. Differential pulse adsorptive stripping voltammetric methods have been developed and validated for determination of CEF in different samples. The linear range was established as 0.25–40.0 μM for HMDE and 0.40–10.0 μM for GCE. Limit of quantification was calculated to be 0.20 and 0.26 μM for HMDE and GCE, respectively. These methods were successfully applied to assay the drug in tablets and human serum with good recoveries between 92.7% and 107.3% having relative standard deviation less than 10%.

  8. Rapid screening and guided extraction of antioxidants from microalgae using voltammetric methods.

    Science.gov (United States)

    Goiris, Koen; De Vreese, Peter; De Cooman, Luc; Muylaert, Koenraad

    2012-08-01

    Currently, microalgae draw much attention as a promising source of natural antioxidants to replace synthetic antioxidants for food applications. In this paper, the use of voltammetric techniques as a fast alternative for chemical assays to determine the antioxidant power of microalgal biomass is discussed. It was found that antioxidant activities determined by square wave voltammetry correlate well with the results from other established antioxidant assays, such as Trolox equivalent antioxidant capacity (R(2) = 0.737), ferric reducing antioxidant potential (R(2) = 0.729), and AAPH-induced oxidation of linoleic acid (R(2) = 0.566). Besides yielding quantitative data on the antioxidant activity, square wave voltammetry provides additional information on the antioxidant profile of microalgal biomass as the peak potentials of antioxidant components are determined. Consequently, square wave voltammetry can be used as a tool for optimizing the extraction processes to recover antioxidant components from microalgae.

  9. Combined Voltammetric-Potentiometric Sensor with the Silver Solid Amalgam Link for Electroanalytical Measurements

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2002-01-01

    Roč. 14, č. 24 (2002), s. 1739-1741 ISSN 1040-0397 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : combined voltammetric-potentiometric sensors * solid amalgam Subject RIV: CG - Electrochemistry Impact factor: 1.783, year: 2002

  10. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.

    Science.gov (United States)

    Lu, Min; Compton, Richard G

    2014-09-21

    Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.

  11. Voltammetric Studies on Vitamins D2 and D3 in Organic Solvents

    International Nuclear Information System (INIS)

    Chan, Ya Yun; Yue, Yanni; Webster, Richard D.

    2014-01-01

    Highlights: • Vitamins D 2 and D 3 undergo a chemically irreversible oxidation process. • The electrochemical oxidation occurs via one-electron on short (CV) time-scales. • On long time scales (electrolysis) the oxidation occurs via two-electrons. • Chemical oxidation was performed using two molar equivalents of NO + . • Oxidation occurs at the triene moiety. - Abstract: The electrochemical behavior of vitamins D 2 and D 3 were examined by performing cyclic voltammetry (CV), rotating disk electrode voltammetry, controlled potential electrolysis and chemical oxidation in aprotic organic solvents. Both vitamins were electrochemically oxidized in dichloromethane and acetonitrile (E p ox ∼ +0.8 vs. (Fc/Fc + )/V, where E p ox is the anodic peak potential and Fc = ferrocene) via a one-electron chemically irreversible process on the short voltammetric time scale (≤ seconds). Varying the scan rate (0.1 V s −1 to 20 V s −1 ) and temperature (233 K to 293 K) did not strongly affect the voltammetric response recorded on platinum and glassy carbon electrode surfaces with the oxidation process remaining chemically irreversible over the range of scan rates and temperatures tested, indicating that the initially formed cation radical was not long-lived. Repetitive CV experiments indicated that the oxidized product partially adsorbed onto the electrode surface, resulting in diminishing peak currents with multiple scans. Bulk controlled potential electrolysis of the vitamin D compounds performed by alternating several cycles of oxidative electrolysis and reductive pulsed stripping proved to be effective in stripping the adsorbed species off the electrode surfaces. Longer time scale bulk electrolysis experiments led to the detection of a new oxidation peak appearing at less positive potentials as the electrolysis progressed, suggesting that the compounds underwent oxidation on long time scales (minutes to hours) via a two electron process. The vitamins were most

  12. Ion transfer through solvent polymeric membranes driven by an exponential current flux.

    Science.gov (United States)

    Molina, A; Torralba, E; González, J; Serna, C; Ortuño, J A

    2011-03-21

    General analytical equations which govern ion transfer through liquid membranes with one and two polarized interfaces driven by an exponential current flux are derived. Expressions for the transient and stationary E-t, dt/dE-E and dI/dE-E curves are obtained, and the evolution from transient to steady behaviour has been analyzed in depth. We have also shown mathematically that the voltammetric and stationary chronopotentiometric I(N)-E curves are identical (with E being the applied potential for voltammetric techniques and the measured potential for chronopotentiometric techniques), and hence, their derivatives provide identical information.

  13. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.

    Science.gov (United States)

    Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L

    2010-06-15

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.

  14. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate.

    Science.gov (United States)

    Attia, Ali Kamal; Abo-Talib, Nisreen Farouk; Tammam, Marwa Hosny

    2017-04-01

    Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH) based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0) using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10 -6 -3.475 x 10 -5 mol L -1 . The limits of detection and quantification were found to be 5.160 x 10 -7 and 1.720 x 10-6 mol L -1 , respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  15. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels – A review

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinos, Christos; Economou, Anastasios, E-mail: aeconomo@chem.uoa.gr

    2017-04-08

    Over the last years, nanomaterials have found many applications in the development of electrochemical biosensors. Among other functions, metal nanoparticles (NPs) and quantum dots (QDs) (semiconducting nanocrystals composed of metal salts) are increasingly being used as voltammetric labels in affinity biosensing. Labeling is based on the attachment of the label(s) on the target biomolecules or on a biorecognition reporting probe. After an appropriate specific affinity interaction between the target and the reporting probe, the metallic nanolabels are converted to the respective cations which are quantified by a voltammetric technique. The very use of metal-containing nanoprobes as labels provides a first amplification step since each nanoprobe can release a very significant number of detectable cations. When anodic stripping voltammetry (ASV) (in which a preconcentration step precedes the actual voltammetric scan) is further employed as the detection format, ultra-sensitive bioassays can be developed. The present paper reviews the emerging trends in affinity biosensing using ASV detection of metal-containing nanolabels. It provides a critical discussion of recent developments in ASV transduction and electrodes, novel strategies for signal enhancement, approaches for multiplexed detection as well as fluidics, paper-based and lab-on-a-chip devices. - Highlights: • This paper reviews the use of ASV for affinity biosensing with metal-containing nanolabels. • Both metal nanoparticles and quantum dots applications are considered. • Transducers and new electrode materials are covered. • Signal enhancement and multiplexing strategies are discussed. • Sensor arrays, paper-based, fluidic and lab-on-chip applications are described.

  16. Optimisation of the conditions for stripping voltammetric analysis at liquid-liquid interfaces supported at micropore arrays: a computational simulation.

    Science.gov (United States)

    Strutwolf, Jörg; Arrigan, Damien W M

    2010-10-01

    Micropore membranes have been used to form arrays of microinterfaces between immiscible electrolyte solutions (µITIES) as a basis for the sensing of non-redox-active ions. Implementation of stripping voltammetry as a sensing method at these arrays of µITIES was applied recently to detect drugs and biomolecules at low concentrations. The present study uses computational simulation to investigate the optimum conditions for stripping voltammetric sensing at the µITIES array. In this scenario, the diffusion of ions in both the aqueous and the organic phases contributes to the sensing response. The influence of the preconcentration time, the micropore aspect ratio, the location of the microinterface within the pore, the ratio of the diffusion coefficients of the analyte ion in the organic and aqueous phases, and the pore wall angle were investigated. The simulations reveal that the accessibility of the microinterfaces during the preconcentration period should not be hampered by a recessed interface and that diffusional transport in the phase where the analyte ions are preconcentrated should be minimized. This will ensure that the ions are accumulated within the micropores close to the interface and thus be readily available for back transfer during the stripping process. On the basis of the results, an optimal combination of the examined parameters is proposed, which together improve the stripping voltammetric signal and provide an improvement in the detection limit.

  17. Nafion Coated Electrodes as Voltammetric Sensors for Iron Analysis in Sediments and Pore Waters: an Example from the Lagoon of Venice

    Directory of Open Access Journals (Sweden)

    Emanuele Argese

    2001-09-01

    Full Text Available Glassy carbon electrodes coated with Nafion are used for the ion-exchange voltammetric (IEV determination of Fe(II in the pore-waters and acidic extracts of sediments of the lagoon of Venice (Italy. The coated electrodes give reversible voltammetric signals, well resolved from background currents, which can be used for quantitative determinations. The yield of iron extracted by HCl from the sediment depends on the experimental conditions, in particular on the concentration of hydrochloric acid. By combining IEV on the acid extract with trapping and analysis of gaseous H2S evolved it is possible to obtain quantitative information both on the total content of iron dissolved by the acid attack and on the fraction of iron present in the form of acid volatile sulphides (AVS. As far as pore-waters are concerned, in this kind of samples the IEV determination of iron can be performed simply after dilution with HCl. The pore-waters here examined were sampled without alteration of their equilibrium conditions by using a suitable “in situ” sampler. IEV data obtained in samples from the lagoon of Venice (Italy show satisfactory correlation with previous results obtained using different analytical techniques.

  18. Classification of monofloral honeys by voltammetric electronic tongue with chemometrics method

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zhenbo [Department of Bio-systems Engineering, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, Zhejiang (China); Wang Jun, E-mail: jwang@zju.edu.cn [Department of Bio-systems Engineering, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, Zhejiang (China)

    2011-05-01

    Highlights: > We self-developed a voltammetric electronic tongue based on new sensors array. > We advanced a new method to extract eigenvalues from signals obtained by VE-tongue. > We first detected the monofloral honeys of different floral origins using VE-tongue. - Abstract: A voltammetric electronic tongue (VE-tongue) based on multifrequency large amplitude pulse voltammetry (MLAPV) was developed to classify monofloral honeys of seven kinds of floral origins. The VE-tongue was composed of six working electrodes (gold, silver, platinum, palladium, tungsten, and titanium) in a standard three-electrode configuration. The applied waveform of MLAPV was composed of four individual frequencies: 1 Hz, 10 Hz, 100 Hz, and 1000 Hz. Two eigenvalues (the maximum value and the minimum value) of each cycle were extracted for building the first database (FDB); four eigenvalues (the maximum value, the minimum value, and two inflexion values) were exacted for building the second database (SDB). The two databases were analyzed by three-pattern recognition techniques: principal component analysis (PCA), discriminant function analysis (DFA) and cluster analysis (CA), respectively. It was possible to discriminate the seven kinds of honeys of different floral origins completely based on FDB and SDB by PCA, DFA and CA, and FDB was certificated as an efficient database by contrasting with the SDB. Moreover, the effective working electrodes and frequencies were picked out as the best experimental project for the further study.

  19. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dorraji, Parisa S.; Jalali, Fahimeh, E-mail: fjalali@razi.ac.ir

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  20. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dorraji, Parisa S.; Jalali, Fahimeh

    2016-01-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  1. Voltammetric determination of copper in selected pharmaceutical preparations--validation of the method.

    Science.gov (United States)

    Lutka, Anna; Maruszewska, Małgorzata

    2011-01-01

    It were established and validated the conditions of voltammetric determination of copper in pharmaceutical preparations. The three selected preparations: Zincuprim (A), Wapń, cynk, miedź z wit. C (B), Vigor complete (V) contained different salts and different quantity of copper (II) and increasing number of accompanied ingredients. For the purpose to transfer copper into solution, the samples of powdered tablets of the first and second preparation were undergone extraction and of the third the mineralization procedures. The concentration of copper in solution was determined by differential pulse voltammetry (DP) using comparison with standard technique. In the validation process, the selectivity, accuracy, precision and linearity of DP determination of copper in three preparations were estimated. Copper was determined within the concentration range of 1-9 ppm (1-9 microg/mL): the mean recoveries approached 102% (A), 100% (B), 102% (V); the relative standard deviations of determinations (RSD) were 0.79-1.59% (A), 0.62-0.85% (B) and 1.68-2.28% (V), respectively. The mean recoveries and the RSDs of determination satisfied the requirements for the analyte concentration at the level 1-10 ppm. The statistical verification confirmed that the tested voltammetric method is suitable for determination of copper in pharmaceutical preparation.

  2. Voltammetric Behaviour of Metronidazole at Mercury Electrodes

    Directory of Open Access Journals (Sweden)

    La-Scalea Mauro A.

    1999-01-01

    Full Text Available Metronidazole is the most important drug of the group of 5-nitroimidazoles and possesses toxicity to anaerobic micro-organisms DNA being the main target for their biological action. The mechanism of biological action of metronidazole is dependent upon the nitro group reduction process. The reduction of metronidazole is pH dependent in acid medium and four electrons are involved in the complete reduction to the hydroxylamine derivative. In aprotic medium the reduction of the metronidazole occurs in two steps, the first involving one electron to form the nitro radical and the second step involving three more electrons until the formation of the hydroxylamine derivative. In this paper the mechanism of reduction of metronidazole was studied by using the voltammetric techniques: d.c. polarography, differential pulse polarography and cyclic voltammetry using the mercury drop as the working electrode.

  3. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Ali Kamal Attia

    2017-04-01

    Full Text Available Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0 using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10-6-3.475 x 10-5 mol L-1. The limits of detection and quantification were found to be 5.160 x 10-7 and 1.720 x 10-6 mol L-1, respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  4. Adsorptive Cathodic Stripping Voltammetric Determination of Cefoperazone in Bulk Powder, Pharmaceutical Dosage Forms, and Human Urine

    Directory of Open Access Journals (Sweden)

    Vu Dang Hoang

    2013-01-01

    Full Text Available The electroreduction behaviour and determination of cefoperazone using a hanging mercury drop electrode were investigated. Cyclic voltammograms of cefoperazone recorded in universal Britton-Robinson buffers pH 3–6 exhibited a single irreversible cathodic peak. The process was adsorption-controlled. Britton-Robinson buffer 0.04 M pH 4.0 was selected as a supporting electrolyte for quantitative purposes by differential pulse and square wave adsorptive cathodic stripping voltammetry. The experimental voltammetric conditions were optimized using Central Composite Face design. A reduction wave was seen in the range from −0.7 to −0.8 V. These voltammetric techniques were successfully validated as per ICH guidelines and applied for the determination of cefoperazone in its single and sulbactam containing powders for injection and statistically comparable to USP-HPLC. They were further extended to determine cefoperazone in spiked human urine with no matrix effect.

  5. Voltammetric technique, a panacea for analytical examination of environmental samples

    International Nuclear Information System (INIS)

    Zahir, E.; Mohiuddin, S.; Naqvi, I.I.

    2012-01-01

    Voltammetric methods for trace metal analysis in environmental samples of marine origin like mangrove, sediments and shrimps are generally recommended. Three different electro-analytical techniques i.e. polarography, anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (ADSV) have been used. Cd/sub 2/+, Pb/sub 2/+, Cu/sub 2/+ and Mn/sub 2/+ were determined through ASV, Cr/sub 6/+ was analyzed by ADSV and Fe/sub 2/+, Zn/sub 2/+, Ni/sub 2/+ and Co/sub 2/+ were determined through polarography. Out of which pairs of Fe/sub 2/+Zn/sub 2/+ and Ni/sub 2/+Co/sub 2/+ were determined in two separate runs while Cd/sub 2/+, Pb/sub 2/+, Cu/sub 2/+ were analyzed in single run of ASV. Sensitivity and speciation capabilities of voltammetric methods have been employed. Analysis conditions were optimized that includes selection of supporting electrolyte, pH, working electrodes, sweep rate etc. Stripping voltammetry was adopted for analysis at ultra trace levels. Statistical parameters for analytical method development like selectivity factor, interference, repeatability (0.0065-0.130 macro g/g), reproducibility (0.08125-1.625 macro g/g), detection limits (0.032-5.06 macro g/g), limits of quantification (0.081-12.652 macro g/g), sensitivities (5.636-2.15 nA mL macro g-1) etc. were also determined. The percentage recoveries were found in between 95-105% using certified reference materials. Real samples of complex marine environment from Karachi coastline were also analyzed. The standard addition method was employed where any matrix effect was evidenced. (author)

  6. Indirect Voltammetric Sensing Platforms For Fluoride Detection on Boron-Doped Diamond Electrode Mediated via [FeF6]3− and [CeF6]2− Complexes Formation

    International Nuclear Information System (INIS)

    Culková, Eva; Tomčík, Peter; Švorc, Ľubomír; Cinková, Kristína; Chomisteková, Zuzana; Durdiak, Jaroslav; Rievaj, Miroslav; Bustin, Dušan

    2014-01-01

    Very simple and sensitive electroanalytical technique based on synergistic combination of reaction electrochemistry (specificity) and bare boron-doped diamond electrode (sensitivity) for the detection of fluorides in drinking water was developed as variant based on dynamic electrochemistry to ISE analysis. It is based on the formation of electroinactive fluoride complexes with Fe(III) and Ce(IV) ions decreasing such diffusion current of free metal on boron-doped diamond electrode. Due to low background signal of boron-doped diamond electrode reasonably low detection limits of the order of 10 −6 mol L −1 for linear sweep voltammetric method using formation of [FeF 6 ] 3− and 10 −7 mol L −1 in a square-wave variant of this technique have been achieved. This is approximately 1–2 orders lower than in the case of platinum comb-shaped interdigitated microelectrode array. Linear sweep voltammetric method based on [CeF 6 ] 2− complex formation has lower sensitivity and may be suitable for samples with higher content of fluoride and not to analysis of drinking water

  7. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer.

    Science.gov (United States)

    Mizutani, F; Yabuki, S; Sato, Y

    1997-01-01

    A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.

  8. Infrared spectroscopic and voltammetric study of adsorbed CO on stepped surfaces of copper monocrystalline electrodes

    International Nuclear Information System (INIS)

    Koga, O.; Teruya, S.; Matsuda, K.; Minami, M.; Hoshi, N.; Hori, Y.

    2005-01-01

    Voltammetric and infrared (IR) spectroscopic measurements were carried out to study adsorbed CO on two series of copper single crystal electrodes n(111)-(111) and n(111)-(100) in 0.1M KH 2 PO 4 +0.1M K 2 HPO 4 at 0 o C. Reversible voltammetric waves were observed below -0.55V versus SHE for adsorption of CO which displaces preadsorbed phosphate anions. The electric charge of the redox waves is proportional to the step atom density for both single crystal series. This fact indicates that phosphate anions are specifically adsorbed on the step sites below -0.55V versus SHE. Voltammetric measurements indicated that (111) terrace of Cu is covered with adsorbed CO below -0.5V versus SHE. Nevertheless, no IR absorption band of adsorbed CO is detected from (111) terrace. Presence of adsorbed CO on (111) terrace is presumed which is not visible by the potential difference spectroscopy used in the present work. IR spectroscopic measurements showed that CO is reversibly adsorbed with an on-top manner on copper single crystal electrodes of n(111)-(111) and n(111)-(100) with approximately same wavenumber of C?O stretching vibration of 2070cm -1 . The IR band intensity is proportional to the step atom density. Thus CO is adsorbed on (111) or (100) steps on the single crystal surfaces. An analysis of the IR band intensity suggested that one CO molecule is adsorbed on every two or more Cu step atom of the monocrystalline surface. The spectroscopic data were compared with those reported for uhv system. The C-O stretching wavenumber of adsorbed CO in the electrode-electrolyte system is 30-40cm -1 lower than those in uhv system

  9. Voltammetric and Mathematical Evidence for Dual Transport Mediation of Serotonin Clearance In Vivo

    Science.gov (United States)

    Wood, Kevin M.; Zeqja, Anisa; Nijhout, H. Frederik; Reed, Michael C.; Best, Janet; Hashemi, Parastoo

    2014-01-01

    The neurotransmitter serotonin underlies many of the brain’s functions. Understanding serotonin neurochemistry is important for improving treatments for neuropsychiatric disorders such as depression. Antidepressants commonly target serotonin clearance via serotonin transporters (SERTs) and have variable clinical effects. Adjunctive therapies, targeting other systems including serotonin autoreceptors, also vary clinically and carry adverse consequences. Fast scan cyclic voltammetry (FSCV) is particularly well suited for studying antidepressant effects on serotonin clearance and autoreceptors by providing real-time chemical information on serotonin kinetics in vivo. However, the complex nature of in vivo serotonin responses makes it difficult to interpret experimental data with established kinetic models. Here, we electrically stimulated the mouse medial forebrain bundle (MFB) to provoke and detect terminal serotonin in the substantia nigra reticulata (SNr). In response to MFB stimulation we found three dynamically distinct serotonin signals. To interpret these signals we developed a computational model that supports two independent serotonin reuptake mechanisms (high affinity, low efficiency reuptake mechanism and low affinity, high efficiency reuptake system) and bolsters an important inhibitory role for the serotonin autoreceptors. Our data and analysis, afforded by the powerful combination of voltammetric and theoretical methods, gives new understanding of the chemical heterogeneity of serotonin dynamics in the brain. This diverse serotonergic matrix likely contributes to clinical variability of antidepressants. PMID:24702305

  10. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems

    OpenAIRE

    Jain, Rajeev; Yadav, Rajeev Kumar

    2012-01-01

    Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, BrittonâRobinson (BR) buffer of pH 2.5. The effect of surfactants like sodium lauryl ...

  11. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems

    OpenAIRE

    Jain, Rajeev; Yadav, Rajeev Kumar

    2011-01-01

    Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, Britton–Robinson (BR) buffer of pH 2.5. The effect of surfactants like sodium lauryl ...

  12. Voltammetric determination of attomolar levels of a sequence derived from the genom of hepatitis B virus by using molecular beacon mediated circular strand displacement and rolling circle amplification.

    Science.gov (United States)

    Huang, Shan; Feng, Mengmeng; Li, Jiawen; Liu, Yi; Xiao, Qi

    2018-03-03

    The authors describe an electrochemical method for the determination of the single-stranded DNA (ssDNA) oligonucleotide with a sequence derived from the genom of hepatitis B virus (HBV). It is making use of circular strand displacement (CSD) and rolling circle amplification (RCA) strategies mediated by a molecular beacon (MB). This ssDNA hybridizes with the loop portion of the MB immobilized on the surface of a gold electrode, while primer DNA also hybridizes with the rest of partial DNA sequences of MB. This triggers the MB-mediated CSD. The RCA is then initiated to produce a long DNA strand with multiple tandem-repeat sequences, and this results in a significant increase of the differential pulse voltammetric response of the electrochemical probe Methylene Blue at a rather low working potential of -0.24 V (vs. Ag/AgCl). Under optimal experimental conditions, the assay displays an ultrahigh sensitivity (with a 2.6 aM detection limit) and excellent selectivity. Response is linear in the 10 to 700 aM DNA concentration range. Graphical abstract Schematic of a voltammetric method for the determination of attomolar levels of target DNA. It is based on molecular beacon mediated circular strand displacement and rolling circle amplification strategies. Under optimal experimental conditions, the assay displays an ultrahigh sensitivity with a 2.6 aM detection limit and excellent selectivity.

  13. Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples

    International Nuclear Information System (INIS)

    Bagheri, Hasan; Afkhami, Abbas; Panahi, Yunes; Khoshsafar, Hosein; Shirzadmehr, Ali

    2014-01-01

    Multi-walled carbon nanotubes decorated with Fe 3 O 4 nanoparticles were prepared to construct a novel sensor for the determination of haloperidol (Hp) by voltammetric methods. The morphology and properties of electrode surface were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. This modified sensor was used as a selective electrochemical sensor for the determination of trace amounts of Hp. The peak currents of differential pulse and square wave voltammograms of Hp increased linearly with its concentration in the ranges of 1.2 × 10 −3 –0.52 and 6.5 × 10 −4 –0.52 μmol L −1 , respectively. The detection limits for Hp were 7.02 × 10 −4 and 1.33 × 10 −4 μmol L −1 for differential pulse and square wave voltammetric methods, respectively. The results show that the combination of multi-walled carbon nanotubes and Fe 3 O 4 nanoparticles causes a dramatic enhancement in the sensitivity of Hp quantification. This sensor was successfully applied to determine Hp in pharmaceutical samples and biological fluids. The fabricated electrode showed excellent reproducibility, repeatability and stability. - Highlights: • A sensitive paste using Fe 3 O 4 /multi-walled carbon nanotubes was fabricated. • Haloperidol determination is based on its adsorption on the surface of Fe 3 O 4 /MWCNTs. • Different electrochemical methods and impedance spectroscopy were used for this study. • Haloperidol was determined in pharmaceutical and biological samples. • In comparison to other conventional methods, this method is simple, rapid, selective and cost-effective

  14. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ghorbani-Bidkorbeh, Fatemeh; Shahrokhian, Saeed; Mohammadi, Ali; Dinarvand, Rassoul

    2010-01-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  15. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

    Science.gov (United States)

    Deng, Peihong; Xu, Zhifeng; Zeng, Rongying; Ding, Chunxia

    2015-08-01

    The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Differential pulse polarography of cadmium-and lead-urate and adsorptive stripping voltammetric determination of uric acid.

    Science.gov (United States)

    Gandour, M A; Ensaf-Aboul-Kasim; Amrallah, A H; Farghaly, O A

    1994-03-01

    The complex formation between uric acid and zinc, cadmium and lead ions has been investigated using differential pulse polarography in 0.01M NaNO(3). It is found that the complexes formed by Cd(II) and Pb(II) ions with uric acid have the stoichiometry of 1:2 and the logarithmic values of the apparent stability constant are 9.47 and 11.7, respectively. On the other hand, zinc(II) ions do not give any indication of complexation with uric acid. A sensitive voltammetric method is developed for the quantitative determination of uric acid. This method is based on controlled adsorptive preconcentration of uric acid on the hanging mercury drop electrode (HMDE), followed by tracing the voltammogram in the cathodic going potential scan. The modes used are direct current stripping voltammetry (DCSV) and differential pulse stripping voltammetry (DPSV). The detection limits found were 8 x 10(-9)M (quiescent period 15 sec) by DPSV and 1.6 x 10(-8)M by DCSV.

  17. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    We report on a glassy carbon electrode modified with bismuth nanoparticles (NanoBiE) for the simultaneous determination Pb 2+ and Cd 2+ by anodic stripping voltammetry. Operational parameters such as bismuth nanoparticles labelling amount, deposition potential, deposition time and stripping parameters were optimized with respect to the determination of Pb 2+ and Cd 2+ in 0.1 M acetate buffer solution (pH 4.5). The NanoBiE gives well-defined, reproducible and sharp stripping peaks. The peak current response increases linearly with the metal concentration in a range of 5.0–60.0 μg L −1 , with a detection limit of 0.8 and 0.4 μg L −1 for Pb 2+ and Cd 2+ , respectively. The morphology and composition of the modified electrode before and after voltammetric measurements were analysed by scanning electron microscopy and energy dispersive X-ray analysis. The NanoBiE was successfully applied to analysis of Pb 2+ and Cd 2+ in real water samples and the method was validated by ICP-MS technique, suggesting that the electrode can be considered as an interesting alternative to the bismuth film electrode for possible use in electrochemical studies and electro analysis. (author)

  18. Square Wave Voltammetric Determination of 2-Thiouracil in Pharmaceuticals and Real Samples Using Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Naveen M. Gokavi

    2013-01-01

    Full Text Available A simple and rapid method was developed using cyclic and square wave voltammetric techniques for the determination of trace-level sulfur containing compound, 2-thiouracil, at a glassy carbon electrode. 2-thiouracil produced two anodic peaks at 0.334 V and 1.421 V and a cathodic peak at −0.534 V. The square wave voltammetry of 2-thiouracil gave a good linear response in the range of 1–20 μM with a detection limit of 0.16 μM and quantification limit of 0.53 μM (0.0679 μg/g, which is in good agreement as per IUPAC definition of trace component analysis (100 μg/g. The obtained recoveries range from 98.10% to 102.1%. The proposed method was used successfully for its quantitative determination in pharmaceutical formulations and urine as real samples.

  19. Cyclic Voltammetric Investigation of Dopamine at Poly-(Gabapentin Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    M. T. Shreenivas

    2011-01-01

    Full Text Available The poly (gabapentin film was prepared on the surface of carbon paste electrode by electrochemical method using cyclic voltammetric technique. The poly (gabapentin film-modified carbon paste electrode was calibrated with standard potassium ferrocyanide solution in 1 M KCl as a supporting electrolyte. The prepared poly (gabapentin film-coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at physiological pH. The scan rate effect was found to be diffusion-controlled electrode process. The concentration effect of dopamine was studied, and the redox peak potentials of dopamine were dependant on pH.

  20. Unique, Voltammetric Electrochemical Sensors for Organic Contaminants, with Excellent Discrimination, Based on Conducting Polymer-, Aptamer- and Other-Functionalized Sensing Electrodes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In ongoing and recent prior work for the Army, this firm has developed a unique, patented technology for voltammetric electrochemical detection of toxic gases,...

  1. Preparation and voltammetric characterization of electrodes coated with Langmuir-Schaefer ultrathin films of Nafion®

    Directory of Open Access Journals (Sweden)

    Bertoncello Paolo

    2003-01-01

    Full Text Available Ultrathin films of Nafion® perfluorinated polymer were deposited on indium-tin oxide electrodes (ITO by using Langmuir-Schaefer (LS technique, after optimization of the subphase composition conditions. Morphological characteristics of these coatings were obtained by Atomic Force Microscopy (AFM. Nafion® LS films showed a good uniformity and complete coverage of the electrode surface, however a different organization degree of the polymer layer was evidenced with respect to thin films deposited by spin-coating. ITO electrodes modified with Nafion® LS coatings preconcentrate by ion-exchange electroactive cations, such as Ru[(NH36]3+, dissolved in diluted solutions. The electroactive species is retained by the Nafion® LS coated ITO also after transfer of the modified electrode into pure supporting electrolyte. This allowed the use of the ruthenium complex as voltammetric probe to test diffusion phenomena within the Nafion® LS films. Apparent diffusion coefficients (Dapp of Ru[(NH36]3+ incorporated in Nafion® LS films were obtained by voltammetric measurements. Dapp values decrease slightly by increasing the amount of ruthenium complex incorporated in the ultrathin film. They are significantly lower than values typical for recasted Nafion® films, in agreement with the highly condensed nature of the Nafion® LS fims.

  2. Measurement of the Extracellular pH of Adherently Growing Mammalian Cells with High Spatial Resolution Using a Voltammetric pH Microsensor.

    Science.gov (United States)

    Munteanu, Raluca-Elena; Stǎnicǎ, Luciana; Gheorghiu, Mihaela; Gáspár, Szilveszter

    2018-05-15

    There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.

  3. Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Hasan, E-mail: h.bagheri@srbiau.ac.ir [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Afkhami, Abbas [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Panahi, Yunes [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khoshsafar, Hosein; Shirzadmehr, Ali [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2014-04-01

    Multi-walled carbon nanotubes decorated with Fe{sub 3}O{sub 4} nanoparticles were prepared to construct a novel sensor for the determination of haloperidol (Hp) by voltammetric methods. The morphology and properties of electrode surface were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. This modified sensor was used as a selective electrochemical sensor for the determination of trace amounts of Hp. The peak currents of differential pulse and square wave voltammograms of Hp increased linearly with its concentration in the ranges of 1.2 × 10{sup −3}–0.52 and 6.5 × 10{sup −4}–0.52 μmol L{sup −1}, respectively. The detection limits for Hp were 7.02 × 10{sup −4} and 1.33 × 10{sup −4} μmol L{sup −1} for differential pulse and square wave voltammetric methods, respectively. The results show that the combination of multi-walled carbon nanotubes and Fe{sub 3}O{sub 4} nanoparticles causes a dramatic enhancement in the sensitivity of Hp quantification. This sensor was successfully applied to determine Hp in pharmaceutical samples and biological fluids. The fabricated electrode showed excellent reproducibility, repeatability and stability. - Highlights: • A sensitive paste using Fe{sub 3}O{sub 4}/multi-walled carbon nanotubes was fabricated. • Haloperidol determination is based on its adsorption on the surface of Fe{sub 3}O{sub 4}/MWCNTs. • Different electrochemical methods and impedance spectroscopy were used for this study. • Haloperidol was determined in pharmaceutical and biological samples. • In comparison to other conventional methods, this method is simple, rapid, selective and cost-effective.

  4. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shuo, E-mail: wushuo@dlut.edu.cn [School of Chemistry, Dalian University of Technology, Dalian 116023 (China); Lan Xiaoqin; Cui Lijun; Zhang Lihui; Tao Shengyang; Wang Hainan; Han Mei; Liu Zhiguang; Meng Changgong [School of Chemistry, Dalian University of Technology, Dalian 116023 (China)

    2011-08-12

    Highlights: {yields} An electrochemical sensor is fabricated based on {beta}-CD dispersed graphene. {yields} The sensor could selectively detect organophosphate pesticide with high sensitivity. {yields} The {beta}-CD dispersed graphene owns large adsorption capacity for MP and superconductivity. {yields} The {beta}-CD dispersed graphene is superior to most of the porous sorbents ever known. - Abstract: Electrochemical reduced {beta}-cyclodextrin dispersed graphene ({beta}-CD-graphene) was developed as a sorbent for the preconcentration and electrochemical sensing of methyl parathion (MP), a representative nitroaromatic organophosphate pesticide with good redox activity. Benefited from the ultra-large surface area, large delocalized {pi}-electron system and the superconductivity of {beta}-CD-graphene, large amount of MP could be extracted on {beta}-CD-graphene modified electrode via strong {pi}-{pi} interaction and exhibited fast accumulation and electron transfer rate. Combined with differential pulse voltammetric analysis, the sensor shows ultra-high sensitivity, good selectivity and fast response. The limit of detection of 0.05 ppb is more than 10 times lower than those obtained from other sorbent based sensors. The method may open up a new possibility for the widespread use of electrochemical sensors for monitoring of ultra-trace OPs.

  5. Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue.

    Science.gov (United States)

    El Alami El Hassani, Nadia; Tahri, Khalid; Llobet, Eduard; Bouchikhi, Benachir; Errachid, Abdelhamid; Zine, Nadia; El Bari, Nezha

    2018-03-15

    Moroccan and French honeys from different geographical areas were classified and characterized by applying a voltammetric electronic tongue (VE-tongue) coupled to analytical methods. The studied parameters include color intensity, free lactonic and total acidity, proteins, phenols, hydroxymethylfurfural content (HMF), sucrose, reducing and total sugars. The geographical classification of different honeys was developed through three-pattern recognition techniques: principal component analysis (PCA), support vector machines (SVMs) and hierarchical cluster analysis (HCA). Honey characterization was achieved by partial least squares modeling (PLS). All the PLS models developed were able to accurately estimate the correct values of the parameters analyzed using as input the voltammetric experimental data (i.e. r>0.9). This confirms the potential ability of the VE-tongue for performing a rapid characterization of honeys via PLS in which an uncomplicated, cost-effective sample preparation process that does not require the use of additional chemicals is implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Studies on voltammetric determination of cadmium in samples containing native and digested proteins

    Energy Technology Data Exchange (ETDEWEB)

    Drozd, Marcin; Pietrzak, Mariusz, E-mail: mariusz@ch.pw.edu.pl; Malinowska, Elżbieta

    2014-03-01

    Highlights: • Proteins exhibit diverse impact on the DPASV cadmium signals. • Proteins subjected to HNO{sub 3} introduce less interference, than the native ones. • Optimal amount of SDS depends on the kind of protein. • Presence of thiolated coating agents of QDs do not influence the analysis. - Abstract: This work focuses on determination of cadmium ions using anodic stripping voltammetry (ASV) on thin film mercury electrode in conditions corresponding to those obtained after digestion of cadmium-based quantum dots and their conjugates. It presents the impact of selected proteins, including potential receptors and surface blocking agents on the voltammetric determination of cadmium. Experiments regarding elimination of interferences related to proteins presence using sodium dodecyl sulfate (SDS) are also shown. Effect of SDS on selected analytical parameters and simplicity of analyses carried out was investigated in the framework of current studies. The significant differences of influence among tested proteins on ASV cadmium determination, as well as the variability in SDS effectiveness as the antifouling agent were observed and explained. This work is especially important for those, who design new bioassays and biosensors with a use of quantum dots as electrochemical labels, as it shows what problems may arise from presence of native and digested proteins in tested samples.

  7. Direct voltammetric determination of redox-active iron in carbon nanotubes.

    Science.gov (United States)

    Teo, Wei Zhe; Pumera, Martin

    2014-12-01

    With the advances in nanotechnology over the past decade, consumer products are increasingly being incorporated with carbon nanotubes (CNTs). As the harmful effects of CNTs are suggested to be primarily due to the bioavailable amounts of metallic impurities, it is vital to detect and quantify these species using sensitive and facile methods. Therefore, in this study, we investigated the possibility of quantifying the amount of redox-available iron-containing impurities in CNTs with voltammetric techniques such as cyclic voltammetry. We examined the electrochemistry of Fe3 O4 nanoparticles in phosphate buffer solution and discovered that its electrochemical behavior could be affected by pH of the electrolyte. By utilizing the unique redox reaction between the iron and phosphate species, the redox available iron content in CNTs was determined successfully using voltammetry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2016-02-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electron microscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes. - Highlights: • A novel voltammetric sensor was prepared using nanoparticles of ATO and CNTs. • The ATONPs/CNTs/GCE has greatly improved the voltammetry of ractopamine. • The proposed electrode enabled a detection limit of 3.3 nM. • AA, DA and UA did not interfere with the selective detection of ractopamine. • Measurements were precise and accurate.

  9. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine

    International Nuclear Information System (INIS)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-01-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electron microscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes. - Highlights: • A novel voltammetric sensor was prepared using nanoparticles of ATO and CNTs. • The ATONPs/CNTs/GCE has greatly improved the voltammetry of ractopamine. • The proposed electrode enabled a detection limit of 3.3 nM. • AA, DA and UA did not interfere with the selective detection of ractopamine. • Measurements were precise and accurate.

  10. Voltammetric investigation of avidin-biotin complex formation using an electroactive bisbiotinyl compound

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shirotori, Tatsuya; Hirabayashi, George; Kamiya, Naoto; Kuramitz, Hideki; Tanaka, Shunitz

    2004-01-01

    Formation of avidin-biotin complex was investigated using bisbiotinyl thionine (BBT) by means of voltammetric techniques. Thionine is an electroactive compound and has two amino groups that are necessary for the reaction with a biotinylation reagent. The biotinylation of thionine produces a new reagent with two biotin moieties at each end of thionine. Three BBTs of different lengths of the spacer that connects the biotin moiety to the thionine moiety were prepared. The avidin-biotin binding assay was achieved by measuring the electrode response of the thionine moiety in BBT. The binding affinity and the conformation of complex, which depended on the length of spacer, are discussed. BBT in which the spacer is shortest (BBT-S, distance between carbonyl group of the two biotin moieties: 11 A) binds with only one avidin molecule. BBT with medium length of spacer (BBT-M, 28.8 A) forms the complex with two avidin molecules. BBT with the longest spacer (BBT-L, 46.6 A) allows binding with two avidin molecules as well as intramolecular binding within one avidin molecule. The affinity constants of BBT-S, BBT-M and BBT-L for avidin were estimated to be 7.0 x 10 12 M -1 , 3.2 x 10 12 M -1 and 4.0 x 10 12 M -1 , respectively

  11. Voltammetric behavior, biocidal effect and synthesis of some new nanomeric fused cyclic thiosemicarbazones and their mercuric(II salts

    Directory of Open Access Journals (Sweden)

    M.S.T. Makki

    2014-11-01

    Full Text Available New nanomeric 3-thioxo-5-methoxy-4,5-dihydro-6-methyl-9-unsubstituted/substituted-1,2,4-triazino[5,6-b]indoles (2a–c and 3-thioxo-5-methoxy-4,5-dihydro-6,7-dihydroxy-1,2,4-triaino[5,6]-cyclobut-6-ene (3 were prepared via reaction of thiosemicarbazide with 5-unsubstitutedand/substituted-indol-2,3-diones and/or 3,4-dihydroxycyclobutane-1,2-dione in methanol–concentrated HCl at room temperature. A series of mercury(II–ligand salts e.g. compound 4b and Hg(II complexes 5a,b and 6 of cyclic Schiff base were prepared. Structures of these compounds were established by elemental analysis and spectral measurements. The redox characteristics of selected compounds were studied for use as chelating agents for stripping voltammetric determination of mercuric(II ions in aqueous media. The compounds were also screened for their use as molluscicidal agents against Biomophalaria Alexandrina Snails responsible for Bilhariziasis.

  12. Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles

    International Nuclear Information System (INIS)

    Zhou, N.; Chen, H.; Li, J.; Chen, L.

    2013-01-01

    We have developed an electrochemical sensor for highly selective and sensitive determination of Hg(II). It is based on the specific binding of 5-methyl-2-thiouracil (MTU) and Hg(II) to the surface of an indium tin oxide (ITO) electrode modified with a composite made from graphene oxide (GO) and gold nanoparticles (AuNPs). This leads to a largely enhanced differential pulse voltammetric response for Hg(II). Following optimization of the method, a good linear relationship (R = 0.9920) is found between peak current and the concentration of Hg(II) in the 5.0-110.0 nM range. The limit of detection (LOD) is 0.78 nM at a signal-to-noise ratio of 3. A study on the interference by several metal ions revealed no interferences. The feasibility of this method was demonstrated by the analyses of real water samples. The LODs are 6.9, 1.0 and 1.9 nM for tap water, bottled water and lake water samples, respectively, and recoveries for the water samples spiked with 8.0, 50.0 and 100.0 nM were 83.9-96.8 %, with relative standard deviations ranging from 3.3 % to 5.2 %. (author)

  13. Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples.

    Science.gov (United States)

    Rezaei, Behzad; Damiri, Sajjad

    2010-11-15

    A study of the electrochemical behavior and determination of RDX, a high explosive, is described on a multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) using adsorptive stripping voltammetry and electrochemical impedance spectroscopy (EIS) techniques. The results indicated that MWCNTs electrode remarkably enhances the sensitivity of the voltammetric method and provides measurements of this explosive down to the sub-mg/l level in a wide pH range. The operational parameters were optimized and a sensitive, simple and time-saving cyclic voltammetric procedure was developed for the analysis of RDX in ground and tap water samples. Under optimized conditions, the reduction peak have two linear dynamic ranges of 0.6-20.0 and 8.0-200.0 mM with a detection limit of 25.0 nM and a precision of <4% (RSD for 8 analysis). Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Sulfonated Polyaniline Coated Mercury Film Electrodes for Voltammetric Analysis of Metals in Water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2001-11-01

    Full Text Available The electrochemical polymerization of 2-aminobenzenesulfonic acid with and without aniline has been carried by cyclic potencial sweep in sulfuric acid solution at the glassy carbon electrode. The polymer and copolymer formed have been characterized voltammetrically. The sulfonated polyaniline coated mercury thin-film electrodes have been evaluated for use with anodic stripping voltammetry. The electrodes were tested and compared with a conventional thin-film mercury electrode. Calibration plots showed linearity up to 10-7 mol L-1. Detection limits for zinc, lead and cadmium test species are very similar at around 12 nmol L-1. Applications to analysis of waters samples are demonstrated.

  15. Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey)], E-mail: akoca@eng.marmara.edu.tr; Bayar, Serife; Dincer, Hatice A. [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey); Gonca, Erguen [Department of Chemistry, Fatih University, TR34500 B.Cekmece, Istanbul (Turkey)

    2009-04-01

    In this work, electrochemical, and in-situ spectroelectrochemical characterization of the metallophthalocyanines bearing tetra-(1,1-(dicarbethoxy)-2-(2-methylbenzyl))-ethyl 3,10,17,24-tetra chloro groups were performed. Voltammetric and in-situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transfer processes. Differently lead phthalocyanine demetallized during second oxidation reaction while it was stable during reduction processes. An in-situ electrocolorimetric method, based on the 1931 CIE (Commission Internationale de l'Eclairage) system of colorimetry, has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for the first time in this study.

  16. Direct voltammetric specific recognition of dopamine using AlIII-DA complexes at the hanging mercury drop electrode.

    Science.gov (United States)

    Zhang, Fuping; Zhang, Min; Cheng, Jiongjia; Yang, Li; Ji, Ming; Bi, Shuping

    2007-11-01

    In this paper, we firstly report the direct voltammetric recognition and determination of dopamine (DA) by using Al(III)-DA complexes at the hanging mercury drop electrode (HMDE). A new sensitive cathodic peak of Al(III)-DA can be detected at -900 mV (vs. SCE) in 0.1 M NH(4)Cl-NH(3).H(2)O-0.1 M KCl buffer solution at pH 8.5. This unique -900 mV cathodic peak arises from the specific interaction between Al(III) and DA on the HMDE, whereas other substances with similar structures, such as L-dopa, epinephrine (EP), norepinephrine (NE), catechols, caffeic acid (CA), trihydric phenols and tiron, do not yield any new peak on the voltammograms in the potential range from -100 to -1200 mV when Al(III) is added. The distinct voltammetric characteristic of the recognition of DA can effectively inhibit the interferences of both ascorbic acid and uric acid in the DA determination by the direct electrochemistry, which is a major difficulty when a solid electrode is used. The proposed method can be anticipated as an effective means for the recognition of DA in the elucidation of the mechanisms of Parkinson's disease (PD) and Alzheimer's disease (AD) in the presence of Al(III).

  17. The redox behaviour of diazepam (Valium®) using a disposable screen-printed sensor and its determination in drinks using a novel adsorptive stripping voltammetric assay.

    Science.gov (United States)

    Honeychurch, Kevin C; Crew, Adrian; Northall, Hannah; Radbourne, Stuart; Davies, Owian; Newman, Sam; Hart, John P

    2013-11-15

    In this study we investigated the possibility of applying disposable electrochemical screen-printed carbon sensors for the rapid identification and quantitative determination of diazepam in beverages. This was achieved utilising a previously unreported oxidation peak. The origin of this peak was investigated further by cyclic voltammetry and gas chromatography/mass spectroscopy. At pH 6 the voltammetric behaviour of this oxidation process was found to involve adsorption of the drug allowing for the development of an adsorptive stripping voltammetric assay. Experimental conditions were then optimised for the determination of diazepam in a beverage sample using a medium exchange technique. It was shown that no elaborate extraction procedures were required as the calibration plots obtained in the absence and presence of the beverage were very similar. © 2013 Elsevier B.V. All rights reserved.

  18. Thrombin-Binding Aptamer Quadruplex Formation: AFM and Voltammetric Characterization

    Directory of Open Access Journals (Sweden)

    Victor Constantin Diculescu

    2010-01-01

    Full Text Available The adsorption and the redox behaviour of thrombin-binding aptamer (TBA and extended TBA (eTBA were studied using atomic force microscopy and voltammetry at highly oriented pyrolytic graphite and glassy carbon. The different adsorption patterns and degree of surface coverage were correlated with the sequence base composition, presence/absence of K+, and voltammetric behaviour of TBA and eTBA. In the presence of K+, only a few single-stranded sequences present adsorption, while the majority of the molecules forms stable and rigid quadruplexes with no adsorption. Both TBA and eTBA are oxidized and the only anodic peak corresponds to guanine oxidation. Upon addition of K+ ions, TBA and eTBA fold into a quadruplex, causing the decrease of guanine oxidation peak and occurrence of a new peak at a higher potential due to the oxidation of G-quartets. The higher oxidation potential of G-quartets is due to the greater difficulty of electron transfer from the inside of the quadruplex to the electrode surface than electron transfer from the more flexible single strands.

