WorldWideScience

Sample records for voltage-dependent potassium currents

  1. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons.

    Science.gov (United States)

    O'Dowd, D K; Ribera, A B; Spitzer, N C

    1988-03-01

    Action potentials of embryonic nerve and muscle cells often have a different ionic dependence and longer duration than those of mature cells. The action potential of spinal cord neurons from Xenopus laevis exhibits a prominent calcium component at early stages of development that diminishes with age as the impulse becomes principally sodium dependent. Whole-cell voltage-clamp analysis has been undertaken to characterize the changes in membrane currents during development of these neurons in culture. Four voltage-dependent currents of cells were identified and examined during the first day in vitro, when most of the change in the action potential occurs. There are no changes in the peak density of the calcium current (ICa), its voltage dependence, or time to half-maximal activation; a small increase in inactivation is apparent. The major change in sodium current (INa) is a 2-fold increase in its density. In addition, more subtle changes in the kinetics of the macroscopic sodium current were noted. The peak density of voltage-dependent potassium current (IKv) increases 3-fold, and this current becomes activated almost twice as fast. No changes were noted in the extent of its inactivation. The calcium-dependent potassium current (IKc) consists of an inactivating and a sustained component. The former increases 2-fold in peak current density, and the latter increases similarly at less depolarized voltages. The changes in these currents contribute to the decrease in duration and the change in ionic dependence of the impulse.

  2. Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin.

    Science.gov (United States)

    Martina, Marco; Metz, Alexia E; Bean, Bruce P

    2007-01-01

    We characterized the kinetics and pharmacological properties of voltage-activated potassium currents in rat cerebellar Purkinje neurons using recordings from nucleated patches, which allowed high resolution of activation and deactivation kinetics. Activation was exceptionally rapid, with 10-90% activation in about 400 mus at +30 mV, near the peak of the spike. Deactivation was also extremely rapid, with a decay time constant of about 300 mus near -80 mV. These rapid activation and deactivation kinetics are consistent with mediation by Kv3-family channels but are even faster than reported for Kv3-family channels in other neurons. The peptide toxin BDS-I had very little blocking effect on potassium currents elicited by 100-ms depolarizing steps, but the potassium current evoked by action potential waveforms was inhibited nearly completely. The mechanism of inhibition by BDS-I involves slowing of activation rather than total channel block, consistent with the effects described in cloned Kv3-family channels and this explains the dramatically different effects on currents evoked by short spikes versus voltage steps. As predicted from this mechanism, the effects of toxin on spike width were relatively modest (broadening by roughly 25%). These results show that BDS-I-sensitive channels with ultrafast activation and deactivation kinetics carry virtually all of the voltage-dependent potassium current underlying repolarization during normal Purkinje cell spikes.

  3. Effect of etomidate on voltage-dependent potassium currents in rat isolated hippocampal pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    TAN Hong-yu; SUN Li-na; WANG Xiao-liang; YE Tie-hu

    2010-01-01

    Background Previous studies demonstrated general anesthetics affect potassium ion channels, which may be one of the mechanisms of general anesthesia. Because the effect of etomidate on potassium channels in rat hippocampus which is involved in memory function has not been studied, we investigated the effects of etomidate on both delayed rectifier potassium current (I_((K(DR))) and transient outward potassium current (I_((K(A))) in acutely dissociated rat hippocampal pyramidal neurons.Methods Single rat hippocampal pyramidal neurons from male Wistar rats of 7-10 days were acutely dissociated by enzymatic digestion and mechanical dispersion according to the methods of Kay and Wong with slight modification. Voltage-clamp recordings were performed in the whole-cell patch clamp configuration. Currents were recorded with a List EPC-10 amplifier and data were stored in a computer using Pulse 8.5. Student's paired two-tail t test was used for data analysis. Results At the concentration of 100 μmol/L, etomidate significantly inhibited I_(K(DR)) by 49.2% at +40 mV when depolarized from -110 mV (P 0.05). The IC_(50) value of etomidate for blocking I_(K(DR)) was calculated as 5.4 μmol/L, with a Hill slope of 2.45. At the presence of 10 μmol/L etomidate, the V_(1/2) of activation curve was shifted from (17.3±1.5) mV to (10.7±9.9) mV (n=8, P <0.05), the V_(1/2) of inactivation curve was shifted from (-18.3±2.2) mV to (-45.3±9.4) mV (n=8, P <0.05). Etomidate 10 μmol/L shifted both the activation curve and inactivation curve of I_(K(DR)) to negative potential, but mainly affected the inactivation kinetics.Conclusions Etomidate potently inhibited I_(K(DR)) but not I_(K(A)) in rat hippocampal pyramidal neurons. I_(K(DR)) was inhibited by etomidate in a concentration-dependent manner, while I_(K(A)) remained unaffected.

  4. Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells.

    Science.gov (United States)

    Takahashi, Izumi; Yoshino, Masami

    2015-10-01

    In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with increasing Na(+) concentration in a bath solution, whereas it decreased by the substitution of Na(+) with an equimolar concentration of Li(+). The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast (INaf) and persistent (INaP) Na(+) currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd(2+) at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca(2+)-channel blockers Co(2+) and Ni(2+) at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd(2+) (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na(+) influx. Taken together, these results indicate that KNa channels could be activated by Na(+) influx passing through voltage-dependent persistent Na(+) channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory.

  5. Inhibitory effect of resveratrol on the proliferation of GH3 pituitary-adenoma cells and voltage-dependent potassium current

    Institute of Scientific and Technical Information of China (English)

    Ming Chu; Lanlan Wei; Chao Wang; Yu Cheng; Kongbin Yang; Baofeng Yang

    2006-01-01

    BACKGROUND:Recent researches indicate that activation of potassium channel is likely to cause many kinds of cells to proliferate and differentiate;using chemical to block the potassium channel can restrain the proliferation of small lung-cancer cells.breast cancer.prostate cancer and human lymphocyte,etc.Previous researches proved that resveratrol(RE),a selective estrogen receptor modulator(SERM).could inhibit growth of GH3 calls,induce apoptosis,and resist tumor through interfering K+ channel.OBJECTIVE:To investigate the effects of RE on Voltage-dependent K+ current [Ik(v)] and cell proliferation in GH3 pituitary-tumor cells.DESIGN:Observational contrast study.SETTING:Department of Neurosurgery.the First Clinical Hospital of Harbin Medical University;Department of Microbiology,Harbin Medical University;Department of Pharmacology,Harbin Medical University.MATERIALS: GH3 pituitary-tumor cell line of rats was purchased from the American Type Culture Collection (ATCC).RE and[3-(4,5-dimethylthiazo1-2-y1)-2.5-diphenyl-tetrazolium bromide](MTT)were obtained from Sigma Chemical CO,St Louis,USA;Ham's F-10 medium from Gibco BRL;Equine serum and fetal bovine serum from Hyclone Laboratories,Logan,UT;FACSCalibur flow cytometer from BD Company,USA.RE was dissolved in ethanol and stored at-20 ℃.It was diluted to different concentrations (10.50,100 μmol/L)with medium and extra cellular solution when needed.rhe final concentration of ethanol was Jess than 0.01%.METHODS:The experiment was carried out in the Department of Microbiology and Pharmacology of Harbin Medical University from March 2005 to January 2006.①Cell preparation:Proliferating indexes affected by 10.50 and 100 μmol/L RE were measured with MTT,respectively.0.0001 volume fraction of ethan ol was added into control group.Inhibitory rate of cellular growth was calculated as the following formula:Inhibitory rate (%)=(1-A value in experimental group/A value in control group)x100%.The experiments mentioned above were

  6. Correlation character of ionic current fluctuations: analysis of ion current through a voltage-dependent potassium single channel.

    Science.gov (United States)

    Tong-Han, Lan; Huang, Xi; Jia-Rui, Lin

    2005-10-03

    The gating of ion channels has widely been modeled by assuming the transition between open and closed states is a memoryless process. Nevertheless, the statistical analysis of an ionic current signal recorded from voltage dependence K(+) single channel is presented. Calculating the sample auto-correlation function of the ionic current based on the digitized signals, rather than the sequence of open and closed states duration time. The results provide evidence for the existence of memory. For different voltages, the ion channel current fluctuation has different correlation attributions. The correlations in data generated by simulation of two Markov models, on one hand, auto-correlation function of the ionic current shows a weaker memory, after a delayed period of time, the attribute of memory does not exist; on the other hand, the correlation depends on the number of states in the Markov model. For V(p)=-60 mV pipette potential, spectral analysis of ion channel current was conducted, the result indicates that the spectrum is not a flat spectrum, the data set from ionic current fluctuations shows considerable variability with a broad 1/f -like spectrum, alpha=1.261+/-0.24. Thus the ion current fluctuations give information about the kinetics of the channel protein, the results suggest the correlation character of ion channel protein nonlinear kinetics regardless of whether the channel is in open or closed state.

  7. Transient voltage-dependent potassium currents are reduced in NTS neurons isolated from renal wrap hypertensive rats.

    Science.gov (United States)

    Belugin, Sergei; Mifflin, Steve

    2005-12-01

    Whole cell patch-clamp measurements were made in neurons enzymatically dispersed from the nucleus of the solitary tract (NTS) to determine if alterations occur in voltage-dependent potassium channels from rats made hypertensive (HT) by unilateral nephrectomy/renal wrap for 4 wk. Some rats had the fluorescent tracer DiA applied to the aortic nerve before the experiment to identify NTS neurons receiving monosynaptic baroreceptor afferent inputs. Mean arterial pressure (MAP) was greater in 4-wk HT (165 +/- 5 mmHg, n = 26, P NTS neurons from NT and HT rats. At activation voltages from -10 to +10 mV, TOCs were significantly less in HT neurons compared with those observed in NT neurons (P NTS neurons from NT and HT rats and was not different comparing neurons from NT and HT rats. However, examination of the subset of NTS neurons exhibiting somatic DiA fluorescence revealed that DiA-labeled neurons from HT rats had a significantly shorter duration delayed excitation (n = 8 cells, P = 0.022) than DiA-labeled neurons from NT rats (n = 7 cells). Neurons with delayed excitation from HT rats had a significantly broader first action potential (AP) and a slower maximal downstroke velocity of repolarization compared with NT neurons with delayed excitation (P = 0.016 and P = 0.014, respectively). The number of APs in the first 200 ms of a sustained depolarization was greater in HT than NT neurons (P = 0.012). These results suggest that HT of 4-wk duration reduces TOCs in NTS neurons, and this contributes to reduced delayed excitation and increased AP responses to depolarizing inputs. Such changes could alter baroreflex function in hypertension.

  8. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  9. Effects of arsenic trioxide on voltage-dependent potassium channels and on cell proliferation of human multiple myeloma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; WANG Wei; WEI Qing-fang; FENG Tie-ming; TAN Li-jun; YANG Bao-feng

    2007-01-01

    @@ Arsenic trioxide (ATO) can induce cellular apoptosis and inhibit the activities of multiple myeloma (MM)cells in vitro,1 but how it works is not very clear. Recent studies showed that ATO worked on the voltagedependent potassium channel and L-type calcium channel in myocardial cells,2-5 but the effect of ATO on ion channels of tumor cells was rarely reported. As the potassium channel plays an important role in controlling cell proliferation,6 we studied the effects of ATO on the voltage-dependent potassium current (Ikv) of the voltage-dependent potassium channel in an MM cell line,and probed into the relationship between changes of the Ikv caused by ATO and cell proliferation.

  10. Novel expression and regulation of voltage-dependent potassium channels in placentas from women with preeclampsia.

    Science.gov (United States)

    Mistry, Hiten D; McCallum, Laura A; Kurlak, Lesia O; Greenwood, Iain A; Broughton Pipkin, Fiona; Tribe, Rachel M

    2011-09-01

    Preeclampsia is associated with structural/functional alterations in placental and maternal vasculature. Voltage-dependant potassium channels encoded by KCNQ1-5 genes have been detected in several types of blood vessels where they promote vascular relaxation. Voltage-dependant potassium channel function can be modulated by KCNE1-5-encoded accessory proteins. The aim of this study was to determine whether KCNQ and KCNE genes are differentially expressed in placentas from women with preeclampsia compared with normotensive controls and to examine any differences in those who delivered preterm (voltage-dependant potassium channels are expressed and markedly modulated in placentas from preeclamptic women. Differential expression of isoforms may lead to altered cell proliferation. The correlation between KCNQ3 and KCNE5 expression is indicative of a novel channel complex and warrants further investigation.

  11. Voltage-dependent currents in microvillar receptor cells of the frog vomeronasal organ.

    Science.gov (United States)

    Trotier, D; Døving, K B; Rosin, J F

    1993-08-01

    Vomeronasal receptor cells are differentiated bipolar neurons with a long dendrite bearing numerous microvilli. Isolated cells (with a mean dendritic length of 65 microns) and cells in mucosal slices were studied using whole-cell and Nystatin-perforated patch-clamp recordings. At rest, the membrane potential was -61 +/- 13 mV (mean +/- SD; n = 61). Sixty-four per cent of the cells had a resting potential in the range of -60 to -86 mV, with almost no spontaneous action potential. The input resistance was in the G omega range and overshooting repetitive action potentials were elicited by injecting depolarizing current pulses in the range of 2-10 pA. Voltage-dependent currents were characterized under voltage-clamp conditions. A transient fast inward current activating near -45 mV was blocked by tetrodotoxin. In isolated cells, it was half-deactivated at a membrane potential near -75 mV. An outward K+ current was blocked by internal Cs+ ions or by external tetraethylammonium or Ba2+ ions. A calcium-activated voltage-dependent potassium current was blocked by external Cd2+ ions. A voltage-dependent Ca2+ current was observed in an iso-osmotic BaCl2 solution. Finally, a hyperpolarization-activated inward current was recorded. Voltage-dependent currents in these microvillar olfactory receptor neurons appear qualitatively similar to those already described in ciliated olfactory receptor cells located in the principal olfactory epithelium.

  12. Endocytic regulation of voltage-dependent potassium channels in the heart.

    Science.gov (United States)

    Ishii, Kuniaki; Norota, Ikuo; Obara, Yutaro

    2012-01-01

    Understanding the regulation of cardiac ion channels is critical for the prevention of arrhythmia caused by abnormal excitability. Ion channels can be regulated by a change in function (qualitative) and a change in number (quantitative). Functional changes have been extensively investigated for many ion channels including cardiac voltage-dependent potassium channels. By contrast, the regulation of ion channel numbers has not been widely examined, particularly with respect to acute modulation of ion channels. This article briefly summarizes stimulus-induced endocytic regulation of major voltage-dependent potassium channels in the heart. The stimuli known to cause their endocytosis include receptor activation, drugs, and low extracellular [K(+)], following which the potassium channels undergo either clathrin-mediated or caveolin-mediated endocytosis. Receptor-mediated endocytic regulation has been demonstrated for Kv1.2, Kv1.5, KCNQ1 (Kv7.1), and Kv4.3, while drug-induced endocytosis has been demonstrated for Kv1.5 and hERG. Low [K(+)](o)-induced endocytosis might be unique for hERG channels, whose electrophysiological characteristics are known to be under strong influence of [K(+)](o). Although the precise mechanisms have not been elucidated, it is obvious that major cardiac voltage-dependent potassium channels are modulated by endocytosis, which leads to changes in cardiac excitability.

  13. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  14. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  15. Voltage-dependent K+ currents contribute to heterogeneity of olfactory ensheathing cells

    Science.gov (United States)

    Rela, Lorena; Piantanida, Ana Paula; Bordey, Angelique; Greer, Charles A.

    2015-01-01

    The olfactory nerve is permissive for axon growth throughout life. This has been attributed in part to the olfactory ensheathing glial cells that encompass the olfactory sensory neuron fascicles. Olfactory ensheathing cells also promote axon growth in vitro and when transplanted in vivo to sites of injury. The mechanisms involved remain largely unidentified owing in part to the limited knowledge of the physiological properties of ensheathing cells. Glial cells rely for many functions on the properties of the potassium channels expressed; however, those expressed in ensheathing cells are unknown. Here we show that olfactory ensheathing cells express voltage-dependent potassium currents compatible with inward rectifier (Kir) and delayed rectifier (KDR) channels. Together with gap junction coupling, these contribute to the heterogeneity of membrane properties observed in olfactory ensheathing cells. The relevance of K+ currents expressed by ensheathing cells is discussed in relation to plasticity of the olfactory nerve. PMID:25856239

  16. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    OpenAIRE

    2016-01-01

    A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ) organic solar cells is developed by considering Shockley-Read-Hall (SRH) recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (...

  17. VOLTAGE-DEPENDENT SODIUM AND POTASSIUM, BUT NO CALCIUM CONDUCTANCES IN DDT1 MF-2 SMOOTH-MUSCLE CELLS

    NARCIS (Netherlands)

    MOLLEMAN, A; NELEMANS, A; VANDENAKKER, J; DUIN, M; DENHERTOG, A

    1991-01-01

    Voltage-dependent inward and outward membrane currents were investigated in the DDT1 MF-2 smooth muscle cell line using the whole-cell patch-clamp technique. Application of a pulse protocol with subsequent depolarizing voltage steps elicited an inactivating inward current and a non-inactivating outw

  18. Conducting and voltage-dependent behaviors of potassium ion channels reconstituted from diaphragm sarcoplasmic reticulum: comparison with the cardiac isoform.

    Science.gov (United States)

    Picher, M; Decrouy, A; Rousseau, E

    1996-02-21

    Sarcoplasmic reticulum (SR) K+ channels from canine diaphragm were studied upon fusion of longitudinal and junctional membrane vesicles into planar lipid bilayers (PLB). The large-conductance cation selective channel (gamma(max) = 250 pS; Km = 33 mM) displays long-lasting open events which are much more frequent at positive than at negative voltages. A major subconducting state about 45% of the fully-open state current amplitude was occasionally observed at all voltages. The voltage-dependence of the open probability displays a sigmoid relationship that was fitted by the Boltzmann equation and expressed in terms of thermodynamic parameters, namely the free energy (delta Gi) and the effective gating charge (Zs): delta Gi = 0.27 kcal/mol and Zs = -1.19 in 250 mM potassium gluconate (K-gluconate). Kinetic analyses also confirmed the voltage-dependent gating behavior of this channel, and indicate the implication of at least two open and three closed states. The diaphragm SR K+ channel shares several biophysical properties with the cardiac isoform: g = 180 pS, delta Gi = 0.75 kcal/mol, Zs = -1.45 in 150 mM K-gluconate, and a similar sigmoid P(o)/voltage relationship. Little is known about the regulation of the diaphragm and cardiac SR K+ channels. The conductance and gating of these channels were not influenced by physiological concentrations of Ca2+ (0.1 microM-1 mM) or Mg2+ (0.25-1 mM), as well as by cGMP (25-100 microM), lemakalim (1-100 microM), glyburide (up to 10 microM) or charybdotoxin (45-200 nM), added either to the cis or to the trans chamber. The apparent lack of biochemical or pharmacological modulation of these channels implies that they are not related to any of the well characterized surface membrane K+ channels. On the other hand, their voltage sensitivity strongly suggests that their activity could be modulated by putative changes in SR membrane potential that might occur during calcium fluxes.

  19. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  20. Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth

    Directory of Open Access Journals (Sweden)

    Florian Gackière

    2013-07-01

    It is strongly suspected that potassium (K+ channels are involved in various aspects of prostate cancer development, such as cell growth. However, the molecular nature of those K+ channels implicated in prostate cancer cell proliferation and the mechanisms through which they control proliferation are still unknown. This study uses pharmacological, biophysical and molecular approaches to show that the main voltage-dependent K+ current in prostate cancer LNCaP cells is carried by large-conductance BK channels. Indeed, most of the voltage-dependent current was inhibited by inhibitors of BK channels (paxillin and iberiotoxin and by siRNA targeting BK channels. In addition, we reveal that BK channels constitute the main K+ channel family involved in setting the resting membrane potential in LNCaP cells at around −40 mV. This consequently promotes a constitutive calcium entry through T-type Cav3.2 calcium channels. We demonstrate, using single-channel recording, confocal imaging and co-immunoprecipitation approaches, that both channels form macromolecular complexes. Finally, using flow cytometry cell cycle measurements, cell survival assays and Ki67 immunofluorescent staining, we show that both BK and Cav3.2 channels participate in the proliferation of prostate cancer cells.

