WorldWideScience

Sample records for voltage-gated ion channel

  1. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...

  2. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...... probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  3. Cnidarian Toxins Acting on Voltage-Gated Ion Channels

    Directory of Open Access Journals (Sweden)

    Robert M. Greenberg

    2006-04-01

    Full Text Available Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels.

  4. VGIchan: Prediction and Classification of Voltage-Gated Ion Channels

    Institute of Scientific and Technical Information of China (English)

    Sudipto Saha; Jyoti Zack; Balvinder Singh; G.P.S. Raghava

    2006-01-01

    This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid composition and dipeptide composition, with an accuracy of 82.89% and 85.56%, respectively. The accuracy of this SVM method was improved from 85.56% to 89.11% when combined with PSIBLAST similarity search. Then we developed an SVM method for classifying ion channels (potassium, sodium, calcium, and chloride) by using dipeptide composition and achieved an overall accuracy of 96.89%. We further achieved a classification accuracy of 97.78% by using a hybrid method that combines dipeptidebased SVM and hidden Markov model methods. A web server VGIchan has been developed for predicting and classifying voltage-gated ion channels using the above approaches. VGIchan is freely available at www.imtech.res.in/raghava/vgichan/.

  5. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vidhya R.; Perez-Neut, Mathew [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States); Kaja, Simon [Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108 (United States); Gentile, Saverio, E-mail: sagentile@luc.edu [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States)

    2015-05-22

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K{sup +}, Ca{sup ++}, Cl{sup −}, Na{sup +}. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation.

  6. Axonal voltage-gated ion channels as pharmacological targets for pain.

    Science.gov (United States)

    Moldovan, Mihai; Alvarez, Susana; Romer Rosberg, Mette; Krarup, Christian

    2013-05-15

    Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage-gated K(+) channels and blockers of hyperpolarization-activated cyclic nucleotide-gated channels that were found to reduce neuronal activity were also found to be effective in neuropathic and inflammatory pain states. The isoforms of these channels present on nociceptive axons have limited specificity. The rationale for considering axonal voltage-gated ion channels as targets for pain treatment comes from the accumulating evidence that chronic pain states are associated with a dysregulation of these channels that could alter their specificity and make them more susceptible to pharmacological modulation. This drives the need for further development of subtype-specific voltage-gated ion channels modulators, as well as clinically available neurophysiological techniques for monitoring axonal ion channel function in peripheral nerves.

  7. Axonal voltage-gated ion channels as pharmacological targets for pain

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Romer Rosberg, Mette;

    2013-01-01

    Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become...... maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which...... ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage...

  8. Non-silent story on synonymous sites in voltage-gated ion channel genes.

    Science.gov (United States)

    Zhou, Tong; Ko, Eun A; Gu, Wanjun; Lim, Inja; Bang, Hyoweon; Ko, Jae-Hong

    2012-01-01

    Synonymous mutations are usually referred to as "silent", but increasing evidence shows that they are not neutral in a wide range of organisms. We looked into the relationship between synonymous codon usage bias and residue importance of voltage-gated ion channel proteins in mice, rats, and humans. We tested whether translationally optimal codons are associated with transmembrane or channel-forming regions, i.e., the sites that are particularly likely to be involved in the closing and opening of an ion channel. Our hypothesis is that translationally optimal codons are preferred at the sites within transmembrane domains or channel-forming regions in voltage-gated ion channel genes to avoid mistranslation-induced protein misfolding or loss-of-function. Using the Mantel-Haenszel procedure, which applies to categorical data, we found that translationally optimal codons are more likely to be used at transmembrane residues and the residues involved in channel-forming. We also found that the conservation level at synonymous sites in the transmembrane region is significantly higher than that in the non-transmembrane region. This study provides evidence that synonymous sites in voltage-gated ion channel genes are not neutral. Silent mutations at channel-related sites may lead to dysfunction of the ion channel.

  9. Non-silent story on synonymous sites in voltage-gated ion channel genes.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available Synonymous mutations are usually referred to as "silent", but increasing evidence shows that they are not neutral in a wide range of organisms. We looked into the relationship between synonymous codon usage bias and residue importance of voltage-gated ion channel proteins in mice, rats, and humans. We tested whether translationally optimal codons are associated with transmembrane or channel-forming regions, i.e., the sites that are particularly likely to be involved in the closing and opening of an ion channel. Our hypothesis is that translationally optimal codons are preferred at the sites within transmembrane domains or channel-forming regions in voltage-gated ion channel genes to avoid mistranslation-induced protein misfolding or loss-of-function. Using the Mantel-Haenszel procedure, which applies to categorical data, we found that translationally optimal codons are more likely to be used at transmembrane residues and the residues involved in channel-forming. We also found that the conservation level at synonymous sites in the transmembrane region is significantly higher than that in the non-transmembrane region. This study provides evidence that synonymous sites in voltage-gated ion channel genes are not neutral. Silent mutations at channel-related sites may lead to dysfunction of the ion channel.

  10. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez

    2016-05-01

    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  11. Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions.

    Science.gov (United States)

    Feijóo-Bandín, Sandra; García-Vence, María; García-Rúa, Vanessa; Roselló-Lletí, Esther; Portolés, Manuel; Rivera, Miguel; González-Juanatey, José Ramón; Lago, Francisca

    2017-01-02

    Two-pore channels (TPC1-3) comprise a subfamily of the eukaryotic voltage-gated ion channels (VGICs) superfamily that are mainly expressed in acidic stores in plants and animals. TPCS are widespread across the animal kingdom, with primates, mice and rats lacking TPC3, and mainly act as Ca(+) and Na(+) channels, although it was also suggested that they could be permeable to other ions. Nowadays, TPCs have been related to the development of different diseases, including Parkinson´s disease, obesity or myocardial ischemia. Due to this, their study has raised the interest of the scientific community to try to understand their mechanism of action in order to be able to develop an efficient drug that could regulate TPCs activity. In this review, we will provide an updated view regarding TPCs structure, function and activation, as well as their role in different pathophysiological processes.

  12. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  13. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels.

    Science.gov (United States)

    Elinder, Fredrik; Liin, Sara I

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.

  14. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels

    Science.gov (United States)

    Elinder, Fredrik; Liin, Sara I.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels. PMID:28220076

  15. Hysteresis in voltage-gated channels.

    Science.gov (United States)

    Villalba-Galea, Carlos A

    2016-09-30

    Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.

  16. Voltage-gated Proton Channels

    Science.gov (United States)

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  17. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  18. Voltage-gated ion channel dysfunction precedes cardiomyopathy development in the dystrophic heart.

    Directory of Open Access Journals (Sweden)

    Xaver Koenig

    Full Text Available Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene, is associated with severe cardiac complications including cardiomyopathy and cardiac arrhythmias. Recent research suggests that impaired voltage-gated ion channels in dystrophic cardiomyocytes accompany cardiac pathology. It is, however, unknown if the ion channel defects are primary effects of dystrophic gene mutations, or secondary effects of the developing cardiac pathology.To address this question, we first investigated sodium channel impairments in cardiomyocytes derived from dystrophic neonatal mice prior to cardiomyopahty development, by using the whole cell patch clamp technique. Besides the most common model for DMD, the dystrophin-deficient mdx mouse, we also used mice additionally carrying an utrophin mutation. In neonatal cardiomyocytes, dystrophin-deficiency generated a 25% reduction in sodium current density. In addition, extra utrophin-deficiency significantly altered sodium channel gating parameters. Moreover, also calcium channel inactivation was considerably reduced in dystrophic neonatal cardiomyocytes, suggesting that ion channel abnormalities are universal primary effects of dystrophic gene mutations. To assess developmental changes, we also studied sodium channel impairments in cardiomyocytes derived from dystrophic adult mice, and compared them with the respective abnormalities in dystrophic neonatal cells. Here, we found a much stronger sodium current reduction in adult cardiomyocytes. The described sodium channel impairments slowed the upstroke of the action potential in adult cardiomyocytes, and only in dystrophic adult mice, the QRS interval of the electrocardiogram was prolonged.Ion channel impairments precede pathology development in the dystrophic heart, and may thus be considered potential cardiomyopathy triggers.

  19. Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel.

    Science.gov (United States)

    Boiteux, Céline; Vorobyov, Igor; Allen, Toby W

    2014-03-04

    Voltage-gated Na(+) channels play an essential role in electrical signaling in the nervous system and are key pharmacological targets for a range of disorders. The recent solution of X-ray structures for the bacterial channel NavAb has provided an opportunity to study functional mechanisms at the atomic level. This channel's selectivity filter exhibits an EEEE ring sequence, characteristic of mammalian Ca(2+), not Na(+), channels. This raises the fundamentally important question: just what makes a Na(+) channel conduct Na(+) ions? Here we explore ion permeation on multimicrosecond timescales using the purpose-built Anton supercomputer. We isolate the likely protonation states of the EEEE ring and observe a striking flexibility of the filter that demonstrates the necessity for extended simulations to study conduction in this channel. We construct free energy maps to reveal complex multi-ion conduction via knock-on and "pass-by" mechanisms, involving concerted ion and glutamate side chain movements. Simulations in mixed ionic solutions reveal relative energetics for Na(+), K(+), and Ca(2+) within the pore that are consistent with the modest selectivity seen experimentally. We have observed conformational changes in the pore domain leading to asymmetrical collapses of the activation gate, similar to proposed inactivated structures of NavAb, with helix bending involving conserved residues that are critical for slow inactivation. These structural changes are shown to regulate access to fenestrations suggested to be pathways for lipophilic drugs and provide deeper insight into the molecular mechanisms connecting drug activity and slow inactivation.

  20. Mechanism of Ion Permeation in Mammalian Voltage-Gated Sodium Channels.

    Directory of Open Access Journals (Sweden)

    Somayeh Mahdavi

    Full Text Available Recent determination of the crystal structures of bacterial voltage-gated sodium (NaV channels have raised hopes that modeling of the mammalian counterparts could soon be achieved. However, there are substantial differences between the pore domains of the bacterial and mammalian NaV channels, which necessitates careful validation of mammalian homology models constructed from the bacterial NaV structures. Such a validated homology model for the NaV1.4 channel was constructed recently using the extensive mutagenesis data available for binding of μ-conotoxins. Here we use this NaV1.4 model to study the ion permeation mechanism in mammalian NaV channels. Linking of the DEKA residues in the selectivity filter with residues in the neighboring domains is found to be important for keeping the permeation pathway open. Molecular dynamics simulations and potential of mean force calculations reveal that there is a binding site for a Na+ ion just inside the DEKA locus, and 1-2 Na+ ions can occupy the vestibule near the EEDD ring. These sites are separated by a low free energy barrier, suggesting that inward conduction occurs when a Na+ ion in the vestibule goes over the free energy barrier and pushes the Na+ ion in the filter to the intracellular cavity, consistent with the classical knock-on mechanism. The NaV1.4 model also provides a good description of the observed Na+/K+ selectivity.

  1. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels

    Science.gov (United States)

    Lau, Carus H. Y.; King, Glenn F.; Mobli, Mehdi

    2016-01-01

    Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating, and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels. PMID:27677715

  2. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels

    Science.gov (United States)

    Lau, Carus H. Y.; King, Glenn F.; Mobli, Mehdi

    2016-09-01

    Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating, and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.

  3. Atom-by-atom engineering of voltage-gated ion channels: Magnified insights into function and pharmacology

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Kim, Robin Y; Ahern, Christopher A

    2015-01-01

    Unnatural amino acid incorporation into ion channels has proven to be a valuable approach to interrogate detailed hypotheses arising from atomic resolution structures. In this short review, we provide a brief overview of some of the basic principles and methods for incorporation of unnatural amin...... acids into proteins. We also review insights into the function and pharmacology of voltage-gated ion channels that have emerged from unnatural amino acid mutagenesis approaches....

  4. Nonequilibrium response of a voltage gated sodium ion channel and biophysical characterization of dynamic hysteresis.

    Science.gov (United States)

    Pal, Krishnendu; Das, Biswajit; Gangopadhyay, Gautam

    2017-02-21

    Here we have studied the dynamic as well as the non-equilibrium thermodynamic response properties of voltage-gated Na-ion channel. Using sinusoidally oscillating external voltage protocol we have both kinetically and energetically studied the non-equilibrium steady state properties of dynamic hysteresis in details. We have introduced a method of estimating the work done associated with the dynamic memory due to a cycle of oscillating voltage. We have quantitatively characterised the loop area of ionic current which gives information about the work done to sustain the dynamic memory only for ion conduction, while the loop area of total entropy production rate gives the estimate of work done for overall gating dynamics. The maximum dynamic memory of Na-channel not only depends on the frequency and amplitude but it also depends sensitively on the mean of the oscillating voltage and here we have shown how the system optimize the dynamic memory itself in the biophysical range of field parameters. The relation between the average ionic current with increasing frequency corresponds to the nature of the average dissipative work done at steady state. It is also important to understand that the utilization of the energy from the external field can not be directly obtained only from the measurement of ionic current but also requires nonequilibrium thermodynamic study.

  5. Dynamic memory of a single voltage-gated potassium ion channel: A stochastic nonequilibrium thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Kinshuk, E-mail: kbpchem@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009 (India)

    2015-05-14

    In this work, we have studied the stochastic response of a single voltage-gated potassium ion channel to a periodic external voltage that keeps the system out-of-equilibrium. The system exhibits memory, resulting from time-dependent driving, that is reflected in terms of dynamic hysteresis in the current-voltage characteristics. The hysteresis loop area has a maximum at some intermediate voltage frequency and disappears in the limits of low and high frequencies. However, the (average) dissipation at long-time limit increases and finally goes to saturation with rising frequency. This raises the question: how diminishing hysteresis can be associated with growing dissipation? To answer this, we have studied the nonequilibrium thermodynamics of the system and analyzed different thermodynamic functions which also exhibit hysteresis. Interestingly, by applying a temporal symmetry analysis in the high-frequency limit, we have analytically shown that hysteresis in some of the periodic responses of the system does not vanish. On the contrary, the rates of free energy and internal energy change of the system as well as the rate of dissipative work done on the system show growing hysteresis with frequency. Hence, although the current-voltage hysteresis disappears in the high-frequency limit, the memory of the ion channel is manifested through its specific nonequilibrium thermodynamic responses.

  6. Voltage-Gated Channels as Causative Agents for Epilepsies

    Directory of Open Access Journals (Sweden)

    Mutasem Abuhamed

    2008-01-01

    Full Text Available Problem statement: Epilepsy is a common neurological disorder that afflicts 1-2% of the general population worldwide. It encompasses a variety of disorders with seizures. Approach: Idiopathic epilepsies were defined as a heterogeneous group of seizure disorders that show no underlying cause .Voltage-gated ion channels defect were recognized etiology of epilepsy in the central nervous system. The aim of this article was to provide an update on voltage-gated channels and their mutation as causative agents for epilepsies. We described the structures of the voltage-gated channels, discuss their current genetic studies, and then review the effects of voltage-gated channels as causative agents for epilepsies. Results: Channels control the flow of ions in and out of the cell causing depolarization and hyper polarization of the cell. Voltage-gated channels were classified into four types: Sodium, potassium calcium ands chloride. Voltage-gated channels were macromolecular protein complexes within the lipid membrane. They were divided into subunits. Each subunit had a specific function and was encoded by more than one gen. Conclusion: Current genetic studies of idiopathic epilepsies show the importance of genetic influence on Voltage-gated channels. Different genes may regulate a function in a channel; the channel defect was directly responsible for neuronal hyper excitability and seizures.

  7. Regulation of voltage-gated ion channels in excitable cells by the ubiquitin ligases Nedd4 and Nedd4-2.

    Science.gov (United States)

    Bongiorno, Daria; Schuetz, Friderike; Poronnik, Philip; Adams, David J

    2011-01-01

    The electrical excitability of neurons is mediated primarily by voltage-gated ion channels, particularly voltage-gated Na(+) (Na(v)), K(+) (K(v)) and Cl(-) (ClC) channels. Cells regulate their electrical excitability by controlling not only the activity, but also the number of individual ion channels in the plasma membrane. There exist several mechanisms for regulating levels of voltage-gated ion channels: transcription and translation, retention and export from the endoplasmic reticulum as well as insertion and retrieval from the plasma membrane. Alterations in voltage-gated ion channel activity, composition and distribution can contribute to the pathophysiology of epilepsy, hypertension, neuropathic and inflammatory pain. One mechanism for retrieval is ubiquitination. Here specific ubiquitin ligases bind to membrane proteins to modulate and regulate their cellular fate. In this review, we focus on Nedd4 and Nedd4-2 ubiquitin ligases and the mechanisms by which they regulate voltage-gated ion channels and describe a novel paradigm on the mechanisms that underpin aberrant ion channel function in neurological disorders.

  8. Voltage-Gated Channels as Causative Agents for Epilepsies

    OpenAIRE

    2008-01-01

    Problem statement: Epilepsy is a common neurological disorder that afflicts 1-2% of the general population worldwide. It encompasses a variety of disorders with seizures. Approach: Idiopathic epilepsies were defined as a heterogeneous group of seizure disorders that show no underlying cause .Voltage-gated ion channels defect were recognized etiology of epilepsy in the central nervous system. The aim of this article was to provide an update on voltage-gated ...

  9. Diverse and Dynamic Expression Patterns of Voltage-Gated Ion Channel Genes in Rat Cochlear Hair Cells

    Science.gov (United States)

    Beisel, K. W.; Fritzsch, B.

    2003-02-01

    Both qualitative and quantitative differences in ion-channel conductances are observed along the tonotopic axis of the mammalian cochlea. We have used a molecular approach to characterize these longitudinal expression patterns of voltage-gated ion-channel (VgCN) superfamily members in the peripheral auditory system. Initially RT-PCR and sequence analyses identified the VgCN α and accessory subunits of the cochlear hair cell (HC). Next, whole mount in situ hybridizations demonstrated at least seven common longitudinal expression patterns with the apex tip and basal hook region having the greatest in disparity. These data suggest potential topological variations in hair-cell electrophysiological signatures and these gradients may contribute to cochlear HC's ability to function as efficient frequency analyzers.

  10. Amitriptyline and carbamazepine utilize voltage-gated ion channel suppression to impair excitability of sensory dorsal horn neurons in thin tissue slice: An in vitro study.

    Science.gov (United States)

    Wolff, Matthias; Czorlich, Patrick; Nagaraj, Chandran; Schnöbel-Ehehalt, Rose; Li, Yingji; Kwapiszewska, Grazyna; Olschewski, Horst; Heschl, Stefan; Olschewski, Andrea

    2016-08-01

    Amitriptyline, carbamazepine and gabapentin are often used for the treatment of neuropathic pain. However, their analgesic action on central sensory neurons is still not fully understood. Moreover, the expression pattern of their target ion channels is poorly elucidated in the dorsal horn of the spinal cord. Thus, we performed patch-clamp investigations in visualized neurons of lamina I-III of the spinal cord. The expression of the different voltage-gated ion channels, as the targets of these drugs, was detected by RT-PCR and immunohistochemistry. Neurons of the lamina I-III express the TTX-sensitive voltage-gated Na(+) as well as voltage-gated K(+) subunits assembling the fast inactivating (A-type) currents and the delayed rectifier K(+) currents. Our pharmacological studies show that tonically-firing, adapting-firing and single spike neurons responded dose-dependently to amitriptyline and carbamazepine. The ion channel inhibition consecutively reduced the firing rate of tonically-firing and adapting-firing neurons. This study provides evidence for the distribution of voltage-gated Na(+) and K(+) subunits in lamina I-III of the spinal cord and for the action of drugs used for the treatment of neuropathic pain. Our work confirms that modulation of voltage-gated ion channels in the central nervous system contributes to the antinociceptive effects of these drugs.

  11. Voltage-Gated Calcium Channels in Nociception

    Science.gov (United States)

    Yasuda, Takahiro; Adams, David J.

    Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

  12. Voltage-Gated Ion Channels in Nociceptors: Modulation by the cGMP-PKG pathway

    Institute of Scientific and Technical Information of China (English)

    FuHui; L.Liu; T.Yang; S.A.Simon

    2004-01-01

    AIM: Nociceptors contain a variety of ion channels that are modulated by proinflammatory mediators that may arise from tissue or nerve injury. The changes in activity of these channels, which primarily occurs through changes in intracellular pathways, may lead to the pathological states of hyperalgesia and allodynia. METHODS &RESULTS: Whole-cell

  13. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum

    Science.gov (United States)

    Abd El Halim, Hesham M.; Alshukri, Baida M. H.; Ahmad, Munawar S.; Nakasu, Erich Y. T.; Awwad, Mohammed H.; Salama, Elham M.; Gatehouse, Angharad M. R.; Edwards, Martin G.

    2016-01-01

    The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30–60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control. PMID:27411529

  14. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    Energy Technology Data Exchange (ETDEWEB)

    Kariev, Alisher M.; Green, Michael E.

    2012-02-26

    Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned

  15. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    Directory of Open Access Journals (Sweden)

    Alisher M. Kariev

    2012-02-01

    Full Text Available Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13 crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current. Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the

  16. Membrane potential bistability in nonexcitable cells as described by inward and outward voltage-gated ion channels.

    Science.gov (United States)

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2014-10-30

    The membrane potential of nonexcitable cells, defined as the electrical potential difference between the cell cytoplasm and the extracellular environment when the current is zero, is controlled by the individual electrical conductance of different ion channels. In particular, inward- and outward-rectifying voltage-gated channels are crucial for cell hyperpolarization/depolarization processes, being amenable to direct physical study. High (in absolute value) negative membrane potentials are characteristic of terminally differentiated cells, while low membrane potentials are found in relatively depolarized, more plastic cells (e.g., stem, embryonic, and cancer cells). We study theoretically the hyperpolarized and depolarized values of the membrane potential, as well as the possibility to obtain a bistability behavior, using simplified models for the ion channels that regulate this potential. The bistability regions, which are defined in the multidimensional state space determining the cell state, can be relevant for the understanding of the different model cell states and the transitions between them, which are triggered by changes in the external environment.

  17. Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer.

    Science.gov (United States)

    Richardson, Jessica; Blunck, Rikard; Ge, Pinghua; Selvin, Paul R; Bezanilla, Francisco; Papazian, Diane M; Correa, Ana M

    2006-10-24

    Voltage-dependent ion channels are fundamental to the physiology of excitable cells because they underlie the generation and propagation of the action potential and excitation-contraction coupling. To understand how ion channels work, it is important to determine their structures in different conformations in a membrane environment. The validity of the crystal structure for the prokaryotic K(+) channel, K(V)AP, has been questioned based on discrepancies with biophysical data from functional eukaryotic channels, underlining the need for independent structural data under native conditions. We investigated the structural organization of two prokaryotic voltage-gated channels, NaChBac and K(V)AP, in liposomes by using luminescence resonance energy transfer. We describe here a transmembrane packing representation of the voltage sensor and pore domains of the prokaryotic Na channel, NaChBac. We find that NaChBac and K(V)AP share a common arrangement in which the structures of the Na and K selective pores and voltage-sensor domains are conserved. The packing arrangement of the voltage-sensing region as determined by luminescence resonance energy transfer differs significantly from that of the K(V)AP crystal structure, but resembles that of the eukaryotic K(V)1.2 crystal structure. However, the voltage-sensor domain in prokaryotic channels is closer to the pore domain than in the K(V)1.2 structure. Our results indicate that prokaryotic and eukaryotic channels that share similar functional properties have similar helix arrangements, with differences arising likely from the later introduction of additional structural elements.

  18. Neuronal trafficking of voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Jensen, Camilla S; Rasmussen, Hanne Borger; Misonou, Hiroaki

    2011-01-01

    The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials....... The physiological significance of proper Kv channel localization is emphasized by the fact that defects in the trafficking of Kv channels are observed in several neurological disorders including epilepsy. In this review, we will summarize the current understanding of the mechanisms of Kv channel trafficking...... is regulated by voltage-gated potassium (Kv) channels, such as Kv4.2, which are specifically localized in the dendritic membrane. The synaptic potentials eventually depolarize the membrane of the axon initial segment, thereby activating voltage-gated sodium channels to generate action potentials. Specific Kv...

  19. Dynamical characterization of inactivation path in voltage-gated Na(+) ion channel by non-equilibrium response spectroscopy.

    Science.gov (United States)

    Pal, Krishnendu; Gangopadhyay, Gautam

    2016-11-01

    Inactivation path of voltage gated sodium channel has been studied here under various voltage protocols as it is the main governing factor for the periodic occurrence and shape of the action potential. These voltage protocols actually serve as non-equilibrium response spectroscopic tools to study the ion channel in non-equilibrium environment. In contrast to a lot of effort in finding the crystal structure based molecular mechanism of closed-state(CSI) and open-state inactivation(OSI); here our approach is to understand the dynamical characterization of inactivation. The kinetic flux as well as energetic contribution of the closed and open- state inactivation path is compared here for voltage protocols, namely constant, pulsed and oscillating. The non-equilibrium thermodynamic quantities used in response to these voltage protocols serve as improved characterization tools for theoretical understanding which not only agrees with the previously known kinetic measurements but also predict the energetically optimum processes to sustain the auto-regulatory mechanism of action potential and the consequent inactivation steps needed. The time dependent voltage pattern governs the population of the conformational states which when couple with characteristic rate parameters, the CSI and OSI selectivity arise dynamically to control the inactivation path. Using constant, pulsed and continuous oscillating voltage protocols we have shown that during depolarization the OSI path is more favored path of inactivation however, in the hyper-polarized situation the CSI is favored. It is also shown that the re-factorisation of inactivated sodium channel to resting state occurs via CSI path. Here we have shown how the subtle energetic and entropic cost due to the change in the depolarization magnitude determines the optimum path of inactivation. It is shown that an efficient CSI and OSI dynamical profile in principle can characterize the open-state drug blocking phenomena.

  20. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  1. Multimeric nature of voltage-gated proton channels.

    Science.gov (United States)

    Koch, Hans P; Kurokawa, Tatsuki; Okochi, Yoshifumi; Sasaki, Mari; Okamura, Yasushi; Larsson, H Peter

    2008-07-01

    Voltage-gated potassium channels are comprised of four subunits, and each subunit has a pore domain and a voltage-sensing domain (VSD). The four pore domains assemble to form one single central pore, and the four individual VSDs control the gate of the pore. Recently, a family of voltage-gated proton channels, such as H(V) or voltage sensor only protein (VSOP), was discovered that contain a single VSD but no pore domain. It has been assumed that VSOP channels are monomeric and contain a single VSD that functions as both the VSD and the pore domain. It remains unclear, however, how a protein that contains only a VSD and no pore domain can conduct ions. Using fluorescence measurements and immunoprecipitation techniques, we show here that VSOP channels are expressed as multimeric channels. Further, FRET experiments on constructs with covalently linked subunits show that VSOP channels are dimers. Truncation of the cytoplasmic regions of VSOP reduced the dimerization, suggesting that the dimerization is caused mainly by cytoplasmic protein-protein interactions. However, these N terminus- and C terminus-deleted channels displayed large proton currents. Therefore, we conclude that even though VSOP channels are expressed mainly as dimers in the cell membrane, single VSOP subunits could function independently as proton channels.

  2. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  3. Mechanism of voltage-gated channel formation in lipid membranes.

    Science.gov (United States)

    Guidelli, Rolando; Becucci, Lucia

    2016-04-01

    Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters.

  4. Voltage-gated Calcium Channels and Autism Spectrum Disorders.

    Science.gov (United States)

    Breitenkamp, Alexandra F; Matthes, Jan; Herzig, Stefan

    2015-01-01

    Autism spectrum disorder is a complex-genetic disease and its etiology is unknown for the majority of cases. So far, more than one hundred different susceptibility genes were detected. Voltage-gated calcium channels are among the candidates linked to autism spectrum disorder by results of genetic studies. Mutations of nearly all pore-forming and some auxiliary subunits of voltage gated calcium channels have been revealed from investigations of autism spectrum disorder patients and populations. Though there are only few electrophysiological characterizations of voltage-gated calcium channel mutations found in autistic patients these studies suggest their functional relevance. In summary, both genetic and functional data suggest a potential role of voltage-gated calcium channels in autism spectrum disorder. Future studies require refinement of the clinical and systems biological concepts of autism spectrum disorder and an appropriate holistic approach at the molecular level, e.g. regarding all facets of calcium channel functions.

  5. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  6. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.

    Science.gov (United States)

    Fohlmeister, Jürgen F

    2015-06-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. Copyright © 2015 the American Physiological Society.

  7. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  8. Voltage-gated proton channel is expressed on phagosomes.

    Science.gov (United States)

    Okochi, Yoshifumi; Sasaki, Mari; Iwasaki, Hirohide; Okamura, Yasushi

    2009-05-01

    Voltage-gated proton channel has been suggested to help NADPH oxidase activity during respiratory burst of phagocytes through its activities of compensating charge imbalance and regulation of pH. In phagocytes, robust production of reactive oxygen species occurs in closed membrane compartments, which are called phagosomes. However, direct evidence for the presence of voltage-gated proton channels in phagosome has been lacking. In this study, the expression of voltage-gated proton channels was studied by Western blot with the antibody specific to the voltage-sensor domain protein, VSOP/Hv1, that has recently been identified as the molecular correlate for the voltage-gated proton channel. Phagosomal membranes of neutrophils contain VSOP/Hv1 in accordance with subunits of NADPH oxidases, gp91, p22, p47 and p67. Superoxide anion production upon PMA activation was significantly reduced in neutrophils from VSOP/Hv1 knockout mice. These are consistent with the idea that voltage-gated proton channels help NADPH oxidase in phagocytes to produce reactive oxygen species.

  9. Multimeric nature of voltage-gated proton channels

    OpenAIRE

    Koch, Hans P.; Kurokawa, Tatsuki; Okochi, Yoshifumi; Sasaki, Mari; Okamura, Yasushi; Larsson, H. Peter

    2008-01-01

    Voltage-gated potassium channels are comprised of four subunits, and each subunit has a pore domain and a voltage-sensing domain (VSD). The four pore domains assemble to form one single central pore, and the four individual VSDs control the gate of the pore. Recently, a family of voltage-gated proton channels, such as HV or voltage sensor only protein (VSOP), was discovered that contain a single VSD but no pore domain. It has been assumed that VSOP channels are monomeric and contain a single ...

  10. Dampening of hyperexcitability in CA1 pyramidal neurons by polyunsaturated fatty acids acting on voltage-gated ion channels.

    Directory of Open Access Journals (Sweden)

    Jenny Tigerholm

    Full Text Available A ketogenic diet is an alternative treatment of epilepsy in infants. The diet, rich in fat and low in carbohydrates, elevates the level of polyunsaturated fatty acids (PUFAs in plasma. These substances have therefore been suggested to contribute to the anticonvulsive effect of the diet. PUFAs modulate the properties of a range of ion channels, including K and Na channels, and it has been hypothesized that these changes may be part of a mechanistic explanation of the ketogenic diet. Using computational modelling, we here study how experimentally observed PUFA-induced changes of ion channel activity affect neuronal excitability in CA1, in particular responses to synaptic input of high synchronicity. The PUFA effects were studied in two pathological models of cellular hyperexcitability associated with epileptogenesis. We found that experimentally derived PUFA modulation of the A-type K (K(A channel, but not the delayed-rectifier K channel, restored healthy excitability by selectively reducing the response to inputs of high synchronicity. We also found that PUFA modulation of the transient Na channel was effective in this respect if the channel's steady-state inactivation was selectively affected. Furthermore, PUFA-induced hyperpolarization of the resting membrane potential was an effective approach to prevent hyperexcitability. When the combined effect of PUFA on the K(A channel, the Na channel, and the resting membrane potential, was simulated, a lower concentration of PUFA was needed to restore healthy excitability. We therefore propose that one explanation of the beneficial effect of PUFAs lies in its simultaneous action on a range of ion-channel targets. Furthermore, this work suggests that a pharmacological cocktail acting on the voltage dependence of the Na-channel inactivation, the voltage dependences of K(A channels, and the resting potential can be an effective treatment of epilepsy.

  11. Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Vien, T N; DeCaen, P G

    2016-01-01

    This chapter describes the adaptive features found in voltage-gated sodium channels (NaVs) of prokaryotes and eukaryotes. These two families are distinct, having diverged early in evolutionary history but maintain a surprising degree of convergence in function. While prokaryotic NaVs are required for growth and motility, eukaryotic NaVs selectively conduct fast electrical currents for short- and long-range signaling across cell membranes in mammalian organs. Current interest in prokaryotic NaVs is stoked by their resolved high-resolution structures and functional features which are reminiscent of eukaryotic NaVs. In this chapter, comparisons between eukaryotic and prokaryotic NaVs are made to highlight the shared and unique aspects of ion selectivity, voltage sensitivity, and pharmacology. Examples of prokaryotic and eukaryotic NaV convergent evolution will be discussed within the context of their structural features. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile☆

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769

  13. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile.

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.

    Science.gov (United States)

    Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung

    2017-03-01

    The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K(+) and Ca(2+) channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K(+) currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K(+) currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs(+) (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca(2+) channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

  15. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  16. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2013-01-01

    Voltage-gated potassium (Kv) channels enable potassium efflux and membrane repolarization in excitable tissues. Many Kv channels undergo a progressive loss of ion conductance in the presence of a prolonged voltage stimulus, termed slow inactivation, but the atomic determinants that regulate the k...

  17. Classification of voltage-gated K(+) ion channels from 3D pseudo-folding graph representation of protein sequences using genetic algorithm-optimized support vector machines.

    Science.gov (United States)

    Fernández, Michael; Fernández, Leyden; Abreu, Jose Ignacio; Garriga, Miguel

    2008-06-01

    Voltage-gated K(+) ion channels (VKCs) are membrane proteins that regulate the passage of potassium ions through membranes. This work reports a classification scheme of VKCs according to the signs of three electrophysiological variables: activation threshold voltage (V(t)), half-activation voltage (V(a50)) and half-inactivation voltage (V(h50)). A novel 3D pseudo-folding graph representation of protein sequences encoded the VKC sequences. Amino acid pseudo-folding 3D distances count (AAp3DC) descriptors, calculated from the Euclidean distances matrices (EDMs) were tested for building the classifiers. Genetic algorithm (GA)-optimized support vector machines (SVMs) with a radial basis function (RBF) kernel well discriminated between VKCs having negative and positive/zero V(t), V(a50) and V(h50) values with overall accuracies about 80, 90 and 86%, respectively, in crossvalidation test. We found contributions of the "pseudo-core" and "pseudo-surface" of the 3D pseudo-folded proteins to the discrimination between VKCs according to the three electrophysiological variables.

  18. Probing kinetic drug binding mechanism in voltage-gated sodium ion channel: open state versus inactive state blockers.

    Science.gov (United States)

    Pal, Krishnendu; Gangopadhyay, Gautam

    2015-01-01

    The kinetics and nonequilibrium thermodynamics of open state and inactive state drug binding mechanisms have been studied here using different voltage protocols in sodium ion channel. We have found that for constant voltage protocol, open state block is more efficient in blocking ionic current than inactive state block. Kinetic effect comes through peak current for mexiletine as an open state blocker and in the tail part for lidocaine as an inactive state blocker. Although the inactivation of sodium channel is a free energy driven process, however, the two different kinds of drug affect the inactivation process in a different way as seen from thermodynamic analysis. In presence of open state drug block, the process initially for a long time remains entropy driven and then becomes free energy driven. However in presence of inactive state block, the process remains entirely entropy driven until the equilibrium is attained. For oscillating voltage protocol, the inactive state blocking is more efficient in damping the oscillation of ionic current. From the pulse train analysis it is found that inactive state blocking is less effective in restoring normal repolarisation and blocks peak ionic current. Pulse train protocol also shows that all the inactive states behave differently as one inactive state responds instantly to the test pulse in an opposite manner from the other two states.

  19. Ciguatoxins: Cyclic Polyether Modulators of Voltage-gated Iion Channel Function

    Directory of Open Access Journals (Sweden)

    Richard J. Lewis

    2006-04-01

    Full Text Available Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

  20. Meet me on the other side: trans-bilayer modulation of a model voltage-gated ion channel activity by membrane electrostatics asymmetry.

    Directory of Open Access Journals (Sweden)

    Loredana Mereuta

    Full Text Available While it is accepted that biomembrane asymmetry is generated by proteins and phospholipids distribution, little is known about how electric changes manifested in a monolayer influence functional properties of proteins localized on the opposite leaflet. Herein we used single-molecule electrophysiology and investigated how asymmetric changes in the electrostatics of an artificial lipid membrane monolayer, generated oppositely from where alamethicin--a model voltage-gated ion channel--was added, altered peptide activity. We found that phlorizin, a membrane dipole potential lowering amphiphile, augmented alamethicin activity and transport features, whereas the opposite occurred with RH-421, which enhances the monolayer dipole potential. Further, the monolayer surface potential was decreased via adsorption of sodium dodecyl sulfate, and demonstrated that vectorial modification of it also affected the alamethicin activity in a predictive manner. A new paradigm is suggested according to which asymmetric changes in the monolayer dipole and surface potential extend their effects spatially by altering the intramembrane potential, whose gradient is sensed by distantly located peptides.

  1. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?

    Science.gov (United States)

    Tarek, Mounir; Delemotte, Lucie

    2013-12-17

    Ion channels conduct charged species through otherwise impermeable biological membranes. Their activity supports a number of physiological processes, and genetic mutations can disrupt their function dramatically. Among these channels, voltage gated cation channels (VGCCs) are ubiquitous transmembrane proteins involved in electrical signaling. In addition to their selectivity for ions, their function requires membrane-polarization-dependent gating. Triggered by changes in the transmembrane voltage, the activation and deactivation of VGCCs proceed through a sensing mechanism that prompts motion of conserved positively charged (basic) residues within the S4 helix of a four-helix bundle, the voltage sensor domain (VSD). Decades of experimental investigations, using electrophysiology, molecular biology, pharmacology, and spectroscopy, have revealed details about the function of VGCCs. However, in 2005, the resolution of the crystal structure of the activated state of one member of the mammalian voltage gated potassium (Kv) channels family (the Kv1.2) enabled researchers to make significant progress in understanding the structure-function relationship in these proteins on a molecular level. In this Account, we review the use of a complementary technique, molecular dynamics (MD) simulations, that has offered new insights on this timely issue. Starting from the "open-activated state" crystal structure, we have carried out large-scale all atom MD simulations of the Kv1.2 channel embedded in its lipidic environment and submitted to a hyperpolarizing (negative) transmembrane potential. We then used steered MD simulations to complete the full transition to the resting-closed state. Using these procedures, we have followed the operation of the VSDs and uncovered three intermediate states between their activated and deactivated conformations. Each conformational state is characterized by its network of salt bridges and by the occupation of the gating charge transfer center by a

  2. Role for voltage gated calcium channels in calcitonin gene-related peptide release in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, D V; Ploug, K B; Olesen, J

    2011-01-01

    Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons and are i...... releases CGRP, and the release is regulated by Ca2+ ions and voltage-gated calcium channels.......Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons...

  3. Excitability constraints on voltage-gated sodium channels.

    Directory of Open Access Journals (Sweden)

    Elaine Angelino

    2007-09-01

    Full Text Available We study how functional constraints bound and shape evolution through an analysis of mammalian voltage-gated sodium channels. The primary function of sodium channels is to allow the propagation of action potentials. Since Hodgkin and Huxley, mathematical models have suggested that sodium channel properties need to be tightly constrained for an action potential to propagate. There are nine mammalian genes encoding voltage-gated sodium channels, many of which are more than approximately 90% identical by sequence. This sequence similarity presumably corresponds to similarity of function, consistent with the idea that these properties must be tightly constrained. However, the multiplicity of genes encoding sodium channels raises the question: why are there so many? We demonstrate that the simplest theoretical constraints bounding sodium channel diversity--the requirements of membrane excitability and the uniqueness of the resting potential--act directly on constraining sodium channel properties. We compare the predicted constraints with functional data on mammalian sodium channel properties collected from the literature, including 172 different sets of measurements from 40 publications, wild-type and mutant, under a variety of conditions. The data from all channel types, including mutants, obeys the excitability constraint; on the other hand, channels expressed in muscle tend to obey the constraint of a unique resting potential, while channels expressed in neuronal tissue do not. The excitability properties alone distinguish the nine sodium channels into four different groups that are consistent with phylogenetic analysis. Our calculations suggest interpretations for the functional differences between these groups.

  4. Voltage-gated sodium channels: mutations, channelopathies and targets.

    Science.gov (United States)

    Andavan, G S B; Lemmens-Gruber, R

    2011-01-01

    Voltage-gated sodium channels produce fast depolarization, which is responsible for the rising phase of the action potential in neurons, muscles and heart. These channels are very large membrane proteins and are encoded by ten genes in mammals. Sodium channels are a crucial component of excitable tissues; hence, they are a target for various neurotoxins that are produced by plants and animals for defence and protection, such as tetrodotoxin, scorpion toxins and batrachotoxin. Several mutations in various sodium channel subtypes cause multiple inherited diseases known as channelopathies. When these mutated sodium channel subtypes are expressed in various tissues, channelopathies in brain, skeletal muscle and cardiac muscle develop as well as neuropathic pain. In this review, we discuss aspects of voltage-gated sodium channel genes with an emphasis on cardiac muscle sodium channels. In addition, we report novel mutations that underlie a spectrum of diseases, such as Brugada, long QT syndrome and inherited conduction disorders. Furthermore, this review explains commonalities and differences among the channel subtypes, the channelopathies caused by the sodium channel gene mutation and the specificity of toxins and blockers of the channel subtypes.

  5. Topical moringin cream relieves neuropathic pain by suppression of inflammatory pathway and voltage-gated ion channels in murine model of multiple sclerosis

    Science.gov (United States)

    Giacoppo, Sabrina; Iori, Renato; Bramanti, Placido

    2017-01-01

    Background Neuropathic pain represents the major public health burden with a strong impact on quality life in multiple sclerosis patients. Although some advances have been obtained in the last years, the conventional therapies remain poorly effective. Thus, the discovery of innovative approaches to improve the outcomes for multiple sclerosis patients is a goal of primary importance. With this aim, we investigated the efficacy of the 4-(α−L-rhamnopyranosyloxy)benzyl isothiocyanate (moringin), purified from Moringa oleifera seeds and ready-to-use as topical treatment in experimental autoimmune encephalomyelitis, murine model of multiple sclerosis. Female C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG35–55) were topically treated with 2% moringin cream twice daily from the onset of the symptoms until the sacrifice occurred about 21 days after experimental autoimmune encephalomyelitis induction. Results Our observations showed the efficacy of 2% moringin cream treatment in reducing clinical and histological disease score, as well as in alleviating neuropathic pain with consequent recovering of the hind limbs and response to mechanical stimuli. In particular, Western blot analysis and immunohistochemical evaluations revealed that 2% moringin cream was able to counteract the inflammatory cascade by reducing the production of pro-inflammatory cytokines (interleukin-17 and interferon-γ) and in parallel by increasing the expression of anti-inflammatory cytokine (interleukin-10). Interestingly, 2% moringin cream treatment was found to modulate the expression of voltage-gated ion channels (results focused on P2X7, Nav 1.7, Nav 1.8 KV4.2, and α2δ-1) as well as metabotropic glutamate receptors (mGluR5 and xCT) involved in neuropathic pain initiation and maintenance. Conclusions Finally, our evidences suggest 2% moringin cream as a new pharmacological trend in the management of multiple sclerosis-induced neuropathic pain. PMID:28741431

  6. The modulatory effect of zinc ions on voltage-gated potassium currents in cultured rat hippocampal neurons is not related to Kv1.3 channels.

    Science.gov (United States)

    Teisseyre, A; Mercik, K; Mozrzymas, J W

    2007-12-01

    We applied the whole-cell patch-clamp technique to study the influence of zinc ions (Zn(2+)) and extracellular protons at acidic pH (pH(o)) on voltage-gated potassium currents in cultured rat hippocampal neurons. The first goal of the study was to estimate whether Kv1.3 currents significantly contributed to voltage-gated potassium currents in examined cells. Then, the influence of both ions on the activity of other voltage-gated potassium currents in the neurons was examined. We examined both the total current and the delayed - rectifier component. Results obtained in both cases were not significantly different from each other. Available data argued against any significant contribution of Kv1.3 currents to the recorded currents. Nevertheless, application of Zn(2+) in the concentration range from 100 microM to 5 mM reversibly modulated the recorded currents. The activation midpoint was shifted by about 40 mV (total current) and 30 mV (delayed-rectifier current) towards positive membrane potentials and the activation kinetics were slowed significantly (2 - 3 fold) upon application of Zn(2+). The inactivation midpoint was also shifted towards positive membrane potentials, but less significantly (about 14 mV). The current amplitudes were reduced in a concentration-dependent manner to about 0.5 of the control value. The effects of Zn(2+) were saturated at the concentration of 1 mM. Raising extracellular proton concentration by lowering the pH(o) from 7.35 to 6.4 did not affect significantly the currents. Possible mechanisms underlying the observed phenomena and their possible physiological significance are discussed.

  7. Energetic role of the paddle motif in voltage gating of Shaker K(+) channels.

    Science.gov (United States)

    Xu, Yanping; Ramu, Yajamana; Shin, Hyeon-Gyu; Yamakaze, Jayden; Lu, Zhe

    2013-05-01

    Voltage-gated ion channels underlie rapid electric signaling in excitable cells. Electrophysiological studies have established that the N-terminal half of the fourth transmembrane segment ((NT)S4) of these channels is the primary voltage sensor, whereas crystallographic studies have shown that (NT)S4 is not located within a proteinaceous pore. Rather, (NT)S4 and the C-terminal half of S3 ((CT)S3 or S3b) form a helix-turn-helix motif, termed the voltage-sensor paddle. This unexpected structural finding raises two fundamental questions: does the paddle motif also exist in voltage-gated channels in a biological membrane, and, if so, what is its function in voltage gating? Here, we provide evidence that the paddle motif exists in the open state of Drosophila Shaker voltage-gated K(+) channels expressed in Xenopus oocytes and that (CT)S3 acts as an extracellular hydrophobic 'stabilizer' for (NT)S4, thus biasing the gating chemical equilibrium toward the open state.

  8. SGK3 Sensitivity of Voltage Gated K+ Channel Kv1.5 (KCNA5

    Directory of Open Access Journals (Sweden)

    Musaab Ahmed

    2016-01-01

    Full Text Available Background: The serum & glucocorticoid inducible kinase isoform SGK3 is a powerful regulator of several transporters, ion channels and the Na+/K+ ATPase. Targets of SGK3 include the ubiquitin ligase Nedd4-2, which is in turn a known regulator of the voltage gated K+ channel Kv1.5 (KCNA5. The present study thus explored whether SGK3 modifies the activity of the voltage gated K+ channel KCNA5, which participates in the regulation of diverse functions including atrial cardiac action potential, activity of vascular smooth muscle cells, insulin release and tumour cell proliferation. Methods: cRNA encoding KCNA5 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild-type SGK3, constitutively active S419DSGK3, inactive K191NSGK3 and/or wild type Nedd4-2. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp. Results: Voltage gated current in KCNA5 expressing Xenopus oocytes was significantly enhanced by wild-type SGK3 and S419DSGK3, but not by K191NSGK3. SGK3 was effective in the presence of ouabain (1 mM and thus did not require Na+/K+ ATPase activity. Coexpression of Nedd4-2 decreased the voltage gated current in KCNA5 expressing Xenopus oocytes, an effect largely reversed by additional coexpression of SGK3. Conclusion: SGK3 is a positive regulator of KCNA5, which is at least partially effective by abrogating the effect of Nedd4-2.

  9. Ionic selectivity and thermal adaptations within the voltage-gated sodium channel family of alkaliphilic Bacillus.

    Science.gov (United States)

    DeCaen, Paul G; Takahashi, Yuka; Krulwich, Terry A; Ito, Masahiro; Clapham, David E

    2014-11-11

    Entry and extrusion of cations are essential processes in living cells. In alkaliphilic prokaryotes, high external pH activates voltage-gated sodium channels (Nav), which allows Na(+) to enter and be used as substrate for cation/proton antiporters responsible for cytoplasmic pH homeostasis. Here, we describe a new member of the prokaryotic voltage-gated Na(+) channel family (NsvBa; Non-selective voltage-gated, Bacillus alcalophilus) that is nonselective among Na(+), Ca(2+) and K(+) ions. Mutations in NsvBa can convert the nonselective filter into one that discriminates for Na(+) or divalent cations. Gain-of-function experiments demonstrate the portability of ion selectivity with filter mutations to other Bacillus Nav channels. Increasing pH and temperature shifts their activation threshold towards their native resting membrane potential. Furthermore, we find drugs that target Bacillus Nav channels also block the growth of the bacteria. This work identifies some of the adaptations to achieve ion discrimination and gating in Bacillus Nav channels.

  10. TAURINE REGULATION OF VOLTAGE-GATED CHANNELS IN RETINAL NEURONS

    Science.gov (United States)

    Rowan, Matthew JM; Bulley, Simon; Purpura, Lauren; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine activates not only Cl−-permeable ionotropic receptors, but also receptors that mediate metabotropic responses. The metabotropic property of taurine was revealed in electrophysiological recordings obtained after fully blocking Cl−-permeable receptors with an inhibitory “cocktail” consisting of picrotoxin, SR95531, and strychnine. We found that taurine’s metabotropic effects regulate voltage-gated channels in retinal neurons. After applying the inhibitory cocktail, taurine enhanced delayed outward rectifier K+ channels preferentially in Off-bipolar cells, and the effect was completely blocked by the specific PKC inhibitor, GF109203X. Additionally, taurine also acted through a metabotropic pathway to suppress both L- and N-type Ca2+ channels in retinal neurons, which were insensitive to the potent GABAB receptor inhibitor, CGP55845. This study reinforces our previous finding that taurine in physiological concentrations produces a multiplicity of metabotropic effects that precisely govern the integration of signals being transmitted from the retina to the brain. PMID:23392926

  11. Regulation of cough and action potentials by voltage-gated Na channels.

    Science.gov (United States)

    Carr, Michael J

    2013-10-01

    The classical role ascribed to voltage-gated Na channels is the conduction of action potentials. Some excitable tissues such as cardiac muscle and skeletal muscle predominantly express a single voltage-gated Na channels isoform. Of the nine voltage-gated Na channels, seven are expressed in neurons, of these Nav 1.7, 1.8 and 1.9 are expressed in sensory neurons including vagal sensory neurons that innervate the airways and initiate cough. Nav 1.7 and Nav 1.9 are of particular interest as they represent two extremes in the functional diversity of voltage-gated Na channels. Voltage-gated Na channel isoforms expressed in airway sensory neurons produce multiple distinct Na currents that underlie distinct aspects of sensory neuron function. The interaction between voltage-gated Na currents underlies the characteristic ability of airway sensory nerves to encode encounters with irritant stimuli into action potential discharge and evoke the cough reflex.

  12. The Venom of the Spider Selenocosmia Jiafu Contains Various Neurotoxins Acting on Voltage-Gated Ion Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Zhaotun Hu

    2014-03-01

    Full Text Available Selenocosmia jiafu is a medium-sized theraphosid spider and an attractive source of venom, because it can be bred in captivity and it produces large amounts of venom. We performed reversed-phase high-performance liquid chromatography (RP-HPLC and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS analyses and showed that S. jiafu venom contains hundreds of peptides with a predominant mass of 3000–4500 Da. Patch clamp analyses indicated that the venom could inhibit voltage-gated Na+, K+ and Ca2+ channels in rat dorsal root ganglion (DRG neurons. The venom exhibited inhibitory effects on tetrodotoxin-resistant (TTX-R Na+ currents and T-type Ca2+ currents, suggesting the presence of antagonists to both channel types and providing a valuable tool for the investigation of these channels and for drug development. Intra-abdominal injection of the venom had severe toxic effects on cockroaches and caused death at higher concentrations. The LD50 was 84.24 μg/g of body weight in the cockroach. However, no visible symptoms or behavioral changes were detected after intraperitoneal injection of the venom into mice even at doses up to 10 mg/kg body weight. Our results provide a basis for further case-by-case investigations of peptide toxins from this venom.

  13. The venom of the spider Selenocosmia jiafu contains various neurotoxins acting on voltage-gated ion channels in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Hu, Zhaotun; Zhou, Xi; Chen, Jia; Tang, Cheng; Xiao, Zhen; Ying, Dazhong; Liu, Zhonghua; Liang, Songping

    2014-03-05

    Selenocosmia jiafu is a medium-sized theraphosid spider and an attractive source of venom, because it can be bred in captivity and it produces large amounts of venom. We performed reversed-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analyses and showed that S. jiafu venom contains hundreds of peptides with a predominant mass of 3000-4500 Da. Patch clamp analyses indicated that the venom could inhibit voltage-gated Na+, K+ and Ca2+ channels in rat dorsal root ganglion (DRG) neurons. The venom exhibited inhibitory effects on tetrodotoxin-resistant (TTX-R) Na+ currents and T-type Ca2+ currents, suggesting the presence of antagonists to both channel types and providing a valuable tool for the investigation of these channels and for drug development. Intra-abdominal injection of the venom had severe toxic effects on cockroaches and caused death at higher concentrations. The LD50 was 84.24 μg/g of body weight in the cockroach. However, no visible symptoms or behavioral changes were detected after intraperitoneal injection of the venom into mice even at doses up to 10 mg/kg body weight. Our results provide a basis for further case-by-case investigations of peptide toxins from this venom.