  19. Simultaneous voltammetric determination of 2-nitrophenol and 4-nitrophenol based on an acetylene black paste electrode modified with a graphene-chitosan composite

    International Nuclear Information System (INIS)

    Deng, Peihong; Xu, Zhifeng; Li, Junhua

    2014-01-01

    We describe a simple and sensitive voltammetric method for the simultaneous determination of 2-nitrophenol and 4-nitrophenol. It is based on the use of an acetylene black paste electrode modified with a graphene-chitosan composite film (denoted as Gr-Chit/ABPE). The reduction peak currents of 2-nitrophenol (at −252 mV) and of 4-nitrophenol (at −340 mV) in pH 1.0 solution increase significantly at the Gr-Chit/ABPE in comparison to a bare ABPE. Factors affecting sensitivity were optimized and a linear relationship is found between peak current and the concentrations of 2-nitrophenol (in the 0.4 μM to 80 μM range) and for 4-nitrophenol (in the 0.1 μM to 80 μM range). The detection limits (at an SNR of 3 and after a 30-s accumulation time) are 200 nM for 2-nitrophenol and 80 nM for 4-nitrophenol, respectively. The modified electrode was successfully applied to the direct and parallel determination of 2-nitrophenol and 4-nitrophenol in spiked water samples. (author)

  20. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    Science.gov (United States)

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A DNA biosensor based on the electrocatalytic oxidation of amine by a threading intercalator

    International Nuclear Information System (INIS)

    Gao Zhiqiang; Tansil, Natalia

    2009-01-01

    An electrochemical biosensor for the detection of DNA based a peptide nucleic acid (PNA) capture probe (CP) modified indium tin oxide electrode (ITO) is described in this report. After hybridization, a threading intercalator, N,N'-bis[(3-propyl)-imidazole]-1,4,5,8-naphthalene diimide (PIND) imidazole complexed with Ru(bpy) 2 Cl (PIND-Ru, bpy = 2,2'-bipyridine), was introduced to the biosensor. PIND-Ru selectively intercalated to double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. Voltammetric tests showed highly stable and reversible electrochemical oxidation/reduction processes and the peak currents can directly be utilized for DNA quantification. When the tests were conducted in an amine-containing medium, Tris-HCl buffer for example, a remarkable improvement in the voltammetric response and noticeable enhancements of voltammetric and amperometric sensitivities were observed due to the electrocatalytic activity of the [Ru(bpy) 2 Cl] redox moieties. Electrocatalytic current was observed when as little as 3.0 attomoles of DNA was present in the sample solution

  2. A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin.

    Science.gov (United States)

    Eissa, Shimaa; L'Hocine, Lamia; Siaj, Mohamed; Zourob, Mohammed

    2013-08-07

    A graphene-based label-free voltammetric immunosensor for the sensitive detection of the egg white allergen ovalbumin has been developed. Graphene-modified screen printed carbon electrodes have been covalently functionalized using electrochemical reduction of in situ generated aryl diazonium salt forming a carboxyphenyl film on the graphene surface. The blocking property of the carboxyphenyl film grafted on to the graphene electrodes using different cyclic voltammetry cycles has been characterized using differential pulse voltammetry in [Fe(CN)6](3-/4-) solution. Then, the terminal carboxylic groups on the graphene surface were activated using EDC/NHS and used to immobilize the ovalbumin antibody and construct the immunosensor. The fabrication steps of the immunosensor have also been characterized using differential pulse voltammetry. The decrease in the [Fe(CN)6](3-/4-) reduction peak current after the immunochemical reaction with ovalbumin has been used for the ovalbumin detection. The developed immunosensor has been used for ovalbumin detection in the concentration range of 1 pg mL(-1) to 0.5 μg mL(-1) with a detection limit of 0.83 pg mL(-1) in PBS buffer. The food matrix effect studied with ovalbumin spiked cake extract showed a good percentage of recovery, indicating the possible applicability of the developed immunosensor in real food samples.

  3. Voltammetric determination of Zn(II in Zn-Fe alloy electroplating baths using square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Favaron Regiane

    2001-01-01

    Full Text Available A routine analytical method for zinc (II determination in Zn-Fe alloy galvanic baths was developed employing square-wave voltammetry with the static mercury drop electrode (SMDE as working electrode. Real alloy bath samples were analyzed by the standard addition method and recovery tests were undertaken. The supporting electrolytes used in the analyses were 1.0 mol L-1 NH3 / 0.2 mol L-1 NH4Cl or 0.1 mol L-1 citric acid (pH=3, presenting peak potentials for zinc (II, respectively, at -1.30 V and -0.99 V vs. Ag|AgCl (saturated KCl. The proposed voltammetric method showed a linear response range at 25 °C between 1.0 x 10-5 and 2.2 x 10-4 mol L-1 for zinc (II, in both electrolytes studied. The interference levels for some metals, such as Cu (II, Pb (II, Cr (III and Mn (II, which could prejudice Zn-Fe alloy deposition, were evaluated. These ions did not present significant degrees of interference in the zinc (II determination. The zinc (II recovery tests for the proposed method exhibited a good agreement with the reference method, showing relative errors lower than 3.0%.

  4. Polyaniline Langmuir-Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions

    International Nuclear Information System (INIS)

    Liu Qiongyan; Wang Fei; Qiao Yonghui; Zhang Shusheng; Ye Baoxian

    2010-01-01

    A highly sensitive electrochemical sensor made of a glassy carbon electrode (GCE) coated with a Langmuir-Blodgett film (LB) containing polyaniline (PAn) doped with p-toluenesulfonic acid (PTSA) (LB/PAn-PTSA/GCE) has been used for the detection of trace concentrations of Ag + . UV-vis absorption spectra indicated that the PAn was doped by PTSA. The surface morphology of the PAn LB film was characterized by atomic force microscopy (AFM). The electrochemical properties of this LB/PAn-PTSA/GCE were studied using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The LB/PAn-PTSA/GCE was used as a voltammetric sensor for determination of trace Ag + at pH 5.0 using linear scanning stripping voltammetry. Under the optimal experimental conditions, the stripping current was proportional to the Ag + concentration over the range from 6.0 x 10 -10 mol L -1 to 1.0 x 10 -6 mol L -1 , with a detection limit of 4.0 x 10 -10 mol L -1 . The high sensitivity, selectivity, and stability of this LB/PAn-PTSA/GCE also demonstrated its practical utility for simple, rapid and economical determination of Ag + in water samples.

  5. Current responsivity of semiconductor superlattice THz-photon detectors

    DEFF Research Database (Denmark)

    Ignatov, Anatoly A.; Jauho, Antti-Pekka

    1999-01-01

    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for curr......The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed...... for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz-frequency band. The expected room temperature values...... of the responsivity (2–3 A/W in the 1–3 THz-frequency band) range up to several percents of the quantum efficiency e/[h-bar] omega of an ideal superconductor tunnel junction detector. Properly designed semiconductor superlattice detectors may thus demonstrate better room temperature THz-photon responsivity than...

  6. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    Science.gov (United States)

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Voltammetric sensing of paracetamole, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide

    International Nuclear Information System (INIS)

    Yin, H.; Shang, K.; Meng, X.; Ai, S.

    2011-01-01

    A differential pulse voltammetric method was developed for the simultaneous determination of paracetamole, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamole, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamole in the concentration range from 0.5 to 400 μM, with a detection limit of 0.13 μM (at an S/N of 3). The sensor was successfully applied to the simultaneous determination of paracetamole and dopamine, and of paracetamole and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples. (author)

  8. Adsorptive stripping voltammetric methods for determination of aripiprazole

    Directory of Open Access Journals (Sweden)

    Derya Aşangil

    2012-06-01

    Full Text Available Anodic behavior of aripiprazole (ARP was studied using electrochemical methods. Charge transfer, diffusion and surface coverage coefficients of adsorbed molecules and the number of electrons transferred in electrode mechanisms were calculated for quasi-reversible and adsorption-controlled electrochemical oxidation of ARP at 1.15 V versus Ag/AgCl at pH 4.0 in Britton–Robinson buffer (BR on glassy carbon electrode. Voltammetric methods for direct determination of ARP in pharmaceutical dosage forms and biological samples were developed. Linearity range is found as from 11.4 μM (5.11 mg/L to 157 μM (70.41 mg/L without stripping mode and it is found as from 0.221 μM (0.10 mg/L to 13.6 μM (6.10 mg/L with stripping mode. Limit of detection (LOD was found to be 0.11 μM (0.05 mg/L in stripping voltammetry. Methods were successfully applied to assay the drug in tablets, human serum and human urine with good recoveries between 95.0% and 104.6% with relative standard deviation less than 10%. Keywords: Adsorptive stripping voltammetry, Aripiprazole, Electrochemical behavior, Human serum and urine, Pharmaceuticals

  9. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy.

    Science.gov (United States)

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-10-09

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.

  10. Influence of the acidity level change in aprotic media on the voltammetric behavior of nitrogabacinamamides

    International Nuclear Information System (INIS)

    Bautista-Martinez, J.A.; Gonzalez, I.; Aguilar-Martinez, M.

    2004-01-01

    This work presents a comparative voltammetric study of o-, m- and p-nitrogabacinamamides (N-[3(X-nitrophenyl)-(2E)-propenyl]-4-aminobutanoic acids), NG, in acetonitrile. These compounds, a HDR-NO 2 nitro compounds type, display three reduction waves, two of them are waves similar to those appearing in the reduction of the nitro compounds lacking a proton donor group and one new wave at less negative potentials, associated with the nitro-to-hydroxylamine reduction through a self-protonation reaction. Experiments were carried out in the presence of different chemical species giving an acidity level control by homogeneous buffer systems. The presence of tetraethylammonium phenolate achieves complete inhibition of self-protonation reactions, thus recovering the behavior established by ( - DR-NO 2 / - DR-NO 2 · - ) system. When the conjugated acid of the above mentioned base is added to the acetonitrile solution, where the acidity level was controlled by the phenol/phenolate system (acidity level buffer), only the second electroreduction wave ( - DR-NO 2 · - /HDR-NHOH) shows to be affected by the presence of phenol in the electrolytic medium and displaces towards less negative potential values. On the other hand, in the benzoic acid (HBz)/benzoate (Bz - ) medium, the electrochemical behavior of these nitro compounds changes completely passing from ( - DR-NO 2 / - DR-NO 2 · - ) system to (HDR-NO 2 + 4HBz/HDR-NHOH + 4Bz - ) type system, in which both the stoichiometry of the electroreduction process and the energetic requirement for its realization are changed. The comparison of the different voltammetric behavior in the presence of the different acidic and basic additives allowed constructing an acidity level scale where the different acid base couples of the intermediaries of the NG electroreduction were placed. This kind of scale allows choosing the chemical conditions necessaries to drive the pathway of the electrochemical transformation of nitro compounds

  11. Study and Elimination of the Interference of Aluminium on the Voltammetric Determination of Uranium with Chloranilic Acid. Application to the Determination of Uranium in Waters and Geological Samples

    International Nuclear Information System (INIS)

    Fernandez, C.; Sanchez, M.; Ballesteros, O.; Fernandez, M.; Clavero, M. A.; Gonzalez, A. M.

    2000-01-01

    The interference of aluminium during the voltammetric determination of uranium with 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid) has been investigated. The presence of aluminium originates a voltammetric signal due to its chloranilic acid complex at the same potential range as the uranium analytical signal appears. The interference of aluminium can be overcome by addition of an appropriate amount of sodium fluoride as complexing reagent. The determination of uranium by adsorptive stripping voltammetry (AdSV) can be carried out at concentration levels as low as 1 μg/L in the presence of 100 μg/L aluminium after the addition of 100μL of 0.1 mol/L NaF. The method can be applied to the determination of uranium in aluminium-containing waters and geological samples containing high aluminium levels. (Author) 19 refs

  12. Electroanalysis of cardioselective beta-adrenoreceptor blocking agent acebutolol by disposable graphite pencil electrodes with detailed redox mechanism

    OpenAIRE

    Atmanand M. Bagoji; Shreekant M. Patil; Sharanappa T. Nandibewoor

    2016-01-01

    A simple economic graphite pencil electrode (GPE) was used for analysis of cardioselective, hydrophilic-adrenoreceptor blocking agent, acebutolol (ACBT) using the cyclic voltammetric, linear sweep voltammetric, differential pulse voltammetric (DPV), and square-wave voltammetric (SWV) techniques. The dependence of the current on pH, concentration, and scan rate was investigated to optimize the experimental condition for determination of ACBT. The electrochemical behavior of the ACBT at GPE was...

  13. Voltammetric and impedance study of the influence of the anode composition on the electrochemical ferrate(VI) production in molten NaOH

    International Nuclear Information System (INIS)

    Hrnčiariková, Lucia; Gál, Miroslav; Kerekeš, Kamil; Híveš, Ján

    2013-01-01

    Three typical anode materials: pure iron (Fe), silicon-rich steel (FeSi) and white cast iron (FeC) electrodes were used in the process of electrochemical ferrate(VI) synthesis in the molten sodium hydroxide. The voltammetric peak current densities corresponding to the first and second step of the anode dissolution in the case of FeC as well as FeSi electrode are higher compared to the pure iron electrode. After passivity region subsequently the transpassive iron dissolution, including ferrate(VI) formation together with an oxygen evolution occurs and the current shoulder is visible for all electrodes used. Measured electrochemical impedance spectra confirm the physical model of the polarized surface based on the concept of two macrohomogeneous surface layers. In all cases the resistance of both inner and outer layer decrease with increasing applied potential. With increasing temperature the resistance of inner and outer layer decreases. The capacity of inner and outer layer increases with increasing potential. This is in agreement with decrease of the resistances of both layers: layers are getting thinner or more disintegrated by oxygen evolution or strong anodic dissolution. The number of exchanged electrons calculated from a static polarization curve at the potentials in ferrate(VI) formation region is z = 3 for all electrode materials used

  14. Voltammetric analysis of N-containing drugs using the hanging galinstan drop electrode (HGDE).

    Science.gov (United States)

    Channaa, H; Surmann, P

    2009-03-01

    The electrochemical behaviour of several N-containing voltammetric active drugs such as 1,4-benzodiazepines (chlordiazepoxide, nitrazepam and diazepam) as well as one nitro-compound (nitrofurantoin) and one azo-compound (phenazopyridine) is described using a new kind of liquid electrode, the hanging galinstan drop electrode. Concentrations of 10(-5) - 10(-8) mol L(-1) are generally measurable. Differential pulse and adsorptive stripping voltammograms are recorded in different supporting electrolytes, like 0.1 M KNO3, acetate buffer solution pH = 4.6 and phosphate buffer solution pH = 7.0. The effects of varying the starting potentials, U(start) for DPV and accumulation times, t(acc) for AdSV are considered. Briefly, it is shown that the novel galinstan electrode is suitable for reducing several functional groups in organic substances, here presented for N-oxide-, azomethine-, nitro- and azo-groups.

  15. Online Monitoring of Copper Damascene Electroplating Bath by Voltammetry: Selection of Variables for Multiblock and Hierarchical Chemometric Analysis of Voltammetric Data

    Directory of Open Access Journals (Sweden)

    Aleksander Jaworski

    2017-01-01

    Full Text Available The Real Time Analyzer (RTA utilizing DC- and AC-voltammetric techniques is an in situ, online monitoring system that provides a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component Regression- (PCR- and Partial Least Squares- (PLS- based methods can handle data sets even when the number of variables significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS, Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous variable selection methods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.

  16. Electrochemistry of cefditoren pivoxil and its voltammetric determination

    Directory of Open Access Journals (Sweden)

    İbrahim Hüdai Taşdemir

    2016-01-01

    Full Text Available Electrochemical behavior of cefditoren pivoxil (CTP was studied via experimental electrochemical methods and theoretical calculations performed at B3LYP/6-31+G(d//AM1 level. Experimental studies were carried out based on an irreversible 4e−/4H+ reduction peak at ca. −0.8 V on hanging mercury drop electrode (HMDE and irreversible 1e−/1H+ oxidation of CTP at ca. 0.8 V on glassy carbon electrode (GCE versus Ag/AgCl, KCl (3.0 M in Britton–Robinson buffer at pH 6.0 and 4.0, respectively. Tentative reduction and oxidation mechanisms were proposed based on computational and experimental results. Square-wave adsorptive stripping voltammetric methods have been developed and validated for quantification of CTP in different samples. Linear working range was established as 0.15–15.0 μM for HMDE and 1.0–50.0 μM for GCE. Limit of quantification (S/N = 10 was calculated to be (0.10 ± 0.02 μM and (0.80 ± 0.03 μM for HMDE and GCE, respectively. Methods were successfully applied to assay the drug in tablets and human serum with good recoveries between (99.2 ± 11.6 % and (102.5 ± 9.5 % having relative standard deviation less than 10%.

  17. Modification of glassy carbon electrode with poly(hydroxynaphthol blue)/multi-walled carbon nanotubes composite and construction a new voltammetric sensor for the simultaneous determination of hydroquinone, catechol, and resorcinol

    Science.gov (United States)

    Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir

    2018-03-01

    A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.

  18. Electrochemical Oxidation of l-selenomethionine and Se-methylseleno-l-cysteine at a Thiol-Compound-Modified Gold Electrode: Its Application in a Flow-Through Voltammetric Sensor

    Directory of Open Access Journals (Sweden)

    Lai-Hao Wang

    2017-02-01

    Full Text Available A flow-electrolytic cell that consists of a bare gold wire or of different thiol-compound-modified gold electrodes (such as 2,4-thiazolidinedione, 2-mercapto-5-thiazoline, 2-mercaptothiazoline, l-cysteine, thioglycolic acid was designed to be used in a voltammetric detector to identify l-selenomethionine and Se-methylseleno-l-cysteine using high-performance liquid chromatography. Both l-selenomethionine and Se-methylseleno-l-cysteine are more efficiently electrochemically oxidized on a thiol/gold than on a bare gold electrode. For the DC mode, and for measurements with suitable experimental parameters, a linear concentration from 10 to 1600 ng·mL−1 was found. The limits of quantification for l-selenomethionine and Se-methylseleno-l-cysteine were below 10 ng·mL−1. The method can be applied to the quantitative determination of l-selenomethionine and Se-methylseleno-l-cysteine in commercial selenium-containing supplement products. Findings using high-performance liquid chromatography with a flow-through voltammetric detector and ultraviolet detector are comparable.

  19. Voltammetric behavior and determination of the macrolide antibiotics azithromycin, clarithromycin and roxithromycin at a renewable silver – amalgam film electrode

    International Nuclear Information System (INIS)

    Vajdle, Olga; Guzsvány, Valéria; Škorić, Dušan; Csanádi, János; Petković, Miloš; Avramov-Ivić, Milka; Kónya, Zoltán; Petrović, Slobodan

    2017-01-01

    Highlights: • Voltammetric characterization of AZI, CLA and ROX at Hg(Ag)FE was performed. • AZI, CLA and ROX were determined via optimized SWV and SW-AdSV procedures. • Protonated forms of AZI, CLA and ROX favored their adsorption on Hg(Ag)FE. • 1 H NMR chemical shift dependence of N-methyl proton signals from pH. • Optimized SW-AdSV procedure was applied to determine ROX in Runac ® tablet. - Abstract: The renewable silver-amalgam film electrode (Hg(Ag)FE) was applied for voltammetric characterization and determination of semi-synthetic macrolide antibiotics azithromycin (AZI), clarithromycin (CLA) and roxithromycin (ROX) in the Britton-Robinson buffer as supporting electrolyte ranging the pH from 4.0 to 11.9. All three macrolides showed reduction signals in fairly negative potential range. During direct cathodic square wave voltammetric (SWV) investigations conducted over the potential range from −0.75 V to −2.00 V vs SCE, either one or two reduction peaks were obtained in the potential range from −1.5 to −1.9 V. The shapes and intensities of the signals depend on the applied pH values in wider pH ranges. For analytical purposes concerning the development of direct cathodic SWV and adsorptive stripping SWV (SW-AdSV) methods the neutral and slightly alkaline media were suitable as pH 7.2, pH 7.4 and pH 7.0 for AZI, CLA and ROX, respectively. Based on the cyclic voltammograms recorded at these pH values, adsorption-controlled electrode kinetics process can be proposed for all three macrolides. Furthermore, the water suppressed 1 H NMR measurements in the pH range between 6.0 and 10.5 indicated that the macrolide molecules at the optimal analytical conditions are predominantly in protonated form via their tertiary amino groups which supported in all three cases their adsorption on the appropriately polarized Hg(Ag)FE electrode. The optimized direct cathodic SWV methods showed good linearity in concentration ranges 4.81–23.3 μg mL −1 , 1.96

  20. Cyclic Voltammetric Study of Complexes of Fe (III) with Saponins Isolated from Cicer aritinum and Glycyrrhizin

    International Nuclear Information System (INIS)

    Khan, S.S.; Kazmi, S.A.; Anwar, H

    2013-01-01

    Cyclic voltammetric study was used to analyze three new saponins (isolated from the seeds of Cicer aritinum) along with a known saponin soyasaponin I and beta sitosterol glycoside isolated saponins as well as glycyrrhizin. These studies were carried out in aqueous medium at Glassy carbon (GCE) electrode vs. AgCl reference electrode. Results revealed that the voltammograms of Fe(III) with isolated saponins are irreversible while that of Fe(III)-glycyrrhizin complex is reversible. Even though precise Eo values of their Fe(III) complex could not be determined, it is clearly indicated that Fe(III) forms complexes with these saponins. The ability to form strong complexes with Fe(III) therefore reduces the availability of Fe(III) by saponins. (author)

  1. Radiofrequency contact currents: sensory responses and dosimetry

    International Nuclear Information System (INIS)

    Kavet, Robert; Tell, R.A.; Olsen, R.G.

    2014-01-01

    The process of setting science-based exposure standards (or guidelines) for radiofrequency (RF) contact current exposure has been disadvantaged by a lack of relevant data. The authors first review the essential features and results of the available studies and illustrate the apparent discrepancies among them. Then, they examine the manner in which current was administered in these studies and suggest as to how the physical relationship of a contacting finger to the current electrode may play a role in affecting sensory thresholds specific to those configurations. A major factor in this analysis relates to whether current density is uniformly distributed across the contact area or whether an electrode's 'edge effects' enhance currents with a net effect of decreasing apparent thresholds, when expressed as the bulk current entering a subject. For an exposure with a clear hazard potential, thresholds of human sensory response to RF currents require further investigation. (authors)

  2. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities.

    Science.gov (United States)

    Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K

    2015-01-01

    Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Determinação voltamétrica do herbicida glifosato em águas naturais utilizando eletrodo de cobre Voltammetric determination of glyphosate in natural waters with a copper electrode

    Directory of Open Access Journals (Sweden)

    Andresa Fabiana Garcia

    2007-01-01

    Full Text Available The aim of this work was to investigate the copper electrode behavior in the voltammetric determination of glyphosate. The best conditions for this determination are phosphate buffer 0.05 mol L-1 and pH 7.3, and the peak potential is observed at 187 mV. LD and LQ values are 59 µg L-1 e 196 µg L-1, respectively. A water sample was analysed for glyphosate and identical results were obtained by using the analytical curve and the standard addition method. The comparison with a voltammetric method with Hg electrode, after a reaction with nitrite, showed quite concordant results for the analysis of the surface water sample. Therefore, the proposed method can be applied to direct determinations of the herbicide in waters, decreasing the time of analysis; besides, the method is in agreement with the "green chemistry" concept.

  4. Electrooxidation of antihistamine drug methdilazine and its analysis in human urine and blood samples

    Directory of Open Access Journals (Sweden)

    Nagaraj P. Shetti

    2016-12-01

    Full Text Available The electrochemical oxidation of an antihistamine drug, methdilazine, was studied in 9.2 pH with 0.2 M phosphate buffer as supporting electrolyte at 25 ± 0.2°C. Glassy carbon electrode was used to perform the experiment at cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetric techniques. The dependence of the current on pH, concentration and scan rate were investigated. Differential pulse voltammetric technique was adopted to know the linear relation between peak current and methdilazine concentration. The linear response was obtained in the range of 3.0 μM–1.0 mM with a detection limit of 0.1 μM. The proposed method was also applied for the quantitative determination of methdilazine in pharmaceuticals and biological samples.

  5. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants.

    Science.gov (United States)

    Campos, Inmaculada; Alcañiz, Miguel; Aguado, Daniel; Barat, Ramón; Ferrer, José; Gil, Luis; Marrakchi, Mouna; Martínez-Mañez, Ramón; Soto, Juan; Vivancos, José-Luis

    2012-05-15

    The use of a voltammetric electronic tongue as tool for the prediction of concentration levels of certain water quality parameters from influent and effluent wastewater from a Submerged Anaerobic Membrane Bioreactor pilot plant applied to domestic wastewater treatment is proposed here. The electronic tongue consists of a set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co and Cu) electrodes that were housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. As a previous step an electrochemical study of the response of the ions sulphate, orthophosphate, acetate, bicarbonate and ammonium was carried out in water using the electrodes contained in the electronic tongue. The second part of the work was devoted to the application of the electronic tongue to the characterization of the influent and effluent waters from the wastewater treatment plant. Partial Least Squares analysis was used to obtain a correlation between the data from the tongue and the pollution parameters measured in the laboratory such as soluble chemical oxygen demand (CODs), soluble biological oxygen demand (BODs), ammonia (NH(4)-N), orthophosphate (PO(4)-P), Sulphate (SO(4)-S), acetic acid (HAC) and alkalinity (Alk). A total of 28 and 11 samples were used in the training and the validation steps, respectively, for both influent and effluent water samples. The electronic tongue showed relatively good predictive power for the determination of BOD, COD, NH(4)-N, PO(4)-P, SO(4)-S, and Alk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. CURRENT CONCERNS REGARDING THE CORPORATE SOCIAL RESPONSIBILITY IN ROMANIA

    OpenAIRE

    IONELA CARMEN PIRNEA; NICOLETA BELU; EMILIA IORDACHE

    2012-01-01

    The propose of this paper is to identify current concerns regarding the corporate social responsibility in Romania. First the paper present a short introduction about the concept of corporate social responsibility. Next the paper highlights the importance of corporate social responsibility in Romania and some results about the involvement of small and medium enterprises in social responsibility activities.

  7. Electrochemistry of Pt (100) in alkaline media: A voltammetric study

    Science.gov (United States)

    van der Vliet, Dennis F.; Koper, Marc T. M.

    2010-10-01

    Pt (100) is one of the fcc metal surface planes that reconstruct upon annealing at high temperatures. The state of the surface is important in electrochemistry, in order to correlate catalytic behavior with surface structure. Therefore, the behavior of single crystalline Pt (100) in alkaline media was investigated, with particular attention paid to surface long-range order. It was found that, in line with previous results, the manner of cooling the crystal after annealing influenced the state of surface significantly, with a profound effect on blank cyclic voltammetry as well as on carbon monoxide oxidation. Different ratios of inert and reductive gases were used to see if an optimal mixture could be obtained. Using air, argon, hydrogen, CO, and combinations of these gases gave rise to different states of the surface, with clear observable differences in blank voltammetric behavior and CO stripping. Also, the effect of alkali-metal cations and bromide on the blank and CO stripping voltammetry was investigated. Our main conclusion is that cooling in a carbon monoxide containing gas gives a clean, almost defect-free surface with long-range 1 × 1 symmetry. A similar surface can also be prepared with a hydrogen-containing cooling gas, but the content of hydrogen in that stream is critical.

  8. Fast-response protection from high currents

    International Nuclear Information System (INIS)

    Novikov, A.A.

    1989-01-01

    Protection devices for power electronic equipment from shorting current are described. The device is shunted using spark gaps with minimal possible number of spark gaps to protect it. High fast-response (<100 ns) and operation voltage wide range (6-100 kV) are attained using Arkadiev-Marx generator-base trigger devices and air-core pulse transformer

  9. Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    K. Tiwari

    2018-04-01

    Full Text Available A new methodology based on cyclic voltammetry using a chemically modified electrode has been developed for the discrimination of the floral origin of honey. This method involves an electronic tongue with an electrochemical sensor made from a carbon paste (CPs electrode where zinc oxide (ZnO nanoparticles are used as an electroactive binder material. The bare CPs electrode is evaluated for comparison. The electrochemical response of the modified electrode in 50 samples of five different floral types of honey has been analysed by the cyclic voltammetric technique. The voltammograms of each floral variety of honey reflect the redox properties of the ZnO nanoparticles present inside the carbon paste matrix and are strongly influenced by the nectar source of honey. Thus, each type of honey provides a characteristic signal which is evaluated by using principal component analysis (PCA and an artificial neural network (ANN. The result of a PCA score plot of the transient responses obtained from the modified carbon paste electrode clearly shows discrimination among the different floral types of honey. The ANN model for floral classification of honey shows more than 90 % accuracy. These results indicate that the ZnO nanoparticles modified carbon paste (ZnO Nps modified CPs electrode can be a useful electrode for discrimination of honey samples from different floral origins.

  10. A strategy to promote the electroactive platform adopting poly(o-anisidine)-silver nanocomposites probed for the voltammetric detection of NADH and dopamine.

    Science.gov (United States)

    Sangamithirai, D; Munusamy, S; Narayanan, V; Stephen, A

    2017-11-01

    A study on the voltammetric detection of NADH (β-nicotinamide adenine dinucleotide), Dopamine (DA) and their simultaneous determination is presented in this work. The electrochemical sensor was fabricated with the hybrid nanocomposites of poly(o-anisidine) and silver nanoparticles prepared by simple and cost-effective insitu chemical oxidative polymerization technique. The nanocomposites were synthesized with different (w/w) ratios of o-anisidine and silver by increasing the amount of o-anisidine in each, by keeping silver at a fixed quantity. The XRD patterns revealed the semi-crystalline nature of poly(o-anisidine) and the face centered cubic structure of silver. The presence of silver in its metallic state and the formation of nanocomposite were established by XPS analysis. Raman studies suggested the presence of site-selective interaction between poly(o-anisidine) and silver. HRTEM studies revealed the formation of polymer matrix type nanocomposite with the embedment of silver nanoparticles. The sensing performance of the materials were studied via cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. Fabricated sensor with 3:1 (w/w) ratio of poly(o-anisidine) and silver exhibited good catalytic activity towards the detection of NADH and DA in terms of potential and current response, when compared to others. Several important electrochemical parameters regulating the performance of the sensor have been evaluated. Under the optimum condition, differential pulse voltammetry method exhibited the linear response in the range of 0.03 to 900μM and 5 to 270μM with a low detection limit of 0.006μM and 0.052μM for NADH and DA, respectively. The modified electrodes exhibited good sensitivity, stability, reproducibility and selectivity with well-separated oxidation peaks for NADH and DA in the simultaneous determination of their binary mixture. The analytical performance of the nanocomposite as an electrochemical sensor was also

  11. Visualized attribute analysis approach for characterization and quantification of rice taste flavor using electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lin; Hu, Xianqiao [Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture, China National Rice Research Institute, Hangzhou 310006 (China); Tian, Shiyi; Deng, Shaoping [College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Zhu, Zhiwei, E-mail: 615834652@qq.com [Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture, China National Rice Research Institute, Hangzhou 310006 (China)

    2016-05-05

    This paper deals with a novel visualized attributive analysis approach for characterization and quantification of rice taste flavor attributes (softness, stickiness, sweetness and aroma) employing a multifrequency large-amplitude pulse voltammetric electronic tongue. Data preprocessing methods including Principal Component Analysis (PCA) and Fast Fourier Transform (FFT) were provided. An attribute characterization graph was represented for visualization of the interactive response in which each attribute responded by specific electrodes and frequencies. The model was trained using signal data from electronic tongue and attribute scores from artificial evaluation. The correlation coefficients for all attributes were over 0.9, resulting in good predictive ability of attributive analysis model preprocessed by FFT. This approach extracted more effective information about linear relationship between electronic tongue and taste flavor attribute. Results indicated that this approach can accurately quantify taste flavor attributes, and can be an efficient tool for data processing in a voltammetric electronic tongue system. - Graphical abstract: Schematic process for visualized attributive analysis approach using multifrequency large-amplitude pulse voltammetric electronic tongue for determination of rice taste flavor attribute. (a) sample; (b) sensors in electronic tongue; (c) excitation voltage program and response current signal from MLAPS; (d) similarity data matrix by data preprocessing and similarity extraction; (e) feature data matrix of attribute; (f) attribute characterization graph; (g) attribute scores predicted by the model. - Highlights: • Multifrequency large-amplitude pulse voltammetric electronic tongue was used. • A visualized attributive analysis approach was created as an efficient tool for data processing. • Rice taste flavor attribute was determined and predicted. • The attribute characterization graph was represented for visualization of the

  12. Voltammetric methods for determination and speciation of inorganic arsenic in the environment-A review

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Douglas E. [Centre for Clean Water and Sustainable Technologies, Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 20120 (United States); Hussam, Abul, E-mail: ahussam@gmu.edu [Centre for Clean Water and Sustainable Technologies, Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 20120 (United States)

    2009-07-30

    The measurement of inorganic arsenic in the environment has received considerable attention over the past 40+ years due to its toxicity and prevalence in drinking water. This paper provides an overview of voltammetric techniques used since 2001. More than fifty papers from refereed analytical chemistry journals on the speciation and measurement of inorganic arsenic (As(III) and As(V)) in practical and environmental samples are included. The present review shows that stripping voltammetry is a sensitive and inexpensive technique. The new approaches include development of novel measurement protocols through media variation, development and use of new boron doped diamond electrodes modified with metals, nano Au-modified electrodes on carbon or carbon nano-tubes, novel rotating disc and vibrating electrodes to enhance mass transfer, and modified Hg(l) and thin film Bi on carbon for cathodic stripping voltammetry are discussed. Although, majority of the papers were of exploratory in nature, the trend towards developing a commercial standalone instrument for field use is still in progress.

  13. Voltammetric study of chromium(VI)-ammonia/ammonium chloride solutions in the presence of dimethylglyoxime

    International Nuclear Information System (INIS)

    Ginzburg, V.G.; Salikhdzhanova, R.M.F.

    1987-01-01

    The authors believed complexation to be possible in the system Cr(VI)-dimethylglyoxime (DMG, H 2 D) by reduction of Cr(VI) to Cr(III) on a mercury electrode. The DMG can be used in chromium voltammetry and is promising for a number of reasons: The Cr(III) has an affinity for donor nitrogen atoms in the DMG molecule. Insertion of the H 2 D into the inner sphere of the complex is expected to weaken the bond between the Cr(III) and the hydroxyl group, slow down formation of the insoluble hydroxide Cr(OH) 3 , and lower the rate of the electrode reaction Cr(III) → Cr(II). Molecules of H 2 D adsorb on a mercury electrode. It is therefore possible to accelerate the electrode process by including adsorptive preconcentration of the chromium and thus lowering its detection limit. This paper reports the voltammetric behavior of the system Cr(VI)-DMG-NH 4 + (proton donor) for the purpose of lowering the chromium detection limit

  14. The decrease in hypothalamic dopamine secretion induced by suckling: comparison of voltammetric and radioisotopic methods of measurement

    International Nuclear Information System (INIS)

    Plotsky, P.M.; Neill, J.D.

    1982-01-01

    Previous in situ voltammetric microelectrode measurements of median eminence dopamine release during mammary nerve stimulation of anesthetized lactating rats revealed a transient (1-3 min) 70% decline of dopamine concentrations. This dopamine was believed to be destined for secretion into the hypophysial portal circulation, but direct experimental support for this supposition was lacking. Thus, in the present study, [3H]dopamine release into brief sequential samples of hypophysial portal blood was compared with dopamine release in the median eminence measured by voltammetry. Lactating female rats were urethane anesthetized, and the median eminence pituitary region was exposed. [3H]Tyrosine was injected into a jugular cannula (100 microCi) followed by continuous infusion (5 microCi/min). In a preliminary experiment, this regimen produced a steady state level of [3H]dopamine in the portal blood within 45 min. In subsequent experiments, portal blood was collected as sequential 3-min samples, and electrochemical sampling from a microelectrode placed in the median eminence occurred at 1-min intervals. Electrochemical current resulting from the oxidation of dopamine in the medial median eminence was unvarying throughout the 75-min experiment in control rats (n . 4) and during the 30-min control period preceding mammary nerve stimulation in the other group (n . 4). These results were paralled by [3H] dopamine levels in portal blood during the same periods of time. All animals showed simultaneous decreases in oxidation current and [3H]dopamine levels within 1-4 min after initiation of mammary nerve stimulation. These and earlier results demonstrate that mammary nerve stimulation (and by extension, suckling) induces a momentary, but profound, decrease in hypothalamic dopamine secretion which precedes or accompanies the rise in PRL secretion evoked by the same stimulus

  15. Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode

    Directory of Open Access Journals (Sweden)

    Anamaria Baciu

    2015-06-01

    Full Text Available This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., −0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix.

  16. Adsorptive stripping voltammetric determination of nitroimidazole derivative on multiwalled carbon nanotube modified electrodes: influence of size and functionalization of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jara-Ulloa, Paola; Canete-Rosales, Paulina; Nunez-Vergara, Luis J; Squella, Juan A., E-mail: asquella@ciq.uchile.c [University of Chile, Santiago (Chile). Chemical and Pharmaceutical Sciences Faculty. Bioelectrochemistry Lab.

    2011-07-01

    1-Methyl-4-nitro-2-bromine methylimidazole (4-NimMeBr), was electrochemically reduced on mercury, glassy carbon and multiwalled carbon nanotubes (MWCNT) modified electrodes. 4-NimMeBr was adsorbed on the MWCNT modified electrode thus permitting the implementation of an adsorptive stripping voltammetric (ASV) method. We have used 4-NimMeBr as a prototype electroactive nitro compound to study the effect of both the size of the nanotubes and its functionalization by oxidation. The oxidized MWCNT forms better dispersions than the non-oxidized, producing electrode surface with higher density of MWCNT as was determined by electrochemical mapping using scanning electrochemical microscopy (SECM). Under the optimized conditions, the peak current was proportional to the concentration of 4-NimMeBr in the range of 10{sup -6} mol L{sup -1} to 10{sup -4} mol L{sup -1} with detection and quantification limits of 4.41 x 10{sup -6} mol L{sup -1} and 6.21 x 10{sup -6} mol L{sup -1}, respectively. The sensibility of bare electrode was 0.01 {mu}A per mmol L{sup -1}, which was lower than the value of 5.34 and 6.97 mA per mmol L{sup -1} obtained using short and large oxidized MWCNT, respectively. (author)

  17. A Fast Strategy for Determination of Vitamin B9 in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor

    Directory of Open Access Journals (Sweden)

    Fatemeh Khaleghi

    2016-05-01

    Full Text Available Vitamin B9 or folic acid is an important food supplement with wide clinical applications. Due to its importance and its side effects in pregnant women, fast determination of this vitamin is very important. In this study we present a new fast and sensitive voltammetric sensor for the analysis of trace levels of vitamin B9 using a carbon paste electrode (CPE modified with 1,3-dipropylimidazolium bromide (1,3-DIBr as a binder and ZnO/CNTs nanocomposite as a mediator. The electro-oxidation signal of vitamin B9 at the surface of the 1,3-DIBr/ZnO/CNTs/CPE electrode appeared at 800 mV, which was about 95 mV less positive compared to the corresponding unmodified CPE. The oxidation current of vitamin B9 by square wave voltammetry (SWV increased linearly with its concentration in the range of 0.08–650 μM. The detection limit for vitamin B9 was 0.05 μM. Finally, the utility of the new 1,3-DIBr/ZnO/CNTs/CPE electrode was tested in the determination of vitamin B9 in food and pharmaceutical samples.

  18. Cyclic voltammetric study of electro-oxidation of methanol on platinum electrode in acidic and neutral media

    International Nuclear Information System (INIS)

    Khan, A.S.A.; Ahmed, R.; Mirza, M.L.

    2007-01-01

    The electro-oxidation of methanol on electrochemically treated platinum foil was investigated in acidic and neutral media for comparison of cyclic voltammetric characteristics and elucidation of mechanism of electro-oxidation of methanol. The surface area and roughness factor of platinum electrode was calculated. The electro-oxidation of mathanol is an irreversible process giving. anodic peaks in both anodic and cathodic sweep. The characteristic peaks of electrooxidation of methanol appeared at almost the same potential region in both acidic and neutral media. In neutral medium, certain additional cathodic/anodic peaks appeared which were confirmed to arise by the reduction/oxidation of hydrogen ions. The exchange current density and heterogeneous electron transfer rate constant was higher in neutral medium as. compared with acidic medium. The thermodynamic parameters delta H, delta S, and delta G/sub 298/ were calculated. The values of delta H and delta G/sub 298/were positive which indicated that the process of electro-oxidation of methanol is an endothermic and nonspontaneous. The mechanism of electro-oxidation of methanol was same in both acidic and neutral media involving the formation of various adsorbed intermediate species through dissociative adsorption steps leading to the formation of Co adsorbed radicals, which are removed. during interaction with adsorbed hydrous oxides provided by the oxidation of adsorbed water molecules. The higher rate of electro-oxidation of methanol in neutral medium was interpreted in the tight of electrochemical mechanism and was attributed to the presence of comparatively small amount of hydrogen ions only along the surface of working electrode, which are produced during electro-oxidation of methanol. (author)

  19. In situ fabricated iodine-adlayer assisted selective electrooxidation of uric acid in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Rezwan [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagastuta, Midori-ku, Yokohama 226-8502 (Japan)], E-mail: mrmche@yahoo.com; Masud, Jahangir [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagastuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagastuta, Midori-ku, Yokohama 226-8502 (Japan)], E-mail: ohsaka@echem.titech.ac.jp

    2008-12-30

    This work presents the electrooxidation of uric acid (UA) at an iodine-adlayer-modified gold, Au (I|Au (poly)) electrode in 0.1 M NaOH solution using cyclic voltammetric, amperometric and open-circuit potential measurement techniques. A tremendous enhancement of the electrode activity towards the electrooxidation of UA was achieved by virtue of the simple modification of the Au (poly) electrode surface with a neutral iodine-adlayer, fabricated in situ through the spontaneous oxidative chemisorption of iodide present in the sample solution. The cyclic voltammetric peak current increases remarkably for the oxidation of UA and the peak potential shifts by 365 mV to the negative direction of potential compared to the bare Au (poly) electrode. Oxidation of ascorbic acid (AA) at the I|Au (poly) electrode takes place at the same potential as that at the bare electrode, but the peak current intensity is almost twice at the bare Au (poly) electrode as compared to the modified one. In the mixture of the AA and UA, the cyclic voltammetric signals corresponding to the oxidations of AA and UA were resolved by 340 mV. The electrode response in the mixture was highly reproducible because of the inhibition of adsorption of oxidation products and UA.

  20. Is transcranial direct current stimulation a potential method for improving response inhibition?

    Science.gov (United States)

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-04-15

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.

  1. Effects of Angular Variation on Split D Differential Eddy Current Probe Response (Postprint)

    Science.gov (United States)

    2016-02-10

    AFRL-RX-WP-JA-2016-0327 EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT) Ryan D...March 2014 – 22 September 2015 4. TITLE AND SUBTITLE EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT... Current Probe Response Ryan D. Mooers1, a) and John C. Aldrin2 1United States Air Force Research Labs, Materials and Manufacturing Directorate, Structural

  2. Determination of lead element trace in some Syrian cigarettes and Its mixtures using voltammetric method on HMDE

    International Nuclear Information System (INIS)

    Nasser, H.; Kabass, H.

    2010-01-01

    This study aims for estimating of trace for these elements in various brands of Syrian Cigarettes and its mixtures, by using voltammetric method (HMDE) hanging mercury drop elec trod. This method is first used to determined Syrian Cigarettes brand and its mixtures, during this study it was found that we can use it easily with low commission, high sensitivity and accurate results comparing with others studies. We prepare the samples by using reference methods. The samples were collected during two times in one year from the same kinds of samples. We noticed that the high concentrations was (3.795μg/g) in Gitanes samples, and the low concentrations in shame samples was (0.37 μg/g). This study refers that there is different concentrations of lead element in this samples.(author)

  3. Effect of external noise on the current response in superlattices

    International Nuclear Information System (INIS)

    Suqing Duan; Wu Binyi; Wang Zhigang; Zhao Xiangeng

    2004-01-01

    Within the single-band model and the nearest-neighbor approximation we investigate the effect of external noise on the current response driven by dc-ac field which has a fluctuating component. We find the external noise can destroy the current resonant peaks. When the strength of the external noise becomes enough large, all the current resonant peaks will completely disappear

  4. Estudo voltamétrico do complexo de cobre(II com o ligante vermelho de alizarina S, adsorvido na superfície do eletrodo de grafite pirolítico Voltammetric study of complex of copper (II with alizarin red S ligand, absorbed on surface of pyrolytic graphite electrode

    Directory of Open Access Journals (Sweden)

    Victor E. Mouchrek Filho

    1999-06-01

    Full Text Available The alizarin red S (ARS has been used as a spectrophotometric reagent of several metals for a long time. Now this alizarin has been used as modifier agent of electrodes, for voltammetric analyses. In this work cyclic voltammetry experiments was accomplished on closed circuit, with the objective of studying the voltammetric behavior of alizarin red S adsorbed and of its copper complex, on the surface of the pyrolytic graphite electrode. These studies showed that ARS strongly adsorbs on the surface of this electrode. This adsorption was used to immobilize ions copper(II from the solution.

  5. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    Science.gov (United States)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  6. Inappropriate use of the quasi-reversible electrode kinetic model in simulation-experiment comparisons of voltammetric processes that approach the reversible limit.

    Science.gov (United States)

    Simonov, Alexandr N; Morris, Graham P; Mashkina, Elena A; Bethwaite, Blair; Gillow, Kathryn; Baker, Ruth E; Gavaghan, David J; Bond, Alan M

    2014-08-19

    Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc(0/+)) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH3)6](3+) and [Fe(CN)6](3-) in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E(0)), heterogeneous electron transfer rate constant at E(0) (k(0)), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi-reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc(0/+) and [Ru(NH3)6](3+/2+) processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E(0), Ru, and CDL being quantified and a lower limit of k(0) being reported; e.g., k(0) ≥ 9 cm s(-1) for the Fc(0/+) process.

  7. Inappropriate Use of the Quasi-Reversible Electrode Kinetic Model in Simulation-Experiment Comparisons of Voltammetric Processes That Approach the Reversible Limit

    KAUST Repository

    Simonov, Alexandr N.