  1. Tetrahydroacridine inhibits voltage-dependent Na+ current in guinea-pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Yi-ping WANG; Guo-yuan HU

    2004-01-01

    AIM: To study the effects of tetrahydroacridine (tacrine) on voltage-gated Na+ channels in cardiac tissues.METHODS: Single ventricular myocytes were enzymatically dissociated from adult guinea-pig heart. Voltagedependent Na+ current was recorded using whole cell voltage-clamp technique. RESULTS: (1) Tacrine reversibly inhibited Na+ current with an IC50 value of 120 μmol/L (95 % confidence range: 108-133 μmol/L). (2) The inhibitory effects of tacrine on Na+ current exhibited both a tonic nature and use-dependence. (3) Tacrine at 100 μmol/L caused a negative shift (about 10 mV) in the voltage-dependence of steady-state inactivation of Na+ current, and retarded its recovery from inactivation, but did not affect its activation curve. (4) Intracellular application of tacrine significantly inhibited Na+ current. CONCLUSION: In addition to blocking other voltage-gated ion channels,tacrine blocked Na+ channels in guinea-pig ventricular myocytes. Tactine acted as inactivation stabilizer of Na+channels in cardiac tissues.

  2. Both barium and calcium activate neuronal potassium currents.

    OpenAIRE

    Ribera, A B; Spitzer, N C

    1987-01-01

    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium (100-500 microM) from the currents produced without cadmium but in the presence of permeant divalent cations (50-100 micro...

  3. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  4. The action of a phorbol ester on voltage-dependent parameters of the sodium current in isolated hippocampal neurons.

    Science.gov (United States)

    Chizhmakov, I V; Klee, M R

    1994-03-01

    The action of a phorbol ester (phorbol-12,13-diacetate) on the voltage-activated sodium current has been investigated by the voltage-clamp method in acutely isolated pyramidal neurons from rat hippocampus. The intracellular perfusion of isolated pyramidal neurons for 30-40 min induced a gradual 10-15 mV shift in both the current-voltage relationship and voltage-dependent steady-state inactivation to more negative potentials. The application of phorbol ester (1-10 microM) to isolated neurons for the same time increased the amplitude of sodium current by 15-20%, shifted the above-mentioned voltage-dependent parameters for an additional 10-15 mV in the same direction and changed the slope of the steady-state inactivation curve. In contrast, after prolonged incubation of slices in the phorbol ester-containing solution (1-10 microM) for 0.5-3 h, subsequent application of phorbol ester at the same concentration caused neither the addition shift of the voltage-dependent characteristics of sodium channels nor the change of the slope of the steady-state inactivation curve. However, in this case an increase in the amplitude of sodium current by 15-20% during 30-40 min intracellular perfusion was observed.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired β-adrenoceptor-mediated relaxation of renal arteries in hypertension.

    Science.gov (United States)

    Chadha, Preet S; Zunke, Friederike; Zhu, Hai-Lei; Davis, Alison J; Jepps, Thomas A; Olesen, Søren P; Cole, William C; Moffatt, James D; Greenwood, Iain A

    2012-04-01

    KCNQ4-encoded voltage-dependent potassium (Kv7.4) channels are important regulators of vascular tone that are severely compromised in models of hypertension. However, there is no information as to the role of these channels in responses to endogenous vasodilators. We used a molecular knockdown strategy, as well as pharmacological tools, to examine the hypothesis that Kv7.4 channels contribute to β-adrenoceptor-mediated vasodilation in the renal vasculature and underlie the vascular deficit in spontaneously hypertensive rats. Quantitative PCR and immunohistochemistry confirmed gene and protein expression of KCNQ1, KCNQ3, KCNQ4, KCNQ5, and Kv7.1, Kv7.4, and Kv7.5 in rat renal artery. Isoproterenol produced concentration-dependent relaxation of precontracted renal arteries and increased Kv7 channel currents in isolated smooth muscle cells. Application of the Kv7 blocker linopirdine attenuated isoproterenol-induced relaxation and current. Isoproterenol-induced relaxations were also reduced in arteries incubated with small interference RNAs targeted to KCNQ4 that produced a ≈60% decrease in Kv7.4 protein level. Relaxation to isoproterenol and the Kv7 activator S-1 were abolished in arteries from spontaneously hypertensive rats, which was associated with ≈60% decrease in Kv7.4 abundance. This study provides the first evidence that Kv7 channels contribute to β-adrenoceptor-mediated vasodilation in the renal vasculature and that abrogation of Kv7.4 channels is strongly implicated in the impaired β-adrenoceptor pathway in spontaneously hypertensive rats. These findings may provide a novel pathogenic link between arterial dysfunction and hypertension.

  6. The episodic ataxia type 1 mutation I262T alters voltage-dependent gating and disrupts protein biosynthesis of human Kv1.1 potassium channels.

    Science.gov (United States)

    Chen, Szu-Han; Fu, Ssu-Ju; Huang, Jing-Jia; Tang, Chih-Yung

    2016-01-18

    Voltage-gated potassium (Kv) channels are essential for setting neuronal membrane excitability. Mutations in human Kv1.1 channels are linked to episodic ataxia type 1 (EA1). The EA1-associated mutation I262T was identified from a patient with atypical phenotypes. Although a previous report has characterized its suppression effect, several key questions regarding the impact of the I262T mutation on Kv1.1 as well as other members of the Kv1 subfamily remain unanswered. Herein we show that the dominant-negative effect of I262T on Kv1.1 current expression is not reversed by co-expression with Kvβ1.1 or Kvβ2 subunits. Biochemical examinations indicate that I262T displays enhanced protein degradation and impedes membrane trafficking of Kv1.1 wild-type subunits. I262T appears to be the first EA1 mutation directly associated with impaired protein stability. Further functional analyses demonstrate that I262T changes the voltage-dependent activation and Kvβ1.1-mediated inactivation, uncouples inactivation from activation gating, and decelerates the kinetics of cumulative inactivation of Kv1.1 channels. I262T also exerts similar dominant effects on the gating of Kv1.2 and Kv1.4 channels. Together our data suggest that I262T confers altered channel gating and reduced functional expression of Kv1 channels, which may account for some of the phenotypes of the EA1 patient.

  7. Expression and localization of voltage dependent potassium channel Kv4.2 in epilepsy associated focal lesions

    NARCIS (Netherlands)

    Aronica, E.; Boer, K.; Doorn, K.J.; Zurolo, E.; Spliet, W.G.M.; van Rijen, P.C.; Baayen, J.C.; Gorter, J.A.; Jeromin, A.

    2009-01-01

    An increasing number of observations suggest an important role for voltage-gated potassium (Kv) channels in epilepsy. We studied the cell-specific distribution of Kv4.2, phosphorylated (p) Kv4.2 and the Kv4.2 interacting protein NCS-1 using immunocytochemistry in different epilepsy-associated focal

  8. Expression and localization of voltage dependent potassium channel Kv4.2 in epilepsy associated focal lesions

    NARCIS (Netherlands)

    Aronica, E.; Boer, K.; Doorn, K.J.; Zurolo, E.; Spliet, W.G.M.; van Rijen, P.C.; Baayen, J.C.; Gorter, J.A.; Jeromin, A.

    2009-01-01

    An increasing number of observations suggest an important role for voltage-gated potassium (Kv) channels in epilepsy. We studied the cell-specific distribution of Kv4.2, phosphorylated (p) Kv4.2 and the Kv4.2 interacting protein NCS-1 using immunocytochemistry in different epilepsy-associated focal

  9. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.

    Science.gov (United States)

    Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J

    2016-12-01

    This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.

  10. Blockade of the voltage-dependent sodium current in isolated rat hippocampal neurons by tetrodotoxin and lidocaine.

    Science.gov (United States)

    Kaneda, M; Oyama, Y; Ikemoto, Y; Akaike, N

    1989-04-10

    The effects of tetrodotoxin and lidocaine on the voltage-dependent sodium current (INa) were studied in the CA1 pyramidal neurons isolated acutely from rat hippocampus using a 'concentration-clamp' technique which combines the intracellular perfusion with a rapid external solution change within a few ms. Tetrodotoxin (TTX) exerted its inhibitory action in time- and dose-dependent manner on the peak amplitude of INa without any apparent effects on both the current activation and inactivation processes of the current. The time course for reaching a steady-state of the inhibitory action shortened with increasing TTX concentration, but the time course of recovery from the inhibition after washing out the toxin was quite the same at any concentrations used. Lidocaine also inhibited dose-dependently the INa, though with slightly accelerating both the activation and inactivation processes. The time courses for reaching the steady-state inhibition and the recovery from the inhibition were much shorter than those in the case of TTX. The results indicate that the voltage-dependent sodium channel of mammalian brain neuron is TTX-sensitive as well as that of peripheral neuron and that the mode of TTX inhibition on the INa is quite different from that of lidocaine.

  11. Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired ß-adrenoceptor-mediated relaxation of renal arteries in hypertension

    DEFF Research Database (Denmark)

    Chadha, Preet S; Zunke, Friederike; Zhu, Hai-Lei;

    2012-01-01

    KCNQ4-encoded voltage-dependent potassium (Kv7.4) channels are important regulators of vascular tone that are severely compromised in models of hypertension. However, there is no information as to the role of these channels in responses to endogenous vasodilators. We used a molecular knockdown...... strategy, as well as pharmacological tools, to examine the hypothesis that Kv7.4 channels contribute to ß-adrenoceptor-mediated vasodilation in the renal vasculature and underlie the vascular deficit in spontaneously hypertensive rats. Quantitative PCR and immunohistochemistry confirmed gene and protein...... spontaneously hypertensive rats, which was associated with ˜60% decrease in Kv7.4 abundance. This study provides the first evidence that Kv7 channels contribute to ß-adrenoceptor-mediated vasodilation in the renal vasculature and that abrogation of Kv7.4 channels is strongly implicated in the impaired ß...

  12. A voltage-dependent persistent sodium current in mammalian hippocampal neurons

    OpenAIRE

    1990-01-01

    Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight- seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These curren...

  13. [Role of calcineurin in down-regulation of left ventricular transmural voltage- dependent K(+) currents in mice with heart failure].

    Science.gov (United States)

    Shi, Chen-Xia; Dong, Fang; Chang, Yan-Chao; Wang, Xiao-Feng; Xu, Yan-Fang

    2015-08-25

    The aim of the present study was to investigate the role of calcineurin in the down-regulation of left ventricular transmural voltage-dependent K(+) currents in heart failure. Transverse aorta was banded by using microsurgical techniques to create mouse heart failure model. Sham-operated (Sham) or aorta banded (Band) mice were randomized to receive calcineurin inhibitor cyclosporine A (CsA) or vehicle. The densities and kinetic properties of voltage-dependent K(+) currents, as well as action potential (AP), of left ventricular subendocardial (Endo) and subepicardial (Epi) myocytes were determined by using whole-cell patch-clamp technique. The results showed that calcineurin activity was significant higher in Endo myocytes than that in Epi ones in all the groups. Compared with Sham group, Band mice showed significantly increased calcineurin activity both in Endo and Epi myocytes. CsA significantly reduced calcineurin activity in Band mice. CsA treatment in Band mice partially reversed the down-regulation of Ito density, completely reversed the down-regulation of IK,slow density both in Endo and Epi myocytes, and Iss density in Endo myocytes. In addition, CsA treatment in Band mice partially antagonized the prolongation of action potential duration (APD), and APD at 50% (APD50) and 90% repolarization (APD90) were significantly reduced. Because of non-parallel shortening of APD in Endo and Epi myocytes, the ratio of Endo/Epi APD90 was reduced from 4.8:1 in Band mice to 2.6:1 in CsA-treated mice, which was close to that in Sham mice. The results suggest that non-parallel activation of calcineurin in Endo and Epi myocytes contributes to the down-regulation of transmural voltage-dependent K(+) currents and the amplification of transmural dispersion of repolarization (TDR) in left ventricular failure hearts. Inhibition of calcineurin may be a potential new therapeutic strategy to prevent and cure arrhythmias and sudden death in heart failure.

  14. A voltage-dependent persistent sodium current in mammalian hippocampal neurons.

    Science.gov (United States)

    French, C R; Sah, P; Buckett, K J; Gage, P W

    1990-06-01

    Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight-seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These currents could also be recorded directly in dissociated neurons in which other ionic currents were effectively suppressed. It was concluded that the persistent current was carried by sodium ions because it was blocked by TTX, decreased in amplitude when extracellular sodium concentration was reduced, and was not blocked by cadmium. The amplitude of the persistent sodium current varied with clamp potential, being detectable at potentials as negative as -70 mV and reaching a maximum at approximately -40 mV. The maximum amplitude at -40 mV in 21 cells in slices was -0.34 +/- 0.05 nA (mean +/- 1 SEM) and -0.21 +/- 0.05 nA in 10 dissociated neurons. Persistent sodium conductance increased sigmoidally with a potential between -70 and -30 mV and could be fitted with the Boltzmann equation, g = gmax/(1 + exp[(V' - V)/k)]). The average gmax was 7.8 +/- 1.1 nS in the 21 neurons in slices and 4.4 +/- 1.6 nS in the 10 dissociated cells that had lost their processes indicating that the channels responsible are probably most densely aggregated on or close to the soma. The half-maximum conductance occurred close to -50 mV, both in neurons in slices and in dissociated neurons, and the slope factor (k) was 5-9 mV. The persistent sodium current was much more resistant to inactivation by depolarization than the transient current and could be recorded at greater than 50% of its normal amplitude when the transient current was completely inactivated. Because the persistent sodium current activates at

  15. Both barium and calcium activate neuronal potassium currents

    Energy Technology Data Exchange (ETDEWEB)

    Ribera, A.B.; Spitzer, N.C.

    1987-09-01

    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium from the currents produced without cadmium but in the presence of permeant divalent cations. These concentrations of permeant ions were low enough to avoid contamination by macroscopic inward currents through calcium channels. Calcium-dependent potassium currents were reduced by 1 ..mu..M tetraethylammonium. These currents can also be activated by barium or strontium. Barium as well as calcium activated outward currents in young neurons (6-8 hr) and in relatively mature neurons (19-26 hr in vitro). However, barium influx appeared to suppress the sustained voltage-dependent potassium current in most cells. Barium also activated at least one class of potassium channels observed in excised membrane patches, whole blocking others. The blocking action may have masked and hindered detection of the stimulatory action of barium in other systems.

  16. Quaternary Organic Amines Inhibit Na,K Pump Current in a Voltage-dependent Manner

    OpenAIRE

    2004-01-01

    The effects of organic quaternary amines, tetraethylammonium (TEA) chloride and benzyltriethylammonium (BTEA) chloride, on Na,K pump current were examined in rat cardiac myocytes superfused in extracellular Na+-free solutions and whole-cell voltage-clamped with patch electrodes containing a high Na+-salt solution. Extracellular application of these quaternary amines competitively inhibited extracellular K+ (K+ o) activation of Na,K pump current; however, the concentration for half maximal inh...

  17. Decreases of voltage-dependent K+ currents densities in ventricular myocytes of guinea pigs by chronic oxidant stress

    Institute of Scientific and Technical Information of China (English)

    De-li DONG; Yan LIU; Yu-hong ZHOU; Wei-hua SONG; He WANG; Bao-feng YANG

    2004-01-01

    AIM: To determine the changes of delayed rectifier K+ currents (Ik) and inward rectifier K+ currents (Ik1) in the ventricular myocytes of guinea pigs during the gradual apoptotic process by the chronic oxidant stress treatment.METHODS: H2O250 μmol/L (24 h) was used for inducing apoptosis in the cardiomyocytes culture of neonatal rats and to treat the isolated ventricular myocytes of adult guinea pigs in vitro for 24 h. Apoptosis was evaluated by TUNEL methods and voltage-dependent K+ currents were recorded by patch-clamp techniques. RESULTS: H2O250 μmol/L (24 h) induced cell apoptosis in the cardiomyocytes culture of neonatal rats. This concentration was used to treat the isolated ventricular myocytes of adult guinea pigs in vitro for 24 h and the voltage-dependent K+currents densities (Ik, Ik1) were down-regulated. The densities of the delayed rectifier K+ currents (Ik) in 50 μmol/L H2O2 group were 2.52±0.57 pA/pF vs 5.73±1.84 pA/pF in the control group at +50 mV (n=8, P<0.01). The densities of the inward rectifier K+ currents (Ik1) in 50 μmol/L H2O2 group were -13.9±2.70 pA/pF, 2.52±0.57 pA/pF vs -59.7± 11.9 pA/pF, 5.73± 1.84 pA/pF in the control group at -120 mV (n=8, P<0.01) and -40 mV (n=8, P<0.05), respectively. The extent of inward rectifier property of Ik1 was weakened by 50μmol/L H2O2 treatment. CONCLUSION: The densities of Ik, Ik1 in the cardiomyocytes of guinea pigs were downregulated and the inward rectifier property of Ik1 was weakened during the gradual apoptotic process after 50 μmol/L H2O2 treatment for 24 h.

  18. Adenine nucleotides and intracellular Ca2+ regulate a voltage-dependent and glucose-sensitive potassium channel in neurosecretory cells.

    Science.gov (United States)

    Onetti, C G; Lara, J; García, E

    1996-05-01

    Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (PK) was 1.3 x 10(-13) cm x s(-1). An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (Po) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about -60 mV, and the activation midpoint was -2 mV. Po decreased noticeably at 50 microM internal adenosine 5'-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 microM. Internal application of 5'-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased Po. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 microM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current.

  19. Scorpion toxin prolongs an inactivation phase of the voltage-dependent sodium current in rat isolated single hippocampal neurons.

    Science.gov (United States)

    Kaneda, M; Oyama, Y; Ikemoto, Y; Akaike, N

    1989-05-15

    The effects of scorpion toxin on the voltage-dependent sodium current (INa) of CA1 pyramidal neurons isolated from rat hippocampus were studied under the single-electrode voltage-clamp condition using a 'concentration-clamp' technique. The toxin increased the peak amplitude of INa and prolonged its inactivation phase in a time- and dose-dependent manner. Inactivation phase of INa proceeded with two exponential components in the absence (control) and presence of the toxin. In the toxin-treated neurons, both the time constant of slow component and its fractional contribution to the total current increased dose-dependently while the fractional contribution of the fast one decreased in a dose-dependent fashion without changing its time constant. Actions of scorpion toxin on the sodium channels of hippocampal pyramidal neurons were essentially similar to those of peripheral preparations. Therefore, it can be concluded that the sodium channels of mammalian brain neurons have structures and functions similar to peripheral channels.

  20. Equatorial potassium currents in lenses.

    Science.gov (United States)

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  1. Poly(ethylene glycol-cholesterol inhibits L-type Ca2+ channel currents and augments voltage-dependent inactivation in A7r5 cells.