  14. Sleep disturbances in voltage-gated potassium channel antibody syndrome.

    Science.gov (United States)

    Barone, Daniel A; Krieger, Ana C

    2016-05-01

    Voltage-gated potassium channels (VGKCs) are a family of membrane proteins responsible for controlling cell membrane potential. The presence of antibodies (Ab) against neuronal VGKC complexes aids in the diagnosis of idiopathic and paraneoplastic autoimmune neurologic disorders. The diagnosis of VGKC Ab-associated encephalopathy (VCKC Ab syndrome) should be suspected in patients with subacute onset of disorientation, confusion, and memory loss in the presence of seizures or a movement disorder. VGKC Ab syndrome may present with sleep-related symptoms, and the purpose of this communication is to alert sleep and neurology clinicians of this still-under-recognized condition. In this case, we are presenting the VGKC Ab syndrome which improved after treatment with solumedrol. The prompt recognition and treatment of this condition may prevent the morbidity associated with cerebral atrophy and the mortality associated with intractable seizures and electrolyte disturbances.

  15. Marine Toxins That Target Voltage-gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Robert J. French

    2006-04-01

    Full Text Available Abstract: Eukaryotic, voltage-gated sodium (NaV channels are large membrane proteins which underlie generation and propagation of rapid electrical signals in nerve, muscle and heart. Nine different NaV receptor sites, for natural ligands and/or drugs, have been identified, based on functional analyses and site-directed mutagenesis. In the marine ecosystem, numerous toxins have evolved to disrupt NaV channel function, either by inhibition of current flow through the channels, or by modifying the activation and inactivation gating processes by which the channels open and close. These toxins function in their native environment as offensive or defensive weapons in prey capture or deterrence of predators. In composition, they range from organic molecules of varying size and complexity to peptides consisting of ~10-70 amino acids. We review the variety of known NaV-targeted marine toxins, outlining, where known, their sites of interaction with the channel protein and their functional effects. In a number of cases, these natural ligands have the potential applications as drugs in clinical settings, or as models for drug development.

  16. Transcriptional regulation of voltage-gated Ca(2+) channels.

    Science.gov (United States)

    González-Ramírez, Ricardo; Felix, Ricardo

    2017-03-31

    The transcriptional regulation of voltage-gated Ca(2+) (CaV ) channels is an emerging research area that promises to improve our understanding of how many relevant physiological events are shaped in the central nervous system, the skeletal muscle, and other tissues. Interestingly, a picture of how transcription of CaV channel subunit genes is controlled is evolving with the identification of the promoter regions required for tissue-specific expression, and the identification of transcription factors that control their expression. These promoters share several characteristics that include multiple transcriptional start sites, lack of a TATA box, and the presence of elements conferring tissue-selective expression. Likewise, changes in CaV channel expression occur throughout development, following ischemia, seizures, or chronic drug administration. This review focuses on insights achieved regarding the control of CaV channel gene expression. To further understand the complexities of expression and to increase the possibilities of detecting CaV channel alterations causing human disease, a deeper knowledge on the structure of the 5' upstream regions of the genes encoding these remarkable proteins will be necessary. This article is protected by copyright. All rights reserved.

  17. A recombinant fusion protein containing a spider toxin specific for the insect voltage-gated sodium ion channel shows oral toxicity towards insects of different orders.

    Science.gov (United States)

    Yang, Sheng; Pyati, Prashant; Fitches, Elaine; Gatehouse, John A

    2014-04-01

    Recombinant fusion protein technology allows specific insecticidal protein and peptide toxins to display activity in orally-delivered biopesticides. The spider venom peptide δ-amaurobitoxin-PI1a, which targets insect voltage-gated sodium channels, was fused to the "carrier" snowdrop lectin (GNA) to confer oral toxicity. The toxin itself (PI1a) and an amaurobitoxin/GNA fusion protein (PI1a/GNA) were produced using the yeast Pichia pastoris as expression host. Although both proteins caused mortality when injected into cabbage moth (Mamestra brassicae) larvae, the PI1a/GNA fusion was approximately 6 times as effective as recombinant PI1a on a molar basis. PI1a alone was not orally active against cabbage moth larvae, but a single 30 μg dose of the PI1a/GNA fusion protein caused 100% larval mortality within 6 days when fed to 3rd instar larvae, and caused significant reductions in survival, growth and feeding in 4th - 6th instar larvae. Transport of fusion protein from gut contents to the haemolymph of cabbage moth larvae, and binding to the nerve chord, was shown by Western blotting. The PI1a/GNA fusion protein also caused mortality when delivered orally to dipteran (Musca domestica; housefly) and hemipteran (Acyrthosiphon pisum; pea aphid) insects, making it a promising candidate for development as a biopesticide.

  18. Voltage-gated K+ channels contain multiple intersubunit association sites.

    Science.gov (United States)

    Tu, L; Santarelli, V; Sheng, Z; Skach, W; Pain, D; Deutsch, C

    1996-08-02

    A domain in the cytoplasmic NH2 terminus of voltage-gated K+ channels supervises the proper assembly of specific tetrameric channels (Li, M., Jan, J. M., and Jan, L. Y.(1992) Science 257, 1225-1230; Shen, N. V., Chen X., Boyer, M. M., and Pfaffinger, P. (1993) Neuron 11, 67-76). It is referred to as a first tetramerization domain, or T1 (Shen, N. V., Chen X., Boyer, M. M., and Pfaffinger, P.(1993) Neuron 11, 67-76). However, a deletion mutant of Kv1.3 that lacks the first 141 amino acids, Kv1.3 (T1(-)) forms functional channels, suggesting that additional association sites in the central core of Kv1.3 mediate oligomerization. To characterize these sites, we have tested the abilities of cRNA Kv1.3 (T1(-)) fragments co-injected with Kv1.3 (T1(-)) to suppress current in Xenopus oocytes. The fragments include portions of the six putative transmembrane segments, S1 through S6, specifically: S1, S1-S2, S1-S2-S3, S2-S3, S2-S3-S4, S3-S4, S3-S4-S5, S2 through COOH, S3 through COOH, S4 through COOH, and S5-S6-COOH. Electrophysiologic experiments show that the fragments S1-S2-S3, S3-S4-S5, S2 through COOH, and S3 through COOH strongly suppress Kv1.3 (T1(-)) current, while others do not. Suppression of expressed current is due to specific effects of the translated peptide Kv1.3 fragments, as validated by in vivo immunoprecipitation studies of a strong suppressor and a nonsuppressor. Pulse-chase experiments indicate that translation of truncated peptide fragments neither prevents translation of Kv1.3 (T1(-)) nor increases its rate of degradation. Co-immunoprecipitation experiments suggest that suppression involves direct association of a peptide fragment with Kv1.3 (T1(-)). Fragments that strongly suppress Kv1.3 (T1(-)) also suppress an analogous NH2-terminal deletion mutant of Kv2.1 (Kv2.1 (DeltaN139)), an isoform belonging to a different subfamily. Our results indicate that sites in the central core of Kv1.3 facilitate intersubunit association and that there are suppression

  19. Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies

    Directory of Open Access Journals (Sweden)

    Eleonora eSavio Galimberti

    2012-07-01

    Full Text Available Voltage-gated sodium channels (VGSC are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa and can also function as cell-adhesion molecules (CAMs. In-vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named channel partners or channel interacting proteins (ChiPs like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin, and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics. Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium channelopathies. This review will outline the structure, function and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field

  20. Voltage-Gated Sodium Channels: Biophysics, Pharmacology, and Related Channelopathies

    Science.gov (United States)

    Savio-Galimberti, Eleonora; Gollob, Michael H.; Darbar, Dawood

    2012-01-01

    Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa) and can also function as cell adhesion molecules. In vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named “channel partners” or “channel interacting proteins” (ChiPs) like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII) can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin), and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics). Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium “channelopathies”.  This review will outline the structure, function, and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field. PMID:22798951

  1. Functionality of the voltage-gated proton channel truncated in S4.

    Science.gov (United States)

    Sakata, Souhei; Kurokawa, Tatsuki; Nørholm, Morten H H; Takagi, Masahiro; Okochi, Yoshifumi; von Heijne, Gunnar; Okamura, Yasushi

    2010-02-02

    The voltage sensor domain (VSD) is the key module for voltage sensing in voltage-gated ion channels and voltage-sensing phosphatases. Structurally, both the VSD and the recently discovered voltage-gated proton channels (Hv channels) voltage sensor only protein (VSOP) and Hv1 contain four transmembrane segments. The fourth transmembrane segment (S4) of Hv channels contains three periodically aligned arginines (R1, R2, R3). It remains unknown where protons permeate or how voltage sensing is coupled to ion permeation in Hv channels. Here we report that Hv channels truncated just downstream of R2 in the S4 segment retain most channel properties. Two assays, site-directed cysteine-scanning using accessibility of maleimide-reagent as detected by Western blotting and insertion into dog pancreas microsomes, both showed that S4 inserts into the membrane, even if it is truncated between the R2 and R3 positions. These findings provide important clues to the molecular mechanism underlying voltage sensing and proton permeation in Hv channels.

  2. Emerging roles of L-type voltage gated and other calcium channels in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Abdallah eBadou

    2013-08-01

    Full Text Available In T lymphocytes, calcium ion controls a variety of biological processes including development, survival, proliferation, and effector functions. These distinct and specific roles are regulated by different calcium signals, which are generated by various plasma membrane calcium channels. The repertoire of calcium-conducting proteins in T lymphocytes includes store-operated CRAC channels, transient receptor potential (TRP channels, P2X channels, and L-type voltage-gated calcium (Cav1 channels. In this paper, we will focus mainly on the role of the Cav1 channels found expressed by T lymphocytes, where these channels appear to operate in a TCR stimulation-dependent and voltage-sensor independent manner. We will review their expression profile at various differentiation stages of CD4 and CD8 T lymphocytes. Then, we will present crucial genetic evidence in favor of a role of these Cav1 channels and related regulatory proteins in both CD4 and CD8 T cell functions such as proliferation, survival, cytokine production and cytolysis. Finally, we will provide evidence and speculate on how these voltage-gated channels might function in the T lymphocyte, a non-excitable cell.

  3. Analysis of the selectivity filter of the voltage-gated sodium channel NavRh

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Mengdie Xia; Yang Li; Huihui Liu; Xin Jiang; Wenlin Ren; Jianping Wu

    2013-01-01

    NaChBac is a bacterial voltage-gated sodium (Nav) channel that shows sequence similarity to voltage-gated calcium channels.To understand the ion-permeation mechanism of Nav channels,we combined molecular dynamics simulation,structural biology and electrophysiological approaches to investigate the recently determined structure of NavRh,a marine bacterial NaChBac ortholog.Two Na+ binding sites are identified in the selectivity filter (SF) in our simulations:The extracellular Na+ ion first approaches site 1 constituted by the side groups of Ser181 and Glu183,and then spontaneously arrives at the energetically more favorable site 2 formed by the carbonyi oxygens of Leu179 and Thr178.In contrast,Ca2+ ions are prone to being trapped by Glu183 at site 1,which then blocks the entrance of both Na+ and Ca2+ to the vestibule of the SF.In addition,Na+ permeates through the selective filter in an asymmetrical manner,a feature that resembles that of the mammalian Nav orthologs.The study reported here provides insights into the mechanism of ion selectivity on Na+ over Ca2+ in mammalian Nav channels.

  4. Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Bruce Lyeth

    2013-06-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i. These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.

  5. Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels.

    Science.gov (United States)

    Ben-Johny, Manu; Dick, Ivy E; Sang, Lingjie; Limpitikul, Worawan B; Kang, Po Wei; Niu, Jacqueline; Banerjee, Rahul; Yang, Wanjun; Babich, Jennifer S; Issa, John B; Lee, Shin Rong; Namkung, Ho; Li, Jiangyu; Zhang, Manning; Yang, Philemon S; Bazzazi, Hojjat; Adams, Paul J; Joshi-Mukherjee, Rosy; Yue, Daniel N; Yue, David T

    2015-01-01

    Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.

  6. Neurotoxins and their binding areas on voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Marijke eStevens

    2011-11-01

    Full Text Available Voltage-gated Sodium Channels (VGSCs are large transmembrane proteins that conduct sodium ions across the membrane and by doing so they generate signals of communication between many kinds of tissues. They are responsible for the generation and propagation of action potentials in excitable cells, in close collaboration with other channels like potassium channels. Genetic defects in sodium channel genes therefore can cause a wide variety of diseases, generally called ‘channelopathies’.The first insights into the mechanism of action potentials and the involvement of sodium channels originated from Hodgkin and Huxley for which they were awarded the Nobel Prize in 1963. Until now, these concepts still form the basis for understanding the functioning of VGSCs. When VGSCs sense a sufficient change in membrane potential, they are activated and will generate a massive influx of sodium ions. Immediately after, channels will start inactivating and currents decrease. In the inactivated state channels stay refractory for any new stimulus and they must return to the closed state before being susceptible to any new depolarization. On the other hand, studies with neurotoxins like tetrodotoxin (TTX and saxitoxin (STX also contributed largely to our today’s understanding of the structure and function of ion channels and specifically of VGSCs. Moreover, neurotoxins acting on ion channels turned out to be valuable tools in the development of new drugs for the enormous range of diseases in which ion channels are involved. A recent example of a synthetic neurotoxin that made it to the market is ziconotide (Prialt®, Elan. The original peptide, -MVIIA, is derived from the cone snail Conus magus and now FDA/EMEA-approved for the management of severe chronic pain by blocking the N-type voltage-gated calcium channels in neurons.This review focuses on the current status of research on neurotoxins acting on VGSC, their contribution to further unravel the

  7. Voltage-gated proton (H(v)1) channels, a singular voltage sensing domain.

    Science.gov (United States)

    Castillo, Karen; Pupo, Amaury; Baez-Nieto, David; Contreras, Gustavo F; Morera, Francisco J; Neely, Alan; Latorre, Ramon; Gonzalez, Carlos

    2015-11-14

    The main role of voltage-gated proton channels (Hv1) is to extrude protons from the intracellular milieu when, mediated by different cellular processes, the H(+) concentration increases. Hv1 are exquisitely selective for protons and their structure is homologous to the voltage sensing domain (VSD) of other voltage-gated ion channels like sodium, potassium, and calcium channels. In clear contrast to the classical voltage-dependent channels, Hv1 lacks a pore domain and thus permeation necessarily occurs through the voltage sensing domain. Hv1 channels are activated by depolarizing voltages, and increases in internal proton concentration. It has been proposed that local conformational changes of the transmembrane segment S4, driven by depolarization, trigger the molecular rearrangements that open Hv1. However, it is still unclear how the electromechanical coupling is achieved between the VSD and the potential pore, allowing the proton flux from the intracellular to the extracellular side. Here we provide a revised view of voltage activation in Hv1 channels, offering a comparative scenario with other voltage sensing channels domains.

  8. Immunohistochemical localisation of the voltage gated potassium ion channel subunit Kv3.3 in the rat medulla oblongata and thoracic spinal cord.

    Science.gov (United States)

    Brooke, Ruth E; Atkinson, Lucy; Edwards, Ian; Parson, Simon H; Deuchars, Jim

    2006-01-27

    Voltage gated K+ channels (Kv) are a diverse group of channels important in determining neuronal excitability. The Kv superfamily is divided into 12 subfamilies (Kv1-12) and members of the Kv3 subfamily are highly abundant in the CNS, with each Kv3 gene (Kv3.1-Kv3.4) exhibiting a unique expression pattern. Since the localisation of Kv subunits is important in defining the roles they play in neuronal function, we have used immunohistochemistry to determine the distribution of the Kv3.3 subunit in the medulla oblongata and spinal cord of rats. Kv3.3 subunit immunoreactivity (Kv3.3-IR) was widespread but present only in specific cell populations where it could be detected in somata, dendrites and synaptic terminals. Labelled neurones were observed in the spinal cord in laminae IV and V, in the region of the central canal and in the ventral horn. In the medulla oblongata, labelled cell bodies were numerous in the spinal trigeminal, cuneate and gracilis nuclei whilst rarer in the lateral reticular nucleus, hypoglossal nucleus and raphe nucleus. Regions containing autonomic efferent neurones were predominantly devoid of labelling with only occasional labelled neurones being observed. Dual immunohistochemistry revealed that some Kv3.3-IR neurones in the ventral medullary reticular nucleus, spinal trigeminal nucleus, dorsal horn, ventral horn and central canal region were also immunoreactive for the Kv3.1b subunit. The presence of Kv3.3 subunits in terminals was confirmed by co-localisation of Kv3.3-IR with the synaptic vesicle protein SV2, the vesicular glutamate transporter VGluT2 and the glycine transporter GlyT2. Co-localisation of Kv3.3-IR was not observed with VGluT1, tyrosine hydroxylase, serotonin or choline acetyl transferase. Electron microscopy confirmed the presence of Kv3.3-IR in terminals and somatic membranes in ventral horn neurones, but not motoneurones. This study provides evidence supporting a role for Kv3.3 subunits in regulating neuronal excitability

  9. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family

    Science.gov (United States)

    2013-01-01

    Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829

  10. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores.

    Directory of Open Access Journals (Sweden)

    Alison R Taylor

    2011-06-01

    Full Text Available Marine coccolithophorid phytoplankton are major producers of biogenic calcite, playing a significant role in the global carbon cycle. Predicting the impacts of ocean acidification on coccolithophore calcification has received much recent attention and requires improved knowledge of cellular calcification mechanisms. Uniquely amongst calcifying organisms, coccolithophores produce calcified scales (coccoliths in an intracellular compartment and secrete them to the cell surface, requiring large transcellular ionic fluxes to support calcification. In particular, intracellular calcite precipitation using HCO₃⁻ as the substrate generates equimolar quantities of H+ that must be rapidly removed to prevent cytoplasmic acidification. We have used electrophysiological approaches to identify a plasma membrane voltage-gated H+ conductance in Coccolithus pelagicus ssp braarudii with remarkably similar biophysical and functional properties to those found in metazoans. We show that both C. pelagicus and Emiliania huxleyi possess homologues of metazoan H(v1 H+ channels, which function as voltage-gated H+ channels when expressed in heterologous systems. Homologues of the coccolithophore H+ channels were also identified in a diversity of eukaryotes, suggesting a wide range of cellular roles for the H(v1 class of proteins. Using single cell imaging, we demonstrate that the coccolithophore H+ conductance mediates rapid H+ efflux and plays an important role in pH homeostasis in calcifying cells. The results demonstrate a novel cellular role for voltage gated H+ channels and provide mechanistic insight into biomineralisation by establishing a direct link between pH homeostasis and calcification. As the coccolithophore H+ conductance is dependent on the trans-membrane H+ electrochemical gradient, this mechanism will be directly impacted by, and may underlie adaptation to, ocean acidification. The presence of this H+ efflux pathway suggests that there is no obligate

  11. Developmental expression of Kv1 voltage-gated potassium channels in the avian hypothalamus.

    Science.gov (United States)

    Doczi, Megan A; Vitzthum, Carl M; Forehand, Cynthia J

    2016-03-11

    Specialized hypothalamic neurons integrate the homeostatic balance between food intake and energy expenditure, processes that may become dysregulated during the development of diabetes, obesity, and other metabolic disorders. Shaker family voltage-gated potassium channels (Kv1) contribute to the maintenance of resting membrane potential, action potential characteristics, and neurotransmitter release in many populations of neurons, although hypothalamic Kv1 channel expression has been largely unexplored. Whole-cell patch clamp recordings from avian hypothalamic brain slices demonstrate a developmental shift in the electrophysiological properties of avian arcuate nucleus neurons, identifying an increase in outward ionic current that corresponds with action potential maturation. Additionally, RT-PCR experiments identified the early expression of Kv1.2, Kv1.3, and Kv1.5 mRNA in the embryonic avian hypothalamus, suggesting that these channels may underlie the electrophysiological changes observed in these neurons. Real-time quantitative PCR analysis on intact microdissections of embryonic hypothalamic tissue revealed a concomitant increase in Kv1.2 and Kv1.5 gene expression at key electrophysiological time points during development. This study is the first to demonstrate hypothalamic mRNA expression of Kv1 channels in developing avian embryos and may suggest a role for voltage-gated ion channel regulation in the physiological patterning of embryonic hypothalamic circuits governing energy homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Designing a C84 fullerene as a specific voltage-gated sodium channel blocker

    Science.gov (United States)

    Hilder, Tamsyn A.; Chung, Shin-Ho

    2013-07-01

    Fullerene derivatives demonstrate considerable potential for numerous biological applications, such as the effective inhibition of HIV protease. Recently, they were identified for their ability to indiscriminately block biological ion channels. A fullerene derivative which specifically blocks a particular ion channel could lead to a new set of drug leads for the treatment of various ion channel-related diseases. Here, we demonstrate their extraordinary potential by designing a fullerene which mimics some of the functions of μ-conotoxin, a peptide derived from cone snail venom which potently binds to the bacterial voltage-gated sodium channel (NavAb). We show, using molecular dynamics simulations, that the C84 fullerene with six lysine derivatives uniformly attached to its surface is selective to NavAb over a voltage-gated potassium channel (Kv1.3). The side chain of one of the lysine residues protrudes into the selectivity filter of the channel, while the methionine residues located just outside of the channel form hydrophobic contacts with the carbon atoms of the fullerene. The modified C84 fullerene strongly binds to the NavAb channel with an affinity of 46 nM but binds weakly to Kv1.3 with an affinity of 3 mM. This potent blocker of NavAb may serve as a structural template from which potent compounds can be designed for the targeting of mammalian Nav channels. There is a genuine need to target mammalian Nav channels as a form of treatment of various diseases which have been linked to their malfunction, such as epilepsy and chronic pain.

  13. The hitchhiker's guide to the voltage-gated sodium channel galaxy.

    Science.gov (United States)

    Ahern, Christopher A; Payandeh, Jian; Bosmans, Frank; Chanda, Baron

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure-function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na(+) selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.

  14. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  15. Regulation of KCNQ/Kv7 family voltage-gated K(+) channels by lipids.

    Science.gov (United States)

    Taylor, Keenan C; Sanders, Charles R

    2017-04-01

    Many years of studies have established that lipids can impact membrane protein structure and function through bulk membrane effects, by direct but transient annular interactions with the bilayer-exposed surface of protein transmembrane domains, and by specific binding to protein sites. Here, we focus on how phosphatidylinositol 4,5-bisphosphate (PIP2) and polyunsaturated fatty acids (PUFAs) impact ion channel function and how the structural details of the interactions of these lipids with ion channels are beginning to emerge. We focus on the Kv7 (KCNQ) subfamily of voltage-gated K(+) channels, which are regulated by both PIP2 and PUFAs and play a variety of important roles in human health and disease. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  16. A novel mechanism for fine-tuning open-state stability in a voltage-gated potassium channel

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Niciforovic, Ana P; Galpin, Jason D

    2013-01-01

    Voltage-gated potassium channels elicit membrane hyperpolarization through voltage-sensor domains that regulate the conductive status of the pore domain. To better understand the inherent basis for the open-closed equilibrium in these channels, we undertook an atomistic scan using synthetic fluor...... that the intrinsic open-state destabilization via aromatic repulsion represents a new mechanism by which ion channels, and likely other proteins, fine-tune conformational equilibria.......Voltage-gated potassium channels elicit membrane hyperpolarization through voltage-sensor domains that regulate the conductive status of the pore domain. To better understand the inherent basis for the open-closed equilibrium in these channels, we undertook an atomistic scan using synthetic...... fluorinated derivatives of aromatic residues previously implicated in the gating of Shaker potassium channels. Here we show that stepwise dispersion of the negative electrostatic surface potential of only one site, Phe481, stabilizes the channel open state. Furthermore, these data suggest that this apparent...

  17. Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein.

    Science.gov (United States)

    Lee, Hye Young; Ge, Woo-Ping; Huang, Wendy; He, Ye; Wang, Gordon X; Rowson-Baldwin, Ashley; Smith, Stephen J; Jan, Yuh Nung; Jan, Lily Yeh

    2011-11-17

    How transmitter receptors modulate neuronal signaling by regulating voltage-gated ion channel expression remains an open question. Here we report dendritic localization of mRNA of Kv4.2 voltage-gated potassium channel, which regulates synaptic plasticity, and its local translational regulation by fragile X mental retardation protein (FMRP) linked to fragile X syndrome (FXS), the most common heritable mental retardation. FMRP suppression of Kv4.2 is revealed by elevation of Kv4.2 in neurons from fmr1 knockout (KO) mice and in neurons expressing Kv4.2-3'UTR that binds FMRP. Moreover, treating hippocampal slices from fmr1 KO mice with Kv4 channel blocker restores long-term potentiation induced by moderate stimuli. Surprisingly, recovery of Kv4.2 after N-methyl-D-aspartate receptor (NMDAR)-induced degradation also requires FMRP, likely due to NMDAR-induced FMRP dephosphorylation, which turns off FMRP suppression of Kv4.2. Our study of FMRP regulation of Kv4.2 deepens our knowledge of NMDAR signaling and reveals a FMRP target of potential relevance to FXS.

  18. Regulation of voltage gated calcium channels by GPCRs and post-translational modification.

    Science.gov (United States)

    Huang, Junting; Zamponi, Gerald W

    2016-10-18

    Calcium entry via voltage gated calcium channels mediates a wide range of physiological functions, whereas calcium channel dysregulation has been associated with numerous pathophysiological conditions. There are myriad cell signaling pathways that act on voltage gated calcium channels to fine tune their activities and to regulate their cell surface expression. These regulatory mechanisms include the activation of G protein-coupled receptors and downstream phosphorylation events, and their control over calcium channel trafficking through direct physical interactions. Calcium channels also undergo post-translational modifications that alter both function and density of the channels in the plasma membrane. Here we focus on select aspects of these regulatory mechanisms and highlight recent developments.

  19. Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic ancestors.

    Science.gov (United States)

    Catterall, William A; Zheng, Ning

    2015-09-01

    Voltage-gated sodium channels (NaVs) and calcium channels (CaVs) are involved in electrical signaling, contraction, secretion, synaptic transmission, and other physiological processes activated in response to depolarization. Despite their physiological importance, the structures of these closely related proteins have remained elusive because of their size and complexity. Bacterial NaVs have structures analogous to a single domain of eukaryotic NaVs and CaVs and are their likely evolutionary ancestor. Here we review recent work that has led to new understanding of NaVs and CaVs through high-resolution structural studies of their prokaryotic ancestors. New insights into their voltage-dependent activation and inactivation, ion conductance, and ion selectivity provide realistic structural models for the function of these complex membrane proteins at the atomic level. Published by Elsevier Ltd.

  20. Simulating the Activation of Voltage Sensing Domain for a Voltage-Gated Sodium Channel Using Polarizable Force Field.

    Science.gov (United States)

    Sun, Rui-Ning; Gong, Haipeng

    2017-03-02

    Voltage-gated sodium (NaV) channels play vital roles in the signal transduction of excitable cells. Upon activation of a NaV channel, the change of transmembrane voltage triggers conformational change of the voltage sensing domain, which then elicits opening of the pore domain and thus allows an influx of Na(+) ions. Description of this process with atomistic details is in urgent demand. In this work, we simulated the partial activation process of the voltage sensing domain of a prokaryotic NaV channel using a polarizable force field. We not only observed the conformational change of the voltage sensing domain from resting to preactive state, but also rigorously estimated the free energy profile along the identified reaction pathway. Comparison with the control simulation using an additive force field indicates that voltage-gating thermodynamics of NaV channels may be inaccurately described without considering the electrostatic polarization effect.

  1. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders;

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  2. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles

    DEFF Research Database (Denmark)

    Poulsen, Christian B; Al-Mashhadi, Rozh H; Cribbs, Leanne L;

    2011-01-01

    Voltage-gated calcium channels are important for the regulation of renal blood flow and the glomerular filtration rate. Excitation-contraction coupling in afferent arterioles is known to require activation of these channels and we studied their role in the regulation of cortical efferent arteriolar...... tone. We used microdissected perfused mouse efferent arterioles and found a transient vasoconstriction in response to depolarization with potassium; an effect abolished by removal of extracellular calcium. The T-type voltage-gated calcium channel antagonists mibefradil and nickel blocked this potassium....... Low concentrations of nickel, an agent that blocks Ca(v)3.2, had a similar effect. Thus, T-type voltage-gated calcium channels are functionally important for depolarization-induced vasoconstriction and subsequent dilatation in mouse cortical efferent arterioles.Kidney International advance online...

  3. Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels.

    Science.gov (United States)

    Choveau, Frank S; Abderemane-Ali, Fayal; Coyan, Fabien C; Es-Salah-Lamoureux, Zeineb; Baró, Isabelle; Loussouarn, Gildas

    2012-01-01

    Voltage-gated potassium (Kv) channels are tetramers, each subunit presenting six transmembrane segments (S1-S6), with each S1-S4 segments forming a voltage-sensing domain (VSD) and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5(L)) and of the S6 C-terminal part (S6(T)) in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5(L) is acting like a ligand binding to S6(T) to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5(L), the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)), stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated) require PIP(2) to function properly, confirming its crucial importance as an ion channel cofactor. This is highlighted in cases in which an altered regulation of ion channels by PIP(2) leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP(2) and S4S5(L)), and assesses their potential physiological and pathophysiological roles.

  4. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Directory of Open Access Journals (Sweden)

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  5. An update on transcriptional and post-translational regulation of brain voltage-gated sodium channels.

    Science.gov (United States)

    Onwuli, Donatus O; Beltran-Alvarez, Pedro

    2016-03-01

    Voltage-gated sodium channels are essential proteins in brain physiology, as they generate the sodium currents that initiate neuronal action potentials. Voltage-gated sodium channels expression, localisation and function are regulated by a range of transcriptional and post-translational mechanisms. Here, we review our understanding of regulation of brain voltage-gated sodium channels, in particular SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3) and SCN8A (NaV1.6), by transcription factors, by alternative splicing, and by post-translational modifications. Our focus is strongly centred on recent research lines, and newly generated knowledge.

  6. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  7. Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels.

    Science.gov (United States)

    Shimomura, Takushi; Irie, Katsumasa; Nagura, Hitoshi; Imai, Tomoya; Fujiyoshi, Yoshinori

    2011-03-04

    Prokaryotic voltage-gated sodium channels (Na(V)s) form homotetramers with each subunit contributing six transmembrane α-helices (S1-S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. Although the crystal structures have provided insight into voltage-gated K channels (K(V)s), revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer, the structural and functional information on Na(V)s remains limited. Here, we show that the domain arrangement in NaChBac, a firstly cloned prokaryotic Na(V), is similar to that in K(V)s. Cysteine substitutions of three residues in helix S4, Q107C, T110C, and R113C, effectively induced intersubunit disulfide bond formation with a cysteine introduced in helix S5, M164C, of the adjacent subunit. In addition, substituting two acidic residues with lysine, E43K and D60K, shifted the activation of the channel to more positive membrane potentials and consistently shifted the preferentially formed disulfide bond from T110C/M164C to Q107C/M164C. Because Gln-107 is located closer to the extracellular side of helix S4 than Thr-110, this finding suggests that the functional shift in the voltage dependence of activation is related to a restriction of the position of helix S4 in the lipid bilayer. The domain arrangement and vertical mobility of helix S4 in NaChBac indicate that the structure and the mechanism of voltage-dependent activation in prokaryotic Na(V)s are similar to those in canonical K(V)s.

  8. KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation.

    Science.gov (United States)

    Abbott, Geoffrey W

    2016-01-15

    The human KCNE gene family comprises five genes encoding single transmembrane-spanning ion channel regulatory subunits. The primary function of KCNE subunits appears to be regulation of voltage-gated potassium (Kv) channels, and the best-understood KCNE complexes are with the KCNQ1 Kv α subunit. Here, we review the often opposite effects of KCNE1 and KCNE3 on Kv channel biology, with an emphasis on regulation of KCNQ1. Slow-activating IKs channel complexes formed by KCNQ1 and KCNE1 are essential for human ventricular myocyte repolarization, while constitutively active KCNQ1-KCNE3 channels are important in the intestine. Inherited sequence variants in human KCNE1 and KCNE3 cause cardiac arrhythmias but by different mechanisms, and each is important for hearing in unique ways. Because of their contrasting effects on KCNQ1 function, KCNE1 and KCNE3 have proved invaluable tools in the mechanistic understanding of how channel gating can be manipulated, and each may also provide a window into novel insights and new therapeutic opportunities in K(+) channel pharmacology. Finally, findings from studies of Kcne1(-/-) and Kcne3(-/-) mouse lines serve to illustrate the complexity of KCNE biology and KCNE-linked disease states.

  9. New Role of P/Q-type Voltage-gated Calcium Channels

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform...... of the voltage-gated calcium channels (P/Q-type), is also expressed and contributes functionally to contraction of renal blood vessels in both mice and humans. Furthermore, preglomerular vascular SMCs and aortic SMCs coexpress L-, P-, and Q-type calcium channels within the same cell. Calcium channel blockers...... are widely used as pharmacological treatments. However, calcium channel antagonists vary in their selectivity for the various calcium channel subtypes, and the functional contribution from P/Q-type channels as compared with L-type should be considered. Confirming the presence of P/Q-type voltage...

  10. Regulatory role of voltage-gated sodium channel β subunits in sensory neurons

    Directory of Open Access Journals (Sweden)

    Mohamed eChahine

    2011-11-01

    Full Text Available Voltage-gated Na+ channels are transmembrane-bound proteins incorporating aqueous conduction pores that are highly selective for Na+. The opening of these channels results in the rapid influx of Na+ ions that depolarize the cell and drive the rapid upstroke of nerve and muscle action potentials. While the concept of a Na+-selective ion channel had been formulated in the 1940s, it was not until the 1980s that the biochemical properties of the 260-kDa and 36-kDa auxiliary β subunits (β1, β2 were first described. Subsequent cloning and heterologous expression studies revealed that the  subunit forms the core of the channel and is responsible for both voltage-dependent gating and ionic selectivity. To date, ten isoforms of the Na+ channel α subunit have been identified that vary in their primary structures, tissue distribution, biophysical properties, and sensitivity to neurotoxins. Four β subunits (β1-β4 and two splice variants (β1A, β1B have been identified that modulate the subcellular distribution, cell surface expression, and functional properties of the α subunits. The purpose of this review is to provide a broad overview of β subunit expression and function in peripheral sensory neurons and examine their contributions to neuropathic pain.

  11. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel.

    Directory of Open Access Journals (Sweden)

    Samira Yazdi

    2016-01-01

    Full Text Available Voltage-gated potassium (KV channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD, the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

  12. L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis

    Science.gov (United States)

    McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.

    2008-01-01

    Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…

  13. [Progress in sodium channelopathies and biological functions of voltage-gated sodium channel blockers].

    Science.gov (United States)

    Wang, Hongyan; Gou, Meng; Xiao, Rong; Li, Qingwei

    2014-06-01

    Voltage-gated sodium channels (VGSCs), which are widely distributed in the excitable cells, are the primary mediators of electrical signal amplification and propagation. They play important roles in the excitative conduction of the neurons and cardiac muscle cells. The abnormalities of the structures and functions of VGSCs can change the excitability of the cells, resulting in a variety of diseases such as neuropathic pain, epilepsy and arrhythmia. At present, some voltage-gated sodium channel blockers are used for treating those diseases. In the recent years, several neurotoxins have been purified from the venom of the animals, which could inhibit the current of the voltage-gated sodium channels. Usually, these neurotoxins are compounds or small peptides that have been further designed and modified for targeted drugs of sodium channelopathies in the clinical treatment. In addition, a novel cysteine-rich secretory protein (CRBGP) has been isolated and purified from the buccal gland of the lampreys (Lampetra japonica), and it could inhibit the Na+ current of the hippocampus and dorsal root neurons for the first time. In the present study, the progress of the sodium channelopathies and the biological functions of voltage-gated sodium channel blockers are analyzed and summarized.

  14. The Structural Basis and Functional Consequences of Interactions Between Tetrodotoxin and Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    C. Ruben

    2006-04-01

    Full Text Available Abstract: Tetrodotoxin (TTX is a highly specific blocker of voltage-gated sodium channels. The dissociation constant of block varies with different channel isoforms. Until recently, channel resistance was thought to be primarily imparted by amino acid substitutions at a single position in domain I. Recent work reveals a novel site for tetrodotoxin resistance in the P-region of domain IV.

  15. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.

    Science.gov (United States)

    Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy

    2015-01-01

    Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

  16. Effects of toxin huwentoxin-Ⅲ from the venom of the Chinese bird spider, Ornithoctonus huwena (Araneae: Theraphosidae) on neuronal voltage-gated ion channels in cockroach Periplaneta americana%虎纹捕鸟蛛毒素虎纹毒素-Ⅲ对美洲蜚蠊神经细胞电压门控离子通道的影响

    Institute of Scientific and Technical Information of China (English)

    王瑞兰; 梁宋平

    2009-01-01

    Huwentoxin-Ⅲ purified from the venom of the Chinese bird spider, Ornithoctonus huwena (Wang et al.), is an insect neurotoxic peptide. The effects of huwentoxin-Ⅲ on neuronal voltage-gated ion channels were studied by using whole-cell patch clamp technique. Huwentoxin-Ⅲ specifically inhibited voltage-gated sodium channels in dorsal unpaired median neurons of adult cockroach Periplaneta americana (IC50≈1.106 μmol/L) while having no evident effect on voltage-gated potassium channels. HWTX-Ⅲ inhibited insect voltage-gated sodium channels through a novel mechanism distinctive from other spider toxins, did not affect the activation and inactivation kinetics, and not evidently shift the steady-state inactivation curve. Thus, its specificity and novel mechanism on insect neuronal voltage-gated sodium channels make it an interesting tool for investigating the multiple molecular forms of voltage-gated sodium channels and exploiting new and safe insecticides.%HWTX-Ⅲ是从中国虎纹捕鸟蛛Ornithoctonus huwena粗毒中分离纯化到的一种昆虫神经多肽.通过应用全细胞膜片钳技术研究了HWTX-Ⅲ对美洲蜚蠊Periplaneta americana神经细胞电压门控离子通道的影响.发现HWTX-Ⅲ特异性地抑制美洲蜚蠊背侧不成对中间(dorsal unpaired median,DUM)神经细胞的电压门控钠通道(IC50≈1.106μmol/L),而对电压门控钾通道没有明显的影响.HWTX-Ⅲ通过一种新型的不同于其他蜘蛛毒素的机制抑制昆虫电压门控钠通道,它不影响通道的激活与失活动力学,也不明显地漂移稳态失活曲线.HWTX-Ⅲ对昆虫神经细胞电压门控钠通道的特异性与新型作用机制为研究电压门控钠通道分子结构的多样性以及开发新的安全的杀虫剂提供有用的工具.

  17. Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels.

    Science.gov (United States)

    Vacher, Helene; Trimmer, James S

    2011-11-01

    Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse partly due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability. Recent studies have revealed that Kv channel α subunits and auxiliary subunits are extensively phosphorylated, contributing to additional structural and functional diversity. Here, we highlight recent studies that show that auxiliary subunits exert some of their profound effects on dendritic Kv4 and axonal Kv1 channels through phosphorylation-dependent mechanisms, either due to phosphorylation on the auxiliary subunit itself or by influencing the extent and/or impact of α subunit phosphorylation. The complex effects of auxiliary subunits and phosphorylation provide a potent mechanism to generate additional diversity in the structure and function of Kv4 and Kv1 channels, as well as allowing for dynamic reversible regulation of these important ion channels.

  18. Functional role of voltage gated Ca2+ channels in heart automaticity

    Directory of Open Access Journals (Sweden)

    Pietro eMesirca

    2015-02-01

    Full Text Available Pacemaker activity of automatic cardiac myocytes controls the heartbeat in everyday life. Cardiac automaticity is under the control of several neurotransmitters and hormones and is constantly regulated by the autonomic nervous system to match the physiological needs of the organism. Several classes of ion channels and proteins involved in intracellular Ca2+ dynamics contribute to pacemaker activity. The functional role of voltage-gated calcium channels (VGCCs in heart automaticity and impulse conduction has been matter of debate for 30 years. However, growing evidence shows that VGCCs are important regulators of the pacemaker mechanisms and play also a major role in atrio-ventricular impulse conduction. Incidentally, studies performed in genetically modified mice lacking L-type Cav1.3 (Cav1.3-/- or T-type Cav3.1 (Cav3.1-/- channels show that genetic inactivation of these channels strongly impacts pacemaking. In cardiac pacemaker cells, VGCCs activate at negative voltages at the beginning of the diastolic depolarization and importantly contribute to this phase by supplying inward current. Loss-of-function of these channels also impairs atrio-ventricular conduction. Furthermore, inactivation of Cav1.3 channels promotes also atrial fibrillation and flutter in knockout mice suggesting that these channels can play a role in stabilizing atrial rhythm. Genomic analysis demonstrated that Cav1.3 and Cav3.1 channels are widely expressed in pacemaker tissue of mice, rabbits and humans. Importantly, human diseases of pacemaker activity such as congenital bradycardia and heart block have been attributed to loss-of-function of Cav1.3 and Cav3.1 channels. In this article, we will review the current knowledge on the role of VGCCs in the generation and regulation of heart rate and rhythm. We will discuss also how loss of Ca2+ entry through VGCCs could influence intracellular Ca2+ handling and promote atrial arrhythmias.

  19. Selectivity Mechanism of the Voltage-gated Proton Channel, HV1

    Science.gov (United States)

    Dudev, Todor; Musset, Boris; Morgan, Deri; Cherny, Vladimir V.; Smith, Susan M. E.; Mazmanian, Karine; Decoursey, Thomas E.; Lim, Carmay

    2015-05-01

    Voltage-gated proton channels, HV1, trigger bioluminescence in dinoflagellates, enable calcification in coccolithophores, and play multifarious roles in human health. Because the proton concentration is minuscule, exquisite selectivity for protons over other ions is critical to HV1 function. The selectivity of the open HV1 channel requires an aspartate near an arginine in the selectivity filter (SF), a narrow region that dictates proton selectivity, but the mechanism of proton selectivity is unknown. Here we use a reduced quantum model to elucidate how the Asp-Arg SF selects protons but excludes other ions. Attached to a ring scaffold, the Asp and Arg side chains formed bidentate hydrogen bonds that occlude the pore. Introducing H3O+ protonated the SF, breaking the Asp-Arg linkage and opening the conduction pathway, whereas Na+ or Cl- was trapped by the SF residue of opposite charge, leaving the linkage intact, thus preventing permeation. An Asp-Lys SF behaved like the Asp-Arg one and was experimentally verified to be proton-selective, as predicted. Hence, interacting acidic and basic residues form favorable AspH0-H2O0-Arg+ interactions with hydronium but unfavorable Asp--X-/X+-Arg+ interactions with anions/cations. This proposed mechanism may apply to other proton-selective molecules engaged in bioenergetics, homeostasis, and signaling.

  20. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology.

    Science.gov (United States)

    Dolphin, Annette C

    2016-10-01

    Voltage-gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore-forming α1 subunit, the CaV 1, CaV 2 and CaV 3 channels. For all the subtypes of voltage-gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV 1 and CaV 2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage-gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2 δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.

  1. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine.

    Science.gov (United States)

    Dichgans, Martin; Freilinger, Tobias; Eckstein, Gertrud; Babini, Elena; Lorenz-Depiereux, Bettina; Biskup, Saskia; Ferrari, Michel D; Herzog, Jürgen; van den Maagdenberg, Arn M J M; Pusch, Michael; Strom, Tim M

    Familial hemiplegic migraine is an autosomal dominant severe subtype of migraine with aura characterised by some degree of hemiparesis during the attacks. So far, mutations in two genes regulating ion translocation-CACNA1A and ATP1A2-have been identified in pedigrees with this disease. To identify additional genes for familial hemiplegic migraine, we did a genome-wide linkage analysis of two disease pedigrees without mutations in CACNA1A and ATP1A2. Ion channel genes in the candidate interval were analysed for mutations, and the functional consequences of the recorded sequence alteration were determined. We identified a novel locus for familial hemiplegic migraine on chromosome 2q24. Sequencing of candidate genes in this region revealed a heterozygous missense mutation (Gln1489Lys) in the neuronal voltage-gated sodium channel gene SCN1A, mutations of which have been associated with epilepsy. This same mutation was present in three families with familial hemiplegic migraine. It results in a charge-altering aminoacid exchange in the so-called hinged-lid domain of the protein, which is critical for fast inactivation of the channel. Whole-cell recordings in transiently transfected tsA201 cells expressing the highly homologous SCN5A sodium channel showed that the mutation induces a two-fold to four-fold accelerated recovery from fast inactivation without altering any of the other channel parameters investigated. Dysfunction of the neuronal sodium channel SCN1A can cause familial hemiplegic migraine. Our findings have implications for the understanding of migraine aura. Moreover, our study reinforces the molecular links between migraine and epilepsy, two common paroxysmal disorders.

  2. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.

    Science.gov (United States)

    Payandeh, Jian; Gamal El-Din, Tamer M; Scheuer, Todd; Zheng, Ning; Catterall, William A

    2012-05-20

    In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 Å resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.

  3. Voltage-gated calcium channel and antisense oligonucleotides thereto

    Science.gov (United States)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  4. Conotoxins Targeting Neuronal Voltage-Gated Sodium Channel Subtypes: Potential Analgesics?

    Directory of Open Access Journals (Sweden)

    Jeffrey R. McArthur

    2012-11-01

    Full Text Available Voltage-gated sodium channels (VGSC are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.

  5. Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating.

    Science.gov (United States)

    Yau, Hau-Jie; Baranauskas, Gytis; Martina, Marco

    2010-10-15

    The electrophysiological phenotype of individual neurons critically depends on the biophysical properties of the voltage-gated channels they express. Differences in sodium channel gating are instrumental in determining the different firing phenotypes of pyramidal cells and interneurons; moreover, sodium channel modulation represents an important mechanism of action for many widely used CNS drugs. Flufenamic acid (FFA) is a non-steroidal anti-inflammatory drug that has been long used as a blocker of calcium-dependent cationic conductances. Here we show that FFA inhibits voltage-gated sodium currents in hippocampal pyramidal neurons; this effect is dose-dependent with IC(50) = 189 μm. We used whole-cell and nucleated patch recordings to investigate the mechanisms of FFA modulation of TTX-sensitive voltage-gated sodium current. Our data show that flufenamic acid slows down the inactivation process of the sodium current, while shifting the inactivation curve ~10 mV toward more hyperpolarized potentials. The recovery from inactivation is also affected in a voltage-dependent way, resulting in slower recovery at hyperpolarized potentials. Recordings from acute slices demonstrate that FFA reduces repetitive- and abolishes burst-firing in CA1 pyramidal neurons. A computational model based on our data was employed to better understand the mechanisms of FFA action. Simulation data support the idea that FFA acts via a novel mechanism by reducing the voltage dependence of the sodium channel fast inactivation rates. These effects of FFA suggest that it may be an effective anti-epileptic drug.

  6. Encephalitis due to antibodies to voltage gated potassium channel (VGKC with cerebellar involvement in a teenager

    Directory of Open Access Journals (Sweden)

    Megan M Langille

    2015-01-01

    Full Text Available Encephalitis due to antibodies to voltage gated potassium channel (VGKC typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  7. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager.

    Science.gov (United States)

    Langille, Megan M; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  8. Regulation of voltage-gated potassium channels by PI(4,5)P2.

    Science.gov (United States)

    Kruse, Martin; Hammond, Gerald R V; Hille, Bertil

    2012-08-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) regulates activities of numerous ion channels including inwardly rectifying potassium (K(ir)) channels, KCNQ, TRP, and voltage-gated calcium channels. Several studies suggest that voltage-gated potassium (K(V)) channels might be regulated by PI(4,5)P(2). Wide expression of K(V) channels in different cells suggests that such regulation could have broad physiological consequences. To study regulation of K(V) channels by PI(4,5)P(2), we have coexpressed several of them in tsA-201 cells with a G protein-coupled receptor (M(1)R), a voltage-sensitive lipid 5-phosphatase (Dr-VSP), or an engineered fusion protein carrying both lipid 4-phosphatase and 5-phosphatase activity (pseudojanin). These tools deplete PI(4,5)P(2) with application of muscarinic agonists, depolarization, or rapamycin, respectively. PI(4,5)P(2) at the plasma membrane was monitored by Förster resonance energy transfer (FRET) from PH probes of PLCδ1 simultaneously with whole-cell recordings. Activation of Dr-VSP or recruitment of pseudojanin inhibited K(V)7.1, K(V)7.2/7.3, and K(ir)2.1 channel current by 90-95%. Activation of M(1)R inhibited K(V)7.2/7.3 current similarly. With these tools, we tested for potential PI(4,5)P(2) regulation of activity of K(V)1.1/K(V)β1.1, K(V)1.3, K(V)1.4, and K(V)1.5/K(V)β1.3, K(V)2.1, K(V)3.4, K(V)4.2, K(V)4.3 (with different KChIPs and DPP6-s), and hERG/KCNE2. Interestingly, we found a substantial removal of inactivation for K(V)1.1/K(V)β1.1 and K(V)3.4, resulting in up-regulation of current density upon activation of M(1)R but no changes in activity upon activating only VSP or pseudojanin. The other channels tested except possibly hERG showed no alteration in activity in any of the assays we used. In conclusion, a depletion of PI(4,5)P(2) at the plasma membrane by enzymes does not seem to influence activity of most tested K(V) channels, whereas it does strongly inhibit members of the K(V)7 and K(ir) families.

  9. The voltage-gated sodium channel nav1.8 is expressed in human sperm.

    Directory of Open Access Journals (Sweden)

    Antonio Cejudo-Roman

    Full Text Available The role of Na(+ fluxes through voltage-gated sodium channels in the regulation of sperm cell function remains poorly understood. Previously, we reported that several genes encoding voltage-gated Na(+ channels were expressed in human testis and mature spermatozoa. In this study, we analyzed the presence and function of the TTX-resistant VGSC α subunit Nav1.8 in human capacitated sperm cells. Using an RT-PCR assay, we found that the mRNA of the gene SCN10A, that encode Na v1.8, was abundantly and specifically expressed in human testis and ejaculated spermatozoa. The Na v1.8 protein was detected in capacitated sperm cells using three different specific antibodies against this channel. Positive immunoreactivity was mainly located in the neck and the principal piece of the flagellum. The presence of Na v1.8 in sperm cells was confirmed by Western blot. Functional studies demonstrated that the increases in progressive motility produced by veratridine, a voltage-gated sodium channel activator, were reduced in sperm cells preincubated with TTX (10 μM, the Na v1.8 antagonist A-803467, or a specific Na v1.8 antibody. Veratridine elicited similar percentage increases in progressive motility in sperm cells maintained in Ca(2+-containing or Ca(2+-free solution and did not induce hyperactivation or the acrosome reaction. Veratridine caused a rise in sperm intracellular Na(+, [Na(+]i, and the sustained phase of the response was inhibited in the presence of A-803467. These results verify that the Na(+ channel Na v1.8 is present in human sperm cells and demonstrate that this channel participates in the regulation of sperm function.

  10. Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish.

    Science.gov (United States)

    Coskun, Cagil; Purali, Nuhan

    2016-06-01

    Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue.

  11. On the multiple roles of the voltage gated sodium channel β1 subunit in genetic diseases

    Directory of Open Access Journals (Sweden)

    Debora eBaroni

    2015-05-01

    Full Text Available Voltage-gated sodium channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are composed of a pore-forming α-subunit and associated β-subunits. The β1-subunit was the first accessory subunit to be cloned. It can be important for controlling cell excitability and modulating multiple aspects of sodium channel physiology. Mutations of β1 are implicated in a wide variety of inherited pathologies, including epilepsy and cardiac conduction diseases. This review summarizes β1-subunit related channelopathies pointing out the current knowledge concerning their genetic background and their underlying molecular mechanisms.

  12. Regulation of Voltage-Gated K+ Channel Kv1.5 by the Janus Kinase JAK3.

    Science.gov (United States)

    Warsi, Jamshed; Elvira, Bernat; Bissinger, Rosi; Hosseinzadeh, Zohreh; Lang, Florian

    2015-12-01

    The tyrosine kinase Janus kinase 3 (JAK3) participates in the regulation of cell proliferation and apoptosis. The kinase further influences ion channels and transport proteins. The present study explored whether JAK3 contributes to the regulation of the voltage-gated K(+) channel Kv1.5, which participates in the regulation of diverse functions including atrial cardiac action potential and tumor cell proliferation. To this end, cRNA encoding Kv1.5 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type JAK3, constitutively active (A568V)JAK3, or inactive (K851A)JAK3. Voltage-gated K(+) channel activity was measured utilizing dual electrode voltage clamp, and Kv1.5 channel protein abundance in the cell membrane was quantified utilizing chemiluminescence of Kv1.5 containing an extracellular hemagglutinin epitope (Kv1.5-HA). As a result, Kv1.5 activity and Kv1.5-HA protein abundance were significantly decreased by wild-type JAK3 and (A568V)JAK3, but not by (K851A)JAK3. Inhibition of Kv1.5 protein insertion into the cell membrane by brefeldin A (5 μM) resulted in a decline of the voltage-gated current, which was similar in the absence and presence of (A568V)JAK3, suggesting that (A568V)JAK3 did not accelerate Kv1.5 protein retrieval from the cell membrane. A 24 h treatment with ouabain (100 µM) significantly decreased the voltage-gated current in oocytes expressing Kv1.5 without or with (A568V)JAK3 and dissipated the difference between oocytes expressing Kv1.5 alone and oocytes expressing Kv1.5 with (A568V)JAK3. In conclusion, JAK3 contributes to the regulation of membrane Kv1.5 protein abundance and activity, an effect sensitive to ouabain and thus possibly involving Na(+)/K(+) ATPase activity.