    2014-08-19

    Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc0/+) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH 3)6]3+ and [Fe(CN)6]3- in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E0), heterogeneous electron transfer rate constant at E0 (k0), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi- reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc0/+ and [Ru(NH3)6]3+/2+ processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E0, R u, and CDL being quantified and a lower limit of k 0 being reported; e.g., k0 ≥ 9 cm s-1 for the Fc0/+ process. © 2014 American Chemical Society.

  8. Inappropriate Use of the Quasi-Reversible Electrode Kinetic Model in Simulation-Experiment Comparisons of Voltammetric Processes That Approach the Reversible Limit

    KAUST Repository

    Simonov, Alexandr N.; Morris, Graham P.; Mashkina, Elena A.; Bethwaite, Blair; Gillow, Kathryn; Baker, Ruth E.; Gavaghan, David J.; Bond, Alan M.

    2014-01-01

    Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc0/+) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH 3)6]3+ and [Fe(CN)6]3- in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E0), heterogeneous electron transfer rate constant at E0 (k0), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi- reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc0/+ and [Ru(NH3)6]3+/2+ processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E0, R u, and CDL being quantified and a lower limit of k 0 being reported; e.g., k0 ≥ 9 cm s-1 for the Fc0/+ process. © 2014 American Chemical Society.

  9. A square-wave adsorptive stripping voltammetric method for the determination of Amaranth, a food additive dye.

    Science.gov (United States)

    Alghamdi, Ahmad H

    2005-01-01

    Square-wave adsorptive stripping voltammetric (AdSV) determinations of trace concentrations of the azo coloring agent Amaranth are described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, followed by initiation of a negative sweep. In a pH 10 carbonate supporting electrolyte, Amaranth gave a well-defined and sensitive AdSV peak at -518 mV. The electroanalytical determination of this azo dye was found to be optimal in carbonate buffer (pH 10) under the following experimental conditions: accumulation time, 120 s; accumulation potential, 0.0 V; scan rate, 600 mV/s; pulse amplitude, 90 mV; and frequency, 50 Hz. Under these optimized conditions the AdSV peak current was proportional over the concentration range 1 x 10(-8)-1.1 x 10(-7) mol/L (r = 0.999) with a detection limit of 1.7 x 10(-9) mol/L (1.03 ppb). This analytical approach possessed enhanced sensitivity, compared with conventional liquid chromatography or spectrophotometry and it was simple and fast. The precision of the method, expressed as the relative standard deviation, was 0.23%, whereas the accuracy, expressed as the mean recovery, was 104%. Possible interferences by several substances usually present as food additive azo dyes (E110, E102), gelatin, natural and artificial sweeteners, preservatives, and antioxidants were also investigated. The developed electroanalyticals method was applied to the determination of Amaranth in soft drink samples, and the results were compared with those obtained by a reference spectrophotometric method. Statistical analysis (paired t-test) of these data showed that the results of the 2 methods compared favorably.

  10. Solar UV-treatment of water samples for stripping-voltammetric determination of trace heavy metals in Awash river, Ethiopia

    Directory of Open Access Journals (Sweden)

    Gelaneh Woldemichael

    2016-03-01

    Full Text Available We report about testing a new mobile and sustainable water sample digestion method in a preliminary field trial in Ethiopia. In order to determine heavy metals at the ultra-trace level by stripping voltammetric techniques in water samples from Awash River, we applied our new method of solar UV-assisted sample pretreatment to destroy the relevant interfering dissolved organic matter. The field tests revealed that 24 h of solar UV irradiation were sufficient to achieve the same sample pretreatment results as with classic digestion method based on intense and hard UV. Analytical results of this study suggest that both a hydroelectric power station and agrichemical applications at Koka Lake have increased the levels of the investigated metals zinc, cadmium, lead, copper, cobalt, nickel, and uranium.

  11. Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array

    International Nuclear Information System (INIS)

    Cetó, Xavi; Apetrei, Constantin; Valle, Manel del; Rodríguez-Méndez, Maria Luz

    2014-01-01

    In this work, two sets of voltammetric sensors -prepared using different strategies- have been combined in an electronic tongue to evaluate the complete antioxidant profile of red wines. To this aim, wine samples were analyzed with the whole set of sensors. In order to reduce the large dimensionality of the data set while keeping the relevant information provided by the sensors, two different methods of feature selection and data compression were used (the kernels method and Discrete Wavelet Transform feature extraction method). Then, the coefficients obtained were used as the input variables of Principal Component Analysis (to evaluate the capability of discrimination. Partial-least squares regression (PLS) and artificial neural networks (ANNs) were performer to build the quantitative prediction models that allowed the quantification of the antioxidant capacity of the tested wines

  12. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  13. Transient voltage response of a superconducting strip to a supercritical current pulse

    International Nuclear Information System (INIS)

    Attekum, P.M.Th.M. van; Wouters, M.C.H.M.; Wolter, J.; Horstman, R.E.

    1981-01-01

    A superconductor subject to a supercritical current pulse displays a delay time between the onset of the current pulse and the onset of the corresponding voltage response. From the onset of the voltage response it takes a second (transient) time to reach the stationary state. It is shown that the transient time can be explained with inhomogeneities in the strip which give rise to a distribution of delay times. The transient time is thus not related to a characteristic time in the superconductor. For small supercritical currents also heating effects show up. (author)

  14. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol

    International Nuclear Information System (INIS)

    Baytak, Aysegul Kutluay; Duzmen, Sehriban; Teker, Tugce; Aslanoglu, Mehmet

    2015-01-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with a composite of nanoparticles of tungsten oxide (WO 3 ) and carbon nanotubes (CNTs) for the quantification of paracetamol (PR). Energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were performed for the characterization of the nanocomposite layer. Compared with a bare GCE and a GCE modified with CNTs, the proposed electrode (WO 3 NPs/CNTs/GCE) exhibited a well-defined redox couple for PR and a marked enhancement of the current response. The experimental results also showed that ascorbic acid (AA) did not interfere with the selective determination of PR. The proposed electrode was used for the determination of PR in 0.1 M phosphate buffer solution (PBS) at pH 7.0 using square wave voltammetry (SWV). The peak current increased linearly with the concentration of PR in the range of 1.0 × 10 −9 –2.0 × 10 −7 M. The detection limit (LOD) was 5.54 × 10 −11 M (based on 3 S b /m). The proposed voltammetric sensor provided long-time stability, improved voltammetric behavior and good reproducibility for PR. The selective, accurate and precise determination of PR makes the proposed electrode of great interest for monitoring its therapeutic use. - Highlights: • A voltammetric nanosensor was prepared using nanoparticles of WO 3 and CNTs. • A selective quantification of paracetamol was carried out in the presence of AA. • A linear plot was obtained for current responses versus concentrations over the range from 1.0 × 10 −9 to 2.0 × 10 −7 M. • A detection limit of 554 pM was obtained for paracetamol using the proposed nanosensor. • An accurate quantification makes the proposed nanosensor of great interest for public health

  15. Monolayer-protected clusters of gold nanoparticles: impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection.

    Science.gov (United States)

    Pillay, Jeseelan; Ozoemena, Kenneth I; Tshikhudo, Robert T; Moutloali, Richard M

    2010-06-01

    Surface electrochemistry of novel monolayer-protected gold nanoparticles (MPCAuNPs) is described. Protecting ligands, (1-sulfanylundec-11-yl)tetraethylene glycol (PEG-OH) and (1-sulfanylundec-11-yl)poly(ethylene glycol)ic acid (PEG-COOH), of three different percent ratios (PEG-COOH:PEG-OH), 1:99 (MPCAuNP-COOH(1%)), 50:50 (MPCAuNP-COOH(50%)), and 99:1 (MPCAuNP-COOH(99%)), were studied. The electron transfer rate constants (k(et)/s(-1)) in organic medium decreased as the concentration of the surface-exposed -COOH group in the protecting monolayer ligand is increased: MPCAuNP-COOH(1%) (approximately 5 s(-1)) > MPCAuNP-COOH(50%) (approximately 4 s(-1)) > MPCAuNP-COOH(99%) (approximately 0.5 s(-1)). In aqueous medium, the trend is reversed. The surface pK(a) was estimated as approximately 8.2 for the MPCAuNP-COOH(1%), while both MPCAuNP-COOH(50%) and MPCAuNP-COOH(99%) showed two pK(a) values of about 5.0 and approximately 8.0. These results have been interpreted in terms of the quasi-solidity and quasi-liquidity of the terminal -OH and -COOH head groups, respectively. MPCAuNP-COOH(99%) excellently suppressed the voltammetric response of the ascorbic acid but enhanced the electrocatalytic detection of epinephrine compared to the other MPCAuNPs studied. This study reveals important factors that should be considered when designing electrode devices that employ monolayer-protected gold nanoparticles and possibly for some other redox-active metal nanoparticles.

  16. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac

    International Nuclear Information System (INIS)

    Arvand, Majid; Gholizadeh, Tahereh M.; Zanjanchi, Mohammad Ali

    2012-01-01

    This paper describes the development and utilization of a new nanocomposite consisting of Cu(OH) 2 nanoparticles, hydrophobic ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMIMPF 6 ) and multiwalled carbon nanotubes for glassy carbon electrode modification. The nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDX). The modified electrode was used for electrochemical characterization of diclofenac. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity with low overpotential for the determination of diclofenac in the range from 0.18 to 119 μM, with a detection limit of 0.04 μM. Electrochemical studies suggested that the MWCNTs/Cu(OH) 2 nanoparticles/IL nanocomposite modified electrode provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of diclofenac, which was indicated by the improvement of anodic peak current. Highlights: ► This work examines oxidation of diclofenac at a nanocomposite modified electrode. ► The salient feature of this electrode is large diffusion coefficient. ► The proposed electrode decreased overpotential of diclofenac electrooxidation. ► The modified electrode has good stability and reproducibility.

  17. Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Alizadeh, Taher; Ganjali, Mohammad Reza; Akhoundian, Maede; Norouzi, Parviz

    2016-01-01

    A carbon paste electrode was modified with a Ce(III)-imprinted polymer (Ce-IP) and used for voltammetric determination of Ce(III) ions in real water samples. Precipitation polymerization was used for synthesis of the nano-sized Ce-IP from vinylpyridine and methacrylic acid (acting as the complexing ligands and functional monomers), divinylbenzene (cross-linker) and AIBN as the radical starter. The Ce-IP was characterized by scanning electron microscopy and zeta potentials. A carbon paste electrode (CPE) was then impregnated with the Ce-IP and used for the extraction and subsequent determination of Ce(III). Oxidative square wave voltammetry showed the electrode to give a significantly better response than an electrode modified with the non-imprinted polymer. The addition of multiwalled carbon nanotubes to the Ce-IP-modified electrode further improves the signal, thereby increasing the sensitivity of the method. The effects of electrode composition, extraction pH value, volume and time were optimized. The electrode, if operated at a voltage of 1.05 V (vs. Ag/AgCl), displays a linear response to Ce(III) in the 1.0 μM to 25 pM concentration range, and the detection limit is 10 pM (at an S/N ratio of 3). The relative standard deviation of 5 separate determinations is 3.1 %. The method was successfully applied to the determination of Ce(III) in the spiked samples of drinking water and sea water. (author)

  18. Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector

    Directory of Open Access Journals (Sweden)

    Batool Eneaze B. Al-Jumaili

    2016-01-01

    Full Text Available Achieving a cheap and ultrafast metal-semiconductor-metal (MSM photodetector (PD for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi based MSM PD with platinum (Pt contact electrodes. Such NPSi samples are grown from n-type Si (100 wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311 lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density.

  19. Honey adulteration detection: voltammetric e-tongue versus official methods for physicochemical parameter determination.

    Science.gov (United States)

    Oroian, Mircea; Paduret, Sergiu; Ropciuc, Sorina

    2018-02-10

    The aim of this study was to evaluate the usefulness of a voltammetric e-tongue (three electrodes: reference electrode (Ag/AgCl), counter electrode (glassy carbon electrode rod) and working electrode (Au, Ag, Pt and glass electrode)) for honey adulteration detection. For this purpose, 55 samples of authentic honey (acacia, honeydew, sunflower, Tilia and polyfloral) and 150 adulterated ones were analyzed. The adulteration was made using fructose, glucose, inverted sugar, hydrolyzed inulin syrup and malt wort at different percentages: 5%, 10%, 20%, 30%, 40% and 50%, respectively. The e-tongue has been compared with the physicochemical parameters (pH, free acidity, electrical conductivity (EC) and CIEL*a*b* parameters (L*, a* and b*)) in order to achieve a suitable method for the classification of authentic and adulterated honeys. The e-tongue and physicochemical parameters reached a 97.50% correct classification of the authentic and adulterated honeys. In the case of the adulterated honey samples, the e-tongue achieved 83.33% correct classifications whereas the physicochemical parameters only achieved 73.33%. The e-tongue is a fast, easy and accurate method for honey adulteration detection which can be used in situ by beekeepers and provide useful information on EC and free acidity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  1. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    Science.gov (United States)

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Voltammetric Perspectives on the Acidity Scale and H+/H2 Process in Ionic Liquid Media.

    Science.gov (United States)

    Bentley, Cameron L; Bond, Alan M; Zhang, Jie

    2018-03-19

    Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H + ) transfer and electrode reaction mechanisms of the H + H 2 process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the pK 3 a (minus logarithm of acidity equilibrium constant, K a ) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H + /H 2 process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 11 is June 12, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  3. Multi-spectroscopic and voltammetric evidences for binding, conformational changes of bovine serum albumin with thiamine.

    Science.gov (United States)

    Bagoji, Atmanand M; Gowda, Jayant I; Gokavi, Naveen M; Nandibewoor, Sharanappa T

    2017-08-01

    The interaction between thiamine hydrochloride (TA) and bovine serum albumin (BSA) was investigated by fluorescence, FTIR, UV-vis spectroscopic and cyclic voltammetric techniques under optimised physiological condition. The fluorescence intensity of BSA is gradually decreased upon addition of TA due to the formation of a BSA-TA complex. The binding parameters were evaluated and their behaviour at different temperatures was analysed. The quenching constants (K sv ) obtained were 2.6 × 10 4 , 2.2 × 10 4 and 2.0 × 10 4  L mol -1 at 288, 298 and 308 K, respectively. The binding mechanism was static-type quenching. The values of ΔH° and ΔS° were found to be 26.87 kJ mol -1 and 21.3 J K -1  mol -1 , and indicated that electrostatic interaction was the principal intermolecular force. The changes in the secondary structure of BSA upon interaction with TA were confirmed by synchronous and 3-D spectral results. Site probe studies reveal that TA is located in site I of BSA. The effects of some common metal ions on binding of BSA-TA complex were also investigated.

  4. Determination of Zalcitabine in Medicaments by Differential Pulse Voltammetry

    Directory of Open Access Journals (Sweden)

    Katia Christina Leandro

    2013-01-01

    Full Text Available The zalcitabine (ddC has been extensively used in the treatment of HIV patients due to its antiretroviral activity. The quality control of this active principle in medications is of outstanding importance to public health. The principal objective of the current study was the development of an alternative analytical methodology for the zalcitabine determination using a voltammetric process. The zalcitabine gives a reduction peak (at -1.22 V versus Ag/AgCl at the hanging mercury drop electrode (HMDE. The differential pulse voltammetric response is evaluated with respect to the scan rate (20 mV/s, pulse amplitude (50 mV, support electrolyte (Clark-Lubs buffer, pH (2.0, and other variables. The response is linear over the 10.0 to 28.0 mg/L (47 to 133 μM concentration range, and the detection limit is 2.08 mg/L. The validation of this method was realized using a governmental Brazilian document (Inmetro, 2007 and the results are reported for medication drugs.

  5. A Decentralized Current-Sharing Controller Endows Fast Transient Response to Parallel DC-DC Converters

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Han, Renke

    2018-01-01

    This paper proposes a decentralized current-sharing control strategy to endow fast transient response to paralleled DC-DC converters systems, such as DC microgrids or distributed power systems. The proposed controller consist of two main control loops: an external voltage droop control for current......-sharing proposes and an internal current loop. The external droop control loop is designed as a voltage loop with embedded virtual impedance, which avoids the use of a slow voltage loop and a separate extra virtual impedance loop that may limit the system bandwidth. The internal current loop, thanks...... and the proposed embedded-virtual-impedance based I-V droop. In order to compare the dynamic response performances between two droop controllers, their state-space models have been developed and analyzed in this paper. The results show that the dynamic response of the I-V droop control is faster than...

  6. Cyclic voltammetric response of nicotinic acid and nicotinamide on a polycrystalline gold electrode

    International Nuclear Information System (INIS)

    Wang Xiaoxia; Yang Nianjun; Wan Qijin

    2006-01-01

    The oxidation of nicotinic acid and nicotinamide on a polycrystalline gold electrode occurred at almost same potentials but their reduction did at different peak potentials. The redox reaction mechanisms of nicotinic acid and nicotinamide were rationalized by the formation/disappearance of the new nitrogen-oxygen bonds in the pyridine rings by means of cyclic voltammetry and bulk electrolysis. The anodic currents of nicotinic acid and nicotinamide were controlled by diffusion, while the cathodic ones by adsorption. The difference in the cathodic peak potentials of nicotinic acid and nicotinamide on the polycrystalline gold electrode is attributed to the effect of the electron densities of remote substituents on the pyridine rings. The cathodic peak currents at about 0.20 V were linear with their concentrations in the range of 2.4 mM to 2.7 μM and 2.4 mM to 3.3 μM with detection limits of 0.27 and 0.33 μM for nicotinic acid and nicotinamide, respectively. Voltammetry was then adopted for the selective monitoring the content of nicotinic acid and nicotinamide in pharmaceuticals

  7. Quantitative determination of glycyrrhizinic acid by square-wave

    Directory of Open Access Journals (Sweden)

    Aneta Dimitrovska

    2003-06-01

    Full Text Available Novel adsorptive stripping square-wave voltammetric method as well as a new high-pressure liquid chromatographic method for direct determination of glycyrrhizinic acid in dosage pharmaceutical preparation, used against virus infections, have been developed. Glycyrrhizinic acid is an electrochemically active compound, which undergoes irreversible reduction on a mercury electrode surface in an aqueous medium. Its redox properties were studied thoroughly by means of square-wave voltammetry, as one of the most advanced electroanalytical technique. The voltammetric response depends mainly on the pH of the medium, composition of the supporting electrolyte, as well as the parameters of the excitement signal. It was also observed that the voltammetric properties strongly depend on the accumulation time and potential, revealing significant adsorption of glycyrrhizinic acid onto the mercury electrode surface. Upon this feature, an adsorptive stripping voltammetric method for quantitative determination of glycyrrhizinic acid was developed. A simple, sensitive and precise reversed phase HPLC method with photodiode array UV detection has also been developed, mainly for comparison and conformation of the results obtained with the voltammetric method.

  8. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.

    Science.gov (United States)

    Kim, Yushin; Amemiya, Shigeru

    2008-08-01

    A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.

  9. Electroanalysis of cardioselective beta-adrenoreceptor blocking agent acebutolol by disposable graphite pencil electrodes with detailed redox mechanism

    Directory of Open Access Journals (Sweden)

    Atmanand M. Bagoji

    2016-12-01

    Full Text Available A simple economic graphite pencil electrode (GPE was used for analysis of cardioselective, hydrophilic-adrenoreceptor blocking agent, acebutolol (ACBT using the cyclic voltammetric, linear sweep voltammetric, differential pulse voltammetric (DPV, and square-wave voltammetric (SWV techniques. The dependence of the current on pH, concentration, and scan rate was investigated to optimize the experimental condition for determination of ACBT. The electrochemical behavior of the ACBT at GPE was a diffusion-controlled process. A probable electro-redox mechanism was proposed. Under the optimal conditions, the anodic peak current was linearly proportional to the concentration of ACBT in the range from 1.00 to 15.0 μM with a limit of detection 1.26 × 10−8 M for DPV and 1.28 × 10−8 M for the SWV. This method was applied for quantitative determination of the ACBT levels in urine as real samples. The obtained recovery ranges for ACBT in urine were from 95.4 to101% as found by the standard addition technique. Further interference study was also carried with some common interfering substances.

  10. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-3516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azimzadeh, Mahnaz [Department of Chemistry, Sharif University of Technology, Tehran 11155-3516 (Iran, Islamic Republic of); Amini, Mohammad K. [Department of Chemistry, Isfahan University, Isfahan (Iran, Islamic Republic of)

    2015-08-01

    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of the cast MWCNTssuspension, number of electropolymerization cycles and accumulation time was optimized by monitoring the LSV response of the modified electrode toward ACV. The best response was observed at pH 7.0 after accumulation at open circuit for 160 s. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of ACV on the modified electrode surface relative to the bare GCE, resulting in a wide linear dynamic range (0.03–10.0 μM) and a low detection limit (10.0 nM) for ACV. Besides high sensitivity, the sensor represented high stability and good reproducibility for ACV analysis, and provided satisfactory results for the determination of this compound in pharmaceutical and clinical preparations. - Highlights: • A simple method was employed to construct a thin film modified electrode. • Tiron-doped polypyrrole was electropolymerized on MWCNT precast glassy carbon electrode. • Electrode surface characterization was performed by microscopic and spectroscopic techniques. • The modified electrode showed nano-molar detection limit for acyclovir. • The modified electrode was applied for the detection of ACV in pharmaceutical and clinical preparations.

  11. MWCNTs/Cu(OH){sub 2} nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Arvand, Majid, E-mail: arvand@guilan.ac.ir; Gholizadeh, Tahereh M.; Zanjanchi, Mohammad Ali

    2012-08-01

    This paper describes the development and utilization of a new nanocomposite consisting of Cu(OH){sub 2} nanoparticles, hydrophobic ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMIMPF{sub 6}) and multiwalled carbon nanotubes for glassy carbon electrode modification. The nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDX). The modified electrode was used for electrochemical characterization of diclofenac. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity with low overpotential for the determination of diclofenac in the range from 0.18 to 119 {mu}M, with a detection limit of 0.04 {mu}M. Electrochemical studies suggested that the MWCNTs/Cu(OH){sub 2} nanoparticles/IL nanocomposite modified electrode provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of diclofenac, which was indicated by the improvement of anodic peak current. Highlights: Black-Right-Pointing-Pointer This work examines oxidation of diclofenac at a nanocomposite modified electrode. Black-Right-Pointing-Pointer The salient feature of this electrode is large diffusion coefficient. Black-Right-Pointing-Pointer The proposed electrode decreased overpotential of diclofenac electrooxidation. Black-Right-Pointing-Pointer The modified electrode has good stability and reproducibility.

  12. Controlled sp(2) Functionalization of Boron Doped Diamond as a Route for the Fabrication of Robust and Nernstian pH Electrodes.

    Science.gov (United States)

    Ayres, Zoë J; Borrill, Alexandra J; Newland, Jonathan C; Newton, Mark E; Macpherson, Julie V

    2016-01-05

    The development of a voltammetric boron doped diamond (BDD) pH sensor is described. To obtain pH sensitivity, laser micromachining (ablation) is utilized to introduce controlled regions of sp(2) carbon into a high quality polycrystalline BDD electrode. The resulting sp(2) carbon is activated to produce electrochemically reducible quinone groups using a high temperature acid treatment, followed by anodic polarization. Once activated, no further treatment is required. The quinone groups show a linear (R(2) = 0.999) and Nernstian (59 mV/(pH unit)) pH-dependent reductive current-voltage response over a large analyzable pH range, from pH 2 to pH 12. Using the laser approach, it is possible to optimize sp(2) coverage on the BDD surface, such that a measurable pH response is recorded, while minimizing background currents arising from oxygen reduction reactions on sp(2) carbon in the potential region of interest. This enables the sensor to be used in aerated solutions, boding well for in situ analysis. The voltammetric response of the electrode is not compromised by the presence of excess metal ions such as Pb(2+), Cd(2+), Cu(2+), and Zn(2+). Furthermore, the pH sensor is stable over a 3 month period (the current time period of testing), can be stored in air between measurements, requires no reactivation of the surface between measurements, and can be reproducibly fabricated using the proposed approach. The efficacy of this pH sensor in a real-world sample is demonstrated with pH measurements in U.K. seawater.

  13. Corporate Social responsibility in the petrochemical industry: Exploring current trends in social and environmental disclosure

    OpenAIRE

    Lei, Juan

    2006-01-01

    Current trends indicate that we are entering a new phase of corporate responsibility reporting that more emphasis is paid on social responsibility, but significant variation still remains in the maturity of reporting content and styles in industries, and even in the same industry. This study explores the current trend of corporate social and environmental reporting in petrochemical industry. It offers a detailed review of the development of corporate social responsibility reporting, and of th...

  14. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Aysegul Kutluay; Duzmen, Sehriban; Teker, Tugce; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2015-12-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with a composite of nanoparticles of tungsten oxide (WO{sub 3}) and carbon nanotubes (CNTs) for the quantification of paracetamol (PR). Energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were performed for the characterization of the nanocomposite layer. Compared with a bare GCE and a GCE modified with CNTs, the proposed electrode (WO{sub 3}NPs/CNTs/GCE) exhibited a well-defined redox couple for PR and a marked enhancement of the current response. The experimental results also showed that ascorbic acid (AA) did not interfere with the selective determination of PR. The proposed electrode was used for the determination of PR in 0.1 M phosphate buffer solution (PBS) at pH 7.0 using square wave voltammetry (SWV). The peak current increased linearly with the concentration of PR in the range of 1.0 × 10{sup −9}–2.0 × 10{sup −7} M. The detection limit (LOD) was 5.54 × 10{sup −11} M (based on 3 S{sub b}/m). The proposed voltammetric sensor provided long-time stability, improved voltammetric behavior and good reproducibility for PR. The selective, accurate and precise determination of PR makes the proposed electrode of great interest for monitoring its therapeutic use. - Highlights: • A voltammetric nanosensor was prepared using nanoparticles of WO{sub 3} and CNTs. • A selective quantification of paracetamol was carried out in the presence of AA. • A linear plot was obtained for current responses versus concentrations over the range from 1.0 × 10{sup −9} to 2.0 × 10{sup −7} M. • A detection limit of 554 pM was obtained for paracetamol using the proposed nanosensor. • An accurate quantification makes the proposed nanosensor of great interest for public health.

  15. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.

    Science.gov (United States)

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-09-24

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.

  16. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    Science.gov (United States)

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A potentiostat featuring an integrator transimpedance amplifier for the measurement of very low currents--Proof-of-principle application in microfluidic separations and voltammetry.

    Science.gov (United States)

    Koutilellis, G D; Economou, A; Efstathiou, C E

    2016-03-01

    This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.

  18. Pulse-voltammetric glucose detection at gold junction electrodes.

    Science.gov (United States)

    Rassaei, Liza; Marken, Frank

    2010-09-01

    A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.

  19. Voltammetric Determination of Homocysteine Using Multiwall Carbon Nanotube Paste Electrode in the Presence of Chlorpromazine as a Mediator

    Directory of Open Access Journals (Sweden)

    Fathali Gholami-Orimi

    2012-01-01

    Full Text Available We propose chlorpromazine (CHP as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy using multiwall carbon nanotube paste electrode (MWCNTPE. The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1–210.0 μM Hcy with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples.

  20. Molecularly imprinted photo-sensitive polyglutamic acid nanoparticles for electrochemical sensing of hemoglobin

    International Nuclear Information System (INIS)

    Zhang, Rongli; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2015-01-01

    A voltammetric sensor for hemoglobin (Hb) was prepared from molecularly imprinted polymer nanoparticles (MINPs) via electrophoretic deposition. A photo-sensitive copolymer composed of poly-γ-glutamic grafted with the fluorophore 7-amino-4-methylcoumarin was converted into nanoparticles that were imprinted with Hb. The resultant MINPs were then placed on a glassy carbon electrode (GCE) via electrophoretic deposition. Subsequent photo-crosslinking locks the recognition sites. The template was removed by extraction with a mixture of acetic acid and methanol at a ratio of 1:9 (v:v) to obtain a voltammetric sensor for Hb. The current response of the sensor at a working voltage of −260 mV is linearly related to the concentration of Hb in the range from 5 to 100 μg mL −1 , and recoveries range from 98.7 to 102.3 %. Compared to the respective non-imprinted nanoparticles, the sensor displays high recognition capability and affinity for Hb. (author)

  1. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in

  2. Electrode reactions of iron oxide-hydroxide colloids.

    Science.gov (United States)

    Mahmoudi, Leila; Kissner, Reinhard

    2014-11-07

    Small-sized FeO(OH) colloids stabilised by sugars, commercially available for the clinical treatment of iron deficiency, show two waves during cathodic polarographic sweeps, or two current maxima with stationary electrodes, in neutral to slightly alkaline aqueous medium. Similar signals are observed with Fe(III) in alkaline media, pH > 12, containing citrate in excess. Voltammetric and polarographic responses reveal a strong influence of fast adsorption processes on gold and mercury. Visible spontaneous accumulation was also observed on platinum. The voltammetric signal at more positive potential is caused by Fe(III)→Fe(II) reduction, while the one at more negative potential has previously been assigned to Fe(II)→Fe(0) reduction. However, the involvement of adsorption phenomena leads us to the conclusion that the second cathodic current is caused again by Fe(III)→Fe(II), of species deeper inside the particles than those causing the first wave. This is further supported by X-ray photoelectron spectra obtained after FeO(OH) particle adsorption and reduction on a gold electrode surface. The same analysis suggests that sucrose stabilising the colloid is still bound to the adsorbed material, despite dilution and rinsing.

  3. The Use of Silver Solid Amalgam Electrodes for Voltammetric and Amperometric Determination of Nitrated Polyaromatic Compounds Used as Markers of Incomplete Combustion

    Directory of Open Access Journals (Sweden)

    Oksana Yosypchuk

    2012-01-01

    Full Text Available Genotoxic nitrated polycyclic aromatic hydrocarbons (NPAHs are formed during incomplete combustion processes by reaction of polycyclic aromatic hydrocarbons (PAHs with atmospheric nitrogen oxides. 1-Nitropyrene, 2-nitrofluorene, and 3-nitrofluoranthene as the dominating substances are used as markers of NPAHs formation by these processes. In the presented study, voltammetric properties and quantification of these compounds and of 5-nitroquinoline (as a representative of environmentally important genotoxic heterocyclic compounds have been investigated using a mercury meniscus modified silver solid amalgam electrode (m-AgSAE, which represent a nontoxic alternative to traditional mercury electrodes. Linear calibration curves over three orders of magnitude and limits of determination mostly in the 10−7 mol L−1 concentration range were obtained using direct current and differential pulse voltammetry. Further, satisfactory HPLC separation of studied analytes in fifteen minutes was achieved using 0.01 mol L−1 phosphate buffer, pH 7.0 : methanol (15 : 85, v/v mobile phase, and C18 reversed stationary phase. Limits of detection of around 1 · 10−5 mol L−1 were achieved using amperometric detection at m-AgSAE in wall-jet arrangement for all studied analytes. Practical applicability of this technique was demonstrated on the determination of 1-nitropyrene, 2-nitrofluorene, 3-nitrofluoranthene, and 5-nitroquinoline in drinking water after their preliminary separation and preconcentration using solid phase extraction with the limits of detection around 1 · 10−6 mol L−1.

  4. Preparation of poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids

    Energy Technology Data Exchange (ETDEWEB)

    Özcan, Ali, E-mail: aozcan3@anadolu.edu.tr; İlkbaş, Salih

    2015-09-03

    In this study, we have performed the preparation of over-oxidized poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode (Ox-PEDOT-nf/PGE) to develop a selective and sensitive voltammetric uric acid (UA) sensor. It was noted that the over-oxidation potential and time had a prominent effect on the UA response of the Ox-PEDOT-nf/PGE. Characterizations of PEDOT-nf/PGE and Ox-PEDOT-nf/PGE have been performed by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The highest voltammetric response of UA was obtained at pH 2.0. A linear relationship between the concentration of UA and oxidation peak currents was observed in the concentration range of 0.01–20.0 μM. The detection limit (1.3 nM according to S/N = 3) and reproducibility (RSD: 4.6 % for N:10) have also been determined. The effects of different substances on the determination of UA have been investigated. A very high peak separation value of 423 mV was obtained between UA and ascorbic acid which is the major interfering substance for UA. The use of Ox-PEDOT-nf/PGE has been successfully tested in the determination of UA in human blood serum and urine samples for the first time in the literature. - Highlights: • Modification of pencil graphite with over-oxidized PEDOT nanofibers was performed. • The prepared electrodes were used in the voltammetric determination of uric acid. • The over-oxidation potential and time has a prominent effect on the responses. • A very high peak separation (463 mV) was obtained between ascorbic and uric acids. • Analytical application of the electrodes was successfully tested in real samples.

  5. Preparation of poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids

    International Nuclear Information System (INIS)

    Özcan, Ali; İlkbaş, Salih

    2015-01-01

    In this study, we have performed the preparation of over-oxidized poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode (Ox-PEDOT-nf/PGE) to develop a selective and sensitive voltammetric uric acid (UA) sensor. It was noted that the over-oxidation potential and time had a prominent effect on the UA response of the Ox-PEDOT-nf/PGE. Characterizations of PEDOT-nf/PGE and Ox-PEDOT-nf/PGE have been performed by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The highest voltammetric response of UA was obtained at pH 2.0. A linear relationship between the concentration of UA and oxidation peak currents was observed in the concentration range of 0.01–20.0 μM. The detection limit (1.3 nM according to S/N = 3) and reproducibility (RSD: 4.6 % for N:10) have also been determined. The effects of different substances on the determination of UA have been investigated. A very high peak separation value of 423 mV was obtained between UA and ascorbic acid which is the major interfering substance for UA. The use of Ox-PEDOT-nf/PGE has been successfully tested in the determination of UA in human blood serum and urine samples for the first time in the literature. - Highlights: • Modification of pencil graphite with over-oxidized PEDOT nanofibers was performed. • The prepared electrodes were used in the voltammetric determination of uric acid. • The over-oxidation potential and time has a prominent effect on the responses. • A very high peak separation (463 mV) was obtained between ascorbic and uric acids. • Analytical application of the electrodes was successfully tested in real samples.

  6. Simultaneous square-wave voltammetric determination of aspartame and cyclamate using a boron-doped diamond electrode.

    Science.gov (United States)

    Medeiros, Roberta Antigo; de Carvalho, Adriana Evaristo; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando

    2008-07-30

    A simple and highly selective electrochemical method was developed for the simultaneous determination of aspartame and cyclamate in dietary products at a boron-doped diamond (BDD) electrode. In square-wave voltammetric (SWV) measurements, the BDD electrode was able to separate the oxidation peak potentials of aspartame and cyclamate present in binary mixtures by about 400 mV. The detection limit for aspartame in the presence of 3.0x10(-4) mol L(-1) cyclamate was 4.7x10(-7) mol L(-1), and the detection limit for cyclamate in the presence of 1.0x10(-4) mol L(-1) aspartame was 4.2x10(-6) mol L(-1). When simultaneously changing the concentration of both aspartame and cyclamate in a 0.5 mol L(-1) sulfuric acid solution, the corresponding detection limits were 3.5x10(-7) and 4.5x10(-6) mol L(-1), respectively. The relative standard deviation (R.S.D.) obtained was 1.3% for the 1.0x10(-4) mol L(-1) aspartame solution (n=5) and 1.1% for the 3.0x10(-3) mol L(-1) cyclamate solution. The proposed method was successfully applied in the determination of aspartame in several dietary products with results similar to those obtained using an HPLC method at 95% confidence level.

  7. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity.

    Science.gov (United States)

    Bentley, Cameron L; Kang, Minkyung; Maddar, Faduma M; Li, Fengwang; Walker, Marc; Zhang, Jie; Unwin, Patrick R

    2017-09-01

    Two dimensional (2D) semiconductor materials, such as molybdenum disulfide (MoS 2 ) have attracted considerable interest in a range of chemical and electrochemical applications, for example, as an abundant and low-cost alternative electrocatalyst to platinum for the hydrogen evolution reaction (HER). While it has been proposed that the edge plane of MoS 2 possesses high catalytic activity for the HER relative to the "catalytically inert" basal plane, this conclusion has been drawn mainly from macroscale electrochemical (voltammetric) measurements, which reflect the "average" electrocatalytic behavior of complex electrode ensembles. In this work, we report the first spatially-resolved measurements of HER activity on natural crystals of molybdenite, achieved using voltammetric scanning electrochemical cell microscopy (SECCM), whereby pixel-resolved linear-sweep voltammogram (LSV) measurements have allowed the HER to be visualized at multiple different potentials to construct electrochemical flux movies with nanoscale resolution. Key features of the SECCM technique are that characteristic surface sites can be targeted and analyzed in detail and, further, that the electrocatalyst area is known with good precision (in contrast to many macroscale measurements on supported catalysts). Through correlation of the local voltammetric response with information from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in a multi-microscopy approach , it is demonstrated unequivocally that while the basal plane of bulk MoS 2 (2H crystal phase) possesses significant activity, the HER is greatly facilitated at the edge plane ( e.g. , surface defects such as steps, edges or crevices). Semi-quantitative treatment of the voltammetric data reveals that the HER at the basal plane of MoS 2 has a Tafel slope and exchange current density ( J 0 ) of ∼120 mV per decade and 2.5 × 10 -6 A cm -2 (comparable to polycrystalline Co, Ni, Cu and Au), respectively, while the edge

  8. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity† †Electronic supplementary information (ESI) available: Movies S1 to S4: spatially resolved LSV-SECCM movies obtained from the electrocatalytic HER on the surface of bulk MoS2. Fig. S1 to S14: XRD, XPS, Raman, SEM and OM characterization of MoS2; SEM images of the nanopipets; WCA measurements; LSVs and Tafel plots obtained from the HER on MoS2. See DOI: 10.1039/c7sc02545a Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Kang, Minkyung; Maddar, Faduma M.; Li, Fengwang; Walker, Marc; Zhang, Jie

    2017-01-01

    Two dimensional (2D) semiconductor materials, such as molybdenum disulfide (MoS2) have attracted considerable interest in a range of chemical and electrochemical applications, for example, as an abundant and low-cost alternative electrocatalyst to platinum for the hydrogen evolution reaction (HER). While it has been proposed that the edge plane of MoS2 possesses high catalytic activity for the HER relative to the “catalytically inert” basal plane, this conclusion has been drawn mainly from macroscale electrochemical (voltammetric) measurements, which reflect the “average” electrocatalytic behavior of complex electrode ensembles. In this work, we report the first spatially-resolved measurements of HER activity on natural crystals of molybdenite, achieved using voltammetric scanning electrochemical cell microscopy (SECCM), whereby pixel-resolved linear-sweep voltammogram (LSV) measurements have allowed the HER to be visualized at multiple different potentials to construct electrochemical flux movies with nanoscale resolution. Key features of the SECCM technique are that characteristic surface sites can be targeted and analyzed in detail and, further, that the electrocatalyst area is known with good precision (in contrast to many macroscale measurements on supported catalysts). Through correlation of the local voltammetric response with information from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in a multi-microscopy approach, it is demonstrated unequivocally that while the basal plane of bulk MoS2 (2H crystal phase) possesses significant activity, the HER is greatly facilitated at the edge plane (e.g., surface defects such as steps, edges or crevices). Semi-quantitative treatment of the voltammetric data reveals that the HER at the basal plane of MoS2 has a Tafel slope and exchange current density (J 0) of ∼120 mV per decade and 2.5 × 10–6 A cm–2 (comparable to polycrystalline Co, Ni, Cu and Au), respectively, while the edge

  9. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Gómez-Marín, Ana M.; Hernández-Ortíz, Juan P.

    2014-01-01

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments

  10. Chiral magnetic currents with QGP medium response in heavy-ion collisions at RHIC and LHC energies

    Science.gov (United States)

    She, Duan; Feng, Sheng-Qin; Zhong, Yang; Yin, Zhong-Bao

    2018-03-01

    We calculate the electromagnetic current with a more realistic approach in the RHIC and LHC energy regions in the article. We take the partons formation time as the initial time of the magnetic field response of QGP medium. The maximum electromagnetic current and the time-integrated current are two important characteristics of the chiral magnetic effect (CME), which can characterize the intensity and duration of fluctuations of CME. We consider the finite frequency response of CME to a time-varying magnetic field, find a significant impact from QGP medium feedback, and estimate the generated electromagnetic current as a function of time, beam energy and impact parameter.

  11. Molecular modeling of the voltammetric oxidation at a glassy carbon electrode of the antimalarial drug primaquine and its prodrugs succinylprimaquine and maleylprimaquine

    Energy Technology Data Exchange (ETDEWEB)

    La-Scalea, Mauro A [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil); Menezes, Carla M.S. [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil); Matsutami, Guilherme C [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil); Polli, Michelle C [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil); Serrano, Silvia H.P. [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748 Bl. 2 sup., 05508-90 Sao Paulo (Brazil); Ferreira, Elizabeth I [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil)

    2006-07-15

    The 8-aminoquinoline primaquine (PQ) is the only antimalarial drug used as tissue schizonticide and relapsing malaria. Antichagasic activity was also reported. Nevertheless, as it also shows serious side effects, prodrugs such as succinyl and maleyl derivatives have been proposed to decrease its toxicity. Although PQ mechanism of action has not been completely elucidated, the promotion of oxidative stress is an advanced hypothesis that could explain its activity in both plasmodia and trypanosome parasites. The oxidation of PQ and its prodrugs, maleylprimaquine (MPQ) and succinylprimaquine (SPQ), was studied by cyclic voltammetry using glassy carbon electrode. All compounds were oxidized in aqueous medium, with the charge transfer process being pH-dependent in acidic medium and pH-independent in a weak basic medium, being the neutral form more easily oxidized. This indicated that the protonation of the nitrogen atoms displays a determinant role in the voltammetric oxidation, being both prodrugs more easily oxidized than PQ protonated forms, in the order: SPQ < MPQ < PQ. For a better understanding of this behavior, a molecular modeling study was performed using the AM1 semi-empirical method from Spartan 04 for Linux (v.119, Wavefunction Inc.). The medium pH showed to be fundamental not only to the electronic density of the quinoline ring but also to the rearrangement of the nitrogen side chain. The electronic density of primaquine non-protonated quinoline ring is higher than that in its protonated and diprotonated species. Also, the use of prodrugs and the degree of saturation of the carriers (maleic or succinic acid) interfere with this feature. SPQ and MPQ have a slight increase in the quinoline electronic density in comparison to PQ. Nevertheless, the carrier in the side chain of SPQ is closer to the quinoline ring than it is in MPQ, which accounts for the higher electronic density in the former. The most significant effect occurs in the correspondent protonated

  12. Molecular modeling of the voltammetric oxidation at a glassy carbon electrode of the antimalarial drug primaquine and its prodrugs succinylprimaquine and maleylprimaquine

    International Nuclear Information System (INIS)

    La-Scalea, Mauro A.; Menezes, Carla M.S.; Matsutami, Guilherme C.; Polli, Michelle C.; Serrano, Silvia H.P.; Ferreira, Elizabeth I.

    2006-01-01

    The 8-aminoquinoline primaquine (PQ) is the only antimalarial drug used as tissue schizonticide and relapsing malaria. Antichagasic activity was also reported. Nevertheless, as it also shows serious side effects, prodrugs such as succinyl and maleyl derivatives have been proposed to decrease its toxicity. Although PQ mechanism of action has not been completely elucidated, the promotion of oxidative stress is an advanced hypothesis that could explain its activity in both plasmodia and trypanosome parasites. The oxidation of PQ and its prodrugs, maleylprimaquine (MPQ) and succinylprimaquine (SPQ), was studied by cyclic voltammetry using glassy carbon electrode. All compounds were oxidized in aqueous medium, with the charge transfer process being pH-dependent in acidic medium and pH-independent in a weak basic medium, being the neutral form more easily oxidized. This indicated that the protonation of the nitrogen atoms displays a determinant role in the voltammetric oxidation, being both prodrugs more easily oxidized than PQ protonated forms, in the order: SPQ < MPQ < PQ. For a better understanding of this behavior, a molecular modeling study was performed using the AM1 semi-empirical method from Spartan 04 for Linux (v.119, Wavefunction Inc.). The medium pH showed to be fundamental not only to the electronic density of the quinoline ring but also to the rearrangement of the nitrogen side chain. The electronic density of primaquine non-protonated quinoline ring is higher than that in its protonated and diprotonated species. Also, the use of prodrugs and the degree of saturation of the carriers (maleic or succinic acid) interfere with this feature. SPQ and MPQ have a slight increase in the quinoline electronic density in comparison to PQ. Nevertheless, the carrier in the side chain of SPQ is closer to the quinoline ring than it is in MPQ, which accounts for the higher electronic density in the former. The most significant effect occurs in the correspondent protonated

  13. Effects of current physical activity on affective response to exercise: physical and social-cognitive mechanisms.

    Science.gov (United States)

    Magnan, Renee E; Kwan, Bethany M; Bryan, Angela D

    2013-01-01

    Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this study was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Participants reported their current level of physical activity, exercise self-efficacy and affect during a 30-minute bout of moderate-intensity exercise. More active individuals experienced higher levels of positive affect and tranquillity and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. These models indicate that affect experienced during physical activity is related to the current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed.

  14. Resistance temperature sensor aging degradation identification using LCSR (Loop Current Step Response) test

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos; Goncalves, Iraci Martine Pereira

    2013-01-01

    Most critical process temperatures in nuclear power plants are measured using RTD (Resistance Temperature Detector) and thermocouples. In a PWR (Pressure Water Reactor) plant, the primary coolant temperature and feedwater temperature are measured using RTDs, and the temperature of the water that exits the reactor core is measured using thermocouples. These thermocouples are mainly used for temperature monitoring purposes and are therefore not generally subject to very stringent requirements for accuracy and response-time performance. In contrast, primary coolant RTDs typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. The response time of RTDs and thermocouples has been characterized by a single parameter called the Plunge Time Constant. This is defined as the time it takes the sensor output to achieve 63.2 percent of its final value after a step change in temperature is impressed on its surface. This step change is typically achieved by suddenly immersing the sensor in a rotating tank of water, called Plunge Test. In nuclear reactors, however, plunge testing is inconvenient because the sensor must be removed from the reactor coolant piping and taken to a laboratory for testing. Nuclear reactor service conditions of 150 bar and 300°C are difficult to reproduce in the laboratory. Therefore, all laboratory tests are performed at much milder conditions, and the results are extrapolated to service conditions. This leads to significant errors in the measurement of sensor response times and an insitu test method called LCSR - Loop Current Step Response test was developed in the mid-1970s to measure remotely the response time of RTDs. In the LCSR method, the sensing element is heated by an electric current; the current causes Joule heating in the sensor and results in a temperature transient inside the sensor. The temperature transient in the element is recorded, and from this transient, the

  15. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen

    International Nuclear Information System (INIS)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-01-01

    An electrochemical sensor was prepared by modifying a glassy carbon electrode (GCE) with a composite of yttrium (III) oxide nanoparticles (Y_2O_3NPs) and carbon nanotubes (CNTs) for the determination of acetaminophen (ACT). Compared with a bare GCE and CNTs/GCE, the Y_2O_3NPs/CNTs/GCE exhibited a well-defined redox couple for ACT and highly enhanced the current response. The separations in the anodic and cathodic peak potentials (ΔE_p) for ACT were 552 mV, 24 mV and 10 mV at ba4re GCE, CNTs/GCE and Y_2O_3NPs/CNTs/GCE, respectively. The observation of only 10 mV of ΔE_p for ACT at Y_2O_3NPs/CNTs/GCE was a clear indication of a great acceleration of the electrode process compared to bare GCE and GCE modified with CNTs. Also, L-ascorbic acid (L-AA) and L-tyrosine (L-TRY) did not interfere with the selective determination of ACT. Square wave voltammetry (SWV) was performed for the quantification of ACT. A linear plot was obtained for current responses versus the concentrations of ACT over the range from 1.0 × 10"−"1"0 to 1.8 × 10"−"8 M with a detection limit of 3.0 × 10"−"1"1 M (based on 3S_b/m). The proposed composite material provided high electrocatalytic activity, improved voltammetric behavior, good selectivity and good reproducibility. The accurate quantification of ACT makes the proposed electrode of great interest for the public health. - Highlights: • A voltammetric sensor based on yttrium oxide was prepared for the detection of ACT. • The proposed electrode has greatly accelerated the voltammetric process of ACT. • A detection limit of 0.03 nM was obtained for ACT. • The proposed electrode exhibited great selectivity for ACT in the presence of L-AA and L-TRY. • The composite material exhibited high sensitivity, good stability and excellent reproducibility.