    Directory of Open Access Journals (Sweden)

    Rikuo Ochi

    Full Text Available Cholesterol distributes at a high density in the membrane lipid raft and modulates ion channel currents. Poly(ethylene glycol cholesteryl ether (PEG-cholesterol is a nonionic amphipathic lipid consisting of lipophilic cholesterol and covalently bound hydrophilic PEG. PEG-cholesterol is used to formulate lipoplexes to transfect cultured cells, and liposomes for encapsulated drug delivery. PEG-cholesterol is dissolved in the external leaflet of the lipid bilayer, and expands it to flatten the caveolae and widen the gap between the two leaflets. We studied the effect of PEG-cholesterol on whole cell L-type Ca(2+ channel currents (I(Ca,L recorded from cultured A7r5 arterial smooth muscle cells. The pretreatment of cells with PEG-cholesterol decreased the density of ICa,L and augmented the voltage-dependent inactivation with acceleration of time course of inactivation and negative shift of steady-state inactivation curve. Methyl-β-cyclodextrin (MβCD is a cholesterol-binding oligosaccharide. The enrichment of cholesterol by the MβCD:cholesterol complex (cholesterol (MβCD caused inhibition of I(Ca,L but did not augment voltage-dependent inactivation. Incubation with MβCD increased I(Ca,L, slowed the time course of inactivation and shifted the inactivation curve to a positive direction. Additional pretreatment by a high concentration of MβCD of the cells initially pretreated with PEG-cholesterol, increased I(Ca,L to a greater level than the control, and removed the augmented voltage-dependent inactivation. Due to the enhancement of the voltage-dependent inactivation, PEG-cholesterol inhibited window I(Ca,L more strongly as compared with cholesterol (MβCD. Poly(ethylene glycol conferred to cholesterol the efficacy to induce sustained augmentation of voltage-dependent inactivation of I(Ca,L.

  2. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Plenge, Per

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... hybridization. Repeated, but not acute, electroconvulsive stimulation increased Kv7.2 and Kv11.1 mRNA levels in the piriform cortex. In contrast, restraint stress had no significant effect on mRNA expression of Kv7.2, Kv11.1, or Kv11.3 in any of the brain regions examined. Thus, it appears that the investigated...

  3. The agonist-specific voltage dependence of M2 muscarinic receptors modulates the deactivation of the acetylcholine-gated K(+) current (I KACh).

    Science.gov (United States)

    Moreno-Galindo, Eloy G; Alamilla, Javier; Sanchez-Chapula, José A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-07-01

    Recently, it has been shown that G protein-coupled receptors (GPCRs) display intrinsic voltage sensitivity. We reported that the voltage sensitivity of M2 muscarinic receptor (M2R) is also ligand specific. Here, we provide additional evidence to understand the mechanism underlying the ligand-specific voltage sensitivity of the M2R. Using ACh, pilocarpine (Pilo), and bethanechol (Beth), we evaluated the agonist-specific effects of voltage by measuring the ACh-activated K(+) current (I KACh) in feline and rabbit atrial myocytes and in HEK-293 cells expressing M2R-Kir3.1/Kir3.4. The activation of I KACh by the muscarinic agonist Beth was voltage insensitive, suggesting that the voltage-induced conformational changes in M2R do not modify its affinity for this agonist. Moreover, deactivation of the Beth-evoked I KACh was voltage insensitive. By contrast, deactivation of the ACh-induced I KACh was significantly slower at -100 mV than at +50 mV, while an opposite effect was observed when I KACh was activated by Pilo. These findings are consistent with the voltage affinity pattern observed for these three agonists. Our findings suggest that independent of how voltage disturbs the receptor binding site, the voltage dependence of the signaling pathway is ultimately determined by the agonist. These observations emphasize the pharmacological potential to regulate the M2R-parasympathetic associated cardiac function and also other cellular signaling pathways by exploiting the voltage-dependent properties of GPCRs.

  4. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.

    Science.gov (United States)

    Altamirano, Julio; Bers, Donald M

    2007-09-14

    Excitation-contraction coupling in cardiac myocytes occurs by Ca2+-induced Ca2+ release, where L-type Ca2+ current evokes a larger sarcoplasmic reticulum (SR) Ca2+ release. The Ca2+-induced Ca2+ release amplification factor or gain (SR Ca2+ release/I(Ca)) is usually assessed by the V(m) dependence of current and Ca2+ transients. Gain rises at negative V(m), as does single channel I(Ca) (i(Ca)), which has led to the suggestion that the increases of i(Ca) amplitude enhances gain at more negative V(m). However, I(Ca) = NP(o) x i(Ca) (where NP(o) is the number of open channels), and NP(o) and i(Ca) both depend on V(m). To assess how i(Ca) and NP(o) separately influence Ca2+-induced Ca2+ release, we measured I(Ca) and junctional SR Ca2+ release in voltage-clamped rat ventricular myocytes using "Ca2+ spikes" (confocal microscopy). To vary i(Ca) alone, we changed [Ca2+](o) rapidly at constant test V(m) (0 mV) or abruptly repolarized from +120 mV to different V(m) (at constant [Ca2+](o)). To vary NP(o) alone, we altered Ca2+ channel availability by varying holding V(m) (at constant test V(m)). Reducing either i(Ca) or NP(o) alone increased excitation-contraction coupling gain. Thus, increasing i(Ca) does not increase gain at progressively negative test V(m). Such enhanced gain depends on lower NP(o) and reduced redundant Ca2+ channel openings (per junction) and a consequently smaller denominator in the gain equation. Furthermore, modest i(Ca) (at V(m) = 0 mV) may still effectively trigger SR Ca2+ release, whereas at positive V(m) (and smaller i(Ca)), high and well-synchronized channel openings are required for efficient excitation-contraction coupling. At very positive V(m), reduced i(Ca) must explain reduced SR Ca2+ release.

  5. Potassium currents in auditory hair cells of the frog basilar papilla.

    Science.gov (United States)

    Smotherman, M S; Narins, P M

    1999-06-01

    The whole-cell patch-clamp technique was used to identify and characterize ionic currents in isolated hair cells of the leopard frog basilar papilla (BP). This end organ is responsible for encoding the upper limits of a frog's spectral sensitivity (1.25-2.0 kHz in the leopard frog). Isolated BP hair cells are the smallest hair cells in the frog auditory system, with spherical cell bodies typically less than 20 microm in diameter and exhibiting whole-cell capacitances of 4-7 pF. Hair cell zero-current resting potentials (Vz) varied around a mean of -65 mV. All hair cells possessed a non-inactivating, voltage-dependent calcium current (I(Ca)) that activates above a threshold of -55 mV. Similarly all hair cells possessed a rapidly activating, outward, calcium-dependent potassium current (I(K)(Ca)). Most hair cells also possessed a slowly activating, outward, voltage-dependent potassium current (I(K)), which is approximately 80% inactive at the hair cell Vz, and a fast-activating, inward-rectifying potassium current (I(K1)) which actively contributes to setting Vz. In a small subset of cells I(K) was replaced by a fast-inactivating, voltage-dependent potassium current (I(A)), which strongly resembled the A-current observed in hair cells of the frog sacculus and amphibian papilla. Most cells have very similar ionic currents, suggesting that the BP consists largely of one homogeneous population of hair cells. The kinetic properties of the ionic currents present (in particular the very slow I(K)) argue against electrical tuning, a specialized spectral filtering mechanism reported in the hair cells of birds, reptiles, and amphibians, as a contributor to frequency selectivity of this organ. Instead BP hair cells reflect a generalized strategy for the encoding of high-frequency auditory information in a primitive, mechanically tuned, terrestrial vertebrate auditory organ.

  6. Calcium-dependent potassium current in barnacle photoreceptor.

    Science.gov (United States)

    Bolsover, S R

    1981-12-01

    When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays to reach a steady value approximately 1 min after depolarization began. The increase in current to the maximum at 4-6s from the minimum at approximately 500 ms is termed the "late current." It is maximum for depolarizations to around +25 mV and is reduced in amplitude at more positive potentials. It is not observed when the membrane is depolarized to potentials more positive than +60 mV. The late current is inhibited by external cobaltous ion and external tetraethylammonium ion, and shows a requirement for external calcium ion. When the calcium-sequestering agent EGTA is injected, the late current is abolished. Illumination of a cell under voltage clamp reduces the amplitude of the late current recorded subsequently in the dark. On the basis of the voltage dependence and pharmacology of the late current, it is proposed that the current is a calcium-dependent potassium current.

  7. A CACNA1C variant associated with reduced voltage-dependent inactivation, increased CaV1.2 channel window current, and arrhythmogenesis.

    Directory of Open Access Journals (Sweden)

    Jessica A Hennessey

    Full Text Available Mutations in CACNA1C that increase current through the CaV1.2 L-type Ca2+ channel underlie rare forms of long QT syndrome (LQTS, and Timothy syndrome (TS. We identified a variant in CACNA1C in a male child of Filipino descent with arrhythmias and extracardiac features by candidate gene sequencing and performed functional expression studies to electrophysiologically characterize the effects of the variant on CaV1.2 channels. As a baby, the subject developed seizures and displayed developmental delays at 30 months of age. At age 5 years, he displayed a QTc of 520 ms and experienced recurrent VT. Physical exam at 17 years of age was notable for microcephaly, short stature, lower extremity weakness and atrophy with hyperreflexia, spastic diplegia, multiple dental caries and episodes of rhabdomyolysis. Candidate gene sequencing identified a G>C transversion at position 5731 of CACNA1C (rs374528680 predicting a glycine>arginine substitution at residue 1911 (p.G1911R of CaV1.2. The allele frequency of this variant is 0.01 in Malays, but absent in 984 Caucasian alleles and in the 1000 genomes project. In electrophysiological analyses, the variant decreased voltage-dependent inactivation, thus causing a gain of function of CaV1.2. We also observed a negative shift of V1/2 of activation and positive shift of V1/2 of channel inactivation, resulting in an increase of the window current. Together, these suggest a gain-of-function effect on CaV1.2 and suggest increased susceptibility for arrhythmias in certain clinical settings. The p.G1911R variant was also identified in a case of sudden unexplained infant death (SUID, for which an increasing number of clinical observations have demonstrated can be associated with arrhythmogenic mutations in cardiac ion channels. In summary, the combined effects of the CACNA1C variant to diminish voltage-dependent inactivation of CaV1.2 and increase window current expand our appreciation of mechanisms by which a gain of

  8. IgG anti-GalNAc-GD1a antibody inhibits the voltage-dependent calcium channel currents in PC12 pheochromocytoma cells.

    Science.gov (United States)

    Nakatani, Yoshihiko; Nagaoka, Takumi; Hotta, Sayako; Utsunomiya, Iku; Yoshino, Hiide; Miyatake, Tadashi; Hoshi, Keiko; Taguchi, Kyoji

    2007-03-01

    We investigated the effects of IgG anti-GalNAc-GD1a antibodies, produced by immunizing rabbits with GalNAc-GD1a, on the voltage-dependent calcium channel (VDCCs) currents in nerve growth factor (NGF)-differentiated PC12 pheochromocytoma cells. VDCCs currents in NGF-differentiated PC12 cells were recorded using the whole-cell patch-clamp technique. Immunized rabbit serum that had a high titer of anti-GalNAc-GD1a antibodies inhibited the VDCCs currents in the NGF-differentiated PC12 cells (36.0+/-9.6% reduction). The inhibitory effect of this serum was reversed to some degree within 3-4 min by washing with bath solution. Similarly, application of purified IgG from rabbit serum immunized with GalNAc-GD1a significantly inhibited the VDCCs currents in PC12 cells (30.6+/-2.5% reduction), and this inhibition was recovered by washing with bath solution. Furthermore, the inhibitory effect was also observed in the GalNAc-GD1a affinity column binding fraction (reduction of 31.1+/-9.85%), while the GalNAc-GD1a affinity column pass-through fraction attenuated the inhibitory effect on VDCCs currents. Normal rabbit serum and normal rabbit IgG did not affect the VDCCs currents in the PC12 cells. In an immunocytochemical study using fluorescence staining, the PC12 cells were stained using GalNAc-GD1a binding fraction. These results indicate that anti-GalNAc-GD1a antibodies inhibit the VDCCs currents in NGF-differentiated PC12 cells.

  9. [Role of voltage-dependent ion channels in epileptogenesis].

    Science.gov (United States)

    Ricard-Mousnier, B; Couraud, F

    1993-10-01

    The aim of this review is to gather information in favour of the involvement of voltage-dependent ion channels in epileptogenesis. Although, up to now, no study has shown that epilepsy is accompanied by a modification in the activity to these channels, the recently acquired knowledge of their physiology allows to presume would favor their involvement in epileptogenesis. The results from electrophysiological studies are as follows: a persistent sodium current increases neuronal excitability whereas potassium currents have an inhibitory role. In particular, calcium-dependent potassium current are involved in the post-hyperpolarization phases which follows PDS. Calcium currents are also involved in the genesis of the "bursting pacemaker" activity displayed by the neurons presumed to be inducers of the epileptic activity. Biochemical data has shown that as a consequence of epileptic activity, sodium and calcium channels are down regulated. This down-regulation could be a way to reduces neuronal hyperexcitability. Pharmacological data demonstrate the drugs which activate calcium channels or which inhibit potassium channels have a convusilvant effect. On the contrary, agents which block calcium or sodium channels or which properties. Among the latter ones, some antiepileptic drugs can be found. In summary situations which lead to increase in calcium and sodium currents and/or to an inhibition in potassium currents are potentially epileptogenic.

  10. Alterations of voltage-dependent calcium channel currents in basilar artery smooth muscle cells at early stage of subarachnoid hemorrhage in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Xianqing Shi

    Full Text Available OBJECTIVE: To investigate the changes in the currents of voltage-dependent calcium channels (VDCCs in smooth muscle cells of basilar artery in a rabbit model of subarachnoid hemorrhage (SAH. METHODS: New Zealand white rabbits were randomly divided into five groups: sham (C, normal (N, 24 hours (S1, 48 hours (S2 and 72 hours (S3 after SAH. Non-heparinized autologous arterial blood (1 ml/kg was injected into the cisterna magna to create SAH after intravenous anesthesia, and 1 ml/kg of saline was injected into cisterna magna in the sham group. Rabbits in group N received no injections. Basilar artery in S1, S2, S3 group were isolated at 24, 48, 72 hours after SAH. Basilar artery in group C was isolated at 72 hours after physiological saline injection. Basilar artery smooth muscle cells were isolated for all groups. Whole-cell patch-clamp technique was utilized to record cell membrane capacitance and VDCCs currents. The VDCCs antagonist nifedipine was added to the bath solution to block the Ca(++ channels currents. RESULTS: There were no significant differences in the number of cells isolated, the cell size and membrane capacitance among all the five groups. VDCC currents in the S1-S3 groups had higher amplitudes than those in control and sham groups. The significant change of current amplitude was observed at 72 hours after SAH, which was higher than those of 24 and 48 hours. The VDCCs were shown to expression in human artery smooth muscle cells. CONCLUSIONS: The changes of activation characteristics and voltage-current relationship at 72 hours after SAH might be an important event which leads to a series of molecular events in the microenvironment of the basilar artery smooth muscle cells. This may be the key time point for potential therapeutic intervention against subarachnoid hemorrhage.

  11. Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis.

    Science.gov (United States)

    Blackwell, K T

    2000-01-01

    A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.

  12. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  13. Potassium currents in isolated CA1 neurons of the rat after kindling epileptogenesis.

    Science.gov (United States)

    Vreugdenhil, M; Wadman, W J

    1995-06-01

    Daily tetanic stimulation of the Schaffer collaterals generates an epileptogenic focus in area CA1 of the rat hippocampus, ultimately leading to generalized tonic-clonic convulsions (kindling). Potassium currents were measured under voltage-clamp conditions in pyramidal neurons, acutely dissociated from the focus of fully kindled rats, one day and six weeks after the last generalized seizure. Their amplitude, kinetics, voltage dependence and calcium dependence were compared with controls. With Ca2+ influx blocked by 0.5 mM Ni2+, the sustained current (delayed rectifier) and the transient current (A-current) were not different after kindling. Calcium influx evoked an additional fast transient current component. This transient calcium-dependent current component was increased by 154%, but only immediately after the seizure. A second, slow calcium-dependent potassium current component was dependent on the intracellular calcium level, set by the pipette as well as on calcium influx. The peak amplitude of this slow calcium-dependent current was under optimal calcium conditions not different after kindling, but we found indications that either calcium homeostasis or the calcium sensitivity of the potassium channels was affected by the kindling process. In contrast to the previously described enhancement of calcium current, kindling epileptogenesis did not change the total potassium current amplitude. The minor changes that were observed can be related either to changes in calcium current or to changes in intracellular calcium homeostasis.

  14. Neuropeptide FF receptor modulates potassium currents in a dorsal root ganglion cell line.

    Science.gov (United States)

    Mollereau, Catherine; Roumy, Michel; Zajac, Jean-Marie

    2011-01-01

    This study investigated the presence of neuropeptide FF (NPFF) receptors on F-11 cells, a hybridoma derived from rat dorsal root ganglia (DRG) and mouse neuroblastoma. Binding experiments revealed a low density (4 fmol/mg) of high affinity (0.5 nM) [(3)H]-EYF binding sites in these cells. The whole-cell planar patch-clamp technique showed that dNPA, a selective NPFF(2) agonist, increased the voltage-dependent potassium outward currents (about 30 pA/pF) by 21%; this reversible effect on sustained delayed potassium currents is blocked by tetraethylammonium. The similar effects of NPFF and opioid agonists on K(+) currents in this cell line may explain their similar antinociceptive actions at the spinal level.

  15. Potassium currents in type II vestibular hair cells isolated from the guinea-pig's crista ampullaris.

    Science.gov (United States)

    Griguer, C; Kros, C J; Sans, A; Lehouelleur, J

    1993-11-01

    Type II vestibular hair cells were isolated from cristae ampullares of guinea-pig and maintained in vitro for 2-3 h. Outward membrane currents were studied under whole-cell voltage-clamp conditions. Type II hair cells had resting potentials of about -45 mV. Depolarizing voltage steps from a holding potential of -80 or -90 mV induced time- and voltage-dependent outward currents which slowly decayed to a sustained level. Tail currents reversed at about -70 mV, indicating that the outward currents were mainly carried by potassium ions. The currents had an activation threshold around -50 mV. The transient component was completely removed by a depolarizing pre-pulse positive to -10 mV. While bath application of 4-aminopyridine (5 mM) reduced both components, extracellular tetraethylammonium (10 mM) or zero calcium preferentially diminished the sustained current. We conclude that at least two potassium conductances are present, a delayed rectifier with a relatively fast inactivation and a calcium-dependent potassium current. Depolarizing current injections induced an electrical resonance in the voltage responses, with a frequency of 25-100 Hz, larger currents causing higher frequencies.

  16. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating

    Directory of Open Access Journals (Sweden)

    Mark Alan Zaydman

    2014-05-01

    Full Text Available Voltage-gated potassium (Kv channels contain voltage-sensing (VSD and pore-gate (PGD structural domains. During voltage-dependent gating, conformational changes in the two domains are coupled giving rise to voltage-dependent opening of the channel. In addition to membrane voltage, KCNQ (Kv7 channel opening requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2. Recent studies suggest that PIP2 serves as a cofactor to mediate VSD-PGD coupling in KCNQ1 channels. In this review, we put these findings in the context of the current understanding of voltage-dependent gating, lipid modulation of Kv channel activation, and PIP2-regulation of KCNQ channels. We suggest that lipid-mediated coupling of functional domains is a common mechanism among KCNQ channels that may be applicable to other Kv channels and membrane proteins.

  17. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating.

    Science.gov (United States)

    Zaydman, Mark A; Cui, Jianmin

    2014-01-01

    Voltage-gated potassium (Kv) channels contain voltage-sensing (VSD) and pore-gate (PGD) structural domains. During voltage-dependent gating, conformational changes in the two domains are coupled giving rise to voltage-dependent opening of the channel. In addition to membrane voltage, KCNQ (Kv7) channel opening requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Recent studies suggest that PIP2 serves as a cofactor to mediate VSD-PGD coupling in KCNQ1 channels. In this review, we put these findings in the context of the current understanding of voltage-dependent gating, lipid modulation of Kv channel activation, and PIP2-regulation of KCNQ channels. We suggest that lipid-mediated coupling of functional domains is a common mechanism among KCNQ channels that may be applicable to other Kv channels and membrane proteins.