  13. PROPERTIES OF VOLTAGE-GATED SODIUM CHANNELS IN DEVELOPING AUDITORY NEURONS OF THE MOUSE IN VITRO

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective. To investigate the properties of voltage-gated sodium (Na+) channels in developing auditoryneurons during early postnatal stages in the mammalian central nervous system.Methods. Using the whole-cell voltage-clamp technique, we have studied changes in the electrophysi-ological properties of Na+ channels in the principal neurons of the medial nucleus of the trapezoid body (MNTB).Results. We found that MNTB neurons already express functional Na+ channels at postnatal day 1 (P1),and that channel density begins to increase at P5 when the neurons receive synaptic innervation andreach its maximum (~3 fold) at P11 when functional hearing onsets. These changes were paralleled byan age-dependent acceleration in both inactivation and recovery from inactivation. In contrast, there wasvery little alteration in the voltage-dependence of inactivation.Conclusion. These profound changes in the properties of voltage-gated Na+ channels may increase theexcitability of MNTB neurons and enhance their phase-locking fidelity and capacity during high-frequencysynaptic transmission.

  14. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.

    Science.gov (United States)

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B

    2011-02-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.

  15. Osteoblasts detect pericellular calcium concentration increase via neomycin-sensitive voltage gated calcium channels.

    Science.gov (United States)

    Sun, Xuanhao; Kishore, Vipuil; Fites, Kateri; Akkus, Ozan

    2012-11-01

    The mechanisms underlying the detection of critically loaded or micro-damaged regions of bone by bone cells are still a matter of debate. Our previous studies showed that calcium efflux originates from pre-failure regions of bone matrix and MC3T3-E1 osteoblasts respond to such efflux by an increase in the intracellular calcium concentration. The mechanisms by which the intracellular calcium concentration increases in response to an increase in the pericellular calcium concentration are unknown. Elevation of the intracellular calcium may occur via release from the internal calcium stores of the cell and/or via the membrane bound channels. The current study applied a wide range of pharmaceutical inhibitors to identify the calcium entry pathways involved in the process: internal calcium release from endoplasmic reticulum (ER, inhibited by thapsigargin and TMB-8), calcium receptor (CaSR, inhibited by calhex), stretch-activated calcium channel (SACC, inhibited by gadolinium), voltage-gated calcium channels (VGCC, inhibited by nifedipine, verapamil, neomycin, and ω-conotoxin), and calcium-induced-calcium-release channel (CICRC, inhibited by ryanodine and dantrolene). These inhibitors were screened for their effectiveness to block intracellular calcium increase by using a concentration gradient induced calcium efflux model which mimics calcium diffusion from the basal aspect of cells. The inhibitor(s) which reduced the intracellular calcium response was further tested on osteoblasts seeded on mechanically loaded notched cortical bone wafers undergoing damage. The results showed that only neomycin reduced the intracellular calcium response in osteoblasts, by 27%, upon extracellular calcium stimulus induced by concentration gradient. The inhibitory effect of neomycin was more pronounced (75% reduction in maximum fluorescence) for osteoblasts seeded on notched cortical bone wafers loaded mechanically to damaging load levels. These results imply that the increase in

  16. Modeling of the Binding of Peptide Blockers to Voltage-Gated Potassium Channels: Approaches and Evidence.

    Science.gov (United States)

    Novoseletsky, V N; Volyntseva, A D; Shaitan, K V; Kirpichnikov, M P; Feofanov, A V

    2016-01-01

    Modeling of the structure of voltage-gated potassium (KV) channels bound to peptide blockers aims to identify the key amino acid residues dictating affinity and provide insights into the toxin-channel interface. Computational approaches open up possibilities for in silico rational design of selective blockers, new molecular tools to study the cellular distribution and functional roles of potassium channels. It is anticipated that optimized blockers will advance the development of drugs that reduce over activation of potassium channels and attenuate the associated malfunction. Starting with an overview of the recent advances in computational simulation strategies to predict the bound state orientations of peptide pore blockers relative to KV-channels, we go on to review algorithms for the analysis of intermolecular interactions, and then take a look at the results of their application.

  17. Hydrophobic plug functions as a gate in voltage-gated proton channels.

    Science.gov (United States)

    Chamberlin, Adam; Qiu, Feng; Rebolledo, Santiago; Wang, Yibo; Noskov, Sergei Y; Larsson, H Peter

    2014-01-14

    Voltage-gated proton (Hv1) channels play important roles in the respiratory burst, in pH regulation, in spermatozoa, in apoptosis, and in cancer metastasis. Unlike other voltage-gated cation channels, the Hv1 channel lacks a centrally located pore formed by the assembly of subunits. Instead, the proton permeation pathway in the Hv1 channel is within the voltage-sensing domain of each subunit. The gating mechanism of this pathway is still unclear. Mutagenic and fluorescence studies suggest that the fourth transmembrane (TM) segment (S4) functions as a voltage sensor and that there is an outward movement of S4 during channel activation. Using thermodynamic mutant cycle analysis, we find that the conserved positively charged residues in S4 are stabilized by countercharges in the other TM segments both in the closed and open states. We constructed models of both the closed and open states of Hv1 channels that are consistent with the mutant cycle analysis. These structural models suggest that electrostatic interactions between TM segments in the closed state pull hydrophobic residues together to form a hydrophobic plug in the center of the voltage-sensing domain. Outward S4 movement during channel activation induces conformational changes that remove this hydrophobic plug and instead insert protonatable residues in the center of the channel that, together with water molecules, can form a hydrogen bond chain across the channel for proton permeation. This suggests that salt bridge networks and the hydrophobic plug function as the gate in Hv1 channels and that outward movement of S4 leads to the opening of this gate.

  18. Scorpion beta-toxins and voltage-gated sodium channels: interactions and effects.

    Science.gov (United States)

    Pedraza Escalona, Martha; Possani, Lourival D

    2013-01-01

    Scorpion beta-toxins (beta-ScTxs) modify the activity of voltage-gated sodium (Nav) channels, thereby producing neurotoxic effects in diverse organisms. For this reason, beta-ScTxs are essential tools not only for discriminating among different channel sub-types but also for studying the mechanisms of channel gating and the structure-function relationship involved in this process. This review considers both the structural and the functional implications of the beta-ScTxs after they bind to their receptor sites, in accord with their classification into a) anti-mammalian beta-ScTxs, b) anti-insect selective excitatory beta-ScTxs, c) anti-insect selective depressant beta-ScTxs and d) beta-ScTxs active on both insect and mammals Nav channels. Additionally, the molecular mechanism of toxin action by the "voltage sensor trapping" model is discussed, and the systemic effects produced by these toxins are reviewed.

  19. Voltage-gated calcium channel subunits from platyhelminths: Potential role in praziquantel action✩

    Science.gov (United States)

    Jeziorski, Michael C.; Greenberg, Robert M.

    2013-01-01

    Voltage-gated calcium (Ca2+) channels provide the pathway for Ca2+ influxes that underlie Ca2+-dependent responses in muscles, nerves and other excitable cells. They are also targets of a wide variety of drugs and toxins. Ca2+ channels are multisubunit protein complexes consisting of a pore-forming α1 subunit and other modulatory subunits, including the β subunit. Here, we review the structure and function of schistosome Ca2+ channel subunits, with particular emphasis on variant Ca2+ channel β subunits (Cavβvar) found in these parasites. In particular, we examine the role these β subunits may play in the action of praziquantel, the current drug of choice against schistosomiasis. We also present evidence that Cavβvar homologs are found in other praziquantel-sensitive platyhelminths such as the pork tapeworm, Taenia solium, and that these variant β subunits may thus represent a platyhelminth-specific gene family. PMID:16545816

  20. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice.

    Science.gov (United States)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian

    2016-03-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging.

  1. Coassembly of big conductance Ca2+-activated K+ channels and L-type voltage-gated Ca2+ channels in rat brain

    DEFF Research Database (Denmark)

    Grunnet, Morten; Kaufmann, Walter A

    2004-01-01

    . The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels...... to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate...... a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain....

  2. Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia.

    Science.gov (United States)

    Alkire, Michael T; Asher, Christopher D; Franciscus, Amanda M; Hahn, Emily L

    2009-04-01

    The Drosophila Shaker mutant fruit-fly, with its malfunctioning voltage-gated potassium channel, exhibits anesthetic requirements that are more than twice normal. Shaker mutants with an abnormal Kv1.2 channel also demonstrate significantly reduced sleep. Given the important role the thalamus plays in both sleep and arousal, the authors investigated whether localized central medial thalamic (CMT) microinfusion of an antibody designed to block the pore of the Kv1.2 channel might awaken anesthetized rats. Male Sprague-Dawley rats were implanted with a cannula aimed at the CMT or lateral thalamus. One week later, unconsciousness was induced with either desflurane (3.6 +/- 0.2%; n = 55) or sevoflurane (1.2 +/- 0.1%; n = 51). Arousal effects of a single 0.5-microl infusion of Kv1.2 potassium channel blocking antibody (0.1- 0.2 mg/ml) or a control infusion of Arc-protein antibody (0.2 mg/ml) were then determined. The Kv1.2 antibody, but not the control antibody, temporarily restored consciousness in 17% of all animals and in 75% of those animals where infusions occurred within the CMT (P Consciousness returned on average (+/- SD) 170 +/- 99 s after infusion and lasted a median time of 398 s (interquartile range: 279-510 s). Temporary seizures, without apparent consciousness, predominated in 33% of all animals. These findings support the idea that the CMT plays a role in modulating levels of arousal during anesthesia and further suggest that voltage-gated potassium channels in the CMT may contribute to regulating arousal or may even be relevant targets of anesthetic action.

  3. Hlf is a genetic modifier of epilepsy caused by voltage-gated sodium channel mutations.

    Science.gov (United States)

    Hawkins, Nicole A; Kearney, Jennifer A

    2016-01-01

    Mutations in voltage-gated sodium channel genes cause several types of human epilepsies. Often, individuals with the same sodium channel mutation exhibit diverse phenotypes. This suggests that factors beyond the primary mutation influence disease severity, including genetic modifiers. Mouse epilepsy models with voltage-gated sodium channel mutations exhibit strain-dependent phenotype variability, supporting a contribution of genetic modifiers in epilepsy. The Scn2a(Q54) (Q54) mouse model has a strain-dependent epilepsy phenotype. Q54 mice on the C57BL/6J (B6) strain exhibit delayed seizure onset and improved survival compared to [B6xSJL/J]F1.Q54 mice. We previously mapped two dominant modifier loci that influence Q54 seizure susceptibility and identified Hlf (hepatic leukemia factor) as a candidate modifier gene at one locus. Hlf and other PAR bZIP transcription factors had previously been associated with spontaneous seizures in mice thought to be caused by down-regulation of the pyridoxine pathway. An Hlf targeted knockout mouse model was used to evaluate the effect of Hlf deletion on Q54 phenotype severity. Hlf(KO/KO);Q54 double mutant mice exhibited elevated frequency and reduced survival compared to Q54 controls. To determine if direct modulation of the pyridoxine pathway could alter the Q54 phenotype, mice were maintained on a pyridoxine-deficient diet for 6 weeks. Dietary pyridoxine deficiency resulted in elevated seizure frequency and decreased survival in Q54 mice compared to control diet. To determine if Hlf could modify other epilepsies, Hlf(KO/+) mice were crossed with the Scn1a(KO/+) Dravet syndrome mouse model to examine the effect on premature lethality. Hlf(KO/+);Scn1a(KO/+) offspring exhibited decreased survival compared to Scn1a(KO/+) controls. Together these results demonstrate that Hlf is a genetic modifier of epilepsy caused by voltage-gated sodium channel mutations and that modulation of the pyridoxine pathway can also influence phenotype

  4. Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes.

    Science.gov (United States)

    Abdelsayed, Mena; Sokolov, Stanislav

    2013-01-01

    Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel's fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment.

  5. SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels.

    Science.gov (United States)

    Drenth, Joost P H; te Morsche, Rene H M; Guillet, Gerard; Taieb, Alain; Kirby, R Lee; Jansen, Jan B M J

    2005-06-01

    Primary erythermalgia is a rare disorder characterized by recurrent attacks of red, warm and painful hands, and/or feet. We previously localized the gene for primary erythermalgia to a 7.94 cM region on chromosome 2q. Recently, Yang et al identified two missense mutations of the sodium channel alpha subunit SCN9A in patients with erythermalgia. The presence of voltage-gated sodium channels in sensory neurons is thought to play a crucial role in several chronic painful neuropathies. We examined four different families and two sporadic cases and detected missense sequence variants in SCN9A to be present in primary erythermalgia patients. A total of five of six mutations were located in highly conserved regions. One family with autosomal dominantly inherited erythermalgia was double heterozygous for two separate SCN9A mutations. These data establish primary erythermalgia as a neuropathic disorder and offers hope for treatment of this incapacitating painful disorder.

  6. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads.

    Science.gov (United States)

    Klint, Julie K; Senff, Sebastian; Rupasinghe, Darshani B; Er, Sing Yan; Herzig, Volker; Nicholson, Graham M; King, Glenn F

    2012-09-15

    Voltage-gated sodium (Na(V)) channels play a central role in the propagation of action potentials in excitable cells in both humans and insects. Many venomous animals have therefore evolved toxins that modulate the activity of Na(V) channels in order to subdue their prey and deter predators. Spider venoms in particular are rich in Na(V) channel modulators, with one-third of all known ion channel toxins from spider venoms acting on Na(V) channels. Here we review the landscape of spider-venom peptides that have so far been described to target vertebrate or invertebrate Na(V) channels. These peptides fall into 12 distinct families based on their primary structure and cysteine scaffold. Some of these peptides have become useful pharmacological tools, while others have potential as therapeutic leads because they target specific Na(V) channel subtypes that are considered to be important analgesic targets. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides and so far only 0.01% of this diversity been characterised. Thus, it is likely that future research will reveal additional structural classes of spider-venom peptides that target Na(V) channels.

  7. Adaptive evolution of voltage-gated sodium channels: the first 800 million years.

    Science.gov (United States)

    Zakon, Harold H

    2012-06-26

    Voltage-gated Na(+)-permeable (Nav) channels form the basis for electrical excitability in animals. Nav channels evolved from Ca(2+) channels and were present in the common ancestor of choanoflagellates and animals, although this channel was likely permeable to both Na(+) and Ca(2+). Thus, like many other neuronal channels and receptors, Nav channels predated neurons. Invertebrates possess two Nav channels (Nav1 and Nav2), whereas vertebrate Nav channels are of the Nav1 family. Approximately 500 Mya in early chordates Nav channels evolved a motif that allowed them to cluster at axon initial segments, 50 million years later with the evolution of myelin, Nav channels "capitalized" on this property and clustered at nodes of Ranvier. The enhancement of conduction velocity along with the evolution of jaws likely made early gnathostomes fierce predators and the dominant vertebrates in the ocean. Later in vertebrate evolution, the Nav channel gene family expanded in parallel in tetrapods and teleosts (∼9 to 10 genes in amniotes, 8 in teleosts). This expansion occurred during or after the late Devonian extinction, when teleosts and tetrapods each diversified in their respective habitats, and coincided with an increase in the number of telencephalic nuclei in both groups. The expansion of Nav channels may have allowed for more sophisticated neural computation and tailoring of Nav channel kinetics with potassium channel kinetics to enhance energy savings. Nav channels show adaptive sequence evolution for increasing diversity in communication signals (electric fish), in protection against lethal Nav channel toxins (snakes, newts, pufferfish, insects), and in specialized habitats (naked mole rats).

  8. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana

    2016-01-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating...... the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice....... With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform...

  9. Presence of voltage-gated potassium channel complex antibody in a case of genetic prion disease.

    Science.gov (United States)

    Jammoul, Adham; Lederman, Richard J; Tavee, Jinny; Li, Yuebing

    2014-06-05

    Voltage-gated potassium channel (VGKC) complex antibody-mediated encephalitis is a recently recognised entity which has been reported to mimic the clinical presentation of Creutzfeldt-Jakob disease (CJD). Testing for the presence of this neuronal surface autoantibody in patients presenting with subacute encephalopathy is therefore crucial as it may both revoke the bleak diagnosis of prion disease and allow institution of potentially life-saving immunotherapy. Tempering this optimistic view is the rare instance when a positive VGKC complex antibody titre occurs in a definite case of prion disease. We present a pathologically and genetically confirmed case of CJD with elevated serum VGKC complex antibody titres. This case highlights the importance of interpreting the result of a positive VGKC complex antibody with caution and in the context of the overall clinical manifestation.

  10. High Grade Glioma Mimicking Voltage Gated Potassium Channel Complex Associated Antibody Limbic Encephalitis

    Directory of Open Access Journals (Sweden)

    Dilan Athauda

    2014-01-01

    Full Text Available Though raised titres of voltage gated potassium channel (VGKC complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE. This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  11. High grade glioma mimicking voltage gated potassium channel complex associated antibody limbic encephalitis.

    Science.gov (United States)

    Athauda, Dilan; Delamont, R S; Pablo-Fernandez, E De

    2014-01-01

    Though raised titres of voltage gated potassium channel (VGKC) complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE). This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  12. Molecular and functional characterization of the voltage-gated proton channel in zebrafish neutrophils.

    Science.gov (United States)

    Ratanayotha, Adisorn; Kawai, Takafumi; Higashijima, Shin-Ichi; Okamura, Yasushi

    2017-08-01

    Voltage-gated proton channels (Hv1/VSOP) are expressed in various cells types, including phagocytes, and are involved in diverse physiological processes. Although hvcn1, the gene encoding Hv1, has been identified across a wide range of species, most of the knowledge about its physiological function and expression profile is limited to mammals. In this study, we investigated the basic properties of DrHv1, the Hv1 ortholog in zebrafish (Danio rerio) which is an excellent animal model owing to the transparency, as well as its functional expression in native cells. Electrophysiological analysis using a heterologous expression system confirmed the properties of a voltage-gated proton channel are conserved in DrHv1 with differences in threshold and activation kinetics as compared to mouse (Mus musculus) Hv1 (mHv1). RT-PCR analysis revealed that hvcn1 is expressed in zebrafish neutrophils, as is the case in mammals. Subsequent electrophysiological analysis confirmed the functional expression of DrHv1 in zebrafish neutrophils, which suggests Hv1 function in phagocytes is conserved among vertebrates. We also found that DrHv1 is comparatively resistant to extracellular Zn(2+), which is a potent inhibitor of mammalian Hv1, and this phenomenon appears to reflect variation in the Zn(2+)-coordinating residue (histidine) within the extracellular linker region in mammalian Hv1. Notably, the serum Zn(2+) concentration is much higher in zebrafish than in mouse, raising the possibility that Zn(2+) sensitivity was acquired in accordance with a change in the serum Zn(2+) concentration. This study highlights the biological variation and importance of Hv1 in different animal species. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels.

    Science.gov (United States)

    Fleidervish, Ilya A; Libman, Lior; Katz, Efrat; Gutnick, Michael J

    2008-12-02

    Because the excitable properties of neurons in the neocortex depend on the characteristics of voltage-gated Na(+) channels, factors which regulate those characteristics can fundamentally modify the dynamics of cortical circuits. Here, we report on a novel neuromodulatory mechanism that links the availability of Na(+) channels to metabolism of polyamines (PAs) in the cerebral cortex. Using single channel and whole-cell recordings, we found that products of PA metabolism, the ubiquitous aliphatic polycations spermine and spermidine, are endogenous blockers of Na(+) channels in layer 5 pyramidal cells. Because the blockade is activity-dependent, it is particularly effective against Na(+) channels which fail to inactivate rapidly and thus underlie the persistent Na(+) current. At the level of the local cortical circuit, pharmacological depletion of PAs led to increased spontaneous spiking and periods of hypersynchronous discharge. Our data suggest that changes in PA levels, whether associated with normal brain states or pathological conditions, profoundly modify Na(+) channel availability and thereby shape the integrative behavior of single neurons and neocortical circuits.

  14. Functional expression of voltage-gated calcium channels in human melanoma.

    Science.gov (United States)

    Das, A; Pushparaj, C; Bahí, N; Sorolla, A; Herreros, J; Pamplona, R; Vilella, R; Matias-Guiu, X; Martí, R M; Cantí, C

    2012-03-01

    The expression of voltage-gated calcium channels (VGCCs) has not been reported previously in melanoma cells in spite of increasing evidence of a role of VGCCs in tumorigenesis and tumour progression. To address this issue we have performed an extensive RT-PCR analysis of VGCC expression in human melanocytes and a range of melanoma cell lines and biopsies. In addition, we have tested the functional expression of these channels using Ca(2+) imaging techniques and examined their relevance for the viability and proliferation of the melanoma cells. Our results show that control melanocytes and melanoma cells express channel isoforms belonging to the Ca(v) 1 and Ca(v) 2 gene families. Importantly, the expression of low voltage-activated Ca(v) 3 (T-type) channels is restricted to melanoma. We have confirmed the function of T-type channels as mediators of constitutive Ca(2+) influx in melanoma cells. Finally, pharmacological and gene silencing approaches demonstrate a role for T-type channels in melanoma viability and proliferation. These results encourage the analysis of T-type VGCCs as targets for therapeutic intervention in melanoma tumorigenesis and/or tumour progression. © 2012 John Wiley & Sons A/S.

  15. Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins.

    Science.gov (United States)

    Pitt, Geoffrey S; Lee, Seok-Yong

    2016-09-01

    In cardiac and skeletal myocytes, and in most neurons, the opening of voltage-gated Na(+) channels (NaV channels) triggers action potentials, a process that is regulated via the interactions of the channels' intercellular C-termini with auxiliary proteins and/or Ca(2+) . The molecular and structural details for how Ca(2+) and/or auxiliary proteins modulate NaV channel function, however, have eluded a concise mechanistic explanation and details have been shrouded for the last decade behind controversy about whether Ca(2+) acts directly upon the NaV channel or through interacting proteins, such as the Ca(2+) binding protein calmodulin (CaM). Here, we review recent advances in defining the structure of NaV intracellular C-termini and associated proteins such as CaM or fibroblast growth factor homologous factors (FHFs) to reveal new insights into how Ca(2+) affects NaV function, and how altered Ca(2+) -dependent or FHF-mediated regulation of NaV channels is perturbed in various disease states through mutations that disrupt CaM or FHF interaction.

  16. The Position of the Fast-Inactivation Gate during Lidocaine Block of Voltage-gated Na+ Channels

    OpenAIRE

    Vedantham, Vasanth; Cannon, Stephen C.

    1999-01-01

    Lidocaine produces voltage- and use-dependent inhibition of voltage-gated Na+ channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na+ channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fast inactivation in lidocaine action has been difficult to probe because gating of drug-bound channel...

  17. Transient Receptor Potential Vanilloid 4-Induced Modulation of Voltage-Gated Sodium Channels in Hippocampal Neurons.

    Science.gov (United States)

    Hong, Zhiwen; Jie, Pinghui; Tian, Yujing; Chen, Tingting; Chen, Lei; Chen, Ling

    2016-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is reported to control the resting membrane potential and increase excitability in many types of cells. Voltage-gated sodium channels (VGSCs) play an important role in initiating action potentials in neurons. However, whether VGSCs can be modulated by the activation of TRPV4 in hippocampal pyramidal neurons remains unknown. In this study, we tested the effect of TRPV4 agonists (GSK1016790A and 4α-PDD) on voltage-gated sodium current (I Na) in hippocampal CA1 pyramidal neurons and the protein levels of α/β-subunit of VGSCs in the hippocampus of mice subjected to intracerebroventricular (icv.) injection of GSK1016790A (GSK-injected mice). Herein, we report that I Na was inhibited by acute application of GSK1016790A or 4α-PDD. In the presence of TRPV4 agonists, the voltage-dependent inactivation curve shifted to the hyperpolarization, whereas the voltage-dependent activation curve remained unchanged. The TRPV4 agonist-induced inhibition of I Na was blocked by the TRPV4 antagonist or tetrodotoxin. Moreover, blocking protein kinase A (PKA) markedly attenuated the GSK1016790A-induced inhibition of I Na, whereas antagonism of protein kinase C or p38 mitogen-activated protein kinase did not change GSK1016790A action. Finally, the protein levels of Nav1.1, Nav1.2, and Nav1.6 in the hippocampus increased in GSK-injected mice, whereas those of Nav1.3 and Navβ1 remained nearly unchanged. We conclude that I Na is inhibited by the acute activation of TRPV4 through PKA signaling pathway in hippocampal pyramidal neurons, but protein expression of α-subunit of VGSCs is increased by sustained TRPV4 activation, which may compensate for the acute inhibition of I Na and provide a possibility for hyper-excitability upon sustained TRPV4 activation.

  18. PIP2 in pancreatic β-cells regulates voltage-gated calcium channels by a voltage-independent pathway.

    Science.gov (United States)

    de la Cruz, Lizbeth; Puente, Erika I; Reyes-Vaca, Arturo; Arenas, Isabel; Garduño, Julieta; Bravo-Martínez, Jorge; Garcia, David E

    2016-10-01

    Phosphatidylinositol-4,5-bisphosphate (PIP2) is a membrane phosphoinositide that regulates the activity of many ion channels. Influx of calcium primarily through voltage-gated calcium (CaV) channels promotes insulin secretion in pancreatic β-cells. However, whether CaV channels are regulated by PIP2, as is the case for some non-insulin-secreting cells, is unknown. The purpose of this study was to investigate whether CaV channels are regulated by PIP2 depletion in pancreatic β-cells through activation of a muscarinic pathway induced by oxotremorine methiodide (Oxo-M). CaV channel currents were recorded by the patch-clamp technique. The CaV current amplitude was reduced by activation of the muscarinic receptor 1 (M1R) in the absence of kinetic changes. The Oxo-M-induced inhibition exhibited the hallmarks of voltage-independent regulation and did not involve PKC activation. A small fraction of the Oxo-M-induced CaV inhibition was diminished by a high concentration of Ca(2+) chelator, whereas ≥50% of this inhibition was prevented by diC8-PIP2 dialysis. Localization of PIP2 in the plasma membrane was examined by transfecting INS-1 cells with PH-PLCδ1, which revealed a close temporal association between PIP2 hydrolysis and CaV channel inhibition. Furthermore, the depletion of PIP2 by a voltage-sensitive phosphatase reduced CaV currents in a way similar to that observed following M1R activation. These results indicate that activation of the M1R pathway inhibits the CaV channel via PIP2 depletion by a Ca(2+)-dependent mechanism in pancreatic β- and INS-1 cells and thereby support the hypothesis that membrane phospholipids regulate ion channel activity by interacting with ion channels.

  19. Role for voltage gated calcium channels in calcitonin gene-related peptide release in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, D V; Ploug, K B; Olesen, J;

    2011-01-01

    Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons and are i...

  20. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels

    Science.gov (United States)

    Valkova, Christina; Liebmann, Lutz; Krämer, Andreas; Hübner, Christian A.; Kaether, Christoph

    2017-01-01

    Rer1 is a sorting receptor in the early secretory pathway that controls the assembly and the cell surface transport of selected multimeric membrane protein complexes. Mice with a Purkinje cell (PC) specific deletion of Rer1 showed normal polarization and differentiation of PCs and normal development of the cerebellum. However, PC-specific loss of Rer1 led to age-dependent motor deficits in beam walk, ladder climbing and gait. Analysis of brain sections revealed a specific degeneration of PCs in the anterior cerebellar lobe in old animals. Electrophysiological recordings demonstrated severe deficits in spontaneous action potential generation. Measurements of resurgent currents indicated decreased surface densities of voltage-gated sodium channels (Nav), but not changes in individual channels. Analysis of mice with a whole brain Rer1-deletion demonstrated a strong down-regulation of Nav1.6 and 1.1 in the absence of Rer1, whereas protein levels of the related Cav2.1 and of Kv3.3 and 7.2 channels were not affected. The data suggest that Rer1 controls the assembly and transport of Nav1.1 and 1.6, the principal sodium channels responsible for recurrent firing, in PCs. PMID:28117367

  1. Molecular mechanism of voltage sensing in voltage-gated proton channels

    Science.gov (United States)

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  2. A specialized molecular motion opens the Hv1 voltage-gated proton channel.

    Science.gov (United States)

    Mony, Laetitia; Berger, Thomas K; Isacoff, Ehud Y

    2015-04-01

    The Hv1 proton channel is unique among voltage-gated channels for containing the pore and gate within its voltage-sensing domain. Pore opening has been proposed to include assembly of the selectivity filter between an arginine (R3) of segment S4 and an aspartate (D1) of segment S1. We determined whether gating involves motion of S1, using Ciona intestinalis Hv1. We found that channel opening is concomitant with solution access to the pore-lining face of S1, from the cytoplasm to deep inside the pore. Voltage- and patch-clamp fluorometry showed that this involves a motion of S1 relative to its surroundings. S1 motion and the S4 motion that precedes it are each influenced by residues on the other helix, thus suggesting a dynamic interaction between S1 and S4. Our findings suggest that the S1 of Hv1 has specialized to function as part of the channel's gate.

  3. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora.

    Science.gov (United States)

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca(2+) signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca(2+)-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.

  4. Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    2016-11-01

    Full Text Available Voltage-gated calcium (Cav channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling, gene expression (excitation-transcription coupling, pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling, regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when many of these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.

  5. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    Science.gov (United States)

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359

  6. Identification of BACE1 cleavage sites in human voltage-gated sodium channel beta 2 subunit

    Directory of Open Access Journals (Sweden)

    Kovacs Dora M

    2010-12-01

    Full Text Available Abstract Background The voltage-gated sodium channel β2 subunit (Navβ2 is a physiological substrate of BACE1 (β-site APP cleaving enzyme and γ-secretase, two proteolytic enzymes central to Alzheimer's disease pathogenesis. Previously, we have found that the processing of Navβ2 by BACE1 and γ-secretase regulates sodium channel metabolism in neuronal cells. In the current study we identified the BACE1 cleavage sites in human Navβ2. Results We found a major (147-148 L↓M, where ↓ indicates the cleavage site and a minor (144145 L↓Q BACE1 cleavage site in the extracellular domain of human Navβ2 using a cell-free BACE1 cleavage assay followed by mass spectrometry. Next, we introduced two different double mutations into the identified major BACE1 cleavage site in human Navβ2: 147LM/VI and 147LM/AA. Both mutations dramatically decreased the cleavage of human Navβ2 by endogenous BACE1 in cell-free BACE1 cleavage assays. Neither of the two mutations affected subcellular localization of Navβ2 as confirmed by confocal fluorescence microscopy and subcellular fractionation of cholesterol-rich domains. Finally, wildtype and mutated Navβ2 were expressed along BACE1 in B104 rat neuroblastoma cells. In spite of α-secretase still actively cleaving the mutant proteins, Navβ2 cleavage products decreased by ~50% in cells expressing Navβ2 (147LM/VI and ~75% in cells expressing Navβ2 (147LM/AA as compared to cells expressing wildtype Navβ2. Conclusion We identified a major (147-148 L↓M and a minor (144-145 L↓Q BACE1 cleavage site in human Navβ2. Our in vitro and cell-based results clearly show that the 147-148 L↓M is the major BACE1 cleavage site in human Navβ2. These findings expand our understanding of the role of BACE1 in voltage-gated sodium channel metabolism.

  7. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals.

    Science.gov (United States)

    Brooke, Ruth E; Moores, Thomas S; Morris, Neil P; Parson, Simon H; Deuchars, Jim

    2004-12-01

    Voltage-gated potassium (Kv) channels are critical to regulation of neurotransmitter release throughout the nervous system but the roles and identity of the subtypes involved remain unclear. Here we show that Kv3 channels regulate transmitter release at the mouse neuromuscular junction (NMJ). Light- and electron-microscopic immunohistochemistry revealed Kv3.3 and Kv3.4 subunits within all motor nerve terminals of muscles examined [transversus abdominus, lumbrical and flexor digitorum brevis (FDB)]. To determine the roles of these Kv3 subunits, intracellular recordings were made of end-plate potentials (EPPs) in FDB muscle fibres evoked by electrical stimulation of tibial nerve. Tetraethylammonium (TEA) applied at low concentrations (0.05-0.5 mM), which blocks only a few known potassium channels including Kv3 channels, did not affect muscle fibre resting potential but significantly increased the amplitude of all EPPs tested. Significantly, this effect of TEA was still observed in the presence of the large-conductance calcium-activated potassium channel blockers iberiotoxin (25-150 nM) and Penitrem A (100 nM), suggesting a selective action on Kv3 subunits. Consistent with this, 15-microM 4-aminopyridine, which blocks Kv3 but not large-conductance calcium-activated potassium channels, enhanced evoked EPP amplitude. Unexpectedly, blood-depressing substance-I, a toxin selective for Kv3.4 subunits, had no effect at 0.05-1 microM. The combined presynaptic localization of Kv3 subunits and pharmacological enhancement of EPP amplitude indicate that Kv3 channels regulate neurotransmitter release from presynaptic terminals at the NMJ.

  8. Electrical coupling between the human serotonin transporter and voltage-gated Ca(2+) channels.

    Science.gov (United States)

    Ruchala, Iwona; Cabra, Vanessa; Solis, Ernesto; Glennon, Richard A; De Felice, Louis J; Eltit, Jose M

    2014-07-01

    Monoamine transporters have been implicated in dopamine or serotonin release in response to abused drugs such as methamphetamine or ecstasy (MDMA). In addition, monoamine transporters show substrate-induced inward currents that may modulate excitability and Ca(2+) mobilization, which could also contribute to neurotransmitter release. How monoamine transporters modulate Ca(2+) permeability is currently unknown. We investigate the functional interaction between the human serotonin transporter (hSERT) and voltage-gated Ca(2+) channels (CaV). We introduce an excitable expression system consisting of cultured muscle cells genetically engineered to express hSERT. Both 5HT and S(+)MDMA depolarize these cells and activate the excitation-contraction (EC)-coupling mechanism. However, hSERT substrates fail to activate EC-coupling in CaV1.1-null muscle cells, thus implicating Ca(2+) channels. CaV1.3 and CaV2.2 channels are natively expressed in neurons. When these channels are co-expressed with hSERT in HEK293T cells, only cells expressing the lower-threshold L-type CaV1.3 channel show Ca(2+) transients evoked by 5HT or S(+)MDMA. In addition, the electrical coupling between hSERT and CaV1.3 takes place at physiological 5HT concentrations. The electrical coupling between monoamine neurotransmitter transporters and Ca(2+) channels such as CaV1.3 is a novel mechanism by which endogenous substrates (neurotransmitters) or exogenous substrates (like ecstasy) could modulate Ca(2+)-driven signals in excitable cells.

  9. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels.

    Science.gov (United States)

    Aman, Teresa K; Grieco-Calub, Tina M; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A; Isom, Lori L; Raman, Indira M

    2009-02-18

    The beta subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming alpha subunits, as well as their trafficking and localization. In heterologous expression systems, beta1, beta2, and beta3 subunits influence inactivation and persistent current in different ways. To test how the beta4 protein regulates Na channel gating, we transfected beta4 into HEK (human embryonic kidney) cells stably expressing Na(V)1.1. Unlike a free peptide with a sequence from the beta4 cytoplasmic domain, the full-length beta4 protein did not block open channels. Instead, beta4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of noninactivating current. Consequently, persistent current tripled in amplitude. Expression of beta1 or chimeric subunits including the beta1 extracellular domain, however, favored inactivation. Coexpressing Na(V)1.1 and beta4 with beta1 produced tiny persistent currents, indicating that beta1 overcomes the effects of beta4 in heterotrimeric channels. In contrast, beta1(C121W), which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by beta4 and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with beta4, persistent current was slightly but significantly increased. Moreover, in beta4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that beta1 and beta4 have antagonistic roles, the former favoring inactivation, and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted beta1 subunits.

  10. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltage-gated sodium channel genes

    Science.gov (United States)

    Zuo, Yayun; Peng, Xiong; Wang, Kang; Lin, Fangfei; Li, Yuting; Chen, Maohua

    2016-07-01

    The voltage-gated sodium channel (VGSC) is the target of sodium-channel-blocking insecticides. Traditionally, animals were thought to have only one VGSC gene comprising a α-subunit with four homologous domains (DI-DIV). The present study showed that Rhopalosiphum padi, an economically important crop pest, owned a unique heterodimeric VGSC (H1 and H2 subunits) encoded by two genes (Rpvgsc1 and Rpvgsc2), which is unusual in insects and other animals. The open reading frame (ORF) of Rpvgsc1 consisted 1150 amino acids, and the ORF of Rpvgsc2 had 957 amino acids. Rpvgsc1 showed 64.1% amino acid identity to DI-DII of Drosophila melanogaster VGSC and Rpvgsc2 showed 64.0% amino acid identity to DIII-DIV of D. melanogaster VGSC. A M918L mutation previously reported in pyrethroids-resistant strains of other insects was found in the IIS4-S6 region of R. padi field sample. The two R. padi VGSC genes were expressed at all developmental stages and showed similar expression patterns after treatment with beta-cypermethrin. Knockdown of Rpvgsc1 or Rpvgsc2 caused significant reduction in mortality rate of R. padi after exposure to beta-cypermethrin. These findings suggest that the two R. padi VGSC genes are both functional genes.

  11. Targeting voltage-gated sodium channels for treatment for chronic visceral pain

    Institute of Scientific and Technical Information of China (English)

    Fei-Hu Qi; You-Lang Zhou; Guang-Yin Xu

    2011-01-01

    Voltage-gated sodium channels (VGSCs) play a fundamental role in controlling cellular excitability, and their abnormal activity is related to several pathological processes, including cardiac arrhythmias, epilepsy, neurodegenerative diseases, spasticity and chronic pain. In particular, chronic visceral pain, the central symptom of functional gastrointestinal disorders such as irritable bowel syndrome, is a serious clinical problem that affects a high percentage of the world population. In spite of intense research efforts and after the dedicated decade of pain control and research, there are not many options to treat chronic pain conditions. However, there is a wealth of evidence emerging to give hope that a more refined approach may be achievable. By using electronic databases, available data on structural and functional properties of VGSCs in chronic pain, particularly functional gastrointestinal hypersensitivity, were reviewed. We summarize the involvement and molecular bases of action of VGSCs in the pathophysiology of several organic and functional gastrointestinal disorders. We also describe the efficacy of VGSC blockers in the treatment of these neurological diseases, and outline future developments that may extend the therapeutic use of compounds that target VGSCs. Overall, clinical and experimental data indicate that isoform-specific blockers of these channels or targeting of their modulators may provide effective and novel approaches for visceral pain therapy.

  12. A novel anticonvulsant modulates voltage-gated sodium channel inactivation and prevents kindling-induced seizures.

    Science.gov (United States)

    Ashraf, Muhammad N; Gavrilovici, Cezar; Shah, Syed U Ali; Shaheen, Farzana; Choudhary, Muhammad I; Rahman, Atta-ur; Fahnestock, Margaret; Simjee, Shabana U; Poulter, Michael O

    2013-09-01

    Here, we explore the mechanism of action of isoxylitone (ISOX), a molecule discovered in the plant Delphinium denudatum, which has been shown to have anticonvulsant properties. Patch-clamp electrophysiology assayed the activity of ISOX on voltage-gated sodium channels (VGSCs) in both cultured neurons and brain slices isolated from controls and rats with experimental epilepsy(kindling model). Quantitative transcription polymerase chain reaction (qRT-PCR) (QPCR) assessed brain-derived neurotrophic factor (BDNF) mRNA expression in kindled rats, and kindled rats treated with ISOX. ISOX suppressed sodium current (I(Na)) showing an IC50 value of 185 nM in cultured neurons. ISOX significantly slowed the recovery from inactivation (ISOX τ = 18.7 ms; Control τ = 9.4 ms; p kindled cortical neurons, the IC50 for sodium current block was identical to that found in cultured neurons. ISOX prevented kindled stage 5 seizures and decreased the enhanced BDNF mRNA expression that is normally associated with kindling (p kindling is likely a secondary outcome that nevertheless would suppress epileptogenesis. These data show a new class of anti-seizure compound that inhibits sodium channel function and prevents the development of epileptic seizures.

  13. The voltage-gated proton channel Hv1/VSOP inhibits neutrophil granule release.

    Science.gov (United States)

    Okochi, Yoshifumi; Aratani, Yasuaki; Adissu, Hibret A; Miyawaki, Nana; Sasaki, Mari; Suzuki, Kazuo; Okamura, Yasushi

    2016-01-01

    Neutrophil granule exocytosis is crucial for host defense and inflammation. Neutrophils contain 4 types of granules, the exocytotic release of which is differentially regulated. This exocytosis is known to be driven by diverse mediators, including calcium and nucleotides, but the precise molecular mechanism remains largely unknown. We show in the present study that voltage-gated proton (Hv) channels are necessary for the proper release of azurophilic granules in neutrophils. On activation of NADPH oxidase by PMA and IgG, neutrophils derived from Hvcn1 gene knockout mouse exhibited greater secretion of MPO and elastase than WT cells. In contrast, release of LTF enriched in specific granules was not enhanced in these cells. The excess release of azurophilic granules in Hv1/VSOP-deficient neutrophils was suppressed by inhibiting NADPH oxidase activity and, in part, by valinomycin, a potassium ionophore. In addition, Hv1/VSOP-deficient mice exhibited more severe lung inflammation after intranasal Candida albicans infection than WT mice. These findings suggest that the Hv channel acts to specifically dampen the release of azurophilic granules through, in part, the suppression of increased positive charges at the plasma membrane accompanied by the activation of NADPH oxidase in neutrophils. © Society for Leukocyte Biology.

  14. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis.

    Science.gov (United States)

    Béguin, Pascal; Nagashima, Kazuaki; Mahalakshmi, Ramasubbu N; Vigot, Réjan; Matsunaga, Atsuko; Miki, Takafumi; Ng, Mei Yong; Ng, Yu Jin Alvin; Lim, Chiaw Hwee; Tay, Hock Soon; Hwang, Le-Ann; Firsov, Dmitri; Tang, Bor Luen; Inagaki, Nobuya; Mori, Yasuo; Seino, Susumu; Launey, Thomas; Hunziker, Walter

    2014-04-28

    Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca(2+)-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca(2+) overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain-binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca(2+) channel activity at the plasma membrane, resulting in the inhibition of Ca(2+)-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity.

  15. Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shashank Gupta

    Full Text Available Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity.

  16. Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Jian-quan ZHENG; Xie-chuan WENG; Xiao-dan GAI; Jin LI; Wen-bin XIAO

    2004-01-01

    AIM: To investigate whether agmatine could selectively block a given type of the voltage-gated calcium channels (VGCC) and whether related receptors are involved in the blocking effect of agmatine on VGCC. METHODS: The whole-cell patch recording technique was performed to record VGCC currents in the cultured neonatal rat hippocampal neurons. RESULTS: Verapamil (100 μmol/L), a selective blocker of L-type calcium channel, significantly inhibited VGCC current by 80 %± 7 %. Agmatine (100 μmol/L) could further depress the remained currents by 25 %±6 %. The α2-adrenoceptor antagonist yohimbine (10 μmol/L) and the I2 imidazoline receptor antagonist idazoxon (10 and 40 μmol/L) had no significant effect on VGCC currents when used respectively. When the mixture of yohimbine and agmatine was applied, VGCC currents were still depressed remarkably. However, the blocking effect of agmatine was decreased by 29 %± 8 % in the presence of idazoxon (10 μmol/L). The effect of idazoxon did not increase at a higher concentration (40 μmol/L). CONCLUSION: Agmatine could block the L- and other types of VGCC currents in the cultured rat hippocampal neurons. Blocking effect of agmatine on VGCC was partially related to I2 imidazoline receptor and had no relationship with α2-adrenoceptors.

  17. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation.

    Science.gov (United States)

    Fraser, Scott P; Ozerlat-Gunduz, Iley; Brackenbury, William J; Fitzgerald, Elizabeth M; Campbell, Thomas M; Coombes, R Charles; Djamgoz, Mustafa B A

    2014-03-19

    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na(+) channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer.

  18. Solution structure and alanine scan of a spider toxin that affects the activation of mammalian voltage-gated sodium channels.

    Science.gov (United States)

    Corzo, Gerardo; Sabo, Jennifer K; Bosmans, Frank; Billen, Bert; Villegas, Elba; Tytgat, Jan; Norton, Raymond S

    2007-02-16

    Magi 5, from the hexathelid spider Macrothele gigas, is a 29-residue polypeptide containing three disulfide bridges. It binds specifically to receptor site 4 on mammalian voltage-gated sodium channels and competes with scorpion beta-toxins, such as Css IV from Centruroides suffusus suffusus. As a consequence, Magi 5 shifts the activation voltage of the mammalian rNav1.2a channel to more hyperpolarized voltages, whereas the insect channel, DmNav1, is not affected. To gain insight into toxin-channel interactions, Magi 5 and 23 analogues were synthesized. The three-dimensional structure of Magi 5 in aqueous solution was determined, and its voltage-gated sodium channel-binding surfaces were mapped onto this structure using data from electrophysiological measurements on a series of Ala-substituted analogues. The structure clearly resembles the inhibitor cystine knot structural motif, although the triple-stranded beta-sheet typically found in that motif is partially distorted in Magi 5. The interactive surface of Magi 5 toward voltage-gated sodium channels resembles in some respects the Janus-faced atracotoxins, with functionally important charged residues on one face of the toxin and hydrophobic residues on the other. Magi 5 also resembles the scorpion beta-toxin Css IV, which has distinct nonpolar and charged surfaces that are critical for channel binding and has a key Glu involved in voltage sensor trapping. These two distinct classes of toxin, with different amino acid sequences and different structures, may utilize similar groups of residues on their surface to achieve the common end of modifying voltage-gated sodium channel function.

  19. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility.

    Science.gov (United States)

    Smith, Ryan C; McClure, Marisa C; Smith, Margaret A; Abel, Peter W; Bradley, Michael E

    2007-11-02

    Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv) channels and large-conductance, calcium-activated potassium (BK) channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. The Kv channel blocker 4-aminopyridine (4-AP) caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar) but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were found in isolated myometrium from both nonpregnant and

  20. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    Directory of Open Access Journals (Sweden)

    Abel Peter W

    2007-11-01

    Full Text Available Abstract Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv channels and large-conductance, calcium-activated potassium (BK channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were

  1. Molecular Model of Anticonvulsant Drug Binding to the Voltage-Gated Sodium Channel Inner Pore

    Science.gov (United States)

    Lipkind, Gregory M.

    2010-01-01

    The tricyclic anticonvulsant drugs phenytoin, carbamazepine, and lamotrigine block neuronal voltage-gated Na+ channels, and their binding sites to domain IV-S6 in the channel's inner pore overlap with those of local anesthetic drugs. These anticonvulsants are neutral, in contrast to the mostly positively charged local anesthetics, but their open/inactivated-state blocking affinities are similar. Using a model of the open pore of the Na+ channel that we developed by homology with the crystal structures of potassium channels, we have docked these three anticonvulsants with residues identified by mutagenesis as important for their binding energy. The three drugs show a common pharmacophore, including an aromatic ring that has an aromatic-aromatic interaction with Tyr-1771 of NaV1.2 and a polar amide or imide that interacts with the aromatic ring of Phe-1764 by a low-energy amino-aromatic hydrogen bond. The second aromatic ring is nearly at a right angle to the pharmacophore and fills the pore lumen, probably interacting with the other S6 segments and physically occluding the inner pore to block Na+ permeation. Hydrophobic interactions with this second aromatic ring may contribute an important component to binding for anticonvulsants, which compensates energetically for the absence of positive charge in their structures. Voltage dependence of block, their important therapeutic property, results from their interaction with Phe-1764, which connects them to the voltage sensors. Their use dependence is modest and this results from being neutral, with a fast drug off-rate after repolarization, allowing a normal action potential rate in the presence of the drugs. PMID:20643904

  2. How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity

    Directory of Open Access Journals (Sweden)

    C. Andrew eFrank

    2014-02-01

    Full Text Available Throughout life, animals face a variety of challenges such as developmental growth, the presence of toxins, or changes in temperature. Neuronal circuits and synapses respond to challenges by executing an array of neuroplasticity paradigms. Some paradigms allow neurons to up- or downregulate activity outputs, while countervailing ones ensure that outputs remain within appropriate physiological ranges. A growing body of evidence suggests that homeostatic synaptic plasticity (HSP is critical in the latter case. Voltage-gated calcium channels gate forms of HSP. Presynaptically, the aggregate data show that when synapse activity is weakened, homeostatic signaling systems can act to correct impairments, in part by increasing calcium influx through presynaptic CaV2-type channels. Increased calcium influx is often accompanied by parallel increases in the size of active zones and the size of the readily releasable pool of presynaptic vesicles. These changes coincide with homeostatic enhancements of neurotransmitter release. Postsynaptically, there is a great deal of evidence that reduced network activity and loss of calcium influx through CaV1-type calcium channels also results in adaptive homeostatic signaling. Some adaptations drive presynaptic enhancements of vesicle pool size and turnover rate via retrograde signaling, as well as de novo insertion of postsynaptic neurotransmitter receptors. Enhanced calcium influx through CaV1 after network activation or single cell stimulation can elicit the opposite response – homeostatic depression via removal of excitatory receptors.There exist intriguing links between HSP and calcium channelopathies – such as forms of epilepsy, migraine, ataxia, and myasthenia. The episodic nature of some of these disorders suggests alternating periods of stable and unstable function. Uncovering information about how calcium channels are regulated in the context of HSP could be relevant toward understanding these and other

  3. Differential CaMKII regulation by voltage-gated calcium channels in the striatum.

    Science.gov (United States)

    Pasek, Johanna G; Wang, Xiaohan; Colbran, Roger J

    2015-09-01

    Calcium signaling regulates synaptic plasticity and many other functions in striatal medium spiny neurons to modulate basal ganglia function. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a major calcium-dependent signaling protein that couples calcium entry to diverse cellular changes. CaMKII activation results in autophosphorylation at Thr286 and sustained calcium-independent CaMKII activity after calcium signals dissipate. However, little is known about the mechanisms regulating striatal CaMKII. To address this, mouse brain slices were treated with pharmacological modulators of calcium channels and punches of dorsal striatum were immunoblotted for CaMKII Thr286 autophosphorylation as an index of CaMKII activation. KCl depolarization increased levels of CaMKII autophosphorylation ~2-fold; this increase was blocked by an LTCC antagonist and was mimicked by treatment with pharmacological LTCC activators. The chelation of extracellular calcium robustly decreased basal CaMKII autophosphorylation within 5min and increased levels of total CaMKII in cytosolic fractions, in addition to decreasing the phosphorylation of CaMKII sites in the GluN2B subunit of NMDA receptors and the GluA1 subunit of AMPA receptors. We also found that the maintenance of basal levels of CaMKII autophosphorylation requires low-voltage gated T-type calcium channels, but not LTCCs or R-type calcium channels. Our findings indicate that CaMKII activity is dynamically regulated by multiple calcium channels in the striatum thus coupling calcium entry to key downstream substrates.

  4. The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke.

    Science.gov (United States)

    Wu, Long-Jun; Wu, Gongxiong; Akhavan Sharif, M Reza; Baker, Amanda; Jia, Yonghui; Fahey, Frederic H; Luo, Hongbo R; Feener, Edward P; Clapham, David E

    2012-03-04

    Phagocytic cell NADPH oxidase (NOX) generates reactive oxygen species (ROS) as part of innate immunity. Unfortunately, ischemia can also induce this pathway and inflict damage on native cells. The voltage-gated proton channel Hv1 enables NOX function by compensating cellular loss of electrons with protons. Accordingly, we investigated whether NOX-mediated brain damage in stroke can be inhibited by suppression of Hv1. We found that mouse and human brain microglia, but not neurons or astrocytes, expressed large Hv1-mediated currents. Hv1 was required for NOX-dependent ROS generation in brain microglia in situ and in vivo. Mice lacking Hv1 were protected from NOX-mediated neuronal death and brain damage 24 h after stroke. These results indicate that Hv1-dependent ROS production is responsible for a substantial fraction of brain damage at early time points after ischemic stroke and provide a rationale for Hv1 as a therapeutic target for the treatment of ischemic stroke.

  5. Molecular determinants of prokaryotic voltage-gated sodium channels for recognition of local anesthetics.

    Science.gov (United States)

    Shimomura, Takushi; Irie, Katsumasa; Fujiyoshi, Yoshinori

    2016-08-01

    Local anesthetics (LAs) inhibit mammalian voltage-gated Na(+) channels (Navs) and are thus clinically important. LAs also inhibit prokaryotic Navs (BacNavs), which have a simpler structure than mammalian Navs. To elucidate the detailed mechanisms of LA inhibition to BacNavs, we used NavBh, a BacNav from Bacillus halodurans, to analyze the interactions of several LAs and quaternary ammoniums (QAs). Based on the chemical similarity of QA with the tertiary-alkylamine (TAA) group of LAs, QAs were used to determine the residues required for the recognition of TAA by NavBh. We confirmed that two residues, Thr220 and Phe227, are important for LA binding; a methyl group of Thr220 is important for recognizing both QAs and LAs, whereas Phe227 is involved in holding blockers at the binding site. In addition, we found that NavBh holds blockers in a closed state, consistent with the large inner cavity observed in the crystal structures of BacNavs. These findings reveal the inhibition mechanism of LAs in NavBh, where the methyl group of Thr220 provides the main receptor site for the TAA group and the bulky phenyl group of Phe227 holds the blockers inside the large inner cavity. These two residues correspond to the two LA recognition residues in mammalian Navs, which suggests the relevance of the LA recognition between BacNavs and mammalian Navs. © 2016 Federation of European Biochemical Societies.