  16. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-02-01

    Full Text Available A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200–1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability. Keywords: Pheniramine, Sodium lauryl sulfate (SLS, Glassy carbon electrode modified with multi-walled carbon nanotubes (GCE-MWCNTs, Solubilized systems, Voltammetric quantification

  17. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud, E-mail: m.ghaneimotlagh@yahoo.com [Young Researchers and Elite Club, Kerman Branch, Islamic Azad University, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali; Heydari, Abolfazl [Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ghanei-Motlagh, Reza [Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Gupta, Vinod K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa)

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2′–((9E,10E)–1,4–dihydroxyanthracene–9,10–diylidene) bis(hydrazine–1–carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO–IIP was characterized by means of Fourier transform infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO–IIP. The prepared RGO–IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO–IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L{sup −1}. The limit of detection (LOD) was found to be 0.02 μg L{sup −1} (S/N = 3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. - Highlights: • The novel Hg(II)-imprinted polymer was synthesized and characterized. • The resulting RGO–IIP was applied for electrochemical monitoring of Hg(II) ions. • The proposed sensor was successfully applied for determination of Hg(II) in real water samples.

  18. Uniform deposition of water-soluble CdS quantum dots on TiO2 nanotube arrays by cyclic voltammetric electrodeposition: Effectively prevent aggregation and enhance visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Xiaojiao; Lin, Shiwei; Liao, Jianjun; Pan, Nengqian; Li, Danhong; Cao, Xiankun; Li, Jianbao

    2013-01-01

    Highlights: • Water-soluble CdS QDs were deposited on the TNTAs by DC electrodeposition, CV electrodeposition, and SILAR. • The CV method could effectively prevent the aggregation and uniformly deposit CdS QDs onto the TNTAs. • The CTAB/CdS/TNTAs prepared by the CV method exhibited superior photoelectrical properties and photocatalytic activity. -- Abstract: Water-soluble CdS quantum dots (QDs) covered with cationic surfactant-cetyltrimethylammonium bromide (CTAB) were deposited on the highly ordered TiO 2 nanotube arrays (TNTAs) by various methods, such as direct current (DC) electrodeposition, cyclic voltammetric (CV) electrodeposition, and successive ionic layer adsorption reaction (SILAR). The morphology measurements show that CTAB capping could well control the QD size and the CV method could effectively prevent the nanoparticle aggregation and uniformly deposit QDs onto TNTAs. Among all the deposition methods studied, the sample prepared by the CV method possesses superior photoelectrical properties and photocatalytic activity. A maximum photoconversion efficiency of 2.81% is achieved for the CdS/TNTAs prepared by CV electrodeposition, which exhibits about 17 times enhancement over the efficiency of the sample prepared by DC electrodeposition. And the photocatalytic degradation of methyl orange under visible-light irradiation demonstrates that the rate constant of the sample prepared by the CV method is almost seven times of that of the untreated TNTAs. Moreover, the underlying mechanism for the improving properties has been discussed

  19. Spectral response, dark current, and noise analyses in resonant tunneling quantum dot infrared photodetectors.

    Science.gov (United States)

    Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas

    2016-10-20

    Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.

  20. Precipitation response to the current ENSO variability in a warming world

    Science.gov (United States)

    Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L.

    2013-12-01

    The major triggers of past and recent droughts include large modes of variability, such as ENSO, as well as specific and persistent patterns of sea surface temperature anomalies (SSTAs; Hoerling and Kumar, 2003, Shin et al. 2010, Schubert et al. 2009). However, alternative drought initiators are also anticipated in response to increasing greenhouse gases, potentially changing the relative contribution of ocean variability as drought initiator. They include the intensification of the current zonal wet-dry patterns (the thermodynamic mechanism, Held and Soden, 2006), a latitudinal redistribution of global precipitation (the dynamical mechanism, Seager et al. 2007, Seidel et al. 2008, Scheff and Frierson 2008) and a reduction of local soil moisture and precipitation recycling (the land-atmosphere argument). Our ultimate goal is to investigate whether the relative contribution of those mechanisms change over time in response to global warming. In this study, we first perform an EOF analysis of the 1900-1999 time series of observed global SST field and identify a simple ENSO-like (ENSOL) mode of SST variability. We show that this mode is well spatially and temporally correlated with observed worldwide regional precipitation and drought variability. We then develop concise metrics to examine the fidelity with which the CMIP5 coupled global climate models (CGCMs) capture this particular ENSO-like mode in the current climate, and their ability to replicate the observed teleconnections with precipitation. Based on the CMIP5 model projections of future climate change, we finally analyze the potential temporal variations in ENSOL to be anticipated under further global warming, as well as their associated teleconnections with precipitation (pattern, amplitude, and total response). Overall, our approach allows us to determine what will be the effect of the current ENSO-like variability (i.e., as measured with instrumental observations) on precipitation in a warming world. This

  1. Sensors properties of an alkylamine-intercalated kaolinite material towards the voltammetric preconcentration of [Ru(CN)6]4- at a clay-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tonle, I.K. [Ottawa Univ., ON (Canada). Dept. of Chemistry, Center for Catalysis Research and Innovation; Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Dschang Univ. (Cameroon). Dept. de Chimie; Bouwe, B.; Rose, G.; Ngameni, E. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Detellier, C. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences

    2008-07-01

    This study discussed the sensor properties of a kaolinite material in relation to the voltammetric preconcentration of ruthenium (Ru) anions in a clay-modified electrode. An organoclay was intercalated at room temperature with a layer of hexylamine. Dimethylsulfoxide (DMSO) was intercalated between the clay layers and displaced in wet conditions by the akylamine. The modified clay was then characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The analyses confirmed the incorporation of the hexylamine between the kaolinite platelets. The organokaolinite was then studied for use as a preconcentration agent when coated on the active surface of a glassy carbon electrode for the accumulation of [Ru(CN)6]4- anions in a hydrochloric acid medium. Factors that influenced the conductivity of the film and the diffusion of the electroactive species within the film included the concentration of the electrolyte, and the redox probe. The study showed that kaolinite can be used as a material in electrochemical sensors.

  2. Is transcranial direct current stimulation a potential method for improving response inhibition?☆

    OpenAIRE

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-01-01

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the tran...

  3. Foraging response and acclimation of ambush feeding and feeding-current feeding copepods to toxic dinoflagellates

    DEFF Research Database (Denmark)

    Xu, Jiayi; Nielsen, Lasse Tor; Kiørboe, Thomas

    2018-01-01

    reticulatum. We hypothesize (1) that ambush feeders are less affected by toxic algae than feeding-current feeders, (2) that copepods acclimate to the toxic algae, and (3) that phytoplankton cells previously exposed to copepod cues elicit stronger responses. Both copepod species consumed the toxic algae...... to examine the response and temporal acclimation (5 d) of two copepods with different foraging behaviors to toxic dinoflagellates. Feeding-current feeding Temora longicornis and ambush feeding Acartia tonsa were offered three strains of toxic Alexandrium tamarense and a nontoxic control Protoceratium...... at a reduced rate and there was no difference in their net-response, but the mechanisms differed. T. longicornis responded in strain-specific ways by reducing its feeding activity, by rejecting captured algae, or by regurgitating consumed cells. A. tonsa reduced its consumption rate, jump frequency, and jump...

  4. Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples

    International Nuclear Information System (INIS)

    Lisboa-Filho, P N; Deimling, C V; Ortiz, W A

    2010-01-01

    In this contribution superconducting specimens of YBa 2 Cu 3 O 7-δ were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.

  5. Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples

    Energy Technology Data Exchange (ETDEWEB)

    Lisboa-Filho, P N [UNESP - Universidade Estadual Paulista, Grupo de Materiais Avancados, Departamento de Fisica, Bauru (Brazil); Deimling, C V; Ortiz, W A, E-mail: plisboa@fc.unesp.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos (Brazil)

    2010-01-15

    In this contribution superconducting specimens of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.

  6. A novel label-free voltammetric immunosensor for the detection of {alpha}-fetoprotein using functional titanium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liang Wenbin [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)], E-mail: yuanruo@swu.edu.cn; Chai Yaqin; Li Yan; Zhuo Ying [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2008-01-01

    A highly sensitive label-free voltammetric immunosensor was developed based on the functional titanium dioxide nanoparticles (PV-NTiP), which was prepared by capping 1,1'-bis-(2-phosphonoethyl)-4,4'-bipyridinium dibromide (PV) on the surface of the titanium dioxide nanoparticles (NTiP) with covalent attachment. The PV-NTiP has prominent biocompatibility, good electron transfer ability, primarily excellent adsorption, large specific surface area and positively charged environment. As a result, the negatively charged gold nanoparticles (NGP) could be adsorbed on the PV-NTiP modified electrode surface by electrostatic adsorption, and then to immobilize {alpha}-1-fetoprotein antibody (anti-AFP) for the assay of {alpha}-1-fetoprotein (AFP). The fabricated procedures and electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The anti-AFP/NGP/PV-NTiP modified electrode was sensitive to AFP in linear relation between 1.25 and 200 ng/mL with the correlation coefficient of 0.9982, and the detection limit (S/N = 3) is 0.6 ng/mL under the optimal conditions. In addition, the proposed immunosensor exhibits good sensitivity, selectivity, stability and long-term maintenance of bioactivity and it may be used to immobilize other biomoleculars to develop biosensor for the detection of other antigens or biocompounds.

  7. Detection of defect states responsible for leakage current in ultrathin tantalum pentoxide (Ta2O5) films by zero-bias thermally stimulated current spectroscopy

    International Nuclear Information System (INIS)

    Lau, W.S.; Zhong, L.; Lee, A.; See, C.H.; Han, T.; Sandler, N.P.; Chong, T.C.

    1997-01-01

    Defect states responsible for leakage current in ultrathin (physical thickness 2 O 5 ) films were measured with a novel zero-bias thermally stimulated current technique. It was found that defect states A, whose activation energy was estimated to be about 0.2 eV, can be more efficiently suppressed by using N 2 O rapid thermal annealing (RTA) instead of using O 2 RTA for postdeposition annealing. The leakage current was also smaller for samples with N 2 O RTA than those with O 2 RTA for postdeposition annealing. Hence, defect states A are quite likely to be important in causing leakage current. copyright 1997 American Institute of Physics

  8. Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems

    International Nuclear Information System (INIS)

    Bell, Christopher G.; Anastassiou, Costas A.; O’Hare, Danny; Parker, Kim H.; Siggers, Jennifer H.

    2012-01-01

    Highlights: ► Theory of ac voltammetry on ideal surface-confined redox systems. ► Analytical description of the harmonics and transient of the current response. ► Solution valid for high frequency, large-amplitude sinusoidal input voltage. ► Protocol for determining system parameters from experimental current responses. - Abstract: Large-amplitude ac voltammetry, where the applied voltage is a large-amplitude sinusoidal waveform superimposed onto a dc ramp, is a powerful method for investigating the reaction kinetics of surface-confined redox species. Here we consider the large-amplitude ac voltammetric current response of a quasi-reversible, ideal, surface-confined redox system, for which the redox reaction is described by Butler–Volmer theory. We derive an approximate analytical solution, which is valid whenever the angular frequency of the sine-wave is much larger than the rate of the dc ramp and the standard kinetic rate constant of the redox reaction. We demonstrate how the third harmonic and the initial transient of the current response can be used to estimate parameters of the electrochemical system, namely the kinetic rate constant, the electron transfer coefficient, the adsorption formal potential, the initial proportion of oxidised molecules and the linear double-layer capacitance.

  9. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.

    Science.gov (United States)

    Esplandiu, M J; Pacios, M; Cyganek, L; Bartroli, J; del Valle, M

    2009-09-02

    In this paper, the electrochemical behavior of different myoglobin-modified carbon electrodes is evaluated. In particular, the performance of voltammetric biosensors made of forest-like carbon nanotubes, carbon nanotube composites and graphite composites is compared by monitoring mainly the electrocatalytic reduction of H(2)O(2) by myoglobin and their corresponding electroanalytical characteristics. Graphite composites showed the worst electroanalytical performance, exhibiting a small linear range, a limit of detection (LOD) of 9 x 10(-5) M and low sensitivity. However, it was found that the electrochemical response was enhanced with the use of carbon nanotube-based electrodes with LOD up to 5 x 10(-8) M, higher sensitivities and wider linear range response. On the one hand, in the case of the CNT epoxy composite, the improvement in the response can be mainly attributed to its more porous surface which allows the immobilization of higher amounts of the electroactive protein. On the other hand, in the case of the forest-like CNT electrodes, the enhancement is due to an increase in the electron transfer kinetics. These findings encourage the use of myoglobin-modified carbon nanotube electrodes as potential (bio)sensors of H(2)O(2) or O(2) in biology, microbiology and environmental fields.

  10. Monitoring of quality and storage time of unsealed pasteurized milk by voltammetric electronic tongue

    International Nuclear Information System (INIS)

    Wei, Zhenbo; Wang, Jun; Zhang, Xi

    2013-01-01

    A voltammetric electronic tongue (VE-tongue) was self-developed and applied to monitor the quality and storage time of unsealed pasteurized milk. The VE-tongue comprised four working electrodes: gold, silver, platinum, and palladium electrode. Two potential waveforms: Multi-frequency rectangle pulse voltammetry (MRPV) and multi-frequency staircase pulse voltammetry (MSPV) were applied to working electrodes in the study, and both of MRPV and MSPV consisted of three frequency segments: 1 Hz, 10 Hz, and 100 Hz. The total areas under the corresponding curves obtained by VE-tongue in the three frequencies were applied as characteristic data, which were evaluated by the principal component analysis (PCA) and cluster analysis (CA). The results of PCA and CA indicate that the milk samples of different storage time could be successfully classified by the VE-tongue based on MRPV and MSPV, respectively. Combining the areas obtained by the VE-tongue based on MRPV and MSPV, the classification results of PCA and CA were improved evidently. The total bacterial count, acidity and viscosity of the milk samples were also measured during the storage, and those physicochemical characteristics showed regular configuration in PCA and CA plots. Furthermore, the total bacterial count and viscosity properties were predicted by partial least squares regression (PLSR) and least squares-support vector machines (LS-SVM), and the combination of the areas obtained by the VE-tongue based on the MRPV and MSPV were applied as the input data of PLSR and LS-SVM. Both the prediction techniques performed well in predicting viscosity and total bacterial count, and the prediction results of LS-SVM were better than that of PLSR. Those results demonstrate that the VE-tongue could be applied to monitor the quality storage time of unsealed pasteurized milk

  11. A novel nanostructured composite formed by interaction of copper octa(3-aminopropyl)octasilsesquioxane with azide ligands: Preparation, characterization and a voltammetric application

    International Nuclear Information System (INIS)

    Ribeiro do Carmo, Devaney; Paim, Leonardo Lataro; Metzker, Gustavo; Dias Filho, Newton Luiz; Stradiotto, Nelson Ramos

    2010-01-01

    This study presents the preparation, characterization and application of copper octa(3-aminopropyl)octasilsesquioxane following its subsequent reaction with azide ions (ASCA). The precursor (AC) and the novel compound (ASCA) were characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), scanning electronic microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analyses and voltammetric technique. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E 1/2 ox ) = 0.30 V and an irreversible process at 1.1 V (vs. Ag/AgCl; NaCl 1.0 M; v=20mVs -1 ). The material is very sensitive to nitrite concentrations. The modified graphite paste electrode (GPE-ASCA) gives a linear range from 1.0 x 10 -4 to 4.0 x 10 -3 mol L -1 for the determination of nitrite, with a detection limit of 2.1 x 10 -4 mol L -1 and the amperometric sensitivity of 8.04 mA/mol L -1 .

  12. Aging time and brand determination of pasteurized milk using a multisensor e-nose combined with a voltammetric e-tongue.

    Science.gov (United States)

    Bougrini, Madiha; Tahri, Khalid; Haddi, Zouhair; El Bari, Nezha; Llobet, Eduard; Jaffrezic-Renault, Nicole; Bouchikhi, Benachir

    2014-12-01

    A combined approach based on a multisensor system to get additional chemical information from liquid samples through the analysis of the solution and its headspace is illustrated and commented. In the present work, innovative analytical techniques, such as a hybrid e-nose and a voltammetric e-tongue were elaborated to differentiate between different pasteurized milk brands and for the exact recognition of their storage days through the data fusion technique of the combined system. The Principal Component Analysis (PCA) has shown an acceptable discrimination of the pasteurized milk brands on the first day of storage, when the two instruments were used independently. Contrariwise, PCA indicated that no clear storage day's discrimination can be drawn when the two instruments are applied separately. Mid-level of abstraction data fusion approach has demonstrated that results obtained by the data fusion approach outperformed the classification results of the e-nose and e-tongue taken individually. Furthermore, the Support Vector Machine (SVM) supervised method was applied to the new subset and confirmed that all storage days were correctly identified. This study can be generalized to several beverage and food products where their quality is based on the perception of odor and flavor. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Studies on sorption of cadmium (II) ions onto Haro river sand from aqueous media using radiotracer and voltammetric techniques

    International Nuclear Information System (INIS)

    Ahmed, R.; Hasany, S.M.; Yamin, T.; Ansari, M.S.

    2006-01-01

    Sorption of Cd(II) ions on Haro river sand has been studied using radiotracer technique. The effects of pH and acid concentrations on the sorption were studied. The sorption increases with pH. reaches a maximum at pH 7 and decreases at higher pH values. With acids, it was found that sorption decreases with increasing acid concentration, and for more oxidizing acids sorption was less. Kinetic studies indicate that mostly intra particle diffusion occurs with first order rate constant of 18.45 x 10 -2 min -1 . The sorption data follow the Freundlich and Dubinin-Radushkevich (D-R) isotherms. In addition to the radiotracer method, voltammetric technique was applied and the results by the two techniques are in good agreement. The sorption free energy value indicates that adsorption process is chemisorption. The effect of temperature was studied and values of ΔH, ΔS and ΔG for Cd(II) have been calculated which are 20.15 kJ mol -1 , 74.04 J mol -1 K -1 and -1.754 kJ mol -1 . Adsorption of Cd(II) on Haro river sand is endothermic, spontaneous and entropy driven. The effect of different anions and cations at different concentrations was studied. Levels of cadmium have been monitored in water and sediments. (orig.)

  14. Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa Cavendish) and functionalized silica nanoparticles for voltammetric determination of l-tyrosine.

    Science.gov (United States)

    Rahimi-Mohseni, Mohadeseh; Raoof, Jahan Bakhsh; Ojani, Reza; Aghajanzadeh, Tahereh A; Bagheri Hashkavayi, Ayemeh

    2018-07-01

    In this paper, a new and facile method for the electrochemical determination of l-tyrosine was designed. First, 3-mercaptopropyl trimethoxysilane-functionalized silica nanoparticles were added to a paper disc. Then, the banana peel tissue and the mediator potassium hexacyanoferrate were dropped onto the paper, respectively. The modified paper disc was placed on the top of the graphite screen printed electrode and electrochemical characterization of this biosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy methods. The effective parameters like pH, banana peel tissue percentage, and the amount of mediator loading were optimized. l-tyrosine measurements were done by differential pulse voltammetry with a little sample (3 μL) for analysis. The biosensor showed a linear response for l-tyrosine in the wide concentration range of 0.05-600 μM and a low detection limit about 0.02 μM because of the co-catalytic effect of enzyme and nanoparticles. The stability of the biosensor and its selectivity were evaluated. This biosensor was applied for the voltammetric determination of l-tyrosine in the blood plasma sample. The results of the practical application study were comparable with the standard method (HPLC). In conclusion, a simple, inexpensive, rapid, sensitive and selective technique was successfully applied to the l-tyrosine analysis of the little samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Latitude-dependent delay in the responses of the equatorial electrojet and Sq currents to X-class solar flares

    Science.gov (United States)

    Nogueira, Paulo A. B.; Abdu, Mangalathayil A.; Souza, Jonas R.; Denardini, Clezio M.; Barbosa Neto, Paulo F.; Serra de Souza da Costa, João P.; Silva, Ana P. M.

    2018-01-01

    We have analyzed low-latitude ionospheric current responses to two intense (X-class) solar flares that occurred on 13 May 2013 and 11 March 2015. Sudden intensifications, in response to solar flare radiation impulses, in the Sq and equatorial electrojet (EEJ) currents, as detected by magnetometers over equatorial and low-latitude sites in South America, are studied. In particular we show for the first time that a 5 to 8 min time delay is present in the peak effect in the EEJ, with respect that of Sq current outside the magnetic equator, in response to the flare radiation enhancement. The Sq current intensification peaks close to the flare X-ray peak, while the EEJ peak occurs 5 to 8 min later. We have used the Sheffield University Plasmasphere-Ionosphere Model at National Institute for Space Research (SUPIM-INPE) to simulate the E-region conductivity enhancement as caused by the flare enhanced solar extreme ultraviolet (EUV) and soft X-rays flux. We propose that the flare-induced enhancement in neutral wind occurring with a time delay (with respect to the flare radiation) could be responsible for a delayed zonal electric field disturbance driving the EEJ, in which the Cowling conductivity offers enhanced sensitivity to the driving zonal electric field.

  16. A screen-printed carbon electrode modified with gold nanoparticles, poly(3,4-ethylenedioxythiophene), poly(styrene sulfonate) and a molecular imprint for voltammetric determination of nitrofurantoin.

    Science.gov (United States)

    Dechtrirat, Decha; Yingyuad, Peerada; Prajongtat, Pongthep; Chuenchom, Laemthong; Sriprachuabwong, Chakrit; Tuantranont, Adisorn; Tang, I-Ming

    2018-04-23

    A molecularly imprinted polymer (MIP) and a nanocomposite prepared from gold nanoparticles (AuNP) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) were deposited on a screen-printed carbon electrode (SPCE). The nanocomposite was prepared by one-pot simultaneous in-situ formation of AuNPs and PEDOT:PSS and was then inkjet-coated onto the SPCE. The MIP film was subsequently placed on the modified SPCE by co-electrodeposition of o-phenylenediamine and resorcinol in the presence of the antibiotic nitrofurantoin (NFT). Using differential pulse voltammetry (DPV), response at the potential of ~ 0.1 V (vs. Ag/AgCl) is linear in 1 nM to 1000 nM NFT concentration range, with a remarkably low detection limit (at S/N = 3) of 0.1 nM. This is two orders of magnitude lower than that of the control MIP sensor without the nanocomposite interlayer, thus showing the beneficial effect of AuNP-PEDOT:PSS. The electrode is highly reproducible (relative standard deviation 3.1% for n = 6) and selective over structurally related molecules. It can be re-used for at least ten times and was found to be stable for at least 45 days. It was successfully applied to the determination of NFT in (spiked) feed matrices and gave good recoveries. Graphical abstract Schematic representation of a voltammetric sensor for the determination of nitrofurantoin. The sensor is based on a screen-printed carbon electrode (SPCE) modified with an inkjet-printed gold nanoparticles-poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) nanocomposite and a molecularly imprinted polymer.

  17. A study of the air-shower response of current-limited spark chambers

    International Nuclear Information System (INIS)

    Porter, M.R.; Hodson, A.L.; Bull, R.M.

    1982-01-01

    The efficiency of current-limited spark chambers (discharge chambers) and their relative response to shower electrons and photons are investigated. A stack of six horizontal 1m x 10 cm discharge chambers, above one another, is triggered by air showers falling on an adjacent discharge-chamber array. Particular combinations of discharges show that the efficiency of the chambers is very high and that a significant fraction of the discharges is due to incident photons

  18. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Aysegul Kutluay [Department of Medical Laboratory, Vocational School of Health Services, Harran University, Şanlıurfa 63510 (Turkey); Teker, Tugce; Duzmen, Sehriban [Department of Chemistry, Harran University, Şanlıurfa 63510 (Turkey); Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr [Department of Chemistry, Harran University, Şanlıurfa 63510 (Turkey)

    2016-09-01

    An electrochemical sensor was prepared by modifying a glassy carbon electrode (GCE) with a composite of yttrium (III) oxide nanoparticles (Y{sub 2}O{sub 3}NPs) and carbon nanotubes (CNTs) for the determination of acetaminophen (ACT). Compared with a bare GCE and CNTs/GCE, the Y{sub 2}O{sub 3}NPs/CNTs/GCE exhibited a well-defined redox couple for ACT and highly enhanced the current response. The separations in the anodic and cathodic peak potentials (ΔE{sub p}) for ACT were 552 mV, 24 mV and 10 mV at ba4re GCE, CNTs/GCE and Y{sub 2}O{sub 3}NPs/CNTs/GCE, respectively. The observation of only 10 mV of ΔE{sub p} for ACT at Y{sub 2}O{sub 3}NPs/CNTs/GCE was a clear indication of a great acceleration of the electrode process compared to bare GCE and GCE modified with CNTs. Also, L-ascorbic acid (L-AA) and L-tyrosine (L-TRY) did not interfere with the selective determination of ACT. Square wave voltammetry (SWV) was performed for the quantification of ACT. A linear plot was obtained for current responses versus the concentrations of ACT over the range from 1.0 × 10{sup −10} to 1.8 × 10{sup −8} M with a detection limit of 3.0 × 10{sup −11} M (based on 3S{sub b}/m). The proposed composite material provided high electrocatalytic activity, improved voltammetric behavior, good selectivity and good reproducibility. The accurate quantification of ACT makes the proposed electrode of great interest for the public health. - Highlights: • A voltammetric sensor based on yttrium oxide was prepared for the detection of ACT. • The proposed electrode has greatly accelerated the voltammetric process of ACT. • A detection limit of 0.03 nM was obtained for ACT. • The proposed electrode exhibited great selectivity for ACT in the presence of L-AA and L-TRY. • The composite material exhibited high sensitivity, good stability and excellent reproducibility.

  19. Current Issues and Situation of Producer Responsibility in Waste Management in Indonesia

    Directory of Open Access Journals (Sweden)

    Antonius Priyo Nugroho Sulami

    2017-11-01

    Full Text Available Producer responsibility for wastes has been encouraged in Indonesia since 2008. The Ministry of Environment of the Republic of Indonesia also promoted the reduce, reuse, and recycle (3R concept using the community-based approach of waste banks integrated with the extended producer responsibility (EPR concept. However, related research and implementation are still limited. This study aims to identify the challenges of fulfilling producer responsibility in waste management and determine whether the integration concept could generate outcomes expected from the EPR concept. A semi-structured interview survey of several stakeholders from the government, industrial, and waste management sectors was conducted and the data generated was used to simulate an integration scheme using a system dynamics approach. Secondary data and information from Bandung municipality were used as input for the simulation. The interview survey found that the concerns and issues of fulfilling producer responsibility in waste management include lack of awareness, unavailability of clear guidelines, and the limited capacity of the current recycling sector. The results of the simulation suggested that if the integration scheme is applied, each business entity might bear the responsibility of IDR 29.4 million per year and 14.7 tons of waste per year for the scope of four sectors and IDR 34.1 million per year and 17 tons of waste per year for the scope of two sectors.

  20. Electrochemical Study of Esculetin Nitration by Digital Simulation of Cyclic Voltammograms

    Directory of Open Access Journals (Sweden)

    Lida Khalafi

    2013-01-01

    Full Text Available The reaction of electrochemically generated o-quinones from oxidation of esculetin as Michael acceptor with nitrite ion as nucleophile has been studied using cyclic voltammetry. The reaction mechanism is believed to be EC, including oxidation of catechol moiety of esculetin followed by Michael addition of nitrite ion. The observed homogeneous rate constants (obs for reactions were estimated by comparing the experimental voltammetric responses with the digitally simulated results based on the proposed mechanism. Also the effects of pH and nucleophile concentration on voltammetric behavior and the rate constants of chemical reactions were described.

  1. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    Science.gov (United States)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-12-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.

  2. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    International Nuclear Information System (INIS)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-01-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies

  3. Current Debates in Corporate Social Responsibility: An Agenda for Research

    Directory of Open Access Journals (Sweden)

    David Crowther

    2007-06-01

    Full Text Available Corporate Social Responsibility (CSR has a particular prominence at this point in time, featuring heavily in the discourses of both academe and business. The understanding of what is meant by CSR continues to evolve as a consensus is reached. Nevertheless some important debates continue – or are commencing – which need to be resolved. It is the purpose of this paper to highlight these as some of the current debates within the CSR community – and hence form a significant part of an agenda for research in the area. Specifically we focus upon three key areas for the management of business, namely setting standards for reporting, identifying and implementing sustainable practice, and the management of risk.

  4. Electrochemical determination of resveratrol in dietary supplements at a boron-doped diamond electrode in the presence of hexadecyltrimethylammonium bromide using square-wave adsorptive stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Yardim Yavuz

    2017-01-01

    Full Text Available A sensitive electroanalytical methodology for the determination of resveratrol is presented for the first time using adsorptive stripping voltammetry at a bare boron-doped diamond (BDD electrode. In cyclic voltammetry, resveratrol shows one irreversible and an adsorption-controlled oxidation peak at a BDD electrode. The voltammetric results indicated that in the presence of hexadecyl trimethyl ammonium bromide, the BDD electrode remarkably enhanced the oxidation of resveratrol, which leads to an improvement in the peak current with a shift of the peak potential to more positive values. Using the square-wave stripping mode, the compound yielded a well-defined voltammetric response in 0.1 M nitric acid solution containing 100 μmol L-1 hexadecyl trimethyl ammonium bromide at 0.74 V (vs. Ag/AgCl, after 60 s accumulation at the open-circuit condition. A linear calibration graph was obtained in the concentration range 0.025 to 60.0 μg mL-1, with a detection limit of 0.0063 μg mL-1. The applicability of the proposed method was verified by analysis of resveratrol in commercial dietary supplements.

  5. Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations.

    Science.gov (United States)

    Stoffelsma, Chantal; Rodriguez, Paramaconi; Garcia, Gonzalo; Garcia-Araez, Nuria; Strmcnik, Dusan; Marković, Nenad M; Koper, Marc T M

    2010-11-17

    The role of alkali cations (Li(+), Na(+), K(+), Cs(+), and Be(2+)) on the blank voltammetric response and the oxidative stripping of carbon monoxide from stepped Pt single-crystal electrodes in alkaline media has been investigated by cyclic voltammetry. A strong influence of the nature of the cation on both the blank voltammetric profile and the CO oxidation is observed and related to the influence of the cation on the specific adsorption of OH on the platinum surface. Especially Li(+) and Be(2+) cations markedly affect the adsorption of OH and thereby have a significant promoting effect on CO(ads) oxidation. The voltammetric experiments suggest that, on Pt(111), the influence of Li(+) (and Be(2+)) is primarily through a weakening of the repulsive interactions between the OH in the OH adlayer, whereas in the presence of steps also, the onset of OH adsorption is at a lower potential, both on steps and on terraces.

  6. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  7. Forget the Desk Job: Current Roles and Responsibilities in Entry-Level Reference Job Advertisements

    Science.gov (United States)

    Detmering, Robert; Sproles, Claudene

    2012-01-01

    This study examines the evolving roles and responsibilities of entry-level academic reference positions, as stated in recent job advertisements posted on the American Library Association's JobLIST Web site and other sources. Findings from a content analysis of these advertisements indicate that current entry-level reference positions in academic…

  8. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization.

    Science.gov (United States)

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping

    2018-06-12

    The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.

  9. A simple and sensitive method for determination of Norfloxacin in pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Zhuo Ye

    2015-06-01

    Full Text Available In this approach, a new voltammetric method for determination of norfloxacin was proposed with high sensitivity and wider detection linear range. The used voltammetric sensor was fabricated simply by coating a layer of graphene oxide (GO and Nafion composited film on glassy carbon electrode. The advantage of proposed method was sensitive electrochemical response for norfloxacin, which was attributed to the excellent electrical conductivity of GO and the accumulating function of Nafion under optimum experimental conditions, the present method revealed a good linear response for determination of norfloxacin in the range of 1×10-8mol/L-7×10-6 mol/L with a detection limit of 5×10-9 mol/L. The proposed method was successfully applied in the determination of norfloxacin in capsules with satisfactory results.

  10. Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors

    International Nuclear Information System (INIS)

    Klein, P B; Binari, S C

    2003-01-01

    This review is concerned with the characterization and identification of the deep centres that cause current collapse in nitride-based field effect transistors. Photoionization spectroscopy is an optical technique that has been developed to probe the characteristics of these defects. Measured spectral dependences provide information on trap depth, lattice coupling and on the location of the defects in the device structure. The spectrum of an individual trap may also be regarded as a 'fingerprint' of the defect, allowing the trap to be followed in response to the variation of external parameters. The basis for these measurements is derived through a modelling procedure that accounts quantitatively for the light-induced drain current increase in the collapsed device. Applying the model to fit the measured variation of drain current increase with light illumination provides an estimate of the concentrations and photoionization cross-sections of the deep defects. The results of photoionization studies of GaN metal-semiconductor field effect transistors and AlGaN/GaN high electron mobility transistors (HEMTs) grown by metal-organic chemical vapour deposition (MOCVD) are presented and the conclusions regarding the nature of the deep traps responsible are discussed. Finally, recent photoionization studies of current collapse induced by short-term (several hours) bias stress in AlGaN/GaN HEMTs are described and analysed for devices grown by both MOCVD and molecular beam epitaxy. (topical review)

  11. Innate immune responses against foot-and-mouth disease virus: current understanding and future directions.

    Science.gov (United States)

    Summerfield, Artur; Guzylack-Piriou, Laurence; Harwood, Lisa; McCullough, Kenneth C

    2009-03-15

    Foot-and-mouth disease (FMD) represents one of the most economically important diseases of farm animals. The basis for the threat caused by this virus is the high speed of replication, short incubation time, high contagiousness, and high mutation rate resulting in constant antigenic changes. Thus, although protective immune responses against FMD virus (FMDV) can be efficacious, the rapidity of virus replication and spread can outpace immune defence development and overrun the immune system. FMDV can also evade innate immune responses through its ability to shut down cellular protein synthesis, including IFN type I, in susceptible epithelial cells. This is important for virus evolution, as FMDV is quite sensitive to the action of IFN. Despite this, innate immune responses are probably induced in vivo, although detailed studies on this subject are lacking. Accordingly, this interaction of FMDV with cells of the innate immune system is of particular interest. Dendritic cells (DC) can be infected by FMDV and support viral RNA replication, and viral protein synthesis but the latter is inefficient or abortive, leading most often to incomplete replication and progeny virus release. As a result DC can be activated, and particularly in the case of plasmacytoid DC (pDC), this is manifest in terms of IFN-alpha release. Our current state of knowledge on innate immune responses induced by FMDV is still only at a relatively early stage of understanding. As we progress, the investigations in this area will help to improve the design of current vaccines and the development of novel control strategies against FMD.

  12. Multiple-stimuli responsive bioelectrocatalysis based on reduced graphene oxide/poly(N-isopropylacrylamide) composite films and its application in the fabrication of logic gates.

    Science.gov (United States)

    Wang, Lei; Lian, Wenjing; Yao, Huiqin; Liu, Hongyun

    2015-03-11

    In the present work, reduced graphene oxide (rGO)/poly(N-isopropylacrylamide) (PNIPAA) composite films were electrodeposited onto the surface of Au electrodes in a fast and one-step manner from an aqueous mixture of a graphene oxide (GO) dispersion and N-isopropylacrylamide (NIPAA) monomer solutions. Reflection-absorption infrared (IR) and Raman spectroscopies were employed to characterize the successful construction of the rGO/PNIPAA composite films. The rGO/PNIPAA composite films exhibited reversible potential-, pH-, temperature-, and sulfate-sensitive cyclic voltammetric (CV) on-off behavior to the electroactive probe ferrocenedicarboxylic acid (Fc(COOH)2). For instance, after the composite films were treated at -0.7 V for 7 min, the CV responses of Fc(COOH)2 at the rGO/PNIPAA electrodes were quite large at pH 8.0, exhibiting the on state. However, after the films were treated at 0 V for 30 min, the CV peak currents became much smaller, demonstrating the off state. The mechanism of the multiple-stimuli switchable behaviors for the system was investigated not only by electrochemical methods but also by scanning electron microscopy and X-ray photoelectron spectroscopy. The potential-responsive behavior for this system was mainly attributed to the transformation between rGO and GO in the films at different potentials. The film system was further used to realize multiple-stimuli responsive bioelectrocatalysis of glucose catalyzed by the enzyme of glucose oxidase and mediated by the electroactive probe of Fc(COOH)2 in solution. On the basis of this, a four-input enabled OR (EnOR) logic gate network was established.

  13. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    Directory of Open Access Journals (Sweden)

    Rosa A. S. Couto

    2016-06-01

    Full Text Available Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs for the voltammetric detection of the anti-tuberculosis (anti-TB drug ethambutol (ETB. The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV and square wave voltammetry (SWV techniques. Electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples.

  14. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    Science.gov (United States)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Characterization and supercapacitor application of coin-like β-nickel hydroxide nanoplates

    International Nuclear Information System (INIS)

    Li Hongliang; Liu Suqin; Huang Chenghuan; Zhou Zhi; Li Yanhua; Fang Dong

    2011-01-01

    Coin-like nickel hydroxide nanoplates are synthesized via a simple coordination homogeneous precipitation method. The structure and morphology of as-prepared products are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. It is demonstrated that the products are typical β-nickel hydroxide with bunches coin-like nanoplates morphology. The electrochemical properties of coin-like β-Ni(OH) 2 are examined by cyclic voltammetric, chronopotentiometry and electrochemical impedance spectroscope. Cyclic voltammetric studies show that the electrodes have good reversibility. A specific capacitance of 1532 F g −1 is obtained at a charge/discharge current density of 0.2 A g −1 .

  16. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    Directory of Open Access Journals (Sweden)

    Sergio Iván Ravelo Arias

    2013-12-01

    Full Text Available Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function  is obtained considering it as the relationship between sensor output voltage and input sensing current,[PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR, giant magnetoresistance (GMR, spin-valve (GMR-SV and tunnel magnetoresistance (TMR. The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

  17. Transcription factors and plant response to drought stress: Current understanding and future directions

    Directory of Open Access Journals (Sweden)

    Rohit Joshi

    2016-07-01

    Full Text Available Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution towards improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern OMICS analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought.

  18. Silver ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1,10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Hashemi, Beshare; Dehdashtian, Sara; Mohammadi, Moslem; Gholivand, Mohammad Bagher [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Garau, Alessandra; Lippolis, Vito [Dipartimento di Scienze Chimiche e Geologiche, Universita' degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, CA (Italy)

    2014-12-10

    Highlights: • Preparation of Ag{sup +} imprinted polymeric nanobeads via precipitation polymerization. • Use of a mixed aza-thioether crown containing a 1,10-phenanthroline subunit a selective host for Ag{sup +} ion. • Highly selective, sensitive and fast recognition of traces of Ag{sup +} ions. • Use of the prepared Ag{sup +}-IIP for preparation of an Ag{sup +}-voltammetric sensor with LOD of 9.0 × 10{sup −10} M. • Use of the prepared Ag{sup +}-IIP for preparation of Ag{sup +}-ISEs with LOD of 1.2 × 10{sup −9} M 9.0 × 10{sup −10} M. - Abstract: A new nano-sized silver(I) ion-imprinted polymer (IIP) was prepared via precipitation copolymerization using ethyleneglycol dimethacrylate, as a cross-linking agent in the presence of Ag{sup +} and an aza-thioether crown containing a 1,10-phenanthroline subunit as a highly selective complexing agent. The imprint silver(I) ion was removed from the polymeric matrix using a 1.0 M HNO{sub 3} solution. The resulting powder material was characterized using IR spectroscopy and scanning electron microscopy. The SEM micrographs showed colloidal nanoparticles of about 52 nm and 75 nm in diameter and slightly irregular in shape for leached and unleached IIPs, respectively. The optimal pH for quantitative enrichment was 6.0 and maximum sorbent capacity of the prepared IIP for Ag{sup +} was 18.08 μmol g{sup −1}. The relative standard deviation and limit of detection (LOD = 3S{sub b}/m) for flame atomic absorption spectrometric determination of silver(I) ion, after its selective extraction by the prepared IIP nanobeads, were evaluated as 2.42% and 2.2 × 10{sup −8} M, respectively. The new Ag{sup +}-IIP was also applied as a suitable sensing element to the preparation of highly selective and sensitive voltammetric and potentiometric sensors for ultra trace detection of silver(I) ion in water samples, with limits of detection of 9.0 × 10{sup −10} and 1.2 × 10{sup −9} M, respectively.

  19. Plagiarism: A Shared Responsibility of All, Current Situation, and Future Actions in Yemen.

    Science.gov (United States)

    Muthanna, Abdulghani

    2016-01-01

    As combating plagiarism is a shared responsibility of all, this article focuses on presenting the current situation of higher education in Yemen. The critical review of four implementable policy documents and interviews revealed the absence of research ethics code, research misconduct policy, and institutional policies in the country. This led to the presence of several acts of research dishonesty. The article concludes with an initiative for necessary future actions in the nation.

  20. Determination of biogenic amines from electrocatalytic responses of graphite electrodes modified with metallic osmium or an osmium oxide-ruthenium cyanide film

    International Nuclear Information System (INIS)

    Shajdarova, L.G.; Gedmina, A.V.; Chelnokova, I.A.; Budnikov, G.K.

    2008-01-01

    Particles of osmium or an inorganic polymeric film of osmium oxide-ruthenium cyanide (OsO-RuCN) electrodeposited on glassy carbon (GC) electrocatalyze the oxidation of dopamine (DA), adrenaline (AD), and noradrenaline (NAD). It is found that these biogenic amines are determined with a high sensitivity by oxidation at an electrode with an OsO-RuCN film. Procedures for the voltammetric determination of DA, AD, or NAD at a composite film electrode are developed. The currents of the substrate oxidation are linear functions of the concentrations in the ranges from 5x10 -7 to 1x10 -3 M for DA and from 1x10 -6 to 1x10 -3 M for AD and NAD [ru

  1. supp7.doc

    Indian Academy of Sciences (India)

    (A) Cyclic voltammeric response and (B) impedimetric response of (a) unmodified Au, (b) DTB, (c) PET and (d) DTB-PET electrodes in presence of Fe(CN)63-/4- in 0.1 M PBS (pH 7.2). Figure S2. Cyclic voltammetric response obtained for covalently bound Cyt-c on DTB-PET electrode in the (a) absence and (b) presence of ...

  2. Biphasic response of action potential duration to metabolic inhibition in rabbit and human ventricular myocytes: role of transient outward current and ATP-regulated potassium current

    NARCIS (Netherlands)

    Verkerk, A. O.; Veldkamp, M. W.; van Ginneken, A. C.; Bouman, L. N.

    1996-01-01

    Inhibition of cell metabolism is associated with significant changes in action potential duration. The aim of this study was to investigate the time course of the changes in action potential duration during metabolic inhibition and to determine what changes in membrane currents are responsible. The

  3. Electrochemical behavior of the antituberculosis drug isoniazid and its square-wave adsorptive stripping voltammetric estimation in bulk form, tablets and biological fluids at a mercury electrode.

    Science.gov (United States)

    Ghoneim, M M; el-Baradie, K Y; Tawfik, A

    2003-11-24

    Isoniazid, pyridine-4-carboxylic acid hydrazide, is an antituberculosis-agent, which is used to prevent the development of clinical tuberculosis. A validated square-wave adsorptive cathodic stripping voltammetric procedure for the trace determination of the bulk drug at the hanging mercury drop electrode (HMDE) has been developed. Under the optimized conditions, (accumulation potential=-0.9 V, accumulation time=50-300 s, scan increment=8 mV, pulse-amplitude=25 mV, frequency=120 Hz and acetate buffer at pH 5.5) isoniazed generated two irreversible cathodic peaks. The first peak current showed a linear dependence with the drug concentration over the range 5 x 10(-10)-21 x 0(-6) M. The mean percentage recoveries, based on the average of five replicate measurements, for 7 x 10(-9) and 5 x 10(-8) M isoniazid were 97.71+/-2.93 and 99.76+/-0.77, respectively. The achieved limits of detection (LOD) and quantitation (LOQ) were 1.18 x 10(-10) and 3.93 x 10(-10) M isoniazid, respectively. The procedure was applied to the assay of the drug in tablets (Isocid and T.B. Zide), spiked human serum and urine with mean percentage recoveries of 97.81+/-1.49, 97.45+/-2.09, and 97.08+/-1.06, respectively. The limits of detection of 1.47 x 10(-9) and 2.4 x 10(-8) M, and quantitation of 4.9 x 10(-9) and 8 x 10(-8) M drug in human serum and urine, respectively, were achieved. The mean values of the various pharmackinetic parameters of isoniazid (C(max), T(max), t(1/2), AUC, and K(e)), estimated from analysis of plasma of two volunteers by means of the proposed procedure were similar to literature values.

  4. Electrochemical Behaviour of Tinidazole at 1,4-Benzoquinone Modified Carbon Paste Electrode and Its Direct Determination in Pharmaceutical Tablets and Urine by Differential Pulse Voltammetry

    Directory of Open Access Journals (Sweden)

    Yosef Nikodimos

    2017-01-01

    Full Text Available A simple and highly sensitive electrochemical method based on a 1,4-benzoquinone modified carbon paste electrode (1,4-BQMCPE was described for the determination of tinidazole (TDZ. In Britton Robinson buffer solution, TDZ yields well-defined irreversible reduction peak at −0.344 V on a 1,4-BQMCPE. Compared with that on a bare CPE, the reduction peak of TDZ increased significantly on the modified CPE and the effects of different parameters on the voltammetric responses were also investigated. Differential pulse voltammetric method was proposed and optimized for TDZ determination and its reductive peak current response at 1,4-BQMCPE was found to show linear dependence on the concentration of TDZ in the range of 1.0 × 10−6 to 5.0 × 10−4 M with a linear regression equation, correlation coefficient, limit of detection (LOD, and limit of quantification (LOQ of IPC (μA = 0.19958 + 0.02657C (μM, 0.99486, 1.10 × 10−7 M, and 3.77 × 10−7, respectively. Excellent recovery results for spiked TDZ in pharmaceutical tablet samples ranging within 97.44–97.51% and in urine ranging within 95.37–96.91% were observed. The selectivity of the method for TDZ was further studied in the presence of selected potential interferents and confirmed the potential applicability of the developed method for the determination of TDZ.