  18. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  19. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner.

    Science.gov (United States)

    Salceda, Emilio; López, Omar; Zaharenko, André J; Garateix, Anoland; Soto, Enrique

    2010-03-01

    Sea anemone toxins bind to site 3 of the sodium channels, which is partially formed by the extracellular linker connecting S3 and S4 segments of domain IV, slowing down the inactivation process. In this work we have characterized the actions of BcIII, a sea anemone polypeptide toxin isolated from Bunodosoma caissarum, on neuronal sodium currents using the patch clamp technique. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study (n=65). The main effects of BcIII were a concentration-dependent increase in the sodium current inactivation time course (IC(50)=2.8 microM) as well as an increase in the current peak amplitude. BcIII did not modify the voltage at which 50% of the channels are activated or inactivated, nor the reversal potential of sodium current. BcIII shows a voltage-dependent action. A progressive acceleration of sodium current fast inactivation with longer conditioning pulses was observed, which was steeper as more depolarizing were the prepulses. The same was observed for other two anemone toxins (CgNa, from Condylactis gigantea and ATX-II, from Anemonia viridis). These results suggest that the binding affinity of sea anemone toxins may be reduced in a voltage-dependent manner, as has been described for alpha-scorpion toxins.

  20. Voltage dependence of the Na-K pump.

    Science.gov (United States)

    De Weer, P; Gadsby, D C; Rakowski, R F

    1988-01-01

    Present evidence demonstrates that the Na-K pump rate is voltage dependent, whereas early work was largely inconclusive. The I-V relationship has a positive slope over a wide voltage range, and the existence of a negative slope region is now doubtful. Monotonic voltage dependence is consistent with the reaction cycle containing a single voltage-dependent step. Recent measurements suggest that this voltage-dependent step occurs during Na translocation and may be deocclusion of Na+. In addition, two results suggest that K translocation is voltage insensitive: (a) large positive potentials appear to have no influence on Rb-Rb exchange or associated conformational transitions; and (b) transient currents associated with Na translocation appear to involve movement of a single charge, which is sufficient for a 3Na-2K cycle. The simplest interpretation is that the pump's cation binding sites supply two negative charges. Pre-steady-state measurements demonstrate that Na translocation precedes the pump cycle's rate-limiting step, presumably K translocation. But, because K translocation seems voltage insensitive, the voltage dependence of the steady-state pump rate probably reflects that of the concentration of the intermediate entering this slow step. Further pump current and flux data (both transient and steady-state), carefully determined over a range of conditions, should increase our understanding of the voltage-dependent step(s) in the Na-K pump cycle.

  1. Effects of lithium chloride on outward potassium currents in acutely isolated hippocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaofeng; DU Huizhi; YANG Pin

    2006-01-01

    Although lithium possesses neuroprotective functions, the molecular mechanism underlying its actions has not been fully elucidated. In the present paper, the effects of lithium chloride on voltage-dependent potassium currents in the CA1 pyramidal neurons acutely isolated from rat hippocampus were studied using the whole-cell patch-clamp technique. Depolarizing test pulses activated two components of outward potassium currents: a rapidly activating and inactivating component, IA and a delayed component, IK. Results showed that lithium chloride increased the amplitude of IA in a concentration-dependent manner. Half enhancement concentration (EC50) was 22.80±5.45 μmol·L-1. Lithium chloride of 25 μmol·L-1 shifted the steady-state activation curve and inactivation curve of IA to more negative potentials, but mainly affected the activation kinetics. The amplitude and the activation processes of IK were not affected by lithium chloride. The effects of lithium chloride on potassium channel appear to possess neuroprotective properties by Ca2+-lowing effects modulate neuronal excitability by activating IA in rat hippocampal neurons.

  2. Gated currents in isolated olfactory receptor neurons of the larval tiger salamander.

    OpenAIRE

    Firestein, S; Werblin, F S

    1987-01-01

    The electrical properties of enzymatically isolated olfactory receptor cells were studied with whole-cell patch clamp. Voltage-dependent currents could be separated into three ionic components: a transient inward sodium current, a sustained inward calcium current, and an outward potassium current. Three components of the outward current could be identified by their gating and kinetics: a calcium-dependent potassium current [IK(Ca)], a voltage-dependent potassium current [IK(V)], and a transie...

  3. Voltage-dependent metabolic regulation of Kv2.1 channels in pancreatic beta-cells.

    Science.gov (United States)

    Yoshida, Masashi; Nakata, Masanori; Yamato, Shiho; Dezaki, Katsuya; Sugawara, Hitoshi; Ishikawa, San-e; Kawakami, Masanobu; Yada, Toshihiko; Kakei, Masafumi

    2010-05-28

    Voltage-gated potassium channels (Kv channels) play a crucial role in formation of action potentials in response to glucose stimulation in pancreatic beta-ells. We previously reported that the Kv channel is regulated by glucose metabolism, particularly by MgATP. We examined whether the regulation of Kv channels is voltage-dependent and mechanistically related with phosphorylation of the channels. In rat pancreatic beta-cells, suppression of glucose metabolism with low glucose concentrations of 2.8mM or less or by metabolic inhibitors decreased the Kv2.1-channel activity at positive membrane potentials, while increased it at potentials negative to -10 mV, suggesting that modulation of Kv channels by glucose metabolism is voltage-dependent. Similarly, in HEK293 cells expressing the recombinant Kv2.1 channels, 0mM but not 10mM MgATP modulated the channel activity in a manner similar to that in beta-cells. Both steady-state activation and inactivation kinetics of the channel were shifted toward the negative potential in association with the voltage-dependent modulation of the channels by cytosolic dialysis of alkaline phosphatase in beta-cells. The modulation of Kv-channel current-voltage relations were also observed during and after glucose-stimulated electrical excitation. These results suggest that the cellular metabolism including MgATP production and/or channel phosphorylation/dephosphorylation underlie the physiological modulation of Kv2.1 channels during glucose-induced insulin secretion.

  4. Cellular elements for seeing in the dark: voltage-dependent conductances in cockroach photoreceptors

    Directory of Open Access Journals (Sweden)

    Salmela Iikka

    2012-08-01

    Full Text Available Abstract Background The importance of voltage-dependent conductances in sensory information processing is well-established in insect photoreceptors. Here we present the characterization of electrical properties in photoreceptors of the cockroach (Periplaneta americana, a nocturnal insect with a visual system adapted for dim light. Results Whole-cell patch-clamped photoreceptors had high capacitances and input resistances, indicating large photosensitive rhabdomeres suitable for efficient photon capture and amplification of small photocurrents at low light levels. Two voltage-dependent potassium conductances were found in the photoreceptors: a delayed rectifier type (KDR and a fast transient inactivating type (KA. Activation of KDR occurred during physiological voltage responses induced by light stimulation, whereas KA was nearly fully inactivated already at the dark resting potential. In addition, hyperpolarization of photoreceptors activated a small-amplitude inward-rectifying (IR current mediated at least partially by chloride. Computer simulations showed that KDR shapes light responses by opposing the light-induced depolarization and speeding up the membrane time constant, whereas KA and IR have a negligible role in the majority of cells. However, larger KA conductances were found in smaller and rapidly adapting photoreceptors, where KA could have a functional role. Conclusions The relative expression of KA and KDR in cockroach photoreceptors was opposite to the previously hypothesized framework for dark-active insects, necessitating further comparative work on the conductances. In general, the varying deployment of stereotypical K+ conductances in insect photoreceptors highlights their functional flexibility in neural coding.

  5. Voltage-gated potassium currents within the dorsal vagal nucleus: inhibition by BDS toxin.

    Science.gov (United States)

    Dallas, Mark L; Morris, Neil P; Lewis, David I; Deuchars, Susan A; Deuchars, Jim

    2008-01-16

    Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.

  6. Facilitation of calcium-dependent potassium current.

    Science.gov (United States)

    Thompson, S H

    1994-12-01

    The activation of Ca-dependent K+ current, Ic, was studied in macropatches on the cell bodies of molluscan neurons. When a depolarizing voltage-clamp pulse was applied repeatedly, Ic facilitated in a manner that resembled the facilitation of synaptic transmitter release. Facilitation was characterized by an increase in Ic amplitude, a progressive increase in instantaneous outward current, and a decrease in utilization time. Experiments were done to investigate the mechanism responsible for Ic facilitation. Facilitation was reduced by microinjection of an exogenous Ca2+ buffer into the cytoplasm, indicating that facilitation is a Ca(2+)-dependent process. It was also reduced at elevated temperatures. Conversely, facilitation was greatly potentiated by blocking the Na/Ca exchange mechanism. It is concluded that the facilitation of Ca-dependent K+ current results from the accumulation of Ca2+ at the inner face of the membrane during the repeated activation of Ca2+ channels by depolarization. The Ca2+ indicator fluo-3 was used in fluorescence imaging experiments to measure changes in [Ca]i near the cell membrane during repeated depolarizing pulses and the interpretation of these results was aided by numerical simulations of Ca2+ accumulation, diffusion, and buffering in the peripheral cytoplasm. These experiments showed that the time course of Ic facilitation matches the time course of Ca2+ accumulation at the membrane. It was found that the strength of Ic facilitation varies among patches on the same neuron, suggesting that the accumulation of Ca2+ is not uniform along the inner surface of the membrane and that gradients in [Ca]i develop and are maintained during trains of depolarizing pulses. Potential mechanisms that may lead to local differences in Ca2+ accumulation and Ic facilitation are discussed.

  7. Characteristics of Potassium-Enriched, Flue-Cured Tobacco Genotype in Potassium Absorption,Accumulation,and In-Ward Potassium Currents of Root Cortex

    Institute of Scientific and Technical Information of China (English)

    YNAG Tie-zhao; LU Li-ming; XIA Wei; FAN Jin-hua

    2007-01-01

    This study was to investigate the main traits of potassium-enriched,flue-cured tobacco genotypes related to potassium absorption,accumulation,and in-ward potassium currents of the root cortex.Hydroponic methods,K+-depletion methods,and patch-clamp,whole-cell recordings were conducted to study the accumulation of dry matter and potassium in different organs,and to measure potassium absorption and dynamic and in-ward potassium currents in potassium-enriched,fluecured tobacco genotypes.The average dry weights of leaves and whole plant of potassium-enriched,flue-cured tobacco genotype ND202 were 10.20,and 14.85g,respectively,higher than JYH(8.50 and 13.11g,respectively)and NC2326(8.39 and 12.72g,respectively),when potassium concentration in the solution ranged from 0.1 to 50mmol L-1.Potassium accumulation in the leaves of ND202 was 18.6% higher than JYH and 34% higher than NC2326 when potassium concentration in the solution was superior to 0.5mmol L-1.The Vmax(the maximum velocity)of ND202 was 118.11μmol FW g-1h-1,obviously higher than that of JYH(58.87 μmol FW g-1 h-1)and NC2326(64.40μmol FW g-1 h-1).In the in-ward potassium currents,the absolute value of current density(pA/pF)of ND202 was 60,higher than that of JYH(50)and NC2326(40).Potassium concentration in leaves,Vmax and in-ward potassium currents,could be used to screen potassium-enriched,flue-cured tobacco genotypes.

  8. Inhibitory Effects of Glycyrrhetinic Acid on the Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes and HERG Channel

    Directory of Open Access Journals (Sweden)

    Delin Wu

    2013-01-01

    Full Text Available Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA. However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (IK, the rapidly activating (IKr and slowly activating (IKs components of IK, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record IK (IKr, IKs and the HERG K+ current. Results. GA (1, 5, and 10 μM inhibited IK (IKr, IKs and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of IK (IKr, IKs and HERG K+ channel.

  9. Differential regulation of potassium currents by FGF-1 and FGF-2 in embryonic Xenopus laevis myocytes.

    Science.gov (United States)

    Chauhan-Patel, R; Spruce, A E

    1998-10-01

    1. Fibroblast growth factors (FGFs) are involved in the regulation of many aspects of muscle development. This study investigated their role in regulating voltage-dependent K+ currents in differentiating Xenopus laevis myocytes. Both FGF-1 and FGF-2 are expressed by developing muscle cells, so their actions were compared. Experiments were performed on cultured myocytes isolated from stage 15 embryos. 2. Long-term exposure of the embryonic myocytes to FGF-1 downregulated inward rectifier K+ current (IK(IR)) density as well as both sustained and inactivating voltage-dependent outward K+ currents (IK,S and IK,I, respectively) and their densities. In contrast, FGF-2 upregulated these currents, although, because of an increase in capacitance caused by FGF-2, current density did not change with this factor. 3. The regulation of IK(IR) by FGF-1 was prevented by the cytoplasmic tyrosine kinase inhibitor herbimycin A, but that of IK,S and IK,I was unaffected, indicating that FGF-1 achieves its regulatory effects on electrical development via separate signalling pathways. The receptor tyrosine kinase inhibitor genistein in isolation suppressed K+ currents, but this may have occurred through a channel-blocking mechanism. 4. In many cells, IK, S was found to be composed of two components with differing voltage dependencies of activation. The FGFs brought about an alteration in the amount of total IK,S by equal effects on each component. Conversely, herbimycin A increased the proportion of low voltage-activated current without affecting total current amplitude. Therefore, we suggest that a single species of channel whose voltage dependence is shifted by tyrosine phosphorylation generates IK,S. 5. In summary, FGF-1 and FGF-2 exert opposite effects on voltage-dependent K+ currents in embryonic myocytes and, furthermore, FGF-1 achieves its effects on different K+ currents via separate second messenger pathways.

  10. Bradykinin modulates potassium and calcium currents in neuroblastoma hybrid cells via different pertussis toxin-insensitive pathways.

    Science.gov (United States)

    Wilk-Blaszczak, M A; Gutowski, S; Sternweis, P C; Belardetti, F

    1994-01-01

    In NG108-15 cells, bradykinin (BK) activates a potassium current (IK,BK) and inhibits the voltage-dependent calcium current (ICa,V). BK also stimulates a phosphatidylinositol-specific phospholipase C (PI-PLC). The subsequent release of inositol 1,4,5-trisphosphate and increase in intracellular calcium contribute to IK,BK, through activation of a calcium-dependent potassium current. In membranes from these cells, stimulation of PI-PLC by BK is mediated by Gq and/or G11, two homologous, pertussis toxin-insensitive G proteins. Here, we have investigated the role of Gq/11 in the electrical responses to BK. GTP gamma S mimicked and occluded both actions of BK, and both effects were insensitive to pertussis toxin. Perfusion of an anti-Gq/11 alpha antibody into the pipette suppressed IK,BK, but not the inhibition of ICa,V by BK. Thus, BK couples to IK,BK via Gq/11, but coupling to ICa,V is most likely via a different, pertussis toxin-insensitive G protein.

  11. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, T M; Belhage, B

    2001-01-01

    using the fluorescent calcium chelator fura-2. The types of calcium channels present at the synaptic terminal were determined by the inhibitory action of calcium channel blockers on potassium-induced [3H]GABA release in the same cell preparation. L-, N-, P-, Q- and R-/T-type voltage dependent calcium...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... in cytosolic calcium concentration. The results of this investigation demonstrate that pharmacologically distinct types of voltage dependent calcium channels are differentially localized in cell bodies, neurites and nerve terminals of mouse cortical neurons but that the Q-type calcium channel appears...

  12. Potassium

    Science.gov (United States)

    ... blackberries Root vegetables, such as carrots and potatoes Citrus fruits, such as oranges and grapefruit Your kidneys help to keep the right amount of potassium in your body. If you have chronic kidney disease, your kidneys may not remove extra potassium from ...

  13. KCNQ1 Channels Voltage Dependence through a Voltage-dependent Binding of the S4-S5 Linker to the Pore Domain*

    OpenAIRE

    2010-01-01

    Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1–S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5–S6) is surrounded by four voltage sensor domains (S1–S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5L) and S6 C terminus (S6T). From these data, we hypothesiz...

  14. Potassium

    Science.gov (United States)

    ... high in potassium include bananas, cantaloupe, grapefruit, oranges, tomato or prune juice, honeydew melons, prunes, molasses and ... of a Heart Attack 10 Angina (Chest Pain) *Red Dress ™ DHHS, Go Red ™ AHA ; National Wear Red ...

  15. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-10-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact on current-driven magnetization dynamics and on devices performances. After a brief overview of the progress made to date in the theoretical description of the spin torque in tunnel junctions, I present different ways to alter and control the bias dependence of both components of the spin torque. Engineering the junction (barrier and electrodes) structural asymmetries or controlling the spin accumulation profile in the free layer offer promising tools to design effcient spin devices.

  16. Cortisone dissociates voltage-dependent K+ channel from its beta subunit

    Science.gov (United States)

    Pan, Yaping; Weng, Jun; Kabaleeswaran, Venkataraman; Li, Huiguang; Cao, Yu; Bhosle, Rahul C.; Zhou, Ming

    2009-01-01

    The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with beta subunits (Kvβ) and certain Kvβs, for example Kvβ1, have an N-terminal segment that closes a channel by the N-type inactivation mechanism. In principle dissociation of Kvβ1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases mammalian (rat) Kv1 channel activity by binding to Kvβ1. A crystal structure of the Kvβ-cortisone complex was solved to 1.82 Å resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kvβ. The new mode of channel modulation may be explored by native or synthetic ligands to fine tune cellular excitability. PMID:18806782

  17. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    Energy Technology Data Exchange (ETDEWEB)

    Manipatruni, Sasikanth, E-mail: sasikanth.manipatruni@intel.com; Nikonov, Dmitri E.; Young, Ian A. [Exploratory Integrated Circuits, Components Research, Intel Corp., Hillsboro, Oregon 97124 (United States)

    2014-05-07

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  18. Effects of different kinds of stretch on voltage-dependent calcium current in antrial circular smooth muscle cells of the guinea-pig%不同牵张刺激对豚鼠胃窦环行肌细胞电压依赖性钙电流的影响

    Institute of Scientific and Technical Information of China (English)

    许文燮; 李英; 吴龙仁; 李在琉

    2000-01-01

    利用全细胞膜片钳技术,在胃窦环行肌细胞上观察了不同方式的牵张刺激对电压依赖性钙电流的影响,探讨牵张刺激对胃窦平滑肌细胞电压依赖性钙电流的作用.用低渗性溶液灌流细胞引起的牵张刺激首先增加电压依赖性钙电流,接着激活一种内向性钳制电流.钙电流的增加发生在灌流后1 min内,而内向性钳制电流在细胞明显膨胀之后缓慢激活.低渗和正压引起的细胞膨胀明显增加电压依赖性钙离子电流,而利用两个电极直接牵拉细胞则不出现钙电流增加效应.结果提示: 细胞膜牵张增强电压依赖性钙通道的活性,而这一作用可能与牵拉引起的细胞所受的膜张力或/和牵拉的方向有关.%In order to elucidate the effect of membrane stretch on ionic currents, we employed the whole-cell patch-clamp technique to investigate the effects of different kinds of stretch on voltage-dependent calcium currents in antrial circular smooth muscle cells of the guinea-pig. The membrane stretch induced by superfusing the smooth muscle cells with hyposmotic bath solution enhanced voltage-operated calcium current and activated inward holding current. The increase in calcium current occurred within 1 minute of superfusion and the sustained inward holding current was slowly activated after prominent cell swelling. Voltage-dependent calcium currents (Ica) were significantly increased by membrane stretch which was induced by cell swelling and cell inflation, but was not affected by direct longitudinal stretch (110~130%) using two electrodes.The results suggest that the cell membrane stretch can increase voltage-dependent calcium channel activity and the effect of stretch on calcium channels was related to the membrane tension and/or the direction of membrane stretch.

  19. Action of niflumic acid on evoked and spontaneous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein.

    Science.gov (United States)

    Hogg, R. C.; Wang, Q.; Large, W. A.