  6. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, H.; Mader, I. [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Rauer, S.; Baumgartner, A. [University Medical Center Freiburg, Department of Neurology, Freiburg (Germany); Paus, S. [University Medical Center, Department of Neurology, Bonn (Germany); Wagner, J. [University Medical Center, Department of Epileptology, Bonn (Germany); Malter, M.P. [University of Cologne, Department of Neurology, Cologne (Germany); Pruess, H. [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Lewerenz, J.; Kassubek, J. [Ulm University, Department of Neurology, Ulm (Germany); Hegen, H.; Auer, M.; Deisenhammer, F. [University Innsbruck, Department of Neurology, Innsbruck (Austria); Ufer, F. [University Medical Center, Department of Neurology, Hamburg (Germany); Bien, C.G. [Epilepsy Centre Bethel, Bielefeld-Bethel (Germany)

    2015-12-15

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  7. Voltage-gated potassium channels autoantibodies in a child with rasmussen encephalitis.

    Science.gov (United States)

    Spitz, Marie-Aude; Dubois-Teklali, Fanny; Vercueil, Laurent; Sabourdy, Cécile; Nugues, Frédérique; Vincent, Angela; Oliver, Viviana; Bulteau, Christine

    2014-10-01

    Rasmussen encephalitis (RE) is a severe epileptic and inflammatory encephalopathy of unknown etiology, responsible for focal neurological signs and cognitive decline. The current leading hypothesis suggests a sequence of immune reactions induced by an indeterminate factor. This sequence is thought to be responsible for the production of autoantibody-mediated central nervous system degeneration. However, these autoantibodies are not specific to the disease and not all patients present with them. We report the case of a 4-year-old girl suffering from RE displaying some atypical features such as fast evolution and seizures of left parietal onset refractory to several antiepileptics, intravenous immunoglobulins, and corticosteroids. Serum autoantibodies directed against voltage-gated potassium channels (VGKC) were evidenced at 739 pM, a finding never previously reported in children. This screening was performed because of an increased signal in the temporolimbic areas on brain magnetic resonance imaging, which was similar to what is observed during limbic encephalitis. The patient experienced epilepsia partialis continua with progressive right hemiplegia and aphasia. She underwent left hemispherotomy at the age of 5.5 years after which she became seizure free with great cognitive improvement. First described in adults, VGKC autoantibodies have been recently described in children with various neurological manifestations. The implication of VGKC autoantibodies in RE is a new observation and opens up new physiopathological and therapeutic avenues of investigation.

  8. Voltage-Gated Potassium Channel Antibody Paraneoplastic Limbic Encephalitis Associated with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Marion Alcantara

    2013-05-01

    Full Text Available Among paraneoplastic syndromes (PNS associated with malignant hemopathies, there are few reports of PNS of the central nervous system and most of them are associated with lymphomas. Limbic encephalitis is a rare neurological syndrome classically diagnosed in the context of PNS. We report the case of a 81-year-old man who presented with a relapsed acute myeloid leukemia (AML with minimal maturation. He was admitted for confusion with unfavorable evolution as he presented a rapidly progressive dementia resulting in death. A brain magnetic resonance imaging, performed 2 months after the onset, was considered normal. An electroencephalogram showed non-specific bilateral slow waves. We received the results of the blood screening of neuronal autoantibodies after the patient's death and detected the presence of anti-voltage-gated potassium channel (VGKC antibodies at 102 pmol/l (normal at <30 pmol/l. Other etiologic studies, including the screening for another cause of rapidly progressive dementia, were negative. To our knowledge, this is the first case of anti-VGKC paraneoplastic limbic encephalitis related to AML.

  9. X-ray crystal structure of voltage-gated proton channel.

    Science.gov (United States)

    Takeshita, Kohei; Sakata, Souhei; Yamashita, Eiki; Fujiwara, Yuichiro; Kawanabe, Akira; Kurokawa, Tatsuki; Okochi, Yoshifumi; Matsuda, Makoto; Narita, Hirotaka; Okamura, Yasushi; Nakagawa, Atsushi

    2014-04-01

    The voltage-gated proton channel Hv1 (or VSOP) has a voltage-sensor domain (VSD) with dual roles of voltage sensing and proton permeation. Its gating is sensitive to pH and Zn(2+). Here we present a crystal structure of mouse Hv1 in the resting state at 3.45-Å resolution. The structure showed a 'closed umbrella' shape with a long helix consisting of the cytoplasmic coiled coil and the voltage-sensing helix, S4, and featured a wide inner-accessible vestibule. Two out of three arginines in S4 were located below the phenylalanine constituting the gating charge-transfer center. The extracellular region of each protomer coordinated a Zn(2+), thus suggesting that Zn(2+) stabilizes the resting state of Hv1 by competing for acidic residues that otherwise form salt bridges with voltage-sensing positive charges on S4. These findings provide a platform for understanding the general principles of voltage sensing and proton permeation.

  10. Voltage-gated potassium channel antibody paraneoplastic limbic encephalitis associated with acute myeloid leukemia.

    Science.gov (United States)

    Alcantara, Marion; Bennani, Omar; Verdure, Pierre; Leprêtre, Stéphane; Tilly, Hervé; Jardin, Fabrice

    2013-05-01

    Among paraneoplastic syndromes (PNS) associated with malignant hemopathies, there are few reports of PNS of the central nervous system and most of them are associated with lymphomas. Limbic encephalitis is a rare neurological syndrome classically diagnosed in the context of PNS. We report the case of a 81-year-old man who presented with a relapsed acute myeloid leukemia (AML) with minimal maturation. He was admitted for confusion with unfavorable evolution as he presented a rapidly progressive dementia resulting in death. A brain magnetic resonance imaging, performed 2 months after the onset, was considered normal. An electroencephalogram showed non-specific bilateral slow waves. We received the results of the blood screening of neuronal autoanti-bodies after the patient's death and detected the presence of anti-voltage-gated potassium channel (VGKC) antibodies at 102 pmol/l (normal at <30 pmol/l). Other etiologic studies, including the screening for another cause of rapidly progressive dementia, were negative. To our knowledge, this is the first case of anti-VGKC paraneoplastic limbic encephalitis related to AML.

  11. The voltage-gated sodium channel NaV 1.9 in visceral pain.

    Science.gov (United States)

    Hockley, J R F; Winchester, W J; Bulmer, D C

    2016-03-01

    Visceral pain is a common symptom for patients with gastrointestinal (GI) disease. It is unpleasant, debilitating, and represents a large unmet medical need for effective clinical treatments. Recent studies have identified NaV 1.9 as an important regulator of afferent sensitivity in visceral pain pathways to mechanical and inflammatory stimuli, suggesting that NaV 1.9 could represent an important therapeutic target for the treatment of visceral pain. This potential has been highlighted by the identification of patients who have an insensitivity to pain or painful neuropathies associated with mutations in SCN11A, the gene encoding voltage-gated sodium channel subtype 1.9 (NaV 1.9). Here, we address the role of NaV 1.9 in visceral pain and what known human NaV 1.9 mutants can tell us about NaV 1.9 function in gut physiology and pathophysiology. © 2015 John Wiley & Sons Ltd.

  12. Seeing the forest through the trees: towards a unified view on physiological calcium regulation of voltage-gated sodium channels.

    Science.gov (United States)

    Van Petegem, Filip; Lobo, Paolo A; Ahern, Christopher A

    2012-12-05

    Voltage-gated sodium channels (Na(V)s) underlie the upstroke of the action potential in the excitable tissues of nerve and muscle. After opening, Na(V)s rapidly undergo inactivation, a crucial process through which sodium conductance is negatively regulated. Disruption of inactivation by inherited mutations is an established cause of lethal cardiac arrhythmia, epilepsy, or painful syndromes. Intracellular calcium ions (Ca(2+)) modulate sodium channel inactivation, and multiple players have been suggested in this process, including the cytoplasmic Na(V) C-terminal region including two EF-hands and an IQ motif, the Na(V) domain III-IV linker, and calmodulin. Calmodulin can bind to the IQ domain in both Ca(2+)-bound and Ca(2+)-free conditions, but only to the DIII-IV linker in a Ca(2+)-loaded state. The mechanism of Ca(2+) regulation, and its composite effect(s) on channel gating, has been shrouded in much controversy owing to numerous apparent experimental inconsistencies. Herein, we attempt to summarize these disparate data and propose a novel, to our knowledge, physiological mechanism whereby calcium ions promote sodium current facilitation due to Ca(2+) memory at high-action-potential frequencies where Ca(2+) levels may accumulate. The available data suggest that this phenomenon may be disrupted in diseases where cytoplasmic calcium ion levels are chronically high and where targeted phosphorylation may decouple the Ca(2+) regulatory machinery. Many Na(V) disease mutations associated with electrical dysfunction are located in the Ca(2+)-sensing machinery and misregulation of Ca(2+)-dependent channel modulation is likely to contribute to disease phenotypes.

  13. Identifying interacting proteins of a Caenorhabditis elegans voltage-gated chloride channel CLH-1 using GFP-Trap and mass spectrometry.

    Science.gov (United States)

    Zhou, Zi-Liang; Jiang, Jing; Yin, Jiang-An; Cai, Shi-Qing

    2014-06-25

    Chloride channels belong to a superfamily of ion channels that permit passive passage of anions, mainly chloride, across cell membrane. They play a variety of important physiological roles in regulation of cytosolic pH, cell volume homeostasis, organic solute transport, cell migration, cell proliferation, and differentiation. However, little is known about the functional regulation of these channels. In this study, we generated an integrated transgenic worm strain expressing green fluorescence protein (GFP) fused CLC-type chloride channel 1 (CLH-1::GFP), a voltage-gated chloride channel in Caenorhabditis elegans (C. elegans). CLH-1::GFP was expressed in some unidentified head neurons and posterior intestinal cells of C. elegans. Interacting proteins of CLH-1::GFP were purified by GFP-Trap, a novel system for efficient isolation of GFP fusion proteins and their interacting factors. Mass spectrometry (MS) analysis revealed that a total of 27 high probability interacting proteins were co-trapped with CLHp-1::GFP. Biochemical evidence showed that eukaryotic translation elongation factor 1 (EEF-1), one of these co-trapped proteins identified by MS, physically interacted with CLH-1, in consistent with GFP-Trap experiments. Further immunostaining data revealed that the protein level of CLH-1 was significantly increased upon co-expression with EEF-1. These results suggest that the combination of GFP-Trap purification with MS is an excellent tool to identify novel interacting proteins of voltage-gated chloride channels in C. elegans. Our data also show that EEF-1 is a regulator of voltage-gated chloride channel CLH-1.

  14. Exploring the structure of the voltage-gated Na+ channel by an engineered drug access pathway to the receptor site for local anesthetics.

    Science.gov (United States)

    Lukacs, Peter; Gawali, Vaibhavkumar S; Cervenka, Rene; Ke, Song; Koenig, Xaver; Rubi, Lena; Zarrabi, Touran; Hilber, Karlheinz; Stary-Weinzinger, Anna; Todt, Hannes

    2014-08-01

    Despite the availability of several crystal structures of bacterial voltage-gated Na(+) channels, the structure of eukaryotic Na(+) channels is still undefined. We used predictions from available homology models and crystal structures to modulate an external access pathway for the membrane-impermeant local anesthetic derivative QX-222 into the internal vestibule of the mammalian rNaV1.4 channel. Potassium channel-based homology models predict amino acid Ile-1575 in domain IV segment 6 to be in close proximity to Lys-1237 of the domain III pore-loop selectivity filter. The mutation K1237E has been shown previously to increase the diameter of the selectivity filter. We found that an access pathway for external QX-222 created by mutations of Ile-1575 was abolished by the additional mutation K1237E, supporting the notion of a close spatial relationship between sites 1237 and 1575. Crystal structures of bacterial voltage-gated Na(+) channels predict that the side chain of rNaV1.4 Trp-1531 of the domain IV pore-loop projects into the space between domain IV segment 6 and domain III pore-loop and, therefore, should obstruct the putative external access pathway. Indeed, mutations W1531A and W1531G allowed for exceptionally rapid access of QX-222. In addition, W1531G created a second non-selective ion-conducting pore, bypassing the outer vestibule but probably merging into the internal vestibule, allowing for control by the activation gate. These data suggest a strong structural similarity between bacterial and eukaryotic voltage-gated Na(+) channels. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Exploring the Structure of the Voltage-gated Na+ Channel by an Engineered Drug Access Pathway to the Receptor Site for Local Anesthetics*

    Science.gov (United States)

    Lukacs, Peter; Gawali, Vaibhavkumar S.; Cervenka, Rene; Ke, Song; Koenig, Xaver; Rubi, Lena; Zarrabi, Touran; Hilber, Karlheinz; Stary-Weinzinger, Anna; Todt, Hannes

    2014-01-01

    Despite the availability of several crystal structures of bacterial voltage-gated Na+ channels, the structure of eukaryotic Na+ channels is still undefined. We used predictions from available homology models and crystal structures to modulate an external access pathway for the membrane-impermeant local anesthetic derivative QX-222 into the internal vestibule of the mammalian rNaV1.4 channel. Potassium channel-based homology models predict amino acid Ile-1575 in domain IV segment 6 to be in close proximity to Lys-1237 of the domain III pore-loop selectivity filter. The mutation K1237E has been shown previously to increase the diameter of the selectivity filter. We found that an access pathway for external QX-222 created by mutations of Ile-1575 was abolished by the additional mutation K1237E, supporting the notion of a close spatial relationship between sites 1237 and 1575. Crystal structures of bacterial voltage-gated Na+ channels predict that the side chain of rNaV1.4 Trp-1531 of the domain IV pore-loop projects into the space between domain IV segment 6 and domain III pore-loop and, therefore, should obstruct the putative external access pathway. Indeed, mutations W1531A and W1531G allowed for exceptionally rapid access of QX-222. In addition, W1531G created a second non-selective ion-conducting pore, bypassing the outer vestibule but probably merging into the internal vestibule, allowing for control by the activation gate. These data suggest a strong structural similarity between bacterial and eukaryotic voltage-gated Na+ channels. PMID:24947510

  16. Modulation of voltage-gated sodium channels hyperpolarizes the voltage threshold for activation in spinal motoneurones.

    Science.gov (United States)

    Power, Kevin E; Carlin, Kevin P; Fedirchuk, Brent

    2012-03-01

    Previous work has shown that motoneurone excitability is enhanced by a hyperpolarization of the membrane potential at which an action potential is initiated (V(th)) at the onset, and throughout brainstem-evoked fictive locomotion in the adult decerebrate cat and neonatal rat. Modeling work has suggested the modulation of Na(+) conductance as a putative mechanism underlying this state-dependent change in excitability. This study sought to determine whether modulation of voltage-gated sodium channels could induce V(th) hyperpolarization. Whole-cell patch-clamp recordings were made from antidromically identified lumbar spinal motoneurones in an isolated neonatal rat spinal cord preparation. Recordings were made with and without the bath application of veratridine, a plant alkaloid neurotoxin that acts as a sodium channel modulator. As seen in HEK 293 cells expressing Nav1.2 channels, veratridine-modified channels demonstrated a hyperpolarizing shift in their voltage-dependence of activation and a slowing of inactivation that resulted in an enhanced inward current in response to voltage ramp stimulations. In the native rat motoneurones, veratridine-modified sodium channels induced a hyperpolarization of V(th) in all 29 neonatal rat motoneurones examined (mean hyperpolarization: -6.6 ± 4.3 mV). V(th) hyperpolarization was not due to the effects on Ca(2+) and/or K(+) channels as blockade of these currents did not alter V(th). Veratridine also significantly increased the amplitude of persistent inward currents (PICs; mean increase: 72.5 ± 98.5 pA) evoked in response to slow depolarizing current ramps. However, the enhancement of the PIC amplitude had a slower time course than the hyperpolarization of V(th), and the PIC onset voltage could be either depolarized or hyperpolarized, suggesting that PIC facilitation did not mediate the V(th) hyperpolarization. We therefore suggest that central neuronal circuitry in mammals could affect V(th) in a mechanism similar to that of

  17. Voltage-gated potassium channel-complex autoimmunity and associated clinical syndromes.

    Science.gov (United States)

    Irani, Sarosh R; Vincent, Angela

    2016-01-01

    Voltage-gated potassium channel (VGKC)-complex antibodies are defined by the radioimmunoprecipitation of Kv1 potassium channel subunits from brain tissue extracts and were initially discovered in patients with peripheral nerve hyperexcitability (PNH). Subsequently, they were found in patients with PNH plus psychosis, insomnia, and dysautonomia, collectively termed Morvan's syndrome (MoS), and in a limbic encephalopathy (LE) with prominent amnesia and frequent seizures. Most recently, they have been described in patients with pure epilepsies, especially in patients with the novel and distinctive semiology termed faciobrachial dystonic seizures (FBDS). In each of these conditions, there is a close correlation between clinical measures and antibody levels. The VGKC-complex is a group of proteins that are strongly associated in situ and after extraction in mild detergent. Two major targets of the autoantibodies are leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein 2 (CASPR2). The patients with PNH or MoS are most likely to have CASPR2 antibodies, whereas LGI1 antibodies are found characteristically in patients with FBDS and LE. Crucially, each of these conditions has a good response to immunotherapies, often corticosteroids and plasma exchange, although optimal regimes require further study. VGKC-complex antibodies have also been described in neuropathic pain syndromes, chronic epilepsies, a polyradiculopathy in porcine abattoir workers, and some children with status epilepticus. Increasingly, however, the antigenic targets in these patients are not defined and in some cases the antibodies may be secondary rather than the primary cause. Future serologic studies should define all the antigenic components of the VGKC-complex, and further inform mechanisms of antibody pathogenicity and related inflammation.

  18. Leucine-rich glioma inactivated-1 and voltage gated potassium channel autoimmune encephalitis associated with ischemic stroke; A Case Report

    Directory of Open Access Journals (Sweden)

    Marisa Patryce McGinley

    2016-05-01

    Full Text Available Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage gated potassium channel (VGKC antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypothesizes linking these two disease processes are proposed.

  19. Clinical features of neuromuscular disorders in patients with N-type voltage-gated calcium channel antibodies

    Directory of Open Access Journals (Sweden)

    Andreas Totzeck

    2016-09-01

    Full Text Available Neuromuscular junction disorders affect the pre- or postsynaptic nerve to muscle transmission due to autoimmune antibodies. Members of the group like myasthenia gravis and Lambert-Eaton syndrome have pathophysiologically distinct characteristics. However, in practice, distinction may be difficult. We present a series of three patients with a myasthenic syndrome, dropped-head syndrome, bulbar and respiratory muscle weakness and positive testing for anti-N-type voltage-gated calcium channel antibodies. In two cases anti-acetylcholin receptor antibodies were elevated, anti-P/Q-type voltage-gated calcium channel antibodies were negative. All patients initially responded to pyridostigmine with a non-response in the course of the disease. While one patient recovered well after treatment with intravenous immunoglobulins, 3,4-diaminopyridine, steroids and later on immunosuppression with mycophenolate mofetil, a second died after restriction of treatment due to unfavorable cancer diagnosis, the third patient declined treatment. Although new antibodies causing neuromuscular disorders were discovered, clinical distinction has not yet been made. Our patients showed features of pre- and postsynaptic myasthenic syndrome as well as severe dropped-head syndrome and bulbar and axial muscle weakness, but only anti-N-type voltage-gated calcium channel antibodies were positive. When administered, one patient benefited from 3,4-diaminopyridine. We suggest that this overlap-syndrome should be considered especially in patients with assumed seronegative myasthenia gravis and lack of improvement under standard therapy.

  20. Boosting of synaptic potentials and spine Ca transients by the peptide toxin SNX-482 requires alpha-1E-encoded voltage-gated Ca channels.

    Directory of Open Access Journals (Sweden)

    Andrew J Giessel

    Full Text Available The majority of glutamatergic synapses formed onto principal neurons of the mammalian central nervous system are associated with dendritic spines. Spines are tiny protuberances that house the proteins that mediate the response of the postsynaptic cell to the presynaptic release of glutamate. Postsynaptic signals are regulated by an ion channel signaling cascade that is active in individual dendritic spines and involves voltage-gated calcium (Ca channels, small conductance (SK-type Ca-activated potassium channels, and NMDA-type glutamate receptors. Pharmacological studies using the toxin SNX-482 indicated that the voltage-gated Ca channels that signal within spines to open SK channels belong to the class Ca(V2.3, which is encoded by the Alpha-1E pore-forming subunit. In order to specifically test this conclusion, we examined the effects of SNX-482 on synaptic signals in acute hippocampal slices from knock-out mice lacking the Alpha-1E gene. We find that in these mice, application of SNX-482 has no effect on glutamate-uncaging evoked synaptic potentials and Ca influx, indicating that that SNX-482 indeed acts via the Alpha-1E-encoded Ca(V2.3 channel.

  1. Voltage-gated potassium channel Kvl.3 in rabbit ciliary epithelium regulates the membrane potential via coupling intracellular calcium

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; ZHUO Ye-hong; BI Wei-na; BAI Yu-jing; LI Yan-na; WANG Zhi-jian

    2008-01-01

    Background The cell layer of the ciliary epithelium is responsible for aqueous humor secretion and maintenance.Ion channels play an important role in these processes.The main aim of this study was to determine whether the well-characterized members of the Kvl family (Kv1.3) contribute to the Kv currents in ciliary epithelium.Methods New Zealand White rabbits were maintained in a 12 hours light/dark cycle.Ciliary epithelium samples were isolated from the rabbits.We used Western blotting and immunocytochemistry to identify the expression and location of a voltage-gated potassium channel Kvl.3 in ciliary body epithelium.Membrane potential change after adding of Kv1.3 inhibitor margatoxin (MgTX) was observed with a fluorescence method.Results Western blotting and immunocytochemical studies showed that the Kv1.3 protein expressed in pigment ciliary epithelium and nonpigment ciliary epithelium,however it seemed to express more in the apical membrane of the nonpigmented epithelial cells.One nmol/L margatoxin,a specific inhibitor of Kv1.3 channels caused depolarization of the cultured nonpigmented epithelium (NPE) membrane potential.The cytosotic calcium increased after NPE cell depolarization,this increase of cytosolic calcium was partially blocked by 12.5 μmol/L dantrolene and 10 μmol/L nifedipine.These observations suggest that Kv1.3 channels modulate ciliary epithelium potential and effect calcium dependent mechanisms.Conclusion Kv1.3 channels contribute to K+ efflux at the membrane of rabbit ciliary epithelium.

  2. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    Science.gov (United States)

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature.

  3. Steroid hormone regulation of the voltage-gated, calcium-activated potassium channel expression in developing muscular and neural systems.

    Science.gov (United States)

    Garrison, Sheldon L; Witten, Jane L

    2010-11-01

    A precise organization of gene expression is required for developing neural and muscular systems. Steroid hormones can control the expression of genes that are critical for development. In this study we test the hypothesis that the steroid hormone ecdysone regulates gene expression of the voltage-gated calcium-activated potassium ion channel, Slowpoke or KCNMA1. Late in adult development of the tobacco hawkmoth Manduca sexta, slowpoke (msslo) levels increased contributing to the maturation of the dorsal longitudinal flight muscles (DLMs) and CNS. We show that critical components of ecdysteroid gene regulation were present during upreglation of msslo in late adult DLM and CNS development. Ecdysteroid receptor complex heterodimeric partner proteins, the ecdysteroid receptor (EcR) and ultraspiracle (USP), and the ecdysone-induced early gene, msE75B, were expressed at key developmental time points, suggesting that ecdysteroids direct aspects of gene expression in the DLMs during these late developmental stages. We provide evidence that ecdysteroids suppress msslo transcription in the DLMs; when titers decline msslo transcript levels increase. These results are consistent with msslo being a downstream gene in an ecdysteroid-mediated gene cascade during DLM development. We also show that the ecdysteroids regulate msslo transcript levels in the developing CNS. These results will contribute to our understanding of how the spatiotemporal regulation of slowpoke transcription contributes to tailoring cell excitability to the differing physiological and behavioral demands during development.

  4. Functional and molecular characterization of voltage-gated sodium channels in uteri from nonpregnant rats.

    Science.gov (United States)

    Seda, Marian; Pinto, Francisco M; Wray, Susan; Cintado, Cristina G; Noheda, Pedro; Buschmann, Helmut; Candenas, Luz

    2007-11-01

    We investigated the function and expression of voltage-gated Na(+) channels (VGSC) in the uteri of nonpregnant rats using organ bath techniques, intracellular [Ca(2+)] fluorescence measurements, and RT-PCR. In longitudinally arranged whole-tissue uterine strips, veratridine, a VGSC activator, caused the rapid appearance of phasic contractions of irregular frequency and amplitude. After 50-60 min in the continuous presence of veratridine, rhythmic contractions of very regular frequency and slightly increasing amplitude occurred and were sustained for up to 12 h. Both the early and late components of the contractile response to veratridine were inhibited in a concentration-dependent manner by tetrodotoxin (TTX). In small strips dissected from the uterine longitudinal smooth muscle layer and loaded with Fura-2, veratridine also caused rhythmic contractions, accompanied by transient increases in [Ca(2+)](i), which were abolished by treatment with 0.1 microM TTX. Using end-point and real-time quantitative RT-PCR, we detected the presence of the VGSC alpha subunits Scn2a1, Scn3a, Scn5a, and Scn8a in the cDNA from longitudinal muscle. The mRNAs of the auxiliary beta subunits Scbn1b, Scbn2b, Scbn4b, and traces of Scn3b were also present. These data show for the first time that Scn2a1, Scn3a, Scn5a, and Scn8a, as well as all VGSC beta subunits are expressed in the longitudinal smooth muscle layer of the rat myometrium. In addition, our data show that TTX-sensitive VGSC are able to mediate phasic contractions maintained over long periods of time in the uteri of nonpregnant rats.

  5. Effect of dexamethasone on voltage-gated Na+ channel in cultured human bronchial smooth muscle cells.

    Science.gov (United States)

    Nakajima, Toshiaki; Jo, Taisuke; Meguro, Kentaro; Oonuma, Hitoshi; Ma, Ji; Kubota, Nami; Imuta, Hiroyuki; Takano, Haruhito; Iida, Haruko; Nagase, Takahide; Nagata, Taiji

    2008-06-06

    Voltage-gated Na(+) channel (I(Na)) encoded by SCN9A mRNA is expressed in cultured human bronchial smooth muscle cells. We investigated the effects of dexamethasone on I(Na), by using whole-cell voltage clamp techniques, reverse transcriptase/polymerase chain reaction (RT-PCR), and quantitative real-time RT-PCR. Acute application of dexamethasone (10(-6) M) did not affect I(Na). However, the percentage of the cells with I(Na) was significantly less in cells pretreated with dexamethasone for 48 h, and the current-density of I(Na) adjusted by cell capacitance in cells with I(Na) was also decreased in cells treated with dexamethasone. RT-PCR analysis showed that alpha and beta subunits mRNA of I(Na) mainly consisted of SCN9A and SCN1beta, respectively. Treatment with dexamethasone for 24-48 h inhibited the expression of SCN9A mRNA. The inhibitory effect of dexamethasone was concentration-dependent, and was observed at a concentration higher than 0.1 nM. The effect of dexamethasone on SCN9A mRNA was not blocked by spironolactone, but inhibited by mifepristone. The inhibitory effects of dexamethasone on SCN9A mRNA could not be explained by the changes of the stabilization of mRNA measured by using actinomycin D. These results suggest that dexamethasone inhibited I(Na) encoded by SCN9A mRNA in cultured human bronchial smooth muscle cells by inhibiting the transcription via the glucocorticoid receptor.

  6. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels.

    Science.gov (United States)

    Gurevitz, Michael

    2012-09-15

    Scorpion alpha and beta toxins interact with voltage-gated sodium channels (Na(v)s) at two pharmacologically distinct sites. Alpha toxins bind at receptor site-3 and inhibit channel inactivation, whereas beta toxins bind at receptor site-4 and shift the voltage-dependent activation toward more hyperpolarizing potentials. The two toxin classes are subdivided to distinct pharmacological groups according to their binding preferences and ability to compete for the receptor sites at Na(v) subtypes. To elucidate the toxin-channel surface of interaction at both receptor sites and clarify the molecular basis of varying toxin preferences, an efficient bacterial system for their expression in recombinant form was established. Mutagenesis accompanied by toxicity, binding and electrophysiological assays, in parallel to determination of the three-dimensional structure using NMR and X-ray crystallography uncovered a bipartite bioactive surface in toxin representatives of all pharmacological groups. Exchange of external loops between the mammalian brain channel rNa(v)1.2a and the insect channel DmNa(v)1 highlighted channel regions involved in the varying sensitivity to assorted toxins. In parallel, thorough mutagenesis of channel external loops illuminated points of putative interaction with the toxins. Amino acid substitutions at external loops S1-S2 and S3-S4 of the voltage sensor module in domain II of rNa(v)1.2a had prominent impact on the activity of the beta-toxin Css4 (from Centruroides suffusus suffusus), and substitutions at external loops S1-S2 and S3-S4 of the voltage sensor module in domain IV affected the activity of the alpha-toxin Lqh2 (from Leiurus quinquestriatus hebraeus). Rosetta modeling of toxin-Na(v) interaction using the voltage sensor module of the potassium channel as template raises commonalities in the way alpha and beta toxins interact with the channel. Css4 interacts with rNa(v)1.2a at a crevice between S1-S2 and S3-S4 transmembrane segments in domain

  7. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes.

    Science.gov (United States)

    Waters, Michael F; Minassian, Natali A; Stevanin, Giovanni; Figueroa, Karla P; Bannister, John P A; Nolte, Dagmar; Mock, Allan F; Evidente, Virgilio Gerald H; Fee, Dominic B; Müller, Ulrich; Dürr, Alexandra; Brice, Alexis; Papazian, Diane M; Pulst, Stefan M

    2006-04-01

    Potassium channel mutations have been described in episodic neurological diseases. We report that K+ channel mutations cause disease phenotypes with neurodevelopmental and neurodegenerative features. In a Filipino adult-onset ataxia pedigree, the causative gene maps to 19q13, overlapping the SCA13 disease locus described in a French pedigree with childhood-onset ataxia and cognitive delay. This region contains KCNC3 (also known as Kv3.3), encoding a voltage-gated Shaw channel with enriched cerebellar expression. Sequencing revealed two missense mutations, both of which alter KCNC3 function in Xenopus laevis expression systems. KCNC3(R420H), located in the voltage-sensing domain, had no channel activity when expressed alone and had a dominant-negative effect when co-expressed with the wild-type channel. KCNC3(F448L) shifted the activation curve in the negative direction and slowed channel closing. Thus, KCNC3(R420H) and KCNC3(F448L) are expected to change the output characteristics of fast-spiking cerebellar neurons, in which KCNC channels confer capacity for high-frequency firing. Our results establish a role for KCNC3 in phenotypes ranging from developmental disorders to adult-onset neurodegeneration and suggest voltage-gated K+ channels as candidates for additional neurodegenerative diseases.

  8. Actions of Tefluthrin on Rat Nav1.7 Voltage-Gated Sodium Channels Expressed in Xenopus Oocytes

    OpenAIRE

    Tan, Jianguo; Soderlund, David M.

    2011-01-01

    In rats expression of the Nav1.7 voltage-gated sodium channel isoform is restricted to the peripheral nervous system and is abundant in the sensory neurons of the dorsal root ganglion. We expressed the rat Nav1.7 sodium channel α subunit together with the rat auxiliary β1 and β2 subunits in Xenopus laevis oocytes and assessed the effects of the pyrethroid insecticide tefluthrin on the expressed currents using the two-electrode voltage clamp method. Tefluthrin at 100 µM modified of Nav1.7 chan...

  9. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes.

    Directory of Open Access Journals (Sweden)

    Cédric James Laedermann

    2015-11-01

    Full Text Available In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs is a very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential. Navs are composed of 9 different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8 and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the action potential and consequently modify pain transmission, a process that is observed in persistent pain conditions.Post-translational modification (PTM of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e. peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with the subunit of Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological

  10. Locating the route of entry and binding sites of benzocaine and phenytoin in a bacterial voltage gated sodium channel.

    Science.gov (United States)

    Martin, Lewis J; Corry, Ben

    2014-07-01

    Sodium channel blockers are used to control electrical excitability in cells as a treatment for epileptic seizures and cardiac arrhythmia, and to provide short term control of pain. Development of the next generation of drugs that can selectively target one of the nine types of voltage-gated sodium channel expressed in the body requires a much better understanding of how current channel blockers work. Here we make use of the recently determined crystal structure of the bacterial voltage gated sodium channel NavAb in molecular dynamics simulations to elucidate the position at which the sodium channel blocking drugs benzocaine and phenytoin bind to the protein as well as to understand how these drugs find their way into resting channels. We show that both drugs have two likely binding sites in the pore characterised by nonspecific, hydrophobic interactions: one just above the activation gate, and one at the entrance to the the lateral lipid filled fenestrations. Three independent methods find the same sites and all suggest that binding to the activation gate is slightly more favourable than at the fenestration. Both drugs are found to be able to pass through the fenestrations into the lipid with only small energy barriers, suggesting that this can represent the long posited hydrophobic entrance route for neutral drugs. Our simulations highlight the importance of a number of residues in directing drugs into and through the fenestration, and in forming the drug binding sites.

  11. Locating the route of entry and binding sites of benzocaine and phenytoin in a bacterial voltage gated sodium channel.

    Directory of Open Access Journals (Sweden)

    Lewis J Martin

    2014-07-01

    Full Text Available Sodium channel blockers are used to control electrical excitability in cells as a treatment for epileptic seizures and cardiac arrhythmia, and to provide short term control of pain. Development of the next generation of drugs that can selectively target one of the nine types of voltage-gated sodium channel expressed in the body requires a much better understanding of how current channel blockers work. Here we make use of the recently determined crystal structure of the bacterial voltage gated sodium channel NavAb in molecular dynamics simulations to elucidate the position at which the sodium channel blocking drugs benzocaine and phenytoin bind to the protein as well as to understand how these drugs find their way into resting channels. We show that both drugs have two likely binding sites in the pore characterised by nonspecific, hydrophobic interactions: one just above the activation gate, and one at the entrance to the the lateral lipid filled fenestrations. Three independent methods find the same sites and all suggest that binding to the activation gate is slightly more favourable than at the fenestration. Both drugs are found to be able to pass through the fenestrations into the lipid with only small energy barriers, suggesting that this can represent the long posited hydrophobic entrance route for neutral drugs. Our simulations highlight the importance of a number of residues in directing drugs into and through the fenestration, and in forming the drug binding sites.

  12. The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels.

    Science.gov (United States)

    Bende, Niraj S; Kang, Eunji; Herzig, Volker; Bosmans, Frank; Nicholson, Graham M; Mobli, Mehdi; King, Glenn F

    2013-05-15

    One of the most potent insecticidal venom peptides described to date is Aps III from the venom of the trapdoor spider Apomastus schlingeri. Aps III is highly neurotoxic to lepidopteran crop pests, making it a promising candidate for bioinsecticide development. However, its disulfide-connectivity, three-dimensional structure, and mode of action have not been determined. Here we show that recombinant Aps III (rAps III) is an atypical knottin peptide; three of the disulfide bridges form a classical inhibitor cystine knot motif while the fourth disulfide acts as a molecular staple that restricts the flexibility of an unusually large β hairpin loop that often houses the pharmacophore in this class of toxins. We demonstrate that the irreversible paralysis induced in insects by rAps III results from a potent block of insect voltage-gated sodium channels. Channel block by rAps III is voltage-independent insofar as it occurs without significant alteration in the voltage-dependence of channel activation or steady-state inactivation. Thus, rAps III appears to be a pore blocker that plugs the outer vestibule of insect voltage-gated sodium channels. This mechanism of action contrasts strikingly with virtually all other sodium channel modulators isolated from spider venoms that act as gating modifiers by interacting with one or more of the four voltage-sensing domains of the channel. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways.

    Science.gov (United States)

    Ko, Michael L; Shi, Liheng; Grushin, Kirill; Nigussie, Fikru; Ko, Gladys Y-P

    2010-10-01

    Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.

  14. Tolperisone-type drugs inhibit spinal reflexes via blockade of voltage-gated sodium and calcium channels.

    Science.gov (United States)

    Kocsis, Pál; Farkas, Sándor; Fodor, László; Bielik, Norbert; Thán, Márta; Kolok, Sándor; Gere, Anikó; Csejtei, Mónika; Tarnawa, István

    2005-12-01

    The spinal reflex depressant mechanism of tolperisone and some of its structural analogs with central muscle relaxant action was investigated. Tolperisone (50-400 microM), eperisone, lanperisone, inaperisone, and silperisone (25-200 microM) dose dependently depressed the ventral root potential of isolated hemisected spinal cord of 6-day-old rats. The local anesthetic lidocaine (100-800 microM) produced qualitatively similar depression of spinal functions in the hemicord preparation, whereas its blocking effect on afferent nerve conduction was clearly stronger. In vivo, tolperisone and silperisone as well as lidocaine (10 mg/kg intravenously) depressed ventral root reflexes and excitability of motoneurons. However, in contrast with lidocaine, the muscle relaxant drugs seemed to have a more pronounced action on the synaptic responses than on the excitability of motoneurons. Whole-cell measurements in dorsal root ganglion cells revealed that tolperisone and silperisone depressed voltage-gated sodium channel conductance at concentrations that inhibited spinal reflexes. Results obtained with tolperisone and its analogs in the [3H]batrachotoxinin A 20-alpha-benzoate binding in cortical neurons and in a fluorimetric membrane potential assay in cerebellar neurons further supported the view that blockade of sodium channels may be a major component of the action of tolperisone-type centrally acting muscle relaxant drugs. Furthermore, tolperisone, eperisone, and especially silperisone had a marked effect on voltage-gated calcium channels, whereas calcium currents were hardly influenced by lidocaine. These data suggest that tolperisone-type muscle relaxants exert their spinal reflex inhibitory action predominantly via a presynaptic inhibition of the transmitter release from the primary afferent endings via a combined action on voltage-gated sodium and calcium channels.

  15. The mechanism of KV4.3 voltage-gated potassium channel in arrhythmia induced by sleep deprivation in rat

    Directory of Open Access Journals (Sweden)

    Ya-jing ZHANG

    2011-03-01

    Full Text Available Objective To investigate the effect of sleep deprivation(SD on the changes in electrocardiogram and mRNA and protein expression of KV4.3 voltage-gated potassium channel in rats,and explore the related mechanisms of arrhythmia induced by SD.Methods A total of 48 adult male SD rats were randomly divided into 6 groups(8 each: normal control(CC group,tank control(TC group,1-,3-,5-and 7-day SD group.Animal model of SD was established by modified multiple platform method,and electrocardiogram was recorded on 1st,3rd,5th,and 7th of experiment.Protein and mRNA expressions of KV4.3 voltage-gated potassium channel were measured by real-time PCR and Western blotting analysis.Results The main changes on electrocardiogram following SD were arrhythmia.Compared with the CC group,rats in TC group showed sinus tachycardia in electrocardiogram: frequent atrial premature beats were observed one day after SD;ventricular arrhythmias,such as frequent polymorphic ventricular premature beats and paroxysmal ventricular tachycardia were observed three days after SD;incomplete right bundle branch block wave occurred five days after SD;the electrocardiogram showed third-degree atrioventricular(AV block wave seven days after SD,which indicated atrial arrhythmia and ventricular arrhythmia respectively.Ventricular escape beat,sinus arrest as well as the fusion of obviously elevated ST segment and T-wave were also observed.The expression levels of KV4.3 voltage-gated potassium channel decreased with prolongation of SD time.The expression of mRNA and protein of KV4.3 potassium channel in 7-day SD rats were only the one ninth and one fourth of levels in CC group.Conclusion Sleep deprivation can cause arrhythmia,and decreased expression of KV4.3 voltage-gated potassium channel may possibly be one of the reasons of arrhythmia induced by SD.

  16. Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Poulsen, Christian B; Walter, Steen

    2011-01-01

    in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involves different subtypes of channels. In human renal artery and dissected intrarenal blood vessels from nephrectomies, PCR analysis showed expression of L-type (Ca(v) 1.2), P/Q-type (Ca(v) 2.1), and T-type......, and L- and P/Q-type channels are of functional importance for the depolarization-induced vasoconstriction. The contribution of P/Q-type channels to contraction in the human vasculature is a novel mechanism for the regulation of renal blood flow and suggests that clinical treatment with calcium blockers......Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved...

  17. Lung adenocarcinoma with Lambert–Eaton myasthenic syndrome indicated by voltage-gated calcium channel: a case report

    Directory of Open Access Journals (Sweden)

    Arai Hiromasa

    2012-09-01

    Full Text Available Abstract Introduction Lambert–Eaton myasthenic syndrome is a rare disorder and it is known as a paraneoplastic neurological syndrome. Small cell lung cancer often accompanies this syndrome. Lambert–Eaton myasthenic syndrome associated with lung adenocarcinoma is extremely rare; there are only a few reported cases worldwide. Case presentation A 75-year-old Japanese man with a past history of chronic rheumatoid arthritis and Sjögren syndrome was diagnosed with Lambert–Eaton myasthenic syndrome by electromyography and serum anti-P/Q-type voltage-gated calcium channel antibody level preceding the diagnosis of lung cancer. A chest computed tomography to screen for malignant lesions revealed an abnormal shadow in the lung. Although a histopathological examination by bronchoscopic study could not reveal the malignancy, lung cancer was mostly suspected after the results of a chest computed tomography and [18F]-fluorodeoxyglucose positron emission tomography. An intraoperative diagnosis based on the frozen section obtained by tumor biopsy was adenocarcinoma so the patient underwent a lobectomy of the right lower lobe and lymph node dissection with video-assisted thoracoscopic surgery. The permanent pathological examination was the same as the frozen diagnosis (pT2aN1M0: Stage IIa: TNM staging 7th edition. Immunohistochemistry revealed that most of the cancer cells were positive for P/Q-type voltage-gated calcium channel. Conclusions Our case is a rare combination of Lambert–Eaton myasthenic syndrome associated with lung adenocarcinoma, rheumatoid arthritis and Sjögren syndrome, and to the best of our knowledge it is the first report that indicates the presence of voltage-gated calcium channel in lung adenocarcinoma by immunostaining.

  18. Reversible dementia: two nursing home patients with voltage-gated potassium channel antibody-associated limbic encephalitis.

    Science.gov (United States)

    Reintjes, Wesley; Romijn, Marloes D M; Hollander, Daan; Ter Bruggen, Jan P; van Marum, Rob J

    2015-09-01

    Voltage-gated potassium channel antibody-associated limbic encephalitis (VGKC-LE) is a rare disease that is a diagnostic and therapeutic challenge for medical practitioners. Two patients with VGKC-LE, both developing dementia are presented. Following treatment, both patients showed remarkable cognitive and functional improvement enabling them to leave the psychogeriatric nursing homes they both were admitted to. Patients with VGKC-LE can have a major cognitive and functional improvement even after a diagnostic delay of more than 1 year. Medical practitioners who treat patients with unexplained cognitive decline, epileptic seizures, or psychiatric symptoms should be aware of LE as an underlying rare cause.

  19. Use-dependent block of the voltage-gated Na(+) channel by tetrodotoxin and saxitoxin: effect of pore mutations that change ionic selectivity.

    Science.gov (United States)

    Huang, Chien-Jung; Schild, Laurent; Moczydlowski, Edward G

    2012-10-01

    Voltage-gated Na(+) channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca(2+) permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca(2+) or Na(+) ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca(2+) permeability, suggesting that ion-toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.

  20. Uncoupling charge movement from channel opening in voltage-gated potassium channels by ruthenium complexes.

    Science.gov (United States)

    Jara-Oseguera, Andrés; Ishida, Itzel G; Rangel-Yescas, Gisela E; Espinosa-Jalapa, Noel; Pérez-Guzmán, José A; Elías-Viñas, David; Le Lagadec, Ronan; Rosenbaum, Tamara; Islas, León D

    2011-05-06

    The Kv2.1 channel generates a delayed-rectifier current in neurons and is responsible for modulation of neuronal spike frequency and membrane repolarization in pancreatic β-cells and cardiomyocytes. As with other tetrameric voltage-activated K(+)-channels, it has been proposed that each of the four Kv2.1 voltage-sensing domains activates independently upon depolarization, leading to a final concerted transition that causes channel opening. The mechanism by which voltage-sensor activation is coupled to the gating of the pore is still not understood. Here we show that the carbon-monoxide releasing molecule 2 (CORM-2) is an allosteric inhibitor of the Kv2.1 channel and that its inhibitory properties derive from the CORM-2 ability to largely reduce the voltage dependence of the opening transition, uncoupling voltage-sensor activation from the concerted opening transition. We additionally demonstrate that CORM-2 modulates Shaker K(+)-channels in a similar manner. Our data suggest that the mechanism of inhibition by CORM-2 may be common to voltage-activated channels and that this compound should be a useful tool for understanding the mechanisms of electromechanical coupling.

  1. Excessive blinking and ataxia in a child with occult neuroblastoma and voltage-gated potassium channel antibodies.

    LENUS (Irish Health Repository)

    Allen, Nicholas M

    2012-05-01

    A previously healthy 9-year-old girl presented with a 10-day history of slowly progressive unsteadiness, slurred speech, and behavior change. On examination there was cerebellar ataxia and dysarthria, excessive blinking, subtle perioral myoclonus, and labile mood. The finding of oligoclonal bands in the cerebrospinal fluid prompted paraneoplastic serological evaluation and search for an occult neural crest tumor. Antineuronal nuclear autoantibody type 1 (anti-Hu) and voltage-gated potassium channel complex antibodies were detected in serum. Metaiodobenzylguanidine scan and computed tomography scan of the abdomen showed a localized abdominal mass in the region of the porta hepatis. A diagnosis of occult neuroblastoma was made. Resection of the stage 1 neuroblastoma and treatment with pulsed corticosteroids resulted in resolution of all symptoms and signs. Excessive blinking has rarely been described with neuroblastoma, and, when it is not an isolated finding, it may be a useful clue to this paraneoplastic syndrome. Although voltage-gated potassium channel complex autoimmunity has not been described previously in the setting of neuroblastoma, it is associated with a spectrum of paraneoplastic neurologic manifestations in adults, including peripheral nerve hyperexcitability disorders.

  2. Alternative splicing modulates inactivation of type 1 voltage-gated sodium channels by toggling an amino acid in the first S3-S4 linker.

    Science.gov (United States)

    Fletcher, Emily V; Kullmann, Dimitri M; Schorge, Stephanie

    2011-10-21

    Voltage-gated sodium channels underlie the upstroke of action potentials and are fundamental to neuronal excitability. Small changes in the behavior of these channels are sufficient to change neuronal firing and trigger seizures. These channels are subject to highly conserved alternative splicing, affecting the short linker between the third transmembrane segment (S3) and the voltage sensor (S4) in their first domain. The biophysical consequences of this alternative splicing are incompletely understood. Here we focus on type 1 sodium channels (Nav1.1) that are implicated in human epilepsy. We show that the functional consequences of alternative splicing are highly sensitive to recording conditions, including the identity of the major intracellular anion and the recording temperature. In particular, the inactivation kinetics of channels containing the alternate exon 5N are more sensitive to intracellular fluoride ions and to changing temperature than channels containing exon 5A. Moreover, Nav1.1 channels containing exon 5N recover from inactivation more rapidly at physiological temperatures. Three amino acids differ between exons 5A and 5N. However, the changes in sensitivity and stability of inactivation were reproduced by a single conserved change from aspartate to asparagine in channels containing exon 5A, which was sufficient to make them behave like channels containing the complete exon 5N sequence. These data suggest that splicing at this site can modify the inactivation of sodium channels and reveal a possible interaction between splicing and anti-epileptic drugs that stabilize sodium channel inactivation.

  3. Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins

    DEFF Research Database (Denmark)

    Rougier, Jean-Sébastien; van Bemmelen, Miguel X; Bruce, M Christine

    2004-01-01

    -ubiquitin ligases of the Nedd4 family. We recently reported that cardiac Na(v)1.5 is regulated by Nedd4-2. In this study, we further investigated the molecular determinants of regulation of Na(v) proteins. When expressed in HEK-293 cells and studied using whole cell voltage clamping, the neuronal Na(v)1.2 and Na......The voltage-gated Na(+) channels (Na(v)) form a family composed of 10 genes. The COOH termini of Na(v) contain a cluster of amino acids that are nearly identical among 7 of the 10 members. This COOH-terminal sequence, PPSYDSV, is a PY motif known to bind to WW domains of E3 protein...... that Nedd4-dependent ubiquitination of Na(v) channels may represent a general mechanism regulating the excitability of neurons and myocytes via modulation of channel density at the plasma membrane....

  4. Antibodies to voltage-gated potassium and calcium channels in epilepsy.

    NARCIS (Netherlands)

    Majoie, H.J.; Baets, M.H.V. de; Renier, W.O.; Lang, B.; Vincent, A.

    2006-01-01

    OBJECTIVE: To determine the prevalence of antibodies to ion channels in patients with long standing epilepsy. BACKGROUND: Although the CNS is thought to be protected from circulating antibodies by the blood brain barrier, glutamate receptor antibodies have been reported in Rasmussen's encephalitis,

  5. Comparative study of the gating motif and C-type inactivation in prokaryotic voltage-gated sodium channels.

    Science.gov (United States)

    Irie, Katsumasa; Kitagawa, Kazuya; Nagura, Hitoshi; Imai, Tomoya; Shimomura, Takushi; Fujiyoshi, Yoshinori

    2010-02-05

    Prokaryotic voltage-gated sodium channels (Na(V)s) are homotetramers and are thought to inactivate through a single mechanism, named C-type inactivation. Here we report the voltage dependence and inactivation rate of the NaChBac channel from Bacillus halodurans, the first identified prokaryotic Na(V), as well as of three new homologues cloned from Bacillus licheniformis (Na(V)BacL), Shewanella putrefaciens (Na(V)SheP), and Roseobacter denitrificans (Na(V)RosD). We found that, although activated by a lower membrane potential, Na(V)BacL inactivates as slowly as NaChBac. Na(V)SheP and Na(V)RosD inactivate faster than NaChBac. Mutational analysis of helix S6 showed that residues corresponding to the "glycine hinge" and "PXP motif" in voltage-gated potassium channels are not obligatory for channel gating in these prokaryotic Na(V)s, but mutations in the regions changed the inactivation rates. Mutation of the region corresponding to the glycine hinge in Na(V)BacL (A214G), Na(V)SheP (A216G), and NaChBac (G219A) accelerated inactivation in these channels, whereas mutation of glycine to alanine in the lower part of helix S6 in NaChBac (G229A), Na(V)BacL (G224A), and Na(V)RosD (G217A) reduced the inactivation rate. These results imply that activation gating in prokaryotic Na(V)s does not require gating motifs and that the residues of helix S6 affect C-type inactivation rates in these channels.

  6. Voltage-gated sodium channel expressed in cultured human smooth muscle cells: involvement of SCN9A.

    Science.gov (United States)

    Jo, Taisuke; Nagata, Taiji; Iida, Haruko; Imuta, Hiroyuki; Iwasawa, Kuniaki; Ma, Ji; Hara, Kei; Omata, Masao; Nagai, Ryozo; Takizawa, Hajime; Nagase, Takahide; Nakajima, Toshiaki

    2004-06-04

    Voltage-gated Na(+) channel (I(Na)) is expressed under culture conditions in human smooth muscle cells (hSMCs) such as coronary myocytes. The aim of this study is to clarify the physiological, pharmacological and molecular characteristics of I(Na) expressed in cultured hSMCs obtained from bronchus, main pulmonary and coronary artery. I(Na), was recorded in these hSMCs and inhibited by tetrodotoxin (TTX) with an IC(50) value of approximately 10 nM. Reverse transcriptase/polymerase chain reaction (RT-PCR) analysis of mRNA showed the prominent expression of transcripts for SCN9A, which was consistent with the results of real-time quantitative RT-PCR. These results provide novel evidence that TTX-sensitive Na(+) channel expressed in cultured hSMCs is mainly composed of Na(v)1.7.

  7. Dehydroepiandrosterone (DHEA) inhibits voltage-gated T-type calcium channels.

    Science.gov (United States)

    Chevalier, M; Gilbert, G; Lory, P; Marthan, R; Quignard, J F; Savineau, J P

    2012-06-01

    Dehydroepiandrosterone (DHEA) and its sulfated form, DHEAS, are the most abundant steroid hormones in the mammalian blood flow. DHEA may have beneficial effects in various pathophysiological conditions such as cardiovascular diseases or deterioration of the sense of well-being. However to date, the cellular mechanism underlying DHEA action remains elusive and may involve ion channel modulation. In this study, we have characterized the effect of DHEA on T-type voltage-activated calcium channels (T-channels), which are involved in several cardiovascular and neuronal diseases. Using the whole-cell patch-clamp technique, we demonstrate that DHEA inhibits the three recombinant T-channels (Ca(V)3.1, Ca(V)3.2 and Ca(V)3.3) expressed in NG108-15 cell line, as well as native T-channels in pulmonary artery smooth muscle cells. This effect of DHEA is both concentration (IC(50) between 2 and 7μM) and voltage-dependent and results in a significant shift of the steady-state inactivation curves toward hyperpolarized potentials. Consequently, DHEA reduces window T-current and inhibits membrane potential oscillations induced by Ca(V)3 channels. DHEA inhibition is not dependent on the activation of nuclear androgen or estrogen receptors and implicates a PTX-sensitive Gi protein pathway. Functionally, DHEA and the T-type inhibitor NNC 55-0396 inhibited KCl-induced contraction of pulmonary artery rings and their effect was not cumulative. Altogether, the present data demonstrate that DHEA inhibits T-channels by a Gi protein dependent pathway. DHEA-induced alteration in T-channel activity could thus account for its therapeutic action and/or physiological effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Modulatory effect of auxiliary β1 subunit on Nav1.3 voltage-gated sodium channel expressed in Xenopus oocyte

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-wei; CHENG Zhi-jun; TAN Hong; XIA Yi-meng; REN Rong-rong; DING Yu-qiang

    2007-01-01

    @@ Voltage-gated sodium channels play an important role in the generation and propagation of action potentials in excitable cells. They are composed of a pore-forming α subunit and auxiliary β subunits. To date,nine subtypes of the α subunit, designated Nav 1.1 to Nav1.9, have been shown to form functional sodium channels.