  5. Development of a sensor for L-Dopa based on Co(DMG)(2)ClPy/multi-walled carbon nanotubes composite immobilized on basal plane pyrolytic graphite electrode.

    Science.gov (United States)

    Leite, Fernando Roberto Figueirêdo; Maroneze, Camila Marchetti; de Oliveira, Adriano Bof; dos Santos, Wallans Torres Pio; Damos, Flavio Santos; Silva Luz, Rita de Cássia

    2012-08-01

    L-Dopa is the immediate precursor of the neurotransmitter dopamine, being the most widely prescribed drug in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-Dopa in pharmaceutical formulations using a basal plane pyrolytic graphite (BPPG) electrode modified with chloro(pyridine)bis(dimethylglyoximato)cobalt(III) (Co(DMG)(2)ClPy) absorbed in a multi-walled carbon nanotube (MWCNT). Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were used to characterize the materials. The electrocatalytical oxidation of L-Dopa using the Co(DMG)(2)ClPy/MWCNT/BPPG electrode was investigated by cyclic voltammetry and square wave voltammetry. The parameters that influence the electrode response (the amount of Co(DMG)(2)ClPy and of MWCNT, buffer solution, buffer concentration, buffer pH, frequency and potential pulse amplitude) were investigated. Voltammetric peak currents showed a linear response for L-Dopa concentration in the range of 3 to 100 μM, with a sensitivity of 4.43 μAcm(-2)/μM and a detection limit of 0.86 μM. The related standard deviation for 10 determinations of 50 μM L-Dopa was 1.6%. The results obtained for L-Dopa determination in pharmaceutical formulations (tablets) were in agreement with the compared official method. The sensor was successfully applied for L-Dopa selective determination in pharmaceutical formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Development of a poly(alizarin red S)/ionic liquid film modified electrode for voltammetric determination of catechol

    International Nuclear Information System (INIS)

    Zhang, Qing; Pan, Dawei; Zhang, Haiyun; Han, Haitao; Kang, Qi

    2014-01-01

    Highlights: • This study is the first to conduct electroploymerization of ARS in RTILs. • BMIMBF 4 was successfully mixed in polymeric ARS film. • PARS/BMIMBF 4 film was tighter, smoother and better electrochemical property. • PARS/BMIMBF 4 /GCE showed superior performance for catechol determination. - Abstract: A novel modified electrode for voltammetric catechol determination was fabricated by electroploymerization of alizarin red S (ARS) onto a glassy carbon electrode (GCE) in one kind of room-temperature ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF 4 ). The polymeric ARS/ionic liquid (PARS/BMIMBF 4 ) film modified electrode was characterized by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical methods. The EDX, XPS and FTIR results indicated that PARS/BMIMBF 4 film was successfully obtained. Compared with the GCE modified by electroploymerization of ARS in aqueous solution, the GCE modified by electroploymerization of ARS in BMIMBF 4 showed smoother and more compact morphology for coating and better electroanalytical properties. Given the combined electrochemical activity of PARS and excellent conductivity of BMIMBF 4 , the PARS/BMIMBF 4 /GCE has been successfully used for catechol determination by differential pulse voltammetry (DPV) with a linear range of 0.10 to 500 μM. The sensitivity and detection limit are 42 nA/μM and 0.026 μM, respectively. The PARS/BMIMBF 4 modified electrode was successfully applied to the determination of catechol in real water samples and may serve as a simple but high-performance sensor for the determination of some environmental pollutants

  7. Adsorptive stripping voltammetric behaviour of copper complexes of some heterocyclic azo compounds.

    Science.gov (United States)

    Farias, P A; Ferreira, S L; Ohara, A K; Bastos, M B; Goulart, M S

    1992-10-01

    Controlled adsorptive accumulation of copper complexed with TAN, TAC, TAR and TAM (heterocyclic azo-compounds) on a static mercury drop electrode provides the basis for the direct stripping measurement of this element in the nanomolar concentration level. The ligand TAN exhibited great sensitivity and better separation of the peak current of the ligand in relation to the complex. The reduction current of adsorbed complex ions of copper is measured by linear scan cathodic stripping voltammetry, preceded by a period of accumulation of a few minutes. The peak potential is at approximately -0.37 V vs. Ag/AgCl. Optimal experimental parameters were found to be a TAN concentration of 1 x 10(-5)M, an accumulation potential of -0.22 V, and a solution pH of 3.7 (acetate buffer). The detection limit is 0.8nM after a 5-min accumulation with a stirred solution, and the response is linear up to 50 mug/l. Many common cations and anions do not interfere in the determination of copper. The interference of titanium is eliminated by addition of fluoride ion. Results are reported for a fresh water sample.

  8. State of Corporate Social Responsibility in India – Current scenario, Approach and Drivers

    OpenAIRE

    Nagpal, Kshitij

    2016-01-01

    Purpose – The aim of the study is to examine the state of Corporate Social Responsibility (CSR)in India. The report attempts to investigate the current scenario of CSR ctivities and examine how corporations in India interpret CSR. The study also seeks to identify the reported driving forces behind implementation of CSR practices by firms in India. Methodology – CSR personnel from 3O companies that are obligated to spend on CSR activities under the Companies Act, 2013 were surveyed. To cr...

  9. A 3 A sink/source current fast transient response low-dropout Gm driven linear regulator

    International Nuclear Information System (INIS)

    Chu Xiuqin; Li Qingwei; Lai Xinquan; Yuan Bing; Li Yanming; Zhao Yongrui

    2011-01-01

    A 3 A sink/source G m -driven CMOS low-dropout regulator (LDO), specially designed for low input voltage and low cost, is presented by utilizing the structure of a current mirror G m (transconductance) driving technique, which provides high stability as well as a fast load transient response. The proposed LDO was fabricated by a 0.5 μm standard CMOS process, and the die size is as small as 1.0 mm 2 . The proposed LDO dissipates 220 μA of quiescent current in no-load conditions and is able to deliver up to 3 A of load current. The measured results show that the output voltage can be resumed within 2 μs with a less than 1 mV overshoot and undershoot in the output current step from -1.8 to 1.8 A with a 0.1 μs rising and falling time at three 10 μF ceramic capacitors. (semiconductor integrated circuits)

  10. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...... (mycorrhiza) or in the biomass of microbes in the soil of the root zone. However, the composition of the soil microbial community was different in the soils under ambient and reduced UV radiation after three treatment years. These results provide new insight into the negative impact of current UV-B fluxes...

  11. The influence of internal current loop on transient response performance of I-V droop controlled paralleled DC-DC converters

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Guerrero, Josep M.

    2017-01-01

    The external droop control loop of I-V droop control is designed as a voltage loop with embedded virtual impedance, so the internal current loop plays a major role in the system bandwidth. Thus, in this paper, the influence of internal current loop on transient response performance of I-V droop...... controlled paralleled dc-dc converters is analyzed, which is guided and significant for its industry application. The model which is used for dynamic analysis is built, and the root locus method is used based on the model to analyze the dynamic response of the system by shifting different control parameters...

  12. Nonlinear response of a neoclassical four-field magnetic reconnection model to localized current drive

    International Nuclear Information System (INIS)

    Lazzaro, E.; Comisso, L.; Valdettaro, L.

    2010-01-01

    In tokamaks magnetic islands arise from an unstable process of tearing and reconnecting of helical field lines across rational surfaces. After a linear stage the magnetic instability develops through three characteristic nonlinear stages where increasingly complex topological alterations occur in the form of the magnetic islands. The problem of response of reconnection process to the injection of an external current suitably localized is addressed using a four-field model in a plane slab plasma, with a novel extension to account consistently of the relevant neoclassical effects, such as bootstrap current and pressure anisotropy. The results found have implications on the interpretation of the possible mechanism of present day experimental results on neoclassical tearing modes as well as on the concepts for their control or avoidance.

  13. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  14. Current trends in gamma radiation detection for radiological emergency response

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  15. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine

    International Nuclear Information System (INIS)

    Kutluay, Aysegul; Aslanoglu, Mehmet

    2014-01-01

    Highlights: • A GCE was modified with carbon nanotubes and cobalt nanoparticles. • The composite material was obtained using an ultrasonic chemical deposition method. • The CoNPs/MWCNT/GCE was applied for the simultaneous determination of PAR and DA. • The presence of AA and UA did not affect the responses of PAR and DA. • Lower detection limits were obtained using the CoNPs/MWCNT/GCE. - Abstract: Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10 −9 –4.5 × 10 −7 M (R 2 = 0.9987) and 5.0 × 10 −8 –3.0 × 10 −6 M (R 2 = 0.9999), respectively. The detection limits of 1.0 × 10 −9 M and 1.5 × 10 −8 M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1

  16. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Aysegul; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2014-08-11

    Highlights: • A GCE was modified with carbon nanotubes and cobalt nanoparticles. • The composite material was obtained using an ultrasonic chemical deposition method. • The CoNPs/MWCNT/GCE was applied for the simultaneous determination of PAR and DA. • The presence of AA and UA did not affect the responses of PAR and DA. • Lower detection limits were obtained using the CoNPs/MWCNT/GCE. - Abstract: Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10{sup −9}–4.5 × 10{sup −7} M (R{sup 2} = 0.9987) and 5.0 × 10{sup −8}–3.0 × 10{sup −6} M (R{sup 2} = 0.9999), respectively. The detection limits of 1.0 × 10{sup −9} M and 1.5 × 10{sup −8} M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and

  17. Voltammetric detection of antimony in natural water on cathodically pretreated microcrystalline boron doped diamond electrode: A possibility how to eliminate interference of arsenic without surface modification.

    Science.gov (United States)

    Lukáčová-Chomisteková, Zuzana; Culková, Eva; Bellová, Renata; Melicherčíková, Danica; Durdiak, Jaroslav; Beinrohr, Ernest; Rievaj, Miroslav; Tomčík, Peter

    2018-02-01

    Very simple and fast electroanalytical method for the detection Sb(III) on chemically unmodified boron-doped diamond electrode (BDDE) has been developed. Voltammetric behavior of antimony was investigated in various acidic supporting electrolytes and the most suitable medium for the determination of Sb(III) on bare BDDE has been 6molL -1 HClO 4 solution. The analytical performance was studied with differential pulse anodic stripping voltammetry (DPASV) with optimized conditions (deposition potential -1V vs. Ag/ AgCl and deposition time 240s). An analysis of possible effects due to the presence of other metal ions (especially As(III)) in the solution was eliminated using NaH 2 PO 4 as supporting electrolyte with addition EDTA as selective complexing agent for Sb(III). Speciation of antimony was also investigated. The detection limit of this analytical strategy achieved value of 1.08 × 10 -7 molL -1 . The proposed method was validated and applied for natural water from former antimony mines as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Voltammetric Determination of Guanine on the Electrode Modified by Gold Deposit and Nafion Film

    Directory of Open Access Journals (Sweden)

    L.G. Shaidarova

    2016-09-01

    Full Text Available Electrodeposited gold and Nafion-gold composite on the surface of glassy carbon electrodes (GCE have shown electrocatalytic activity during guanine oxidation. In comparison with the unmodified electrode, decreasing of the oxidation potential by 100 mV and increasing of the current of organic compound oxidation have been observed. When the Nafion (NF film is applied to the surface of the glassy carbon electrode with electrodeposited gold, a five-fold increase of guanine oxidation current has been achieved compared to its oxidation on the modified electrode without the NF film. Conditions have been found for electrodeposition of gold on the surface of the glassy carbon electrode, including that one covered with the NF film, as well as for registration of the maximum catalytic current on these electrodes. Linear dependence of the electrocatalytic response of the modified electrode from the guanine concentration has been observed in the range from 5·10–6 to 5·10–3 mol·L–1 (for Au GCE and from 5·10–7 to 5·10–3 mol·L–1 (for NF-Au GCE.

  19. Field-Aligned Current Response to Solar Indices

    DEFF Research Database (Denmark)

    R. Edwards, Thom; Weimer, D. R.; Tobiska, W. K.

    2017-01-01

    Magnetometer data from three satellite missions have been used to analyze and identify the effects of varying solar radiation on the magnitudes and locations of field-aligned currents in the Earth's upper atmosphere. Data from the CHAMP, Ørsted, and Swarm satellite missions have been bought...... together to provide a database spanning a 15 year period. The extensive time frame has been augmented by data from the ACE satellite, as well as a number of indices of solar radiation. This data set has been sorted by a number of solar wind, interplanetary magnetic field, and solar radiation indices...... to evaluate the effects of variations in four different solar indices on the total current in different regions of the polar cap. While the solar indices do not have major influence on the total current of the polar cap when compared to solar wind and interplanetary magnetic field parameters it does appear...

  20. Comparative characteristic of transmembrane currents and caffeine-induced responses of intact and irradiated small intestine smooth muscle cells

    International Nuclear Information System (INIS)

    Stepanov, Yu.V.; Gordienko, D.V.; Preobrazhenskaya, T.D.; Stepanova, L.I.; Vojtsitskij, V.M.

    1994-01-01

    A comparative investigation of transmembrane ion currents and caffeine-induced responses of single smooth muscle cells isolated from the circular layer of rat small intestine was curried out by the method of 'patch-clamp'. No reliable difference in potential-dependent and amplitude-kinetic characteristics of transmembrane ion currents in cells of intact and irradiated with dose of 3 Gy rats was revealed. In cells of irradiated animals external application of caffeine (4 mM) was not accompanied by strong quick-inactivated transient Ca 2+ -dependent potassium current as in control

  1. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms.

    Science.gov (United States)

    Liu, Lin; Yao, WenDong; Rao, YueFeng; Lu, XiaoYang; Gao, JianQing

    2017-11-01

    Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.

  2. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode

    International Nuclear Information System (INIS)

    Kalambate, Pramod K.; Rawool, Chaitali R.; Karna, Shashi P.; Srivastava, Ashwini K.

    2016-01-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (I p ) current for MM is found to be rectilinear in the range 4.0 × 10 −8 –2.0 × 10 −5 M with a detection limit of 7.1 × 10 −9 M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. - Highlights: • Voltammetric sensor for methylergometrine maleate using carbon nanofibers and silver nanoparticle - carbon paste electrode • Wide working range, good reproducibility, fast response and high stability were the main advantages of the proposed sensor • Analysis of methylergometrine maleate in pharmaceutical formulations, urine and blood serum samples • Lowest limit of detection obtained for methylergometrine maleate

  3. Dynamic response of thermal neutron measurements in electrochemically produced cold fusion subject to pulsed current

    International Nuclear Information System (INIS)

    Granada, Jose; Converti, Jose; Mayer, Roberto; Guido, German; Florido, Pablo; Patino, Nestor; Sobehart, Leonardo; Gomez, Silvia; Larreteguy, Axel

    1988-01-01

    The present work shows the results of measurements performed on electrolytic cells using a high efficiency (22%) neutron detection system in combination with a procedure involving a non-stationary current through the cell's circuit. Cold fusion was produced in electrolytic cells containing LiH dissolved in heavy water with a palladium cathode. The dynamic response to low frequency current pulses was measured. Characteristic patterns showing one or two bumps were obtained in a repeatable fashion. These patterns are strongly dependent on the previous charging history of the cathode. The technique employed seems to be very convenient as a research tool for a systematic study of the different variables governing the phenomenon. (Author)

  4. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study

    International Nuclear Information System (INIS)

    Reddaiah, K.; Madhusudana Reddy, T.; Venkata Ramana, D.K.; Subba Rao, Y.

    2016-01-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1 mol/dm"3 phosphate buffer (PBS) solution of pH 7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89 × 10"−"7 mol/dm"3 and 6.312 × 10"−"7 mol/dm"3 respectively with a dynamic range from 1 × 10"−"6 to 1.8 × 10"−"5 mol/dm"3. The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE. - Highlights: • The poly-AzrS/MWCNTs/GCE showed good sensitivity towards DA sensing. • The sensor reduced the overoxidation potentials for DA. • This electrode was successfully used for simultaneous sensing of DA and 5-HT. • The electrode was effectively used for the determination of DA in pharmaceutical formulations.

  5. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study

    Energy Technology Data Exchange (ETDEWEB)

    Reddaiah, K. [Electrochemical Research Laboratory, Department of Chemistry, S.V.U. College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Madhusudana Reddy, T., E-mail: tmsreddysvu@gmail.com [Electrochemical Research Laboratory, Department of Chemistry, S.V.U. College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Venkata Ramana, D.K. [Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju, Gyeongbuk 780 714 (Korea, Republic of); Subba Rao, Y. [DST-PURSE Centre, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh (India)

    2016-05-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1 mol/dm{sup 3} phosphate buffer (PBS) solution of pH 7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89 × 10{sup −7} mol/dm{sup 3} and 6.312 × 10{sup −7} mol/dm{sup 3} respectively with a dynamic range from 1 × 10{sup −6} to 1.8 × 10{sup −5} mol/dm{sup 3}. The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE. - Highlights: • The poly-AzrS/MWCNTs/GCE showed good sensitivity towards DA sensing. • The sensor reduced the overoxidation potentials for DA. • This electrode was successfully used for simultaneous sensing of DA and 5-HT. • The electrode was effectively used for the determination of DA in pharmaceutical formulations.

  6. The Development of Forms of Corporate Social Responsibility in Russia in the Current Economic Conditions

    Directory of Open Access Journals (Sweden)

    Natalya Arzumanova

    2015-02-01

    Full Text Available The article reveals the characteristic features of modern trends in the formation and implementation of corporate social responsibility in Russia in the current economic conditions, which is based on the fact that reasonable economic interests oriented business not only on maximizing profits, but also to improve their own macro - socio-economic, natural, political, through voluntary investment profits in the respective areas.

  7. Clinical predictors of acute response to transcranial direct current stimulation (tDCS) in major depression.

    Science.gov (United States)

    D'Urso, Giordano; Dell'Osso, Bernardo; Rossi, Rodolfo; Brunoni, Andre Russowsky; Bortolomasi, Marco; Ferrucci, Roberta; Priori, Alberto; de Bartolomeis, Andrea; Altamura, Alfredo Carlo

    2017-09-01

    Transcranial direct current stimulation (tDCS) is a promising neuromodulation intervention for poor-responding or refractory depressed patients. However, little is known about predictors of response to this therapy. The present study aimed to analyze clinical predictors of response to tDCS in depressed patients. Clinical data from 3 independent tDCS trials on 171 depressed patients (including unipolar and bipolar depression), were pooled and analyzed to assess predictors of response. Depression severity and the underlying clinical dimensions were measured using the Hamilton Depression Rating Scale (HDRS) at baseline and after the tDCS treatment. Age, gender and diagnosis (bipolar/unipolar depression) were also investigated as predictors of response. Linear mixed models were fitted in order to ascertain which HDRS factors were associated with response to tDCS. Age, gender and diagnosis did not show any association with response to treatment. The reduction in HDRS scores after tDCS was strongly associated with the baseline values of "Cognitive Disturbances" and "Retardation" factors, whilst the "Anxiety/Somatization" factor showed a mild association with the response. Open-label design, the lack of control group, and minor differences in stimulation protocols. No differences in response to tDCS were found between unipolar and bipolar patients, suggesting that tDCS is effective for both conditions. "Cognitive disturbance", "Retardation", and "Anxiety/Somatization", were identified as potential clinical predictors of response to tDCS. These findings point to the pre-selection of the potential responders to tDCS, therefore optimizing the clinical use of this technique and the overall cost-effectiveness of the psychiatric intervention for depressed patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-Printed Electrochemical Sensing Platforms.

    Science.gov (United States)

    Mahmoud, Bahaa G; Khairy, Mohamed; Rashwan, Farouk A; Banks, Craig E

    2017-02-07

    To overcome the recent outbreaks of hepatotoxicity-related drugs, a new analytical tool for the continuously determination of these drugs in human fluids is required. Electrochemical-based analytical methods offer an effective, rapid, and simple tool for on-site determination of various organic and inorganic species. However, the design of a sensitive, selective, stable, and reproducible sensor is still a major challenge. In the present manuscript, a facile, one-pot hydrothermal synthesis of bismuth oxide (Bi 2 O 2.33 ) nanostructures (nanorods) was developed. These BiO nanorods were cast onto mass disposable graphite screen-printed electrodes (BiO-SPEs), allowing the ultrasensitive determination of acetaminophen (APAP) in the presence of its common interference isoniazid (INH), which are both found in drug samples. The simultaneous electroanalytical sensing using BiO-SPEs exhibited strong electrocatalytic activity toward the sensing of APAP and INH with an enhanced analytical signal (voltammetric peak) over that achievable at unmodified (bare) SPEs. The electroanalytical sensing of APAP and INH are possible with accessible linear ranges from 0.5 to 1250 μM and 5 to 1760 μM with limits of detection (3σ) of 30 nM and 1.85 μM, respectively. The stability, reproducibility, and repeatability of BiO-SPE were also investigated. The BiO-SPEs were evaluated toward the sensing of APAP and INH in human serum, urine, saliva, and tablet samples. The results presented in this paper demonstrate that BiO-SPEs sensing platforms provide a potential candidate for the accurate determination of APAP and INH within human fluids and pharmaceutical formulations.

  9. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  10. Aging time and brand determination of pasteurized milk using a multisensor e-nose combined with a voltammetric e-tongue

    International Nuclear Information System (INIS)

    Bougrini, Madiha; Tahri, Khalid; Haddi, Zouhair; El Bari, Nezha; Llobet, Eduard; Jaffrezic-Renault, Nicole; Bouchikhi, Benachir

    2014-01-01

    A combined approach based on a multisensor system to get additional chemical information from liquid samples through the analysis of the solution and its headspace is illustrated and commented. In the present work, innovative analytical techniques, such as a hybrid e-nose and a voltammetric e-tongue were elaborated to differentiate between different pasteurized milk brands and for the exact recognition of their storage days through the data fusion technique of the combined system. The Principal Component Analysis (PCA) has shown an acceptable discrimination of the pasteurized milk brands on the first day of storage, when the two instruments were used independently. Contrariwise, PCA indicated that no clear storage day's discrimination can be drawn when the two instruments are applied separately. Mid-level of abstraction data fusion approach has demonstrated that results obtained by the data fusion approach outperformed the classification results of the e-nose and e-tongue taken individually. Furthermore, the Support Vector Machine (SVM) supervised method was applied to the new subset and confirmed that all storage days were correctly identified. This study can be generalized to several beverage and food products where their quality is based on the perception of odor and flavor. - Highlights: • Five pasteurized milk brands were differentiated using e-nose and e-tongue. • E-tongue allowed a correct distinction of the milk brands comparing to the e-nose. • The combined system allows determining the storage days of pasteurized milk. • No clear storage day’s discrimination can be drawn when applied e-systems separately. • Data fusion method has been successful in the identification of the storage days

  11. Aging time and brand determination of pasteurized milk using a multisensor e-nose combined with a voltammetric e-tongue

    Energy Technology Data Exchange (ETDEWEB)

    Bougrini, Madiha [Sensor Electronic and Instrumentation Group, Moulay Ismaïl University, Faculty of Sciences, Physics Department, B.P. 11201, Zitoune, Meknes (Morocco); Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR CNRS 5280, 5, rue de la Doua, 69100 Villeurbanne Cedex (France); Tahri, Khalid [Sensor Electronic and Instrumentation Group, Moulay Ismaïl University, Faculty of Sciences, Physics Department, B.P. 11201, Zitoune, Meknes (Morocco); Haddi, Zouhair [Sensor Electronic and Instrumentation Group, Moulay Ismaïl University, Faculty of Sciences, Physics Department, B.P. 11201, Zitoune, Meknes (Morocco); MINOS-EMaS, Electronic Engineering Department, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona (Spain); El Bari, Nezha [Biotechnology Agroalimentary and Biomedical Analysis Group, Moulay Ismaïl University, Faculty of Sciences, Biology Department, B.P. 11201, Zitoune, Meknes (Morocco); Llobet, Eduard [MINOS-EMaS, Electronic Engineering Department, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona (Spain); Jaffrezic-Renault, Nicole [Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR CNRS 5280, 5, rue de la Doua, 69100 Villeurbanne Cedex (France); Bouchikhi, Benachir, E-mail: benachir.bouchikhi@gmail.com [Sensor Electronic and Instrumentation Group, Moulay Ismaïl University, Faculty of Sciences, Physics Department, B.P. 11201, Zitoune, Meknes (Morocco)

    2014-12-01

    A combined approach based on a multisensor system to get additional chemical information from liquid samples through the analysis of the solution and its headspace is illustrated and commented. In the present work, innovative analytical techniques, such as a hybrid e-nose and a voltammetric e-tongue were elaborated to differentiate between different pasteurized milk brands and for the exact recognition of their storage days through the data fusion technique of the combined system. The Principal Component Analysis (PCA) has shown an acceptable discrimination of the pasteurized milk brands on the first day of storage, when the two instruments were used independently. Contrariwise, PCA indicated that no clear storage day's discrimination can be drawn when the two instruments are applied separately. Mid-level of abstraction data fusion approach has demonstrated that results obtained by the data fusion approach outperformed the classification results of the e-nose and e-tongue taken individually. Furthermore, the Support Vector Machine (SVM) supervised method was applied to the new subset and confirmed that all storage days were correctly identified. This study can be generalized to several beverage and food products where their quality is based on the perception of odor and flavor. - Highlights: • Five pasteurized milk brands were differentiated using e-nose and e-tongue. • E-tongue allowed a correct distinction of the milk brands comparing to the e-nose. • The combined system allows determining the storage days of pasteurized milk. • No clear storage day’s discrimination can be drawn when applied e-systems separately. • Data fusion method has been successful in the identification of the storage days.

  12. Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Sasaki, Yusuke; Sakurada, Shuhei; Sun, Yang-Kook; Yashiro, Hitoshi

    2009-01-01

    Several metals (Cu, Fe, Al, Ti, and Cr) as current collector for lithium-ion battery were investigated to understand their electrochemical behavior and passivation process in a non-aqueous alkyl carbonate solution containing LiPF 6 salt. From cyclic voltammetric study, it was found that Cu and Fe metals were dissolved into the electrolyte below 4 V vs. Li/Li + . Alternatively, Al and Ti were stable up to 5 V vs. Li/Li + . Their scratched surfaces at 5 V vs. Li/Li + were polarized in a transient mode and it was found that the surfaces were passivated during the polarization test. Formed passive film was composed of two hybrid layers: outer layer by metal (Al and Ti) fluoride and inner by metal oxide, as confirmed by time-of-flight secondary ion mass spectroscopy. Presence of HF in the electrolyte was indispensible to form the metal fluoride layer on the oxide layer. The outer fluoride layer would protect the inner oxide layer and metal substrate from HF attack, bringing about satisfactory corrosion resistance under lithium-ion battery environment.

  13. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    International Nuclear Information System (INIS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-01-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified

  14. A 3 A sink/source current fast transient response low-dropout G{sub m} driven linear regulator

    Energy Technology Data Exchange (ETDEWEB)

    Chu Xiuqin; Li Qingwei; Lai Xinquan; Yuan Bing [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China); Li Yanming [School of Electronic and Control Engineering, Chang' an University, Xi' an 710064 (China); Zhao Yongrui, E-mail: liqw309@163.com, E-mail: xqchu@mail.xidian.edu.cn [Key Laboratory of High-Speed Circuit Design and EMC, Ministry of Education, Xidian University, Xi' an 710071 (China)

    2011-06-15

    A 3 A sink/source G{sub m}-driven CMOS low-dropout regulator (LDO), specially designed for low input voltage and low cost, is presented by utilizing the structure of a current mirror G{sub m} (transconductance) driving technique, which provides high stability as well as a fast load transient response. The proposed LDO was fabricated by a 0.5 {mu}m standard CMOS process, and the die size is as small as 1.0 mm{sup 2}. The proposed LDO dissipates 220 {mu}A of quiescent current in no-load conditions and is able to deliver up to 3 A of load current. The measured results show that the output voltage can be resumed within 2 {mu}s with a less than 1 mV overshoot and undershoot in the output current step from -1.8 to 1.8 A with a 0.1 {mu}s rising and falling time at three 10 {mu}F ceramic capacitors. (semiconductor integrated circuits)

  15. Voltammetric behavior of erythromycin ethylsuccinate at a renewable silver-amalgam film electrode and its determination in urine and in a pharmaceutical preparation

    International Nuclear Information System (INIS)

    Vajdle, Olga; Guzsvány, Valéria; Škorić, Dušan; Anojčić, Jasmina; Jovanov, Pavle; Avramov-Ivić, Milka; Csanádi, János; Kónya, Zoltán

    2016-01-01

    Highlights: • Voltammetric characterization of erythromycin ethylsuccinate (EES) on Hg(Ag)FE. • Trace level determination of EES by electroreduction based SWV and SW-AdSV methods. • Protonation of the tertiary amino group supports the adsorption of EES on Hg(Ag)FE. • 1 H NMR confirms chemical shifting of tertiary amine methyl proton signals with pH. • Comparative HPLC-DAD measurements were performed for the validation of the methods. - Abstract: Erythromycin, a macrolide antibiotic, has similar antimicrobial spectrum to penicillin and it is widely used, especially in the treatment of patients who are allergic to penicillin. In this work, the application of a renewable silver-amalgam film electrode (Hg(Ag)FE) for the characterization and determination of erythromycin ethylsuccinate (EES), a widely used esterified form of this antibiotic, by means of cyclic voltammetry (CV) and square wave voltammetry (SWV) is presented. In the aqueous Britton-Robinson buffer (pH 5.0–9.0) that served as the supporting electrolyte, one reduction peak of EES was observed in the investigated potential range between −0.75 V and −1.80 V vs SCE, with peak potential maxima ranging from −1.59 V to −1.70 V, which strongly depended on the applied pH, as did the peak shape. For the analytical purposes the pH of 7.0 was selected, since in this electrolyte the EES peak was well-shaped and separated from the background current of the supporting electrolyte in both cases; in the direct cathodic SWV and in the case of square wave adsorptive stripping voltammetry (SW-AdSV). It was established, by the E p -pH correlation, that protons strongly influenced the electrochemical reduction of EES. The CVs recorded between 0.025–0.50 V s −1 at pH 7.0 confirmed that the electrode reaction is adsorption-controlled. Based on the series of 1 H NMR measurements it is proved that the tertiary amino group of EES is mainly in its protonated form at pH 7.0 which may lead, at appropriate

  16. Electromagnetic response of non-trivially shaped superconductors in external magnetic fields and with applied currents

    International Nuclear Information System (INIS)

    Cabral, Leonardo Ribeiro Eulalio; Aguiar, Jose Albino Oliveira de

    2002-01-01

    Full text: The study of the electromagnetic response of high-T c superconductors is essential for future technological applications. Such materials are hard type II superconductors, where the mixed state (a state characterized by quantized normal flux tubes - also called vortices - immersed in a superconductor phase) occupies most of the phase diagram. Therefore, the electromagnetic properties are dictated by the vortex dynamics in these materials. One has also to consider the presence of structural defects and thermal effects, which turn the vortex dynamics very complex. These difficulties may be overcome throughout a macroscopic description, also known as continuum approximation, of the electromagnetic fields in superconductors, obtained from critical state models and constitutive relations E = E(j) and H = H(B) (where E is the electric field generated by moving vortices, j the current density, B the induction - related to the local density of vortices - and H the reversible magnetic field that is in equilibrium with B). In superconductors with negligible demagnetization factors, such as long cylinders and bars with applied magnetic fields and/or currents along their longer dimensions, the Meissner state and the flux penetration is quite well understood. However, the actual specimen shape plays an important role on the electromagnetic behavior of superconductors. Numerical methods are often employed, since such cases are hard to treat analytically. In this work we studied the electromagnetic response of superconductors with various shapes. The Meissner state is obtained for thin curved strips and long cylinders with arbitrary cross-section, in perpendicular field and with applied currents. The flux penetration is numerically calculated for thin curved strips for the Bean (j c =const.) and the Kim (j c (B) = j c0 /(1 + βB)) models. (author)

  17. A complicated biocomputing system based on multi-responsive P(NIPAM-co-APBA) copolymer film electrodes and electrocatalysis of NADH.

    Science.gov (United States)

    Liang, Jiying; Yu, Xue; Yang, Tiangang; Li, Menglu; Shen, Li; Jin, Yue; Liu, Hongyun

    2017-08-23

    In this paper, poly(N-isopropylacrylamide-co-3-aminophenylboronic acid) (P(NIPAM-co-APBA)) copolymer films were successfully electropolymerized on the Au electrode surface. The electroactive probe ferrocene carboxylic acid (FCA) in solution showed reversible thermal-, glucose- and pH-responsive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The comparative experiments demonstrated that the thermo-responsive property of the film electrode was ascribed to the PNIPAM component of the films, whereas the glucose- and pH-sensitive behaviors came from the PAPBA constituent. The reduced form of nicotinamide adenine dinucleotide (NADH) could be electrocatalytically oxidized by FCA at the film electrodes, which would greatly amplify the multi-responsive CV signal difference between the on and off states. On the basis of these results, a binary 4-input/4-output logic circuit was fabricated with temperature, glucose, pH and NADH as inputs and the CV responses at 4 different levels as outputs. Moreover, a ternary CONSENSUS logic circuit was established on the same platform, which was the first report on the combination of ternary logic gate and bioelectrocatalysis without using enzymes. This work provided a novel idea for constructing complicated biocomputing systems by increasing the number of inputs/outputs with multi-sensitive interfaces and by designing new types of multi-valued logic gates on the basis of bioelectrocatalysis.

  18. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    DEFF Research Database (Denmark)

    Vicca, S.; Bahn, M.; Estiarte, M.

    2014-01-01

    dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is 'no' - as based on the most reliable data sets available. We strongly recommend that future experiments focus more...

  19. Protection of Multi-Terminal VSC-HVDC Grids Based on the Response of the First Carrier Frequency Harmonic Current

    DEFF Research Database (Denmark)

    Ashouri, Mani; Khazraj, Hesam; Silva, Filipe Miguel Faria da

    This paper investigates the response of first carrier frequency harmonic (FCFH) current for designing a protection algorithm for multi-terminal Voltage source converter-based HVDC (VSC-MTDC) transmission grids. This transient harmonic current has been used before, to discriminate external AC faults...... various kinds of faults with different locations and resistances. This paper will also consider half-bridge MMC instead of two-level VSCs to test the sensitivity of the FCFH based algorithm for lower harmonic values. A modified meshed version of CIGRE DC model has been used in PSCAD and the signal...

  20. A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous ans non-aqueous electrochemistry

    DEFF Research Database (Denmark)

    Illa, Xavi; Sala, Olga Ordeig; Snakenborg, Detlef

    2010-01-01

    and 24 m deep channel was fabricated via hot embossing. Cyclic voltammetric measurements were carried out in aqueous and organic media, using a solution consisting of 5 mM ferrocyanide/ferricyanide in 0.5 M KNO3 and 5 mM ferrocene in 0.1 M TBAP/acetonitrile, respectively. Experimental currents obtained...

  1. Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions.

    Science.gov (United States)

    Ammann, Claudia; Lindquist, Martin A; Celnik, Pablo A

    It is well known that transcranial direct current stimulation (tDCS) is capable of modulating corticomotor excitability. However, a source of growing concern has been the observed inter- and intra-individual variability of tDCS-responses. Recent studies have assessed whether individuals respond in a predictable manner across repeated sessions of anodal tDCS (atDCS). The findings of these investigations have been inconsistent, and their methods have some limitations (i.e. lack of sham condition or testing only one tDCS intensity). To study inter- and intra-individual variability of atDCS effects at two different intensities on primary motor cortex (M1) excitability. Twelve subjects participated in a crossover study testing 7-min atDCS over M1 in three separate conditions (2 mA, 1 mA, sham) each repeated three times separated by 48 h. Motor evoked potentials were recorded before and after stimulation (up to 30min). Time of testing was maintained consistent within participants. To estimate the reliability of tDCS effects across sessions, we calculated the Intra-class Correlation Coefficient (ICC). AtDCS at 2 mA, but not 1 mA, significantly increased cortical excitability at the group level in all sessions. The overall ICC revealed fair to high reliability of tDCS effects for multiple sessions. Given that the distribution of responses showed important variability in the sham condition, we established a Sham Variability-Based Threshold to classify responses and to track individual changes across sessions. Using this threshold an intra-individual consistent response pattern was then observed only for the 2 mA condition. 2 mA anodal tDCS results in consistent intra- and inter-individual increases of M1 excitability. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. SQUARE WAVE CATHODIC STRIPPING VOLTAMMETRY ADSORPTIVE FOR NICKEL AND COBALT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Saryati Saryati

    2010-06-01

    Full Text Available The adsorptive stripping voltammetric determination of Ni and Co based on adsorption of the Ni/Co and dimethylglioxime (DMG complex on a hanging mercury drop electrode is studied. The reduction current of the adsorbed DMG complex is measured by square wave cathodic stripping voltammetry method. The effect of various parameters such as ligand concentration, pH of supporting electrolytic, adsorption potential and adsorption time on the current peak of Ni and Co voltammogram were studied. Optimum condition of this method are supporting electrolyte pH 9, DMG concentration 5×10 -4 M, adsorption potential -0.7 V vs Ag/AgCl and adsorption time 180 second. A linier relationship between the current peak and Ni or Co concentration was obtained in the range 5 - 30 ng/mL and the detection limit 0.6 ng/ml for both Ni and Co. The recovery of Ni and Co were 98.11-104.17% using standard biological materials with RSD 2.59 - 10.37%. Based on ";t"; test can be conclude that the result are nearly equal to the standard reference material.   Keywords: adsorptive stripping voltammetric, dimethylglioxime complex, nickel, cobalt

  3. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    International Nuclear Information System (INIS)

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-01-01

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields

  4. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    Energy Technology Data Exchange (ETDEWEB)

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Bruno, Emanuela [Dipartimento di Fisica, Università della Calabria, Via Pietro Bucci, Cubo 31C, 87036 Rende (CS) (Italy); Marino, Lucia, E-mail: lucia.marino@fis.unical.it [CNR-IPCF UoS di Cosenza, Licryl Laboratory, and Centro di Eccellenza CEMIF.CAL, Università della Calabria, 87036 Rende (CS) (Italy); Scaramuzza, Nicola [Dipartimento di Fisica, Università della Calabria, Via Pietro Bucci, Cubo 31C, 87036 Rende (CS) (Italy); CNR-IPCF UoS di Cosenza, Licryl Laboratory, and Centro di Eccellenza CEMIF.CAL, Università della Calabria, 87036 Rende (CS) (Italy)

    2014-02-28

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  5. Early response to sibutramine in patients not meeting current label criteria: preliminary analysis of SCOUT lead-in period

    DEFF Research Database (Denmark)

    Caterson, Ian; Coutinho, Walmir; Finer, Nick

    2010-01-01

    The Sibutramine Cardiovascular Outcomes (SCOUT) trial protocol defines a patient population predominantly outside current European Union label criteria. This article explores responses to sibutramine during the 6-week, single-blind, lead-in period between patients who conformed to the label...... requirements ("conformers") and those who did not ("nonconformers"). SCOUT is an ongoing, randomized, double-blind, placebo-controlled outcome trial in overweight/obese patients at high risk of a cardiovascular event. In total, 10,742 patients received sibutramine and weight management during the lead...... with sibutramine confirms its good tolerability and efficacy in patients who meet current label criteria. Preliminary data from high-risk patients for whom sibutramine is currently contraindicated suggest a low discontinuation rate and few serious adverse events but confirmation from the SCOUT outcome data...

  6. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  7. Novel acyclonucleoside analog bearing a 1,2,4-triazole–Schiff base: Synthesis, characterization and analytical studies using square wave-adsorptive stripping voltammetry and HPLC

    Directory of Open Access Journals (Sweden)

    Ali F. Alghamdi

    2017-09-01

    Full Text Available New acyclonucleoside analogs tethered by a 1,2,4-triazole scaffold were synthesized through the condensation of 4-amino-5-(2-phenyleth-1-yl-2,4-dihydro-3H-1,2,4-triazole-3-thione (2 with benzaldehyde followed by the alkylation of the resulting Schiff base (3with 2-bromoethanol, 3-chloropropanol and/or 3-chloropropan-1,2-diol. Voltammetric studies were carried out for the analysis of 1 × 10−6 mol L−1 of the newly synthesized acyclonucleoside analogs (4–6 using square wave-adsorptive stripping voltammetry (SW-AdSV. The sharp voltammetric peak and high reduction current were recorded using a Britton–Robinson B–R pH 10 buffer at Ep = −1250 mV on the hanging mercury drop surface (HMDE and Ag/AgCl reference electrode. Several experimental conditions were studied, such as the supporting electrolytes, the pH, and the accumulation time, as well as the potential, the scan rate, the frequency and the step potential for 4-benzylideneamino-5-(2-phenyleth-1-yl-3-[(2,3-dihydroxyprop-1-ylthio]-1,2,4-triazole (6. The analytical performance of the voltammetric technique was investigated through the analysis of the calibration curve, the detection limit, the recovery and the stability. The voltammetric analytical applications were evaluated by the recovery of compound (6 in the urine and plasma samples. The HPLC technique was also applied for the separation of compound (6 from interference using a C-18 (5 μm column with UV detection at 254 nm.

  8. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  9. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  10. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food.

    Science.gov (United States)

    Gan, Tian; Sun, Junyong; Meng, Wen; Song, Li; Zhang, Yuxia

    2013-12-15

    Currently, synthetic colourants draw much attention as food additives. This paper investigated the simultaneous electrocatalytic oxidation of sunset yellow and tartrazine, two yellow colourants commonly present in food together, with a novel voltammetric sensor based on graphene and mesoporous TiO2 modified carbon paste electrode. Due to the high accumulation effect and great catalytic capability of graphene and mesoporous TiO2, the developed sensor exhibited well-defined and separate square wave voltammetric peaks (i.e., 272 mV) for sunset yellow tartrazine. The peak currents of sunset yellow and tartrazine increased linearly with their concentration in the ranges of 0.02-2.05 μM and 0.02-1.18 μM, respectively. And the detection limit was 6.0 and 8.0 nM for sunset yellow and tartrazine, respectively. This new sensor was applied to determine sunset yellow and tartrazine in several food sample extracts. Results suggested that the proposed sensor was sensitive, rapid and reliable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  12. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.

    Science.gov (United States)

    Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius

    2011-07-01

    Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Differential pulse voltammetric determination of theophylline at poly ...

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 26, No 1 (2012) >. Log in or Register to get access to full text downloads.

  14. Epidemics: Lessons from the past and current patterns of response

    Science.gov (United States)

    Martin, Paul

    2008-09-01

    Hippocrates gave the term 'epidemic' its medical meaning. From antiquity to modern times, the meaning of the word epidemic has continued to evolve. Over the centuries, researchers have reached an understanding of the varying aspects of epidemics and have tried to combat them. The role played by travel, trade, and human exchanges in the propagation of epidemic infectious diseases has been understood. In 1948, the World Health Organization was created and given the task of advancing ways of combating epidemics. An early warning system to combat epidemics has been implemented by the WHO. The Global Outbreak Alert and Response Network (GOARN) is collaboration between existing institutions and networks that pool their human and technical resources to fight outbreaks. Avian influenza constitutes currently the most deadly epidemic threat, with fears that it could rapidly reach pandemic proportions and put several thousands of lives in jeopardy. Thanks to the WHO's support, most of the world's countries have mobilised and implemented an 'Action Plan for Pandemic Influenza'. As a result, most outbreaks of the H5N1 avian flu virus have so far been speedily contained. Cases of dengue virus introduction in countries possessing every circumstance required for its epidemic spread provide another example pertinent to the prevention of epidemics caused by vector-borne pathogens.

  15. Dynamic response of HTS composite tapes to pulsed currents

    International Nuclear Information System (INIS)

    Meerovich, V; Sokolovsky, V; Prigozhin, L; Rozman, D

    2006-01-01

    Dynamic voltage-current characteristics of an HTS Ag/BiSCCO composite tape are studied both experimentally and theoretically. The tape is subjected to pulsed currents with different shapes and magnitudes and voltage traces are measured using the four-point method with different locations of potential taps on the sample surface. Clockwise and anticlockwise hysteresis loops are obtained for the same sample depending on the location of the potential taps. The dynamic characteristics deviate substantially from the DC characteristic, especially in the range of low voltages where a criterion for the critical current value is usually chosen (1-10 μV cm -1 ). The critical current determined from dynamic characteristics and its change with the pulse magnitude depend on the location of the potential taps and on the curve branch chosen for the critical current determination (ascending or descending). The theoretical analysis is based on a model of the magnetic flux diffusion into a composite tape for a superconductor described by the flux creep characteristic. Numerical simulation based on this model gives results in good agreement with the experimental ones and explains the observed peculiarities of the dynamic characteristics of HTS composite tapes. The difference between the magnetic diffusion into a tape and a slab is discussed

  16. Voltammetric determination of wedelolactone, an anti-HIV herbal ...

    Indian Academy of Sciences (India)

    -wave and cyclic ... ing in charge transfer resistance at the boron-doped diamond electrode as compared to the glassy carbon elec- ... The effect of concentration on the peak currents of ... has low charge carrier activation energy of 0.37 eV,42.

  17. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  18. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar.

    Science.gov (United States)

    Oliveira, Paulo Roberto; Lamy-Mendes, Alyne C; Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2015-03-15

    This work describes for first time the use of biochar as electrode modifier in combination with differential pulse adsorptive stripping voltammetric (DPAdSV) techniques for preconcentration and determination of copper (II) ions in spirit drinks samples (Cachaça, Vodka, Gin and Tequila). Using the best set of the experimental conditions a linear response for copper ions in the concentration range of 1.5 × 10(-6) to 3.1 × 10(-5) mol L(-1) with a Limit of Detection (LOD) of 4.0 × 10(-7) mol L(-1). The repeatability of the proposed sensor using the same electrode surface was measured as 3.6% and 6.6% using different electrodes. The effect of foreign species on the voltammetric response was also evaluated. Determination of copper ions content in different samples of spirit drinks samples was also realized adopting inductively coupled plasma optical emission spectroscopy (ICP-OES) and the results achieved are in agreement at a 95% of confidence level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    Science.gov (United States)

    S. Vicca; M. Bahn; M. Estiarte; E. E. van Loon; R. Vargas; G. Alberti; P. Ambus; M. A. Arain; C. Beier; L. P. Bentley; W. Borken; N. Buchmann; S. L. Collins; G. de Dato; J. S. Dukes; C. Escolar; P. Fay; G. Guidolotti; P. J. Hanson; A. Kahmen; G. Kröel-Dulay; T. Ladreiter-Knauss; K. S. Larsen; E. Lellei-Kovacs; E. Lebrija-Trejos; F. T. Maestre; S. Marhan; M. Marshall; P. Meir; Y. Miao; J. Muhr; P. A. Niklaus; R. Ogaya; J. Peñuelas; C. Poll; L. E. Rustad; K. Savage; A. Schindlbacher; I. K. Schmidt; A. R. Smith; E. D. Sotta; V. Suseela; A. Tietema; N. van Gestel; O. van Straaten; S. Wan; U. Weber; I. A. Janssens

    2014-01-01

    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends an extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the...