    1994-01-01

    1. The action of niflumic acid was studied on spontaneous and evoked calcium-activated chloride (ICl(Ca)) and potassium (IK(Ca)) currents in rabbit isolated portal vein cells. 2. With the nystatin perforated patch technique in potassium-containing solutions at a holding potential of -77 mV (the potassium equilibrium potential), niflumic acid produced a concentration-dependent inhibition of spontaneous transient inward current (STIC, calcium-activated chloride current) amplitude. The concentration to reduce the STIC amplitude by 50% (IC50) was 3.6 x 10(-6) M. 3. At -77 mV holding potential, niflumic acid converted the STIC decay from a single exponential to 2 exponential components. In niflumic acid the fast component of decay was faster, and the slow component was slower than the control decay time constant. Increasing the concentration of niflumic acid enhanced the decay rate of the fast component and reduced the decay rate of the slow component. 4. The effect of niflumic acid on STIC amplitude was voltage-dependent and at -50 and +50 mV the IC50 values were 2.3 x 10(-6) M and 1.1 x 10(-6) M respectively (cf. 3.6 x 10(-6) M at -77 mV). 5. In K-free solutions at potentials of -50 mV and +50 mV, niflumic acid did not induce a dual exponential STIC decay but just increased the decay time constant at both potentials in a concentration-dependent manner. 6. Niflumic acid, in concentrations up to 5 x 10(-5) M, had no effect on spontaneous calcium-activated potassium currents.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921628

  20. Electrical heterogeneity of canine right ventricular transient outward potassium currents

    Institute of Scientific and Technical Information of China (English)

    杨新春; 周鹏; 李翠兰

    2004-01-01

    Background Some studies have confirmed that the right ventricular walls of most rodents, such as canines and humans, have evident transient outward potassium current (lto1) heterogeneity, and this heterogeneity is closely related to J point elevation, J wave formation, and some ventricular tachycardias such as ventricular fibrillations caused by Brugada syndrome. This study is designed to investigate transmural electrical heterogeneity of the canine right ventricle during repolarization (phase 1) from the viewpoint of 4-aminopyridine sensitive and calcium-independent lto1.Methods Adult canine single right ventricular epicardial (Epi) cells, mid-myocardial (M) cells, and endocardial (Endo) cells were enzymatically dissociated. Whole cell voltage-clamp recordings were made to compare the lto1 values of the three cell types.Results At 37℃ and using 0.2 Hz and + 70 mV depolarizing test potentials, the average peak lto1 values of Epi cells and M cells averaged (4070±1720) pA and (3540±1840) pA, respectively. The activated and inactivated Epi and M cells kinetic processes were in accordance with the Boltzmann distribution. Compared with lto1 in Epi cells and M cells, the average peak lto1 in Endo cells was very low, averaged (470±130) pA.Conclusions These results suggest that there are evident differences and potent gradients in lto1 between the three cardiac cell types, especially between Epi and Endo cells. These differences are among the prominent manifestations of right ventricular electrical heterogeneity, and may form an important ionic basis and prerequisite for some malignant arrhythmias in the right ventricle, including those arising from Brugada syndrome and other diseases.

  1. Whole-cell recordings of calcium and potassium currents in acutely isolated smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Qing Cai; Zhong-Liang Zhu; Xiao-Li Fan

    2006-01-01

    AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats.METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical trituration with polished pipettes. Patch clamp technique in whole-cell mode was employed to record calcium and potassium currents.RESULTS: The procedure dissociated smooth muscle cells without impairing the electrophysiological characteristics of the cells. The voltage-gated Ca2+ and potassium currents were successfully recorded using whole-cell patch clamp configuration.CONCLUSION: The method dissociates smooth muscle cells from rat mesenteric arterial branches. Voltage-gated channel currents can be recorded in this preparation.

  2. Eugenol dilates rat cerebral arteries by inhibiting smooth muscle cell voltage-dependent calcium channels.

    Science.gov (United States)

    Peixoto-Neves, Dieniffer; Leal-Cardoso, Jose Henrique; Jaggar, Jonathan H

    2014-11-01

    Plants high in eugenol, a phenylpropanoid compound, are used as folk medicines to alleviate diseases including hypertension. Eugenol has been demonstrated to relax conduit and ear arteries and reduce systemic blood pressure, but mechanisms involved are unclear. Here, we studied eugenol regulation of resistance-size cerebral arteries that control regional brain blood pressure and flow and investigated mechanisms involved. We demonstrate that eugenol dilates arteries constricted by either pressure or membrane depolarization (60 mM K) in a concentration-dependent manner. Experiments performed using patch-clamp electrophysiology demonstrated that eugenol inhibited voltage-dependent calcium (Ca) currents, when using Ba as a charge carrier, in isolated cerebral artery smooth muscle cells. Eugenol inhibition of voltage-dependent Ca currents involved pore block, a hyperpolarizing shift (∼-10 mV) in voltage-dependent inactivation, an increase in the proportion of steady-state inactivating current, and acceleration of inactivation rate. In summary, our data indicate that eugenol dilates cerebral arteries by means of multimodal inhibition of voltage-dependent Ca channels.

  3. Two outward potassium current types are expressed during the neural differentiation of neural stem cells**

    Institute of Scientific and Technical Information of China (English)

    Ruiying Bai; Guowei Gao; Ying Xing; Hong Xue

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cellpatch-clamp re-cordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat hippo-campus could be cultured and induced to differentiate into functional neurons under defined condi-tions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.

  4. Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS: significance for CNS and biophysical studies.

    Science.gov (United States)

    Yeung, Shuk Yin M; Thompson, Dawn; Wang, Zhuren; Fedida, David; Robertson, Brian

    2005-09-21

    Kv3 potassium channels, with their ultra-rapid gating and high activation threshold, are essential for high-frequency firing in many CNS neurons. Significantly, the Kv3.4 subunit has been implicated in the major CNS disorders Parkinson's and Alzheimer's diseases, and it is claimed that selectively targeting this subunit will have therapeutic utility. Previous work suggested that BDS toxins ("blood depressing substance," from the sea anemone Anemonia sulcata) were specific blockers for rapidly inactivating Kv3.4 channels, and consequently these toxins are increasingly used as diagnostic agents for Kv3.4 subunits in central neurons. However, precisely how selective are these toxins for this important CNS protein? We show that BDS is not selective for Kv3.4 but markedly inhibits current through Kv3.1 and Kv3.2 channels. Inhibition comes about not by "pore block" but by striking modification of Kv3 gating kinetics and voltage dependence. Activation and inactivation kinetics are slowed by BDS-I and BDS-II, and V(1/2) for activation is shifted to more positive voltages. Alanine substitution mutagenesis around the S3b and S4 segments of Kv3.2 reveals that BDS acts via voltage-sensing domains, and, consistent with this, ON gating currents from nonconducting Kv3.2 are markedly inhibited. The altered kinetics and gating properties, combined with lack of subunit selectivity with Kv3 subunits, seriously affects the usefulness of BDS toxins in CNS studies. Furthermore, our results do not easily fit with the voltage sensor "paddle" structure proposed recently for Kv channels. Our data will be informative for experiments designed to dissect out the roles of Kv3 subunits in CNS function and dysfunction.

  5. State-dependent FRET reports calcium- and voltage-dependent gating-ring motions in BK channels

    OpenAIRE

    Miranda, Pablo; Contreras, Jorge E.; Plested, Andrew J. R.; Sigworth, Fred J.; Holmgren, Miguel; Giraldez, Teresa

    2013-01-01

    Large-conductance voltage- and calcium-dependent potassium channels (BK, “Big K+”) are important controllers of cell excitability. In the BK channel, a large C-terminal intracellular region containing a “gating-ring” structure has been proposed to transduce Ca2+ binding into channel opening. Using patch-clamp fluorometry, we have investigated the calcium and voltage dependence of conformational changes of the gating-ring region of BK channels, while simultaneously monitoring channel conductan...

  6. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  7. Hypotonicity activates a voltage-dependent membrane conductance in N2a neuroblastoma cells.

    Science.gov (United States)

    Taruno, Akiyuki; Marunaka, Yoshinori

    2017-03-04

    To maintain cellular and bodily homeostasis, cells respond to extracellular stimuli including osmotic stress by activating various ion channels, which have been implicated in many physiological and pathophysiological conditions. However, cellular osmosensory mechanisms remain elusive. Here, we report a novel voltage-dependent current in N2a cells activated by exposure to hypotonic stress. After a hypotonic challenge, N2a cells sequentially develop two distinct currents. The volume-regulated anion channel (VRAC) current emerges first and, after a delay, activation of a previously uncharacterized strongly outwardly rectifying current follows. The latter, delayed current (Id) is insensitive to NPPB, a nonspecific blocker of Cl(-) channels, and intracellular Mg(2+), which inhibits VRAC and swelling-activated TRPM3 and TRPM7 channels. Replacement of extracellular Na(+) with NMDG(+) reduces inward tail currents, suggesting that Id is mediated by cations. Finally, Id shows voltage-dependent activation with slow activation kinetics and half-maximal activation at +76 mV. These pharmacological and biophysical characteristics of Id are distinct from those of known osmotic cell swelling-activated ion channels. In conclusion, our data identify and characterize a novel osmotically-activated, voltage-dependent ion channel in N2a cells.

  8. The effects of S4 segments on the voltage-dependence of inactivation for Cav3.1 calcium channels

    Institute of Scientific and Technical Information of China (English)

    LI JunYing

    2007-01-01

    T-type calcium channels exhibit fast voltage-dependent inactivation,for which the underlying structure-function relationship still remains unclear.To investigate the roles of S4 segments in voltage-dependent inactivation of T-type calcium channels,we created S4 replacement chimeras between Cav3.1 calcium channels(fast voltage-dependent inactivation)and Cav1.2 calcium channels(little oltage-dependent inactivation)by replacing S4s in Cav3.1 with the corresponding regions in Cav1.2.Wild type and chimeric channels were expressed in Xenopus oocytes and channel currents were recorded with two-electrode voltage-clamp.We showed that replacing S4 region in domain I shifted voltage-dependence for inactivation of Cav3.1 to the left,and the V0.5 inact and kinact value were significantly changed.However replacing S4s in domains Ⅱ-Ⅳ had no effects on the voltage-dependent inactivation properties.These results suggest that the roles of S4 segments in domains Ⅰ-Ⅳ are different,and S4 in domain I is likely to be involved in voltage-dependent Inactivation process.Its movement during membrane depolarization may trigger a conformational change in the inactivation gate.

  9. The voltage dependence of Ih in human myelinated axons

    Science.gov (United States)

    Howells, James; Trevillion, Louise; Bostock, Hugh; Burke, David

    2012-01-01

    HCN channels are responsible for Ih, a voltage-gated inwardly rectifying current activated by hyperpolarization. This current appears to be more active in human sensory axons than motor and may play a role in the determination of threshold. Differences in Ih are likely to be responsible for the high variability in accommodation to hyperpolarization seen in different subjects. The aim of this study was to characterise this current in human axons, both motor and sensory. Recordings of multiple axonal excitability properties were performed in 10 subjects, with a focus on the changes in threshold evoked by longer and stronger hyperpolarizing currents than normally studied. The findings confirm that accommodation to hyperpolarization is greater in sensory than motor axons in all subjects, but the variability between subjects was greater than the modality difference. An existing model of motor axons was modified to take into account the behaviour seen with longer and stronger hyperpolarization, and a mathematical model of human sensory axons was developed based on the data collected. The differences in behaviour of sensory and motor axons and the differences between different subjects are best explained by modulation of the voltage dependence, along with a modest increase of expression of the underlying conductance of Ih. Accommodation to hyperpolarization for the mean sensory data is fitted well with a value of −94.2 mV for the mid-point of activation (V0.5) of Ih as compared to −107.3 mV for the mean motor data. The variation in response to hyperpolarization between subjects is accounted for by varying this parameter for each modality (sensory: −89.2 to −104.2 mV; motor −87.3 to −127.3 mV). These voltage differences are within the range that has been described for physiological modulation of Ih function. The presence of slowly activated Ih isoforms on both motor and sensory axons was suggested by modelling a large internodal leak current and a masking of

  10. Activation of protein kinase C inhibits potassium currents in cultured endothelial cells.

    Science.gov (United States)

    Zhang, H; Weir, B; Daniel, E E

    1995-04-01

    The effect of protein kinase C on potassium channels in cultured endothelial cells was investigated by using whole-cell patch-clamp techniques. Activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (PDBu), but not phorbol 12-monomyristate (PMM), an inactive analogue of phorbol esters, depressed an outward calcium-dependent potassium current. The inhibitory actions of PMA and PDBu could be reversed by the kinase inhibitor H-7. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum calcium pump, and LP-805, a novel vasodilator which also releases endothelium-derived relaxing factors, activated the outward calcium-dependent potassium conductance. PMA and PDBu, but not PMM, reduced the outward conductance induced by cyclopiazonic acid and LP-805. These effects of PMA and PDBu on potassium currents may be mediated either by phosphorylation of ion channels, or by decreasing intracellular calcium concentration.

  11. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion

    OpenAIRE

    Finol-Urdaneta, R.; Remedi, M.; Raasch, W.; Becker, S; Clark, R; Struever, N.; Pavlov, E.; Nichols, C.; French, R; Terlau, H

    2012-01-01

    Glucose-stimulated insulin secretion (GSIS) relies on repetitive, electrical spiking activity of the beta cell membrane. Cyclic activation of voltage-gated potassium channels (K v ) generates an outward, ‘delayed rectifier’ potassium current, which drives the repolarizing phase of each spike and modulates insulin release. Although several K v channels are expressed in pancreatic islets, their individual contributions to GSIS remain incompletely understood. We take advantage of a naturally occ...

  12. The amplitude and inactivation properties of the delayed potassium currents are regulated by protein kinase activity in hair cells of the frog semicircular canals.

    Directory of Open Access Journals (Sweden)

    Marta Martini

    Full Text Available In hair cells dissected from the frog crista ampullaris, the combination of a calcium-dependent (IKCa and a purely voltage-dependent component (IKV gives rise to the delayed potassium current complex (IKD. These currents have been recently reported to display slow depolarization-induced inactivation and biphasic inactivation removal by hyperpolarization. The amplitude and inactivation kinetics of both IKCa and IKV are drastically modulated by a previously unrecognized mechanism of protein phosphorylation (sensitive to kinase inhibitors H89 and KT5823, which does not interfere with the transient potassium current (IA or the calcium current (ICa. IKD amplitude was stable in cells patched with pipettes containing 8 mM ATP or under perforated-patch; under these conditions, a 10 min treatment with 10 µM H89 or 1-10 µM KT5823 reduced IKD amplitude by a mean of 67% at +40 mV. Similarly affected was the isolated IKV component (ICa blocked with Cd(2+. Thus, a large potassium conductance can be activated by depolarization, but it is made available to the cell to a variable extent that depends on membrane potential and protein kinase activity. The total gKD ranged 4.6-44.0 nS in control cells, according to the level of steady-state inactivation, and was reduced to 1.4-2.7 nS after protein kinase inhibition. When sinusoidal membrane potential changes in the -70/-10 mV range were applied, to mimic receptor response to hair bundle deflection, IKD proved the main current dynamically activated and the only one regulated by PK: H89 decreased the total outward charge during each cycle by 60%. Phosphorylation appears to control both the amount of IKCa and IKV conductance activated by depolarization and the fraction thereof which can be rescued by removal of inactivation. The balance between the depolarizing transduction current and the repolarizing potassium current, and eventually the transmitter release at the cytoneural junction, are therefore modulated by a

  13. Differential expression of K4-AP currents and Kv3.1 potassium channel transcripts in cortical neurons that develop distinct firing phenotypes.

    Science.gov (United States)

    Massengill, J L; Smith, M A; Son, D I; O'Dowd, D K

    1997-05-01

    Maturation of electrical excitability during early postnatal development is critical to formation of functional neural circuitry in the mammalian neocortex. Little is known, however, about the changes in gene expression underlying the development of firing properties that characterize different classes of cortical neurons. Here we describe the development of cortical neurons with two distinct firing phenotypes, regular-spiking (RS) and fast-spiking (FS), that appear to emerge from a population of immature multiple-spiking (IMS) neurons during the first two postnatal weeks, both in vivo (within layer IV) and in vitro. We report the expression of a slowly inactivating, 4-AP-sensitive potassium current (K4-AP) at significantly higher density in FS compared with RS neurons. The same current is expressed at intermediate levels in IMS neurons. The kinetic, voltage-dependent, and pharmacological properties of the K4-AP current are similar to those observed by heterologous expression of Kv3.1 potassium channel mRNA. Single-cell RT-PCR analysis demonstrates that PCR products representing Kv3.1 transcripts are amplified more frequently from FS than RS neurons, with an intermediate frequency of Kv3.1 detection in neurons with immature firing properties. Taken together, these data suggest that the Kv3.1 gene encodes the K4-AP current and that expression of this gene is regulated in a cell-specific manner during development. Analysis of the effects of 4-AP on firing properties suggests that the K4-AP current is important for rapid action potential repolarization, fast after-hyperpolarization, brief refractory period, and high firing frequency characteristic of FS GABAergic interneurons.

  14. Dopamine modulates two potassium currents and inhibits the intrinsic firing properties of an identified motor neuron in a central pattern generator network.

    Science.gov (United States)

    Kloppenburg, P; Levini, R M; Harris-Warrick, R M

    1999-01-01

    The two pyloric dilator (PD) neurons are components [along with the anterior burster (AB) neuron] of the pacemaker group of the pyloric network in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. Dopamine (DA) modifies the motor pattern generated by the pyloric network, in part by exciting or inhibiting different neurons. DA inhibits the PD neuron by hyperpolarizing it and reducing its rate of firing action potentials, which leads to a phase delay of PD relative to the electrically coupled AB and a reduction in the pyloric cycle frequency. In synaptically isolated PD neurons, DA slows the rate of recovery to spike after hyperpolarization. The latency from a hyperpolarizing prestep to the first action potential is increased, and the action potential frequency as well as the total number of action potentials are decreased. When a brief (1 s) puff of DA is applied to a synaptically isolated, voltage-clamped PD neuron, a small voltage-dependent outward current is evoked, accompanied by an increase in membrane conductance. These responses are occluded by the combined presence of the potassium channel blockers 4-aminopyridine and tetraethylammonium. In voltage-clamped PD neurons, DA enhances the maximal conductance of a voltage-sensitive transient potassium current (IA) and shifts its Vact to more negative potentials without affecting its Vinact. This enlarges the "window current" between the voltage activation and inactivation curves, increasing the tonically active IA near the resting potential and causing the cell to hyperpolarize. Thus DA's effect is to enhance both the transient and resting K+ currents by modulating the same channels. In addition, DA enhances the amplitude of a calcium-dependent potassium current (IO(Ca)), but has no effect on a sustained potassium current (IK(V)). These results suggest that DA hyperpolarizes and phase delays the activity of the PD neurons at least in part by modulating their intrinsic postinhibitory recovery

  15. Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1.

    Science.gov (United States)

    Briones, Rodolfo; Weichbrodt, Conrad; Paltrinieri, Licia; Mey, Ingo; Villinger, Saskia; Giller, Karin; Lange, Adam; Zweckstetter, Markus; Griesinger, Christian; Becker, Stefan; Steinem, Claudia; de Groot, Bert L

    2016-09-20

    The voltage-dependent anion channel 1 (VDAC-1) is an important protein of the outer mitochondrial membrane that transports energy metabolites and is involved in apoptosis. The available structures of VDAC proteins show a wide β-stranded barrel pore, with its N-terminal α-helix (N-α) bound to its interior. Electrophysiology experiments revealed that voltage, its polarity, and membrane composition modulate VDAC currents. Experiments with VDAC-1 mutants identified amino acids that regulate the gating process. However, the mechanisms for how these factors regulate VDAC-1, and which changes they trigger in the channel, are still unknown. In this study, molecular dynamics simulations and single-channel experiments of VDAC-1 show agreement for the current-voltage relationships of an "open" channel and they also show several subconducting transient states that are more cation selective in the simulations. We observed voltage-dependent asymmetric distortions of the VDAC-1 barrel and the displacement of particular charged amino acids. We constructed conformational models of the protein voltage response and the pore changes that consistently explain the protein conformations observed at opposite voltage polarities, either in phosphatidylethanolamine or phosphatidylcholine membranes. The submicrosecond VDAC-1 voltage response shows intrinsic structural changes that explain the role of key gating amino acids and support some of the current gating hypotheses. These voltage-dependent protein changes include asymmetric barrel distortion, its interaction with the membrane, and significant displacement of N-α amino acids.