  9. The effect of protein kinase C on voltage-gated potassium channel in pulmonary artery smooth muscle cells from rats exposed to chronic hypoxia

    Institute of Scientific and Technical Information of China (English)

    张永昶; 倪望; 张珍祥; 徐永健

    2004-01-01

    Background Chronic hypoxia can cause pulmonary hypertension and pulmonary heart disease with high mortality.The signal transduction pathway of protein kinase C (PKC) plays an important role in chronic pulmonary hypertension. So it is necessary to investigate the effect of PKC on voltage-gated potassium (K+) channels in pulmonary artery smooth muscle cells of rats exposed to chronic hypoxia.Methods Male Wistar rats were randomly divided into a control group (group A) and a chronic hypoxia group (group B). Group B received hypoxia [oxygen concentration (10±1)%] eight hours per day for four consecutive weeks. Single pulmonary artery smooth muscle cells were obtained using an acute enzyme separation method. Conventional whole cell patch clamp technique was used to record resting membrane potential, membrane capacitance and voltage-gated K+ currents. The changes in voltage-gated K+ currents before and after applying paramethoxyamphetamine (PMA) (500 nmol/L), an agonist of PKC, and PMA plus carbohydrate mixture of glucose, fructose and xylitol (GFX) (30 nmol/L), an inhibitor of PKC, were compared between the two groups. Results The resting membrane potential in group B was significantly lower than that of group A: -(29.0±4.8) mV (n=18) vs -(42.5±4.6) mV (n=35) (P0.05). The voltage-gated K+ currents were significantly inhibited by PMA in group A, and this effect was reversed by GFX. However, the voltage-gated K+ currents in group B were not affected by PMA.Conclusions The resting membrane potential and voltage-gated K+ currents in pulmonary artery smooth muscle cells from rats exposed to chronic hypoxia decreased significantly. It seems that PKC has different effects on the voltage-gated K+ currents of pulmonary artery smooth muscle cells under different conditions.

  10. Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels

    Science.gov (United States)

    Bolz, Hanno Jörn; Koschak, Alexandra

    2010-01-01

    Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function. PMID:20213496

  11. Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels.

    Science.gov (United States)

    Striessnig, Jörg; Bolz, Hanno Jörn; Koschak, Alexandra

    2010-07-01

    Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming alpha1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 alpha1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 alpha1), and Timothy syndrome (Cav1.2 alpha1; reviewed separately in this issue). Cav1.3 alpha1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function.

  12. Preferential targeting of Nav1.6 voltage-gated Na+ Channels to the axon initial segment during development.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Akin

    Full Text Available During axonal maturation, voltage-gated sodium (Nav channels accumulate at the axon initial segment (AIS at high concentrations. This localization is necessary for the efficient initiation of action potentials. The mechanisms underlying channel trafficking to the AIS during axonal development have remained elusive due to a lack of Nav reagents suitable for high resolution imaging of channels located specifically on the cell surface. Using an optical pulse-chase approach in combination with a novel Nav1.6 construct containing an extracellular biotinylation domain we demonstrate that Nav1.6 channels are preferentially inserted into the AIS membrane during neuronal development via direct vesicular trafficking. Single-molecule tracking illustrates that axonal channels are immediately immobilized following delivery, while channels delivered to the soma are often mobile. Neither a Nav1.6 channel lacking the ankyrin-binding motif nor a chimeric Kv2.1 channel containing the Nav ankyrinG-binding domain show preferential AIS insertion. Together these data support a model where ankyrinG-binding is required for preferential Nav1.6 insertion into the AIS plasma membrane. In contrast, ankyrinG-binding alone does not confer the preferential delivery of proteins to the AIS.

  13. The ethylene bis-dithiocarbamate fungicide Mancozeb activates voltage-gated KCNQ2 potassium channel.

    Science.gov (United States)

    Li, Ping; Zhu, Jin; Kong, Qingya; Jiang, Baifeng; Wan, Xia; Yue, Jinfeng; Li, Min; Jiang, Hualiang; Li, Jian; Gao, Zhaobing

    2013-06-07

    Mancozeb (manganese/zinc ethylene bis-dithiocarbamate) is an organometallic fungicide that has been associated with human neurotoxicity and neurodegeneration. In a high-throughput screen for modulators of KCNQ2 channel, a fundamental player modulating neuronal excitability, Mancozeb, was found to significantly potentiate KCNQ2 activity. Mancozeb was validated electrophysiologically as a KCNQ2 activator with an EC50 value of 0.92±0.23μM. Further examination showed that manganese but not zinc ethylene bis-dithiocarbamate is the active component for the positive modulation effects. In addition, the compounds are effective when the metal ions are substituted by iron but lack potentiation activity when the metal ions are substituted by sodium, signifying the importance of the metal ion. However, the iron (Fe(3+)) alone, organic ligands alone or the mixture of iron with the organic ligand did not show any potentiation effect, suggesting as the active ingredient is a specific complex rather than two separate additive or synergistic components. Our study suggests that potentiation on KCNQ2 potassium channels might be the possible mechanism of Mancozeb toxicity in the nervous system.

  14. Application of Stochastic Automata Networks for Creation of Continuous Time Markov Chain Models of Voltage Gating of Gap Junction Channels

    Directory of Open Access Journals (Sweden)

    Mindaugas Snipas

    2015-01-01

    Full Text Available The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC of voltage gating of gap junction (GJ channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs, which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times.

  15. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Che, Yongzhe [School of Medicine, Nankai University, Tianjin 300071 (China); Li, Qiang; Zhang, Shangrong [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Gao, Ying-Tang [Key Laboratory of Artificial Cell, Third Central Clinical College of Tianjin Medical University, Tianjin 300170 (China); Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca{sup 2+} homeostasis.

  16. Update on the frequency of Ile1016 mutation in voltage-gated sodium channel gene of Aedes aegypti in Mexico.

    Science.gov (United States)

    Siller, Quetzaly; Ponce, Gustavo; Lozano, Saul; Flores, Adriana E

    2011-12-01

    We analyzed 790 Aedes aegypti from 14 localities of Mexico in 2009 to update information on the frequency of the Ile1016 allele in the voltage-gated sodium channel gene that confers resistance to pyrethroids and DDT. The Ile1016 mutation was present in all 17 collections, and was close to fixation in Acapulco (frequency = 0.97), Iguala (0.93), and San Nicolas (0.90). Genotypes at the 1016 locus were not in Hardy-Weinberg proportions in collections from Panuco, Veracruz, Cosoleacaque, Coatzacoalcos, Tantoyuca, and Monterrey due in every case to an excess of homozygotes. The high frequencies of this mutation in Ae. aegypti are probably due to selection pressure from pyrethroid insecticides, particularly permethrin, which has been used in mosquito control programs for >10 years in Mexico.

  17. A case study of voltage-gated potassium channel antibody-related limbic encephalitis with PET/MRI findings

    Directory of Open Access Journals (Sweden)

    Brian K. Day

    2015-01-01

    Full Text Available Preclinical and clinical studies have demonstrated the significance of inflammation and autoantibodies in epilepsy, and the use of immunotherapies in certain situations has become an established practice. Temporal lobe epilepsy can follow paraneoplastic or nonparaneoplastic limbic encephalitis associated with antibodies directed against brain antigens. Here, we focus on a patient with worsening confusion and temporal lobe seizures despite treatment with antiepileptic medications. Serial brain MRIs did not conclusively reveal structural abnormalities, so the patient underwent brain PET/MRI to simultaneously evaluate brain structure and function, revealing bitemporal abnormalities. The patient was diagnosed with voltage-gated potassium channel antibody-related limbic encephalitis based on clinical presentation, imaging findings, and antibody testing. Treatment included the addition of a second antiepileptic agent and oral steroids. His seizures and cognitive deficits improved and stabilized.

  18. Application of stochastic automata networks for creation of continuous time Markov chain models of voltage gating of gap junction channels.

    Science.gov (United States)

    Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.

  19. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects.

    Science.gov (United States)

    Pall, Martin L

    2013-08-01

    The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca(2+) /calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca(2+) -mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca(2+) /calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects.

  20. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25

    Directory of Open Access Journals (Sweden)

    Medler Kathryn F

    2006-03-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. Results Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells

  1. Inhibition of voltage-gated calcium channels after subchronic and repeated exposure of PC12 cells to different classes of insecticides

    NARCIS (Netherlands)

    Meijer, Marieke; Brandsema, Joske A R; Nieuwenhuis, Desirée; Wijnolts, Fiona M J; Dingemans, Milou M L; Westerink, Remco H S

    2015-01-01

    We previously demonstrated that acute inhibition of voltage-gated calcium channels (VGCCs) is a common mode of action for (sub)micromolar concentrations of chemicals, including insecticides. However, since human exposure to chemicals is usually chronic and repeated, we investigated if selected insec

  2. Inhibition of voltage-gated calcium channels after subchronic and repeated exposure of PC12 cells to different classes of insecticides

    NARCIS (Netherlands)

    Meijer, Marieke; Brandsema, Joske A R; Nieuwenhuis, Desirée; Wijnolts, Fiona M J; Dingemans, Milou M L|info:eu-repo/dai/nl/304834564; Westerink, Remco H S|info:eu-repo/dai/nl/239425952

    2015-01-01

    We previously demonstrated that acute inhibition of voltage-gated calcium channels (VGCCs) is a common mode of action for (sub)micromolar concentrations of chemicals, including insecticides. However, since human exposure to chemicals is usually chronic and repeated, we investigated if selected insec

  3. The L-Type Voltage-Gated Calcium Channel Ca[subscript v]1.3 Mediates Consolidation, but Not Extinction, of Contextually Conditioned Fear in Mice

    Science.gov (United States)

    McKinney, Brandon C.; Murphy, Geoffrey G.

    2006-01-01

    Using pharmacological techniques, it has been demonstrated that both consolidation and extinction of Pavlovian fear conditioning are dependent to some extent upon L-type voltage-gated calcium channels (LVGCCs). Although these studies have successfully implicated LVGCCs in Pavlovian fear conditioning, they do not provide information about the…

  4. Like Extinction, Latent Inhibition of Conditioned Fear in Mice Is Blocked by Systemic Inhibition of L-Type Voltage-Gated Calcium Channels

    Science.gov (United States)

    Blouin, Ashley M.; Cain, Chris K.; Barad, Mike

    2004-01-01

    Having recently shown that extinction of conditioned fear depends on L-type voltage-gated calcium channels (LVGCCs), we have been seeking other protocols that require this unusual induction mechanism. We tested latent inhibition (LI) of fear, because LI resembles extinction except that cue exposures precede, rather than follow, cue-shock pairing.…

  5. Voltage-Gated K+ Channel, Kv3.3 Is Involved in Hemin-Induced K562 Differentiation.

    Science.gov (United States)

    Song, Min Seok; Choi, Seon Young; Ryu, Pan Dong; Lee, So Yeong

    2016-01-01

    Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes.

  6. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    Science.gov (United States)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  7. Evidence for functional diversity between the voltage-gated proton channel Hv1 and its closest related protein HVRP1.

    Directory of Open Access Journals (Sweden)

    Iris H Kim

    Full Text Available The Hv1 channel and voltage-sensitive phosphatases share with voltage-gated sodium, potassium, and calcium channels the ability to detect changes in membrane potential through voltage-sensing domains (VSDs. However, they lack the pore domain typical of these other channels. NaV, KV, and CaV proteins can be found in neurons and muscles, where they play important roles in electrical excitability. In contrast, VSD-containing proteins lacking a pore domain are found in non-excitable cells and are not involved in neuronal signaling. Here, we report the identification of HVRP1, a protein related to the Hv1 channel (from which the name Hv1 Related Protein 1 is derived, which we find to be expressed primarily in the central nervous system, and particularly in the cerebellum. Within the cerebellar tissue, HVRP1 is specifically expressed in granule neurons, as determined by in situ hybridization and immunohistochemistry. Analysis of subcellular distribution via electron microscopy and immunogold labeling reveals that the protein localizes on the post-synaptic side of contacts between glutamatergic mossy fibers and the granule cells. We also find that, despite the similarities in amino acid sequence and structural organization between Hv1 and HVRP1, the two proteins have distinct functional properties. The high conservation of HVRP1 in vertebrates and its cellular and subcellular localizations suggest an important function in the nervous system.

  8. Molecular insights into the local anesthetic receptor within voltage-gated sodium channels using hydroxylated analogues of mexiletine

    Directory of Open Access Journals (Sweden)

    Jean-François eDesaphy

    2012-02-01

    Full Text Available We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003, suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogues by adding one or two hydroxyl groups to the aryl moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration-response relationships were constructed using an holding potential of -120 mV at 0.1 Hz (tonic block and 10 Hz (use-dependent block stimulation frequencies. The half-maximum inhibitory concentrations (IC50 were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. Alteration of tonic block suggests that the aryl moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryl moiety may modify high-affinity binding of the drug ammine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis showing that the presence of hydroxyl groups to the aryl moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with

  9. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons.

    Directory of Open Access Journals (Sweden)

    Allison Sargoy

    Full Text Available Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.

  10. Complex oligosaccharides are N-linked to Kv3 voltage-gated K+ channels in rat brain.

    Science.gov (United States)

    Cartwright, Tara A; Corey, Melissa J; Schwalbe, Ruth A

    2007-04-01

    Neuronal Kv3 voltage-gated K(+) channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1-S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K(+) currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.

  11. A surface plasmon resonance approach to monitor toxin interactions with an isolated voltage-gated sodium channel paddle motif.

    Science.gov (United States)

    Martin-Eauclaire, Marie-France; Ferracci, Géraldine; Bosmans, Frank; Bougis, Pierre E

    2015-02-01

    Animal toxins that inhibit voltage-gated sodium (Na(v)) channel fast inactivation can do so through an interaction with the S3b-S4 helix-turn-helix region, or paddle motif, located in the domain IV voltage sensor. Here, we used surface plasmon resonance (SPR), an optical approach that uses polarized light to measure the refractive index near a sensor surface to which a molecule of interest is attached, to analyze interactions between the isolated domain IV paddle and Na(v) channel-selective α-scorpion toxins. Our SPR analyses showed that the domain IV paddle can be removed from the Na(v) channel and immobilized on sensor chips, and suggest that the isolated motif remains susceptible to animal toxins that target the domain IV voltage sensor. As such, our results uncover the inherent pharmacological sensitivities of the isolated domain IV paddle motif, which may be exploited to develop a label-free SPR approach for discovering ligands that target this region.

  12. Phenolic acids isolated from the fungus Schizophyllum commune exert analgesic activity by inhibiting voltage-gated sodium channels.

    Science.gov (United States)

    Yao, Hui-Min; Wang, Gan; Liu, Ya-Ping; Rong, Ming-Qiang; Shen, Chuan-Bin; Yan, Xiu-Wen; Luo, Xiao-Dong; Lai, Ren

    2016-09-01

    The present study was designed to search for compounds with analgesic activity from the Schizophyllum commune (SC), which is widely consumed as edible and medicinal mushroom world. Thin layer chromatography (TLC), tosilica gel column chromatography, sephadex LH 20, and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify compounds from SC. Structural analysis of the isolated compounds was based on nuclear magnetic resonance (NMR). The effects of these compounds on voltage-gated sodium (NaV) channels were evaluated using patch clamp. The analgesic activity of these compounds was tested in two types of mouse pain models induced by noxious chemicals. Five phenolic acids identified from SC extracts in the present study included vanillic acid, m-hydroxybenzoic acid, o-hydroxybenzeneacetic acid, 3-hydroxy-5-methybenzoic acid, and p-hydroxybenzoic acid. They inhibited the activity of both tetrodotoxin-resistant (TTX-r) and tetrodotoxin-sensitive (TTX-s) NaV channels. All the compounds showed low selectivity on NaV channel subtypes. After intraperitoneal injection, three compounds of these compounds exerted analgesic activity in mice. In conclusion, phenolic acids identified in SC demonstrated analgesic activity, facilitating the mechanistic studies of SC in the treatment of neurasthenia.

  13. ¬cAMP promotes the differentiation of neural progenitor cells in vitro via modulation of voltage-gated calcium channels

    Directory of Open Access Journals (Sweden)

    Guilherme eLepski

    2013-09-01

    Full Text Available The molecular mechanisms underlying the differentiation of neural progenitor cells (NPCs remain poorly understood. In this study we investigated the role of Ca2+ and cAMP (cyclic adenosine monophosphate in the differentiation of NPCs extracted from the subventricular zone of E14.5 rat embryos. Patch clamp recordings revealed that increasing cAMP-signaling with Forskolin or IBMX (3-isobutyl-1-methylxantine significantly facilitated neuronal functional maturation. A continuous application of IBMX to the differentiation medium substantially increased the functional expression of voltage-gated Na+ and K+ channels, as well as neuronal firing frequency. Furthermore, we observed an increase in the frequency of spontaneous synaptic currents and in the amplitude of evoked glutamatergic and GABAergic synaptic currents. The most prominent acute effect of applying IBMX was an increase in L-type Ca2+currents. Conversely, blocking L-type channels strongly inhibited dendritic outgrowth and synapse formation even in the presence of IBMX, indicating that voltage-gated Ca2+ influx plays a major role in neuronal differentiation. Finally, we found that nifedipine completely blocks IBMX-induced CREB phosphorylation (cAMP-response-element-binding protein, indicating that the activity of this important transcription factor equally depends on both enhanced cAMP and voltage-gated Ca2+-signaling. Taken together, these data indicate that the up-regulation of voltage-gated L-type Ca2+-channels and early electrical excitability are critical steps in the cAMP-dependent differentiation of SVZ-derived NPCs into functional neurons. To our knowledge, this is the first demonstration of the acute effects of cAMP on voltage-gated Ca+2channels in NPC-derived developing neurons.

  14. The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels.

    Science.gov (United States)

    Vedantham, V; Cannon, S C

    1999-01-01

    Lidocaine produces voltage- and use-dependent inhibition of voltage-gated Na+ channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na+ channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fast inactivation in lidocaine action has been difficult to probe because gating of drug-bound channels does not involve changes in ionic current. For that reason, we employed a conformational marker for the fast-inactivation gate, the reactivity of a cysteine substituted at phenylalanine 1304 in the rat adult skeletal muscle sodium channel alpha subunit (rSkM1) with [2-(trimethylammonium)ethyl]methanethiosulfonate (MTS-ET), to determine the position of the fast-inactivation gate during lidocaine block. We found that lidocaine does not compete with fast-inactivation. Rather, it favors closure of the fast-inactivation gate in a voltage-dependent manner, causing a hyperpolarizing shift in the voltage dependence of site 1304 accessibility that parallels a shift in the steady state availability curve measured for ionic currents. More significantly, we found that the lidocaine-induced slowing of sodium channel repriming does not result from a slowing of recovery of the fast-inactivation gate, and thus that use-dependent block does not involve an accumulation of fast-inactivated channels. Based on these data, we propose a model in which transitions along the activation pathway, rather than transitions to inactivated states, play a crucial role in the mechanism of lidocaine action.

  15. PKC enhances the capacity for secretion by rapidly recruiting covert voltage-gated Ca2+ channels to the membrane.

    Science.gov (United States)

    Groten, Christopher J; Magoski, Neil S

    2015-02-11

    It is unknown whether neurons can dynamically control the capacity for secretion by promptly changing the number of plasma membrane voltage-gated Ca(2+) channels. To address this, we studied peptide release from the bag cell neurons of Aplysia californica, which initiate reproduction by secreting hormone during an afterdischarge. This burst engages protein kinase C (PKC) to trigger the insertion of a covert Ca(2+) channel, Apl Cav2, alongside a basal channel, Apl Cav1. The significance of Apl Cav2 recruitment to secretion remains undetermined; therefore, we used capacitance tracking to assay secretion, along with Ca(2+) imaging and Ca(2+) current measurements, from cultured bag cell neurons under whole-cell voltage-clamp. Activating PKC with the phorbol ester, PMA, enhanced Ca(2+) entry, and potentiated stimulus-evoked secretion. This relied on channel insertion, as it was occluded by preventing Apl Cav2 engagement with prior whole-cell dialysis or the cytoskeletal toxin, latrunculin B. Channel insertion reduced the stimulus duration and/or frequency required to initiate secretion and strengthened excitation-secretion coupling, indicating that Apl Cav2 accesses peptide release more readily than Apl Cav1. The coupling of Apl Cav2 to secretion also changed with behavioral state, as Apl Cav2 failed to evoke secretion in silent neurons from reproductively inactive animals. Finally, PKC also acted secondarily to enhance prolonged exocytosis triggered by mitochondrial Ca(2+) release. Collectively, our results suggest that bag cell neurons dynamically elevate Ca(2+) channel abundance in the membrane to ensure adequate secretion during the afterdischarge.

  16. Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5.

    Science.gov (United States)

    Schroeter, Annett; Walzik, Stefan; Blechschmidt, Steve; Haufe, Volker; Benndorf, Klaus; Zimmer, Thomas

    2010-07-01

    Voltage-gated sodium channels mediate the rapid upstroke of the action potential in excitable tissues. The tetrodotoxin (TTX) resistant isoform Na(v)1.5, encoded by the SCN5A gene, is the predominant isoform in the heart. This channel plays a key role for excitability of atrial and ventricular cardiomyocytes and for rapid impulse propagation through the specific conduction system. During recent years, strong evidence has been accumulated in support of the expression of several Na(v)1.5 splice variants in the heart, and in various other tissues and cell lines including brain, dorsal root ganglia, breast cancer cells and neuronal stem cell lines. This review summarizes our knowledge on the structure and putative function of nine Na(v)1.5 splice variants detected so far. Attention will be paid to the distinct biophysical properties of the four functional splice variants, to the pronounced tissue- and species-specific expression, and to the developmental regulation of Na(v)1.5 splicing. The implications of alternative splicing for SCN5A channelopathies, and for a better understanding of genotype-phenotype correlations, are discussed.

  17. Molecular Dynamics Simulations of Voltage Gated Cation Channels: Insights on Voltage-Sensor Domain Function and Modulation

    Directory of Open Access Journals (Sweden)

    Lucie eDelemotte

    2012-05-01

    Full Text Available Since their discovery in the 1950s, the structure and function of voltage gated cation channels (VGCC has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy and structural biology. Over the past decade, computational methods such as molecular dynamics (MD simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through classical experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC’s voltage sensor domain (VSD highlighting: 1 the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; 2 the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and 3 the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases.

  18. Effect of genistein on voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Shi-Ying Li; Bin-Bin Huang; Shou Ouyang

    2006-01-01

    AIM: To investigate the action of genistein (GST), a broad spectrum tyrosine kinase inhibitor, on voltagegated potassium channels in guinea pig proximal colon smooth muscle cells.METHODS: Smooth muscle cells in guinea pig proximal colon were enzymatically isolated. Nystatin-perforated whole cell patch clamp technique was used to record potassium currents including fast transient outward current (IKto) and delayed rectifier current (IKdr), two of which were isolated pharmacologically with 10 mmol/L tetraethylammonium or 5 mmol/L 4-aminopyridine.Contamination of calcium-dependent potassium currents was minimized with no calcium and 0.2 mmol/L CdCl2 in an external solution.RESULTS: GST (10-100 μmol/L) reversibly and dosedependently reduced the peak amplitude of IKto with an IC50value of 22.0±6.9 μmol/L. To a lesser extent, IKdr was also inhibited in both peak current and sustained current.GST could not totally block the outward potassium current as a fraction of the outWard potassium current,which was insensitive to GST. GST had no effect on the steady-state activation (n = 6) and inactivation kinetics(n =6) of IKto. Sodium orthovanadate (1 mmol/L), a potent inhibitor of tyrosine phosphatase, significantly inhibited GST-induced inhibition (P< 0.05).CONCLUSION: GST can dose-dependently and reversibly block voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells.

  19. Functional interaction between S1 and S4 segments in voltage-gated sodium channels revealed by human channelopathies.

    Science.gov (United States)

    Amarouch, Mohamed-Yassine; Kasimova, Marina A; Tarek, Mounir; Abriel, Hugues

    2014-01-01

    The p.I141V mutation of the voltage-gated sodium channel is associated with several clinical hyper-excitability phenotypes. To understand the structural bases of the p.I141V biophysical alterations, molecular dynamics simulations were performed. These simulations predicted that the p.I141V substitution induces the formation of a hydrogen bond between the Y168 residue of the S2 segment and the R225 residue of the S4 segment. We generated a p.I141V-Y168F double mutant for both the Nav1.4 and Nav1.5 channels. The double mutants demonstrated the abolition of the functional effects of the p.I141V mutation, consistent with the formation of a specific interaction between Y168-S2 and R225-S4. The single p.Y168F mutation, however, positively shifted the activation curve, suggesting a compensatory role of these residues on the stability of the voltage-sensing domain.

  20. Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells

    DEFF Research Database (Denmark)

    Tiran, Zohar; Peretz, Asher; Sines, Tal

    2006-01-01

    Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K...... but are not fully redundant. We conclude that PTPepsilon and PTPalpha differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo....

  1. Studies of alpha-helicity and intersegmental interactions in voltage-gated Na+ channels: S2D4.

    Directory of Open Access Journals (Sweden)

    Zhongming Ma

    Full Text Available Much data, including crystallographic, support structural models of sodium and potassium channels consisting of S1-S4 transmembrane segments (the "voltage-sensing domain" clustered around a central pore-forming region (S5-S6 segments and the intervening loop. Voltage gated sodium channels have four non-identical domains which differentiates them from the homotetrameric potassium channels that form the basis for current structural models. Since potassium and sodium channels also exhibit many different functional characteristics and the fourth domain (D4 of sodium channels differs in function from other domains (D1-D3, we have explored its structure in order to determine whether segments in D4 of sodium channels differ significantly from that determined for potassium channels. We have probed the secondary and tertiary structure and the role of the individual amino acid residues of the S2D4 of Na(v1.4 by employing cysteine-scanning mutagenesis (with tryptophan and glutamine substituted for native cysteine. A Fourier transform power spectrum of perturbations in free energy of steady-state inactivation gating (using midpoint potentials and slopes of Boltzmann equation fits of channel availability, h(infinity-V plots indicates a substantial amount of alpha-helical structure in S2D4 (peak at 106 degrees, alpha-Periodicity Index (alpha-PI of 3.10, This conclusion is supported by alpha-PI values of 3.28 and 2.84 for the perturbations in rate constants of entry into (beta and exit from (alpha fast inactivation at 0 mV for mutant channels relative to WT channels assuming a simple two-state model for transition from the open to inactivated state. The results of cysteine substitution at the two most sensitive sites of the S2D4 alpha-helix (N1382 and E1392C support the existence of electrostatic network interactions between S2 and other transmembrane segments within Na(v1.4D4 similar to but not identical to those proposed for K+ channels.

  2. Voltage-gated sodium (NaV) channel blockade by plant cannabinoids does not confer anticonvulsant effects per se.

    Science.gov (United States)

    Hill, Andrew J; Jones, Nicholas A; Smith, Imogen; Hill, Charlotte L; Williams, Claire M; Stephens, Gary J; Whalley, Benjamin J

    2014-04-30

    Cannabidiol (CBD) is a non-psychoactive, well-tolerated, anticonvulsant plant cannabinoid, although its mechanism(s) of seizure suppression remains unknown. Here, we investigate the effect of CBD and the structurally similar cannabinoid, cannabigerol (CBG), on voltage-gated Na(+) (NaV) channels, a common anti-epileptic drug target. CBG's anticonvulsant potential was also assessed in vivo. CBD effects on NaV channels were investigated using patch-clamp recordings from rat CA1 hippocampal neurons in brain slices, human SH-SY5Y (neuroblastoma) cells and mouse cortical neurons in culture. CBG effects were also assessed in SH-SY5Y cells and mouse cortical neurons. CBD and CBG effects on veratridine-stimulated human recombinant NaV1.1, 1.2 or 1.5 channels were assessed using a membrane potential-sensitive fluorescent dye high-throughput assay. The effect of CBG on pentyleneterazole-induced (PTZ) seizures was assessed in rat. CBD (10μM) blocked NaV currents in SH-SY5Y cells, mouse cortical neurons and recombinant cell lines, and affected spike parameters in rat CA1 neurons; CBD also significantly decreased membrane resistance. CBG blocked NaV to a similar degree to CBD in both SH-SY5Y and mouse recordings, but had no effect (50-200mg/kg) on PTZ-induced seizures in rat. CBD and CBG are NaV channel blockers at micromolar concentrations in human and murine neurons and recombinant cells. In contrast to previous reports investigating CBD, CBG had no effect upon PTZ-induced seizures in rat, indicating that NaV blockade per se does not correlate with anticonvulsant effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue.

    Directory of Open Access Journals (Sweden)

    Yinzhi Lai

    Full Text Available It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG were cultured on two dimensional (2D flat surfaces and in three dimensional (3D synthetic poly-L-lactic acid (PLLA and polystyrene (PS polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K(+ depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells' functionality, transcriptase expression and related membrane protein distributions (caveolin-1 were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns.

  4. Functional Expression of Voltage-Gated Sodium Channels Navl.5 in Human Breast Caner Cell Line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    Rui GAO; Jing WANG; Yi SHEN; Ming LEI; Zehua WANG

    2009-01-01

    Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies,and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumors.This study investigated the functional expression of Nav 1.5 and its effect on invasion behavior of human breast cancer cell line MDA-MB-231.The mRNA and pro-tein expression of Navl.5 was detected by real time PCR,Western Blot and immunofluorescence.The effects of Navl.5 on cell proliferation,migration and invasion were respectively assessed by MTT and Transwell.The effects of Nav1.5 on the secretion of matrix metalloproteases (MMPs) by MDA-MB-231 were analyzed by RT-PCR.The over-expressed Navl.5 was present on the membrane of MDA-MB-231 cells.The invasion ability in vitro and the MMP-9 mRNA expression were respec-tively decreased to (47.82±0.53)% and (43.97±0.64)% (P<0.05) respectively in MDA-MB-231 cells treated with VGSCs specific inhibitor tetrodotoxin (TTX) by blocking Navl.5 activity.It was con-eluded that Nav1.5 functional expression potentiated the invasive behavior of human breast cancer cell line MDA-MB-231 by increasing the secretion of MMP-9.

  5. The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H(+) channel Hv1.

    Science.gov (United States)

    Fujiwara, Yuichiro; Kurokawa, Tatsuki; Takeshita, Kohei; Kobayashi, Megumi; Okochi, Yoshifumi; Nakagawa, Atsushi; Okamura, Yasushi

    2012-05-08

    Hv1/VSOP is a dimeric voltage-gated H(+) channel in which the gating of one subunit is reportedly coupled to that of the other subunit within the dimer. The molecular basis for dimer formation and intersubunit coupling, however, remains unknown. Here we show that the carboxy terminus ends downstream of the S4 voltage-sensor helix twist in a dimer coiled-coil architecture, which mediates cooperative gating. We also show that the temperature-dependent activation of H(+) current through Hv1/VSOP is regulated by thermostability of the coiled-coil domain, and that this regulation is altered by mutation of the linker between S4 and the coiled-coil. Cooperative gating within the dimer is also dependent on the linker structure, which circular dichroism spectrum analysis suggests is α-helical. Our results indicate that the cytoplasmic coiled-coil strands form continuous α-helices with S4 and mediate cooperative gating to adjust the range of temperatures over which Hv1/VSOP operates.

  6. Peptide-rich venom from the spider Heteropoda venatoria potently inhibits insect voltage-gated sodium channels.

    Science.gov (United States)

    Huang, Yazhou; Wu, Xinzhou; Zhang, Peng; Duan, Zhigui; Zhou, Xi; Chen, Minzhi; Farooq, Athar; Liang, Songping; Liu, Zhonghua

    2017-01-01

    Heteropoda venatoria is a venomous spider species distributed worldwide and has a characteristic habit of feeding on insects. Reverse-phase high-performance liquid chromatography and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry analyses revealed that H. venatoria venom contains hundreds of peptides with a predominant molecular weights of 3000-5000 Da. Intra-abdominal injection of the venom had severe toxic effects on cockroaches and caused death at higher concentrations. The LD50 was 28.18 μg/g of body weight in the cockroach. It was found that the venom had potent inhibitory effect on voltage-gated sodium channels (VGSCs) in Periplaneta americana cockroach dorsal unpaired median (DUM) neurons with an IC50 values of 6.25 ± 0.02 μg/mL. However, 100 μg/mL venom only partially blocked VGSC currents in rat dorsal root ganglion cells, a much lower inhibitory effect than that on DUM VGSCs. Our results indicate that the venom of H. venatoria contains diverse neurotoxins that might become new leads for bioinsecticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells.

    Science.gov (United States)

    Yang, Zhilai; Wang, Jin-Hui

    2013-12-01

    The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

  8. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA

    Science.gov (United States)

    González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T. G. Emyr; Field, Linda M.; Schmehl, Daniel; Ellis, James D.; Krieger, Klemens; Williamson, Martin S.

    2016-01-01

    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes. PMID:27191597

  9. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA.

    Directory of Open Access Journals (Sweden)

    Joel González-Cabrera

    Full Text Available The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.

  10. Therapeutic value of voltage-gated sodium channel inhibitors in breast, colorectal and prostate cancer: a systematic review

    Directory of Open Access Journals (Sweden)

    Fabiola eMartin

    2015-11-01

    Full Text Available Although survival rates of breast, colon and prostate cancers are improving, deaths from these tumors frequently occur due to metastasis. Voltage-gated Na+ channels (VGSCs are membrane proteins, which regulate membrane current and cellular migration during nervous system organogenesis. VGSCs are also expressed in fibroblasts, immune cells, glia and metastatic cancer cells. VGSCs regulate migration and invasion of breast, bowel and prostate cancer cells, suggesting that they may be novel anti-metastatic targets. We conducted a systematic review of clinical and preclinical studies testing the effects of VGSC-inhibiting drugs in cancer. 204 publications were identified, of which two human, two mouse and 20 in vitro publications were included. In the clinical studies, the effect of these drugs on survival and metastatic relapse is not clear. The 22 preclinical studies collectively suggest that several VGSC-inhibiting drugs inhibit cancer proliferation, migration and invasion. None of the human and only six of the preclinical studies directly investigated the effect of the drugs on VGSC activity. Studies were difficult to compare due to lack of standardized methodology and outcome measures. We conclude that the benefits of VGSC inhibitors require further investigation. Standardization of future studies and outcome measures should enable meaningful study comparisons.

  11. Regulation of L-type Voltage Gated Calcium Channel CACNA1S in Macrophages upon Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Antony, Cecil; Mehto, Subhash; Tiwari, Brijendra K; Singh, Yogendra; Natarajan, Krishnamurthy

    2015-01-01

    We demonstrated earlier the inhibitory role played by Voltage Gated Calcium Channels (VGCCs) in regulating Mycobacterium tuberculosis (M. tb) survival and pathogenesis. In this report, we investigated mechanisms and key players that regulate the surface expression of VGCC-CACNA1S by Rv2463 and M. tb infection in macrophages. Our earlier work identified Rv2463 to be expressed at early times post infection in macrophages that induced suppressor responses to dendritic cells and macrophages. Our results in this study demonstrate a role of MyD88 independent TLR pathway in mediating CACNA1S expression. Dissecting the role for second messengers, we show that calcium homeostasis plays a key role in CACNA1S expression during M. tb infection. Using siRNAs against molecular sensors of calcium regulation, we show an involvement of ER associated Stromal Interaction Molecules 1 and 2 (STIM1 and STIM2), and transcription factor pCREB, towards CACNA1S expression that also involved the MyD88 independent pathway. Interestingly, reactive oxygen species played a negative role in M. tb mediated CACNA1S expression. Further, a cross-regulation of ROS and pCREB was noted that governed CACNA1S expression. Characterizing the mechanisms governing CACNA1S expression would improve our understanding of the regulation of VGCC expression and its role in M. tb pathogenesis during M. tb infection.

  12. Reciprocal regulation of reactive oxygen species and phospho-CREB regulates voltage gated calcium channel expression during Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Arti Selvakumar

    Full Text Available Our previous work has demonstrated the roles played by L-type Voltage Gated Calcium Channels (VGCC in regulating Mycobacterium tuberculosis (M. tb survival and pathogenesis. Here we decipher mechanisms and pathways engaged by the pathogen to regulate VGCC expression in macrophages. We show that M. tb and its antigen Rv3416 use phospho-CREB (pCREB, Reactive Oxygen Species (ROS, Protein Kinase C (PKC and Mitogen Activated Protein Kinase (MAPK to modulate VGCC expression in macrophages. siRNA mediated knockdown of MyD88, IRAK1, IRAK2 or TRAF6 significantly inhibited antigen mediated VGCC expression. Inhibiting Protein Kinase C (PKC or MEK-ERK1/2 further increased VGCC expression. Interestingly, inhibiting intracellular calcium release upregulated antigen mediated VGCC expression, while inhibiting extracellular calcium influx had no significant effect. siRNA mediated knockdown of transcription factors c-Jun, SOX5 and CREB significantly inhibited Rv3416 mediated VGCC expression. A dynamic reciprocal cross-regulation between ROS and pCREB was observed that in turn governed VGCC expression with ROS playing a limiting role in the process. Further dissection of the mechanisms such as the interplay between ROS and pCREB would improve our understanding of the regulation of VGCC expression during M. tb infection.

  13. Human voltage-gated proton channel hv1: a new potential biomarker for diagnosis and prognosis of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    Full Text Available Solid tumors exist in a hypoxic microenvironment, and possess high-glycolytic metabolites. To avoid the acidosis, tumor cells must exhibit a dynamic cytosolic pH regulation mechanism(s. The voltage-gated proton channel Hv1 mediates NADPH oxidase function by compensating cellular loss of electrons with protons. Here, we showed for the first time, that Hv1 expression is increased in colorectal tumor tissues and cell lines, associated with poor prognosis. Immunohistochemistry showed that Hv1 is strongly expressed in adenocarcinomas but not or lowly expressed in normal colorectal or hyperplastic polyps. Hv1 expression in colorectal cancer is significantly associated with the tumor size, tumor classification, lymph node status, clinical stage and p53 status. High Hv1 expression is associated significantly with shorter overall and recurrence-free survival. Furthermore, real-time RT-PCR and immunocytochemistry showed that Hv1 is highly expressed in colorectal cancer cell lines, SW620, HT29, LS174T and Colo205, but not in SW480. Inhibitions of Hv1 expression and activity in the highly metastatic SW620 cells by small interfering RNA (siRNA and Zn(2+ respectively, markedly decrease the cell invasion and migration, restraint proton extrusion and the intracellular pH recovery. Our results suggest that Hv1 may be used as a potential biomarker for diagnosis and prognosis of colorectal carcinoma, and a potential target for anticancer drugs in colorectal cancer therapy.

  14. Characterization of a novel radiolabeled peptide selective for a subpopulation of voltage-gated potassium channels in mammalian brain.

    Science.gov (United States)

    Racapé, Judith; Lecoq, Alain; Romi-Lebrun, Régine; Liu, Jessica; Kohler, Martin; Garcia, Maria L; Ménez, André; Gasparini, Sylvaine

    2002-02-08

    BgK, a 37-amino acid voltage-gated potassium (Kv) 1 channel blocker isolated from the sea anemone Bunodosoma granulifera, can be modified at certain positions to alter its pharmacological profile (Alessandri-Haber, N., Lecoq, A., Gasparini, S., Grangier-Macmath, G., Jacquet, G., Harvey, A. L., de Medeiros, C., Rowan, E. G., Gola, M., Ménez, A., and Crest, M. (1999) J. Biol. Chem. 274, 35653-35661). In the present study, we report the design of two BgK analogs that have been radiolabeled with (125)INa. Whereas BgK(W5Y/Y26F) and its radiolabeled derivative, (125)I-BgK(W5Y/Y26F), bind to Kv1.1, Kv1.2, and Kv1.6 channels with potencies similar to those for the parent peptide, BgK, BgK(W5Y/F6A/Y26F) and its monoiodo-tyrosine derivative, (125)I-BgK(W5Y/F6A/Y26F), display a distinctive and unique pharmacological profile; they bind with high affinity to homomultimeric Kv1.1 and Kv1.6 channels, but not to Kv1.2 channels. Interaction of BgK(W5Y/F6A/Y26F) with potassium channels depends on the nature of a residue in the mouth of the channel, at a position that determines channel sensitivity to external tetraethylammonium. In native brain tissue, (125)I-BgK(W5Y/F6A/Y26F) binds to a population of Kv1 channels that appear to consist of at least two sensitive (Kv1.1 and/or Kv1.6) subunits, in adjacent position. Given its unique pharmacological properties, (125)I-BgK(W5Y/F6A/Y26F) represents a new tool for studying subpopulations of Kv1 channels in native tissues.

  15. Inhibition of voltage-gated calcium channels by sequestration of beta subunits.

    Science.gov (United States)

    Cuchillo-Ibañez, Inmaculada; Aldea, Marcos; Brocard, Jacques; Albillos, Almudena; Weiss, Norbert; Garcia, Antonio G; De Waard, Michel

    2003-11-28

    The auxiliary Ca(v)beta subunit is essential for functional expression of high-voltage activated Ca(2+) channels. Here, we describe a lure sequence designed to sequester the Ca(v)beta subunits in transfected bovine chromaffin cells. This sequence is composed of the extracellular and transmembrane domains of the alpha chain of the human CD8, the I-II loop of Ca(v)2.1 subunit, and EGFP. We showed that expressing the CD8-I-II-EGFP sequence in chromaffin cells led to a >50% decrease in overall Ca(2+) current density. Although this decrease involved all the Ca(2+) channel types (L, N, P/Q, R), the proportion of each type supporting the remaining current was altered. A similar effect was observed after transfection when measuring the functional role of Ca(2+) channels in catecholamine release by chromaffin cells: global decrease of release and change of balance between the different channel types supporting it. Possible explanations for this apparent discrepancy are further discussed.

  16. CaV1.1: The atypical prototypical voltage-gated Ca2+ channel

    Science.gov (United States)

    Bannister, Roger A.; Beam, Kurt G.

    2012-01-01

    CaV1.1 is the prototype for the other nine known CaV channel isoforms, yet it has functional properties that make it truly atypical of this group. Specifically, CaV1.1 is expressed solely in skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-contraction (EC) coupling and it is an L-type Ca2+ channel which contributes to a form of activity-dependent Ca2+ entry that has been termed Excitation-Coupled Ca2+ Entry (ECCE). The ability of CaV1.1 to serve as voltage-sensor for EC coupling appears to be unique amongst CaV channels, whereas the physiological role of its more conventional function as a Ca2+ channel has been a matter of uncertainty for nearly 50 years. In this chapter, we discuss how CaV1.1 supports EC coupling, the possible relevance of Ca2+ entry through CaV1.1 and how alterations of CaV1.1 function can have pathophysiological consequences. PMID:22982493

  17. SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels.

    NARCIS (Netherlands)

    Drenth, J.P.H.; Morsche, R.H.M. te; Guillet, G.; Taieb, A.; Kirby, R.L.; Jansen, J.B.M.J.

    2005-01-01

    Primary erythermalgia is a rare disorder characterized by recurrent attacks of red, warm and painful hands, and/or feet. We previously localized the gene for primary erythermalgia to a 7.94 cM region on chromosome 2q. Recently, Yang et al identified two missense mutations of the sodium channel alpha

  18. Mapping of sites facing aqueous environment of voltage-gated proton channel at resting state: a study with PEGylation protection.

    Science.gov (United States)

    Kurokawa, Tatsuki; Okamura, Yasushi

    2014-01-01

    Hv1 (also named, voltage-sensor only protein, VSOP) lacks an authentic pore domain, and its voltage sensor domain plays both roles in voltage sensing and proton permeation. The activities of a proton channel are intrinsic to protomers of Hv1, while Hv1 is dimeric in biological membranes; cooperative gating is exerted by interaction between two protomers. As the signature pattern conserved among voltage-gated channels and voltage-sensing phosphatase, Hv1 has multiple arginines intervened by two hydrophobic residues on the fourth transmembrane segment, S4. S4 moves upward relative to other helices upon depolarization, causing conformational change possibly leading to the formation of a proton-selective conduction pathway. However, detailed mechanisms of proton-selectivity and gating of Hv1 are unknown. Here we took an approach of PEGylation protection assay to define residues facing the aqueous environment of mouse Hv1 (mHv1). Accessibilities of two maleimide molecules, N-ethylmaleimide (NEM) and 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS), were examined on cysteine introduced into individual sites. Only the first arginine on S4 (R1: R201) was inaccessible by NEM and AMS in mHv1. This is consistent with previous results of electrophysiology on the resting state channel, suggesting that the accessibility profile represents the resting state of mHv1. D108, critical for proton selectivity, was accessible by AMS and NEM, suggesting that D108 faces the vestibule. F146, a site critical for blocking by a guanidinium-reagent, was accessible by NEM, suggesting that F146 also faces the inner vestibule. These findings suggest an inner vestibule lined by several residues on S2 including F146, D108 on S1, and the C-terminal half of S4. © 2013.

  19. Expresión de canales de potasio voltaje dependientes en ovocitos de Xenopus laevis (Amphibia Voltage gated potassium channels expressed in Xenopus laevis(AMPHIBIA oocytes

    Directory of Open Access Journals (Sweden)

    Clavijo Carlos

    2003-06-01

    Full Text Available La expresión en sistemas heterólogos ha sido una herramienta ampliamente utilizada enlos últimos años para el estudio funcional y estructural de proteínas. Para la carac-terización de las propiedades biofísicas de canales, bombas y transportadores engeneral su expresión en ovocitos de Xenopus laevis, ha sido fundamental. Este estudioreporta la expresión de dos canales de potasio voltaje dependientes, Kv1.1y Shakerenovocitos de X. laevisusando un protocolo ajustado a las condiciones de latitud y altitudde Bogotá para la extracción, aislamiento, cultivo y microinyección de éstas células.Heterologous expression has been an important tool for structural and functionalcharacterization of proteins. The study of biophysical properties of ion channels,pumps and transporters has been possible thanks to their expression in Xenopuslaevisoocytes. Here we report the expression of two voltage gated channels, Kv1.1and Shaker, in X. laevisoocytes using a method for oocyte extraction, isolation, cul-ture, and microinjection adapted to the latitude and altitude conditions of Bogotá,Colombia.

  20. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel

    Directory of Open Access Journals (Sweden)

    Uysal-Onganer Pinar

    2007-11-01

    Full Text Available Abstract Background Although a high level of functional voltage-gated sodium channel (VGSC expression has been found in strongly metastatic human and rat prostate cancer (PCa cells, the mechanism(s responsible for the upregulation is unknown. The concentration of epidermal growth factor (EGF, a modulator of ion channels, in the body is highest in prostatic fluid. Thus, EGF could be involved in the VGSC upregulation in PCa. The effects of EGF on VGSC expression in the highly metastatic human PCa PC-3M cell line, which was shown previously to express both functional VGSCs and EGF receptors, were investigated. A quantitative approach, from gene level to cell behaviour, was used. mRNA levels were determined by real-time PCR. Protein expression was studied by Western blots and immunocytochemistry and digital image analysis. Functional assays involved measurements of transverse migration, endocytic membrane activity and Matrigel invasion. Results Exogenous EGF enhanced the cells' in vitro metastatic behaviours (migration, endocytosis and invasion. Endogenous EGF had a similar involvement. EGF increased VGSC Nav1.7 (predominant isoform in PCa mRNA and protein expressions. Co-application of the highly specific VGSC blocker tetrodotoxin (TTX suppressed the effect of EGF on all three metastatic cell behaviours studied. Conclusion 1 EGF has a major involvement in the upregulation of functional VGSC expression in human PCa PC-3M cells. (2 VGSC activity has a significant intermediary role in potentiating effect of EGF in human PCa.

  1. Pyrethroids differentially alter voltage-gated sodium channels from the honeybee central olfactory neurons.

    Directory of Open Access Journals (Sweden)

    Aklesso Kadala

    Full Text Available The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central 'antennal lobe neurons' (ALNs in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1 an acceleration of cumulative inactivation, and (2 a marked slowing of the tail current recorded upon repolarization. Cypermethrin and permethrin accelerated cumulative inactivation of the sodium current peak in a similar manner and tetramethrin was even more effective. The slow-down of channel deactivation was markedly dependent on the type of pyrethroid. With cypermethrin, a progressive increase of the tail current amplitude along with successive stimulations reveals a traditionally described use-dependent recruitment of modified sodium channels. However, an unexpected decrease in this tail current was revealed with tetramethrin. If one considers the calculated percentage of modified channels as an index of pyrethroids effects, ALNs are significantly more susceptible to tetramethrin than to permethrin or cypermethrin for a single depolarization, but this difference attenuates with repetitive activity. Further comparison with peripheral neurons from antennae suggest that these modifications are neuron type specific. Modeling the sodium channel as a multi-state channel with fast and slow inactivation allows to underline the effects of pyrethroids on a set of rate constants connecting open and inactivated conformations, and give some insights to their specificity. Altogether, our results revealed a differential sensitivity of central olfactory neurons to pyrethroids that emphasize the ability for these compounds to impair detection and

  2. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries.

    Science.gov (United States)

    Cox, Robert H; Fromme, Samantha

    2016-06-01

    Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.

  3. Voltage-gated K(+) channels sensitive to stromatoxin-1 regulate myogenic and neurogenic contractions of rat urinary bladder smooth muscle.

    Science.gov (United States)

    Chen, Muyan; Kellett, Whitney F; Petkov, Georgi V

    2010-07-01

    Members of the voltage-gated K(+) (K(V)) channel family are suggested to control the resting membrane potential and the repolarization phase of the action potential in urinary bladder smooth muscle (UBSM). Recent studies report that stromatoxin-1, a peptide isolated from tarantulas, selectively inhibits K(V)2.1, K(V)2.2, K(V)4.2, and K(V)2.1/9.3 channels. The objective of this study was to investigate whether K(V) channels sensitive to stromatoxin-1 participate in the regulation of rat UBSM contractility and to identify their molecular fingerprints. Stromatoxin-1 (100 nM) increased the spontaneous phasic contraction amplitude, muscle force, and tone in isolated UBSM strips. However, stromatoxin-1 (100 nM) had no effect on the UBSM contractions induced by depolarizing agents such as KCl (20 mM) or carbachol (1 microM). This indicates that, under conditions of sustained membrane depolarization, the K(V) channels sensitive to stromatoxin-1 have no further contribution to the membrane excitability and contractility. Stromatoxin-1 (100 nM) increased the amplitude of the electrical field stimulation-induced contractions, suggesting also a role for these channels in neurogenic contractions. RT-PCR experiments on freshly isolated UBSM cells showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3, but not K(V)4.2 channel subunits. Protein expression of K(V)2.1 and K(V)2.2 channels was detected using Western blot and was further confirmed by immunocytochemical detection in freshly isolated UBSM cells. These novel findings indicate that K(V)2.1 and K(V)2.2, but not K(V)4.2, channel subunits are expressed in rat UBSM and play a key role in opposing both myogenic and neurogenic UBSM contractions.

  4. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons.

    Science.gov (United States)

    Martín, Víctor; Vale, Carmen; Rubiolo, Juan A; Roel, Maria; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luís M

    2015-06-15

    Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin

  5. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function.

    Science.gov (United States)

    Kaur, Gurjot; Pinggera, Alexandra; Ortner, Nadine J; Lieb, Andreas; Sinnegger-Brauns, Martina J; Yarov-Yarovoy, Vladimir; Obermair, Gerald J; Flucher, Bernhard E; Striessnig, Jörg

    2015-08-21

    L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Upregulation of Voltage-Gated Calcium Channel Cav1.3 in Bovine Somatotropes Treated with Ghrelin

    Directory of Open Access Journals (Sweden)

    V. M. Salinas Zarate

    2013-01-01

    the Cav1.2 and Cav1.3 pore-forming subunits of L-type channels. The treatment with Ghrelin significantly increased the Cav1.3 subunit expression, suggeting that the chronic stimulation of the GHS receptor with Ghrelin or GHRP-6 increases the number of voltage-gated Ca2+ channels at the cell surface of BS.

  7. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    Science.gov (United States)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  8. Therapeutic plasma exchange as a steroid-sparing therapy in a patient with limbic encephalitis due to antibodies to voltage-gated potassium channels.

    Science.gov (United States)

    Martin, Isabella W; Martin, Christi-Lynn B; Dunbar, Nancy M; Lee, Stephen L; Szczepiorkowski, Zbigniew M

    2016-02-01

    Autoantibodies to the voltage-gated potassium channel (VGKC) complex cause a spectrum of non-paraneoplastic neurologic syndromes including limbic encephalitis (LE). We report a case of a man with LE who underwent a course of therapeutic plasma exchange (TPE) in addition to other immunomodulatory therapies and experienced sustained clinical resolution of his symptoms. This report adds to the existing literature supporting TPE in cases of LE due to VGKC complex autoantibodies.

  9. Leucine-Rich Glioma Inactivated-1 and Voltage-Gated Potassium Channel Autoimmune Encephalitis Associated with Ischemic Stroke: A Case Report.