  20. Electrochemical detection of rutin with a carbon ionic liquid electrode modified by Nafion, graphene oxide and ionic liquid composite

    International Nuclear Information System (INIS)

    Hu, S.; Xiang, J.; Zhang, L.; Zhu, H.; Liu, S.; Sun, W.

    2012-01-01

    We report on a carbon ionic liquid electrode modified with a composite made from Nafion, graphene oxide and ionic liquid, and its application to the sensitive determination of rutin. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. It shows excellent cyclic voltammetric and differential pulse voltammetric performance due to the presence of nanoscale graphene oxide and the ionic liquid, and their interaction. A pair of well-defined redox peaks of rutin appears at pH 3.0, and the reduction peak current is linearly related to its concentration in the range from 0.08 μM to 0.1 mM with a detection limit of 0.016 μM (at 3σ). The modified electrode displays excellent selectivity and good stability, and was successfully applied to the determination of rutin in tablets with good recovery. (author)

  1. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  2. INHIBICIÓN DE LA ELECTROOXIDACION DE ÁCIDO ASCÓRBICO SOBRE ORO MEDIANTE POLIPIRROL SOBREOXIDADO

    Directory of Open Access Journals (Sweden)

    Luis Pesetti

    2013-01-01

    Full Text Available Electroanalytical determination of neurotransmitters in the brain, presents the difficulty of high anion ascorbate concentration, which oxidized at almost the same potential as the neurotransmitters. To avoid this interference, the electrode is recovered with a selective overoxidized polypyrrol (Ppy film, which supresses voltammetric ascorbate wave and the discharge current of neurotransmitter is only observed. The Pyrrol polymerization is made with a stepped voltammetric sweep, between 0.3 V and an anodic potential of approximately 1.0 V in a buffer solution at 0,005 V/sec. With potentiostatic electrolysis at 1.05 V (measured vs. reversible hydrogen electrode, RHE the polymer film is oxidized and it is overoxidized at 1.7 V. During 48 hours, the film remains stable. Then, it slowly losses its properties. The optimum conditions to obtain a good quality film are found in this research.

  3. Behavioral Responses Of Fish To A Current-Based Hydrokinetic Turbine Under Mutlipe Operational Conditions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shen, Haixue [Univ. of Maine, Orono, ME (United States); Zydlewski, Gayle [Univ. of Maine, Orono, ME (United States); Rao, Shivanesh [Univ. of Maine, Orono, ME (United States); Goodwin, Andy [United States Army Engineer R & D Center, Vicksburg, MI (United States)

    2017-02-01

    There is significant interest in the interaction of aquatic organisms with current-based marine and hydrokinetic (MHK) technologies. Determining the potential impacts of MHK devices on fish behavior is critical to addressing the environmental concerns that could act as barriers to the permitting and deployment of MHK devices. To address these concerns, we use field monitoring and fish behavior models to characterize the behavioral responses of fish to MHK turbines and infer potential stimuli that may have elicited the observed behavioral changes.

  4. Simulation of square wave voltammetry of three electrode reactions coupled by two reversible chemical reactions

    OpenAIRE

    Lovrić, Milivoj

    2017-01-01

    Three fast and reversible electrode reactions that are connected by two reversible chemical reactions that are permanently in the equilibrium are analysed theoretically for square wave voltammetry. The dependence of peak potentials on the dimensionless equilibrium constants of chemical reactions is calculated. The influence of the basic thermodynamic parameters on the square wave voltammetric responses is analysed.

  5. Voltammetric fingerprinting of oils and its combination with chemometrics for the detection of extra virgin olive oil adulteration.

    Science.gov (United States)

    Tsopelas, Fotios; Konstantopoulos, Dimitris; Kakoulidou, Anna Tsantili

    2018-07-26

    In the present work, two approaches for the voltammetric fingerprinting of oils and their combination with chemometrics were investigated in order to detect the adulteration of extra virgin olive oil with olive pomace oil as well as the most common seed oils, namely sunflower, soybean and corn oil. In particular, cyclic voltammograms of diluted extra virgin olive oils, regular (pure) olive oils (blends of refined olive oils with virgin olive oils), olive pomace oils and seed oils in presence of dichloromethane and 0.1 M of LiClO 4 in EtOH as electrolyte were recorded at a glassy carbon working electrode. Cyclic voltammetry was also employed in methanolic extracts of olive and seed oils. Datapoints of cyclic voltammograms were exported and submitted to Principal Component Analysis (PCA), Partial Least Square- Discriminant Analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA). In diluted oils, PLS-DA provided a clear discrimination between olive oils (extra virgin and regular) and olive pomace/seed oils, while SIMCA showed a clear discrimination of extra virgin olive oil in regard to all other samples. Using methanolic extracts and considering datapoints recorded between 0.6 and 1.3 V, PLS-DA provided more information, resulting in three clusters-extra virgin olive oils, regular olive oils and seed/olive pomace oils-while SIMCA showed inferior performance. For the quantification of extra virgin olive oil adulteration with olive pomace oil or seed oils, a model based on Partial Least Square (PLS) analysis was developed. Detection limit of adulteration in olive oil was found to be 2% (v/v) and the linearity range up to 33% (v/v). Validation and applicability of all models was proved using a suitable test set. In the case of PLS, synthetic oil mixtures with 4 known adulteration levels in the range of 4-26% were also employed as a blind test set. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A Voltammetric Sensor Based on Chemically Reduced Graphene Oxide-Modified Screen-Printed Carbon Electrode for the Simultaneous Analysis of Uric Acid, Ascorbic Acid and Dopamine

    Directory of Open Access Journals (Sweden)

    Prosper Kanyong

    2016-12-01

    Full Text Available A disposable screen-printed carbon electrode (SPCE modified with chemically reduced graphene oxide (rGO (rGO-SPCE is described. The rGO-SPCE was characterized by UV-Vis and electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode displays excellent electrocatalytic activity towards uric acid (UA, ascorbic acid (AA and dopamine (DA. Three resolved voltammetric peaks (at 183 mV for UA, 273 mV for AA and 317 mV for DA, all vs. Ag/AgCl were found. Differential pulse voltammetry was used to simultaneously detect UA, AA and DA in their ternary mixtures. The linear working range extends from 10 to 3000 μM for UA; 0.1 to 2.5 μM, and 5.0 to 2 × 104 µM for AA; and 0.2 to 80.0 μM and 120.0 to 500 µM for DA, and the limits of detection (S/N = 3 are 0.1, 50.0, and 0.4 μM, respectively. The performance of the sensor was evaluated by analysing spiked human urine samples, and the recoveries were found to be well over 98.0% for the three compounds. These results indicate that the rGO-SPCE represents a sensitive analytical sensing tool for simultaneous analysis of UA, AA and DA.

  7. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents.

    Science.gov (United States)

    Revill, Ann L; Fuglevand, Andrew J

    2017-01-01

    Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing

  8. Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion

    DEFF Research Database (Denmark)

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei

    2017-01-01

    During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper asnovel cathode material to enhance electron transfer between the cathode and microbe, which in turn...... facilitated CO2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m−2 d−1 with RGO paper cathodes poised at −690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension....... The current density with RGO paper cathodes of 2580 ± 540 mA m−2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO...

  9. Spectral and cyclic voltammetric studies on some intramolecularly hydrogen bonded arylhydrazones: Crystal and molecular structure of 2-(2-(3-nitrophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione

    Science.gov (United States)

    Sethukumar, A.; Arul Prakasam, B.

    2010-01-01

    A series of arylhydrazone derivatives ( 1- 7) were prepared by the coupling of acetylacetone/dimedone with respective aromatic diazonium salts and characterized by IR, 1H and 13C NMR spectra. The IR and NMR spectral data clearly manifests the effective intramolecular hydrogen bonding in all the cases. Cyclic voltammetric studies certainly indicate that in all the cases the reduced center is C dbnd N bond of hydrazonic moiety. The single crystal X-ray structural analysis of 2-(2-(3-nitrophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione ( 6) is also reported. Single crystal X-ray analysis of 6 evidences the intramolecular hydrogen bonding with the N(2)⋯O(4) distance of 2.642(15) Å, which can be designated as S(6) according to Etter's graph nomenclature. The cyclohexane ring conformation in the molecule ( 6) can be described as an envelope. RAHB studies suggest that the resonance assistance for hydrogen bonding is significantly reduced for the compound ( 6) due to the non-planarity of the six atoms which are involved in resonant cycle S(6) of Etter's graph. The planarity of the resonant cycle S(6) is very much disturbed by the conformational requirement of the cyclohexane ring and hence RAHB concept is less operative in this case.

  10. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    Science.gov (United States)

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  11. The Ring Current Response to Solar and Interplanetary Storm Drivers

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  12. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.

    Science.gov (United States)

    Chen, Guang; Das, Siddhartha

    2017-03-01

    In this paper, we study the thermodynamics, electrostatics, and an external electric field driven ionic current in a pH-responsive, end-charged polyelectrolyte (PE) brush grafted nanochannel. By employing a mean field theory, we unravel a highly nonintuitive interplay of pH and electrolyte salt concentration in dictating the height of the end-charged PE brush. Larger pH or weak hydrogen ion concentration leads to maximum ionization of the charge-producing group-as a consequence, the resulting the electric double layer (EDL) energy get maximized causing a maximum deviation of the brush height from the value (d 0 ) of the uncharged brush. This deviation may result in enhancement or lowering of the brush height as compared to d 0 depending on whether the PE end locates lower or higher than h/2 (h is the nanochannel half height) and the salt concentration. Subsequently, we use this combined PE-brush-configuration-EDL-electrostatics framework to compute the ionic current in the nanochannel. We witness that the ionic current for smaller pH is much larger despite the corresponding magnitude of the EDL electrostatic potential being much smaller-this stems from the presence of a much larger concentration of H+ ions at small pH and the fact that H+ ions have very large mobilities. In fact, this ionic current shows a steep variation with pH that can be useful in exploring new designs for applications involving quantification and characterization of ionic current in PE-brush-grafted nanochannels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2009-01-01

    Full Text Available The surface of glassy carbon (GC electrode has been modified by oxidation of L-cysteine. The covalent modified GC electrode with L-Cysteine has been studied, according the supporting electrolyte used. Favourable interactions between the L-cysteine film and DA enhance the current response compared to that at the Nafion GC and bare GC electrodes, achieving better performances than those other electrodes. This behaviour was as result of the adsorption of the cysteine layer film, compact and uniform formation; depending on L-cysteine solution (phosphate buffer or chloridric acid supporting electrolyte used for modifying GC surface. In cyclic voltammetric measurements, modified electrodes can successfully separate the oxidation/reduction DA peaks in different buffer solutions, but an evident dependence in the response was obtained as function of pH and modified electrode. The modified electrode prepared with L-cysteine/HCl solution was used to obtain the calibration curve and it exhibited a stable and sensitive response to DA. The results are described and discussed in the light of the existing literature.

  14. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose

    Directory of Open Access Journals (Sweden)

    Chakavak Esmaeili

    2015-09-01

    Full Text Available Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM−1, with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD of (50 ± 10 µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD of 4.47%.

  15. Effective Area and Charge Density of Iridium Oxide Neural Electrodes

    International Nuclear Information System (INIS)

    Harris, Alexander R.; Paolini, Antonio G.; Wallace, Gordon G.

    2017-01-01

    The effective electrode area and charge density of iridium metal and anodically activated iridium has been measured by optical and electrochemical techniques. The degree of electrode activation could be assessed by changes in electrode colour. The reduction charge, activation charge, number of activation pulses and charge density were all strongly correlated. Activated iridium showed slow electron transfer kinetics for reduction of a dissolved redox species. At fast voltammetric scan rates the linear diffusion electroactive area was unaffected by iridium activation. At slow voltammetric scan rates, the steady state diffusion electroactive area was reduced by iridium activation. The steady state current was consistent with a ring electrode geometry, with lateral resistance reducing the electrode area. Slow electron transfer on activated iridium would require a larger overpotential to reduce or oxidise dissolved species in tissue, limiting the electrodes charge capacity but also reducing the likelihood of generating toxic species in vivo.

  16. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    Science.gov (United States)

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier

  17. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pivotal response treatment for autism spectrum disorder: current perspectives

    Directory of Open Access Journals (Sweden)

    Lei J

    2017-06-01

    Full Text Available Jiedi Lei, Pamela Ventola Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA Abstract: Pivotal response treatment (PRT is an evidence-based behavioral intervention based on applied behavior analysis principles aimed to improve social communication skills in individuals with autism spectrum disorder (ASD. PRT adopts a more naturalistic approach and focuses on using a number of strategies to help increase children’s motivation during intervention. Since its conceptualization, PRT has received much empirical support for eliciting therapeutic gains in greater use of functional social communication skills in individuals with ASD. Building upon the empirical evidence supporting PRT, recent advancements have increasingly turned to using interdisciplinary research integrating neuroimaging techniques and behavioral measures to help identify objective biomarkers of treatment, which have two primary purposes. First, neuroimaging results can help characterize how PRT may elicit change, and facilitate partitioning of the heterogeneous profiles of neural mechanisms underlying similar profile of behavioral changes observed over PRT. Second, neuroimaging provides an objective means to both map and track how biomarkers may serve as reliable and sensitive predictors of responder profiles to PRT, assisting clinicians to identify who will most likely benefit from PRT. Together, a better understanding of both mechanisms of change and predictors of responder profile will help PRT to serve as a more precise and targeted intervention for individuals with ASD, thus moving towards the goal of precision medicine and improving quality of care. This review focuses on the recent emerging neuroimaging evidences supporting PRT, offering current perspectives on the importance of interdisciplinary research to help clinicians better understand how PRT works and predict who will respond to PRT. Keywords: PRT, ASD, biomarkers, neuroimaging

  19. Evolution and current status of demand response (DR) in electricity markets: Insights from PJM and NYISO

    International Nuclear Information System (INIS)

    Walawalkar, Rahul; Fernands, Stephen; Thakur, Netra; Chevva, Konda Reddy

    2010-01-01

    In electricity markets, traditional demand side management programs are slowly getting replaced with demand response (DR) programs. These programs have evolved since the early pilot programs launched in late 1990s. With the changes in market rules the opportunities have generally increased for DR for participating in emergency, economic and ancillary service programs. In recent times, various regulators have suggested that DR can also be used as a solution to meet supply - demand fluctuations in scenarios with significant penetration of variable renewable sources in grid. This paper provides an overview of the evolution of the DR programs in PJM and NYISO markets as well as analyzes current opportunities. Although DR participation has grown, most of the current participation is in the reliability programs, which are designed to provide load curtailment during peak days. This suggests that there is a significant gap between perception of ability of DR to mitigate variability of renewables and reality of current participation. DR in future can be scaled to play a more dynamic role in electricity markets, but that would require changes both on technology as well as policy front. Advances in building technologies and energy storage combined with appropriate price signals can lead to enhanced DR participation. (author)

  20. Investigation of synthesized new vanadium(III) complexes of ditolyldithiophosphate ligands by spectroscopic, cyclic voltammetric, DFT, antimicrobial and cytotoxic studies

    Science.gov (United States)

    Kumar, Sandeep; Syed, Atiya; Andotra, Savit; Kaur, Ramanpreet; Vikas; Pandey, Sushil K.

    2018-02-01

    Vanadium(III) complexes with sulfur donor dithiophosphate ligands corresponding to [{(ArO)2PS2}3V] and [{(ArO)2PS2}2VCl.L] (Ar = o-, m-, p-CH3C6H4 and p-Cl-m-CH3C6H3; L = NC5H5, P(C6H5)3, have been synthesized and characterized by various physico-chemical techniques like elemental analyses, magnetic studies, ESI-Mass, IR, UV and heteronuclear NMR (1H, 13C and 31P) spectral studies. These analyses have contributed to the prediction of structure: by exhibiting significant v(P-S) and v(Pdbnd S) band shifting in comparative IR spectra; shifting of resonance signal in comparative 31P NMR spectra of ligands and complexes and stability of V(III) ion in the complexed state is confirmed by magnetic and UV studies. Therefore, the six coordinated geometry stabilizing the trivalent vanadium atom in the complexes and adducts, respectively has been confirmed. The cyclic voltammetric analyses presented the redox aptitude of the complex under analysis which can be utilized as catalyst in organic synthesis. The geometry of ligands and complexes has been optimized using density functional theory (DFT). The structural parameters, vibrational bands and energy gaps of frontier orbitals (HOMO-LUMO) have also been calculated. The calculated geometric and spectral results reproduced the experimental data with well agreement. The DFT computed frontier molecular orbitals (HOMO-LUMO) and their energies suggest charge transfer occurs within the complexes. Antimicrobial screening of the complexes against two bacterial strains: Gram-positive, Enterrococcus faecalis and Gram-negative, Eischerichia coli and fungus Fusarium oxysporum have shown potential bioactivity. A preliminary cytotoxic analysis has been carried out using the cultivated human cell lines: lung adeno carcinoma cell line A-549, leukemia cell line THP-1, prostate cancer cell line PC3 and colorectal cancer cell line HCT-116.

  1. The impact of anti-HY responses on outcome in current and subsequent pregnancies of patients with recurrent pregnancy losses

    DEFF Research Database (Denmark)

    Christiansen, Ole Bjarne; Steffensen, Rudi Nora; Nielsen, Henriette Svarre

    2010-01-01

    Women pregnant with a male fetus often generate cellular and humoral immune responses against male-specific minor histocompatibility (HY) antigens-however, the importance of these responses for pregnancy outcome is unclear. Epidemiologic studies have shown that the birth of a boy compared...... with a girl prior to a series of miscarriages significantly reduces the chance of a subsequent live birth and pregnancies with boys have an increased risk of placental abruption. This paper aims to review the current knowledge about the impact of anti-HY immunity on pregnancy outcome in terms of miscarriage...... and placental abruption. Our knowledge primarily comes from studies of the impact on pregnancy outcome of HLA class II alleles known to restrict CD4 T cell mediated anti-HY responses among 358 secondary recurrent miscarriage (SRM) patients and 203 of their children born prior to the miscarriages...

  2. Modulated Current Drive Measurements

    International Nuclear Information System (INIS)

    Petty, C.C.; Lohr, J.; Luce, T.C.; Prater, R.; Cox, W.A.; Forest, C.B.; Jayakumar, R.J.; Makowski, M.A.

    2005-01-01

    A new measurement approach is presented which directly determines the noninductive current profile from the periodic response of the motional Stark effect (MSE) signals to the slow modulation of the external current drive source. A Fourier transform of the poloidal magnetic flux diffusion equation is used to analyze the MSE data. An example of this measurement technique is shown using modulated electron cyclotron current drive (ECCD) discharges from the DIII-D tokamak

  3. Current nuclear threats and possible responses

    Science.gov (United States)

    Lamb, Frederick K.

    2005-04-01

    Over the last 50 years, the United States has spent more than 100 billion developing and building a variety of systems intended to defend its territory against intercontinental-range ballistic missiles. Most of these systems never became operational and ultimately all were judged ineffective. The United States is currently spending about 10 billion per year developing technologies and systems intended to defend against missiles that might be acquired in the future by North Korea or Iran. This presentation will discuss these efforts ad whether they are likely to be more effective than those of the past. It will also discuss the proper role of anti-ballistic programs at a time when the threat of a nuclear attack on the U.S. by terrorists armed with nuclear weapons is thought to be much higher than the threat of an attack by nuclear-armed ballistic missles.

  4. ELECTROCHEMICAL FINGERPRINT STUDIES OF SELECTED MEDICINAL PLANTS RICH IN FLAVONOIDS.

    Science.gov (United States)

    Konieczyński, Paweł

    2015-01-01

    The combination of a size-exclusion column (SEC) with electrochemical (voltammetric) detection at a boron-doped diamond electrode (BDDE) was applied for studying the correlations between electroactive Cu and Fe species with phenolic groups of flavonoids. For comparison with electrochemical results, SEC-HPLC-DAD detection was used. The studied plant material comprised of: Betula verrucosa Ehrh., Equisetun arvense L., Polygonum aviculare L., Viola tricolor L., Crataegus oxyacantha L., Sambucus nigra L. and Helichrysum arenarium (L.) Moench. Based upon the results, high negative correlation was found for the chromatographic peak currents at 45 min with the sum of Cu and Fe for the aqueous extracts of Sambucus, Crataegus and Betula species, and for the peak currents at 65 min of the aqueous extracts of Sambucus, Crataegus, Helichrysum and Betula botanical species. This behavior confirms that it is mainly the flavonoids with easily oxidizable phenolic groups which are strongly influenced by the presence of Cu and Fe. Moreover, the electrochemical profiles obtained thanks to the use of HPLC hyphenated with voltammetric detection can be potentially applied for fingerprint studies of the plant materials used in medicine.

  5. Triply responsive films in bioelectrocatalysis with a binary architecture: combined layer-by-layer assembly and hydrogel polymerization.

    Science.gov (United States)

    Yao, Huiqin; Hu, Naifei

    2011-05-26

    In this work, triply responsive films with a specific binary architecture combining layer-by-layer assembly (LbL) and hydrogel polymerization were successfully prepared. First, concanavalin A (Con A) and dextran (Dex) were assembled into {Con A/Dex}(5) LbL layers on electrode surface by the lectin-sugar biospecific interaction between them. The poly(N,N-diethylacrylamide) (PDEA) hydrogels with entrapped horseradish peroxidase (HRP) were then synthesized by polymerization on the surface of LbL inner layers, forming {Con A/Dex}(5)-(PDEA-HRP) films. The films demonstrated reversible pH-, thermo-, and salt-responsive on-off behavior toward electroactive probe Fe(CN)(6)(3-) in its cyclic voltammetric responses. This multiple stimuli-responsive films could be further used to realize triply switchable electrochemical reduction of H(2)O(2) catalyzed by HRP immobilized in the films and mediated by Fe(CN)(6)(3-) in solution. The responsive mechanism of the films was explored and discussed. The pH-sensitive property of the system was attributed to the electrostatic interaction between the {Con A/Dex}(5) inner layers and the probe at different pH, and the thermo- and salt-responsive behaviors should be ascribed to the structure change of PDEA hydrogels for the PDEA-HRP outermost layers under different conditions. The concept of binary architecture was also used to fabricate {Con A/Dex}(5)-(PDEA-GOD) films on electrodes, where GOD = glucose oxidase, which was applied to realize the triply switchable bioelectrocatalysis of glucose by GOD in the films with ferrocenedicarboxylic acid as the mediator in solution. This film system with the unique binary architecture may establish a foundation for fabricating a novel type of multicontrollable biosensors based on bioelectrocatalysis with immobilized enzymes.

  6. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  7. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    Science.gov (United States)

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. Copyright © 2013. Published by Elsevier B.V.

  8. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling.

    Directory of Open Access Journals (Sweden)

    Elisa Bayraktarov

    Full Text Available Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34% compared to the exposed site (8%. Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (<10% at both sites was observed, but corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs.

  9. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling.

    Science.gov (United States)

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs.

  10. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2017-03-01

    Full Text Available A new electronically tunable mixed-mode biquadratic filter with three current controlled current conveyor transconductance amplifiers (CCCCTAs and two grounded capacitors is proposed. With current input, the filter can realise lowpass (LP, bandpass (BP, highpass (HP, bandstop (BS and allpass (AP responses in current mode and LP, BP and HP responses in transimpedance mode. With voltage input, the filter can realise LP, BP, HP, BS and AP responses in voltage and transadmittance modes. Other attractive features of the mixed-mode biquadratic filter are (1 the use of two grounded capacitors, which is ideal for integrated circuit implementation; (2 orthogonal control of the quality factor (Q and resonance angular frequency (ωo for easy electronic tenability; (3 low input impedance and high output impedance for current signals; (4 high input impedance for voltage signal; (5 avoidance of need for component-matching conditions; (6 resistorless and electronically tunable structure; (7 low active and passive sensitivities; and (8 independent control of the voltage transfer gains without affecting the parameters ωo and Q.

  11. Voltammetric and impedimetric properties of nano-scaled -Fe2O3 catalysts supported on multi-walled carbon nanotubes: catalytic detection of dopamine

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-12-01

    Full Text Available voltammetry and electrochemical impedance spectroscopy. The MWCNT-Fe2O3 based electrodes demonstrated fastest electron transport and current response towards DA compared to other electrodes studied, giving a catalytic rate constant of 16.4 x 105 cm3mol-1s-1...

  12. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats.

    Directory of Open Access Journals (Sweden)

    Luiz Fabio Dimov

    Full Text Available Transcranial direct current stimulation (tDCS is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG and the dorsal horn of the spinal cord (DHSC in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1, which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment.

  13. Determination of polyphenol content and colour index in wines through PEDOT-modified electrodes.

    Science.gov (United States)

    Pigani, Laura; Rioli, Cristina; Foca, Giorgia; Ulrici, Alessandro; Seeber, Renato; Terzi, Fabio; Zanardi, Chiara

    2016-10-01

    Poly(3,4-ethylenedioxythiophene)-modified electrodes have been used for the estimation of the polyphenolic content and of the colour index of different samples of wines. Synthetic wine solutions, prepared with different amount of oenocyanins, have been analysed spectrophotometrically and electrochemically in order to find a correlation between the total polyphenolic content or colour index and the current peak. The regression curves obtained have been used as external calibration lines for the analysis of several commercial wines, ranging from white to dark red wines. In this way, a rapid estimation of the total polyphenolic content and of the colour index may be accomplished from a single voltammetric measurement. Furthermore, principal component analysis has also been used to evaluate the effect of total polyphenolic content and colour index on the whole voltammetric signals within a selected potential range, both for the synthetic solutions and for the commercial products. Graphical abstract Electrochemical sensors for the rapid determination of colour index and polyphenol content in wines.

  14. Analysis of the dynamic response improvement of a turbocharged diesel engine driven alternating current generating set

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz; Medica, Vladimir; Trenc, Ferdinand

    2005-01-01

    Reliability of electric supply systems is among the most required necessities of modern society. Turbocharged diesel engine driven alternating current generating sets are often used to prevent electric black outs and/or as prime electric energy suppliers. It is well known that turbocharged diesel engines suffer from an inadequate response to a sudden load increase, this being a consequence of the nature of the energy exchange between the engine and the turbocharger. The dynamic response of turbocharged diesel engines could be improved by electric assisting systems, either by direct energy supply with an integrated starter-generator-booster (ISG) mounted on the engine flywheel, or by an indirect energy supply with an electrically assisted turbocharger. An experimentally verified zero dimensional computer simulation method was used for the analysis of both types of electrical assistance. The paper offers an analysis of the interaction between a turbocharged diesel engine and different electric assisting systems, as well as the requirements for the supporting electric motors that could improve the dynamic response of a diesel engine while driving an AC generating set. When performance class compliance is a concern, it is evident that an integrated starter-generator-booster outperforms an electrically assisted turbocharger for the investigated generating set. However, the electric energy consumption and frequency recovery times are smaller when an electrically assisted turbocharger is applied

  15. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    Science.gov (United States)

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Enhanced Brain Responses to Pain-Related Words in Chronic Back Pain Patients and Their Modulation by Current Pain.

    Science.gov (United States)

    Ritter, Alexander; Franz, Marcel; Puta, Christian; Dietrich, Caroline; Miltner, Wolfgang H R; Weiss, Thomas

    2016-08-10

    Previous functional magnetic resonance imaging (fMRI) studies in healthy controls (HC) and pain-free migraine patients found activations to pain-related words in brain regions known to be activated while subjects experience pain. The aim of the present study was to identify neural activations induced by pain-related words in a sample of chronic back pain (CBP) patients experiencing current chronic pain compared to HC. In particular, we were interested in how current pain influences brain activations induced by pain-related adjectives. Subjects viewed pain-related, negative, positive, and neutral words; subjects were asked to generate mental images related to these words during fMRI scanning. Brain activation was compared between CBP patients and HC in response to the different word categories and examined in relation to current pain in CBP patients. Pain-related words vs. neutral words activated a network of brain regions including cingulate cortex and insula in subjects and patients. There was stronger activation in medial and dorsolateral prefrontal cortex (DLPFC) and anterior midcingulate cortex in CPB patients than in HC. The magnitude of activation for pain-related vs. negative words showed a negative linear relationship to CBP patients' current pain. Our findings confirm earlier observations showing that pain-related words activate brain networks similar to noxious stimulation. Importantly, CBP patients show even stronger activation of these structures while merely processing pain-related words. Current pain directly influences on this activation.

  17. A direct current amplifier with linear or logarithmic response; Amplificateur courant continu a reponse lineaire ou logarithmique

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Chandanson, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    The following paper examines the conditions governing the construction of an instrument with logarithmic response, capable of measuring currents between 10{sup -10} A and 10{sup -4} A. The development is described of a type of stabilised direct current amplifier, designed particularly to operate in a Pile control board, giving indications proportional either to the power, on to the log. of this power, and which may also be linked to an instrument for measuring reactivity. (author) [French] On examine dans ce qui suit les conditions qui president a la realisation d'un ensemble a reponse logarithmique, utilisable pour mesurer des courants compris entre 10{sup -10} A et 10{sup -4} A. On decrit la realisation d'un type d'amplificateur courant continu stable, destine plus specialement a fonctionner dans un tableau de commande de Pile, donnant des indications proportionnelles soit a la puissance, soit au logarithme de cette puissance et de plus associe avec un ensemble de mesure de reactivite. (auteur)

  18. No effect of anodal transcranial direct current stimulation over the motor cortex on response-related ERPs during a conflict task.

    Directory of Open Access Journals (Sweden)

    Alexander Christian Conley

    2016-08-01

    Full Text Available Anodal transcranial direct current stimulation (tDCS over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs during a cued go/nogo task after anodal tDCS over dominant M1 in young adults (Experiment 1 and both dominant and non-dominant M1 in old adults (Experiment 2. In both experiments, anodal tDCS had no effect on either response time or response-related ERPs, including the cue-locked contingent negative variation (CNV and both target-locked and response-locked lateralised readiness potentials (LRP. Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on response time or response-related ERPs during a cued go/nogo task in either young or old adults.

  19. Modulation of Current Source Inverter

    Directory of Open Access Journals (Sweden)

    Golam Reza Arab Markadeh

    2011-04-01

    Full Text Available Direct torque control with Current Source Inverter (CSI instead of voltage source inverter is so appropriate because of determining the torque of induction motor with machine current and air gap flux. In addition, Space-Vector Modulation (SVM is a more proper method for CSI because of low order harmonics reduction, lower switching frequency and easier implementation. This paper introduces the SVM method for CSI and uses the proposed inverter for vector control of an induction motor. The simulation results illustrate fast dynamic response and desirable torque and speed output. Fast and accurate response to changes of speed and load torque reference completely proves the prominence of this method.

  20. Current profile evolution during fast wave current drive on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Forest, C.B.; Baity, F.W.

    1995-06-01

    The effect of co and counter fast wave current drive (FWCD) on the plasma current profile has been measured for neutral beam heated plasmas with reversed magnetic shear on the DIII-D tokamak. Although the response of the loop voltage profile was consistent with the application of co and counter FWCD, little difference was observed between the current profiles for the opposite directions of FWCD. The evolution of the current profile was successfully modeled using the ONETWO transport code. The simulation showed that the small difference between the current profiles for co and counter FWCD was mainly due to an offsetting change in the o at sign c current proffie. In addition, the time scale for the loop voltage to reach equilibrium (i.e., flatten) was found to be much longer than the FWCD pulse, which limited the ability of the current profile to fully respond to co or counter FWCD

  1. Demand Response Within Current Electricity Wholesale Market Design

    OpenAIRE

    Ramos Gutierrez, Ariana Isabel; De Jonghe, Cedric; Six, Daan; Belmans, Ronnie

    2013-01-01

    The introduction of intermittent energy resources calls for the ability to modulate consumption patterns according to electricity availability. This paper provides a brief overview of the main electricity market design characteristics and places demand response within the framework of the existing timeline of market operation. The main differences between electricity markets lie in the price formation mechanisms where some markets pay-as- cleared and some pay- as- bid for the electricity tran...

  2. Browse Title Index

    African Journals Online (AJOL)

    Issue, Title. Vol 22, No 2 (2008), Voltammetric determination of heparin based on its interaction with malachite green, Abstract PDF. Xueliang Niu, Weili Zhang, Na Zhao, Wei Sun. Vol 22, No 2 (2008), Voltammetric determination of l-cysteic acid on a 1-[4-(ferrocenyl-ethynyl)phenyl]-1-ethanone modified carbon paste ...

  3. Voltammetric determination of theophylline at a Nafion/multi-wall ...

    Indian Academy of Sciences (India)

    Administrator

    tive anodic peak at around 1180 mV (vs SCE) in 0⋅01 mol/L H2SO4 medium (pH 1⋅8). In contrast with the bare ..... more than that of hydrogen ions participating in the electrode reaction. .... the peak current is just 15⋅0%, indicating good dura- bility of the .... Sadik O A, Land W H and Wang J 2003 Electroana- lysis. 15 1149.

  4. Current limiting capability of diffused resistors

    International Nuclear Information System (INIS)

    Shedd, W.; Cappelli, J.

    1979-01-01

    An experimental evaluation of the current limiting capability of dielectrically isolated diffused resistors at transient ionizing dose rates up to 6*10 12 rads(Si)/sec is presented. Existing theoretical predictions of the transient response of diffused resistors are summarized and compared to the experimentally measured values. The test resistors used allow the effects of sheet resistance and geometry on the transient response to be determined. The experimental results show that typical dielectrically isolated diffused resistors maintain adequate current limiting capability for use in radiation hardened integrated circuits

  5. Application of MoS{sub 2} modified screen-printed electrodes for highly sensitive detection of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Kukkar, Manil [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30-C, Chandigarh, 160030 (India); Sharma, Ashish [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030 (India); UIET, Panjab University, Sector 14, Chandigarh, 160014 (India); Kumar, Parveen [Department of Biotechnology, Kurukshetra University, Kurukshetra, 136119 (India); Kim, Ki-Hyun, E-mail: kkim61@hanyang.ac.kr [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of); Deep, Akash, E-mail: dr.akashdeep@csio.res.in [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30-C, Chandigarh, 160030 (India)

    2016-10-05

    The present work reports the application of a new molybdenum disulphide (MoS{sub 2})-based electrochemical platform for highly sensitive quantitation of an iron-binding protein, bovine serum albumin (BSA). The gold screen-printed electrodes were modified with MoS{sub 2} nanoflakes, followed by bioconjugation with anti-BSA antibodies. Using the above bioelectrode, cyclic voltammetric analysis was carried out in the presence of a Fe{sup 3+}/Fe{sup 2+} redox probe which exhibited a linear response of peak current with varying concentrations of BSA up to 10 ng/mL (with a detection limit of 0.006 ng/mL). This study is novel in that it shows a considerable enhancement of signal during electrochemical sensing of a protein. - Highlights: • MoS{sub 2} nanoflakes have been used for an electrochemical immunosensor. • The sensor's response was proportional to the antigen concentration. • Highly sensitive and specific detection of iron-binding protein ‘BSA’ is achieved. • A wide linear range of detection of BSA is demonstrated.

  6. Electrochemical behavior of rhodium acetamidate immobilized on a carbon paste electrode: a hydrazine sensor

    Directory of Open Access Journals (Sweden)

    Gil Eric de S.

    2000-01-01

    Full Text Available The electrochemical behavior of rhodium acetamidate immobilized in carbon paste electrode and the consequences for sensor construction were evaluated. The electrode showed good stability and redox properties. Two reversible redox couples with midpoint potentials between 0.15 and 0.55 V vs SCE were observed. However, peak resolution in voltammetric studies was very dependent on the supporting electrolyte. The correlation between coordinating power of the electrolyte and peak potential suggests that the electrolyte can coordinate through the axial position of the complexes. Furthermore, the axial position may be also the catalytic site, as a catalytical response was observed for hydrazine oxidation. A good linear response range for hydrazine was fit by the equation i = 23.13 (± 0.34 c , where i = current in mA and c = concentration in mol dm-3 in the range of 10-5 up to 10-2 mol dm-3. The low applied potential (<300 mV indicates a good device for hydrazine sensor, minimizing interference problems. The short response time (~1 s may be useful in flow injection analysis. Furthermore, this system was very stable presenting good repeatability even after 30 measurements with a variance of 0.5 %.

  7. Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly (acid fuchsin)

    International Nuclear Information System (INIS)

    Liu, X.; Li, B.; Zhan, G.; Liu, C.; Li, C.; Ma, M.

    2012-01-01

    We report on a glassy carbon electrode (GCE) modified with a film of chitosin containing acid fuchsin (AF) adsorbed onto zirconia nanotubes. The mixture was polymerized by cyclic voltammetric scannings in the potential range from - 0. 8 V to +1. 3 V in buffer solution to produce a hybrid film electrode (nano-ZrO 2 /PAF/GCE). The morphology of the hybrid film electrode surface was characterized by scanning electron microscopy. Its electrochemical properties were studied via electrochemical impedance spectroscopy. The electrochemical response of nicotinamide adenine dinucleotide (NADH) was investigated by differential pulse voltammetry and amperometry. The results indicated that the nano-ZrO 2 /PAF/GCE possesses well synergistic catalytic activity towards NADH. Compared to an unmodified GCE, the oxidation overpotential is negatively shifted by 224 mV, and the oxidation current is significantly increased. Under optimal conditions, the amperometric response is linearly proportional to the concentration of NADH in the 1. 0 - 100. 0 μM concentration range. Ethanol also can be determined by amperometry if alcohol dehydrogenase and NADH are added to the sample. Two linear relationships between current and alcohol concentration were obtained. They cover the range from 0. 03 to 1. 0 mM, and from 1. 0 to 12. 0 mM. (author)

  8. Comparison of Unmodulated Current Control Characteristics of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Anwar Muqorobin

    2014-12-01

    Full Text Available This paper discusses comparison of unmodulated current controls in PMSM, more specifically, on-off, sliding mode, predictive and hybrid controls. The purpose of this study is to select the most appropriate control technique to be adopted. The comparison method is preceded by modeling the motor and entering the values of the motor parameters. PI control is used for speed control and zero d-axis current is employed. Furthermore, performing simulation for each type ofthe selected current controls and analyzing their responses in terms of dq and abc currents, q-axis current response with step reference, as well as THD. Simulation results show that the on-off control gives the best overall performance based on its abc-axis current ripple and THD at large load torque. The hybrid control shows the best response occurring only at the fastest transient time of q-axis current but its response exhibits bad qualities compared with other controls. The predictive control yields the best responses offering the smallest d-axis ripple current and THD at small load torque condition. The sliding mode control, however, does not exhibit any prominent performance compared to the others. Results presented in this paper further indicate that for the PMSM used in the simulation the most appropriate control is the predictive control.

  9. Contrasting biogeochemical responses of ENSO induced upwelling variability in the Humboldt Current System

    Science.gov (United States)

    Franco, Ana C.; Gruber, Nicolas; Münnich, Matthias

    2017-04-01

    The Humboldt Current System (HCS) is one of the most productive ecosystems in the world. This high productivity is supported by a large input of nutrients from the subsurface layers to the surface due to year-round upwelling. However, upwelling also supplies waters with low pH and low aragonite saturation state potentially affecting many organisms, especially those that calcify. The influence, extent and source of upwelled water vary substantially on interannual timescales in association with the El Niño/Southern Oscillation (ENSO) phenomenon, generating natural contrasting responses on the biogeochemistry of this system. Here we analyze these responses using an eddy resolving, basin-scale ocean model that covers the whole Pacific Ocean with high resolution (4 km) on the west coast of South America. We performed a simulation of the last 30 years (hindcast simulation) that allows us to investigate the influence of at least eight El Niño episodes and eight La Niña episodes on productivity variations and changes in oxygen concentration and aragonite saturation state. An absolute change in surface omega aragonite of almost 2 units, as well as an absolute change of the aragonite saturation depth of 200 m result from the change of an El Niño phase to a La Niña phase. This variability is on the same order of magnitude as the projected change in the aragonite saturation state in a centennial timescale. During La Niña events, a lower aragonite saturation state values and reduced oxygen concentration in the surface layer are a direct consequence of enhanced upwelling and increased net primary productivity. The opposite is true during El Niño events, where high values of omega aragonite occur in concordance with extraordinarily low net primary productivity values.

  10. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO 2 films

    Science.gov (United States)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun

    The thin films of carambola-like γ-MnO 2 nanoflakes with about 20 nm in thickness and at least 200 nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO 2 nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO 2 batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO 2 nanoflake films displayed high potential plateau (around 1.0 V versus Zn) in primary Zn/MnO 2 batteries at the discharge current density of 500 mA g -1 and high specific capacitance of 240 F g -1 at the current density of 1 mA cm -2. This indicated the potential application of carambola-like γ-MnO 2 nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO 2 was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films.

  11. Electrodeposition synthesis and electrochemical properties of nanostructured {gamma}-MnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2006-11-08

    The thin films of carambola-like {gamma}-MnO{sub 2} nanoflakes with about 20nm in thickness and at least 200nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO{sub 2} nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO{sub 2} batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO{sub 2} nanoflake films displayed high potential plateau (around 1.0V versus Zn) in primary Zn/MnO{sub 2} batteries at the discharge current density of 500mAg{sup -1} and high specific capacitance of 240Fg{sup -1} at the current density of 1mAcm{sup -2}. This indicated the potential application of carambola-like {gamma}-MnO{sub 2} nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO{sub 2} was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films. (author)

  12. Mesoporous film of WO{sub 3}–the “sunlight” assisted decomposition of surfactant in wastewater for voltammetric determination of Pb

    Energy Technology Data Exchange (ETDEWEB)

    Krasnodębska-Ostręga, Beata, E-mail: bekras@chem.uw.edu.pl; Bielecka, Agnieszka; Biaduń, Ewa; Miecznikowski, Krzysztof, E-mail: kmiecz@chem.uw.edu.pl

    2016-12-01

    Highlights: • The “sun light” decomposed of surfactants: Sodium dodecyl sulfate and Triton™X-114 in the presence of WO{sub 3}. • Mesoporous WO{sub 3} films use for the degradation of surfactant without any reagents. • The developed procedure is suggested to be a no-reagents method of decomposition of added SDS leads to 100% recovery of added Pb (II). - Abstract: In this paper we present the application of “sunlight” assisted digestion in the presence of WO{sub 3} to the decomposition of dissolved organic matter, using the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant (1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton™X-114) in natural water samples, prior to the determination of traces residues of lead by stripping voltammetry methods. The results of the study showed firstly that the preparation of reproducible WO{sub 3} layers characterized by high mechanical and chemical resistance was possible, and secondly that it was also possible to obtain a high efficiency of decomposition, equal in efficiency to that of the reference method, which was the hydrogen peroxide oxidation assisted by UV, with evaporation nearly to dryness. The developed procedure is suggested to be a no-reagents method for the decomposition of added SDS, leading to 100% recovery of added Pb (II). The anodic stripping voltammetric curves recorded in solution after 4 h irradiation with UV assisted by WO{sub 3} were repeatable and increased linearly with standard additions, but the data finally obtained were incorrect. The curves recorded in solution after “sunlight” assisted digestion in the presence of WO{sub 3} were repeatable, and increased linearly with an increasing of concentration of standard additions (100% recovery of Pb). In the case of a nonionic surfactant, the decomposition time is at least 6 h. The advantage of the proposed method is the fact that the digestion process does not need the addition of any chemicals for the

  13. Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite.

    Science.gov (United States)

    Zeinali, Homa; Bagheri, Hasan; Monsef-Khoshhesab, Zahra; Khoshsafar, Hosein; Hajian, Ali

    2017-02-01

    This work describes the development of a new sensor for simultaneous determination of tryptophan and melatonin. The proposed sensor was an ionic liquid carbon paste electrode modified with reduced graphene oxides decorated with SnO 2 -Co 3 O 4 nanoparticles. The voltammetric oxidation of the analytes by the proposed sensor confirmed that the electrooxidation process undergoes a two-electron/one-proton reaction for melatonin and a two-electron/two-proton reaction for tryptophan in diffusion-controlled processes. Moreover, based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for individual and simultaneous determination of melatonin and tryptophan in the aqueous solutions. Under the optimized experimental conditions, a linear response obtained in the range of 0.02 to 6.00μmolL -1 with detection limits of 4.1 and 3.2nmolL -1 for melatonin and tryptophan, respectively. The prepared sensor possessed accurate and rapid response toward melatonin and tryptophan with a good sensitivity, selectivity, stability, and repeatability. Finally, the applicability of the proposed sensor was verified by evaluation of melatonin and tryptophan in various real samples including human serum and tablet samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Adabi, Mahdi [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Saber, Reza [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridi-Majidi, Reza, E-mail: refaridi@sina.tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridbod, Farnoush [Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran, Iran. (Iran, Islamic Republic of)

    2015-03-01

    The purpose of this work was to investigate the performance of electrodes synthesized with Polyacrylonitrile-based carbon nanofibers (PAN-based CNFs). The homogenous PAN solutions with different concentrations were prepared and electrospun to acquire PAN nanofibers and then CNFs were fabricated by heat treatment. The effective parameters for the production of electrospun CNF electrode were investigated. Scanning electron microscopy (SEM) was used to characterize electrospun nanofibers. Cyclic voltammetry was applied to investigate the changes of behavior of electrospun CNF electrodes with different diameters. The structure of CNFs was also evaluated via X-ray diffraction (XRD) and Raman spectroscopy. The results exhibited that diameter of nanofibers reduced with decreasing polymer concentration and applied voltage and increasing tip-to-collector distance, while feeding rate did not have significant effect on nanofiber diameter. The investigations of electrochemical behavior also demonstrated that cyclic voltammetric response improved as diameter of CNFs electrode decreased. - Highlights: • Electrospun CNFs can be directly used as working electrode. • Cyclic voltammetric response improved as diameter of CNFs electrode decreased. • The diameter of nanofibers reduced with decreasing polymer concentration. • The diameter of nanofibers reduced with decreasing applied voltage. • The diameter of nanofibers reduced with increasing tip-to-collector distance.