  16. Voltage dependence of Na translocation by the Na/K pump.

    Science.gov (United States)

    Nakao, M; Gadsby, D C

    During each complete reaction cycle, the Na/K pump transports three Na ions out across the cell membrane and two K ions in. The resulting net extrusion of positive charge generates outward membrane current but, until now, it was unclear how that net charge movement occurs. Reasonable possibilities included a single positive charge moving outwards during Na translocation; or a single negative charge moving inwards during K translocation; or either positive or negative charges moving during both translocation steps, but in unequal quantities. Any step that involves net charge movement through the membrane must have voltage-dependent transition rates. Here we report measurements of transient, voltage-dependent, displacement currents generated by the pump when its normal Na/K transport cycle has been interrupted by removal of external K and it is thus constrained to carry out Na/Na exchange. The quantity and voltage sensitivity of the charge moved during these transient currents suggests that Na translocation includes a voltage-dependent transition involving movement of one positive charge across the membrane. This single step can thus fully account for the electrogenic nature of Na/K exchange. The result provides important new insight into the molecular mechanism of active cation transport.

  17. Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers

    Science.gov (United States)

    Nelson, Mark T.; French, Robert J.; Krueger, Bruce K.

    1984-03-01

    Many important physiological processes, including neurotransmitter release and muscle contraction1-3, are regulated by the concentration of Ca2+ ions in the cell. Levels of cytoplasmic Ca2+ can be elevated by the entry of Ca2+ ions through voltage-dependent channels which are selective for Ca2+, Ba2+ and Sr2+ ions4-14. We have measured currents through single, voltage-dependent calcium channels from rat brain that have been incorporated into planar lipid bilayers. Channel gating was voltage-dependent: membrane depolarization increased the channel open times and decreased the closed times. The channels were selective for divalent cations over monovalent ions. The well-known calcium channel blockers, lanthanum and cadmium, produced a concentration-dependent reduction of the apparent single-channel conductance. Contrary to expectations14, the nature of the divalent cation carrying current through the channel affected not only the single-channel conductance, but also the channel open times, with mean open times being shortest for barium.

  18. Muscarinic agonists and potassium currents in guinea-pig myenteric neurones.

    Science.gov (United States)

    Galligan, J J; North, R A; Tokimasa, T

    1989-01-01

    1. Intracellular electrophysiological recordings were obtained from single neurones of the guinea-pig myenteric plexus in vitro. Using single electrode voltage clamp techniques, four distinct potassium currents were described and the effects of muscarinic agonists on these currents were studied. 2. A calcium-dependent potassium current (gKCa) was present in AH neurones at rest, and was much increased following a brief depolarization (50 ms, to 0 mV). Muscarinic agonists reduced both the resting current and the current evoked by depolarization. Pirenzepine competitively antagonized the suppression by muscarine of the calcium-dependent potassium current (or after-hyperpolarization) following an action potential. The dissociation equilibrium constant for pirenzepine was about 10 nM. 3. The conductance of AH neurones increased two to three fold when they were hyperpolarized negative to -90 mV. This inward rectification was blocked by extracellular caesium (2 mM) or rubidium (2 mM), but not by tetraethylammonium (TEA, 40 mM), 4-aminopyridine (100 microM) or cobalt (2 mM). The inward rectification was unaffected by muscarinic agonists. 4. When AH neurones were depolarized from very negative holding potentials (less than -80 mV) a brief outward current was recorded with a duration of about 200 ms. This transient or A current was completely blocked by 4-aminopyridine (100 microM) but was not affected by tetrodotoxin (300 nM), TEA (40 mM) or cobalt (2 mM). Muscarinic agonists did not affect the A current. 5. In S neurones, and in AH neurones in calcium-free solutions, the potassium conductance (in TEA and caesium) behaved according to constant field assumptions. This background conductance was suppressed by muscarinic agonists. 6. It is concluded that the depolarization by muscarinic agonists of myenteric AH neurones is due to a suppression of both a calcium-dependent potassium conductance and a background potassium conductance. Muscarinic depolarization of S neurones

  19. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the I (Kr) current

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter; Grunnet, Morten

    2008-01-01

    I (Kr) is the fast component of the delayed rectifier potassium currents responsible for the repolarization of the cardiac muscle. The molecular correlate underlying the I (Kr) current has been identified as the hERG1 channel. Recently, two splice variants of the hERG1 alpha-subunit, hERG1a and h...... in the presence of hERG1b, whereas no difference in the time constant of inactivation was observed. The voltage-dependent recovery from inactivation was also similar. However, the time constant of recovery from inactivation was significantly faster for hERG1b channels compared to hERG1a and hERG1a...

  20. Potassium currents in human myogenic cells from donors of different ages.

    Science.gov (United States)

    Nurowska, Ewa; Dworakowska, Beata; Kloch, Monika; Sobol, Maria; Dołowy, Krzysztof; Wernig, Anton; Ruzzier, Fabio

    2006-06-01

    Ageing in humans is accompanied by a reduction in the capacity of satellite cells to proliferate and the forming myoblasts to fuse. The processes of myoblast differentiation and fusion are associated with specific changes in the cells electrical properties. We wanted to elucidate the possible effects of ageing on these parameters and performed whole-cell patch-clamp recordings on human myoblasts obtained from biopsies of skeletal muscles from 2-, 48- and 76-year-old donors. First, we found that resting membrane potential on the 4th day of differentiation in vitro is less negative in the older than in the younger cells. Moreover, the oldest cells showed a smaller density of outward and inward potassium currents. More cells from the old and middle-age donors have a low (less than -40 mV) potential of activation for the outward potassium current. We conclude that in human myoblasts biophysical properties of potassium currents change with donor age.

  1. Potassium current inhibition by nonselective cation channel-mediated sodium entry in rat pheochromocytoma (PC-12) cells.

    OpenAIRE

    Strübing, C; J Hescheler

    1996-01-01

    Under physiological conditions, nonselective cation (NSC) channels mediate the entry of cations into cells, the most important being Na+ and Ca2+. In contrast to the Ca(2+)-dependent signaling mechanisms, little is known about the consequences and the spatial distribution of intracellular [Na+] elevation. In this study we demonstrate that Na+ entry, during the opening of ATP-activated NSC channels, leads to an inhibition of voltage-dependent K+ currents (IK) in cromaffin-like undifferentiated...

  2. Dynamics and diversity in interneurons: a model exploration with slowly inactivating potassium currents.

    Science.gov (United States)

    Saraga, F; Skinner, F K

    2002-01-01

    Recent experimental and model work indicates that slowly inactivating potassium currents might play critical roles in generating population rhythms. In particular, slow (hippocampus correlate with oscillatory behaviors in interneurons in this frequency range. Limiting the ion channels to the traditional Hodgkin-Huxley sodium and potassium currents, a persistent sodium current, and a slowly inactivating potassium current, we explore the role of slowly inactivating conductances in a multi-compartmental interneuronal model. We find a rich repertoire of tonic and bursting behaviors depending on the distribution, density and kinetics of this conductance. Specifically, burst frequencies of appropriate frequencies could be obtained for certain distributions and kinetics of this conductance. Robust (with respect to injected currents) regimes of tonic firing and bursting behaviors are uncovered. In addition, we find a bistable tonic firing pattern that depends on the slowly inactivating potassium current. Therefore, this work shows ways in which different channel distributions and heterogeneities could produce variable signal outputs. We suggest that an understanding of the dynamical profiles of inhibitory neurons based on the density and distribution of their currents is helpful in dissecting out the complex roles played by this heterogeneous group of cells.

  3. Calcium-dependent potassium current in barnacle photoreceptor

    OpenAIRE

    1981-01-01

    When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays t...

  4. Nicotine inhibits potassium currents in Aplysia bag cell neurons.

    Science.gov (United States)

    White, Sean H; Sturgeon, Raymond M; Magoski, Neil S

    2016-06-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K(+) with Cs(+) Consistent with an underlying mechanism of direct inhibition of one or more K(+) channels, nicotine was found to rapidly reduce the fast-inactivating A-type K(+) current as well as both components of the delayed-rectifier K(+) current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K(+) channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time.

  5. A comparative study of the action of tolperisone on seven different voltage dependent sodium channel isoforms.

    Science.gov (United States)

    Hofer, Doris; Lohberger, Birgit; Steinecker, Bibiane; Schmidt, Kurt; Quasthoff, Stefan; Schreibmayer, Wolfgang

    2006-05-24

    The specific, acute interaction of tolperisone, an agent used as a muscle relaxant and for the treatment of chronic pain conditions, with the Na(v1.2), Na(v1.3), Na(v1.4), Na(v1.5), Na(v1.6), Na(v1.7), and Na(v1.8) isoforms of voltage dependent sodium channels was investigated and compared to that of lidocaine. Voltage dependent sodium channels were expressed in the Xenopus laevis oocyte expression system and sodium currents were recorded with the two electrode voltage clamp technique. Cumulative dose response relations revealed marked differences in IC(50) values between the two drugs on identical isoforms, as well as between isoforms. A detailed kinetic analysis uncovered that tolperisone as well as lidocaine exhibited their blocking action not only via state dependent association/dissociation with voltage dependent sodium channels, but a considerable fraction of inhibition is tonic, i.e. permanent and basic in nature. Voltage dependent activation was affected to a minor extent only. A shift in steady-state inactivation to more negative potentials could be observed for most drug/isoform combinations. The contribution of this shift to overall block was, however, small at drug concentrations resulting in considerable overall block. Recovery from inactivation was affected notably by both drugs. Lidocaine application led to a pronounced prolongation of the time constant of the fast recovery process for the Na(v1.3), Na(v1.5), and Na(v1.7) isoforms, indicating common structural properties in the local anesthetic receptor site of these three proteins. Interestingly, this characteristic drug action was not observed for tolperisone.

  6. KCNQ1 channels voltage dependence through a voltage-dependent binding of the S4-S5 linker to the pore domain.

    Science.gov (United States)

    Choveau, Frank S; Rodriguez, Nicolas; Abderemane Ali, Fayal; Labro, Alain J; Rose, Thierry; Dahimène, Shehrazade; Boudin, Hélène; Le Hénaff, Carole; Escande, Denis; Snyders, Dirk J; Charpentier, Flavien; Mérot, Jean; Baró, Isabelle; Loussouarn, Gildas

    2011-01-07

    Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1-S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5-S6) is surrounded by four voltage sensor domains (S1-S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5(L)) and S6 C terminus (S6(T)). From these data, we hypothesized that S4S5(L) behaves like a ligand specifically interacting with S6(T) and stabilizing the closed state. To test this hypothesis, we designed plasmid-encoded peptides corresponding to portions of S4S5(L) and S6(T) of the voltage-gated potassium channel KCNQ1 and evaluated their effects on the channel activity in the presence and absence of the ancillary subunit KCNE1. We showed that S4S5(L) peptides inhibit KCNQ1, in a reversible and state-dependent manner. S4S5(L) peptides also inhibited a voltage-independent KCNQ1 mutant. This inhibition was competitively prevented by a peptide mimicking S6(T), consistent with S4S5(L) binding to S6(T). Val(254) in S4S5(L) is known to contact Leu(353) in S6(T) when the channel is closed, and mutations of these residues alter the coupling between the two regions. The same mutations introduced in peptides altered their effects, further confirming S4S5(L) binding to S6(T). Our results suggest a mechanistic model in which S4S5(L) acts as a voltage-dependent ligand bound to its receptor on S6 at rest. This interaction locks the channel in a closed state. Upon plasma membrane depolarization, S4 pulls S4S5(L) away from S6(T), allowing channel opening.

  7. Voltage-dependent Calcium Channel Plays a Role in the Formation of Large-amplitude Miniature Excitatory Postsynaptic Current%电压依赖性钙通道参与大振幅微小兴奋性突触后电流形成的实验研究

    Institute of Scientific and Technical Information of China (English)

    黄福森; 杨小娟; 王儒蓉; 吴超然

    2012-01-01

    目的 观察电压依赖性钙通道是否作用于大鼠脊髓背角胶状质层(SG)神经元大振幅微小兴奋性突触后电流的形成.方法 选用成年雄性Sprague-Dawley (SD)大鼠,2%~3%异氟烷麻醉后,分离其腰骶部的脊髓,然后切片.采用全细胞电压钳技术,玻璃微电极的电阻为4~6 MΩ,钳制电压为-70 mV,记录胶状质层神经元微小兴奋性突触后电流( mEPSC)电流.将电流信号用Axopatch 200来放大并储存于电脑.对照组和用药结束后,持续采样mEPSC电流30 s.mEPSC电流的频率和振幅用Clampfit 8.1进行分析.结果 钳制电压为-70 mV时,所有SG神经元均有自发性的EPSC.辣椒素增加mEPSC发生的频率和波幅.钴离子抑制辣椒素诱导的大振幅mEPSC.钴离子抑制辣椒素诱导的mEPSC的平均振幅,而不抑制其发生频率.结论 电压依赖性钙离子通道参与了辣椒素引起的痛觉形成.%Objective To observe whether the voltage-dependent calcium channel contributes to the formation of capsaicin-induced miniature excitatory postsynaptic current (mEPSC) in rats. Methods Experiments were performed in adult male Sprague-Dawley rats. The lumbosacral portion of the spinal cord were separated after anesthesia by 2%-3% isoflurane, and the spinal cord slices were prepared. Whole-cell voltage-clamp technique was applied to substantia gelatinosa (SG) neurons with a glass patch-pipette having a resistance of 4-6 MΩ, holding potential -70 mV. Signals were amplified with an Axopatch 200 amplifier and then stored in a personal computer. The mEPSC in controls and immediately after the end of drug applications were sampled for 30 seconds and the frequency and amplitude were analyzed using Clampfit 8.1. Results All SG neurons in this database had spontaneous mEPSC with the holding potential of-70 mV. Capsaicin increased the frequency and mean amplitude of mEPSC. Cobalt inhibited the capsaicin-induced large-amplitude mEPSC, as well as the mean amplitude but

  8. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    Institute of Scientific and Technical Information of China (English)

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  9. Four types of potassium currents in motor nerve terminals of snake

    Institute of Scientific and Technical Information of China (English)

    施玉樑; 顾琛; 徐幼芬

    1997-01-01

    The experiments were perfomed on transvcrsus abdominis muscle of Elaphe dione by subendothelial recording. The results indicate that in snake motor nerve endings there exist four types of K* channels, i.e. voltage-dependent fast and slow K+ channels, Ca2 +-activated K+ channel and ATP-sensitive K+ channel, (i) The typical wave form of snake terminal current was the double-peaked negativity in standard solution. The first peak was at-tributed to Na influx (INa) in nodes of Ranvier. The second one was blocked by 3, 4-aminopyridine (3, 4-DAP) or te-traethylammonium (TEA), which corresponded to fast K+ outward current (IKF) through the fast K* channels in terminal part, (ii) After IKF as well as the slow K+ current (IKS) were blocked by 3, 4-DAP, the TEA-sensitive Ca2+-dependent K+ current (IK(Ca)) passing through Ca2+-activated K+ channel was revealed, whose amplitude depended on [K+ ]and [Ca2+ ] It was blocked by Ba2+ , Cd2+ or Co2+ . (iii) IK.F and IK(Ca) were blocked by TEA, while IK.S was retained. It

  10. Effect of actin microfilament on potassium current in guinea pig gastric myocytes

    Institute of Scientific and Technical Information of China (English)

    Xiang-Lan Li; Hai-Feng Zheng; Zherg-Yuan Jin; Meng Yang; Zai-Liu Li; Wen-Xie Xu

    2004-01-01

    AIM: To investigate the effect of actin microfilament on potassium current and hyposmotic membrane stretch-induced increase of potassium current in gastric antral circular myocytes of guinea pig.METHODS: Whole-cell patch clamp technique was used to record potassium current in isolated gastric myocyes.RESULTS: When the membrane potential was clamped at-60 mV, an actin microfilament disruptor, cytochanlasin-B(Cyt-B, 20 μmol/L in pipette) increased calcium-activated potassium current (IK(Ca)) and delayed rectifier potassium current (IK(V))to 138.4±14.3% and 142.1±13.1%respectively at +60 mV. In the same condition, an actin microfilament stabilizer phalloidin(20 μmol/L in pipette)inhibited IK(Ca) and IK(V) to 74.2±7.1% and 75.4±9.9%respectively. At the holding potential of -60 mV, hyposmotic membrane stretch increased IK(Ca)and IK(V) by 50.6±9.7%and 24.9±3.3% at +60 mV respectively. In the presence of cytochalasin-B and phalloidin (20 μmol/L, in the pipette)condition, hyposmotic membrane stretch also increased IK(Ca)by 44.5±7.9% and 55.7±9.8% at +60 mV respectively. In the same condition, cytochalasin-B and phalloidin also increased IK(V) by 23.0±5.5% and 30.3±4.5% respectively. However,Cyt-B and phalloidin did not affect the amplitude of hyposmotic membrane stretch-induced increase of IK(Ca)and Ik(V).CONCLUSION: Actin microfilaments regulate the activities of potassium channels, but they are not involved in the process of hyposmotic membrane stretch-induced increase of potassium currents in gastric antral circular myocytes of guinea pig.

  11. Adiponectin modulates excitability of rat paraventricular nucleus neurons by differential modulation of potassium currents.

    Science.gov (United States)

    Hoyda, Ted D; Ferguson, Alastair V

    2010-07-01

    The adipocyte-derived hormone adiponectin acts at two seven-transmembrane domain receptors, adiponectin receptor 1 and adiponectin receptor 2, present in the paraventricular nucleus of the hypothalamus to regulate neuronal excitability and endocrine function. Adiponectin depolarizes rat parvocellular preautonomic neurons that secrete either thyrotropin releasing hormone or oxytocin and parvocellular neuroendocrine corticotropin releasing hormone neurons, leading to an increase in plasma adrenocorticotropin hormone concentrations while also hyperpolarizing a subgroup of neurons. In the present study, we investigate the ionic mechanisms responsible for these changes in excitability in parvocellular paraventricular nucleus neurons. Patch clamp recordings of currents elicited from slow voltage ramps and voltage steps indicate that adiponectin inhibits noninactivating delayed rectifier potassium current (I(K)) in a majority of neurons. This inhibition produced a broadening of the action potential in cells that depolarized in the presence of adiponectin. The depolarizing effects of adiponectin were abolished in cells pretreated with tetraethyl ammonium (0/15 cells depolarize). Slow voltage ramps performed during adiponectin-induced hyperpolarization indicate the activation of voltage-independent potassium current. These hyperpolarizing responses were abolished in the presence of glibenclamide [an ATP-sensitive potassium (K(ATP)) channel blocker] (0/12 cells hyperpolarize). The results presented in this study suggest that adiponectin controls neuronal excitability through the modulation of different potassium conductances, effects which contribute to changes in excitability and action potential profiles responsible for peptidergic release into the circulation.

  12. Pharmacology of the human cell voltage-dependent cation channel. Part II: inactivation and blocking

    DEFF Research Database (Denmark)

    Bennekou, Poul; Barksmann, Trine L.; Kristensen, Berit I.

    2004-01-01

    Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents......Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents...