    Science.gov (United States)

    McGinley, Marisa; Morales-Vidal, Sarkis; Ruland, Sean

    2016-01-01

    Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage-gated potassium channel (VGKC) antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypotheses linking these two disease processes are proposed.

  10. Synergistic antiarrhythmic effect of combining inhibition of Ca(2+)-activated K(+) (SK) channels and voltage-gated Na(+) channels in an isolated heart model of atrial fibrillation

    DEFF Research Database (Denmark)

    Kirchhoff, Jeppe Egedal; Goldin Diness, Jonas; Sheykhzade, Majid

    2015-01-01

    be subefficacious as monotherapy, may prevent atrial fibrillation (AF) and have reduced proarrhythmic potential in the ventricles. METHODS: Subefficacious concentrations of ranolazine, flecainide, and lidocaine were tested alone or in combination with the SK channel blocker N-(pyridin-2-yl)-4-(pyridin-2-yl...... of the adverse effect profile could be an additional advantage if compound concentrations could be reduced. OBJECTIVE: The purpose of this study was to test the hypothesis that combined inhibition of Ca(2+)-activated K(+) channels (SK channels) and voltage-gated Na(+) channels, in concentrations that would......)thiazol-2-amine (ICA) in a Langendorff-perfused guinea pig heart model in which AF was induced after acetylcholine application and burst pacing. RESULTS: AF duration was reduced when both flecainide and ranolazine were combined with ICA in doses that did not reduce AF as monotherapy. At higher...

  11. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel.

    Science.gov (United States)

    Lishko, Polina V; Botchkina, Inna L; Fedorenko, Andriy; Kirichok, Yuriy

    2010-02-05

    Human spermatozoa are quiescent in the male reproductive system and must undergo activation once introduced into the female reproductive tract. This process is known to require alkalinization of sperm cytoplasm, but the mechanism responsible for transmembrane proton extrusion has remained unknown because of the inability to measure membrane conductance in human sperm. Here, by successfully patch clamping human spermatozoa, we show that proton channel Hv1 is their dominant proton conductance. Hv1 is confined to the principal piece of the sperm flagellum, where it is expressed at unusually high density. Robust flagellar Hv1-dependent proton conductance is activated by membrane depolarization, an alkaline extracellular environment, endocannabinoid anandamide, and removal of extracellular zinc, a potent Hv1 blocker. Hv1 allows only outward transport of protons and is therefore dedicated to inducing intracellular alkalinization and activating spermatozoa. The importance of Hv1 for sperm activation makes it an attractive target for controlling male fertility.

  12. Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll

    2016-05-01

    Full Text Available Saxitoxin (STX and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav, impeding passage of Na+ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs.

  13. Mechanism of Modification, by Lidocaine, of Fast and Slow Recovery from Inactivation of Voltage-Gated Na⁺ Channels.

    Science.gov (United States)

    Gawali, Vaibhavkumar S; Lukacs, Peter; Cervenka, Rene; Koenig, Xaver; Rubi, Lena; Hilber, Karlheinz; Sandtner, Walter; Todt, Hannes

    2015-11-01

    The clinically important suppression of high-frequency discharges of excitable cells by local anesthetics (LA) is largely determined by drug-induced prolongation of the time course of repriming (recovery from inactivation) of voltage-gated Na(+) channels. This prolongation may result from periodic drug-binding to a high-affinity binding site during the action potentials and subsequent slow dissociation from the site between action potentials ("dissociation hypothesis"). For many drugs it has been suggested that the fast inactivated state represents the high-affinity binding state. Alternatively, LAs may bind with high affinity to a native slow-inactivated state, thereby accelerating the development of this state during action potentials ("stabilization hypothesis"). In this case, slow recovery between action potentials occurs from enhanced native slow inactivation. To test these two hypotheses we produced serial cysteine mutations of domain IV segment 6 in rNav1.4 that resulted in constructs with varying propensities to enter fast- and slow-inactivated states. We tested the effect of the LA lidocaine on the time course of recovery from short and long depolarizing prepulses, which, under drug-free conditions, recruited mainly fast- and slow-inactivated states, respectively. Among the tested constructs the mutation-induced changes in native slow recovery induced by long depolarizations were not correlated with the respective lidocaine-induced slow recovery after short depolarizations. On the other hand, for long depolarizations the mutation-induced alterations in native slow recovery were significantly correlated with the kinetics of lidocaine-induced slow recovery. These results favor the "dissociation hypothesis" for short depolarizations but the "stabilization hypothesis" for long depolarizations. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats.

    Science.gov (United States)

    Liu, Yang; Han, Naijian; Franchini, Lucía F; Xu, Huihui; Pisciottano, Francisco; Elgoyhen, Ana Belén; Rajan, Koilmani Emmanuvel; Zhang, Shuyi

    2012-05-01

    Bats are the only mammals that use highly developed laryngeal echolocation, a sensory mechanism based on the ability to emit laryngeal sounds and interpret the returning echoes to identify objects. Although this capability allows bats to orientate and hunt in complete darkness, endowing them with great survival advantages, the genetic bases underlying the evolution of bat echolocation are still largely unknown. Echolocation requires high-frequency hearing that in mammals is largely dependent on somatic electromotility of outer hair cells. Then, understanding the molecular evolution of outer hair cell genes might help to unravel the evolutionary history of echolocation. In this work, we analyzed the molecular evolution of two key outer hair cell genes: the voltage-gated potassium channel gene KCNQ4 and CHRNA10, the gene encoding the α10 nicotinic acetylcholine receptor subunit. We reconstructed the phylogeny of bats based on KCNQ4 and CHRNA10 protein and nucleotide sequences. A phylogenetic tree built using KCNQ4 amino acid sequences showed that two paraphyletic clades of laryngeal echolocating bats grouped together, with eight shared substitutions among particular lineages. In addition, our analyses indicated that two of these parallel substitutions, M388I and P406S, were probably fixed under positive selection and could have had a strong functional impact on KCNQ4. Moreover, our results indicated that KCNQ4 evolved under positive selection in the ancestral lineage leading to mammals, suggesting that this gene might have been important for the evolution of mammalian hearing. On the other hand, we found that CHRNA10, a gene that evolved adaptively in the mammalian lineage, was under strong purifying selection in bats. Thus, the CHRNA10 amino acid tree did not show echolocating bat monophyly and reproduced the bat species tree. These results suggest that only a subset of hearing genes could underlie the evolution of echolocation. The present work continues to

  15. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice.

    Science.gov (United States)

    Nakao, Akito; Miki, Takafumi; Shoji, Hirotaka; Nishi, Miyuki; Takeshima, Hiroshi; Miyakawa, Tsuyoshi; Mori, Yasuo

    2015-01-01

    Calcium (Ca(2+)) influx through voltage-gated Ca(2+) channels (VGCCs) induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca(2+) signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP) was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO) mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached "study-wide significance." Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions.

  16. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice

    Directory of Open Access Journals (Sweden)

    Akito eNakao

    2015-06-01

    Full Text Available Calcium (Ca2+ influx through voltage-gated Ca2+ channels (VGCCs induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached study-wide significance. Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions.

  17. Unconventional role of voltage-gated proton channels (VSOP/Hv1) in regulation of microglial ROS production.

    Science.gov (United States)

    Kawai, Takafumi; Okochi, Yoshifumi; Ozaki, Tomohiko; Imura, Yoshio; Koizumi, Schuichi; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Yamashita, Toshihide; Okamura, Yasushi

    2017-09-01

    It has been established that voltage-gated proton channels (VSOP/Hv1), encoded by Hvcn1, support reactive oxygen species (ROS) production in phagocytic activities of neutrophils (El Chemaly et al. ) and antibody production in B lymphocytes (Capasso et al. ). VSOP/Hv1 is a potential therapeutic target for brain ischemia, since Hvcn1 deficiency reduces microglial ROS production and protects brain from neuronal damage (Wu et al. ). In the present study, we report that VSOP/Hv1 has paradoxical suppressive role in ROS production in microglia. Extracellular ROS production was lower in neutrophils of Hvcn1(-/-) mice than WT mice as reported. In contrast, it was drastically enhanced in isolated Hvcn1(-/-) microglia as compared with cells from WT mice. Actin dynamics was altered in Hvcn1(-/-) microglia and intracellular distribution of cytosolic NADPH oxidase subunit, p67, was changed. When expression levels of oxidative stress responsive antioxidant genes were compared between WT and Hvcn1(-/-) in cerebral cortex at different ages of animals, they were slightly decreased in Hvcn1(-/-) mice at younger stage (1 day, 5 days, 3 weeks old), but drastically increased at aged stage (6 months old), suggesting that the regulation of microglial ROS production by VSOP/Hv1 is age-dependent. We also performed brain ischemic stroke experiments and found that the neuroprotective effect of VSOP/Hv1deficiency on infarct volume depended on the age of animals. Taken together, regulation of ROS production by VSOP/Hv1 is more complex than previously thought and significance of VSOP/Hv1 in microglial ROS production depends on age. © 2017 International Society for Neurochemistry.

  18. Butanol isomers exert distinct effects on voltage-gated calcium channel currents and thus catecholamine secretion in adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Sarah McDavid

    Full Text Available Butanol (C4H10OH has been used both to dissect the molecular targets of alcohols/general anesthetics and to implicate phospholipase D (PLD signaling in a variety of cellular functions including neurotransmitter and hormone exocytosis. Like other primary alcohols, 1-butanol is a substrate for PLD and thereby disrupts formation of the intracellular signaling lipid phosphatidic acid. Because secondary and tertiary butanols do not undergo this transphosphatidylation, they have been used as controls for 1-butanol to implicate PLD signaling. Recently, selective pharmacological inhibitors of PLD have been developed and, in some cases, fail to block cellular functions previously ascribed to PLD using primary alcohols. For example, exocytosis of insulin and degranulation of mast cells are blocked by primary alcohols, but not by the PLD inhibitor FIPI. In this study we show that 1-butanol reduces catecholamine secretion from adrenal chromaffin cells to a much greater extent than tert-butanol, and that the PLD inhibitor VU0155056 has no effect. Using fluorescent imaging we show the effect of these drugs on depolarization-evoked calcium entry parallel those on secretion. Patch-clamp electrophysiology confirmed the peak amplitude of voltage-gated calcium channel currents (I(Ca is inhibited by 1-butanol, with little or no block by secondary or tert-butanol. Detailed comparison shows for the first time that the different butanol isomers exert distinct, and sometimes opposing, effects on the voltage-dependence and gating kinetics of I(Ca. We discuss these data with regard to PLD signaling in cellular physiology and the molecular targets of general anesthetics.

  19. Butanol isomers exert distinct effects on voltage-gated calcium channel currents and thus catecholamine secretion in adrenal chromaffin cells.

    Science.gov (United States)

    McDavid, Sarah; Bauer, Mary Beth; Brindley, Rebecca L; Jewell, Mark L; Currie, Kevin P M

    2014-01-01

    Butanol (C4H10OH) has been used both to dissect the molecular targets of alcohols/general anesthetics and to implicate phospholipase D (PLD) signaling in a variety of cellular functions including neurotransmitter and hormone exocytosis. Like other primary alcohols, 1-butanol is a substrate for PLD and thereby disrupts formation of the intracellular signaling lipid phosphatidic acid. Because secondary and tertiary butanols do not undergo this transphosphatidylation, they have been used as controls for 1-butanol to implicate PLD signaling. Recently, selective pharmacological inhibitors of PLD have been developed and, in some cases, fail to block cellular functions previously ascribed to PLD using primary alcohols. For example, exocytosis of insulin and degranulation of mast cells are blocked by primary alcohols, but not by the PLD inhibitor FIPI. In this study we show that 1-butanol reduces catecholamine secretion from adrenal chromaffin cells to a much greater extent than tert-butanol, and that the PLD inhibitor VU0155056 has no effect. Using fluorescent imaging we show the effect of these drugs on depolarization-evoked calcium entry parallel those on secretion. Patch-clamp electrophysiology confirmed the peak amplitude of voltage-gated calcium channel currents (I(Ca)) is inhibited by 1-butanol, with little or no block by secondary or tert-butanol. Detailed comparison shows for the first time that the different butanol isomers exert distinct, and sometimes opposing, effects on the voltage-dependence and gating kinetics of I(Ca). We discuss these data with regard to PLD signaling in cellular physiology and the molecular targets of general anesthetics.

  20. Ion channels-related diseases.

    Science.gov (United States)

    Dworakowska, B; Dołowy, K

    2000-01-01

    There are many diseases related to ion channels. Mutations in muscle voltage-gated sodium, potassium, calcium and chloride channels, and acetylcholine-gated channel may lead to such physiological disorders as hyper- and hypokalemic periodic paralysis, myotonias, long QT syndrome, Brugada syndrome, malignant hyperthermia and myasthenia. Neuronal disorders, e.g., epilepsy, episodic ataxia, familial hemiplegic migraine, Lambert-Eaton myasthenic syndrome, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia may result from dysfunction of voltage-gated sodium, potassium and calcium channels, or acetylcholine- and glycine-gated channels. Some kidney disorders, e.g., Bartter's syndrome, policystic kidney disease and Dent's disease, secretion disorders, e.g., hyperinsulinemic hypoglycemia of infancy and cystic fibrosis, vision disorders, e.g., congenital stationary night blindness and total colour-blindness may also be linked to mutations in ion channels.

  1. N- and L-type voltage-gated calcium channels mediate fast calcium transients in axonal shafts of mouse peripheral nerve.

    Directory of Open Access Journals (Sweden)

    Ruxandra eBarzan

    2016-06-01

    Full Text Available In the peripheral nervous system a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na+ and K+ channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca2+ ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca2+ channels (VGCCs are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca2+ elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca2+ indicator Oregon Green BAPTA-1, and 2-photon Ca2+ imaging in fast line scan mode (500 Hz. We report that transient increases in intra-axonal Ca2+ concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca2+ transients in peripheral nerves are fast, i.e. occur in a millisecond time-domain. Combining Ca2+ imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca2+ transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca2+ entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca2+ may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system.

  2. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve.

    Science.gov (United States)

    Barzan, Ruxandra; Pfeiffer, Friederike; Kukley, Maria

    2016-01-01

    In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na(+) and K(+) channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca(2+) ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca(2+) channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca(2+) elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca(2+) indicator Oregon Green BAPTA-1, and 2-photon Ca(2+) imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca(2+) concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca(2+) transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca(2+) imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca(2+) transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca(2+) entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca(2+) may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS).

  3. Epigenetic regulation of L-type voltage-gated Ca(2+) channels in mesenteric arteries of aging hypertensive rats.

    Science.gov (United States)

    Liao, Jingwen; Zhang, Yanyan; Ye, Fang; Zhang, Lin; Chen, Yu; Zeng, Fanxing; Shi, Lijun

    2016-11-24

    Accumulating evidence has shown that epigenetic regulation is involved in hypertension and aging. L-type voltage-gated Ca(2+) channels (LTCCs), the dominant channels in vascular myocytes, greatly contribute to arteriole contraction and blood pressure (BP) control. We investigated the dynamic changes and epigenetic regulation of LTCC in the mesenteric arteries of aging hypertensive rats. LTCC function was evaluated by using microvascular rings and whole-cell patch-clamp in the mesenteric arteries of male Wistar-Kyoto rats and spontaneously hypertensive rats at established hypertension (3 month old) and an aging stage (16 month old), respectively. The expression of the LTCC α1C subunit was determined in the rat mesenteric microcirculation. The expression of miR-328, which targets α1C mRNA, and the DNA methylation status at the promoter region of the α1C gene (CACNA1C) were also determined. In vitro experiments were performed to assess α1C expression after transfection of the miR-328 mimic into cultured vascular smooth muscle cells (VSMCs). The results showed that hypertension superimposed with aging aggravated BP and vascular remodeling. Both LTCC function and expression were significantly increased in hypertensive arteries and downregulated with aging. miR-328 expression was inhibited in hypertension, but increased with aging. There was no significant difference in the mean DNA methylation of CACNA1C among groups, whereas methylation was enhanced in the hypertensive group at specific sites on a CpG island located upstream of the gene promoter. Overexpression of miR-328 inhibited the α1C level of cultured VSMCs within 48 h. The results of the present study indicate that the dysfunction of LTCCs may exert an epigenetic influence at both pre- and post-transcriptional levels during hypertension pathogenesis and aging progression. miR-328 negatively regulated LTCC expression in both aging and hypertension.Hypertension Research advance online publication, 24

  4. Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Zhi-ying LIN; Li-min CHEN; Jing ZHANG; Xiao-dong PAN; Yuan-gui ZHU; Qin-yong YE; Hua-pin HUANG; Xiao-chun CHEN

    2012-01-01

    Aim:To investigate the effect of ginsenoside Rb1 on voltage-gated calcium currents in cultured rat hippocampal neurons and the modulatory mechanism.Methods:Cultured hippocampal neurons were prepared from Sprague Dawley rat embryos.Whole-cell configuration of the patchclamp technique was used to record the voltage-gated calcium currents (VGCCs)from the hippocampal neurons,and the effect of Rb1 was examined.Results:Rb1 (2-100 μmol/L)inhibited VGCCs in a concentration-dependent manner,and the current was mostly recovered upon wash-out.The specific L-type Ca2+ channel inhibitor nifedipine (10 μmol/L)occluded Rb1-induced inhibition on VGCCs.Neither the selective N-type Ca2+ channel blocker ω-conotoxin-GVlA (1 μmoVL),nor the selective P/Q-type Ca2+ channel blocker ωo-agatoxin IVA (30 nmol/L)diminished Rb1-sensitive VGCCs.Rb1 induced a leftward shift of the steady-state inactivation curve of Ica to a negative potential without affecting its activation kinetics or reversal potential in the I-V curve.The inhibitory effect of Rb1 was neither abolished by the adenylyl cyclase activator forskolin (10 μmol/L),nor by the PKA inhibitor H-89 (10 μmol/L).Conclusion:Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels,without affecting the N-type or P/Q-type Ca2+ channels in hippocampal neurons,cAMP-PKA signaling pathway is not involved in this effect.

  5. Inhibition of voltage-gated calcium channels as common mode of action for (mixtures of) distinct classes of insecticides.

    Science.gov (United States)

    Meijer, Marieke; Dingemans, Milou M L; van den Berg, Martin; Westerink, Remco H S

    2014-09-01

    Humans are exposed to distinct structural classes of insecticides with different neurotoxic modes of action. Because calcium homeostasis is essential for proper neuronal function and development, we investigated the effects of insecticides from different classes (pyrethroid: (α-)cypermethrin; organophosphate: chlorpyrifos; organochlorine: endosulfan; neonicotinoid: imidacloprid) and mixtures thereof on the intracellular calcium concentration ([Ca(2+)]i). Effects of acute (20 min) exposure to (mixtures of) insecticides on basal and depolarization-evoked [Ca(2+)]i were studied in vitro with Fura-2-loaded PC12 cells and high resolution single-cell fluorescence microscopy. The data demonstrate that cypermethrin, α-cypermethrin, endosulfan, and chlorpyrifos concentration-dependently decreased depolarization-evoked [Ca(2+)]i, with 50% (IC50) at 78nM, 239nM, 250nM, and 899nM, respectively. Additionally, acute exposure to chlorpyrifos or endosulfan (10μM) induced a modest increase in basal [Ca(2+)]i, amounting to 68 ± 8nM and 53 ± 8nM, respectively. Imidacloprid did not disturb basal or depolarization-evoked [Ca(2+)]i at 10μM. Following exposure to binary mixtures, effects on depolarization-evoked [Ca(2+)]i were within the expected effect additivity range, whereas the effect of the tertiary mixture was less than this expected additivity effect range. These results demonstrate that different types of insecticides inhibit depolarization-evoked [Ca(2+)]i in PC12 cells by inhibiting voltage-gated calcium channels (VGCCs) in vitro at concentrations comparable with human occupational exposure levels. Moreover, the effective concentrations in this study are below those for earlier described modes of action. Because inhibition of VGCCs appears to be a common and potentially additive mode of action of several classes of insecticides, this target should be considered in neurotoxicity risk assessment studies. © The Author 2014. Published by Oxford University Press on behalf

  6. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    Science.gov (United States)

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  7. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    Directory of Open Access Journals (Sweden)

    Sarah C Brennan

    Full Text Available Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E11.5-16.5 in mouse in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult. Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+ channels (VGCC, inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3, P/Q type (CaV2.1, N-type (CaV2.2, R-type (CaV2.3, and T-type (CaV3.2 and CaV3.3 VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3, demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to

  8. Elastic and Muscular Arteries Differ in Structure, Basal NO Production and Voltage-Gated Ca(2+)-Channels.

    Science.gov (United States)

    Leloup, Arthur J A; Van Hove, Cor E; Heykers, Annick; Schrijvers, Dorien M; De Meyer, Guido R Y; Fransen, Paul

    2015-01-01

    In the last decades, the search for mechanisms underlying progressive arterial stiffening and for interventions to avoid or reverse this process has gained much attention. In general, arterial stiffening displays regional variation and is, for example, during aging more prominent in elastic than in muscular arteries. We hypothesize that besides passive also active regulators of arterial compliance [i.e., endothelial and vascular smooth muscle cell (VSMC) function] differ between these arteries. Hence, it is conceivable that these vessel types will display different time frames of stiffening. To investigate this hypothesis segments of muscular arteries such as femoral and mesenteric arteries and elastic arteries such as the aorta and carotid artery were isolated from female C57Bl6 mice (5-6 months of age, n = 8). Both microscopy and passive stretching of the segments in a myograph confirmed that passive mechanical properties (elastin, collagen) of elastic and muscular arteries were significantly different. Endothelial function, more specifically basal nitric oxide (NO) efficacy, and VSMC function, more specifically L-type voltage-gated Ca(2+) channel (VGCC)-mediated contractions, were determined by α1-adrenoceptor stimulation with phenylephrine (PE) and by gradual depolarization with elevated extracellular K(+) in the absence and presence of eNOS inhibition with L-NAME. PE-mediated isometric contractions significantly increased after inhibition of NO release with L-NAME in elastic, but not in muscular vessel segments. This high basal eNOS activity in elastic vessels was also responsible for shifts of K(+) concentration-contraction curves to higher external K(+). VGCC-mediated contractions were similarly affected by depolarization with elevated K(+) in muscular artery segments or in elastic artery segments in the absence of basal NO. However, K(+)-induced contractions were inhibited by the VGCC blocker diltiazem with significantly higher sensitivity in the muscular

  9. Elastic and muscular arteries differ in structure, basal NO production and voltage-gated Ca2+-channels

    Directory of Open Access Journals (Sweden)

    Arthur J.A. Leloup

    2015-12-01

    Full Text Available In the last decades, the search for mechanisms underlying progressive arterial stiffening and for interventions to avoid or reverse this process has gained much attention. In general, arterial stiffening displays regional variation and is, for example, during aging more prominent in elastic than in muscular arteries. We hypothesize that besides passive also active regulators of arterial compliance (i.e. endothelial and vascular smooth muscle cell (VSMC function differ between these arteries. Hence, it is conceivable that these vessel types will display different time frames of stiffening. To investigate this hypothesis segments of muscular arteries such as femoral and mesenteric arteries and elastic arteries such as the aorta and carotid artery were isolated from female C57Bl6 mice (5-6 months of age, n=8. Both microscopy and passive stretching of the segments in a myograph confirmed that passive mechanical properties (elastin, collagen of elastic and muscular arteries were significantly different. Endothelial function, more specifically basal nitric oxide (NO efficacy, and VSMC function, more specifically L-type voltage-gated Ca2+ channel (VGCC-mediated contractions, were determined by α1-adrenoceptor stimulation with phenylephrine (PE and by gradual depolarization with elevated extracellular K+ in the absence and presence of eNOS inhibition with L-NAME. PE-mediated isometric contractions significantly increased after inhibition of NO release with L-NAME in elastic, but not in muscular vessel segments. This high basal eNOS activity in elastic vessels was also responsible for shifts of K+ concentration-contraction curves to higher external K+. VGCC-mediated contractions were similarly affected by depolarization with elevated K+ in muscular artery segments or in elastic artery segments in the absence of basal NO. However, K+-induced contractions were inhibited by the VGCC blocker diltiazem with significantly higher sensitivity in the muscular

  10. Voltage-gated sodium channel gene repertoire of lampreys: gene duplications, tissue-specific expression and discovery of a long-lost gene.

    Science.gov (United States)

    Zakon, Harold H; Li, Weiming; Pillai, Nisha E; Tohari, Sumanty; Shingate, Prashant; Ren, Jianfeng; Venkatesh, Byrappa

    2017-09-27

    Studies of the voltage-gated sodium (Nav) channels of extant gnathostomes have made it possible to deduce that ancestral gnathostomes possessed four voltage-gated sodium channel genes derived from a single ancestral chordate gene following two rounds of genome duplication early in vertebrates. We investigated the Nav gene family in two species of lampreys (the Japanese lamprey Lethenteron japonicum and sea lamprey Petromyzon marinus) (jawless vertebrates-agnatha) and compared them with those of basal vertebrates to better understand the origin of Nav genes in vertebrates. We noted six Nav genes in both lamprey species, but orthology with gnathostome (jawed vertebrate) channels was inconclusive. Surprisingly, the Nav2 gene, ubiquitously found in invertebrates and believed to have been lost in vertebrates, is present in lampreys, elephant shark (Callorhinchus milii) and coelacanth (Latimeria chalumnae). Despite repeated duplication of the Nav1 family in vertebrates, Nav2 is only in single copy in those vertebrates in which it is retained, and was independently lost in ray-finned fishes and tetrapods. Of the other five Nav channel genes, most were expressed in brain, one in brain and heart, and one exclusively in skeletal muscle. Invertebrates do not express Nav channel genes in muscle. Thus, early in the vertebrate lineage Nav channels began to diversify and different genes began to express in heart and muscle. © 2017 The Author(s).

  11. Rufinamide attenuates mechanical allodynia in a model of neuropathic pain in the mouse and stabilizes voltage-gated sodium channel inactivated state.

    Science.gov (United States)

    Suter, Marc R; Kirschmann, Guylène; Laedermann, Cedric J; Abriel, Hugues; Decosterd, Isabelle

    2013-01-01

    Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6-1.9) (median [95% CI]) to 2.3 g (2.2-2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4-15.5) to 30.0 s (21.8-31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.

  12. 电压门控性钾通道与认知功能障碍的研究进展%Voltage-gated potassium channels in cognitive dysfunction

    Institute of Scientific and Technical Information of China (English)

    颜文慧; 王萌(综述); 陈莉娜(审校)

    2015-01-01

    The growing number of cognitive dysfunction patients is bringing heavy mental and financial burdens to the society and families.Voltage-gated potassium channels (Kv), which consist of delayed rectifier potassium channels and transient outward po -tassium channels , are involved in the incidence of cognitive dysfunction .This review summarized the role of Kv channels in cognitive dysfunction and their relationship with N-methyl-D-aspartic acid receptors ( NMDARs) that play an important role in the process of learning and memory .%认知功能障碍患者的增多给社会、家庭带来了沉重的精神和经济负担。电压门控性钾通道( voltage-gated potas-sium channels, Kv)主要分为延迟整流钾通道和瞬时外向钾通道,参与认知功能障碍的发生。文中对Kv通道与认知功能障碍,以及Kv通道与在学习和记忆过程中起重要作用的N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid, NMDA)受体之间的关系作一综述。

  13. Miniaturization of Scorpion β-Toxins Uncovers a Putative Ancestral Surface of Interaction with Voltage-gated Sodium Channels*♦

    OpenAIRE

    2008-01-01

    The bioactive surface of scorpion β-toxins that interact with receptor site-4 at voltage-gated sodium channels is constituted of residues of the conserved βαββ core and the C-tail. In an attempt to evaluate the extent by which residues of the toxin core contribute to bioactivity, the anti-insect and anti-mammalian β-toxins Bj-xtrIT and Css4 were truncated at their N and C termini, resulting in miniature peptides composed essentially of the core secondary structure motives. The truncated β-tox...

  14. VOLTAGE-GATED NA+ CHANNEL BLOCKERS ATTENUATE THE TOXICITY OF PROLONGED REPETITIVE ACTIVITY IN A MOUSE MODEL OF CMT1B

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Rosberg, M. R.; Moldovan, M.

    2016-01-01

    Prolonged high frequency electrical stimulation (RS) was found to precipitate motor axon degeneration in P0+/− mice, a model of demyelinating Charcot-Marie-Tooth disease (CMT1B). We hypothesized that this was due to the associated changes in voltage-gated Na + channel (VGSC) isoforms with ectopic.......). Investigations were carried out in 1-year-old WT, P0+/− and NaV1.8 knockouts (P0+/−SNS) mice. Tibial nerve RS was carried out under anesthesia using interrupted trains of 200 Hz for 3 hours, which is not neurotoxic in WT. Nerve function was monitored by conventional conduction studies and nerve excitability...

  15. Blockage of the Upregulation of Voltage-Gated Sodium Channel Nav1.3 Improves Outcomes after Experimental Traumatic Brain Injury

    OpenAIRE

    HUANG, XIAN-JIAN; Li, Wei-Ping; Lin, Yong; Feng, Jun-Feng; Jia,Feng; Mao, Qing; Jiang, Ji-yao

    2014-01-01

    Excessive active voltage-gated sodium channels are responsible for the cellular abnormalities associated with secondary brain injury following traumatic brain injury (TBI). We previously presented evidence that significant upregulation of Nav1.3 expression occurs in the rat cortex at 2 h and 12 h post-TBI and is correlated with TBI severity. In our current study, we tested the hypothesis that blocking upregulation of Nav1.3 expression in vivo in the acute stage post-TBI attenuates the seconda...

  16. Voltage gated potassium channel antibodies positive autoimmune encephalopathy in a child: A case report and literature review of an under-recognized condition

    Directory of Open Access Journals (Sweden)

    Subramanian Ganesan

    2013-01-01

    Full Text Available Autoimmune limbic encephalitis (LE associated with voltage gated potassium channel antibodies (VGKC-Abs in children is more common than previously thought and is not always paraneoplastic. Non-neoplastic, autoimmune LE associated with VGKC-Abs has been described recently. However, only few case reports in children as the disease is predominantly described in the adult population. It is likely that this type of autoimmune encephalitis is currently under-diagnosed and hence, under-treated, especially in children. We present a 13-year-old previously fit and healthy African girl diagnosed with LE and we reviewed the literature for its current management.

  17. [An autopsy case of amyotrophic lateral sclerosis with prominent muscle cramps, fasciculation, and high titer of anti-voltage gated potassium channel (VGKC) complex antibody].

    Science.gov (United States)

    Sato, Aki; Sakai, Naoko; Shinbo, Junsuke; Hashidate, Hideki; Igarashi, Shuichi; Kakita, Akiyoshi; Yamazaki, Motoyoshi

    2014-01-01

    The patient was a 55-year-old male who had prominent fasciculation and muscle cramps. Muscle weakness and atrophy of the trunk, respiratory system, and extremities gradually progressed. On the basis of these features, we diagnosed this patient as having amyotrophic lateral sclerosis (ALS), however, the upper motor neuron signs were not significant. Following the detection of the anti-voltage gated potassium channel (VGKC) complex antibody at 907.5 pM (normal VGKC complex antibody in the development of cramp-fasciculation syndrome has been speculated. In this ALS patient, the antibodies might be associated with pathomechanisms underlying the characteristic symptoms.

  18. Morvan's syndrome with anti contactin associated protein like 2 – voltage gated potassium channel antibody presenting with syndrome of inappropriate antidiuretic hormone secretion

    Directory of Open Access Journals (Sweden)

    Anjani Kumar Sharma

    2016-01-01

    Full Text Available Morvan's syndrome is a rare autoimmune disorder characterized by triad of peripheral nerve hyperexcitability, autonomic dysfunction, and central nervous system symptoms. Antibodies against contactin-associated protein-like 2 (CASPR2, a subtype of voltage-gated potassium channel (VGKC complex, are found in a significant proportion of patients with Morvan's syndrome and are thought to play a key role in peripheral as well as central clinical manifestations. We report a patient of Morvan's syndrome with positive CASPR2–anti-VGKC antibody having syndrome of inappropriate antidiuretic hormone as a cause of persistent hyponatremia.

  19. Morvan's syndrome with anti contactin associated protein like 2 – voltage gated potassium channel antibody presenting with syndrome of inappropriate antidiuretic hormone secretion

    Science.gov (United States)

    Sharma, Anjani Kumar; Kaur, Manminder; Paul, Madhuparna

    2016-01-01

    Morvan's syndrome is a rare autoimmune disorder characterized by triad of peripheral nerve hyperexcitability, autonomic dysfunction, and central nervous system symptoms. Antibodies against contactin-associated protein-like 2 (CASPR2), a subtype of voltage-gated potassium channel (VGKC) complex, are found in a significant proportion of patients with Morvan's syndrome and are thought to play a key role in peripheral as well as central clinical manifestations. We report a patient of Morvan's syndrome with positive CASPR2–anti-VGKC antibody having syndrome of inappropriate antidiuretic hormone as a cause of persistent hyponatremia. PMID:27695240

  20. Expression of Voltage-Gated Sodium Channel Nav1.3 Is Associated with Severity of Traumatic Brain Injury in Adult Rats

    OpenAIRE

    Huang, Xian-jian; Mao, Qing; Lin, Yong; Feng, Jun-Feng; Jiang, Ji-Yao

    2013-01-01

    During the secondary injury period after traumatic brain injury (TBI), depolarization of neurons mediated by voltage-gated sodium channels (VGSCs) leads to cellular abnormalities and neurological dysfunction. Alterations in expression of different α subunits of VGSCs can affect early brain pathology following TBI. This study detected the expression of Nav1.3 mRNA and protein in the rat cortex post-TBI. Adult male Sprague–Dawley rats were randomly assigned to sham-TBI, mild-TBI (mTBI), or seve...

  1. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    Science.gov (United States)

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  2. Expressions of voltage-gated K+ channel 2.1 and 2.2 in rat bladder with detrusor hyperreflexia

    Institute of Scientific and Technical Information of China (English)

    GAN Xiu-guo; AN Rui-hua; BAI Yu-feng; ZONG De-bin

    2008-01-01

    Background Voltage-gated K+channel(KV)plays a critical role in the modulation of detrusor contraction.This study was conducted to investigate the expressions of Kv2.1 and Kv2.2 in rat bladder with detrusor hyperreflexia(DH).Methods Thirty adult female Sprague-Dawley rats(200-220 g)were randomly divided into the control group and the experimental group.The experimental group was subjected to spinal cord injury(SCI).In the controls,the surgical procedure was identical with the exception that dura and spinal cord were transected.Four weeks after SCI,in vivo cystometry and mechanical pulling tests of isolated detrusor strips were performed.mRNA was extracted from the detrusors of normal and DH rats for the detection of expression of Kv2.1 and Kv2.2 by RT.PCR.Differences in expression between normal and overactive detrusors were identified by gel imaging.Results Fourteen rats in the experimental group exhibited uninhibited bladder contraction(>8 cmH20)before voiding after SCl.One rat died from infection.The frequency of DH in the experimental group was significantly different from that in the control group with or without treatment with 4-aminopyridine(4-AP)(P<0.05),while the amplitude of DH did not change markedly.The rates of variation of the automatic contractile frequency and amplitude were(66.8-+1 2.4)%and (42.6±12.6)%respectively in the control group,and(38.4±9.8)%and(28.0±4.6)% respectively in the DH group.4-AP increased the automatic contractile frequency aDart from the automatic contractile amplitude in both the control and DH groups(P<0.05).4-AP increased the rate of variation of the automatic contractile frequency more markedly in the control group than in the DH group(P<0.05).Significant expression of Kv2.2 was not detected in bladders in the control group.Compared to the mRNA levels of 13-actin,the mRNA level of Kv2.1 was 1.26±0.12 in the control group and 0.66±0.08 in the DH group.SCI significantly reduced the mRNA level of Kv2.1 in rat bladders with

  3. Neuroprotective effect of interleukin-6 regulation of voltage-gated Na+ channels of cortical neurons is time- and dose-dependent

    Directory of Open Access Journals (Sweden)

    Wei Xia

    2015-01-01

    Full Text Available Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour exposure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours by studying voltage-gated Na + channels using a patch-clamp technique. Voltage-clamp recording results demonstrated that interleukin-6 suppressed Na + currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na + channels in rat cortical neurons by interleukin-6 is time- and dose-dependent.

  4. Neuroprotective effect of interleukin-6 regulation of voltage-gated Na(+) channels of cortical neurons is time- and dose-dependent.

    Science.gov (United States)

    Xia, Wei; Peng, Guo-Yi; Sheng, Jiang-Tao; Zhu, Fang-Fang; Guo, Jing-Fang; Chen, Wei-Qiang

    2015-04-01

    Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour exposure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na(+) channels using a patch-clamp technique. Voltage-clamp recording results demonstrated that interleukin-6 suppressed Na(+) currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na(+) channels in rat cortical neurons by interleukin-6 is time- and dose-dependent.

  5. Neuroprotective effect of interleukin-6 regulation of voltage-gated Na+ channels of cortical neurons is time- and dose-dependent

    Institute of Scientific and Technical Information of China (English)

    Wei Xia; Guo-yi Peng; Jiang-tao Sheng; Fang-fang Zhu; Jing-fang Guo; Wei-qiang Chen

    2015-01-01

    Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour expo-sure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na+ channels using a patch-clamp technique. Volt-age-clamp recording results demonstrated that interleukin-6 suppressed Na+ currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na+channels in rat corti-cal neurons by interleukin-6 is time- and dose-dependent.

  6. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels.

    Science.gov (United States)

    ElFessi-Magouri, Rym; Peigneur, Steve; Othman, Houcemeddine; Srairi-Abid, Najet; ElAyeb, Mohamed; Tytgat, Jan; Kharrat, Riadh

    2015-01-01

    Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.

  7. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels.

    Directory of Open Access Journals (Sweden)

    Rym ElFessi-Magouri

    Full Text Available Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V and 24 (D/N.Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK and small conductance (SK Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.

  8. 电压门控钠离子通道在肿瘤中的研究进展%The research progression of the voltage-gated sodium channels in tumor

    Institute of Scientific and Technical Information of China (English)

    夏健龄

    2016-01-01

    Voltage-gated sodium channels are highly expressed in exciting cells,and play an important role in the depolarization of the membrane potential and the secretion and release of neurotransmitters.The recent research showed that the voltage gated sodium channels are highly expressed in colon cancer,breast cancer,prostate cancer and non-small cell lung cancer,and are closely associated with tumor proliferation,invasion,metastasis and other malignant biological behaviors.However,the mechanisms by which the ion channels regulate the biological behaviors and how the ion channels are mediated are still not clear.%电压门控钠离子通道兴奋性细胞中高表达,并且在总电位的去极化及神经递质的分泌和释放过程中发挥着重要的作用。最新研究表明,电压门控钠离子通道在结肠癌、乳腺癌、前列腺癌及非小细胞肺癌等多种肿瘤中高表达,并且与肿瘤增殖、侵袭、转移等恶性生物学行为密切相关。然而电压门控钠离子通道调控肿瘤恶性生物学行为的机制及其如何受到调控目前仍未清楚。现对电压门控钠离子通道在肿瘤中调控机制做一个综述。

  9. Molecular Surface of JZTX-V (β-Theraphotoxin-Cj2a Interacting with Voltage-Gated Sodium Channel Subtype NaV1.4

    Directory of Open Access Journals (Sweden)

    Ji Luo

    2014-07-01

    Full Text Available Voltage-gated sodium channels (VGSCs; NaV1.1–NaV1.9 have been proven to be critical in controlling the function of excitable cells, and human genetic evidence shows that aberrant function of these channels causes channelopathies, including epilepsy, arrhythmia, paralytic myotonia, and pain. The effects of peptide toxins, especially those isolated from spider venom, have shed light on the structure–function relationship of these channels. However, most of these toxins have not been analyzed in detail. In particular, the bioactive faces of these toxins have not been determined. Jingzhaotoxin (JZTX-V (also known as β-theraphotoxin-Cj2a is a 29-amino acid peptide toxin isolated from the venom of the spider Chilobrachys jingzhao. JZTX-V adopts an inhibitory cysteine knot (ICK motif and has an inhibitory effect on voltage-gated sodium and potassium channels. Previous experiments have shown that JZTX-V has an inhibitory effect on TTX-S and TTX-R sodium currents on rat DRG cells with IC50 values of 27.6 and 30.2 nM, respectively, and is able to shift the activation and inactivation curves to the depolarizing and the hyperpolarizing direction, respectively. Here, we show that JZTX-V has a much stronger inhibitory effect on NaV1.4, the isoform of voltage-gated sodium channels predominantly expressed in skeletal muscle cells, with an IC50 value of 5.12 nM, compared with IC50 values of 61.7–2700 nM for other heterologously expressed NaV1 subtypes. Furthermore, we investigated the bioactive surface of JZTX-V by alanine-scanning the effect of toxin on NaV1.4 and demonstrate that the bioactive face of JZTX-V is composed of three hydrophobic (W5, M6, and W7 and two cationic (R20 and K22 residues. Our results establish that, consistent with previous assumptions, JZTX-V is a Janus-faced toxin which may be a useful tool for the further investigation of the structure and function of sodium channels.

  10. The up-regulation of voltage-gated sodium channels subtypes coincides with an increased sodium current in hippocampal neuronal culture model.

    Science.gov (United States)

    Guo, Feng; Xu, Xiaoxue; Cai, Jiqun; Hu, Huiyuan; Sun, Wei; He, Guilin; Shao, Dongxue; Wang, Lei; Chen, Tianbao; Shaw, Chris; Zhu, Tong; Hao, Liying

    2013-02-01

    Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly-inactivating Na(+) current (I(Na,T)) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch-clamp. In addition, channel activity of persistent, non-inactivating Na(+) current (I(Na,P)) was obviously increased in the hippocampal neuronal culture model as judged by single-channel patch-clamp recording. Furthermore, VGSC subtypes Na(V)1.1, Na(V)1.2 and Na(V)1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.

  11. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC Gene in Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Jiabao Xu

    2016-05-01

    Full Text Available Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr. Previous studies reported various mutations in the voltage-gated sodium channel (VGSC gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established.A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested.A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations.Two novel kdr

  12. Voltage-gated ion transport through semiconducting conical nanopores formed by metal nanoparticle-assisted plasma etching.

    Science.gov (United States)

    James, Teena; Kalinin, Yevgeniy V; Chan, Chih-Chieh; Randhawa, Jatinder S; Gaevski, Mikhail; Gracias, David H

    2012-07-11

    Nanopores with conical geometries have been found to rectify ionic current in electrolytes. While nanopores in semiconducting membranes are known to modulate ionic transport through gated modification of pore surface charge, the fabrication of conical nanopores in silicon (Si) has proven challenging. Here, we report the discovery that gold (Au) nanoparticle (NP)-assisted plasma etching results in the formation of conical etch profiles in Si. These conical profiles result due to enhanced Si etch rates in the vicinity of the Au NPs. We show that this process provides a convenient and versatile means to fabricate conical nanopores in Si membranes and crystals with variable pore-diameters and cone-angles. We investigated ionic transport through these pores and observed that rectification ratios could be enhanced by a factor of over 100 by voltage gating alone, and that these pores could function as ionic switches with high on-off ratios of approximately 260. Further, we demonstrate voltage gated control over protein transport, which is of importance in lab-on-a-chip devices and biomolecular separations.

  13. Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: a "joint venture" alkaloid from arthropods and amphibians.

    Science.gov (United States)

    Vandendriessche, Thomas; Abdel-Mottaleb, Yousra; Maertens, Chantal; Cuypers, Eva; Sudau, Alexander; Nubbemeyer, Udo; Mebs, Dietrich; Tytgat, Jan

    2008-03-01

    Certain amphibians provide themselves with a chemical defense by accumulating lipophilic alkaloids into skin glands from dietary arthropods. Examples of such alkaloids are pumiliotoxins (PTXs). In general, PTXs are known as positive modulators of voltage-gated sodium channels (VGSCs). Unlike other PTXs, PTX 251D does not share this characteristic. However, mice and insect studies showed that PTX 251D is highly toxic and to date the basis of its toxicity remains unknown. In this work, we searched for the possible target of PTX 251D. The toxin was therefore made synthetically and tested on four VGSCs (mammalian rNa(v)1.2/beta(1), rNa(v)1.4/beta(1), hNa(v)1.5/beta(1) and insect Para/tipE) and five voltage-gated potassium channels (VGPCs) (mammalian rK(v)1.1-1.2, hK(v)1.3, hK(v)11.1 (hERG) and insect Shaker IR) expressed heterologously in Xenopus laevis oocytes, using the two-electrode voltage clamp technique. PTX 251D not only inhibited the Na(+) influx through the mammalian VGSCs but also affected the steady-state activation and inactivation. Interestingly, in the insect ortholog, the inactivation process was dramatically affected. Additionally, PTX 251D inhibited the K(+) efflux through all five tested VGPCs and slowed down the deactivation kinetics of the mammalian VGPCs. hK(v)1.3 was the most sensitive channel, with an IC(50) value 10.8+/-0.5 microM. To the best of our knowledge this is the first report of a PTX affecting VGPCs.

  14. Autosomal dominant erythermalgia associated with a novel mutation in the voltage-gated sodium channel alpha subunit Nav1.7.

    Science.gov (United States)

    Michiels, Jan J; te Morsche, Rene H M; Jansen, Jan B M J; Drenth, Joost P H

    2005-10-01

    Autosomal dominant primary erythermalgia is a rare disorder characterized by recurrent attacks of red, warm, and painful hands and/or feet. To describe the phenotypes and molecular data of a 10-member family with 5 symptomatic living patients with erythermalgia. The clinical phenotype of this family was featured by episodic or continuous symmetrical red swelling, irritating warmth, and burning pain of feet and lower legs provoked or aggravated by warmth and exercise, and relief was always obtained by application of cold, such as putting feet in (ice-) cold water. The symptoms in this family were only partially controlled by analgesics and sedatives. All affected family members were heterozygous for a novel mutation (S241T) of the voltage-gated sodium channel alpha subunit Nav1.7. Primary erythermalgia may be a neuropathic disorder of the small peripheral sensory and sympathetic neurons, and may be caused by hyperexcitability of Nav1.7.

  15. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity

    Science.gov (United States)

    Ding, Yanning; Brackenbury, William J.; Onganer, Pinar U.; Montano, Ximena; Porter, Louise M.; Bates, Lucy F.; Djamgoz, Mustafa B. A.

    2014-01-01

    The main aim of this investigation was to determine whether a functional relationship existed between epidermal growth factor (EGF) and voltage-gated sodium channel (VGSC) upregulation, both associated with strongly metastatic prostate cancer cells. Incubation with EGF for 24 h more than doubled VGSC current density. Similar treatment with EGF significantly and dose-dependently enhanced the cells’ migration through Transwell filters. Both the patch clamp recordings and the migration assay suggested that endogenous EGF played a similar role. Importantly, co-application of EGF and tetrodotoxin, a highly selective VGSC blocker, abolished 65% of the potentiating effect of EGF. It is suggested that a significant portion of the EGF-induced enhancement of migration occurred via VGSC activity. PMID:17960590

  16. A clinico-radiological phenotype of voltage-gated potassium channel complex antibody-mediated disorder presenting with seizures and basal ganglia changes.

    Science.gov (United States)

    Hacohen, Yael; Wright, Sukhvir; Siddiqui, Ata; Pandya, Nikki; Lin, Jean-Pierre; Vincent, Angela; Lim, Ming

    2012-12-01

    In childhood, central nervous system (CNS) presentations associated with antibodies to voltage-gated potassium channel (VGKC) complex include limbic encephalitis, status epilepticus, epileptic encephalopathy, and autistic regression. We report the cases of two individuals (a 6-year-old male and an 11-year-old female) who presented with an acute-onset explosive seizure disorder with positive VGKC complex antibodies and bilateral basal ganglia changes on magnetic resonance imaging (MRI). Both patients made a complete clinical recovery, without immunotherapy, with resolution of the MRI changes and normalization of the antibody levels. Extended antibody testing, including testing for leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein 2, and contactin-2 was negative. This could suggest that the clinico-radiological phenotype in our patients may in fact be associated with a novel autoreactive target(s) within the VGKC complex, as may be the case in other children with VGKC complex-mediated CNS disorders.

  17. Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury.

    Science.gov (United States)

    Stanika, Ruslan I; Villanueva, Idalis; Kazanina, Galina; Andrews, S Brian; Pivovarova, Natalia B

    2012-05-09

    Glutamate excitotoxicity, a major component of many neurodegenerative disorders, is characterized by excessive calcium influx selectively through NMDARs. However, there is a substantial uncertainty concerning why other known routes of significant calcium entry, in particular, VGCCs, are not similarly toxic. Here, we report that in the majority of neurons in rat hippocampal and cortical cultures, maximal L-type VGCC activation induces much lower calcium loading than toxic NMDAR activation. Consequently, few depolarization-activated neurons exhibit calcium deregulation and cell death. Activation of alternative routes of calcium entry induced neuronal death in proportion to the degree of calcium loading. In a small subset of neurons, depolarization evoked stronger calcium elevations, approaching those induced by toxic NMDA. These neurons were characterized by elevated expression of VGCCs and enhanced voltage-gated calcium currents, mitochondrial dysfunction and cell death. Preventing VGCC-dependent mitochondrial calcium loading resulted in stronger cytoplasmic calcium elevations, whereas inhibiting mitochondrial calcium clearance accelerated mitochondrial depolarization. Both observations further implicate mitochondrial dysfunction in VGCC-mediated cell death. Results indicate that neuronal vulnerability tracks the extent of calcium loading but does not appear to depend explicitly on the route of calcium entry.

  18. Voltage-gated potassium channels involved in regulation of physiological function in MrgprA3-specific itch neurons.

    Science.gov (United States)

    Tang, Min; Wu, Guanyi; Wang, Zhongli; Yang, Niuniu; Shi, Hao; He, Qian; Zhu, Chan; Yang, Yan; Yu, Guang; Wang, Changming; Yuan, Xiaolin; Liu, Qin; Guan, Yun; Dong, Xinzhong; Tang, Zongxiang

    2016-04-01

    Itch is described as an unpleasant or irritating skin sensation that elicits the desire or reflex to scratch. MrgprA3, one of members of the Mrgprs family, is specifically expressed in a subpopulation of dorsal root ganglion (DRG) in the peripheral nervous system (PNS). These MrgprA3-expressing DRG neurons have been identified as itch-specific neurons. They can be activated by the compound, chloroquine, which is used as a drug to treat malaria. In the present study, we labeled these itch-specific neurons using the method of molecular genetic markers, and then studied their electrophysiological properties. We also recorded the cutaneous MrgprA3(-) neurons retrogradely labeled by Dil dye (MrgprA3(-)-Dil). We first found that MrgprA3(+) neurons have a lower excitability than MrgprA3(-) neurons (MrgprA3(-)-non-Dil and MrgprA3(-)-Dil). The number of action potential (AP) was reduced more obviously in MrgprA3(+) neurons than that of in MrgprA3(-) neurons. In most cases, MrgprA3(+) neurons only generated single AP; however, in MrgprA3(-) neurons, the same stimulation could induce multiple AP firing due to the greater voltage-gated potassium (Kv) current existence in MrgprA3(+) than in MrgprA3(-) neurons. Thus, Kv current plays an important role in the regulation of excitability in itch-specific neurons.

  19. Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation and drug sensitivity.

    Science.gov (United States)

    Bourdin, Céline M; Moignot, Bénédicte; Wang, Lingxin; Murillo, Laurence; Juchaux, Marjorie; Quinchard, Sophie; Lapied, Bruno; Guérineau, Nathalie C; Dong, Ke; Legros, Christian

    2013-01-01

    Insect voltage-gated sodium (Nav) channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation "temperature-induced-paralysis locus E." The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na(+) currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1) strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3'UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1) co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280) in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280). PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be modulated by an

  20. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P

    2007-07-01

    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  1. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian–bilaterian ancestor

    Science.gov (United States)

    Li, Xiaofan; Martinson, Alexandra S.; Layden, Michael J.; Diatta, Fortunay H.; Sberna, Anna P.; Simmons, David K.; Martindale, Mark Q.; Jegla, Timothy J.

    2015-01-01

    We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K+ channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg2+ in Eag channels and Ca2+ in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. PMID:25696816

  2. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor.

    Science.gov (United States)

    Li, Xiaofan; Martinson, Alexandra S; Layden, Michael J; Diatta, Fortunay H; Sberna, Anna P; Simmons, David K; Martindale, Mark Q; Jegla, Timothy J

    2015-02-15

    We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. © 2015. Published by The Company of Biologists Ltd.

  3. S3-S4 linker length modulates the relaxed state of a voltage-gated potassium channel.

    Science.gov (United States)

    Priest, Michael F; Lacroix, Jérôme J; Villalba-Galea, Carlos A; Bezanilla, Francisco

    2013-11-19

    Voltage-sensing domains (VSDs) are membrane protein modules found in ion channels and enzymes that are responsible for a large number of fundamental biological tasks, such as neuronal electrical activity. The VSDs switch from a resting to an active conformation upon membrane depolarization, altering the activity of the protein in response to voltage changes. Interestingly, numerous studies describe the existence of a third distinct state, called the relaxed state, also populated at positive potentials. Although some physiological roles for the relaxed state have been suggested, little is known about the molecular determinants responsible for the development and modulation of VSD relaxation. Several lines of evidence have suggested that the linker (S3-S4 linker) between the third (S3) and fourth (S4) transmembrane segments of the VSD alters the equilibrium between resting and active conformations. By measuring gating currents from the Shaker potassium channel, we demonstrate here that shortening the S3-S4 linker stabilizes the relaxed state, whereas lengthening the linker or splitting it and coinjecting two fragments of the channel have little effect. We propose that natural variations of the length of the S3-S4 linker in various VSD-containing proteins may produce differential VSD relaxation in vivo.