  15. Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors

    International Nuclear Information System (INIS)

    Adabi, Mahdi; Saber, Reza; Faridi-Majidi, Reza; Faridbod, Farnoush

    2015-01-01

    The purpose of this work was to investigate the performance of electrodes synthesized with Polyacrylonitrile-based carbon nanofibers (PAN-based CNFs). The homogenous PAN solutions with different concentrations were prepared and electrospun to acquire PAN nanofibers and then CNFs were fabricated by heat treatment. The effective parameters for the production of electrospun CNF electrode were investigated. Scanning electron microscopy (SEM) was used to characterize electrospun nanofibers. Cyclic voltammetry was applied to investigate the changes of behavior of electrospun CNF electrodes with different diameters. The structure of CNFs was also evaluated via X-ray diffraction (XRD) and Raman spectroscopy. The results exhibited that diameter of nanofibers reduced with decreasing polymer concentration and applied voltage and increasing tip-to-collector distance, while feeding rate did not have significant effect on nanofiber diameter. The investigations of electrochemical behavior also demonstrated that cyclic voltammetric response improved as diameter of CNFs electrode decreased. - Highlights: • Electrospun CNFs can be directly used as working electrode. • Cyclic voltammetric response improved as diameter of CNFs electrode decreased. • The diameter of nanofibers reduced with decreasing polymer concentration. • The diameter of nanofibers reduced with decreasing applied voltage. • The diameter of nanofibers reduced with increasing tip-to-collector distance

  16. Digitally compensated beam current transformer

    International Nuclear Information System (INIS)

    Kesselman, Martin

    2005-01-01

    The Spallation Neutron Source (SNS) is being built by a collaboration of six laboratories. Beam current monitors (BCMs) will be used to record the current of H-minus and H-plus beams ranging from 15 mA (tune-up in the Front End and Linac) to over 60A fully accumulated in the Ring and dumped to the load as a single pulse in the Ring to Beam Target (RTBT). The time structure of these beams ranges from 645 ns 'mini' bunches at the 1.05 MHz ring revolution rate, to an overall 1 ms long macro-pulse. The requirements for the BCMs will depend upon their location within the system. The need to measure individual mini-pulses, examine the characteristics of the chopper edge, as well as the longer average current pulse of the macropulse, or long duration pulses during Linac tuning place wide requirements upon the response of current transformers. To obtain the desired accuracy and resolution, current transformers must have <1 ns rise time and droops of 0.1%/ms. This places a significant design burden on the current transformer; such a design is almost impossible to achieve. Extremely large expensive cores are needed to meet the low droop, while leakage inductance increases with size, thereby reducing the achievable rise time. In this paper, I discuss a digital compensation approach [M. Kesselman, Spallation neutron source beam current monitor electronics, PAC2001 June 18-22, 2001, Chicago, IL.] that extends the lower cut-off frequency of the current transformer, optimized for high frequency response, so that it can be used in this application with improvements in droop of the order of 1000:1. Transformer saturation (current-time product) is a separate issue and the transformer must be designed to handle the current-time product of the signal to assure it does not saturate

  17. Determination of nitrobenzene in wastewater using a hanging mercury drop electrode.

    Science.gov (United States)

    Liang, Shu-Xuan; Zhang, Huan-Kun; Lu, Da

    2007-06-01

    The determination of trace amount nitrobenzene in wastewater on a hanging mercury drop electrode was studied. The determination conditions of pH, supporting electrolyte, accumulation potential, accumulation time, and voltammetric response were optimized. The sharp peak of the nitrobenzene was appeared at 0.05 V. The peak electric current was proportional to the concentration of nitrobenzene in the range of 1.47 x 10(-5) approximately 1.0 x 10(-3) mol/l with relative standard deviations of 3.99 approximately 8.94%. The detection limit of the nitrobenzene in water was 5 x 10(-6) mol/l. The proposed method offered low limit of determination, easy operation, the use of simple instrumentation, high sensitivity and good reproducibility. It was applied to the determination of nitrobenzene in wastewater with an average recovery of 94.0% approximately 105%. The proposed method provided fast, sensitive and sometimes real time detection of nitrobenzene.

  18. The storm time ring current dynamics and response to CMEs and CIRs using Van Allen Probes observations and CIMI simulations

    Science.gov (United States)

    Mouikis, Christopher; Bingham, Samuel; Kistler, Lynn; Spence, Harlan; Gkioulidou, Matina

    2017-04-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), and co-rotating interaction regions (CIR's). Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers. This empirical model is compared to the results of CIMI simulations of a CMEs and a CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model. Different inner magnetosphere boundary conditions are tested in order to match the empirical model results. Comparing the model and simulation results improves our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system. In addition, within the framework of this empirical model, the prediction of the EMIC wave generation linear theory is tested using the observed plasma parameters and comparing with the observations of

  19. Electrochemistry of metoclopramide at multi-walled carbon nanotube modified electrode and its voltammetric detection.

    Science.gov (United States)

    Guo, Wei; Geng, Mingjiang; Zhou, Lingyun

    2012-01-01

    A simple, sensitive and inexpensive electrochemical method was developed for the determination of metoclopramide (MCP) with a multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE). MWNT was dispersed into polyacrylic acid (PAA); the aqueous suspension was then cast on GCE electrodes, forming MWNT-PAA films after evaporation of the solvent. The electrochemical behavior of MCP at the MWNT-modified electrode was investigated in detail. Compared with the bare GCE, the MWNT-modified electrode exhibits electrocatalytic activity to the oxidation of MCP because of the significant oxidation peak-current enhancement. Furthermore, various experimental parameters, such as the solution pH value, the amount of MWNT-PAA suspension and accumulation conditions were optimized for the determination of MCP. Based on the electrocatalytic effect of the MWNT-modified electrode, linear sweep voltammetry (LSV) was developed for the determination of MCP with the linear response in the range from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) and a detection limit of 5.0 × 10(-8) mol L(-1). The method has been successfully applied to the determination of MCP in commercial MCP tablets.

  20. Toward superconducting critical current by design

    OpenAIRE

    Sadovskyy, I. A.; Jia, Y.; Leroux, M.; Kwon, J.; Hu, H.; Fang, L.; Chaparro, C.; Zhu, S.; Welp, U.; Zuo, J. -M.; Zhang, Y.; Nakasaki, R.; Selvamanickam, V.; Crabtree, G. W.; Koshelev, A. E.

    2015-01-01

    We present the new paradigm of critical current by design. Analogous to materials by design, it aims at predicting the optimal defect landscape in a superconductor for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To highlight this approach, we demonstrate the synergistic combination of critical current measurements on commercial high-temperature superconductors containing self-assembled and irradiation tailored correlated defects by using...

  1. Toward Superconducting Critical Current by Design.

    Science.gov (United States)

    Sadovskyy, Ivan A; Jia, Ying; Leroux, Maxime; Kwon, Jihwan; Hu, Hefei; Fang, Lei; Chaparro, Carlos; Zhu, Shaofei; Welp, Ulrich; Zuo, Jian-Min; Zhang, Yifei; Nakasaki, Ryusuke; Selvamanickam, Venkat; Crabtree, George W; Koshelev, Alexei E; Glatz, Andreas; Kwok, Wai-Kwong

    2016-06-01

    A new critical-current-by-design paradigm is presented. It aims at predicting the optimal defect landscape in superconductors for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To this end, critical current measurements on commercial high-temperature superconductors are combined with large-scale time-dependent Ginzburg-Landau simulations of vortex dynamics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables

    Directory of Open Access Journals (Sweden)

    Roberto Benato

    2014-12-01

    Full Text Available The knowledge of ground return current in fault occurrence plays a key role in the dimensioning of the earthing grid of substations and of cable sealing end compounds, in the computation of rise of earth potential at substation sites and in electromagnetic interference (EMI on neighbouring parallel metallic conductors (pipes, handrails, etc.. Moreover, the ground return current evaluation is also important in steady-state regime since this stray current can be responsible for EMI and also for alternating current (AC corrosion. In fault situations and under some assumptions, the ground return current value at a substation site can be computed by means of k-factors. The paper shows that these simplified and approximated approaches have a lot of limitations and only multiconductor analysis can show the ground return current behaviour along the cable (not only the two end values both in steady-state regime and in short circuit occurrence (e.g., phase-to-ground and phase-to-phase-to-ground. Multiconductor cell analysis (MCA considers the cable system in its real asymmetry without simplified and approximated hypotheses. The sensitivity of ground return current on circuit parameters (cross-bonding box resistances, substation earthing resistances, soil resistivity is presented in the paper.

  3. Nicotine inhibits potassium currents in Aplysia bag cell neurons

    Science.gov (United States)

    White, Sean H.; Sturgeon, Raymond M.

    2016-01-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K+ with Cs+. Consistent with an underlying mechanism of direct inhibition of one or more K+ channels, nicotine was found to rapidly reduce the fast-inactivating A-type K+ current as well as both components of the delayed-rectifier K+ current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K+ channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763

  4. Response to 'Comment on 'Pinch current limitation effect in plasma focus'' [Appl. Phys. Lett. 94, 076101 (2009)

    International Nuclear Information System (INIS)

    Lee, S.; Saw, S. H.

    2009-01-01

    The main point of the comment [Appl. Phys. Lett. 94, 076101 (2009)] is that Eq. (2) and consequentially Eq. (3) of the commented paper [Appl. Phys. Lett. 92, 021503 (2008)] require correction. The alternative equation suggested in the comment is derived using Kirchhoff's voltage rule. The comment consider only the energy distribution in the inductive components and the resultant equation confirms a progressive lowering of the I pinch /I peak ratio as the static inductance L 0 is reduced, lowering from 0.87 to 0.31 as L 0 is reduced from 100 to 5 nH according to the revised formula corresponding to Eq. (3), compared to 0.63-0.25 according to Eq. (3). This progressive lowering of the ratio I pinch /I peak due to the inductive energy distribution is one of two factors responsible for the pinch current limitation. The other factor is the progressive reduction in the L-C interaction time compared to the current dip duration denoted by δ cap in Eq. (2). The comment does not deal with δ cap at all; hence, its conclusion based on inductive energy distribution only is not useful, since in the low L 0 region when pinch current limitation begins to manifest, δ cap becomes more and more the dominant factor. In any case, the results of the paper do not depend on Eqs. (2) and (3), which are used in the paper only for illustrative purposes

  5. Response matrix properties and convergence implications for an interface-current nodal formulation

    International Nuclear Information System (INIS)

    Yang, W.S.

    1995-01-01

    An analytic study was performed of the properties and the associated convergence implications of the response matrix equations derived via the widely used nodal expansion method. By using the DIF3D nodal formulation in hexagonal-z geometry as a concrete example, an analytic expression for the response matrix is first derived by using the hexagonal prism symmetry transformations. The spectral radius of the local response matrix is shown to be always 2 -norm of the response matrix is shown to be ∞ -norm is not always 2 - and l ∞ -norms of the response matrix are found to increase as the removal cross section decreases. On the other hand, for a given removal cross section, each of these matrix norms takes its minimum at a certain diffusion coefficient and increases as the diffusion coefficient deviates from this value. Based on these matrix norms, sufficient conditions for the convergence of the iteration schemes for solving the response matrix equations are discussed. The range of node-height-to-hexagon-pitch ratios that guarantees a positive solution is derived as a function of the diffusion coefficient and the removal cross section

  6. Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Lin, Ying-Ying; Wang, Jun; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2007-10-15

    We describe a disposable electrochemical immunosensor diagnosis device that is based on the immunochromatographic strip technique and an electrochemical immunoassay based on quantum dot (QD, CdS@ZnS) labels. The device takes advantage of the speed and low-cost of the conventional immunochromatographic strip test and the high-sensitivity of the nanoparticle-based electrochemical immunoassay. A sandwich immunoreaction was performed on the immunochromatographic strip, and the captured QD labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane on the test zone. The new device coupled with a portable electrochemical analyzer shows great promise for in-field and point-of-care quantitative testing of disease-related protein biomarkers. The parameters (e.g., voltammetric measurement of QD labels, antibody immobilization, the loading amount of QD-antibody, and the immunoreaction time) that govern the sensitivity and reproducibility of the device were optimized with IgG model analyte. The voltammetric response of the optimized device is highly linear over the range of 0.1 to 10 ng mL-1 IgG, and the limit of detection is estimated to be 30 pg mL-1 in association with a 7-min immunoreaction time. The detection limit was improved to 10 pg mL-1 using a 20-min immunoreaction time. The new disposable electrochemical diagnosis device thus provides a more user-friendly, rapid, clinically accurate, less expensive, and quantitative tool for protein detection.

  7. Immobilization of phenylalanine-dehydrogenase on nano-sized polytaurine: a new platform for application of nano-polymeric materials on enzymatic biosensing technology.

    Science.gov (United States)

    Omidinia, Eskandar; Shadjou, Nasrin; Hasanzadeh, Mohammad

    2014-09-01

    A strategy of phenylalanine-dehydrogenase (PheDH) entrapment within the polytaurine matrix is demonstrated to probe the direct electrochemistry of phenylalanine (Pha). It was found that PheDH has been stably immobilized on glassy carbon electrode modified by polytaurine based on simple technique. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that Pha is oxidized via one-electron steps. The results revealed that Pha promotes the rate of oxidation by increasing the peak current. The diffusion coefficient and electron-transfer coefficient of Pha were found to be 0.2×10(-6)cm(2)s(-1) and 0.467, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of Pha. The results show that by using the proposed method, Pha can be determined with a detection limit of 9 nM. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.

    Science.gov (United States)

    Shahrokhian, Saeed; Naderi, Leila; Ghalkhani, Masoumeh

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 μM and 2.0-10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  10. Electrochemical studies of nevirapine, an anti-HIV drug, and its assay in tablets and biological samples

    Directory of Open Access Journals (Sweden)

    JALDAPPAGARI SEETHARAMAPPA

    2012-06-01

    Full Text Available The electrochemical oxidation of nevirapine, an anti-HIV drug, at a glassy carbon electrode has been studied by voltammetric techniques. Nevirapine showed one well defined irreversible oxidation peak with a potential of 0.749 V in phosphate buffer at pH 10. The effects of different electrolytes, pH and scan rate on the electrochemical behaviour of nevira¬pine were examined to determine the optimum reaction conditions. The oxidation peak current was found to vary linearly with the concentration of nevirapine in the range of 5.0 – 350 µM. The limit of detection and limit of quantification values were calculated and found to be 1.026 µM and 3.420 µM, respectively. The low relative standard deviation values of inter-day and intra-day assays highlighted the good reproducibility of the proposed m¬ethod for assay of nevirapine. Further, a sensitive and accurate differential pulse voltammetric method was developed for the determination of nevirapine concentrations in pharma¬ceutical formulations.

  11. Use of voltammetry for in vitro equilibrium and transport studies of ionisable drugs

    Directory of Open Access Journals (Sweden)

    Matej Velicky

    2014-09-01

    Full Text Available In this review, we will briefly outline the voltammetric investigations of the transfer of ionisable drugs at the interface between two immiscible electrolyte solutions. The voltammetric techniques enable the determination of some key in vitro properties of ionisable drugs, including partition coefficient, diffusion coefficient and membrane permeability. Some successful applications will be highlighted, together with the background methodologies.

  12. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode.

    Science.gov (United States)

    Alpat, Senol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10(-5) M and 4 × 10(-4) M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10(-6) M. At the end of the 20(th) day, the biosensor still retained 50% of its initial activity.

  13. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    Directory of Open Access Journals (Sweden)

    Azmi Telefoncu

    2010-01-01

    Full Text Available In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH. Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA bonded to toluidine blue O (TBO. Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity.

  14. Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.

    Science.gov (United States)

    Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E

    2015-12-01

    A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.

  15. Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)], E-mail: t.kondo@ci.kagu.tus.ac.jp; Niwano, Yu; Tamura, Akira; Imai, Junichi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Honda, Kensuke [Department of Chemistry and Earth Sciences, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8521 (Japan); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-0012 (Japan); Tryk, Donald A. [Fuel Cell Nanomaterials Center, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi 400-8511 (Japan); Fujishima, Akira [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan); Kawai, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2009-03-01

    The differential pulse voltammetric (DPV) peak for dopamine (DA) oxidation was found to be highly amplified by the addition of ascorbic acid (AA) when carboxyl-terminated boron-doped diamond (BDD) electrodes were used as the working electrode. The DP voltammogram for a solution containing DA and AA obtained using a 4-pentenoic acid-modified BDD (4PA-BDD) electrode showed well-separated oxidation peaks for DA and AA at 0.4 and 0.6 V vs. Ag/AgCl, respectively. In addition, as the DA concentration increased at constant AA concentration, a simultaneous increase in the DA peak current density and decrease in the AA peak current density were observed. The slope of the calibration curve for the [DA] range of 1-10 {mu}M in the presence of AA (500 {mu}M) was seven times larger than that obtained in the absence of AA. Such an enhancement was found to be more efficient at 4PA-BDD than at oxidized-BDD, partly due to simple electrostatic effects and partly due to suppression of the polymerization of DA oxidation products by the terminal carboxyl groups. The enhanced detection method using a carboxyl-terminated BDD electrode should be an effective analytical tool, especially for determining low concentrations of DA in the presence of high concentrations of AA.

  16. Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Kondo, Takeshi; Niwano, Yu; Tamura, Akira; Imai, Junichi; Honda, Kensuke; Einaga, Yasuaki; Tryk, Donald A.; Fujishima, Akira; Kawai, Takeshi

    2009-01-01

    The differential pulse voltammetric (DPV) peak for dopamine (DA) oxidation was found to be highly amplified by the addition of ascorbic acid (AA) when carboxyl-terminated boron-doped diamond (BDD) electrodes were used as the working electrode. The DP voltammogram for a solution containing DA and AA obtained using a 4-pentenoic acid-modified BDD (4PA-BDD) electrode showed well-separated oxidation peaks for DA and AA at 0.4 and 0.6 V vs. Ag/AgCl, respectively. In addition, as the DA concentration increased at constant AA concentration, a simultaneous increase in the DA peak current density and decrease in the AA peak current density were observed. The slope of the calibration curve for the [DA] range of 1-10 μM in the presence of AA (500 μM) was seven times larger than that obtained in the absence of AA. Such an enhancement was found to be more efficient at 4PA-BDD than at oxidized-BDD, partly due to simple electrostatic effects and partly due to suppression of the polymerization of DA oxidation products by the terminal carboxyl groups. The enhanced detection method using a carboxyl-terminated BDD electrode should be an effective analytical tool, especially for determining low concentrations of DA in the presence of high concentrations of AA

  17. Thermal instability and current-voltage scaling in superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Zeimetz, B [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Tadinada, K [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Eves, D E [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Campbell, A M [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom)

    2004-04-01

    We have developed a computer model for the simulation of resistive superconducting fault current limiters in three dimensions. The program calculates the electromagnetic and thermal response of a superconductor to a time-dependent overload voltage, with different possible cooling conditions for the surfaces, and locally variable superconducting and thermal properties. We find that the cryogen boil-off parameters critically influence the stability of a limiter. The recovery time after a fault increases strongly with thickness. Above a critical thickness, the temperature is unstable even for a small applied AC voltage. The maximum voltage and maximum current during a short fault are correlated by a simple exponential law.

  18. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Discoverer Enterprise oil platform from May 23, 2010 to July 04, 2010 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083684)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  19. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Development Driller III from 2010-05-31 to 2010-07-04 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083634)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  20. Contribution of Electrochemistry to the Biomedical and Pharmaceutical Analytical Sciences.

    Science.gov (United States)

    Kauffmann, Jean-Michel; Patris, Stephanie; Vandeput, Marie; Sarakbi, Ahmad; Sakira, Abdul Karim

    2016-01-01

    All analytical techniques have experienced major progress since the last ten years and electroanalysis is also involved in this trend. The unique characteristics of phenomena occurring at the electrode-solution interface along with the variety of electrochemical methods currently available allow for a broad spectrum of applications. Potentiometric, conductometric, voltammetric and amperometric methods are briefly reviewed with a critical view in terms of performance of the developed instrumentation with special emphasis on pharmaceutical and biomedical applications.

  1. Direct current contamination of kilohertz frequency alternating current waveforms.

    Science.gov (United States)

    Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-07-30

    Kilohertz frequency alternating current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. Published by Elsevier B.V.

  2. X-ray tube current control

    International Nuclear Information System (INIS)

    Dupuis, W.A.; Resnick, T.A.

    1982-01-01

    A closed loop feedback system for controlling the current output of an x-ray tube. The system has circuitry for improving the transient response and stability of the x-ray tube current over a substantial nonlinear portion of the tube current production characteristic. The system includes a reference generator for applying adjustable step function reference signals representing desired tube currents. The system also includes means for instantaneous sensing of actual tube current. An error detector compares the value of actual and reference tube current and produces an error signal as a function of their difference. The system feedback loop includes amplification circuitry for controlling x-ray tube filament dc voltage to regulate tube current as a function of the error signal value. The system also includes compensation circuitry, between the reference generator and the amplification circuitry, to vary the loop gain of the feedback control system as a function of the reference magnitude

  3. Monitoring of beer fermentation based on hybrid electronic tongue.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Response to ``Comment on `Small field behavior of critical current in Y1Ba2Cu3O7 sintered samples' ''

    Science.gov (United States)

    Paternò, G.; Alvani, C.; Casadio, S.; Gambardella, U.; Maritato, L.

    1989-05-01

    In our response we would like to point out the fitting of the data has done to account for the shift of the maximum magnetic field dependence of the critical current. This shift on the order of 1 Gauss or less is gener ally observed in all our data and is attributable to the residual external field. Since we used a crude junction model, the self-field effects were not included. (AIP)

  5. A novel sensing platform based on ionic liquid integrated carboxylic-functionalized graphene oxide nanosheets for honokiol determination

    International Nuclear Information System (INIS)

    Zhang, Shenghui; Chen, Xuemin; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Chen, Jianpeng; Zhan, Guoqing; Li, Chunya

    2015-01-01

    Highlights: • Piperidinium based ionic liquid bearing pyrrole was synthesized. • Ionic liquid integrated graphene oxide nanocompisite was fabricated. • Polymerized ionic liquid-graphene oxide film electrode was prepared. • The film electrode exhibits high sensitivity towards honokiol and magnolol. • Stimulate determination of honokiol and magnolol was fulfilled. - Abstract: A novel ionic liquid, 4-hydroxy-1-methyl-[1-(3-pyrrolyl-propyl)]-piperidinium bromide, was synthesized and characterized. Carboxylic-functionalized graphene oxide nanosheets were modified with this ionic liquid to fabricate a nanocomposite which was denoted as GrO-COO-IL. Characterizations of FTIR, X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy confirmed the successful conjunction of these two components. GrO-COO-IL nanocomposites were homogeneously dispersed with utralpure water, and were then coated onto glassy carbon electrode surface. Followed by cyclic voltammetric scanning, a graphene oxide-polymerized ionic liquid film modified electrode (GrO-COO-Poly-IL/GCE) was prepared, and was studied with electrochemical impedance spectroscopy and scanning electron microscope. It was found that both honokiol and magnolol exhibit sensitive voltammetric response at the GrO-COO-Poly-IL/GCE. Simultaneous assay of honokiol and magnolol was realized with differential pulse voltametry. In the presence of magnolol, the oxidation peak current was linearly related to honokiol concentration in the range of 1.0 × 10 −8 ∼ 1.0 × 10 −5 mol L −1 with a detection limit of 1.53 × 10 −9 mol L −1 (S/N = 3). Meanwhile, in the presence of honokiol, a linear relationship between the oxidation peak current and magnolol concentration was found from 7.0 × 10 −8 to 1.0 × 10 −5 mol L −1 . The detection limit is calculated to be 8.27 × 10 −9 mol L −1 (S/N = 3). In addition, GrO-COO-Poly-IL/GCE was successfully used for determination of honokiol in

  6. Competing responsibly

    NARCIS (Netherlands)

    Jeurissen, R.J.M.; Ven, van de B.W.

    2005-01-01

    In this paper we examine the effects of different competitive conditions on the determination and evaluation of strategies of corporate social responsibility (CSR). Although the mainstream of current thinking in business ethics recognizes that a firm should invest in social responsibility, the

  7. Ring Current Response to Different Storm Drivers. Van Allen Probes and Cluster Observations.

    Science.gov (United States)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. However, it is not clear how these convecting particles affect the storm time ring current pressure development. We use Van Allen Probes and Cluster observations together with the Volland-Stern and dipole magnetic field models to determine the contribution in the ring current pressure of the plasma sheet particles convecting from the night side that are on open drift paths, during the storm evolution. We compare storms that are related to different interplanetary drivers, CME and CIR, as observed at different local times.

  8. Photoinducedly electrochemical preparation of Prussian blue film and electrochemical modification of the film with cetyltrimethylammonium cation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shouqing, E-mail: shouqing_liu@hotmail.co [Key Laboratory of Environmental Functional Materials of Jiangsu Province, College of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Li Hua; Sun Weihui; Wang Xiaomei; Chen Zhigang [Key Laboratory of Environmental Functional Materials of Jiangsu Province, College of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Xu Jingjuan; Ju Huangxian; Chen Hongyuan [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, Nanjing University, Nanjing 210093 (China)

    2011-04-15

    Research highlights: {yields} Cetyltrimethylammonium cations work as counter ions in Prussian blue film was observed and confirmed by cyclic voltammetry, Fourier transform infrared spectroscopy, X-ray powder diffraction measurements, scanning electronic microscopy and transmission electron microscope for the first time. {yields} Because the cetyltrimethylammonium cations in Prussian blue film are hydrophobic, the Prussian blue film is very stable even in alkali solution, which provides a technical basis for fabrication of stable biosensors. - Abstract: This work presents a photoinducedly electrochemical preparation of Prussian blue from a single sodium nitroprusside and insertion of cetyltrimethylammonium cations into Prussian blue as counter ions. The product of photoinducedly electrochemical reactions has a couple of voltammetric peaks at E{sup o} = 0.266 V in 0.2 mol l{sup -1} KCl solution, the measurements of X-ray powder diffraction and FT-IR spectroscopy show that it is Prussian blue (PB). The formation mechanism of a pre-photochemical reaction and subsequent electrochemical reaction is suggested. The cyclic voltammetric treatment of the freshly as-prepared PB film in 1.0 mmol l{sup -1} cetyltrimethylammonium (CTA) bromide solution leads to the insertion of cetyltrimethylammonium cations into the channels of Prussian blue, which substitutes for potassium ions as counter ions in Prussian blue. The Prussian blue containing CTA counter ions shows two couples of voltammetric peaks at E{sup o} = -0.106 V and E{sup o} = 0.249 V in 0.2 mol l{sup -1} KCl solution containing 1.0 mmol l{sup -1} cetyltrimethylammonium bromide. Compared with the electrochemical behaviors of KFeFe(CN){sub 6} in 0.1 mol l{sup -1} KOH alkali solution, CTAFeFe(CN){sub 6} shows relatively durable voltammetric currents due to the hydrophobic effects of cetyltrimethylammonium. The diffusion coefficients for CTA and potassium cations were estimated to be D{sub CTA} 1.25 x 10{sup -12} cm{sup 2} s

  9. Properties of Red Sea coastal currents

    KAUST Repository

    Churchill, J.H.

    2014-02-14

    Properties of coastal flows of the central Red Sea are examined using 2 years of velocity data acquired off the coast of Saudi Arabia near 22 °N. The tidal flow is found to be very weak. The strongest tidal constituent, the M2 tide, has a magnitude of order 4 cm s−1. Energetic near-inertial and diurnal period motions are observed. These are surface-intensified currents, reaching magnitudes of >10 cm s−1. Although the diurnal currents appear to be principally wind-driven, their relationship with the surface wind stress record is complex. Less than 50% of the diurnal current variance is related to the diurnal wind stress through linear correlation. Correlation analysis reveals a classical upwelling/downwelling response to the alongshore wind stress. However, less than 30% of the overall sub-inertial variance can be accounted for by this response. The action of basin-scale eddies, impinging on the coastal zone, is implicated as a primary mechanism for driving coastal flows.

  10. Determination of Sudan I in drinks containing Sunset yellow by adsorptive stripping voltammetry.

    Science.gov (United States)

    Gómez, Marisol; Arancibia, Verónica; Aliaga, Margarita; Núñez, Claudia; Rojas-Romo, Carlos

    2016-12-01

    An efficient, fast and sensitive method for the determination of Sudan I (SI) in drinks containing Sunset yellow (Sy) is developed and validated using an adsorptive stripping voltammetric procedure. Sy is currently added to a large number of foods; however during their synthesis SI may be produced. The determination is based on adsorption of Sy and SI onto HMDE and later reduction of the azo group at -0.71 and -0.82V, respectively. Using the best set of the experimental conditions (pH 12.3; Eads: -0.40V) for the determination of SI in Sy, a linear response for SI in the concentration range 0.5-27.2μgL(-1) was found, with a detection limit of 1.5μgL(-1) in a tads of only 30s. The method was applied to the determination of SI in commercial drinks with satisfactory results. The presence of SI was confirmed by mass spectrometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Studies on Me/Al-layered double hydroxides (Me = Ni and Co) as electrode materials for electrochemical capacitors

    International Nuclear Information System (INIS)

    Liu Xianming; Zhang Yihe; Zhang Xiaogang; Fu Shaoyun

    2004-01-01

    Me/Al-layered double hydroxides (Me=Ni and Co) prepared by the chemical co-precipitation method have been shown to be outstanding novel materials for electrochemical capacitors. The crystalline structure and the electrochemical properties of the electrodes have been studied by considering the effect of the mole ratio of nickel/cobalt. X-ray diffraction analysis shows that the materials belong to hexagonal system with layered structure. Cyclic voltammetric measurements indicate that Me/Al-layered double hydroxides with the Ni/Co mole ratio of 4:6 exhibit excellent capacitive properties within the potential range of 0.0-0.6 V versus Hg/HgO in 6 mol/L KOH electrolyte. Charge/discharge behaviors have been observed with the highest specific capacitance values of 960 F/g at the current density of 400 mA/g. Impedance studies show that the enhanced electrical properties and high frequency response are attributed to the presence of Co oxides

  12. Determination of antihypertensive drug moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate at carbon paste electrode.

    Science.gov (United States)

    Attia, Ali K

    2010-04-15

    Herein, an electrochemical differential pulse voltammetric method was developed for the determination of moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate. The oxidation process has been carried out in Britton-Robinson buffer. Moexipril hydrochloride exhibits a well-defined irreversible oxidation peak over the entire pH range (2-11). The peak current varied linearly over the range from 4.0 x 10(-7) to 5.2 x 10(-6) mol L(-1). The limits of detection and quantification were 6.87 x 10(-8) mol L(-1) and 2.29 x 10(-7) mol L(-1), respectively. The recovery was found in the range from 99.65% to 100.76%. The relative standard deviation was found in the range from 0.429% to 0.845%. The proposed method possesses high sensitivity, accuracy and rapid response. Finally, this method was successfully used to determine moexipril hydrochloride in tablets. (c) 2009 Elsevier B.V. All rights reserved.

  13. Enrichment and stripping voltametric behavior of technetium traces at a carbon paste electrode modified with TTA

    International Nuclear Information System (INIS)

    Dick, R.; Ruf, H.; Ache, H.J.

    1988-06-01

    The possibility of enrichment as well as the stripping voltammetric behavior of technetium traces at a carbon paste electrode modified with thenoyltrifluoroacetone (TTA) was studied. Accumulation of Tc(IV) on the electrode surface occurs without application of a deposition voltage due to complex formation with TTA, probably resulting Tc(TTA) 4 . During the following cathodic potential scan made with the differential pulse mode a characteristic current peak is obtained at -40 mV (vs. Ag/AgCl) which increases with Tc concentration and deposition time. However, Tc(IV) gives much more sensitive stripping current signals if a reductive deposition potential of -0.4 V is applied, presumably on account of the formation of Tc(TTA) 3 . In this case an anodic voltammetric scan was applied resulting a stripping peak at about +30 mV, the height of which is related to the concentration of Tc in solution as well as to the time of deposition. Calibration graphs revealed good reproducibility for analytical application. The lower detection limit for Tc(IV) achieved for 1 M sodium chloride solutions 4.6 x 10 -9 M. Tc(VII) is not enriched in the absence of reduction which takes place only from about -0.6 V on with the pH optimally set at 3.5. Therefore it is basically possible to discriminate Tc(IV) from Tc(VII). (orig.) [de

  14. Voltammetry of Vitamin B12 on a thin self-assembled monolayer modified electrode

    International Nuclear Information System (INIS)

    Yang Nianjun; Wan Qijin; Wang, Xiaoxia

    2005-01-01

    Vitamin B 12 showed three reduction waves at a thin self-assembled monolayer of mercaptoacetic acid modified gold electrode at 0.21, 0.16, -0.41 V in a 0.01 mol l -1 HCl solution at a scan rate of 100 mV s -1 . The overall electrode reaction followed an ECE mechanism, leading to a total two-electron exchange. The predominant Co(III) form was reduced directly at 0.21 V by a one-electron transfer accomplished by CN - cleavage into the cyanocob(II)alamin. The latter species then equilibrated with the base-off B 12r , which was immediately reduced into B 12s at 0.16 V. The wave at -0.41 V might be a catalytic hydrogen wave. The cathodic peak currents at 0.21 V were controlled by the diffusion of Vitamin B 12 . On the base of its diffusion behavior, the semi-derivate voltammetric method for the detection of Vitamin B 12 was presented. The semi-derivate voltammetric peak current of the wave at 0.21 V was linear with the content of Vitamin B 12 in the range of 4.0 x 10 -9 to 4.0 x 10 -5 mol l -1 . The detection limit was 1.0 x 10 -9 mol l -1 . The proposed method was applied successfully to determine the content of Vitamin B 12 in pharmaceutical preparations

  15. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Svegl, Irena Grabec; Bele, Marjan [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia); Ogorevc, Bozidar [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia)], E-mail: bogorevc@ki.si

    2008-11-03

    A new type of carbon film electrode, composed of a thin layer of tightly packed carbon black (CB) nanoparticles deposited onto a gelatin-covered indium tin oxide/glass support using the surface-induced deposition (SID) approach, is presented. Some parameters of the novel SID method were optimized and the surface image and functionalization of the investigated carbon black film electrode (CBFE) was inspected by employing scanning electron microscopy and infrared spectroscopy. A cyclic voltammetry (CV) study was conducted in which the electron-transfer kinetics and CBFE interfacial characteristics were evaluated employing several selected reference redox systems, such as [Ru(NH{sub 3}){sub 6}]{sup 3+/2+}, [Fe(CN){sub 6}]{sup 3-/4-} and Fe{sup 3+/2+} in aqueous, and ferrocene/ferrocenium in acetonitrile media. CV recordings were also performed in order to compare the electrochemical behavior of the CBFE with that of some well-known and established bare carbon-based electrodes. In order to confirm the validity of the CB film preparation method, the electroanalytical performance of the proposed CBFE was examined by carrying out linear sweep voltammetry of ascorbic acid (AA), anodic stripping square-wave voltammetry of Cu(II) in acidic medium, and amperometric measurements of hydrogen peroxide under flow injection conditions. The sensing characteristics of the novel carbon film electrode, demonstrated in this preliminary study, comprise: (i) a wide working potential window ranging from +1.0 to -1.3 V (depending on the solution pH), (ii) a wide applicable pH range (at least from 2 to 12), (iii) low voltammetric background (<5 {mu}A cm{sup -2}), (iv) a satisfactory linear voltammetric and amperometric response (r{sup 2} > 0.99) to various analytes, (v) good reproducibility (for example, r.s.d. of 2% in amperometric detection of H{sub 2}O{sub 2} and r.s.d. of 8.5% for electrode-to-electrode CV runs), and (vi) stable and fast current response (at least 100 CV runs with

  16. Force-Deformation Response of a SMA-Based Actuator Considering the Electric Current Intensity as Step-Input

    Directory of Open Access Journals (Sweden)

    Ion-Cornel Mituletu

    2015-06-01

    Full Text Available The goal of the paper is to accomplish the response regarding the force-displacement characteristic evolution, of a Shape Memory Alloy (SMA actuator element. This reveals the first research stage in controlling the SMA behavior, providing important information about the heating-cooling time intervals. Step excitation of the SMA is performed by few values of electric current intensity, which produces the heating of SMA element up to 90-95 oC. To meet the testing requirements, an adequate test stand has been set up, consisting of sensors for force, displacement and temperature. The analog values provided by sensors were acquired and afterwards analyzed. The values of temperature, displacement and force were achieved, and their characteristic evolution has been performed. Thus, the time intervals are resulted and some other important aspects have been observed, regarding the delay between parameters and the temperature overshoot

  17. Current Views of Toll-Like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  18. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  19. Electrochemical quantification of the Alzheimer’s disease amyloid-β (1–40 using amyloid-β fibrillization promoting peptide

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2015-12-01

    Full Text Available Amyloid-β peptide (Aβ is believed to be an important biomarker for the early diagnosis of Alzheimer’s disease. Therefore, practical and reliable methods to assay Aβ levels have been coveted. In this study, a rapid, sensitive, and selective electrochemical method for Aβ(1–40 detection using Cu2+ redox cycling on peptide-modified gold electrodes was developed. A 19-residue peptide that can promote Aβ fibrillization (AFPP was immobilized onto a gold electrode. After incubating an Aβ solution with the modified electrode for 1 h, a Cu2+ solution was added and cyclic voltammetry measurements were conducted. The voltammetric response was found to be proportional to the Aβ(1–40 concentration in the 0.1–5 μM range, and a detection limit of 18 nM was achieved. Washing with sodium hydroxide and ethylenediaminetetraacetate solutions easily reinitialized the modified electrode. Results obtained using the reinitialized electrode showed good reproducibility. Furthermore, when another amyloidogenic and Cu2+-binding protein amylin was used as the target, no voltammetric response was observed. These results indicate that the AFPP-modified electrode provides a promising, label-free, sensitive, selective, cost-effective, and easy method for the quantification of Aβ. Keywords: Amyloid-β, Alzheimer’s disease (AD, Fibrillization, Electrochemical detection, Nanobiochip, Cu redox

  20. Neutral currents, supernovae neutrinos, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    The inelastic interactions of neutrinos during stellar collapse and neutron star cooling are discussed. The primary mechanism for dissipative neutrino reactions is nuclear excitation by neutral current scattering, a process not included in standard descriptions of supernovae. Charge-current and neutral current ''preheating'' of iron lying outside the shock front appears to be significant in the few milliseconds near shock breakout. This could help produce a more energetic shock. During the cooling phase, the neutral current interactions of muon and taon neutrinos appear to be responsible for some interesting nucleosynthesis. I discuss two examples the production of fluorine and neutrino-induced r-process nucleosynthesis. 26 refs., 1 fig., 3 tabs

  1. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  2. Beam current monitors in the NLCTA

    International Nuclear Information System (INIS)

    Nantista, C.; Adolphsen, C.

    1997-05-01

    The current profile along the 126 ns, multi-bunch beam pulse in the Next Linear Collider Test Accelerator (NLCTA) is monitored with fast toroids (rise time ∼ 1 ns). Inserted at several positions along the beam line, they allow one to track current transmission as a function of position along the bunch train. Various measurements, such as rise time, current, width, and slope, are made on the digitized signals, which can be corrected in software by means of stored frequency response files. The design and implementation of these devices is described

  3. Hidden Markov Item Response Theory Models for Responses and Response Times.

    Science.gov (United States)

    Molenaar, Dylan; Oberski, Daniel; Vermunt, Jeroen; De Boeck, Paul

    2016-01-01

    Current approaches to model responses and response times to psychometric tests solely focus on between-subject differences in speed and ability. Within subjects, speed and ability are assumed to be constants. Violations of this assumption are generally absorbed in the residual of the model. As a result, within-subject departures from the between-subject speed and ability level remain undetected. These departures may be of interest to the researcher as they reflect differences in the response processes adopted on the items of a test. In this article, we propose a dynamic approach for responses and response times based on hidden Markov modeling to account for within-subject differences in responses and response times. A simulation study is conducted to demonstrate acceptable parameter recovery and acceptable performance of various fit indices in distinguishing between different models. In addition, both a confirmatory and an exploratory application are presented to demonstrate the practical value of the modeling approach.

  4. Odd-parity currents induced by dynamic deformations in graphene-like systems

    International Nuclear Information System (INIS)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2016-01-01

    Reduced (3  +  1)-dimensional Dirac systems with inter-pseudo-spin and inter-valley scattering are employed to investigate current responses to (chiral) gauge fields in graphene-like systems. From (chiral) current—(chiral) current correlation functions, we derive the current responses. Except for electric currents induced by external gauge fields, we find the inter-valley scattering can break the topological nature of odd-parity currents. Given the proper conditions, this property can help us realize valley-polarized electric currents. Through the dynamic deformations generating the chiral gauge fields, we find the vortex-like currents while their profiles can be tuned by superposition of some deformations. In particular, we find a more manageable approach to realize the topological electric current by choosing a linear dynamic deformation. (paper)

  5. Problems and limitations of eddy current tube inspection

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Khairul Anuar Mohd Salleh; Mohamed Hairul Hasmoni

    2003-01-01

    Incomplete appreciation of eddy current limitations has contributed to both under-utilization and misapplication of the technique. A brief review on the physical principle of eddy current is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The variables responsible for limitation in eddy current tube inspection are discussed and alternative approaches, where they exist, are suggested. (Author)

  6. Space Vector Modulation for DC-Link Current Ripple Reduction in Back-To-Back Current Source Converters for Microgrid Applications

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Xu, David; Guerrero, Josep M.

    2015-01-01

    Back-to-back converters have been typically used to interconnect the microgrids. For a back-to-back current source converter, the dc-link current ripple is one of the important parameters. A large ripple will cause the electromagnetic interference, undesirable high-frequency losses, and system...... instability. Conventionally, with a given switching frequency and rated voltage, the current ripple can be reduced by increasing the dc-link inductor, but it leads to bulky size, high cost and slow dynamic response. In order to solve this problem, this paper reveals that the current ripple can...

  7. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    Directory of Open Access Journals (Sweden)

    Yesim Tugce Yaman

    2016-05-01

    Full Text Available A novel electrochemical sensor gold nanoparticle (AuNP/polyvinylpyrrolidone (PVP modified pencil graphite electrode (PGE was developed for the ultrasensitive determination of Bisphenol A (BPA. The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM. The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV. Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability.

  8. Converter for Measurement of non-sinusoidal current peak value

    DEFF Research Database (Denmark)

    Butvin, P.; Nielsen, Otto V; Brauer, Peter

    1997-01-01

    A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current.......A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current....

  9. A fast transient response low dropout regulator with current control methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ma Zhuo; Guo Yang; Duan Zhikui; Xie Lunguo; Chen Jihua; Yu Jinshan, E-mail: guoyang@nudt.edu.cn [School of Computer, National University of Defense Technology, Changsha 410073 (China)

    2011-08-15

    A transient performance optimized CCL-LDO regulator is proposed. In the CCL-LDO, the control method of the charge pump phase-locked loop is adopted. A current control loop has the feedback signal and reference current to be compared, and then a loop filter generates the gate voltage of the power MOSFET by integrating the error current. The CCL-LDO has the optimized damping coefficient and natural resonant frequency, while its output voltage can be sub-1-V and is not restricted by the reference voltage. With a 1 {mu}F decoupling capacitor, the experimental results based on a 0.13 {mu}m CMOS process show that the output voltage is 1.0 V; when the workload changes from 100 {mu}A to 100 mA transiently, the stable dropout is 4.25 mV, the settling time is 8.2 {mu}s and the undershoot is 5.11 mV; when the workload changes from 100 mA to 100 {mu}A transiently, the stable dropout is 4.25 mV, the settling time is 23.3 {mu}s and the overshoot is 6.21 mV. The PSRR value is more than -95 dB. Most of the attributes of the CCL-LDO are improved rapidly with a FOM value of 0.0097.

  10. A fast transient response low dropout regulator with current control methodology

    International Nuclear Information System (INIS)

    Ma Zhuo; Guo Yang; Duan Zhikui; Xie Lunguo; Chen Jihua; Yu Jinshan

    2011-01-01

    A transient performance optimized CCL-LDO regulator is proposed. In the CCL-LDO, the control method of the charge pump phase-locked loop is adopted. A current control loop has the feedback signal and reference current to be compared, and then a loop filter generates the gate voltage of the power MOSFET by integrating the error current. The CCL-LDO has the optimized damping coefficient and natural resonant frequency, while its output voltage can be sub-1-V and is not restricted by the reference voltage. With a 1 μF decoupling capacitor, the experimental results based on a 0.13 μm CMOS process show that the output voltage is 1.0 V; when the workload changes from 100 μA to 100 mA transiently, the stable dropout is 4.25 mV, the settling time is 8.2 μs and the undershoot is 5.11 mV; when the workload changes from 100 mA to 100 μA transiently, the stable dropout is 4.25 mV, the settling time is 23.3 μs and the overshoot is 6.21 mV. The PSRR value is more than -95 dB. Most of the attributes of the CCL-LDO are improved rapidly with a FOM value of 0.0097.

  11. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    Science.gov (United States)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  12. Recognizing limitations in eddy current testing

    International Nuclear Information System (INIS)

    Van Drunen, G.; Cecco, V.S.

    1981-11-01

    This paper addresses known limitations and constraints in eddy current nondestructive testing. Incomplete appreciation for eddy current limitations is believed to have contributed to both under-utilization and misapplication of the technique. Neither situation need arise if known limitations are recognized. Some, such as the skin depth effect, are inherent to electromagnetic test methods and define the role of eddy current testing. Others can be overcome with available technology such as surface probes to find circumferential cracks in tubes and magnetic saturation of ferromagnetic alloys to eliminate permeability effects. The variables responsible for limitations in eddy current testing are discussed and where alternative approaches exist, these are presented. Areas with potential for further research and development are also identified

  13. Germination responses to current and future temperatures of four seeder shrubs across a latitudinal gradient in western Iberia.

    Science.gov (United States)

    Chamorro, Daniel; Luna, Belén; Moreno, José M

    2017-01-01

    Species differ in their temperature germination niche. Populations of a species may similarly differ across the distribution range of the species. Anticipating the impacts of climate variability and change requires understanding the differential sensitivity to germination temperature among and within species. Here we studied the germination responses of four hard-seeded Cistaceae seeders to a range of current and future temperatures. Seeds were collected at sites across the Iberian Peninsula and exposed or not exposed to a heat shock to break dormancy, then set to germinate under four temperature regimes. Temperatures were varied daily and seasonally, simulating the temperature range across the gradient, plus an increased temperature simulating future climate. Time to germination onset and cumulative germination at the end of each season were analyzed for the effects of temperature treatments, seasons, and local climate (temperature of the germination period, T gp ) at each site. T gp was a significant covariate of germination in all species but Cistus populifolius. Temperature treatments significantly affected Cistus ladanifer, C. salviifolius, and Halimium ocymoides. Germination occurred in simulated autumn conditions, with little germination occurring at later seasons, except in unheated seeds of H. ocymoides. Exposure to a heat shock changed the sensitivity to temperature treatments and the relationships with T gp . Germination responses to temperature differ not only among species but also within species across their latitudinal range. The responses were idiosyncratic and related to the local climate of the population. This germination variability complicates generalizing the impacts of climate variability and climate change. © 2017 Botanical Society of America.