  13. Age-dependent variations in potassium sensitivity of A-currents in rat hippocampal neurons.

    Science.gov (United States)

    Klee, R; Eder, C; Ficker, E; Heinemann, U

    1997-09-01

    Hippocampal pyramidal neurons were either cultured from prenatal rats or acutely isolated from the brain of newborn and juvenile rats. The influence of lowering the concentration of the extracellular potassium concentration ([K+]o) on isolated fast transient outward K+ currents (I(A)) was studied in these neurons using the patch clamp technique in the whole cell configuration. With respect to the response of I(A) to lowering [K+]o, three types of cells were observed. The first subpopulation of neurons was characterized by a complete suppression of I(A) over the whole voltage range under potassium-free solutions (type A neurons). A second proportion of cells showed an increase of I(A) at test pulses below -0 mV and a decrease of I(A) at voltages above -0 mV (type B neurons). In a third group of neurons, amplitudes of I(A) increased at all potentials tested during omission of potassium ions from the extracellular superfusate (type C neurons). Whereas type A and type B neurons were preferentially found in freshly plated cultures and newborn rats, the majority of type C cells was detected in long-term cultures and in animals of older ages. Thus, hippocampal A-currents lose their sensitivity to extracellular potassium ions during early ontogenesis.

  14. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins.

    Science.gov (United States)

    Pinto, Bernardo I; García, Isaac E; Pupo, Amaury; Retamal, Mauricio A; Martínez, Agustín D; Latorre, Ramón; González, Carlos

    2016-07-22

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity.

  15. Potassium currents in human myogenic cells from healthy and congenital myotonic dystrophy foetuses.

    Science.gov (United States)

    Nurowska, Ewa; Constanti, Andrew; Dworakowska, Beata; Mouly, Vincent; Furling, Denis; Lorenzon, Paola; Pietrangelo, Tiziana; Dołowy, Krzysztof; Ruzzier, Fabio

    2009-01-01

    The whole-cell patch clamp technique was used to record potassium currents in in vitro differentiating myoblasts isolated from healthy and myotonic dystrophy type 1 (DM1) foetuses carrying 2000 CTG repeats. The fusion of the DM1 myoblasts was reduced in comparison to that of the control cells. The dystrophic muscle cells expressed less voltage-activated K(+) (delayed rectifier and non-inactivating delayed rectifier) and inward rectifier channels than the age-matched control cells. However, the resting membrane potential was not significantly different between the control and the DM1 cells. After four days in a differentiation medium, the dystrophic cells expressed the fast-inactivating transient outward K(+) channels, which were not observed in healthy cells. We suggest that the low level of potassium currents measured in differentiated DM1 cells could be related to their impaired fusion.

  16. Cholesterol influences potassium currents in inner hair cells isolated from guinea pig cochlea.

    Science.gov (United States)

    Kimitsuki, Takashi

    2017-02-01

    There is a correlation between serum hyperlipidemia and hearing loss. Cholesterol is an integral component of the cell membrane and regulates the activity of ion channels in the lipid bilayer. The aim of this study was to investigate the effects of cholesterol on the potassium currents in IHCs by using the cholesterol-depleting drug, MβCD, and water-soluble cholesterol. IHCs were acutely isolated from a mature guinea-pig cochlea and potassium currents were recorded. MβCD and water-soluble cholesterol were applied to IHCs under pressure puff pipettes. IHCs showed outwardly rectifying currents (IK,f and IK,s) in response to depolarizing voltage pulses, with only a slight inward current (IK,n) when hyperpolarized. In 10mM MβCD solutions, the amplitude of outward K currents reversely decreased; however, fast activation kinetics was preserved. In contrast, in solution of 1mM water-soluble cholesterol, the amplitude of outward K currents reversely increased. At the membrane potential of +110mV, relative conductances were 0.87±0.07 and 1.18±0.11 in MβCD solutions and cholesterol solutions, respectively. The amplitude of K currents in isolated IHCs was reversely changed by cholesterol-depleting drug and water-soluble cholesterol. These results demonstrated the possibility of the involvement of IHC function in hyperlipidemia-induced inner ear disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Conductance hysteresis in the voltage-dependent anion channel.

    Science.gov (United States)

    Rappaport, Shay M; Teijido, Oscar; Hoogerheide, David P; Rostovtseva, Tatiana K; Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2015-09-01

    Hysteresis in the conductance of voltage-sensitive ion channels is observed when the transmembrane voltage is periodically varied with time. Although this phenomenon has been used in studies of gating of the voltage-dependent anion channel, VDAC, from the outer mitochondrial membrane for nearly four decades, full hysteresis curves have never been reported, because the focus was solely on the channel opening branches of the hysteresis loops. We studied the hysteretic response of a multichannel VDAC system to a triangular voltage ramp the frequency of which was varied over three orders of magnitude, from 0.5 mHz to 0.2 Hz. We found that in this wide frequency range the area encircled by the hysteresis curves changes by less than a factor of three, suggesting broad distribution of the characteristic times and strongly non-equilibrium behavior. At the same time, quasi-equilibrium two-state behavior is observed for hysteresis branches corresponding to VDAC opening. This enables calculation of the usual equilibrium gating parameters, gating charge and voltage of equipartitioning, which were found to be almost insensitive to the ramp frequency. To rationalize this peculiarity, we hypothesize that during voltage-induced closure and opening the system explores different regions of the complex free energy landscape, and, in the opening branch, follows quasi-equilibrium paths.

  18. Selective modulation of cellular voltage dependent calcium channels by hyperbaric pressure - a suggested HPNS partial mechanism

    Directory of Open Access Journals (Sweden)

    Ben eAviner

    2014-05-01

    Full Text Available Professional deep sea divers experience motor and cognitive impairment, known as High Pressure Neurological Syndrome (HPNS, when exposed to pressures of 100 msw (1.1MPa and above, considered to be the result of synaptic transmission alteration. Previous studies have indicated modulation of presynaptic Ca2+ currents at high pressure. We directly measured for the first time pressure effects on the currents of voltage dependent Ca2+ channels (VDCCs expressed in Xenopus oocytes. Pressure selectivity augmented the current in CaV1.2 and depressed it in CaV3.2 channels. Pressure application also affected the channels' kinetics, such as ƮRise, ƮDecay. Pressure modulation of VDCCs seems to play an important role in generation of HPNS signs and symptoms.

  19. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion.

    Science.gov (United States)

    Finol-Urdaneta, Rocio K; Remedi, Maria S; Raasch, Walter; Becker, Stefan; Clark, Robert B; Strüver, Nina; Pavlov, Evgeny; Nichols, Colin G; French, Robert J; Terlau, Heinrich

    2012-05-01

    Glucose-stimulated insulin secretion (GSIS) relies on repetitive, electrical spiking activity of the beta cell membrane. Cyclic activation of voltage-gated potassium channels (K(v) ) generates an outward, 'delayed rectifier' potassium current, which drives the repolarizing phase of each spike and modulates insulin release. Although several K(v) channels are expressed in pancreatic islets, their individual contributions to GSIS remain incompletely understood. We take advantage of a naturally occurring cone-snail peptide toxin, Conkunitzin-S1 (Conk-S1), which selectively blocks K(v) 1.7 channels to provide an intrinsically limited, finely graded control of total beta cell delayed rectifier current and hence of GSIS. Conk-S1 increases GSIS in isolated rat islets, likely by reducing K(v) 1.7-mediated delayed rectifier currents in beta cells, which yields increases in action potential firing and cytoplasmic free calcium. In rats, Conk-S1 increases glucose-dependent insulin secretion without decreasing basal glucose. Thus, we conclude that K(v) 1.7 contributes to the membrane-repolarizing current of beta cells during GSIS and that block of this specific component of beta cell K(v) current offers a potential strategy for enhancing GSIS with minimal risk of hypoglycaemia during metabolic disorders such as Type 2 diabetes.

  20. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence

    Directory of Open Access Journals (Sweden)

    Rajeev Gupta

    2017-06-01

    Full Text Available Voltage-Dependent Anion Channel (VDAC phosphorylated by c-Jun N-terminal Kinase-3 (JNK3 was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  1. Potassium Current Is Not Affected by Long-Term Exposure to Ghrelin or GHRP-6 in Somatotropes GC Cells

    Directory of Open Access Journals (Sweden)

    Belisario Domínguez Mancera

    2013-01-01

    Full Text Available Ghrelin is a growth hormone (GH secretagogue (GHS and GHRP-6 is a synthetic peptide analogue; both act through the GHS receptor. GH secretion depends directly on the intracellular concentration of Ca2+; this is determined from the intracellular reserves and by the entrance of Ca2+ through the voltage-dependent calcium channels, which are activated by the membrane depolarization. Membrane potential is mainly determined by K+ channels. In the present work, we investigated the effect of ghrelin (10 nM or GHRP-6 (100 nM for 96 h on functional expression of voltage-dependent K+ channels in rat somatotropes: GC cell line. Physiological patch-clamp whole-cell recording was used to register the K+ currents. With Cd2+ (1 mM and tetrodotoxin (1 μm in the bath solution recording, three types of currents were characterized on the basis of their biophysical and pharmacological properties. GC cells showed a K+ current with a transitory component sensitive to 4-aminopyridine, which represents ~40% of the total outgoing current; a sustained component named delayed rectifier , sensitive to tetraethylammonium; and a third type of K+ current was recorded at potentials more negative than −80 mV, permitting the entrance of K+ named inward rectifier (KIR. Chronic treatment with ghrelin or GHRP-6 did not modify the functional expression of K+ channels, without significant changes ( in the amplitudes of the three currents observed; in addition, there were no modifications in their biophysical properties and kinetic activation or inactivation.

  2. A Small Potassium Current in AgRP/NPY Neurons Regulates Feeding Behavior and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Yanlin He

    2016-11-01

    Full Text Available Neurons that co-express agouti-related peptide (AgRP and neuropeptide Y (NPY are indispensable for normal feeding behavior. Firing activities of AgRP/NPY neurons are dynamically regulated by energy status and coordinate appropriate feeding behavior to meet nutritional demands. However, intrinsic mechanisms that regulate AgRP/NPY neural activities during the fed-to-fasted transition are not fully understood. We found that AgRP/NPY neurons in satiated mice express high levels of the small-conductance calcium-activated potassium channel 3 (SK3 and are inhibited by SK3-mediated potassium currents; on the other hand, food deprivation suppresses SK3 expression in AgRP/NPY neurons, and the decreased SK3-mediated currents contribute to fasting-induced activation of these neurons. Genetic mutation of SK3 specifically in AgRP/NPY neurons leads to increased sensitivity to diet-induced obesity, associated with chronic hyperphagia and decreased energy expenditure. Our results identify SK3 as a key intrinsic mediator that coordinates nutritional status with AgRP/NPY neural activities and animals’ feeding behavior and energy metabolism.

  3. A naturally occurring omega current in a Kv3 family potassium channel from a platyhelminth

    Directory of Open Access Journals (Sweden)

    Spencer Andrew N

    2008-06-01

    Full Text Available Abstract Background Voltage-gated ion channels are membrane proteins containing a selective pore that allows permeable ions to transit the membrane in response to a change in the transmembrane voltage. The typical selectivity filter in potassium channels is formed by a tetrameric arrangement of the carbonyl groups of the conserved amino-acid sequence Gly-Tyr-Gly. This canonical pore is opened or closed by conformational changes that originate in the voltage sensor (S4, a transmembrane helix with a series of positively charged amino acids. This sensor moves through a gating pore formed by elements of the S1, S2 and S3 helices, across the plane of the membrane, without allowing ions to pass through the membrane at that site. Recently, synthetic mutagenesis studies in the Drosophila melanogaster Shaker channel and analysis of human disease-causing mutations in sodium channels have identified amino acid residues that are integral parts of the gating-pore; when these residues are mutated the proteins allow a non-specific cation current, known as the omega current, to pass through the gating-pore with relatively low selectivity. Results The N.at-Kv3.2 potassium channel has an unusual weak inward rectifier phenotype. Several mutations of two amino acids in the voltage sensing (S4 transmembrane helix change the phenotype to a typical delayed rectifier. The inward rectifier channels (wild-type and mutant are sensitive to 4-aminopyridine (4-AP but not tetra-ethyl ammonium (TEA, whereas the delayed rectifier mutants are sensitive to TEA but not 4-AP. The inward rectifier channels also manifest low cation selectivity. The relative selectivity for different cations is sensitive to specific mutations in the S4 helix, Conclusion N.at-Kv3.2, a naturally occurring potassium channel of the Kv3 sequence family, mediates ion permeation through a modified gating pore, not the canonical, highly selective pore typical of potassium channels. This channel has evolved to

  4. Acetylcholine modulates transient outward potassium channel in acutely isolated cerebral cortical neurons of rats

    Institute of Scientific and Technical Information of China (English)

    Lanwei Cui; Tao Sun; Lihui Qu; Yurong Li; Haixia Wen

    2009-01-01

    BACKGROUND:The neuronal transient outward potassium channel has been shown to be highly associated with acetylcholine.However,the influence of acetylcholine on the transient outward potassium current in cerebral cortical neurons remains poorly understood.OBJECTIVE:To investigate acetylcholine modulation on transient outward potassium current in rat parietal cortical neurons using the whole-cell patch-clamp technique.DESIGN,TIME AND SETTING:A neuroelectrophysiology study was performed at the Department of Physiology,Harbin Medical University between January 2005 and January 2006.MATERIALS:Wistar rats were provided by the Animal Research Center,the Second Hospital of Harbin Medical University;PC-IIC patch-clamp amplifier and IBBClamp data collection analysis system were provided by Huazhong University for Science and Technology,Wuhan,China;PP-83 microelectrode puller was purchased from Narrishage,Japan.METHODS:The parietal somatosensory cortical neurons were acutely dissociated,and the modulation of acetylcholine (0.1,1,10,100 μmol/L) on transient outward potassium channel was recorded using the whole-cell patch-clamp technique.MAIN OUTCOME MEASURES:Influence of acetylcholine on transient outward potassium current,potassium channel activation,and inactivation.RESULTS:The inhibitory effect of acetylcholine on transient outward potassium current was dose- and voltage-dependent (P<0.01).Acetylcholine was found to significantly affect the activation process of transient outward potassium current,i.e.,the activation curve of transient outward potassium current was left-shifted,while the inactivation curve was shifted to hyperpolarization.Acetylcholine significantly prolonged the time constant of recovery from inactivation of transient outward potassium current (P<0.01).CONCLUSION:These results suggest that acetylcholine inhibits transient outward potassium current by regulating activation and inactivation processes of the transient outward potassium channel.

  5. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Ting-Feng Lin

    Full Text Available Eag (Kv10 and Erg (Kv11 belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH. While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1 and human Erg (hERG1 channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.

  6. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    Science.gov (United States)

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-01

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation.

  7. A conserved threonine in the S1-S2 loop of KV7.2 and K V7.3 channels regulates voltage-dependent activation.

    Science.gov (United States)

    Füll, Yvonne; Seebohm, Guiscard; Lerche, Holger; Maljevic, Snezana

    2013-06-01

    The voltage-gated potassium channels KV7.2 and KV7.3 (KCNQ2/3 genes) play an important role in regulating neuronal excitability. More than 50 KCNQ2/3 mutations have been identified to cause an inherited form of epilepsy in newborns. For two of those (E119G and S122L) found in the S1-S2 region of KV7.2, we previously showed a decreased channel availability mainly at action potential subthreshold voltages caused by a slight depolarizing shift of the activation curve. Interestingly, recent studies revealed that a threonine residue within the S1-S2 loop, highly conserved among different classes of KV channels, is crucial for both their function and surface expression. To investigate the functional role of the homologous threonine residues in KV7.2 (T114) and KV7.3 (T144) channels, we replaced them with alanine and examined the electrophysiological properties using heterologous expression in CHO cells and whole cell patch clamping. Channels comprising mutant subunits yielded decreased potassium currents with slowed activation and accelerated deactivation kinetics. However, the most striking effect was a depolarizing shift in the voltage dependence of activation reaching +30 mV upon co-expression of both mutant subunits. Potential interactions of T114 within the channel were analyzed by creating a 3D homology model of KV7.2 in an open state suggesting that this residue plays a central role in the formation of a stable interface between the S1-S2 and the S5 segment helices. This could be the explanation why substitution of the conserved threonine in KV7.2 and KV7.3 channels destabilizes the open and favors the closed state of these channels.

  8. Saikosaponin a Enhances Transient Inactivating Potassium Current in Rat Hippocampal CA1 Neurons

    Directory of Open Access Journals (Sweden)

    Wei Xie

    2013-01-01

    Full Text Available Saikosaponin a (SSa, a main constituent of the Chinese herb Bupleurum chinense DC., has been demonstrated to have antiepileptic activity. Recent studies have shown that SSa could inhibit NMDA receptor current and persistent sodium current. However, the effects of SSa on potassium (K+ currents remain unclear. In this study, we tested the effect of SSa on 4AP-induced epileptiform discharges and K+ currents in CA1 neurons of rat hippocampal slices. We found that SSa significantly inhibited epileptiform discharges frequency and duration in hippocampal CA1 neurons in the 4AP seizure model in a dose-dependent manner with an IC50 of 0.7 μM. SSa effectively increased the amplitude of ITotal and IA, significantly negative-shifted the activation curve, and positive-shifted steady-state curve of IA. However, SSa induced no significant changes in the amplitude and activation curve of IK. In addition, SSa significantly increased the amplitude of 4AP-sensitive K+ current, while there was no significant change in the amplitude of TEA-sensitive K+ current. Together, our data indicate that SSa inhibits epileptiform discharges induced by 4AP in a dose-dependent manner and that SSa exerts selectively enhancing effects on IA. These increases in IA may contribute to the anticonvulsant mechanisms of SSa.

  9. The Mechanism of Voltage Dependent Gating of the NaChBac Prokaryotic Sodium Channel

    Science.gov (United States)

    Decaen, Paul G.

    Electrical signaling in cells depends on selective conductance of ions through membrane proteins called 'voltage gated ion channels'. These channels are characterized by their ability turn on and off the flow of ionic current by opening and closing their conductive pore in response to changes in membrane potential. The opening and closing of the pore is a mechanically linked to conformational movement of the positively charged fourth transmembrane segment (S4) in 'the voltage sensor' region. How the S4 moves in response to membrane potential is a controversial subject. In this thesis, we used the prokaryotic sodium channel NaChBac as our model sodium channel to study voltage dependent movement of the S4 in the voltage sensor. We use a disulfide-locking method where we introduced pairs of cysteines in the voltage sensor that crosslink and trap the S4 in its path after depolarization. We screened over one hundred mutations of the NaChBac channel in the whole cell patch clamp assay and demonstrated discrete and sequential voltage dependent ion pair interactions that occur in at least three states between the positively charged residues of the S4 segment and the acidic residues in the S1, S2 and S3 segments. In conjunction with structural modeling of the voltage sensor and our disulfide locking data, we propose that the S4 moves in and out of the plane of the membrane 8-13 A, forming distinct gating charge interactions with counter charges of the voltage sensor and adopts a 310 helix over a portion of its structure during activation. These findings are compatible with the sliding helix model and refine our understanding of the structural determinates of voltage sensor function in voltage gated ion channels.

  10. Control of Spontaneous Firing Patterns by the Selective Coupling of Calcium Currents to Calcium Activated Potassium Currents in Striatal Cholinergic Interneurons

    OpenAIRE

    Goldberg, Joshua A.; Wilson, Charles J.

    2005-01-01

    The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs): BK currents contribute to action potential (AP) repolarization; SK currents generate an apamin-sensitive medium AHP (mAHP) following each AP; and bursts of APs generate long-lasting slow AHPs (sAHPs) due to apamin-insensitive currents. As all these currents are calcium-dependent, we conducted voltage- and current-clamp whole-cell r...

  11. Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current.