  4. Computational modeling of voltage-gated Ca channels inhibition: identification of different effects on uterine and cardiac action potentials

    Directory of Open Access Journals (Sweden)

    Wing Chiu eTong

    2014-10-01

    Full Text Available The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs. Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models – of uterine smooth muscle cells (USMC, cardiac sinoatrial node cells (SAN and ventricular cells – to investigate the relative effects of reducing two important voltage-gated Ca currents – the L-type (ICaL and T-type (ICaT Ca currents. Reduction of ICaL (10% alone, or ICaT (40% alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine

  5. Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, R.; Dover, K; Laezza, F; Shtraizent, N; Huang, X; Tchetchik, D; Eliseenkova, A; Goldfarb, M; Mohammadi, M; et. al.

    2009-01-01

    Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel binding in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.

  6. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels.

    Science.gov (United States)

    Nieves-Cordones, Manuel; Gaillard, Isabelle

    2014-01-01

    Among the different transport systems present in plant cells, Shaker channels constitute the major pathway for K(+) in the plasma membrane. Plant Shaker channels are members of the 6 transmembrane-1 pore (6TM-1P) cation channel superfamily as the animal Shaker (Kv) and HCN channels. All these channels are voltage-gated K(+) channels: Kv channels are outward-rectifiers, opened at depolarized voltages and HCN channels are inward-rectifiers, opened by membrane hyperpolarization. Among plant Shaker channels, we can find outward-rectifiers, inward-rectifiers and also weak-rectifiers, with weak voltage dependence. Despite the absence of crystal structures of plant Shaker channels, functional analyses coupled to homology modeling, mostly based on Kv and HCN crystals, have permitted the identification of several regions contributing to plant Shaker channel gating. In the present mini-review, we make an update on the voltage-gating mechanism of plant Shaker channels which seem to be comparable to that proposed for HCN channels.

  7. Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization of microglia and attenuates brain damage from photothrombotic ischemic stroke.

    Science.gov (United States)

    Tian, Dai-Shi; Li, Chun-Yu; Qin, Chuan; Murugan, Madhuvika; Wu, Long-Jun; Liu, Jun-Li

    2016-10-01

    Microglia become activated during cerebral ischemia and exert pro-inflammatory or anti-inflammatory role dependent of microglial polarization. NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in microglia plays an important role in neuronal damage after ischemic stroke. Recently, NOX and ROS are consistently reported to participate in the microglial activation and polarization; NOX2 inhibition or suppression of ROS production are shown to shift the microglial polarization from M1 toward M2 state after stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. However, the effect of Hv1 proton channel on microglial M1/M2 polarization state after cerebral ischemia remains unknown. In this study, we investigated the role of microglial Hv1 proton channel in modulating microglial M1/M2 polarization during the pathogenesis of ischemic cerebral injury using a mouse model of photothrombosis. Following photothrombotic ischemic stroke, wild-type mice presented obvious brain infarct, neuronal damage, and impaired motor coordination. However, mice lacking Hv1 (Hv1(-/-)) were partially protected from brain damage and motor deficits compared to wild-type mice. These rescued phenotypes in Hv1(-/-) mice in ischemic stroke is accompanied by reduced ROS production, shifted the microglial polarization from M1 to M2 state. Hv1 deficiency was also found to shift the M1/M2 polarization in primary cultured microglia. Our study suggests that the microglial Hv1 proton channel is a unique target for modulation of microglial M1/M2 polarization in the pathogenesis of ischemic stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent generation of reactive oxygen species (ROS) in the brain. ROS participate in microglial activation and polarization. However, the effect of Hv1 on microglial M1/M2 polarization state after

  8. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors.

    Science.gov (United States)

    Huang, Cathy Chia-Yu; Ko, Michael Lee; Ko, Gladys Yi-Ping

    2013-01-01

    In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.

  9. Molecular Characterization of Voltage-Gated Sodium Channels and Their Relations with Paralytic Shellfish Toxin Bioaccumulation in the Pacific Oyster Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Floriane Boullot

    2017-01-01

    Full Text Available Paralytic shellfish toxins (PST bind to voltage-gated sodium channels (Nav and block conduction of action potential in excitable cells. This study aimed to (i characterize Nav sequences in Crassostrea gigas and (ii investigate a putative relation between Nav and PST-bioaccumulation in oysters. The phylogenetic analysis highlighted two types of Nav in C. gigas: a Nav1 (CgNav1 and a Nav2 (CgNav2 with sequence properties of sodium-selective and sodium/calcium-selective channels, respectively. Three alternative splice transcripts of CgNav1 named A, B and C, were characterized. The expression of CgNav1, analyzed by in situ hybridization, is specific to nervous cells and to structures corresponding to neuromuscular junctions. Real-time PCR analyses showed a strong expression of CgNav1A in the striated muscle while CgNav1B is mainly expressed in visceral ganglia. CgNav1C expression is ubiquitous. The PST binding site (domain II of CgNav1 variants possess an amino acid Q that could potentially confer a partial saxitoxin (STX-resistance to the channel. The CgNav1 genotype or alternative splicing would not be the key point determining PST bioaccumulation level in oysters.

  10. Control of voltage-gated potassium channel Kv2.2 expression by pyruvate-isocitrate cycling regulates glucose-stimulated insulin secretion.

    Science.gov (United States)

    Jensen, Mette V; Haldeman, Jonathan M; Zhang, Hengtao; Lu, Danhong; Huising, Mark O; Vale, Wylie W; Hohmeier, Hans E; Rosenberg, Paul; Newgard, Christopher B

    2013-08-09

    Recent studies have shown that the pyruvate-isocitrate cycling pathway, involving the mitochondrial citrate/isocitrate carrier and the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc), is involved in control of glucose-stimulated insulin secretion (GSIS). Here we demonstrate that pyruvate-isocitrate cycling regulates expression of the voltage-gated potassium channel family member Kv2.2 in islet β-cells. siRNA-mediated suppression of ICDc, citrate/isocitrate carrier, or Kv2.2 expression impaired GSIS, and the effect of ICDc knockdown was rescued by re-expression of Kv2.2. Moreover, chronic exposure of β-cells to elevated fatty acids, which impairs GSIS, resulted in decreased expression of Kv2.2. Surprisingly, knockdown of ICDc or Kv2.2 increased rather than decreased outward K(+) current in the 832/13 β-cell line. Immunoprecipitation studies demonstrated interaction of Kv2.1 and Kv2.2, and co-overexpression of the two channels reduced outward K(+) current compared with overexpression of Kv2.1 alone. Also, siRNA-mediated knockdown of ICDc enhanced the suppressive effect of the Kv2.1-selective inhibitor stromatoxin1 on K(+) currents. Our data support a model in which a key function of the pyruvate-isocitrate cycle is to maintain levels of Kv2.2 expression sufficient to allow it to serve as a negative regulator of Kv channel activity.

  11. A thermosensitive mutation alters the effects of lacosamide on slow inactivation in neuronal voltage-gated sodium channels, NaV1.2

    Science.gov (United States)

    Abdelsayed, Mena; Sokolov, Stanislav; Ruben, Peter C.

    2013-01-01

    Epilepsy is a disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels (NaVs). The C121W mutation of the β1 subunit, in particular, gives rise to the thermosensitive generalized epilepsy with febrile seizures plus (GEFS+) phenotype. Lacosamide is used to treat epileptic seizures and is distinct from other anti-seizure drugs by targeting NaV slow-inactivation. We studied the effects of a physiologically relevant concentration of lacosamide on the biophysical properties of NaV1.2 channels associated with either WT-β1 or the mutant C121W-β1 subunit. Biophysical parameters were measured at both normal (22°C) and elevated (34°C) temperatures to elicit the differential temperature-sensitivity of C121W. Lacosamide was more effective in NaV1.2 associated with the WT-β1 than with C121W-β1 at either temperature. There is also a more potent effect by lacosamide on slow inactivation at elevated temperatures. Our data suggest a modulatory role is imparted by the β1 subunit in the interaction between the drug and the channel. PMID:24065921

  12. Molecular Characterization of Voltage-Gated Sodium Channels and Their Relations with Paralytic Shellfish Toxin Bioaccumulation in the Pacific Oyster Crassostrea gigas

    Science.gov (United States)

    Boullot, Floriane; Castrec, Justine; Bidault, Adeline; Dantas, Natanael; Payton, Laura; Perrigault, Mickael; Tran, Damien; Amzil, Zouher; Boudry, Pierre; Soudant, Philippe; Hégaret, Hélène; Fabioux, Caroline

    2017-01-01

    Paralytic shellfish toxins (PST) bind to voltage-gated sodium channels (Nav) and block conduction of action potential in excitable cells. This study aimed to (i) characterize Nav sequences in Crassostrea gigas and (ii) investigate a putative relation between Nav and PST-bioaccumulation in oysters. The phylogenetic analysis highlighted two types of Nav in C. gigas: a Nav1 (CgNav1) and a Nav2 (CgNav2) with sequence properties of sodium-selective and sodium/calcium-selective channels, respectively. Three alternative splice transcripts of CgNav1 named A, B and C, were characterized. The expression of CgNav1, analyzed by in situ hybridization, is specific to nervous cells and to structures corresponding to neuromuscular junctions. Real-time PCR analyses showed a strong expression of CgNav1A in the striated muscle while CgNav1B is mainly expressed in visceral ganglia. CgNav1C expression is ubiquitous. The PST binding site (domain II) of CgNav1 variants possess an amino acid Q that could potentially confer a partial saxitoxin (STX)-resistance to the channel. The CgNav1 genotype or alternative splicing would not be the key point determining PST bioaccumulation level in oysters. PMID:28106838

  13. Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Bo Hyung Lee

    2014-01-01

    Full Text Available The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.

  14. [Role and function of voltage-gated chloride channels of the CIC family and their defects leading to genetic diseases].

    Science.gov (United States)

    Dołowy, Krzysztof; Bednarczyk, Piotr; Hordejuk, Renata; Dworakowska, Beata; Nurowska, Ewa; Jarzabek, Wanda

    2002-01-01

    There are 9 channels of the ClC family in mammals and few others in fishes, plants, yeast and bacteria. The ClC channels are present in different tissues and play a role in transmembrane potential stabilization, transepithelial transport, cell volume regulation, acidification of intracellular organelles. The genetic defects of ClC-1 chloride channel lead to myotonias, the defect in ClC-5 channel to the formation of stones in kidney, while the defect in ClC-Kb channel leads to the Bartter's syndrome.

  15. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons.

    Science.gov (United States)

    Magee, J C; Johnston, D

    1995-08-15

    1. We have used dendrite-attached patch-clamp techniques to record single Na+ and Ca2+ channel activity from the apical dendrites (up to 350 microns away from soma) of CA1 pyramidal neurons in rat hippocampal slices (ages: 2-8 weeks). 2. Na+ channels were found in every patch examined (range: 2 to > 20 channels per patch). Channel openings, which had a slope conductance of 15 +/- 0.3 pS (mean +/- S.E.M.), began with test commands to around -50 mV and consisted of both early transient channel activity and also later occurring prolonged openings of 5-15 ms. All Na+ channel activity was suppressed by inclusion of TTX (1 microM) in the recording pipette. 3. Ca2+ channel activity was recorded in about 80% of the patches examined (range: 1 to > 10 channels per patch). Several types of channel behaviour were observed in these patches. Single channel recordings in 110 mM BaCl2, revealed an approximately 10 pS channel of small unitary current amplitude (-0.5 pA at -20 mV). These channels began activating at relatively hyperpolarized potentials (-50 mV) and ensemble averages of this low voltage-activated (LVA) channel activity showed rapid inactivation. 4. A somewhat heterogeneous population of high voltage-activated, moderate conductance (HVAm; approximately 17 pS), Ca2+ channel activity was also encountered. These channels exhibited a relatively large unitary amplitude (-0.8 pA at 0 mV) and ensemble averages demonstrated moderate inactivation. The HVAm population of channels could be tentatively subdivided into two separate groups based upon mean channel open times. 5. Less frequently, HVA, large conductance (27 pS) Ca2+ channel activity (HVA1) was also observed. This large unitary amplitude (-1.5 pA at 0 mV) channel activity began with steps to approximately 0 mV and ensemble averages did not show any time-dependent inactivation. The dihydropyridine Ca2+ channel agonist Bay K 8644 (0.5 or 1 microM) was found to characteristically prolong these channel openings. 6. omega

  16. Markov modeling of ion channels: implications for understanding disease.

    Science.gov (United States)

    Lampert, Angelika; Korngreen, Alon

    2014-01-01

    Ion channels are the bridge between the biochemical and electrical domains of our life. These membrane crossing proteins use the electric energy stored in transmembrane ion gradients, which are produced by biochemical activity to generate ionic currents. Each ion channel can be imagined as a small power plant similar to a hydroelectric power station, in which potential energy is converted into electric current. This current drives basically all physiological mechanisms of our body. It is clear that a functional blueprint of these amazing cellular power plants is essential for understanding the principle of all aspects of physiology, particularly neurophysiology. The golden path toward this blueprint starts with the biophysical investigation of ion channel activity and continues through detailed numerical modeling of these channels that will eventually lead to a full system-level description of cellular and organ physiology. Here, we discuss the first two stages of this process focusing on voltage-gated channels, particularly the voltage-gated sodium channel which is neurologically and pathologically important. We first detail the correlations between the known structure of the channel and its activity and describe some pathologies. We then provide a hands-on description of Markov modeling for voltage-gated channels. These two sections of the chapter highlight the dichotomy between the vast amounts of electrophysiological data available on voltage-gated channels and the relatively meager number of physiologically relevant models for these channels.

  17. Mapping the Interaction Site for a β-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels*

    Science.gov (United States)

    Zhang, Joel Z.; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A.

    2012-01-01

    Activation of voltage-gated sodium (Nav) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of NaV channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIVE15A. Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on NaV channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on NaV channels acts synergistically to modify channel gating and paralyze prey. PMID:22761417

  18. Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels.

    Science.gov (United States)

    Zhang, Joel Z; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A

    2012-08-31

    Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIV(E15A). Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on Na(V) channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on Na(V) channels acts synergistically to modify channel gating and paralyze prey.

  19. Immunohistochemical investigation of voltage-gated potassium channel-interacting protein 1 in normal rat brain and Pentylenettrazole-induced seizures

    Institute of Scientific and Technical Information of China (English)

    Tao SU; Ai-Hua LUO; Wen-Dong CONG; Wei-Wen SUN; Wei-Yi DENG; Qi-Hua ZHAO; Zhuo-Hua ZHANG; Wei-Ping LIAO

    2006-01-01

    Objective To explore the possible role of voltage-gated potassium channel-interacting protein 1 (KChIP1) in the pathogenesis of epilepsy. Methods Sprague Dawley female adult rats were treated with pentylenettrazole (PTZ) to develop acute and chronic epilepsy models. The approximate coronal sections of normal and epilepsy rat brain were processed for immunohistochemistry. Double-labeling confocal microscopy was used to determine the coexistence of KChIP1 and gamma-aminobutyric acid (GABA). Results KChIP1 was expressed abundantly throughout adult rat brain.KChIP1 is highly co-localize with GABA transmitter in hippocampus and cerebral cortex. In the acute PTZ-induced convulsive rats, the number of KChIP1-postive cells was significantly increased especially in the regions of CA 1 and CA3 (P < 0.05); whereas the chronic PTZ-induced convulsive rats were found no changes. The number of GABA-labeled and co-labeled neurons in the hippocampus appeared to have no significant alteration responding to the epilepsy-genesis treatments. Conclusion KChIP1 might be involved in the PTZ-induced epileptogenesis process as a regulator to neuronal excitability through influencing the properties of potassium channels. KChIP1 is preferentially expressed in GABAergic neurons, but its changes did not couple with GABA in the epileptic models.

  20. Mutation in the kv3.3 voltage-gated potassium channel causing spinocerebellar ataxia 13 disrupts sound-localization mechanisms.

    Science.gov (United States)

    Middlebrooks, John C; Nick, Harry S; Subramony, S H; Advincula, Joel; Rosales, Raymond L; Lee, Lillian V; Ashizawa, Tetsuo; Waters, Michael F

    2013-01-01

    Normal sound localization requires precise comparisons of sound timing and pressure levels between the two ears. The primary localization cues are interaural time differences, ITD, and interaural level differences, ILD. Voltage-gated potassium channels, including Kv3.3, are highly expressed in the auditory brainstem and are thought to underlie the exquisite temporal precision and rapid spike rates that characterize brainstem binaural pathways. An autosomal dominant mutation in the gene encoding Kv3.3 has been demonstrated in a large Filipino kindred manifesting as spinocerebellar ataxia type 13 (SCA13). This kindred provides a rare opportunity to test in vivo the importance of a specific channel subunit for human hearing. Here, we demonstrate psychophysically that individuals with the mutant allele exhibit profound deficits in both ITD and ILD sensitivity, despite showing no obvious impairment in pure-tone sensitivity with either ear. Surprisingly, several individuals exhibited the auditory deficits even though they were pre-symptomatic for SCA13. We would expect that impairments of binaural processing as great as those observed in this family would result in prominent deficits in localization of sound sources and in loss of the "spatial release from masking" that aids in understanding speech in the presence of competing sounds.

  1. Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference

    Science.gov (United States)

    Slowik, Daria; Henderson, Richard

    2015-01-01

    With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3 > hNaV1.2 > hNaV1.1 > hNaV1.6 > hNaV1.3 > hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel. PMID:25838126

  2. Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference.

    Science.gov (United States)

    Slowik, Daria; Henderson, Richard

    2015-07-01

    With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3>hNaV1.2>hNaV1.1>hNaV1.6>hNaV1.3>hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel.

  3. GABAA increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels

    Directory of Open Access Journals (Sweden)

    Stephanie Z Young

    2010-04-01

    Full Text Available In the adult neurogenic subventricular zone (SVZ, the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca2+ levels and tonic GABAA receptor activation. However, it is unknown whether, and if so how, GABAA receptor activity regulates intracellular Ca2+ dynamics in SVZ astrocytes. To monitor Ca2+ activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP promoter. GABAA receptor activation induced Ca2+ increases in 40-50% of SVZ astrocytes. GABAA-induced Ca2+ increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC. The L-type Ca2+ channel activator BayK 8644 increased the percentage of GABAA-responding astrocyte-like cells to 75%, suggesting that the majority of SVZ astrocytes express functional VGCCs. SVZ astrocytes also displayed spontaneous Ca2+ activity, the frequency of which was regulated by tonic GABAA receptor activation. These data support a role for ambient GABA in tonically regulating intracellular Ca2+ dynamics through GABAA receptors and VGCC in a subpopulation of astrocyte-like cells in the postnatal SVZ.

  4. Mutation in the kv3.3 voltage-gated potassium channel causing spinocerebellar ataxia 13 disrupts sound-localization mechanisms.

    Directory of Open Access Journals (Sweden)

    John C Middlebrooks

    Full Text Available Normal sound localization requires precise comparisons of sound timing and pressure levels between the two ears. The primary localization cues are interaural time differences, ITD, and interaural level differences, ILD. Voltage-gated potassium channels, including Kv3.3, are highly expressed in the auditory brainstem and are thought to underlie the exquisite temporal precision and rapid spike rates that characterize brainstem binaural pathways. An autosomal dominant mutation in the gene encoding Kv3.3 has been demonstrated in a large Filipino kindred manifesting as spinocerebellar ataxia type 13 (SCA13. This kindred provides a rare opportunity to test in vivo the importance of a specific channel subunit for human hearing. Here, we demonstrate psychophysically that individuals with the mutant allele exhibit profound deficits in both ITD and ILD sensitivity, despite showing no obvious impairment in pure-tone sensitivity with either ear. Surprisingly, several individuals exhibited the auditory deficits even though they were pre-symptomatic for SCA13. We would expect that impairments of binaural processing as great as those observed in this family would result in prominent deficits in localization of sound sources and in loss of the "spatial release from masking" that aids in understanding speech in the presence of competing sounds.

  5. Restoration of motor defects caused by loss of Drosophila TDP-43 by expression of the voltage-gated calcium channel, Cacophony, in central neurons.

    Science.gov (United States)

    Lembke, Kayly M; Scudder, Charles; Morton, David B

    2017-08-28

    Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative disease including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 orthologue TBPH, we previously showed that TBPH null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony, a type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of NMJ physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the NMJ, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in NMJ physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects.SIGNIFICANCE STATEMENTTDP-43 dysfuction is a common feature in neurodegenerative diseases including ALS, FTLD, and Alzheimer's disease. Loss and gain of function models have shown neurons are sensitive to TDP-43 expression levels, but the specific defects caused by TDP-43 loss of function have not been described in

  6. Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens.

    Science.gov (United States)

    Cardoso, Fernanda C; Dekan, Zoltan; Rosengren, K Johan; Erickson, Andelain; Vetter, Irina; Deuis, Jennifer R; Herzig, Volker; Alewood, Paul F; King, Glenn F; Lewis, Richard J

    2015-08-01

    Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.

  7. p.D1690N sodium voltage-gated channel α subunit 5 mutation reduced sodium current density and is associated with Brugada syndrome.

    Science.gov (United States)

    Zeng, Zhipeng; Xie, Qiang; Huang, Yuan; Zhao, Yuanyuan; Li, Weihua; Huang, Zhengrong

    2016-06-01

    Brugada syndrome (BrS) is an inherited primary arrhythmia disorder, leading to sudden cardiac death due to ventricular tachyarrhythmia, but does not exhibit clinical cardiac abnormalities. The sodium voltage-gated channel α subunit 5 (SCN5A) gene, which encodes the α subunit of the cardiac sodium channel, Nav1.5, is the most common pathogenic gene, although ≥22 BrS‑susceptibility genes have previously been identified. In the present study, a novel genetic variant (p.D1690N) localized in the S5‑S6 linker of domain IV of the Nav1.5 channels was identified in a Chinese Han family. Wild‑type (WT) and p.D1690N Nav1.5 channels were transiently over‑expressed in HEK293 cells and analyzed via the whole-cell patch clamp technique. The p.D1690N mutation significantly reduced the peak sodium current density to 23% of WT (at ‑20 mV; P<0.01), shifted steady‑state activation by 7 mV to increasingly positive potentials (P<0.01). Furthermore, prolonging of the recovery from inactivation was observed in the p.D1690N mutant. No significant change was identified in steady‑state inactivation. Thus, the mutant‑induced changes contributed to the loss of function of Nav1.5 channels, which indicates that the p.D1690N variant may have a pathogenic role in BrS.

  8. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhong

    2017-05-01

    Full Text Available In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2 is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge of the crossing molecules.

  9. Kinetic changes and modulation by carbamazepine on voltage-gated sodium channels in rat CA1 neurons after epilepsy.

    NARCIS (Netherlands)

    G. Sun; T.R. Werkman; W.J. Wadman

    2006-01-01

    AIM: To study whether the functional properties of sodium channels, and subsequently the channel modulation by carbamazepine (CBZ) in hippocampal CA1 neurons can be changed after epileptic seizures. METHODS: We used the acutely dissociated hippocampal CA1 pyramidal cells from epilepsy model rats 3 w

  10. Expression of mRNA coding voltage - gated sodium channel α-subunit in spontaneously epileptic rat

    Institute of Scientific and Technical Information of China (English)

    DUWa; CAIJi-Qun

    2004-01-01

    OBJECTIVE Subtypes Ⅰ,Ⅱ and Ⅲ of sodium channel α- subunit mRNA were analyzed in adult rat brain of spontaneously epileptic rats, and investigated the relationship between sodium channel expression and epilepsy. METHODS Tissue samples were microdissected from occipital neocortex, CA1 and CA3 hippocampus areas and dentate gyms, observe

  11. Chronic deficit in the expression of voltage-gated potassium channel Kv3.4 subunit in the hippocampus of pilocarpine-treated epileptic rats.

    Science.gov (United States)

    Pacheco Otalora, Luis F; Skinner, Frank; Oliveira, Mauro S; Farrell, Bianca; Arshadmansab, Massoud F; Pandari, Tarun; Garcia, Ileana; Robles, Leslie; Rosas, Gerardo; Mello, Carlos F; Ermolinsky, Boris S; Garrido-Sanabria, Emilio R

    2011-01-12

    Voltage gated K(+) channels (Kv) are a highly diverse group of channels critical in determining neuronal excitability. Deficits of Kv channel subunit expression and function have been implicated in the pathogenesis of epilepsy. In this study, we investigate whether the expression of the specific subunit Kv3.4 is affected during epileptogenesis following pilocarpine-induced status epilepticus. For this purpose, we used immunohistochemistry, Western blotting assays and comparative analysis of gene expression using TaqMan-based probes and delta-delta cycle threshold (ΔΔCT) method of quantitative real-time polymerase chain reaction (qPCR) technique in samples obtained from age-matched control and epileptic rats. A marked down-regulation of Kv3.4 immunoreactivity was detected in the stratum lucidum and hilus of dentate gyrus in areas corresponding to the mossy fiber system of chronically epileptic rats. Correspondingly, a 20% reduction of Kv3.4 protein levels was detected in the hippocampus of chronic epileptic rats. Real-time quantitative PCR analysis of gene expression revealed that a significant 33% reduction of transcripts for Kv3.4 (gene Kcnc4) occurred after 1 month of pilocarpine-induced status epilepticus and persisted during the chronic phase of the model. These data indicate a reduced expression of Kv3.4 channels at protein and transcript levels in the epileptic hippocampus. Down-regulation of Kv3.4 in mossy fibers may contribute to enhanced presynaptic excitability leading to recurrent seizures in the pilocarpine model of temporal lobe epilepsy.

  12. Allele-dependent changes of olivocerebellar circuit properties in the absence of the voltage-gated potassium channels Kv3.1 and Kv3.3.

    Science.gov (United States)

    McMahon, Anne; Fowler, Stephen C; Perney, Teresa M; Akemann, Walther; Knöpfel, Thomas; Joho, Rolf H

    2004-06-01

    Double-mutant mice (DKO) lacking the two voltage-gated K(+) channels Kv3.1 and Kv3.3 display a series of phenotypic alterations that include ataxia, myoclonus, tremor and alcohol hypersensitivity. The prominent cerebellar expression of mRNAs encoding Kv3.1 and Kv3.3 subunits raised the question as to whether altered electrical activity resulting from the lack of these K(+) channels might be related to the dramatic motor changes. We used the tremorogenic agent harmaline to probe mutant mice lacking different K(+) channel alleles for altered olivocerebellar circuit properties. Harmaline induced the characteristic 13-Hz tremor in wildtype mice (WT); however, no tremor was observed in DKO suggesting that the ensemble properties of the olivocerebellar circuitry are altered in the absence of Kv3.1 and Kv3.3 subunits. Harmaline induced tremor in Kv3.1-single mutants, but it was of smaller amplitude and at a lower frequency indicating the participation of Kv3.1 subunits in normal olivocerebellar system function. In contrast, harmaline tremor was virtually absent in Kv3.3-single mutants indicating an essential role for Kv3.3 subunits in tremor induction by harmaline. Immunohistochemical staining for Kv3.3 showed clear expression in the somata and proximal dendrites of Purkinje cells and in their axonal projections to the deep cerebellar nuclei (DCN). In DCN, both Kv3.1 and Kv3.3 subunits are expressed. Action potential duration is increased by approximately 100% in Purkinje cells from Kv3.3-single mutants compared to WT or Kv3.1-single mutants. We conclude that Kv3.3 channel subunits are essential for the olivocerebellar system to generate and sustain normal harmaline tremor whereas Kv3.1 subunits influence tremor amplitude and frequency.

  13. TNF-α enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury.

    Science.gov (United States)

    Chen, Xi; Pang, Rui-Ping; Shen, Kai-Feng; Zimmermann, Manfred; Xin, Wen-Jun; Li, Yong-Yong; Liu, Xian-Guo

    2011-02-01

    The ectopic discharges observed in uninjured dorsal root ganglion (DRG) neurons following various lesions of spinal nerves have been attributed to functional alterations of voltage-gated sodium channels (VGSCs). Such mechanisms may be important for the development of neuropathic pain. However, the pathophysiology underlying the functional modulation of VGSCs following nerve injury is largely unknown. Here, we studied this issue with use of a selective lumbar 5 ventral root transection (L5-VRT) model, in which dorsal root ganglion (DRG) neurons remain intact. We found that the L5-VRT increased the current densities of TTX-sensitive Na channels as well as currents in Nav1.8, but not Nav1.9 channels in uninjured DRG neurons. The thresholds of action potentials decreased and firing rates increased in DRG neurons following L5-VRT. As we found that levels of tumor necrosis factor-alpha (TNF-α) increased in cerebrospinal fluid (CSF) and in DRG tissue after L5-VRT, we tested whether the increased TNF-α might result in the changes in sodium channels. Indeed, recombinant rat TNF (rrTNF) enhanced the current densities of TTX-S and Nav1.8 in cultured DRG neurons dose-dependently. Furthermore, genetic deletion of TNF receptor 1 (TNFR-1) in mice attenuated the mechanical allodynia and prevented the increase in sodium currents in DRG neurons induced by L5-VRT. These data suggest that the increase in sodium currents in uninjured DRG neurons following nerve injury might be mediated by over-production of TNF-α.

  14. Membrane-perturbing properties of two Arg-rich paddle domains from voltage-gated sensors in the KvAP and HsapBK K(+) channels.

    Science.gov (United States)

    Unnerståle, Sofia; Madani, Fatemeh; Gräslund, Astrid; Mäler, Lena

    2012-05-15

    Voltage-gated K(+) channels are gated by displacement of basic residues located in the S4 helix that together with a part of the S3 helix, S3b, forms a "paddle" domain, whose position is altered by changes in the membrane potential modulating the open probability of the channel. Here, interactions between two paddle domains, KvAPp from the K(v) channel from Aeropyrum pernix and HsapBKp from the BK channel from Homo sapiens, and membrane models have been studied by spectroscopy. We show that both paddle domains induce calcein leakage in large unilamellar vesicles, and we suggest that this leakage represents a general thinning of the bilayer, making movement of the whole paddle domain plausible. The fact that HsapBKp induces more leakage than KvAPp may be explained by the presence of a Trp residue in HsapBKp. Trp residues generally promote localization to the hydrophilic-hydrophobic interface and disturb tight packing. In magnetically aligned bicelles, KvAPp increases the level of order along the whole acyl chain, while HsapBKp affects the morphology, also indicating that KvAPp adapts more to the lipid environment. Nuclear magnetic resonance (NMR) relaxation measurements for HsapBKp show that overall the sequence has anisotropic motions. The S4 helix is well-structured with restricted local motion, while the turn between S4 and S3b is more flexible and undergoes slow local motion. Our results indicate that the calcein leakage is related to the flexibility in this turn region. A possibility by which HsapBKp can undergo structural transitions is also shown by relaxation NMR, which may be important for the gating mechanism.

  15. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: a periodic paralysis mutation in Na(V)1.4 (L689I).

    Science.gov (United States)

    Silva, Jonathan R; Goldstein, Steve A N

    2013-03-01

    In skeletal muscle, slow inactivation (SI) of Na(V)1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in Na(V)1.4 that impair SI disrupt activity-induced regulation of channel availability and predispose patients to hyperkalemic periodic paralysis. In our companion paper in this issue (Silva and Goldstein. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210909), the four voltage sensors in Na(V)1.4 responsible for activation of channels over microseconds are shown to slowly immobilize over 1-160 s as SI develops and to regain mobility on recovery from SI. Individual sensor movements assessed via attached fluorescent probes are nonidentical in their voltage dependence, time course, and magnitude: DI and DII track SI onset, and DIII appears to reflect SI recovery. A causal link was inferred by tetrodotoxin (TTX) suppression of both SI onset and immobilization of DI and DII sensors. Here, the association of slow sensor immobilization and SI is verified by study of Na(V)1.4 channels with a hyperkalemic periodic paralysis mutation; L689I produces complex changes in SI, and these are found to manifest directly in altered sensor movements. L689I removes a component of SI with an intermediate time constant (~10 s); the mutation also impedes immobilization of the DI and DII sensors over the same time domain in support of direct mechanistic linkage. A model that recapitulates SI attributes responsibility for intermediate SI to DI and DII (10 s) and a slow component to DIII (100 s), which accounts for residual SI, not impeded by L689I or TTX.

  16. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: A periodic paralysis mutation in NaV1.4 (L689I)

    Science.gov (United States)

    Silva, Jonathan R.

    2013-01-01

    In skeletal muscle, slow inactivation (SI) of NaV1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in NaV1.4 that impair SI disrupt activity-induced regulation of channel availability and predispose patients to hyperkalemic periodic paralysis. In our companion paper in this issue (Silva and Goldstein. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210909), the four voltage sensors in NaV1.4 responsible for activation of channels over microseconds are shown to slowly immobilize over 1–160 s as SI develops and to regain mobility on recovery from SI. Individual sensor movements assessed via attached fluorescent probes are nonidentical in their voltage dependence, time course, and magnitude: DI and DII track SI onset, and DIII appears to reflect SI recovery. A causal link was inferred by tetrodotoxin (TTX) suppression of both SI onset and immobilization of DI and DII sensors. Here, the association of slow sensor immobilization and SI is verified by study of NaV1.4 channels with a hyperkalemic periodic paralysis mutation; L689I produces complex changes in SI, and these are found to manifest directly in altered sensor movements. L689I removes a component of SI with an intermediate time constant (∼10 s); the mutation also impedes immobilization of the DI and DII sensors over the same time domain in support of direct mechanistic linkage. A model that recapitulates SI attributes responsibility for intermediate SI to DI and DII (10 s) and a slow component to DIII (100 s), which accounts for residual SI, not impeded by L689I or TTX. PMID:23401572

  17. Activation of voltage-gated KCNQ/Kv7 channels by anticonvulsant retigabine attenuates mechanical allodynia of inflammatory temporomandibular joint in rats

    Directory of Open Access Journals (Sweden)

    Xu Wen

    2010-08-01

    Full Text Available Abstract Background Temporomandibular disorders (TMDs are characterized by persistent orofacial pain and have diverse etiologic factors that are not well understood. It is thought that central sensitization leads to neuronal hyperexcitability and contributes to hyperalgesia and spontaneous pain. Nonsteroidal anti-inflammatory drugs (NSAIDs are currently the first choice of drug to relieve TMD pain. NSAIDS were shown to exhibit anticonvulsant properties and suppress cortical neuron activities by enhancing neuronal voltage-gated potassium KCNQ/Kv7 channels (M-current, suggesting that specific activation of M-current might be beneficial for TMD pain. Results In this study, we selected a new anticonvulsant drug retigabine that specifically activates M-current, and investigated the effect of retigabine on inflammation of the temporomandibular joint (TMJ induced by complete Freund's adjuvant (CFA in rats. The results show that the head withdrawal threshold for escape from mechanical stimulation applied to facial skin over the TMJ in inflamed rats was significantly lower than that in control rats. Administration of centrally acting M-channel opener retigabine (2.5 and 7.5 mg/kg can dose-dependently raise the head withdrawal threshold of mechanical allodynia, and this analgesic effect can be reversed by the specific KCNQ channel blocker XE991 (3 mg/kg. Food intake is known to be negatively associated with TMJ inflammation. Food intake was increased significantly by the administration of retigabine (2.5 and 7.5 mg/kg, and this effect was reversed by XE991 (3 mg/kg. Furthermore, intracerebralventricular injection of retigabine further confirmed the analgesic effect of central retigabine on inflammatory TMJ. Conclusions Our findings indicate that central sensitization is involved in inflammatory TMJ pain and pharmacological intervention for controlling central hyperexcitability by activation of neuronal KCNQ/M-channels may have therapeutic potential for

  18. Kinetic changes and modulation by carbamazepine on voltage-gated sodium channels in rat CA1 neurons after epilepsy

    Institute of Scientific and Technical Information of China (English)

    Guang-chun SUN; Taco WERKMAN; Wytse J WADMAN

    2006-01-01

    Aim: To study whether the functional properties of sodium channels, and subsequently the channel modulation by carbamazepine (CBZ) in hippocampal CA1 neurons can be changed after epileptic seizures. Methods: We used the acutely dissociated hippocampal CA1 pyramidal cells from epilepsy model rats 3 weeks and 3 months respectively after kainate injection, and whole-cell voltage-clamp techniques. Results: After long-term epileptic seizures, both sodium channel voltage-dependence of activation and steady-state inactivation shifted to more hyperpolarizing potentials, which resulted in the enlarged window current; the membrane density of sodium current decreased and the time constant of recovery from inactivation increased. CBZ displayed unchanged efficacy on sodium channels, with a similar binding rate to them, except that at higher concentrations, the voltage shift of inactivation was reduced. For the short-term kainate model rats, no differences were detected between the control and epilepsy groups. Conclusion: These results indicate that the properties of sodium channels in acutely dissociated hippocampal neurons could be changed following long-term epilepsy, but the alternation might not be enough to induce the channel resistance to CBZ.

  19. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    , the lack of highly specific blockers cast doubt on the conclusions. As new T-type channel antagonists are being designed, the roles of T-type channels in cardiovascular and renal pathology need to be elucidated before T-type blockers can be clinically useful. Two types of T-type channels, Cav3.1 and Cav3...... suggested to affect constriction. The Cav3.1 channel is also involved in neointima formation following vascular damage. In the kidney, Cav3.1 regulates plasma flow and Cav3.2 plays a role setting glomerular filtration rate. In conclusion, Cav3.1 and Cav3.2 are new therapeutic targets in several......Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However...

  20. Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela.

    Science.gov (United States)

    Alvarez, Leslie C; Ponce, Gustavo; Saavedra-Rodriguez, Karla; Lopez, Beatriz; Flores, Adriana E

    2015-06-01

    The V1016I and F1534C mutations in the voltage-gated sodium channel gene have been associated with resistance to pyrethroids and DDT in Aedes aegypti mosquitoes. A study was carried out to determine the frequency of I1016 and C1534 by real-time PCR in five natural populations of Ae. aegypti in Venezuela during 2008, 2010 and 2012, as well as in a strain selected with 0.14 µg of deltamethrin for 15 generations. In natural populations, frequencies of I1016 varied between 0.01 and 0.37, and frequencies of C1534 between 0.35 and 1.0. In the Pampanito strain, the frequency of I1016 increased from 0.02 in F1 up to 0.5 in F15 and from 0.35 up to fixation for C1534 after selection with deltamethrin. The results showed that C1534 frequencies are higher than I1016 frequencies in natural populations of Ae. aegypti in Venezuela, and that deltamethrin selected the C1534 more rapidly than I1016. © 2014 Society of Chemical Industry.

  1. IgG and complement deposition and neuronal loss in cats and humans with epilepsy and voltage-gated potassium channel complex antibodies.

    Science.gov (United States)

    Klang, Andrea; Schmidt, Peter; Kneissl, Sibylle; Bagó, Zoltán; Vincent, Angela; Lang, Bethan; Moloney, Teresa; Bien, Christian G; Halász, Péter; Bauer, Jan; Pákozdy, Akos

    2014-05-01

    Voltage-gated potassium channel complex (VGKC-complex) antibody (Ab) encephalitis is a well-recognized form of limbic encephalitis in humans, usually occurring in the absence of an underlying tumor. The patients have a subacute onset of seizures, magnetic resonance imaging findings suggestive of hippocampal inflammation, and high serum titers of Abs against proteins of the VGKC-complex, particularly leucine-rich, glioma-inactivated 1 (LGI1). Most patients are diagnosed promptly and recover substantially with immunotherapies; consequently, neuropathological data are limited. We have recently shown that feline complex partial cluster seizures with orofacial involvement (FEPSO) in cats can also be associated with Abs against VGKC-complexes/LGI1. Here we examined the brains of cats with FEPSO and compared the neuropathological findings with those in a human with VGKC-complex-Ab limbic encephalitis. Similar to humans, cats with VGKC-complex-Ab and FEPSO have hippocampal lesions with only moderate T-cell infiltrates but with marked IgG infiltration and complement C9neo deposition on hippocampal neurons, associated with neuronal loss. These findings provide further evidence that FEPSO is a feline form of VGKC-complex-Ab limbic encephalitis and provide a model for increasing understanding of the human disease.

  2. Limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies as a cause of adult-onset mesial temporal lobe epilepsy.

    Science.gov (United States)

    Toyota, Tomoko; Akamatsu, Naoki; Tsuji, Sadatoshi; Nishizawa, Shigeru

    2014-06-01

    Recently, some reports have indicated that limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies (VGKC-Ab) is a cause of adult-onset mesial temporal lobe epilepsy (MTLE). We report a 53-year-old woman who had her first epileptic seizure at the age of 50 years old. Examination by 3-Tesla brain MRI revealed left hippocampal high signal intensity and swelling on fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging at 2 months after her first seizure. The patient received intravenous methylprednisolone and carbamazepine 300 mg/day. One month later, MRI revealed improvement of her left hippocampal abnormalities. Thereafter, she had no seizures, however, three years after her first seizure, EEG revealed a seizure pattern in the left temporal region. Brain MRI revealed left hippocampal high signal intensity and brain fluorodeoxyglucose positron emission tomography revealed hypermetabolism. Her serum VGKC-Ab levels were 118 pM(normal VGKC-Ab levels decreased to 4.4 pM. Remission of the epileptic seizures was also observed. This MTLE in the middle age was considered as limbic encephalitis associated with anti- VGKC-Ab. In cases of unexplained adult-onset MTLE, limbic encephalitis associated with anti-VGKC-Ab, which responds well to immunotherapy, should be considered in the differential diagnosis.

  3. Effects of (−-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jian-Min Jiang

    2013-05-01

    Full Text Available The (−-gallocatechin-3-gallate (GCG concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.

  4. QSAR analyses of DDT analogues and their in silico validation using molecular docking study against voltage-gated sodium channel of Anopheles funestus.

    Science.gov (United States)

    Saini, V; Kumar, A

    2014-01-01

    DDT has enjoyed the reputation of a successful pesticide in disease control programme and agricultural practices along with the serious opposition and ban later on due to its biomagnification and toxic action against non-target organisms. The present work was carried out to develop QSAR models for analysing DDT analogues for their pesticidal activity and in silico validation of these models. A 2D-QSAR model was generated using stepwise with multiple regression, and the model with a value of r(2) = 0.7324; q(2) = 0.6215; pred r(2) = 0.7038, containing five descriptors, was selected for further study. The 3D QSAR with CoMFA analysis showed that steric contribution of 21% and electrostatic contribution of about 79% were required for larvicidal activity of DDT analogues. A set of 3430 molecules was generated using the basic DDT skeleton as template, and these were evaluated for their mosquito larvicidal activity using the generated QSAR models and DDT as standard. Eleven molecules were selected for in silico validation of these models. For this, a docking study of the selected molecules against the homology-modelled voltage-gated sodium channel of Anopheles funestus was conducted. The study showed that the activities of these analogues as predicted by 2D-QSAR, 3D-QSAR with CoMFA and dock score were observed to be well correlated.

  5. Functional proteins involved in regulation of intracellular Ca(2+) for drug development: chronic nicotine treatment upregulates L-type high voltage-gated calcium channels.

    Science.gov (United States)

    Katsura, Masashi; Ohkuma, Seitaro

    2005-03-01

    Neurochemical mechanisms underlying drug dependence and withdrawal syndrome remain unclear. In this review, we discuss how chronic nicotine exposure to neurons affects expression of diazepam binding inhibitor (DBI), an endogenous anxiogenic neuropeptide supposed to be a common substance participating drug dependence, and function of L-type high voltage-gated Ca(2+) channels (HVCCs). We also discuss the functional interaction between DBI and L-type HVCCs in nicotine dependence. Both DBI levels and [(45)Ca(2+)] influx significantly increased in the brain from mice treated with nicotine for long term, which was further enhanced after abrupt cessation of nicotine and was abolished by nicotinic acetylcholine receptor (nAChR) antagonists. Similar responses of DBI expression and L-type HVCC function were observed in cerebral cortical neurons after sustained exposure to nicotine. In addition, increased DBI expression was inhibited by antagonists of nAChR and L-type HVCCs. Sustained exposure of neurons to nicotine significantly enhanced expression of alpha(1) and alpha(2)/delta(1) subunits for L-type HVCCs and caused an increase in the B(max) value of [(3)H]verapamil binding to the particulate fractions. Therefore, it is concluded that the alterations in DBI expression is mediated via increased influx of Ca(2+) through upregulated L-type HVCCs and these neurochemical changes have a close relationship with development of nicotine dependence and/or its withdrawal syndrome.

  6. Thermal melt circular dichroism spectroscopic studies for identifying stabilising amphipathic molecules for the voltage-gated sodium channel NavMs.

    Science.gov (United States)

    Ireland, Sam M; Sula, Altin; Wallace, B A

    2017-09-19

    Purified integral membrane proteins require amphipathic molecules to maintain their solubility in aqueous solutions. These complexes, in turn, are used in studies to characterise the protein structures by a variety of biophysical and structural techniques, including spectroscopy, crystallography, and cryo-electron microscopy. Typically the amphilphiles used have been detergent molecules, but more recently they have included amphipols, which are polymers of different sizes and compositions designed to create smaller, more well-defined solubilised forms of the membrane proteins. In this study we used circular dichroism spectroscopy to compare the secondary structures and thermal stabilities of the NavMs voltage-gated sodium channel in different amphipols and detergents as a means of identifying amphipathic environments that maximally maintain the protein structure whilst providing a stabilising environment. These types of characterisations also have potential as means of screening for sample types that may be more suitable for crystallisation and/or cryo-electron microscopy structure determinations. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  7. Function and role of voltage-gated sodium channel NaV1.7 expressed in aortic smooth muscle cells.

    Science.gov (United States)

    Meguro, Kentaro; Iida, Haruko; Takano, Haruhito; Morita, Toshihiro; Sata, Masataka; Nagai, Ryozo; Nakajima, Toshiaki

    2009-01-01

    Voltage-gated Na(+) channel currents (I(Na)) are expressed in several types of smooth muscle cells. The purpose of this study was to evaluate the expression of I(Na), its functional role, pathophysiology in cultured human (hASMCs) and rabbit aortic smooth muscle cells (rASMCs), and its association with vascular intimal hyperplasia. In whole cell voltage clamp, I(Na) was observed at potential positive to -40 mV, was blocked by tetrodotoxin (TTX), and replacing extracellular Na(+) with N-methyl-d-glucamine in cultured hASMCs. In contrast to native aorta, cultured hASMCs strongly expressed SCN9A encoding Na(V)1.7, as determined by quantitative RT-PCR. I(Na) was abolished by the treatment with SCN9A small-interfering (si)RNA (P SCN9A siRNA significantly inhibited cell migration (P SCN9A in cultured rASMCs and aorta 48 h after balloon injury but not in native aorta. In conclusion, these studies show that I(Na) is expressed in cultured and diseased conditions but not in normal aorta. The Na(V)1.7 plays an important role in cell migration, endocytosis, and secretion. Na(V)1.7 is also expressed in aorta after balloon injury, suggesting a potential role for Na(V)1.7 in the progression of intimal hyperplasia.

  8. Long-term habituation of the gill-withdrawal reflex in Aplysia requires gene transcription, calcineurin and L-type voltage-gated calcium channels

    Directory of Open Access Journals (Sweden)

    Joseph eEsdin

    2010-11-01

    Full Text Available Although habituation is possibly the simplest form of learning, we still do not fully understand the neurobiological basis of habituation in any organism. To advance the goal of a comprehensive understanding of habituation, we have studied long-term habituation (LTH of the gill-withdrawal reflex (GWR in the marine snail Aplysia californica. Previously, we showed that habituation of the GWR in a reduced preparation lasts for up to 12 hr, and depends on protein synthesis, as well as activation of protein phosphatases 1 and 2A and postsynaptic glutamate receptors. Here, we have used the reduced preparation to further analyze the mechanisms of LTH in Aplysia. We found that LTH of the GWR depends on RNA synthesis because it was blocked by both the irreversible transcriptional inhibitor actinomycin-D and the reversible transcriptional inhibitor, 5,6-dichlorobenzimidazole riboside (DRB. In addition, LTH requires activation of protein phosphatase 2B (calcineurin, because it was disrupted by ascomycin. Finally, LTH was blocked by nitrendipine, which indicates that activation of L-type voltage-gated Ca2+ channels is required for this form of learning. Together with our previous results, the present results indicate that exclusively presynaptic mechanisms, although possibly sufficient for short-term habituation, are insufficient for LTH. Rather, LTH must involve postsynaptic, as well as presynaptic, mechanisms.

  9. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina.

    Science.gov (United States)

    Pérez de Sevilla Müller, Luis; Sargoy, Allison; Fernández-Sánchez, Laura; Rodriguez, Allen; Liu, Janelle; Cuenca, Nicolás; Brecha, Nicholas

    2015-07-01

    High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca(2+), neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α(1) pore-forming subunit, which is associated with an extracellular α(2)δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α(2)δ(3) subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼ 305 bp corresponding to the predicted size of the α(2)δ(3) subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α(2)δ(3) subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α(2)δ(3) immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α(2)δ(3) calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.

  10. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels

    DEFF Research Database (Denmark)

    Hansen, P B L

    2013-01-01

    -type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular...

  11. Hypericum perforatum modulates apoptosis and calcium mobilization through voltage-gated and TRPM2 calcium channels in neutrophil of patients with Behcet's disease.

    Science.gov (United States)

    Nazıroğlu, Mustafa; Sahin, Mehmet; Ciğ, Bilal; Aykur, Mehmet; Erturan, Ijlal; Ugan, Yunus

    2014-03-01

    Behcet's disease (BD) is a chronic, inflammatory, and multisystemic condition although its pathogenesis is uncertain. Main component of St. John's wort (Hypericum perforatum, HP) is hyperforin and induces antiinflammatory and antioxidant properties. We aimed to investigate effects of HP on oxidative stress, apoptosis, and cytosolic-free Ca²⁺ [Ca²⁺](i) concentration in neutrophil of BD patients. Nine new-diagnosed active patients with BD and nine control subjects were included in the study. Disease activity was considered by clinical findings. Neutrophil samples were obtained from the patients and controls. The neutrophils from patients were divided into three subgroups and were incubated with HP, voltage-gated calcium channel (VGCC) blockers, (verapamil+dilitiazem) and non-specific TRPM2 channel blocker (2-aminoethyl diphenylborinate, 2-APB), respectively. The neutrophils were stimulated by fMLP as a Ca²⁺-concentration agonist and oxidative stress former. Caspase-3, caspase-9, apoptosis, lipid peroxidation, and [Ca²⁺](i) values were high in the patient groups, although cell viability, glutathione (GSH), and glutathione peroxidase (GSH-Px) values were low in patient group. However, the [Ca²⁺](i), caspase-3, and caspase-9 values decreased markedly in patient+HP group although GSH and GSH-Px values increased in the group. The [Ca²⁺](i) concentration was also decreased in the patient group by V+D, 2-APB, and HP incubations. In conclusion, we observed the importance of neutrophil Ca²⁺ entry, apoptosis, and oxidative stress through gating VGCC and TRPM2 channels in the neutrophils in the pathogenesis and activation of the patients with BD. HP induced protective effects on oxidative stress by modulating Ca²⁺ influx in BD patients.

  12. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

    Science.gov (United States)

    Fukuoka, Tetsuo; Kobayashi, Kimiko; Yamanaka, Hiroki; Obata, Koichi; Dai, Yi; Noguchi, Koichi

    2008-09-10

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. (c) 2008 Wiley-Liss, Inc.

  13. A Korean Family of Hypokalemic Periodic Paralysis with Mutation in a Voltage-gated Calcium Channel (R1239G)

    Science.gov (United States)

    Kim, June-Bum; Lee, Kyung-Yil

    2005-01-01

    Hypokalemic periodic paralysis (HOPP) is a rare disease characterized by reversible attacks of muscle weakness accompanied by episodic hypokalemia. Recent molecular work has revealed that the majority of familial HOPP is due to mutations in a skeletal muscle voltage-dependent calcium-channel: the dihydropyridine receptor. We report a 13-yr old boy with HOPP from a family in which 6 members are affected in three generations. Genetic examination identified a nucleotide 3705 C to G mutation in exon 30 of the calcium channel gene, CACNA1S. This mutation predicts a codon change from arginine to glycine at the amino acid position #1239 (R1239G). Among the three known mutations of the CACNA1S gene, the R1239G mutation was rarely reported. This boy and the other family members who did not respond to acetazolamide, showed a marked improvement of the paralytic symptoms after spironolactone treatment. PMID:15716625

  14. A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina.

    Science.gov (United States)

    Ozaita, Ander; Petit-Jacques, Jerome; Völgyi, Béla; Ho, Chi Shun; Joho, Rolf H; Bloomfield, Stewart A; Rudy, Bernardo

    2004-08-18

    Direction-selective retinal ganglion cells show an increased activity evoked by light stimuli moving in the preferred direction. This selectivity is governed by direction-selective inhibition from starburst amacrine cells occurring during stimulus movement in the opposite or null direction. To understand the intrinsic membrane properties of starburst cells responsible for direction-selective GABA release, we performed whole-cell recordings from starburst cells in mouse retina. Voltage-clamp recordings revealed prominent voltage-dependent K(+) currents. The currents were mostly blocked by 1 mm TEA, activated rapidly at voltages more positive than -20 mV, and deactivated quickly, properties reminiscent of the currents carried by the Kv3 subfamily of K+ channels. Immunoblots confirmed the presence of Kv3.1 and Kv3.2 proteins in retina and immunohistochemistry revealed their expression in starburst cell somata and dendrites. The Kv3-like current in starburst cells was absent in Kv3.1-Kv3.2 knock-out mice. Current-clamp recordings showed that the fast activation of the Kv3 channels provides a voltage-dependent shunt that limits depolarization of the soma to potentials more positive than -20 mV. This provides a mechanism likely to contribute to the electrical isolation of individual starburst cell dendrites, a property thought essential for direction selectivity. This function of Kv3 channels differs from that in other neurons where they facilitate high-frequency repetitive firing. Moreover, we found a gradient in the intensity of Kv3.1b immunolabeling favoring proximal regions of starburst cells. We hypothesize that this Kv3 channel gradient contributes to the preference for centrifugal signal flow in dendrites underlying direction-selective GABA release from starburst amacrine cells

  15. Lacosamide Inhibition of Nav1.7 Voltage-Gated Sodium Channels: Slow Binding to Fast-Inactivated States.

    Science.gov (United States)

    Jo, Sooyeon; Bean, Bruce P

    2017-04-01

    Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at -120 mV (3% inhibition by 100 µM lacosamide) but greatly enhanced at -80 mV (43% inhibition by 100 µM lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at -120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at -40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µM lidocaine or 300 µM carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding.