  14. CLT and CLS job responsibilities: current distinctions and updates.

    Science.gov (United States)

    Doig, K; Beck, S J; Kolenc, K

    2001-01-01

    This study was undertaken to address the following questions: 1. What tasks distinguish the job of a clinical laboratory scientist (CLS) from that of a clinical laboratory technician (CLT)? 2. What changes in role distinctions, have occurred for entry-level CLS and CLT practitioners over the five-year period 1993-98? 3. What tasks have been deleted from the CLT and CLS content outlines because they were not frequently performed or not considered entry-level? 4. What changes in practice are reflected in the current job analyses? A national job analysis of tasks constituting the job of clinical laboratory scientists (CLSs) and clinical laboratory technicians (CLTs) was conducted in 1998-99 as part of a standard setting process for the certifying examinations of the National Credentialing Agency for Laboratory Personnel (NCA). The job analyses relied upon mail surveys to 1200 individuals for each job level asking respondents to identify tasks significant to effective practice at job entry. The task lists resulting from statistical analysis of those surveys were examined to answer the study questions. The sample for each survey included 1200 practitioners, educators and laboratory managers selected at random from membership in professional organizations or from NCA certificant lists. Sampling was stratified to insure adequate practitioner representation. The mean rating on a four point scale for each item on the surveys was evaluated for overall significance as well as significance across geographic regions. The tasks meeting specified criteria were retained in the final task lists. Tasks were counted and their content evaluated to compare CLS and CLT job tasks. The response rates to the surveys were 33% for CLT and 21% for CLS. Reliability was judged based on average intraclass correlation coefficients of .86 and .82 for the CLT and CLS surveys, respectively. There were 952 tasks retained on the CLS content outline and 725 retained on the CLT content outline of the

  15. Linear scan voltammetric indirect determination of Al(III) by the catalytic cathodic response of norepinephrine at the hanging mercury drop electrode.

    Science.gov (United States)

    Zhang, Fuping; Ji, Ming; Xu, Quan; Yang, Li; Bi, Shuping

    2005-09-01

    The biological effects of aluminum (Al) have received much attention in recent years. Al is of basic relevance as concern with its reactivity and bioavailability. In this paper, the electrochemical behaviors of norepinephrine (NE) in the absence and presence of Al(III) at the hanging mercury drop electrode have been studied and applied to the practical analysis. Highly selective catalytic cathodic peak of NE is yielded by linear scan voltammetry (LSV) at -1.32 V (vs. SCE). A linear relationship holds between the cathodic peak current and the Al(III) concentration. It has been successfully applied to the determination of Al(III) in real waters and synthetic biological samples with satisfying results, which are in accordance with those obtained by ICP-AES method. The electrochemical properties and the mechanisms of the peaks in the presence and absence of Al(III) have been explored. The results show that they are irreversible adsorptive hydrogen catalytic waves. These studies not only enrich the methods of determining Al, but also lay foundations of further understanding of the mechanisms of neurodementia.

  16. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    Science.gov (United States)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  18. Clopidogrel Resistance: Current Issues

    Directory of Open Access Journals (Sweden)

    NS Neki

    2016-05-01

    Full Text Available Antiplatelet agents are mainly used in the prevention and management of atherothrombotic complications. Dual antiplatelet therapy, combining aspirin and clopidogrel, is the standard care for patients having acute coronary syndromes or undergoing percutaneous coronary intervention according to the current ACC/AHA and ESC guidelines. But in spite of administration of dual antiplatelet therapy, some patients develop recurrent cardiovascular ischemic events especially stent thrombosis which is a serious clinical problem. Antiplatelet response to clopidogrel varies widely among patients based on ex vivo platelet function measurements. Clopidogrel is an effective inhibitor of platelet activation and aggregation due to its selective and irreversible blockade of the P2Y12 receptor. Patients who display little attenuation of platelet reactivity with clopidogrel therapy are labeled as low or nonresponders or clopidogrel resistant. The mechanism of clopidogrel resistance remains incompletely defined but there are certain clinical, cellular and genetic factors including polymorphisms responsible for therapeutic failure. Currently there is no standardized or widely accepted definition of clopidogrel resistance. The future may soon be realised in the routine measurement of platelet activity in the same way that blood pressure, cholesterol and blood sugar are followed to help guide the therapy, thus improving the care for millions of people. This review focuses on the methods used to identify patients with clopidogrel resistance, the underlying mechanisms, metabolism, clinical significance and current therapeutic strategies to overcome clopidogrel resistance. J Enam Med Col 2016; 6(1: 38-46

  19. Apparatuses and method for converting electromagnetic radiation to direct current

    Science.gov (United States)

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  20. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  1. Campus Crisis Response at Viberg College

    Science.gov (United States)

    Eaker, Rachel; Viars, Jamie

    2014-01-01

    This fictional case study examines crisis response in higher education settings. Information about current crisis response procedures, plans, and trends was gathered from informational interviews, current crisis management literature, and multiple college and university websites. The information was synthesized into a fictional case study using…

  2. Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4H-SiC for photoconductive switch applications

    Energy Technology Data Exchange (ETDEWEB)

    Tiskumara, R. [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States); Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Mauch, D.; Dickens, J. C.; Neuber, A. A. [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2015-09-07

    A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC is carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, are comprehensively included. Results of our model match the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters are also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples can be discounted up to applied fields as high as ∼275 kV/cm.

  3. Emergence of burrowing urchins from California continental shelf sediments-A response to alongshore current reversals?

    Science.gov (United States)

    Nichols, F.H.; Cacchione, D.A.; Drake, D.E.; Thompson, J.K.

    1989-01-01

    Two sequences of bottom photographs taken every two or four hours for two months during the Coastal Ocean Dynamics Experiment (CODE) off the Russian River, California, reveal the dynamic nature of interations between the water column, the sediments, and benthic organisms in the mid-shelf silt deposit. Time-lapse photographs taken between late spring and early summer in 1981 and 1982 show that the subsurface-dwelling urchin Brisaster latifrons (one of the largest invertebrates found in shelf-depth fine sediment off the U.S. Pacific coast) occasionally emerged from the sediment, plowed the sediment surface during the course of a few hours to several days, then buried themselves again. Frame-by-frame study of the film sequences shows that the urchins typically emerged following relaxation of coastal upwelling, periods characterized by current direction reversals and increases in bottom water turbidity. Among the possible causes of the emergence of urchins and the consequent bioturbation of the upper few cm of sediment, a response to an enhanced food supply seems most plausible. Circumstantial evidence suggests the possibility that phytoplankton sedimentation during periods of upwelling relaxation could provide a new source of food at the sediment surface. ?? 1989.

  4. Comparative voltammetric study and determination of carbamate pesticide residues in soil at carbon nanotubes paste electrodes

    Directory of Open Access Journals (Sweden)

    THOMMANDRU RAVEENDRANATH BAB

    2014-02-01

    Full Text Available In this investigation, the persistence of carbamate pesticides in soil samples was investigated. A simple and selective differential pulse adsorptive stripping voltammetry was selected for this investigation. Carbon nanotubes paste electrodes were used as working electrodes for differential pulse adsorptive stripping voltammetry and cyclic voltammetry. A symmetric study of the various operational parameters that affect the stripping response was carried out by differential pulse voltammetry. Peak currents were linear over the concentration range of 10-5 to 10-10 M with an accumulation potential of -0.6 V and a 70 s accumulation time with lower detection limits of 1.09 x 10-7 M, 1.07 × 10-7M, 1.09×10-7 M for chlorphropham, thiodicarb, aldicarb. The relative standard deviation (n=10 and correlation coefficient values were 1.15 %, 0.988; 1.13 %, 0.978; and 1.14 %, 0.987, respectively. Universal buffer with pH range 2.0 - 6.0 was used as sup­porting electrolyte. The solutions with uniform concentration (10-5 M were used in all deter­minations. Calculations were made by standard addition method.

  5. Determination of the stoichiometric rate in UO2 samples

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Lima, Nelson B. de; Sassine, Andre; Bustillos, Jose Oscar Vega

    2000-01-01

    The gravimetric and voltammetric methods for determination of non-stoichiometric O/U ratio in uranium dioxide used as nuclear fuel are discussed in this work. The oxidation of uranium oxide is very complex due to many phase changes. Gravimetric and voltammetric methods do not detect phase changes. The results of this work shown that, to evaluate both methods is requiring to be done Rietveld methods by X-ray diffraction data to identify the uranium oxide phase changes. (author)

  6. Study of non stoichiometric uranium dioxide samples (UO2)

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Lima, Nelson B. de; Bustillos, Jose O.V.

    1999-01-01

    The gravimetric and voltammetric methods for determination of non-stoichiometric O/U ratio in uranium dioxide used as nuclear fuel are discussed in this work. The oxidation of uranium oxide is very complex due to many phase changes. gravimetric and voltammetric methods do not detect phase changes. The results of this work shown that, to evaluate both methods is requiring to be done Rietveld methods by x-ray diffraction data to identify the uranium oxide phase changes. (author)

  7. Structural and containment response to LMFBR accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Fistedis, S.H.; Baker, L. Jr.; Stepnewski, D.D.; Peak, R.D.; Gluekler, E.L.

    1978-01-01

    The results of current developments in analysing the response of reactor structures and containment to LMFBR accidents are presented. The current status of analysis of the structural response of LMFBR's to core disruptive accidents, including head response, potential missile generation and the effects of internal structures are presented. The results of recent experiments to help clarify the thermal response of reactor structures to molten core debris are summarized, including the use of this data to calculate the response of the secondary containment. (author)

  8. Properties of Red Sea coastal currents

    KAUST Repository

    Churchill, J.H.; Lentz, S.J.; Farrar, J.T.; Abualnaja, Y.

    2014-01-01

    with the surface wind stress record is complex. Less than 50% of the diurnal current variance is related to the diurnal wind stress through linear correlation. Correlation analysis reveals a classical upwelling/downwelling response to the alongshore wind stress

  9. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  10. Current clinical evidence on pioglitazone pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Marina eKawaguchi-Suzuki

    2013-11-01

    Full Text Available Pioglitazone is the most widely used thiazolidinedione and acts as an insulin-sensitizer through activation of the Peroxisome Proliferator-Activated Receptor-γ (PPARγ. Pioglitazone is approved for use in the management of type 2 diabetes mellitus, but its use in other therapeutic areas is increasing due to pleiotropic effects. In this hypothesis article, the current clinical evidence on pioglitazone pharmacogenomics is summarized and related to variability in pioglitazone response. How genetic variation in the human genome affects the pharmacokinetics and pharmacodynamics of pioglitazone was examined. For pharmacodynamic effects, hypoglycemic and anti-atherosclerotic effects, risks of fracture or edema, and the increase in body mass index in response to pioglitazone based on genotype were examined. The genes CYP2C8 and PPARG are the most extensively studied to date and selected polymorphisms contribute to respective variability in pioglitazone pharmacokinetics and pharmacodynamics. We hypothesized that genetic variation in pioglitazone pathway genes contributes meaningfully to the clinically observed variability in drug response. To test the hypothesis that genetic variation in PPARG associates with variability in pioglitazone response, we conducted a meta-analysis to synthesize the currently available data on the PPARG p.Pro12Ala polymorphism. The results showed that PPARG 12Ala carriers had a more favorable change in fasting blood glucose from baseline as compared to patients with the wild-type Pro12Pro genotype (p=0.018. Unfortunately, findings for many other genes lack replication in independent cohorts to confirm association; further studies are needed. Also, the biological functionality of these polymorphisms is unknown. Based on current evidence, we propose that pharmacogenomics may provide an important tool to individualize pioglitazone therapy and better optimize therapy in patients with T2DM or other conditions for which pioglitazone

  11. Iaverage current mode (ACM) control for switching power converters

    OpenAIRE

    2014-01-01

    Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.

  12. Many-body current formula and current conservation for non-equilibrium fully interacting nanojunctions

    International Nuclear Information System (INIS)

    Ness, H; Dash, L K

    2012-01-01

    We consider the electron transport properties through fully interacting nanoscale junctions beyond the linear-response regime. We calculate the current flowing through an interacting region connected to two interacting leads, with interaction crossing at the left and right contacts, by using a non-equilibrium Green function technique. The total current at one interface (the left one for example) is made of several terms which can be regrouped into two sets. The first set corresponds to a very generalized Landauer-like current formula with physical quantities defined only in the interacting central region and with renormalized lead self-energies. The second set characterizes inelastic scattering events occurring in the left lead. We show how this term can be negligible or even vanish due to the pseudo-equilibrium statistical properties of the lead in the thermodynamic limit. The expressions for the different Green functions needed for practical calculations of the current are also provided. We determine the constraints imposed by the physical condition of current conservation. The corresponding equation imposed on the different self-energy quantities arising from the current conservation is derived. We discuss in detail its physical interpretation and its relation with previously derived expressions. Finally several important key features are discussed in relation to the implementation of our formalism for calculations of quantum transport in realistic systems. (paper)

  13. Dynamic modelling of tearing mode stabilization by RF current drive

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Gianakon, T.A.; Garbet, X.; Bernabei, S.

    1998-01-01

    The theory of tearing mode stabilization in toroidal plasmas by RF-driven currents that are modulated in phase with the island rotation is investigated. A time scale analysis of the phenomena involved indicates that transient effects, such as finite time response of the driven currents, island rotation during the power pulses, and the inductive response of the plasma, are intrinsically important. A dynamic model of such effects is developed, based on a 3-D Fokker-Planck code coupled to both the electric field diffusion and the island evolution equations. Extensive applications to both Electron Cyclotron and Lower Hybrid current drive in ITER are presented. (author)

  14. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.G.; Santos, M.C.; Oliveira, R.T.S.; Bulhoes, L.O.S.; Pereira, E.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Quimica. Universidade Federal de Sao Carlos, C.P. 676, CEP 13565-905, Sao Carlos, SP (Brazil)

    2006-07-14

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600{sup o}C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (420) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (200) and (420) were displaced by approximately -0.3{sup o}. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1M HClO{sub 4} showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk. (author)

  15. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    Science.gov (United States)

    Freitas, R. G.; Santos, M. C.; Oliveira, R. T. S.; Bulhões, L. O. S.; Pereira, E. C.

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600 °C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (4 2 0) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (2 0 0) and (4 2 0) were displaced by approximately -0.3°. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1 M HClO 4 showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11 V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk.

  16. Current measurements by Faraday rotation in single mode optical fibers

    International Nuclear Information System (INIS)

    Chandler, G.I.; Jahoda, F.C.

    1984-01-01

    Development of techniques for measuring magnetic fields and currents by Faraday rotation in single-mode optical fibers has continued. We summarize the results of attempts to measure the toroidal plasma current in the ZT-40 Reversed-Field-Pinch using multi-turn fiber coils. The fiber response is reproducible and in accord with theory, but the amount and distribution of the stress-induced birefringence in this case are such that prediction of the sensor response at low currents is difficult if not impossible. The low-current difficulty can be overcome by twisting the fiber to induce a circular birefringence bias. We report the results of auxiliary experiments with a fiber that has been twisted with 15 turns per meter and then re-coated to lock the twist in place

  17. Lower hybrid current drive in shaped tokamaks

    International Nuclear Information System (INIS)

    Kesner, J.

    1993-01-01

    A time dependent lower hybrid current drive tokamak simulation code has been developed. This code combines the BALDUR tokamak simulation code and the Bonoli/Englade lower hybrid current drive code and permits the study of the interaction of lower hybrid current drive with neutral beam heating in shaped cross-section plasmas. The code is time dependent and includes the beam driven and bootstrap currents in addition to the current driven by the lower hybrid system. Examples of simulations are shown for the PBX-M experiment which include the effect of cross section shaping on current drive, ballooning mode stabilization by current profile control and sawtooth stabilization. A critical question in current drive calculations is the radial transport of the energetic electrons. The authors have developed a response function technique to calculate radial transport in the presence of an electric field. The consequences of the combined influences of radial diffusion and electric field acceleration are discussed

  18. Persistent currents in metallic rings containing a quantum dot

    International Nuclear Information System (INIS)

    Machura, Lukasz; Łuczka, Jerzy

    2015-01-01

    Currents in metallic rings with a quantum dot are studied in the framework of a Langevin equation for a magnetic flux passing through the ring. Two scenarios are considered: one in which thermal fluctuations of the dissipative part of the current are modeled by classical Johnson–Nyquist noise and one in which quantum character of thermal fluctuations is taken into account in terms of a quantum Smoluchowski equation. The impact of the amplitude and phase of the transmission coefficient of the electron through a quantum dot on current characteristics is analyzed. In tailored parameter regimes, both scenarios can exhibit the transition from para- to diamagnetic response of the current versus external magnetic flux. The type of response is more robust to changes of the amplitude of the transmission coefficient and more sensitive to changes of the phase around some values. - Highlights: • Langevin dynamics of the magnetic flux for classical and quantum Smoluchowski regimes. • Current-flux characteristics vs the amplitude and phase of the transmission coefficient. • Crucial role of the phase of the transmission coefficient. • Contribution to the development of effective control of current in mesoscopic rings

  19. Polypyrrol/chitosan hydrogel hybrid microfiber as sensing artificial muscle

    Science.gov (United States)

    Ismail, Yahya A.; Martínez, Jose G.; Al Harrasi, Ahmad S.; Kim, Seon J.; Fernández Otero, Toribio F.

    2011-04-01

    An electrochemical actuator demands that it should act as a sensor of the working conditions for its efficient application in devices. Actuation and sensing characteristics of a biopolymer/conducting polymer hybrid microfiber artificial muscle fabricated through wet spinning of a chitosan solution followed by in situ chemical polymerization with pyrrol employing bis(triflouro methane sulfonyl) imide as dopant and ferric chloride as a catalyst is presented. The polypyrrol/chitosan hybrid microfiber was investigated by FTIR, scanning electron microscopy (SEM), electrical conductivity measurement, cyclic voltammetric and chronopotentiometric methods. The electrochemical measurements related to the sensing abilities were performed as a function of applied current, concentration and temperature keeping two of the variables constant at a given time using NaCl as electrolyte. Cyclic voltammograms confirmed that the electro activity is imparted by polypyrrol (pPy). The fiber showed an electrical conductivity of 3.21x10-1 Scm-1and an average linear electrochemical actuation strain of 0.54%. The chronopotentiometric responses during the oxidation/reduction processes of the microfiber for the different anodic/cathodic currents and the linear fit observed for the consumed electrical energy during the reaction for various applied currents suggested that it can act as a sensor of applied current. The chronopotentiometric responses and the linear fit of consumed electrical energy at different temperatures suggested that the actuator can act as a temperature sensor. Similarly a semi logarithmic dependence of the consumed electrical energy with concentration of the electrolyte during reaction is suggestive of its applicability as a concentration sensor. The demand that an electrochemical actuator to be a sensor of the working conditions, for its efficient application in devices is thus verified in this material.

  20. Creating virtual electrodes with 2D current steering

    Science.gov (United States)

    Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.

    2018-06-01

    Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p  >  0.05 neural spread: one-way ANOVA on Ranks, p  >  0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number

  1. QUANTIFICATION OF LEAD AND CADMIUM IN POULTRY AND BIRD GAME MEAT BY SQUARE WAVE ANODIC STRIPPING VOLTAMMETRY

    OpenAIRE

    2011-01-01

    Abstract A Square Wave Anodic Stripping Voltammetric method for the analysis of lead and cadmium in chicken muscle and liver was developed and validated, and the results of a monitoring study relative to chicken and pigeon meat are reported. The voltammetric method allows the analysis of lead and cadmium at the same time in samples after acid digestion. The use of perchloric acid for digestion and of acetate buffer in the supporting electrolyte have been found suitable to reduce ma...

  2. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, A., E-mail: ali.hajian@fmf.uni-freiburg.de [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Laboratory for Sensors, Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110 Freiburg (Germany); Ghodsi, J.; Afraz, A. [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65174, Hamedan (Iran, Islamic Republic of); Yurchenko, O. [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Urban, G. [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Laboratory for Sensors, Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110 Freiburg (Germany)

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH = 7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13 μmol L{sup −1} and detection limit of 25 nmol L{sup −1}. The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. - Highlights: • A new methylparaben biosensor was constructed by modification of carbon paste electrode with hemoglobin and MWCNTs. • The electrochemical properties of the modified electrode and electrochemical behavior of the methylparaben on the electrode surface were studied. • The response of modified GCE was analyzed by voltammetry technique (CV and DPV). • The electrode was used to the determination of methylparaben in real samples • The performance of the fabricated biosensor was satisfactorily compared to the previously reported electrochemical sensors for methylparaben determination.

  3. Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO{sub 2}-Co{sub 3}O{sub 4}@rGO nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zeinali, Homa [Department of Chemistry, Payame Noor University, Qazvin (Iran, Islamic Republic of); Bagheri, Hasan, E-mail: h.bagheri82@gmail.com [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Monsef-Khoshhesab, Zahra [Department of Chemistry, Payame Noor University, Qazvin (Iran, Islamic Republic of); Khoshsafar, Hosein [Department of Internal Medicine, Zabol University of Medical Sciences, Zabol (Iran, Islamic Republic of); Hajian, Ali [Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg (Germany)

    2017-02-01

    This work describes the development of a new sensor for simultaneous determination of tryptophan and melatonin. The proposed sensor was an ionic liquid carbon paste electrode modified with reduced graphene oxides decorated with SnO{sub 2}-Co{sub 3}O{sub 4} nanoparticles. The voltammetric oxidation of the analytes by the proposed sensor confirmed that the electrooxidation process undergoes a two-electron/one-proton reaction for melatonin and a two-electron/two-proton reaction for tryptophan in diffusion-controlled processes. Moreover, based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for individual and simultaneous determination of melatonin and tryptophan in the aqueous solutions. Under the optimized experimental conditions, a linear response obtained in the range of 0.02 to 6.00 μmol L{sup −1} with detection limits of 4.1 and 3.2 nmol L{sup −1} for melatonin and tryptophan, respectively. The prepared sensor possessed accurate and rapid response toward melatonin and tryptophan with a good sensitivity, selectivity, stability, and repeatability. Finally, the applicability of the proposed sensor was verified by evaluation of melatonin and tryptophan in various real samples including human serum and tablet samples. - Highlights: • Ionic liquid-SnO{sub 2}-Co{sub 3}O{sub 4}@rGO nanocomposite as electrode material • This modifier can promote the electrochemical properties of carbon paste electrode. • Determination of tryptophan and melatonin was investigated.

  4. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor

    International Nuclear Information System (INIS)

    Hajian, A.; Ghodsi, J.; Afraz, A.; Yurchenko, O.; Urban, G.

    2016-01-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH = 7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13 μmol L −1 and detection limit of 25 nmol L −1 . The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. - Highlights: • A new methylparaben biosensor was constructed by modification of carbon paste electrode with hemoglobin and MWCNTs. • The electrochemical properties of the modified electrode and electrochemical behavior of the methylparaben on the electrode surface were studied. • The response of modified GCE was analyzed by voltammetry technique (CV and DPV). • The electrode was used to the determination of methylparaben in real samples • The performance of the fabricated biosensor was satisfactorily compared to the previously reported electrochemical sensors for methylparaben determination.

  5. Trends in Current Issues, Y2K-2005

    Science.gov (United States)

    Maltz, Leslie; DeBlois, Peter B.

    2005-01-01

    EDUCAUSE inaugurated its annual Current Issues Survey in 2000 by asking the primary representatives, typically CIOs, of its member institutions to identify up to three critical IT issues (five starting in 2004) from among 30 to 40 in response to each of four questions. The survey response rate has typically been 35 to 40 percent, with a…

  6. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  7. Current Monitoring System for ITER Like ICRH Antenna

    International Nuclear Information System (INIS)

    Argouarch, A.

    2006-01-01

    On TS antennas, the power transfer optimization from ICRH antenna to Plasma load is performed using feedback internal matching system. Experimental handling is required to mach the reactive impedance accordingly to the fluctuant plasma loading. As part of the development of the new ICRH prototype antenna, an additional measurement system based on Rogowski coils was developed to monitor the current distribution in antenna straps. The objective is to control module and phase of the antenna current straps with measurement provided by the coil system. Matching capacitors values, generators power and phase can also be controlled using the output of the devices, improving the real time matching control of the array. This paper details the new measurement layout, the Rogowski coil, and the whole system connected on each strap design for RF currents measurement between 40 MHz - 60 MHz for maximum amplitude of 1 kA. On the new ICRH prototype antenna, the measurement coils are coupled to the point where the strap currents are short circuited to the frame. The module and phase measurements are performed with the coils by direct magnetic induction in a vacuum and high temperature environment. Also, the Rogowski coils were characterized at low level power with vector network analyzer and the design adapted in order to obtain a controlled and reproducible gain in the desire bandwidth. The transconductive function is established with an experimental gain near -80 dB between primary circuit and inductive signal generated by the Rogowski coil. In a second step, the system with its associated electronic was qualified under high RF power. First results with high RF current (closed to 500 A at 57 MHz) match the desire Rogowski coil response. Compromises with electrical response at low power level and the coil under thermal/RF stresses were the most challenging part of the development. The overall response of the system and the current module/phase measurements are promising. A proper

  8. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  9. Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, Andrey [Department of General and Inorganic Chemistry, Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Heyrovsky, Michael [J.Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23 Prague (Czech Republic)], E-mail: heyrovsk@jh-inst.cas.cz

    2009-11-01

    The State of silver particles in aqueous dispersions and the course of their coagulation can be followed on voltammetric curves recorded with hanging mercury drop electrode. Sharp irregular cathodic current peaks produced by partial electroreduction of the species adsorbed on the surface of silver particles during their fortuitous impingements upon the electrode surface appear in time sequence on the curves. A change in the electrochemical behavior of silver sols in the time course of particles aggregation and growth was interpreted in agreement with the data of UV-vis spectroscopy and electron microscopy observations.

  10. Transcranial direct current stimulation in patients with Alzheimer’s disease: Challenges and responses

    Directory of Open Access Journals (Sweden)

    Hong Yuan

    2015-09-01

    Full Text Available The use of transcranial direct current stimulation (tDCS as a noninvasive therapeutic approach for Alzheimer’s disease (AD has gained increasing attention. Research regarding the utility of tDCS in AD is inconsistent. In this study, we reviewed the importance of individual diversity among AD patients, starting from the uninformative mean results. We also demonstrated variation among AD patients. Highly educated patients seem to benefit more; education also seems to modulate baseline measurements and the results. Individual cortical morphology also affects the current distribution, which influences the effectiveness of stimulation. We suggest the use of structural MRI to distinguish inter-individual variability; high-resolution modeling can also be used to predict current distributions and should be combined with cognitive training (CT along with tDCS.

  11. Electrodeposition of uranium and transuranic metals (Pu) on solid cathode

    International Nuclear Information System (INIS)

    Laplace, A. F.; Lacquement, J.; Willitt, J. L.; Finch, R. A.; Fletcher, G. A.; Williamson, M. A.

    2008-01-01

    The results from a study of U and Pu metal electrodeposition from molten eutectic LiCl-KCl on a solid inert cathode are presented. This study has been conducted using ∼ to 50 g of U-Pu together with rare earths (mostly Nd) and 1.5 kg of salt. The introduction of a three-electrode probe with an Ag/AgCl reference electrode has allowed voltammetric measurement during electrolysis and control of the cathode potential versus the reference. Cyclic and square-wave voltammetric measurements proved to be very useful tools for monitoring the electrolysis as well as selecting the cathode versus reference potential to maximize the separation between actinides and rare earths. The voltammetric data also highlighted the occurrence of back reactions between the cathode deposit and oxidizing equivalents formed at the anode that remained in the molten salt electrolyte. Any further electrolysis test needs to be conducted continuously and followed by immediate removal of the cathode to minimize those back reactions. (authors)

  12. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Science.gov (United States)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  13. Current Account Adjustment: Some New Theory and Evidence

    OpenAIRE

    Jiandong Ju; Shang-Jin Wei

    2007-01-01

    This paper aims to provide a theory of current account adjustment that generalizes the textbook version of the intertemporal approach to current account and places domestic labor market institutions at the center stage. In general, in response to a shock, an economy adjusts through a combination of a change in the composition of goods trade (i.e., intra-temporal trade channel) and a change in the current account (i.e., intertemporal trade channel). The more rigid the labor market, the slower ...

  14. Current insights in sepsis: from pathogenesis to new treatment targets

    NARCIS (Netherlands)

    Wiersinga, W. Joost

    2011-01-01

    Sepsis continues to be a leading cause of ICU death. This review summarizes current knowledge on sepsis pathogenesis and new therapeutical strategies. Although systemic inflammatory response syndrome predominates in early sepsis, the compensatory anti-inflammatory response syndrome causes

  15. Square-wave voltammetric determination of fungicide fenfuram in real samples on bare boron-doped diamond electrode, and its corrosion properties on stainless steels used to produce agricultural tools

    International Nuclear Information System (INIS)

    Brycht, Mariola; Skrzypek, Sławomira; Kaczmarska, Kinga; Burnat, Barbara; Leniart, Andrzej; Gutowska, Natalia

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • A bare boron-doped diamond electrode was first used to determine fenfuram. • A sensitive voltammetric procedure for the determination of fenfuram was developed. • The sensor showed high sensitivity, selectivity, and wide linear range. • The procedure was successfully applied to detect fenfuram in real samples. • The effect of fenfuram on the uniform and pitting corrosion of steel was stated. -- Abstract: A simple, selective, and sensitive electroanalytical method for the determination of a novel fungicide, fenfuram (Fnf), on a bare boron-doped diamond electrode (BDDE) using square-wave voltammetry (SWV) was developed. For the first time, the electrochemical oxidation of Fnf at BDDE at about 1.5 V vs. Ag/AgCl reference electrode in 0.35 mol L −1 sulfuric acid was investigated. To select the optimum experimental conditions, the effects of the supporting electrolyte, pH, frequency, amplitude, and step potential were studied. The developed method allowed the determination of Fnf in the concentration range of 2.4 × 10 −5 to 2.6 × 10 −4 mol L −1 (LOD = 6.3 × 10 −6 mol L −1 , LOQ = 2.1 × 10 −5 mol L −1 ). The validation of the method was carried out. The proposed procedure was successfully applied to determine Fnf in the spiked natural water samples collected from Polish rivers and in the spiked triticale seed samples by the standard addition method. To understand the Fnf electrode mechanism, the cyclic voltammetry (CV) technique was applied. The oxidation mechanism was also confirmed using mass spectrometry with the electrospray ionization (ESI-MS) technique. Using electrochemical techniques, the effect of Fnf on the corrosion properties of stainless steel which is used to produce agricultural tools was studied

  16. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS: challenges for brain-state dependent tDCS

    Directory of Open Access Journals (Sweden)

    Anirban eDutta

    2015-08-01

    Full Text Available Transcranial direct current stimulation (tDCS has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG. Respective neural activity (energy demand has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF that supplies glucose (energy supply via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS, which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU during tDCS. Therefore, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations for brain-state dependent tDCS.

  18. Modified electrode voltammetric sensors for trace metals in environmental samples

    Directory of Open Access Journals (Sweden)

    Brett Christopher M.A.

    2000-01-01

    Full Text Available Nafion-modified mercury thin film electrodes have been investigated for the analysis of trace metals in environmental samples of waters and effluent by batch injection analysis with square wave anodic stripping voltammetry. The method, involving injection over the detector electrode of untreated samples of volume of the order of 50 microlitres has fast response, blocking and fouling of the electrode is minimum as shown by studies with surface-active components. Comparison is made between glassy carbon substrate electrodes and carbon fibre microelectrode array substrates, the latter leading to a small sensitivity enhancement. Application to analysis of river water and industrial effluent for labile zinc, cadmium, lead and copper ions is demonstrated in collected samples and after acid digestion.

  19. Cellular Mechanisms of Transcranial Direct Current Stimulation

    Science.gov (United States)

    2016-07-14

    fEPSP responses are significantly (P < 0.05, *) facilitated with +8 V/m fields ( left ) and reduced with -8 V/m ( right ) in three pathways. In each...cortex results in a sustained modulation of synaptic efficacy. A) Schematic of anodal ( left ) and cathodal ( right ) DCS with current flow along the...current stimulation (tDCS) delivered 1day vs . 1week after cerebral ischemia in rats. Brain Res. Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG

  20. The Complex Reasons for Missing Spirituality. A Response to "Democratic Foundations for Spiritually Responsive Pedagogy"

    Science.gov (United States)

    de Souza, Marian

    2017-01-01

    This article is written in response to Lingley's (2016) concept of spiritually responsive pedagogy. To begin with, the word "spiritual", when applied to education, still attracts varied responses. Therefore, I have begun by examining contemporary understandings of spirituality as reflected in current research and literature, which…

  1. Eddy current testing, volume 1

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1981-11-01

    This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of 'phase leg' in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals

  2. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode.

    Science.gov (United States)

    Kalambate, Pramod K; Rawool, Chaitali R; Karna, Shashi P; Srivastava, Ashwini K

    2016-12-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (Ip) current for MM is found to be rectilinear in the range 4.0×10(-8)-2.0×10(-5)M with a detection limit of 7.1×10(-9)M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. Copyright © 2016. Published by Elsevier B.V.

  3. 5-HT modulation of hyperpolarization-activated inward current and calcium- dependent outward current in a crustacean motor neuron

    DEFF Research Database (Denmark)

    Kiehn, O.; Harris-Warrick, R. M.

    1992-01-01

    1. Serotonergic modulation of a hyperpolarization-activated inward current, I(h), and a calcium-dependent outward current, I(o(Ca)), was examined in the dorsal gastric (DG) motor neuron, with the use of intracellular recording techniques in an isolated preparation of the crab stomatogastric....... The time course of activation of I(h) was well fitted by a single exponential function and strongly voltage dependent. 5-HT increased the rate of activation of I(h). 5- HT also slowed the rate of deactivation of the I(h) tail on repolarization to -50 mV. 6. The activation curve for the conductance (G...... reduced or eliminated the 5-HT response in the depolarizing range, suggesting that 5-HT specifically reduces I(o(Ca)). 11. These results demonstrate that 5-HT has dual effects on the DG motor neuron, in the crab stomatogastric ganglion. We suggest that changes in the two conductances are responsible...

  4. Magnetic Particle-Based Immunoassay of Phosphorylated p53 Using Protein-Cage Templated Lead Phosphate and Carbon Nanospheres for Signal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiqiong; Bao, Yuanwu; Ge, Xiaoxiao; Shin, Yongsoon; Du, Dan; Lin, Yuehe

    2012-11-20

    Phosphorylated p53 at serin 15 (phospho-p53-15) is a potential biomarker of Gamma-radiation exposure. In this paper, we described a new magnetic particles (MPs)-based electrochemical immunoassay of human phospho-p53-15 using carbon nanospheres (CNS) and protein-cage templated lead phosphate nanoparticles for signal amplification. Greatly enhanced sensitivity was achieved by three aspects: 1) The protein-cage nanoparticle (PCN) and p53-15 signal antibody (p53-15 Ab2) are linked to CNS (PCNof each apoferritin; 3) MPs capture a large amount of primary antibodies. Using apoferritin templated metallic phosphate instead of enzyme as label has the advantage of eliminating the addition of mediator or immunoreagents and thus makes the immunoassay system simpler. The subsequent stripping voltammetric analysis of the released lead ions were detected on a disposable screen printed electrode. The response current was proportional to the phospho-p53-15 concentration in the range of 0.02 to 20 ng mL-1 with detection limit of 0.01 ng mL-1. This method shows a good stability, reproducibility and recovery.

  5. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Balamurugan, A.; Chen Shenming

    2007-01-01

    Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 x 10 -6 to 1 x 10 -5 M. The detection limit is 5 x 10 -7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid

  6. Amplified electrochemical determination of maltol in food based on graphene oxide-wrapped tin oxide@carbon nanospheres.

    Science.gov (United States)

    Gan, Tian; Sun, Junyong; Yu, Miaomiao; Wang, Kaili; Lv, Zhen; Liu, Yanming

    2017-01-01

    The study presents a new approach for rapid and ultrasensitive detection of maltol using a glassy carbon electrode (GCE) modified with graphene oxide-wrapped tin oxide@carbon nanospheres (SnO2@C@GO). The morphological and components properties of SnO2@C@GO nanocomposites were investigated by means of X-ray diffraction spectroscopy, Raman spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and electrochemical impedance spectroscopy. SnO2@C@GO nanocomposite on a GCE had a synergetic effect on the electrochemical oxidation of maltol by means of square wave voltammetry. Under the optimum conditions, anodic peak current response of maltol was linear with its concentration in the range of 80nM-10μM, and a detection limit of 12nM was achieved for maltol. The experiment results presented that the method showed good selectivity, sensitivity, reproducibility, and long-term stability, as well as excellent potential for use as an ideal inexpensive voltammetric method applicable for complex food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. LabVIEW-based sequential-injection analysis system for the determination of trace metals by square-wave anodic and adsorptive stripping voltammetry on mercury-film electrodes.

    Science.gov (United States)

    Economou, Anastasios; Voulgaropoulos, Anastasios

    2003-01-01

    The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV.

  8. Sensitive Electrochemical Detection of Dopamine With a Nitrogen-doped Graphene Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Wencheng Wang

    2016-09-01

    Full Text Available In this paper nitrogen-doped graphene (NG nanosheets were used as the modifier on the surface of glassy carbon electrode (GCE. The modified electrode (NG/GCE was further applied to the sensitive detection of dopamine (DA by voltammetric method. Due to the unique properties of NG such as large surface area and excellent electrocatalytic activity, electrochemical response of DA was greatly enhanced on NG/GCE with a pair of well-defined redox peaks appeared on cyclic voltammogram. Electrochemical behaviors of DA on NG/GCE were carefully investigated with the electrochemical parameters calculated. Under the selected conditions the oxidation peak currents of DA had a good linear relationship with its concentration in the range from 8.0×10–7 mol L–1 to 8.0×10–4 mol L–1 with a detection limit of 2.55×10–7 mol L–1 (3σ. The proposed method was further applied to the DA injection samples determination with satisfactory results. This work is licensed under a Creative Commons Attribution 4.0 International License.

  9. Societal response to nanotechnology: converging technologies–converging societal response research?

    International Nuclear Information System (INIS)

    Ronteltap, Amber; Fischer, Arnout R. H.; Tobi, Hilde

    2011-01-01

    Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate societal response. This paper systematically reviews the current state of convergence in societal response research by first sketching the predominant approaches to previous new technologies, followed by an analysis of current research into societal response to nanotechnology. A set of 107 papers on previous new technologies shows that rational actor models have played an important role in the study of societal response to technology, in particular in the field of information technology and the geographic region of Asia. Biotechnology and nuclear power have, in contrast, more often been investigated through risk perception and other affective determinants, particularly in Europe and the USA. A set of 42 papers on societal response to nanotechnology shows similarities to research in biotechnology, as it also builds on affective variables such as risk perception. Although there is a tendency to extend the rational models with affective variables, convergence in social science approaches to response to new technologies still has a long way to go. The challenge for researchers of societal response to technologies is to converge to some shared principles by taking up the best parts from the rational actor models dominant in information technology, whilst integrating non-rational constructs from biotechnology research. The introduction of nanotechnology gives a unique opportunity to do so.

  10. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    International Nuclear Information System (INIS)

    Medina-Plaza, C.; García-Cabezón, C.; García-Hernández, C.; Bramorski, C.; Blanco-Val, Y.; Martín-Pedrosa, F.; Kawai, T.; Saja, J.A. de; Rodríguez-Méndez, M.L.

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S DOD AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S DOD AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10 −6 mol L −1 were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity

  11. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); García-Cabezón, C. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); García-Hernández, C.; Bramorski, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); Blanco-Val, Y.; Martín-Pedrosa, F. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); Kawai, T. [Department of Industrial Chemistry, Tokyo University of Science (Japan); Saja, J.A. de [Department of Condensed Matter Physics, Universidad de Valladolid (Spain); Rodríguez-Méndez, M.L., E-mail: mluz@eii.uva.es [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain)

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S{sub DOD}AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S{sub DOD}AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10{sup −6} mol L{sup −1} were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio

  12. Tokamak plasma current disruption infrared control system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ulrickson, M.

    1987-01-01

    This patent describes a device for magnetically confining a plasma driven by a plasma current and contained within a toroidal vacuum chamber, the device having an inner toroidal limiter on an inside wall of the vacuum chamber and an arrangement for the rapid prediction and control in real time of a major plasma disruption. The arrangement is described which includes: scanning means sensitive to infrared radiation emanating from within the vacuum chamber, the infrared radiation indicating the temperature along a vertical profile of the inner toroidal limiter. The scanning means is arranged to observe the infrared radiation and to produce in response thereto an electrical scanning output signal representative of a time scan of temperature along the vertical profile; detection means for analyzing the scanning output signal to detect a first peaked temperature excursion occurring along the profile of the inner toroidal limiter, and to produce a detection output signal in repsonse thereto, the detection output signal indicating a real time prediction of a subsequent major plasma disruption; and plasma current reduction means for reducing the plasma current driving the plasma, in response to the detection output signal and in anticipation of a subsequent major plasma disruption

  13. Co-immobilization of gold nanoparticles with glucose oxidase to improve bioelectrocatalytic glucose oxidation

    Science.gov (United States)

    Aquino Neto, Sidney; Milton, Ross D.; Crepaldi, Laís B.; Hickey, David P.; de Andrade, Adalgisa R.; Minteer, Shelley D.

    2015-07-01

    Recently, there has been much effort in developing metal nanoparticle catalysts for fuel oxidation, as well as the development of enzymatic bioelectrocatalysts for fuel oxidation. However, there has been little study of the synergy of hybrid electrocatalytic systems. We report the preparation of hybrid bioanodes based on Au nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) co-immobilized with glucose oxidase (GOx). Mediated electron transfer was achieved by two strategies: ferrocene entrapped within polypyrrole and a ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymer. Electrochemical characterization of the Au nanoparticles supported on MWCNTs indicate that this catalyst exhibits an electrocatalytic response for glucose even in acidic conditions. Using the redox polymer Fc-LPEI as the mediator, voltammetric and amperometric data demonstrated that these bioanodes can efficiently achieve mediated electron transfer and also indicated higher catalytic currents with the hybrid bioelectrode. From the amperometry, the maximum current density (Jmax) achieved with the hybrid bioelectrode was 615 ± 39 μA cm-2, whereas the bioanode employing GOx only achieved a Jmax of 409 ± 26 μA cm-2. Biofuel cell tests are consistent with the electrochemical characterization, thus confirming that the addition of the metallic species into the bioanode structure can improve fuel oxidation and consequently, improve the power generated by the system.

  14. Andropause: Current concepts

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2013-01-01

    Full Text Available Andropause or late-onset hypogonadism is a common disorder which increases in prevalence with advancing age. Diagnosis of late-onset of hypogonadism is based on presence of symptoms suggestive of testosterone deficiency - prominent among them are sexual symptoms like loss of libido, morning penile erection and erectile dysfunction; and demonstration of low testosterone levels. Adequate therapeutic modalities are currently available, but disparate results of clinical trial suggest further evaluation of complex interaction between androgen deficiency and ageing. Before initiating therapy benefits and risk should be discussed with patients and in case of poor response , alternative cause should be investigated.

  15. Convergence Improvement of Response Matrix Method with Large Discontinuity Factors

    International Nuclear Information System (INIS)

    Yamamoto, Akio

    2003-01-01

    In the response matrix method, a numerical divergence problem has been reported when extremely small or large discontinuity factors are utilized in the calculations. In this paper, an alternative response matrix formulation to solve the divergence problem is discussed, and properties of iteration matrixes are investigated through eigenvalue analyses. In the conventional response matrix formulation, partial currents between adjacent nodes are assumed to be discontinuous, and outgoing partial currents are converted into incoming partial currents by the discontinuity factor matrix. Namely, the partial currents of the homogeneous system (i.e., homogeneous partial currents) are treated in the conventional response matrix formulation. In this approach, the spectral radius of an iteration matrix for the partial currents may exceed unity when an extremely small or large discontinuity factor is used. Contrary to this, an alternative response matrix formulation using heterogeneous partial currents is discussed in this paper. In the latter approach, partial currents are assumed to be continuous between adjacent nodes, and discontinuity factors are directly considered in the coefficients of a response matrix. From the eigenvalue analysis of the iteration matrix for the one-group, one-dimensional problem, the spectral radius for the heterogeneous partial current formulation does not exceed unity even if an extremely small or large discontinuity factor is used in the calculation; numerical stability of the alternative formulation is superior to the conventional one. The numerical stability of the heterogeneous partial current formulation is also confirmed by the two-dimensional light water reactor core analysis. Since the heterogeneous partial current formulation does not require any approximation, the converged solution exactly reproduces the reference solution when the discontinuity factors are directly derived from the reference calculation

  16. A Hybrid, Current-Source/Voltage-Source Power Inverter Circuit

    DEFF Research Database (Denmark)

    Trzynadlowski, Andrzej M.; Patriciu, Niculina; Blaabjerg, Frede

    2001-01-01

    A combination of a large current-source inverter and a small voltage-source inverter circuits is analyzed. The resultant hybrid inverter inherits certain operating advantages from both the constituent converters. In comparison with the popular voltage-source inverter, these advantages include...... reduced switching losses, improved quality of output current waveforms, and faster dynamic response to current control commands. Description of operating principles and characteristics of the hybrid inverter is illustrated with results of experimental investigation of a laboratory model....

  17. Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer.

    Science.gov (United States)

    Cui, Hui-Fang; Zhang, Kuan; Zhang, Yong-Fang; Sun, Yu-Long; Wang, Jia; Zhang, Wei-De; Luong, John H T

    2013-08-15

    Glucose oxidase (GOD) was adsorbed into a nanoporous TiO₂ film layered on the surface of an iron phthalocyanine (FePc) vertically-aligned carbon nanotube (CNT) modified electrode. A Nafion film was then dropcast on the electrode's surface to improve operational and storage stabilities of the GOD-based electrode. Scanning electron microscopy (SEM) micrographs revealed the formation of FePc and nanoporous TiO₂ nanoparticles along the sidewall and the tip of CNTs. Cyclic voltammograms of the GOD electrode in neutral PBS exhibited a pair of well-defined redox peaks, attesting the direct electron transfer of GOD (FAD/FADH₂) with the underlying electrode. The potential of glucose electro-oxidation under nitrogen was ∼+0.12 V with an oxidation current density of 65.3 μA cm(-2) at +0.77 V. Voltammetric and amperometric responses were virtually unaffected by oxygen, illustrating an efficient and fast direct electron transfer. The modification of the CNT surface with FePc resulted in a biosensor with remarkable detection sensitivity with an oxygen-independent bioelectrocatalysis. In deaerated PBS, the biosensor displayed average response time of 12 s, linearity from 50 μM to 4 mM, and a detection limit of 30 μM (S/N=3) for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Ghalkhani, Masoumeh

    2010-01-01

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 μM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  19. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2010-04-15

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 muM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  20. Spin-current emission governed by nonlinear spin dynamics.

    Science.gov (United States)

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.