  16. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2

    Science.gov (United States)

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-03-01

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.

  17. Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels.

    Science.gov (United States)

    Dragicevic, E; Schiemann, J; Liss, B

    2015-01-22

    Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). Apart from having diverse functions in health and disease states, DA midbrain neurons display distinct electrical activity patterns, crucial for DA release. These activity patterns are generated and modulated by specific sets of ion channels. Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD.

  18. Amyloid Precursor Protein Protects Neuronal Network Function after Hypoxia via Control of Voltage-Gated Calcium Channels.

    Science.gov (United States)

    Hefter, Dimitri; Kaiser, Martin; Weyer, Sascha W; Papageorgiou, Ismini E; Both, Martin; Kann, Oliver; Müller, Ulrike C; Draguhn, Andreas

    2016-08-10

    Acute cerebral ischemia and chronic neurovascular diseases share various common mechanisms with neurodegenerative diseases, such as disturbed cellular calcium and energy homeostasis and accumulation of toxic metabolites. A link between these conditions may be constituted by amyloid precursor protein (APP), which plays a pivotal role in the pathogenesis of Alzheimer's disease, but has also been associated with the response to acute hypoxia and regulation of calcium homeostasis. We therefore studied hypoxia-induced loss of function and recovery upon reoxygenation in hippocampal slices of mice lacking APP (APP(-/-)) or selectively expressing its soluble extracellular domain (APPsα-KI). Transient hypoxia disrupted electrical activity at the network and cellular level. In mice lacking APP, these impairments were significantly more severe, showing increased rise of intracellular calcium, faster loss of function, and higher incidence of spreading depression. Likewise, functional recovery upon reoxygenation was much slower and less complete than in controls. Most of these deficits were rescued by selective expression of the soluble extracellular fragment APPsα, or by pharmacological block of L-type calcium channels. We conclude that APP supports neuronal resistance toward acute hypoxia. This effect is mediated by the secreted APPsα-domain and involves L-type calcium channels. Amyloid precursor protein (APP) is involved in the pathophysiology of Alzheimer's disease, but its normal function in the brain remains elusive. Here, we describe a neuroprotective role of the protein in acute hypoxia. Functional recovery of mouse hippocampal networks after transient reduction of oxygen supply was strongly impaired in animals lacking APP. Most protective effects are mediated by the soluble extracellular fragment APPsα and involve L-type calcium channels. Thus, APP contributes to calcium homeostasis in situations of metabolic stress. This finding may shed light on the physiological

  19. Role of glycine residues highly conserved in the S2-S3 linkers of domains I and II of voltage-gated calcium channel alpha(1) subunits.

    Science.gov (United States)

    Teng, Jinfeng; Iida, Kazuko; Ito, Masanori; Izumi-Nakaseko, Hiroko; Kojima, Itaru; Adachi-Akahane, Satomi; Iida, Hidetoshi

    2010-05-01

    The pore-forming component of voltage-gated calcium channels, alpha(1) subunit, contains four structurally conserved domains (I-IV), each of which contains six transmembrane segments (S1-S6). We have shown previously that a Gly residue in the S2-S3 linker of domain III is completely conserved from yeasts to humans and important for channel activity. The Gly residues in the S2-S3 linkers of domains I and II, which correspond positionally to the Gly in the S2-S3 linker of domain III, are also highly conserved. Here, we investigated the role of the Gly residues in the S2-S3 linkers of domains I and II of Ca(v)1.2. Each of the Gly residues was replaced with Glu or Gln to produce mutant Ca(v)1.2s; G182E, G182Q, G579E, G579Q, and the resulting mutants were transfected into BHK6 cells. Whole-cell patch-clamp recordings showed that current-voltage relationships of the four mutants were the same as those of wild-type Ca(v)1.2. However, G182E and G182Q showed significantly smaller current densities because of mislocalization of the mutant proteins, suggesting that Gly(182) in domain I is involved in the membrane trafficking or surface expression of alpha(1) subunit. On the other hand, G579E showed a slower voltage-dependent current inactivation (VDI) compared to Ca(v)1.2, although G579Q showed a normal VDI, implying that Gly(579) in domain II is involved in the regulation of VDI and that the incorporation of a negative charge alters the VDI kinetics. Our findings indicate that the two conserved Gly residues are important for alpha(1) subunit to become functional.

  20. Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula

    Directory of Open Access Journals (Sweden)

    Chun Yuen Chow

    2015-06-01

    Full Text Available Voltage-gated sodium (NaV channels are responsible for propagating action potentials in excitable cells. NaV1.7 plays a crucial role in the human pain signalling pathway and it is an important therapeutic target for treatment of chronic pain. Numerous spider venom peptides have been shown to modulate the activity of NaV channels and these peptides represent a rich source of research tools and therapeutic lead molecules. The aim of this study was to determine the diversity of NaV1.7-active peptides in the venom of an Australian Phlogius sp. tarantula and to characterise their potency and subtype selectivity. We isolated three novel peptides, μ-TRTX-Phlo1a, -Phlo1b and -Phlo2a, that inhibit human NaV1.7 (hNaV1.7. Phlo1a and Phlo1b are 35-residue peptides that differ by one amino acid and belong in NaSpTx family 2. The partial sequence of Phlo2a revealed extensive similarity with ProTx-II from NaSpTx family 3. Phlo1a and Phlo1b inhibit hNaV1.7 with IC50 values of 459 and 360 nM, respectively, with only minor inhibitory activity on rat NaV1.2 and hNaV1.5. Although similarly potent at hNaV1.7 (IC50 333 nM, Phlo2a was less selective, as it also potently inhibited rNaV1.2 and hNaV1.5. All three peptides cause a depolarising shift in the voltage-dependence of hNaV1.7 activation.

  1. A comparison of 15 Hz sine on-line and off-line magnetic stimulation affecting the voltage-gated sodium channel currents of prefrontal cortex pyramidal neurons

    Science.gov (United States)

    Zheng, Yu; Dong, Lei; Gao, Yang; Dou, Jun-Rong; Li, Ze-yan

    2016-10-01

    Combined with the use of patch-clamp techniques, repetitive transcranial magnetic stimulation (rTMS) has proven to be a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons after extensive research. The studies generally focused on the method: the neurons are first stimulated in an external standard magnetic exposure device, and then moved to the patch-clamp to record electrophysiological characteristics (off-line magnetic exposure). Despite its universality, real-time observation of the effects of magnetic stimulation on the neurons is more effective (on-line magnetic stimulation). In this study, we selected a standard exposure device for magnetic fields acting on mouse prefrontal cortex pyramidal neurons, and described a new method that a patch-clamp setup was modified to allow on-line magnetic stimulation. By comparing the off-line exposure and on-line stimulation of the same magnetic field intensity and frequency affecting the voltage-gated sodium channel currents, we succeeded in proving the feasibility of the new on-line stimulation device. We also demonstrated that the sodium channel currents of prefrontal cortex pyramidal neurons increased significantly under the 15 Hz sine 1 mT, and 2 mT off-line magnetic field exposure and under the 1 mT and 2 mT on-line magnetic stimulation, and the rate of acceleration was most significant on 2 mT on-line magnetic stimulation. This study described the development of a new on-line magnetic stimulator and successfully demonstrated its practicability for scientific stimulation of neurons.

  2. Ablation of Ca(V2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Directory of Open Access Journals (Sweden)

    Robert Theodor Mallmann

    Full Text Available Voltage-gated Ca(V2.1 (P/Q-type Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V2.1 mouse models. Global Ca(V2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V2.1 in the adult murine forebrain.

  3. [Effects of beta-cypermethrin on voltage-gated potassium channels in rat hippocampal CA3 neurons].

    Science.gov (United States)

    Fu, Zhi-Yan; DU, Chun-Yun; Yao, Yang; Liu, Chao-Wei; Tian, Yu-Tao; He, Bing-Jun; Zhang, Tao; Yang, Zhuo

    2007-02-25

    The effects of beta-cypermethrin (consisting of alpha-cypermethrin and theta-cypermethrin) on the transient outward potassium current (I(A)) and delayed rectifier potassium current (I(K)) in freshly dissociated hippocampal CA3 neurons of rats were studied using whole-cell patch-clamp technique. The results indicated that alpha-cypermethrin increased the value of I(A) and theta-cypermethrin decreased the value of I(A), though both of them shifted steady activation curve of I(A) towards negative potential. theta-cypermethrin contributed to the inactivation of I(A). The results also showed that alpha-cypermethrin and theta-cypermethrin decreased the value of I(K), and shifted the steady state activation curve of I(K) towards negative potential. Both alpha-cypermethrin and theta-cypermethrin had no obvious effects on the inactivation of I(K). theta-cypermethrin prolonged recovery process of I(K). These results imply that both transient outward potassium channels and delayed rectified potassium channels are the targets of beta-cypermethrin, which may explain the mechanism of toxical effects of beta-cypermethrin on mammalian neurons.

  4. Chronic inflammatory injury results in increased coupling of delta opioid receptors to voltage-gated Ca2+ channels.

    Science.gov (United States)

    Pradhan, Amynah; Smith, Monique; McGuire, Brenna; Evans, Christopher; Walwyn, Wendy

    2013-03-04

    Opioid receptors regulate a diverse array of physiological functions. Mu opioid receptor agonists are well-known analgesics for treating acute pain. In contrast, animal models suggest that chronic pain is more effectively relieved by delta opioid receptor agonists. A number of studies have shown that chronic pain results in increased function of delta opioid receptors. This is proposed to result from enhanced trafficking of the delta opioid receptor to the cell membrane induced by persistent tissue injury. However, recent studies have questioned this mechanism, which has resulted in some uncertainty as to whether delta opioid receptors are indeed upregulated in chronic pain states. To clarify this question, we have examined the effect of chronic inflammatory pain over time using both an ex vivo measure of delta function: receptor-Ca2+ channel coupling, and an in vivo measure; the relief of chronic pain by a delta opioid receptor agonist. In addition, as beta-arrestin 2 can regulate delta opioid receptor trafficking and signaling, we have further examined whether deleting this scaffolding and signal transduction molecule alters delta opioid receptor function. We used the Complete Freund's Adjuvant model of inflammatory pain, and examined the effectiveness of the delta agonist, SNC80, to both inhibit Ca2+ channels in primary afferent neurons and to attenuate mechanical allodynia. In naïve beta-arrestin 2 wildtype and knockout mice, SNC80 neither significantly inhibited voltage-dependent Ca2+ currents nor produced antinociception. However, following inflammatory pain, both measures showed a significant and long-lasting enhancement of delta opioid receptor function that persisted for up to 14 days post-injury regardless of genotype. Furthermore, although this pain model did not alter Ca2+ current density, the contribution of N-type Ca2+ channels to the total current appeared to be regulated by the presence of beta-arrestin 2. Our results indicate that there is an

  5. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6.

    Science.gov (United States)

    Ali, Syed R; Singh, Aditya K; Laezza, Fernanda

    2016-05-20

    The voltage-gated Na(+) (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the β-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14(V160A) or the FGF14(K74A/I76A) mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na(+) currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14(V160A) to the Nav1.6 C-tail compared with FGF14(K74A/I76A) Altogether these studies indicate that the β-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels.

  6. Statistical epistasis and functional brain imaging support a role of voltage-gated potassium channels in human memory.

    Directory of Open Access Journals (Sweden)

    Angela Heck

    Full Text Available Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed "missing heritability." The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5 was observed (P(nominal combined=0.000001. The epistatic interaction was robust, as it was significant in a screening (P(nominal=0.0000012 and in a replication sample (P(nominal=0.01. Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (P(nominal=0.001 supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits.

  7. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1 in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Cathy Chia-Yu Huang

    Full Text Available In the retina, the L-type voltage-gated calcium channels (L-VGCCs are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.

  8. Intracellular calcium elevation during plateau potentials mediated by extrasynaptic NMDA receptor activation in rat hippocampal CA1 pyramidal neurons is primarily due to calcium entry through voltage-gated calcium channels.

    Science.gov (United States)

    Oda, Yoshiaki; Kodama, Satoshi; Tsuchiya, Sadahiro; Inoue, Masashi; Miyakawa, Hiroyoshi

    2014-05-01

    We reported previously that plateau potentials mediated by extrasynaptic N-methyl-d-aspartate receptors (NMDARs) can be induced either by synaptic stimulation in the presence of glutamate transporter antagonist or by iontophoresis of NMDA in rat hippocampal CA1 pyramidal neurons. To examine whether the plateau potentials are accompanied by an elevation of intracellular Ca2+ and to determine the source of Ca2+ elevation, we performed Ca2+ imaging during the plateau potential. Neurons were loaded with Ca2+ indicator fluo-4, and the plateau potentials were generated either synaptically in the presence of glutamate transporter antagonist or by iontophoretically applying NMDA. We have found that a transient elevation in intracellular Ca2+ accompanies the plateau potential. The synaptically induced plateau potential and the Ca2+ elevation were blocked by 5,7-dichlorokynurenic acid (5,7-dCK), an antagonist for the glycine-binding sites of NMDAR. A mixture of Cd2+ and tetrodotoxin did not block NMDA-induced plateau potentials, but completely abolished the accompanying Ca2+ elevation in both the presence and absence of Mg2+ ions in the bathing solution. The NMDA-induced plateau potential was blocked by further adding 5,7-dCK. Our results show that the NMDAR-mediated plateau potential is accompanied by elevation of intracellular Ca2+ that is primarily caused by the influx of Ca2+ through voltage-gated Ca2+ channels. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Inhibition of Voltage-Gated Calcium Channels After Subchronic and Repeated Exposure of PC12 Cells to Different Classes of Insecticides.

    Science.gov (United States)

    Meijer, Marieke; Brandsema, Joske A R; Nieuwenhuis, Desirée; Wijnolts, Fiona M J; Dingemans, Milou M L; Westerink, Remco H S

    2015-10-01

    We previously demonstrated that acute inhibition of voltage-gated calcium channels (VGCCs) is a common mode of action for (sub)micromolar concentrations of chemicals, including insecticides. However, because human exposure to chemicals is usually chronic and repeated, we investigated if selected insecticides from different chemical classes (organochlorines, organophosphates, pyrethroids, carbamates, and neonicotinoids) also disturb calcium homeostasis after subchronic (24 h) exposure and after a subsequent (repeated) acute exposure. Effects on calcium homeostasis were investigated with single-cell fluorescence (Fura-2) imaging of PC12 cells. Cells were depolarized with high-K(+) saline to study effects of subchronic or repeated exposure on VGCC-mediated Ca(2+) influx. The results demonstrate that except for carbaryl and imidacloprid, all selected insecticides inhibited depolarization (K(+))-evoked Ca(2+) influx after subchronic exposure (IC50's: approximately 1-10 µM) in PC12 cells. These inhibitory effects were not or only slowly reversible. Moreover, repeated exposure augmented the inhibition of the K(+)-evoked increase in intracellular calcium concentration induced by subchronic exposure to cypermethrin, chlorpyrifos, chlorpyrifos-oxon, and endosulfan (IC50's: approximately 0.1-4 µM). In rat primary cortical cultures, acute and repeated chlorpyrifos exposure also augmented inhibition of VGCCs compared with subchronic exposure. In conclusion, compared with subchronic exposure, repeated exposure increases the potency of insecticides to inhibit VGCCs. However, the potency of insecticides to inhibit VGCCs upon repeated exposure was comparable with the inhibition previously observed following acute exposure, with the exception of chlorpyrifos. The data suggest that an acute exposure paradigm is sufficient for screening chemicals for effects on VGCCs and that PC12 cells are a sensitive model for detection of effects on VGCCs. © The Author 2015. Published by Oxford

  10. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    Science.gov (United States)

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries

  11. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression.

    Directory of Open Access Journals (Sweden)

    Hitoshi Kawada

    2016-06-01

    Full Text Available Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures.High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C and one heterozygote of the other mutation (V1016I were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa were significantly higher than those in Ae. aegypti formosus (Aaf. We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area.The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries.

  12. Four and a half LIM protein 1C (FHL1C: a binding partner for voltage-gated potassium channel K(v1.5.

    Directory of Open Access Journals (Sweden)

    Ivana Poparic

    Full Text Available Four-and-a-half LIM domain protein 1 isoform A (FHL1A is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA. We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G(0/G(1 phase. Furthermore, low expression of K(v1.5, a voltage-gated potassium channel known to alter myoblast proliferation during the G(1 phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between K(v1.5 and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and K(v1.5 within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of K(v1.5 with FHL1C in Xenopus laevis oocytes markedly reduced K(+ currents when compared to oocytes expressing K(v1.5 only. We here present the first evidence on a biological relevance of FHL1C.

  13. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar.

    Directory of Open Access Journals (Sweden)

    Hitoshi Kawada

    Full Text Available BACKGROUND: Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. METHODOLOGY/PRINCIPAL FINDINGS: We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively. By contrast, we were unable to detect I1011M (or I1011V or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%. High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%. Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9% and homozygous V1016G/F1534C/S989P mutations (0.98% were detected in the present study. CONCLUSIONS/SIGNIFICANCE: Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.

  14. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar.

    Science.gov (United States)

    Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru

    2014-01-01

    Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.

  15. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, Tianjin 300071 (China); Pan, Juncheng [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, Tianjin 300071 (China); Che, Yongzhe, E-mail: cheli@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Medicine, Nankai University, Tianjin 300071 (China); Yin, Jian [Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060 (China); Zhao, Qing [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, Tianjin 300071 (China)

    2011-08-26

    Highlights: {yields} Hv1 is specifically expressed in highly metastatic human breast tumor tissues. {yields} Hv1 regulates breast cancer cytosolic pH. {yields} Hv1 acidifies extracellular milieu. {yields} Hv1 exacerbates the migratory ability of metastatic cells. -- Abstract: The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.

  16. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2.

    Science.gov (United States)

    XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua

    2016-03-01

    The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.

  17. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels.

    Science.gov (United States)

    Ruiz, A; Alberdi, E; Matute, C

    2014-04-10

    Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca(2+) homeostasis. However, the Ca(2+) signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca(2+) levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca(2+) homeostasis using cameleon-based mitochondrial Ca(2+) and cytosolic Ca(2+) ([Ca(2+)]i) live imaging. We observed that NCLX-driven mitochondrial Ca(2+) exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca(2)]i concomitant with a Ca(2+) accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca(2+) efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca(2+)]i increase by blocking voltage-gated Ca(2+) channels (VGCCs), whereas it did not induce depletion of ER Ca(2+) stores. Moreover, mitochondrial Ca(2+) overload was reduced as a consequence of diminished Ca(2+) entry through VGCCs. The decrease in cytosolic and mitochondrial Ca(2+) overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca(2+) dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

  18. β1- and β3- voltage-gated sodium channel subunits modulate cell surface expression and glycosylation of Nav1.7 in HEK293 cells

    Directory of Open Access Journals (Sweden)

    Cedric James Laedermann

    2013-08-01

    Full Text Available Voltage-gated sodium channels (Navs are glycoproteins composed of a pore-forming α-subunit and associated β-subunits that regulate Nav α-subunit plasma membrane density and biophysical properties. Glycosylation of the Nav α-subunit also directly affects Navs gating. β-subunits and glycosylation thus comodulate Nav α-subunit gating. We hypothesized that β-subunits could directly influence α-subunit glycosylation. Whole-cell patch clamp of HEK293 cells revealed that both β1- and β3-subunits coexpression shifted V1/2 of steady-state activation and inactivation and increased Nav1.7-mediated INa density. Biotinylation of cell surface proteins, combined with the use of deglycosydases, confirmed that Nav1.7 α-subunits exist in multiple glycosylated states. The α-subunit intracellular fraction was found in a core-glycosylated state, migrating at approximately 250 kDa. At the plasma membrane, in addition to the core-glycosylated form, a fully glycosylated form of Nav1.7 (~280 kDa was observed. This higher band shifted to an intermediate band (~260 kDa when β1-subunits were coexpressed, suggesting that the β1-subunit promotes an alternative glycosylated form of Nav1.7. Furthermore, the β1-subunit increased the expression of this alternative glycosylated form and the β3-subunit increased the expression of the core-glycosylated form of Nav1.7. This study describes a novel role for β1- and β3-subunits in the modulation of Nav1.7 α-subunit glycosylation and cell surface expression.

  19. Mechanisms of NMDA Receptor- and Voltage-Gated L-Type Calcium Channel-Dependent Hippocampal LTP Critically Rely on Proteolysis That Is Mediated by Distinct Metalloproteinases.

    Science.gov (United States)

    Wiera, Grzegorz; Nowak, Daria; van Hove, Inge; Dziegiel, Piotr; Moons, Lieve; Mozrzymas, Jerzy W

    2017-02-01

    Long-term potentiation (LTP) is widely perceived as a memory substrate and in the hippocampal CA3-CA1 pathway, distinct forms of LTP depend on NMDA receptors (nmdaLTP) or L-type voltage-gated calcium channels (vdccLTP). LTP is also known to be effectively regulated by extracellular proteolysis that is mediated by various enzymes. Herein, we investigated whether in mice hippocampal slices these distinct forms of LTP are specifically regulated by different metalloproteinases (MMPs). We found that MMP-3 inhibition or knock-out impaired late-phase LTP in the CA3-CA1 pathway. Interestingly, late-phase LTP was also decreased by MMP-9 blockade. When both MMP-3 and MMP-9 were inhibited, both early- and late-phase LTP was impaired. Using immunoblotting, in situ zymography, and immunofluorescence, we found that LTP induction was associated with an increase in MMP-3 expression and activity in CA1 stratum radiatum. MMP-3 inhibition and knock-out prevented the induction of vdccLTP, with no effect on nmdaLTP. L-type channel-dependent LTP is known to be impaired by hyaluronic acid digestion. We found that slice treatment with hyaluronidase occluded the effect of MMP-3 blockade on LTP, further confirming a critical role for MMP-3 in this form of LTP. In contrast to the CA3-CA1 pathway, LTP in the mossy fiber-CA3 projection did not depend on MMP-3, indicating the pathway specificity of the actions of MMPs. Overall, our study indicates that the activation of perisynaptic MMP-3 supports L-type channel-dependent LTP in the CA1 region, whereas nmdaLTP depends solely on MMP-9. Various types of long-term potentiation (LTP) are correlated with distinct phases of memory formation and retrieval, but the underlying molecular signaling pathways remain poorly understood. Extracellular proteases have emerged as key players in neuroplasticity phenomena. The present study found that L-type calcium channel-dependent LTP in the CA3-CA1 hippocampal projection is critically regulated by the activity

  20. Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome.

    Science.gov (United States)

    Beyder, Arthur; Mazzone, Amelia; Strege, Peter R; Tester, David J; Saito, Yuri A; Bernard, Cheryl E; Enders, Felicity T; Ek, Weronica E; Schmidt, Peter T; Dlugosz, Aldona; Lindberg, Greger; Karling, Pontus; Ohlsson, Bodil; Gazouli, Maria; Nardone, Gerardo; Cuomo, Rosario; Usai-Satta, Paolo; Galeazzi, Francesca; Neri, Matteo; Portincasa, Piero; Bellini, Massimo; Barbara, Giovanni; Camilleri, Michael; Locke, G Richard; Talley, Nicholas J; D'Amato, Mauro; Ackerman, Michael J; Farrugia, Gianrico

    2014-06-01

    SCN5A encodes the α-subunit of the voltage-gated sodium channel NaV1.5. Many patients with cardiac arrhythmias caused by mutations in SCN5A also have symptoms of irritable bowel syndrome (IBS). We investigated whether patients with IBS have SCN5A variants that affect the function of NaV1.5. We performed genotype analysis of SCN5A in 584 persons with IBS and 1380 without IBS (controls). Mutant forms of SCN5A were expressed in human embryonic kidney-293 cells, and functions were assessed by voltage clamp analysis. A genome-wide association study was analyzed for an association signal for the SCN5A gene, and replicated in 1745 patients in 4 independent cohorts of IBS patients and controls. Missense mutations were found in SCN5A in 13 of 584 patients (2.2%, probands). Diarrhea-predominant IBS was the most prevalent form of IBS in the overall study population (25%). However, a greater percentage of individuals with SCN5A mutations had constipation-predominant IBS (31%) than diarrhea-predominant IBS (10%; P < .05). Electrophysiologic analysis showed that 10 of 13 detected mutations disrupted NaV1.5 function (9 loss-of-function and 1 gain-of-function function). The p. A997T-NaV1.5 had the greatest effect in reducing NaV1.5 function. Incubation of cells that expressed this variant with mexiletine restored their sodium current and administration of mexiletine to 1 carrier of this mutation (who had constipation-predominant IBS) normalized their bowel habits. In the genome-wide association study and 4 replicated studies, the SCN5A locus was strongly associated with IBS. About 2% of patients with IBS carry mutations in SCN5A. Most of these are loss-of-function mutations that disrupt NaV1.5 channel function. These findings provide a new pathogenic mechanism for IBS and possible treatment options. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Coordinated role of voltage-gated sodium channels and the Na{sup +}/H{sup +} exchanger in sustaining microglial activation during inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Muhammad M. [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Sonsalla, Patricia K. [Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2013-12-01

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na{sup +}/H{sup +} exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na{sup +}){sub i}] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na{sup +} influx, but was unable to prevent the accumulation of (Na{sup +}){sub i} observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na{sup +}){sub i} 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H{sub 2}O{sub 2} and expression of gp91{sup phox}, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation. - Highlights: • LPS causes immediate increase in sodium through VGSC and subsequently through the NHE-1. • Inhibition of VGSC reduces increases in NHE-1 and gp91{sup phox}. • Inhibition of VGSC and NHE-1 reduces NADPH oxidase-mediated Tnf-α, ROS, and H{sub 2}O{sub 2} production. • NHE-1 and Na{sub v}1.6 may be viable targets for therapeutic interventions to reduce neuroinflammation in neurodegenerative disease.

  2. MiR-30b Attenuates Neuropathic Pain by Regulating Voltage-Gated Sodium Channel Nav1.3 in Rats

    Directory of Open Access Journals (Sweden)

    Songxue Su

    2017-05-01

    Full Text Available Nav1.3 is a tetrodotoxin-sensitive isoform among voltage-gated sodium channels that are closely associated with neuropathic pain. It can be up-regulated following nerve injury, but its biological function remains uncertain. MicroRNAs (miRNAs are endogenous non-coding RNAs that can regulate post-transcriptional gene expression by binding with their target mRNAs. Using Target Scan software, we discovered that SCN3A is the major target of miR-30b, and we then determined whether miR-30b regulated the expression of Nav1.3 by transfecting miR-30b agomir through the stimulation of TNF-α or by transfecting miR-30b antagomir in primary dorsal root ganglion (DRG neurons. The spinal nerve ligation (SNL model was used to determine the contribution of miR-30b to neuropathic pain, to evaluate changes in Nav1.3 mRNA and protein expression, and to understand the sensitivity of rats to mechanical and thermal stimuli. Our results showed that miR-30b agomir transfection down-regulated Nav1.3 mRNA stimulated with TNF-α in primary DRG neurons. Moreover, miR-30b overexpression significantly attenuated neuropathic pain induced by SNL, with decreases in the expression of Nav1.3 mRNA and protein both in DRG neurons and spinal cord. Activation of Nav1.3 caused by miR-30b antagomir was identified. These data suggest that miR-30b is involved in the development of neuropathic pain, probably by regulating the expression of Nav1.3, and might be a novel therapeutic target for neuropathic pain.Perspective: This study is the first to explore the important role of miR-30b and Nav1.3 in spinal nerve ligation-induced neuropathic pain, and our evidence may provide new insight for improving therapeutic approaches to pain.

  3. Interplay between low threshold voltage-gated K+ channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis

    OpenAIRE

    William eHamlet; Yu-Wei eLiu; Zhengquang eTang; Yong eLu

    2014-01-01

    Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along...

  4. Marine Toxins Targeting Ion Channels

    Directory of Open Access Journals (Sweden)

    Hugo R. Arias

    2006-04-01

    Full Text Available Abstract: This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs, as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs, are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV, Ca2+ (CaV, and K+ (KV channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR, and the ATP-activated (P2XnR receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+, whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−. In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers of ion channel functions to treat or to alleviate a specific

  5. Treatment with carbamazepine and gabapentin of a patient with primary erythermalgia (erythromelalgia) identified to have a mutation in the SCN9A gene, encoding a voltage-gated sodium channel.

    Science.gov (United States)

    Natkunarajah, J; Atherton, D; Elmslie, F; Mansour, S; Mortimer, P

    2009-12-01

    Primary erythermalgia (erythromelalgia) is a rare autosomal dominant condition characterized by intermittent attacks of erythema, increased skin temperature and severe burning pain in the extremities, in a bilateral symmetrical distribution. Mutations in the SCN9A gene, which encodes a voltage-gated sodium channel have been shown to cause this disease. We report a family identified to have a mutation in the SCN9A gene, in which one severely affected family member has responded to the therapeutic combination of gabapentin and carbamazepine treatment.

  6. Regulation of voltage-gated calcium channels by proteolysis%蛋白质水解对电压门控Ca2+通道的调节

    Institute of Scientific and Technical Information of China (English)

    ABELE Kathryn; 杨建

    2012-01-01

    电压门控Ca2+通道是由多个亚基组成的膜蛋白,其分布广泛,生理功能极为重要,可被众多蛋白和信号传导通路调节.本综述重点介绍蛋白质水解对电压门控Ca2+通道的调节作用及其生理功能.Ca2+通道的主亚基Cavα1可被蛋白质水解,从而调控Ca2+通道的功能和降解,影响基因表达和细胞兴奋性.根据其组织分布,L类Ca2+通道有两种水解模式:在心脏和骨骼肌,Cavα1的羧基末端被水解后与剩余的羧基端结合,抑制Ca2+通道电流.这种自身抑制可被体内分泌的肾上腺素解除,引发心肌和骨骼肌Ca2+电流大量增加,在“打或逃”之类的应激反应中起重要作用,Cavα1羧基末端水解在大脑也存在,并可能是由calpain蛋白质水解酶催化;在某些大脑区域,Cavα1的整个羧基端可被水解并迁移至细胞核,起到转录因子的作用.P/Q类Ca2+通道Cavα1的羧基末端也可被水解,并迁移到细胞核.许多基因突变产生截断型P/Q Cavα1,而这些截断型Cavα1可严重影响正常Ca2+通道的功能,导致人类的疾病.截断型N类Ca2+通道Cavα1可通过诱变产生,影响正常通道的表达.新型Ca2+通道水解新模式可能是未来Ca2+通道研究中一个重要的探索方向.%Voltage gated calcium channels (VGCCs) are multi-subunit membrane proteins present in a variety of tissues and control many essential physiological processes.Due to their vital importance,VGCCs are regulated by a myriad of proteins and signaling pathways.Here we review the literature on the regulation of VGCCs by proteolysis of the pore-forming α1 subunit,Cavα1.This form of regulation modulates channel function and degradation and affects cellular gene expression and excitability.L-type Ca2+ channels are proteolyzed in two ways,depending on tissue localization.In the heart and skeletal muscle,the distal C-terminus of Cavα1 is cleaved and acts as an autoinhibitor when it reassociates with the proximal C

  7. Epilepsy: The Role of the Super Family of Voltage Gated Ion Channels

    Science.gov (United States)

    2011-02-22

    Febrile   Seizures ...34   b. Generalized  Epilepsy   Febrile   Seizures …………………………………………………………………………………35       c. Dravet  syndrome...variation  in  phenotype  even  among  family  members.       (FS  =   febrile   seizure ,  GEFS  =

  8. Relationship between voltage-gated calcium channel and orofacial pain%电压门控性钙离子通道与口腔颌面部疼痛的关系

    Institute of Scientific and Technical Information of China (English)

    曹鹂俪; 胡荣城(综述); 朴正根(审校)

    2015-01-01

    Nerve injuries in oral and maxillofacial region can cause neuropathic pain which underlying mechanism is complicated, and there is still lack of effective treatment measures. In recent years, the important role of calcium chan-nels, especially voltage-gated calcium channels in the neuropathic pain has been recognized gradually. Now, this review presents the current understanding of the role of voltage-gated calcium channels in orofacial neuropathic pain, in order to provide ideas for orofacial pain study.%口腔颌面部神经损伤可引起神经病理性疼痛,其发病机制复杂,目前仍缺乏有效治疗措施。钙离子通道在疼痛的发生中起重要作用,近年来的许多研究发现电压门控性钙离子通道与神经病理性疼痛密切相关,本文就电压门控性钙离子通道与口腔颌面部疼痛的关系作一综述,为研究口腔颌面部疼痛的机制提供思路。

  9. Roles of Voltage-Gated Tetrodotoxin-Sensitive Sodium Channels NaV1.3 and NaV1.7 in Diabetes and Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Linlin Yang

    2016-09-01

    Full Text Available Diabetes mellitus (DM is a common chronic medical problem worldwide; one of its complications is painful peripheral neuropathy, which can substantially erode quality of life and increase the cost of management. Despite its clinical importance, the pathogenesis of painful diabetic neuropathy (PDN is complex and incompletely understood. Voltage-gated sodium channels (VGSCs link many physiological processes to electrical activity by controlling action potentials in all types of excitable cells. Two isoforms of VGSCs, NaV1.3 and NaV1.7, which are encoded by the sodium voltage-gated channel alpha subunit 3 and 9 (Scn3A and Scn9A genes, respectively, have been identified in both peripheral nociceptive neurons of dorsal root ganglion (DRG and pancreatic islet cells. Recent advances in our understanding of tetrodotoxin-sensitive (TTX-S sodium channels NaV1.3 and NaV1.7 lead to the rational doubt about the cause–effect relation between diabetes and painful neuropathy. In this review, we summarize the roles of NaV1.3 and NaV1.7 in islet cells and DRG neurons, discuss the link between DM and painful neuropathy, and present a model, which may provide a starting point for further studies aimed at identifying the mechanisms underlying diabetes and painful neuropathy.

  10. Roles of Voltage-Gated Tetrodotoxin-Sensitive Sodium Channels NaV1.3 and NaV1.7 in Diabetes and Painful Diabetic Neuropathy

    Science.gov (United States)

    Yang, Linlin; Li, Quanmin; Liu, Xinming; Liu, Shiguang

    2016-01-01

    Diabetes mellitus (DM) is a common chronic medical problem worldwide; one of its complications is painful peripheral neuropathy, which can substantially erode quality of life and increase the cost of management. Despite its clinical importance, the pathogenesis of painful diabetic neuropathy (PDN) is complex and incompletely understood. Voltage-gated sodium channels (VGSCs) link many physiological processes to electrical activity by controlling action potentials in all types of excitable cells. Two isoforms of VGSCs, NaV1.3 and NaV1.7, which are encoded by the sodium voltage-gated channel alpha subunit 3 and 9 (Scn3A and Scn9A) genes, respectively, have been identified in both peripheral nociceptive neurons of dorsal root ganglion (DRG) and pancreatic islet cells. Recent advances in our understanding of tetrodotoxin-sensitive (TTX-S) sodium channels NaV1.3 and NaV1.7 lead to the rational doubt about the cause–effect relation between diabetes and painful neuropathy. In this review, we summarize the roles of NaV1.3 and NaV1.7 in islet cells and DRG neurons, discuss the link between DM and painful neuropathy, and present a model, which may provide a starting point for further studies aimed at identifying the mechanisms underlying diabetes and painful neuropathy. PMID:27608006

  11. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  12. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function.

    Science.gov (United States)

    Baycin-Hizal, Deniz; Gottschalk, Allan; Jacobson, Elena; Mai, Sunny; Wolozny, Daniel; Zhang, Hui; Krag, Sharon S; Betenbaugh, Michael J

    2014-10-17

    Voltage-gated ion channels are transmembrane proteins that regulate electrical excitability in cells and are essential components of the electrically active tissues of nerves, muscle and the heart. Potassium channels are one of the largest subfamilies of voltage sensitive channels and are among the most-studied of the voltage-gated ion channels. Voltage-gated channels can be glycosylated and changes in the glycosylation pattern can affect ion channel function, leading to neurological and neuromuscular disorders and congenital disorders of glycosylation (CDG). Alterations in glycosylation can also be acquired and appear to play a role in development and aging. Recent studies have focused on the impact of glycosylation and sialylation on ion channels, particularly for voltage-gated potassium and sodium channels. The terminal step of sialylation often affects channel activation and inactivation kinetics. The presence of sialic acids on O or N-glycans can alter the gating mechanism and cause conformational changes in the voltage-sensing domains due to sialic acid's negative charges. This manuscript will provide an overview of sialic acids, potassium and sodium channel function, and the impact of sialylation on channel activation and deactivation.

  13. Coevolution of the Ile1,016 and Cys1,534 Mutations in the Voltage Gated Sodium Channel Gene of Aedes aegypti in Mexico.

    Directory of Open Access Journals (Sweden)

    Farah Z Vera-Maloof

    2015-12-01

    Full Text Available Worldwide the mosquito Aedes aegypti (L. is the principal urban vector of dengue viruses. Currently 2.5 billion people are at risk for infection and reduction of Ae. aegypti populations is the most effective means to reduce the risk of transmission. Pyrethroids are used extensively for adult mosquito control, especially during dengue outbreaks. Pyrethroids promote activation and prolong the activation of the voltage gated sodium channel protein (VGSC by interacting with two distinct pyrethroid receptor sites [1], formed by the interfaces of the transmembrane helix subunit 6 (S6 of domains II and III. Mutations of S6 in domains II and III synergize so that double mutants have higher pyrethroid resistance than mutants in either domain alone. Computer models predict an allosteric interaction between mutations in the two domains. In Ae. aegypti, a Ile1,016 mutation in the S6 of domain II was discovered in 2006 and found to be associated with pyrethroid resistance in field populations in Mexico. In 2010 a second mutation, Cys1,534 in the S6 of domain III was discovered and also found to be associated with pyrethroid resistance and correlated with the frequency of Ile1,016.A linkage disequilibrium analysis was performed on Ile1,016 and Cys1,534 in Ae. aegypti collected in Mexico from 2000-2012 to test for statistical associations between S6 in domains II and III in natural populations. We estimated the frequency of the four dilocus haplotypes in 1,016 and 1,534: Val1,016/Phe1,534 (susceptible, Val1,016/Cys1,534, Ile1,016/Phe1,534, and Ile1,016/Cys1,534 (resistant. The susceptible Val1,016/Phe1,534 haplotype went from near fixation to extinction and the resistant Ile1,016/Cys1,534 haplotype increased in all collections from a frequency close to zero to frequencies ranging from 0.5-0.9. The Val1,016/Cys1,534 haplotype increased in all collections until 2008 after which it began to decline as Ile1,016/Cys1,534 increased. However, the Ile1,016/Phe1

  14. Structural model of the voltage-gated potassium channel Kv1.1 and molecular docking of Tc1 toxin from Tityus cambridgei to KcsA and Kv1.1

    Science.gov (United States)

    Liu, Hsuan-Liang; Lin, Jin-Chung

    2003-11-01

    In this study, structural model of the pore loop region of the voltage-gated potassium channel Kv1.1 was constructed based on the crystallographic structure of KcsA. Subsequently, molecular docking experiments of Tc1 towards KcsA as well as Kv1.1 were performed. Tc1 forms the most stable complexes with these two channels when the side chain of K14 occupies the first K + binding site. Tc1 binds preferentially towards Kv1.1 than KcsA due to the stronger electrostatic and hydrophobic interactions. Furthermore, surface complementarity of the outer vestibules of the channel to the Tc1 spatial conformations also plays an important role in stabilizing these Tc1/channel complexes.

  15. Study Progress of Nervous Diseases Caused by Genetic Mutation of Voltage-gated Sodium Channel%电压门控钠离子通道相关基因突变致神经系统病变的研究进展

    Institute of Scientific and Technical Information of China (English)

    张鲲

    2012-01-01

    电压门控钠通道是神经元启动和传播动作电位的根源,通过其快速的开放和关闭改变膜电位.当编码离子通道亚单位的基因发生突变或者表达异常,或体内出现针对通道的病理性内源物质时,通道的功能出现不同程度的削减或增强,从而导致机体整体生理功能的紊乱,导致某些先天性和后天获得性疾病.电压门控钠离子通道是离子通道的一种,其相关基因的出现异常导致的神经系统疾病主要见于癫痫、家族性偏头痛、周期性麻痹、原发性红斑肢痛症.%The voltage-gated sodium channel,changing potential through its rapid opening and closing,is the origin of generating and spreading action potential from neurons. When the mutation, abnormal expression or pathological endogeneous substances occurred in subunits of sodium channel, psychological dysfunction comes along with dysfunction in channels,which lead to some congenital or acquired disorders. The voltage-gated sodium channel is a type of ion channel, the nevous system disorders caused by the related gene abnormality include epilepsy, familial migraine, periodic paralysis and primary erythermalgia.

  16. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    Science.gov (United States)

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-09-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1-S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and

  17. MiR-223-3p as a Novel MicroRNA Regulator of Expression of Voltage-Gated K+ Channel Kv4.2 in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Xue Liu

    2016-06-01

    Full Text Available Background/Aims: Acute myocardial infarction (AMI is a devastating cardiovascular disease with a high rate of morbidity and mortality, partly due to enhanced arrhythmogenicity. MicroRNAs (miRNAs have been shown to participate in the regulation of cardiac ion channels and the associated arrhythmias. The purpose of this study was to test our hypothesis that miR-223-3p contributes to the electrical disorders in AMI via modulating KCND2, the gene encoding voltage-gated channel Kv4.2 that carries transient outward K+ current Ito. Methods: AMI model was established in male Sprague-Dawley (SD rats by left anterior descending artery (LAD ligation. Evans blue and TTC staining was used to measure infarct area. Ito was recorded in isolated ventricular cardiomyocytes or cultured neonatal rat ventricular cells (NRVCs by whole-cell patch-clamp techniques. Western blot analysis was employed to detect the protein level of Kv4.2 and real-time RT-PCR to determine the transcript level of miR-223-3p. Luciferase assay was used to examine the interaction between miR-223-3p and KCND2 in cultured NRVCs. Results: Expression of miR-223-3p was remarkably upregulated in AMI relative to sham control rats. On the contrary, the protein level of Kv4.2 and Ito density were significantly decreased in AMI. Consistently, transfection of miR-223-3p mimic markedly reduced Kv4.2 protein level and Ito current in cultured NRVCs. Co-transfection of AMO-223-3p (an antisense inhibitor of miR-223-3p reversed the repressive effect of miR-223-3p. Luciferase assay showed that miR-223-3p, but not the negative control, substantially suppressed the luciferase activity, confirming the direct binding of miR-223-3p to the seed site within the KCND2 sequence. Finally, direct intramuscular injection of AMO-223-3p into the ischemic myocardium to knockdown endogenous miR-223-3p decreased the propensity of ischemic arrhythmias. Conclusions: Upregulation of miR-223-3p in AMI repressed the expression of

  18. A new role for AMP-activated protein kinase in the circadian regulation of L-type voltage-gated calcium channels in late-stage embryonic retinal photoreceptors.

    Science.gov (United States)

    Huang, Cathy C Y; Shi, Liheng; Lin, Chia-Hung; Kim, Andy Jeesu; Ko, Michael L; Ko, Gladys Y-P

    2015-11-01

    AMP-activated protein kinase (AMPK) is a cellular energy sensor, which is activated when the intracellular ATP production decreases. The activities of AMPK display circadian rhythms in various organs and tissues, indicating that AMPK is involved in the circadian regulation of cellular metabolism. In vertebrate retina, the circadian clocks regulate many aspects of retinal function and physiology, including light/dark adaption, but whether and how AMPK was involved in the retinal circadian rhythm was not known. We hypothesized that the activation of AMPK (measured as phosphorylated AMPK) in the retina was under circadian control, and AMPK might interact with other intracellular signaling molecules to regulate photoreceptor physiology. We combined ATP assays, western blots, immunostaining, patch-clamp recordings, and pharmacological treatments to decipher the role of AMPK in the circadian regulation of photoreceptor physiology. We found that the overall retinal ATP content displayed a diurnal rhythm that peaked at early night, which was nearly anti-phase to the diurnal and circadian rhythms of AMPK phosphorylation. AMPK was also involved in the circadian phase-dependent regulation of photoreceptor L-type voltage-gated calcium channels (L-VGCCs), the ion channel essential for sustained neurotransmitter release. The activation of AMPK dampened the L-VGCC currents at night with a corresponding decrease in protein expression of the L-VGCCα1 pore-forming subunit, while inhibition of AMPK increased the L-VGCC current during the day. AMPK appeared to be upstream of extracellular-signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) but downstream of adenylyl cyclase in regulating the circadian rhythm of L-VGCCs. Hence, as a cellular energy sensor, AMPK integrates into the cell signaling network to regulate the circadian rhythm of photoreceptor physiology. We found that in chicken embryonic retina, the activation of AMP-activated protein

  19. 电压门控性钠离子通道Nav1.7与疼痛的研究进展%Progress in the study of voltage-gated sodium channel Nav1.7 in pain

    Institute of Scientific and Technical Information of China (English)

    刘慧丽; 李萍; 李民

    2012-01-01

    Voltage-gated sodium channels(VGSC) are key molecules in pain processing and development. Mutations in the SCN9A gene encoding for Navl. 7 have been identified as important cellular substrates for different heritable pain syndromes, which suggest new Navl. 7 channel blockers could be useful analgesics in the future.%电压门控性钠通道在疼痛的产生和发展中具有关键性作用.而编码Nav1.7的基因突变可能导致一系列遗传性疼痛相关疾病,提示其在疼痛产生机制中的独特作用,可能成为疼痛治疗新的药物靶点.

  20. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

    Science.gov (United States)

    Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia

    2015-01-01

    Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056

  1. mRNAs coding for neurotransmitter receptors and voltage-gated sodium channels in the adult rabbit visual cortex after monocular deafferentiation

    Science.gov (United States)

    Nguyen, Quoc-Thang; Matute, Carlos; Miledi, Ricardo

    1998-01-01

    It has been postulated that, in the adult visual cortex, visual inputs modulate levels of mRNAs coding for neurotransmitter receptors in an activity-dependent manner. To investigate this possibility, we performed a monocular enucleation in adult rabbits and, 15 days later, collected their left and right visual cortices. Levels of mRNAs coding for voltage-activated sodium channels, and for receptors for kainate/α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl-d-aspartate (NMDA), γ-aminobutyric acid (GABA), and glycine were semiquantitatively estimated in the visual cortices ipsilateral and contralateral to the lesion by the Xenopus oocyte/voltage-clamp expression system. This technique also allowed us to study some of the pharmacological and physiological properties of the channels and receptors expressed in the oocytes. In cells injected with mRNA from left or right cortices of monocularly enucleated and control animals, the amplitudes of currents elicited by kainate or AMPA, which reflect the abundance of mRNAs coding for kainate and AMPA receptors, were similar. There was no difference in the sensitivity to kainate and in the voltage dependence of the kainate response. Responses mediated by NMDA, GABA, and glycine were unaffected by monocular enucleation. Sodium channel peak currents, activation, steady-state inactivation, and sensitivity to tetrodotoxin also remained unchanged after the enucleation. Our data show that mRNAs for major neurotransmitter receptors and ion channels in the adult rabbit visual cortex are not obviously modified by monocular deafferentiation. Thus, our results do not support the idea of a widespread dynamic modulation of mRNAs coding for receptors and ion channels by visual activity in the rabbit visual system. PMID:9501250

  2. Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels.

    Science.gov (United States)

    Müller, Isabelle; Rössler, Oliver G; Thiel, Gerald

    2011-12-01

    The neurosteroid pregnenolone sulfate activates a signaling cascade in insulinoma cells involving activation of extracellular signal-regulated protein kinase and enhanced expression of the transcription factor Egr-1. Here, we show that pregnenolone sulfate stimulation leads to a significant elevation of activator protein-1 (AP-1) activity in insulinoma cells. Expression of the basic region leucine zipper (bZIP) transcription factors c-Jun and c-Fos is up-regulated in insulinoma cells and pancreatic β-cells in primary culture after pregnenolone sulfate stimulation. Up-regulation of a chromatin-embedded c-Jun promoter/luciferase reporter gene transcription in pregnenolone sulfate-stimulated insulinoma cells was impaired when the AP-1 binding sites were mutated, indicating that these motifs function as pregnenolone sulfate response elements. In addition, phosphorylation of cAMP response element (CRE)-binding protein is induced and transcription of a CRE-controlled reporter gene is stimulated after pregnenolone sulfate treatment, indicating that the CRE functions as a pregnenolone sulfate response element as well. Pharmacological and genetic experiments revealed that both L-type Ca(2+) channels and transient receptor potential melastatin 3 (TRPM3) channels are essential for connecting pregnenolone sulfate stimulation with enhanced AP-1 activity and bZIP-mediated transcription in insulinoma cells. In contrast, pregnenolone sulfate stimulation did not enhance AP-1 activity or c-Jun and c-Fos expression in pituitary corticotrophs that express functional L-type Ca(2+) channels but only trace amounts of TRPM3. We conclude that expression of L-type Ca(2+) channels is not sufficient to activate bZIP-mediated gene transcription by pregnenolone sulfate. Rather, additional expression of TRPM3 or depolarization of the cells is required to connect pregnenolone sulfate stimulation with enhanced gene transcription.

  3. Regulation of neuronal L-type voltage-gated calcium channels and brain ischemia%中枢神经系统L-型电压门控钙通道的功能调控与脑缺血

    Institute of Scientific and Technical Information of China (English)

    侯筱宇; 张光毅

    2004-01-01

    中枢神经系统L-型电压门控钙通道(L-type voltage-gated calcium channels, L-VGCCs)由α1C(D)亚基和辅助亚基组成.α1C亚基的C-端包含多个功能结构域,可分别与钙调素、钙调蛋白酶、cAMP依赖性蛋白激酶、Src家族酪氨酸蛋白激酶(Src family protein tyrosine kinases,SrcPTKs)等相互作用,从而参与L-VGCCs的功能调控.SrcPTKs介导的两种钙通道-- L-VGCCs和N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体的对话可能是缺血性脑损伤的重要机制.

  4. Effect of Turkish propolis extracts on expression of voltage-gated ...

    African Journals Online (AJOL)

    Keywords: Propolis, Voltage-gated sodium channel (VGSC), PC-3 Human prostate cancer cells. Tropical Journal ... a number of dietary and lifestyle factors have been implicated ... Propolis samples, produced by honey-bee (Apis mellifera L.) ...

  5. Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability

    NARCIS (Netherlands)

    Hamada, Mustafa S; Kole, Maarten H P

    2015-01-01

    Myelination and voltage-gated ion channel clustering at the nodes of Ranvier are essential for the rapid saltatory conduction of action potentials. Whether myelination influences the structural organization of the axon initial segment (AIS) and action potential initiation is poorly understood. Using

  6. Chimeric agents derived from the functionalized amino acid, lacosamide, and the α-aminoamide, safinamide: evaluation of their inhibitory actions on voltage-gated sodium channels, and antiseizure and antinociception activities and comparison with lacosamide and safinamide.

    Science.gov (United States)

    Park, Ki Duk; Yang, Xiao-Fang; Dustrude, Erik T; Wang, Yuying; Ripsch, Matthew S; White, Fletcher A; Khanna, Rajesh; Kohn, Harold

    2015-02-18

    The functionalized amino acid, lacosamide ((R)-2), and the α-aminoamide, safinamide ((S)-3), are neurological agents that have been extensively investigated and have displayed potent anticonvulsant activities in seizure models. Both compounds have been reported to modulate voltage-gated sodium channel activity. We have prepared a series of chimeric compounds, (R)-7-(R)-10, by merging key structural units in these two clinical agents, and then compared their activities with (R)-2 and (S)-3. Compounds were assessed for their ability to alter sodium channel kinetics for inactivation, frequency (use)-dependence, and steady-state activation and fast inactivation. We report that chimeric compounds (R)-7-(R)-10 in catecholamine A-differentiated (CAD) cells and embryonic rat cortical neurons robustly enhanced sodium channel inactivation at concentrations far lower than those required for (R)-2 and (S)-3, and that (R)-9 and (R)-10, unlike (R)-2 and (S)-3, produce sodium channel frequency (use)-dependence at low micromolar concentrations. We further show that (R)-7-(R)-10 displayed excellent anticonvulsant activities and pain-attenuating properties in the animal formalin model. Of these compounds, only (R)-7 reversed mechanical hypersensitivity in the tibial-nerve injury model for neuropathic pain in rats.