    Science.gov (United States)

    Espinosa, Leon; Paret, Laurent; Ojeda, Carlos; Tourneur, Yves; Delmas, Pierre D; Chenu, Chantal

    2002-10-01

    Cell movement and spreading involve calcium-dependent processes and ionic channel activation. During bone resorption, osteoclasts alternate between spread, motile and resorptive phases. We investigated whether the electrical membrane properties of osteoclasts were linked to their membrane morphological changes. Rabbit osteoclasts were recorded by time-lapse videomicroscopy performed simultaneously with patch-clamp whole cell and single channel recordings. Original image analysis methods were developed and used to demonstrate for the first time an oscillatory activation of a spontaneous membrane current in osteoclasts, which is directly correlated to the membrane movement rate. This current was identified as a calcium-dependent potassium current (IK(Ca)) that is sensitive to both charybdotoxin and apamin and was generated by a channel with unitary conductance of approximately 25+/-2 pS. Blockade of this current also decreased osteoclast spreading and inhibited bone resorption in vitro, demonstrating a physiological role for this current in osteoclast activity. These results establish for the first time a temporal correlation between lamellipodia formation kinetics and spontaneous peaks of IK(Ca), which are both involved in the control of osteoclast spreading and bone resorption.

  12. Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current.

    Science.gov (United States)

    Best, Tyler K; Siarey, Richard J; Galdzicki, Zygmunt

    2007-01-01

    Down syndrome (DS) is the most common nonheritable cause of mental retardation. DS is the result of the presence of an extra chromosome 21 and its phenotype may be a consequence of overexpressed genes from that chromosome. One such gene is Kcnj6/Girk2, which encodes the G-protein-coupled inward rectifying potassium channel subunit 2 (GIRK2). We have recently shown that the DS mouse model, Ts65Dn, overexpresses GIRK2 throughout the brain and in particular the hippocampus. Here we report that this overexpression leads to a significant increase ( approximately 2-fold) in GABA(B)-mediated GIRK current in primary cultured hippocampal neurons. The dose response curves for peak and steady-state GIRK current density is significantly shifted left toward lower concentrations of baclofen in Ts65Dn neurons compared with diploid controls, consistent with increased functional expression of GIRK channels. Stationary fluctuation analysis of baclofen-induced GIRK current from Ts65Dn neurons indicated no significant change in single-channel conductance compared with diploid. However, significant increases in GIRK channel density was found in Ts65Dn neurons. In normalized baclofen-induced GIRK current and GIRK current kinetics no difference was found between diploid and Ts65Dn neurons, which suggests unimpaired mechanisms of interaction between GIRK channel and GABA(B) receptor. These results indicate that increased expression of GIRK2 containing channels have functional consequences that likely affect the balance between excitatory and inhibitory neuronal transmission.

  13. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    Science.gov (United States)

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current IK1, which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential IK1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that IK1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  14. A role of stretch-activated potassium currents in the regulation of uterine smooth muscle contraction

    Institute of Scientific and Technical Information of China (English)

    Iain L O BUXTON; Nathanael HEYMAN; Yi-ying WU; Scott BARNETT; Craig ULRICH

    2011-01-01

    Rates of premature birth are alarming and threaten societies and healthcare systems worldwide. Premature labor results in premature birth in over 50% of cases. Preterm birth accounts for three-quarters of infant morbidity and mortality. Children that survive birth before 34 weeks gestation often face life-long disability. Current treatments for preterm labor are wanting. No treatment has been found to be generally effective and none are systematically evaluated beyond 48 h. New approaches to the treatment of preterm labor are desperately needed. Recent studies from our laboratory suggest that the uterine muscle is a unique compartment with regulation of uterine relaxation unlike that of other smooth muscles. Here we discuss recent evidence that the mechanically activated 2-pore potassium channel, TREK-1, may contribute to contraction-relaxation signaling in uterine smooth muscle and that TREK-1 gene variants associated with human labor and preterm labor may lead to a better understanding of preterm labor and its possible prevention.

  15. Tubocurarine blocks a calcium-dependent potassium current in rat tumoral pituitary cells.

    Science.gov (United States)

    Vacher, P; Vacher, A M; Mollard, P

    1998-04-30

    We investigated the effects of potassium channel inhibitors on electrical activity, membrane ionic currents, intracellular calcium concentration ([Ca2+]i) and hormone release in GH3/B6 cells (a line of pituitary origin). Patch-clamp recordings show a two-component after hyperpolarization (AHP) following each action potential (current clamp) or a two-component tail current (voltage-clamp). Both components can be blocked by inhibiting Ca2+ influx. Application of D-tubocurarine (dTc) (20-500 microM) reversibly suppressed the slowly decaying Ca2+-activated K+ tail current (I AHPs) in a concentration-dependent manner. On the other hand, low doses of tetraethylammonium ions (TEA+) only blocked the rapidly decaying voltage- and Ca2+-activated K+ tail current (I AHPf). Therefore, GH3/B6 cells exhibit at least two quite distinct Ca2+-dependent K+ currents, which differ in size, voltage- and Ca2+-sensitivity, kinetics and pharmacology. These two currents also play quite separate roles in shaping the action potential. d-tubocurarine increased spontaneous Ca2+ action potential firing, whereas TEA increased action potential duration. Thus, both agents stimulated Ca2+ entry. I AHPs is activated by a transient increase in [Ca2+]i such as a thyrotrophin releasing hormone-induced Ca2+ mobilization. All the K+ channel inhibitors we tested: TEA, apamin, dTC and charybdotoxin, stimulated prolactin and growth hormone release in GH3/B6 cells. Our results show that I AHPs is a good sensor for subplasmalemmal Ca2+ and that dTc is a good pharmacological tool for studying this current.

  16. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    Science.gov (United States)

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.

  17. Sodium metabisulfite modulation of potassium channels in pain-sensing dorsal root ganglion neurons.

    Science.gov (United States)

    Nie, Aifang; Wei, Cailing; Meng, Ziqiang

    2009-12-01

    The effects of sodium metabisulfite (SMB), a general food preservative, on potassium currents in rat dorsal root ganglion (DRG) neurons were investigated using the whole-cell patch-clamp technique. SMB increased the amplitudes of both transient outward potassium currents and delayed rectifier potassium current in concentration- and voltage-dependent manner. The transient outward potassium currents (TOCs) include a fast inactivating (A-current or IA) current and a slow inactivating (D-current or ID) current. SMB majorly increased IA, and ID was little affected. SMB did not affect the activation process of transient outward currents (TOCs), but the inactivation curve of TOCs was shifted to more positive potentials. The inactivation time constants of TOCs were also increased by SMB. For delayed rectifier potassium current (IK), SMB shifted the activation curve to hyperpolarizing direction. SMB differently affected TOCs and IK, its effects major on A-type K+ channels, which play a role in adjusting pain sensitivity in response to peripheral redox conditions. SMB did not increase TOCs and IK when adding DTT in pipette solution. These results suggested that SMB might oxidize potassium channels, which relate to adjusting pain sensitivity in pain-sensing DRG neurons.

  18. Inhibition of cardiac Kv1.5 potassium current by the anesthetic midazolam: mode of action

    Directory of Open Access Journals (Sweden)

    Vonderlin N

    2014-11-01

    Full Text Available Nadine Vonderlin,1 Fathima Fischer,1 Edgar Zitron,1,2 Claudia Seyler,1 Daniel Scherer,1 Dierk Thomas,1,2 Hugo A Katus,1,2 Eberhard P Scholz1 1Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany; 2German Centre for Cardiovascular Research (DZHK, Partner Site Heidelberg/Mannheim, Heidelberg, GermanyAbstract: Midazolam is a short-acting benzodiazepine that is widely used in anesthesia. Despite its widespread clinical use, detailed information about cardiac side effects of midazolam is largely lacking. Using the double-electrode voltage clamp technique, we studied pharmacological effects of midazolam on heterologously expressed Kv1.5 channels underlying atrial repolarizing current IKur. Midazolam dose-dependently inhibited Kv1.5 current, yielding an IC50 of 17 µM in an HEK cell line and an IC50 of 104 µM in Xenopus oocytes. We further showed that midazolam did not affect the half-maximal activation voltage of Kv1.5 channels. However, a small negative shift of the inactivation curve could be observed. Midazolam acted as a typical open-channel inhibitor with rapid onset of block and without frequency dependence of block. Taken together, midazolam is an open channel inhibitor of cardiac Kv1.5 channels. These data add to the current understanding of the pharmacological profile of midazolam.Keywords: anesthetics, potassium channels, pharmacology

  19. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-02-03

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  20. G Protein-induced Trafficking of Voltage-dependent Calcium Channels

    National Research Council Canada - National Science Library

    Eugene Tombler; Nory Jun Cabanilla; Paul Carman; Natasha Permaul; John J. Hall; Ryan W. Richman; Jessica Lee; Jennifer Rodriguez; Dan P. Felsenfeld; Robert F. Hennigan; María A. Diversé-Pierluissi

    2006-01-01

    .... Here we report a novel mechanism for G protein-mediated modulation of neuronal voltage-dependent calcium channels that involves the destabilization and subsequent removal of calcium channels from the plasma membrane...

  1. Voltage-dependent Ca2+ channel and Na+ channel in frog taste cells.

    Science.gov (United States)

    Kashiwayanagi, M; Miyake, M; Kurihara, K

    1983-01-01

    Frog taste cells were hyperpolarized by injecting an inward current pulse, and regenerative anode-break potentials were observed at the termination of the current pulse. The results obtained are as follows. 1) The magnitude of the anode-break potentials increased with the extent of hyperpolarization of taste cells and reached a saturation level around -200 mV. 2) The magnitudes of the anode-break potentials observed in 80 different taste cells hyperpolarized to about -200 mV were distributed widely from cell to cell. The average magnitude was 39 mV. 3) The anode-break potentials were recorded after the lingual artery was perfused with artificial solutions containing various channel blockers. The results indicated that the anode-break potentials are composed of Na+ and Ca2+ components. 4) The slope of the current-voltage relation obtained with cells hyperpolarized to 100 mV was appreciably decreased above -50 mV by application of tetrodotoxin to the perfusing solution. Discussion was made on possible roles of the voltage-dependent Na+ and Ca2+ channels in the electrotonic spreading of the depolarization at the receptor membranes to the synaptic area and in releasing a chemical transmitter.

  2. Gating currents from a Kv3 subfamily potassium channel: charge movement and modification by BDS-II toxin.

    Science.gov (United States)

    Wang, Zhuren; Robertson, Brian; Fedida, David

    2007-11-01

    Kv3 channels have a major role in determining neuronal excitability, and are characterized by ultra-rapid kinetics of gating and a high activation threshold. However, the gating currents, which occur as a result of positional changes of the charged elements in the channel structure during activation, are not well understood. Here we report a study of gating currents from wild-type Kv3.2b channels, expressed in human embryonic kidney (HEK) cells to facilitate high time-resolution recording. On-gating currents (I(g,on)) had extremely rapid kinetics such that at +80 mV, the time constant for the decay of I(g,on) was only approximately 0.3 ms. Decay of I(g,on) appeared mono-exponential at all potentials studied, and in support of this, the charge-voltage (Q-V) relationship was fitted with a single Boltzmann function, supporting the idea that only one charge system is required to account for the time course of I(g,on) and the voltage dependence of Q(on). The voltage (V((1/2))) for half movement of gating charge was -8.4 +/- 4.0 mV (n = 6), which closely matches the voltage dependence of activation of Kv3.2b ionic currents reported before. Depolarizations to more positive potentials than 0 mV decreased the amplitude and slowed the decay of the off-gating currents (I(g,off)), suggesting that a rate-limiting step in opening was present in Kv3 channels as in Shaker and other Kv channels. Return of charge was negatively shifted along the potential axis with a V((1/2)) of Q(off) of -80.9 +/- 0.8 mV (n = 3), which allowed approximately 90% charge return upon repolarization to -100 mV. BDS-II toxin apparently reduced I(g,on), and greatly slowed the kinetics of I(g,on), while shifting the Q-V relationship in the depolarizing direction. However, the Q-V relationship remained well fitted by a single Boltzmann function. These data provide the first description of Kv3 gating currents and give further insight into the interaction of BDS toxins and Kv3 channels.

  3. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization

    DEFF Research Database (Denmark)

    Liang, Bo; Nissen, Jakob D; Laursen, Morten;

    2014-01-01

    The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle.......The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle....

  4. Pharmacology of the human red cell voltage-dependent cation channel Part I. Activation by clotrimazole and analogues

    DEFF Research Database (Denmark)

    Barksmann, Trine Lyberth; Kristensen, Berit I.; Christophersen, Palle.

    2004-01-01

    Human red cells, Nonselective voltage dependent cation channel, NSVDC channel, Gárdos channel blockers, NSVDC channel activators......Human red cells, Nonselective voltage dependent cation channel, NSVDC channel, Gárdos channel blockers, NSVDC channel activators...

  5. Submicromolar concentrations of zinc irreversibly reduce a calcium-dependent potassium current in rat hippocampal neurons in vitro.

    Science.gov (United States)

    Sim, J A; Cherubini, E

    1990-01-01

    The action of the endogenous divalent cation zinc on Ca2+ and Ca2(+)-dependent currents was studied in rat hippocampal CA1 and CA3 neurons in vitro, by means of a single electrode voltage clamp technique. Bath application of zinc (0.5-1 microM) produced a small membrane depolarization associated with an increase in synaptic noise and cell excitability and a depression of the afterhyperpolarization following a train of action potentials. The effects on the afterhyperpolarization, could not be reversed on washout. In voltage-clamped neurons, zinc induced a steady inward current and reduced, at resting membrane potential, the peak amplitude of the outward current underlying the afterhyperpolarization, IAHP. In caesium loaded neurons (in the presence of tetrodotoxin and tetraethylammonium), zinc reduced the slow inactivating Ca2+ current activated from a holding potential of -40 mV. Similar results were observed with nickel and cobalt at comparable concentrations, with Zn2+ greater than Ni2+ greater than Co2+, in their order of potency. In contrast to nickel and cobalt the effects of zinc did not reverse on washout. These results suggest that low concentrations of zinc enhance cell excitability by reducing IAHP. In addition, zinc reduces the slow inactivating voltage-dependent Ca2+ current. The irreversible effect of this metal ion is compatible with a toxic, intracellular site of action.

  6. Pharmacological activation of rapid delayed rectifier potassium current suppresses bradycardia-induced triggered activity in the isolated guinea pig heart

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    arrhythmias. We present here data that support that NS3623 affects native I(Kr) and report the effects that activating this potassium current have in the intact guinea pig heart. In Langendorff-perfused hearts, the compound showed a concentration-dependent shortening of action potential duration, which...

  7. Voltage dependence of proton pumping by bacteriorhodopsin mutants with altered lifetime of the M intermediate.

    Directory of Open Access Journals (Sweden)

    Sven Geibel

    Full Text Available The light-driven proton pump bacteriorhodopsin (BR from Halobacterium salinarum is tightly regulated by the [H(+] gradient and transmembrane potential. BR exhibits optoelectric properties, since spectral changes during the photocycle are kinetically controlled by voltage, which predestines BR for optical storage or processing devices. BR mutants with prolonged lifetime of the blue-shifted M intermediate would be advantageous, but the optoelectric properties of such mutants are still elusive. Using expression in Xenopus oocytes and two-electrode voltage-clamping, we analyzed photocurrents of BR mutants with kinetically destabilized (F171C, F219L or stabilized (D96N, D96G M intermediate in response to green light (to probe H(+ pumping and blue laser flashes (to probe accumulation/decay of M. These mutants have divergent M lifetimes. As for BR-WT, this strictly correlates with the voltage dependence of H(+ pumping. BR-F171C and BR-F219L showed photocurrents similar to BR-WT. Yet, BR-F171C showed a weaker voltage dependence of proton pumping. For both mutants, blue laser flashes applied during and after green-light illumination showed reduced M accumulation and shorter M lifetime. In contrast, BR-D96G and BR-D96N exhibited small photocurrents, with nonlinear current-voltage curves, which increased strongly in the presence of azide. Blue laser flashes showed heavy M accumulation and prolonged M lifetime, which accounts for the strongly reduced H(+ pumping rate. Hyperpolarizing potentials augmented these effects. The combination of M-stabilizing and -destabilizing mutations in BR-D96G/F171C/F219L (BR-tri shows that disruption of the primary proton donor Asp-96 is fatal for BR as a proton pump. Mechanistically, M destabilizing mutations cannot compensate for the disruption of Asp-96. Accordingly, BR-tri and BR-D96G photocurrents were similar. However, BR-tri showed negative blue laser flash-induced currents even without actinic green light, indicating

  8. Docosahexaenoic acid has influence on action potentials and transient outward potassium currents of ventricular myocytes

    Directory of Open Access Journals (Sweden)

    Yang Zhen-Yu

    2010-04-01

    Full Text Available Abstract Background There are many reports about the anti-arrhythmic effects of ω-3 polyunsaturated fatty acids, however, the mechanisms are still not completely delineated. The purpose of this study was to investigate the characteristics of action potentials and transient outward potassium currents (Ito of Sprague-Dawley rat ventricular myocytes and the effects of docosahexaenoic acid (DHA on action potentials and Ito. Methods The calcium-tolerant rat ventricular myocytes were isolated by enzyme digestion. Action potentials and Ito of epicardial, mid-cardial and endocardial ventricular myocytes were recorded by whole-cell patch clamp technique. Results 1. Action potential durations (APDs were prolonged from epicardial to endocardial ventricular myocytes (P 2. Ito current densities were decreased from epicardial to endocardial ventricular myocytes, which were 59.50 ± 15.99 pA/pF, 29.15 ± 5.53 pA/pF, and 12.29 ± 3.62 pA/pF, respectively at +70 mV test potential (P 3. APDs were gradually prolonged with the increase of DHA concentrations from 1 μmol/L to 100 μmol/L, however, APDs changes were not significant as DHA concentrations were in the range of 0 μmol/L to 1 μmol/L. 4. Ito currents were gradually reduced with the increase of DHA concentrations from 1 μmol/L to 100 μmol/L, and its half-inhibited concentration was 5.3 μmol/L. The results showed that there were regional differences in the distribution of action potentials and Ito in rat epicardial, mid-cardial and endocardial ventricular myocytes. APDs were prolonged and Ito current densities were gradually reduced with the increase of DHA concentrations. Conclusion The anti-arrhythmia mechanisms of DHA are complex, however, the effects of DHA on action potentials and Ito may be one of the important causes.

  9. Over Expression of Voltage Dependent Anion Channel 2 (VDAC2 in Muscles of Electrically Stunned Chickens

    Directory of Open Access Journals (Sweden)

    Norshahida Abu Samah, Azura Amid, and Faridah Yusof

    2011-12-01

    Full Text Available Water bath stunning is a common practice in commercial slaughterhouses. Such treatment is economic and in line with animal welfare practice. However, the conditions applied for the stunning process may vary from a slaughterhouse to another slaughterhouse. Such a loose regulation on the stunning procedure has opened up doors for food adulteration such as over dose stunning. In this study, a simple and reliable approach using proteomics have been developed to study the effect of different currents and voltages in stunning on the protein expression of the chickens. Protein profiles of the chickens were constructed in order to detect any differences in protein expression and modifications. The different voltage studied were 10 V, 40 V and 70 V while the values for current studied were 0.25 A, 0.5 A, and 0.75 A. After the proteomics analyses using 2D Platinum ImageMaster 6.0 and Matrix-assisted laser desorption ionization- time of flight (MALDI TOF spectrometry identification, Voltage dependent anion channel 2 (VDAC2 was identified to be over expressed in the muscle sample of over stunned chicken. The over expression of VDAC2 was confirmed at the transcriptional level of RNA expression. Real Time PCR showed that all over stunned samples contained higher mRNA expression level for VDAC2 genes. The mRNA level of VDAC2 was up-regulated by 59.87 fold change when normalized with housekeeping gene. In conclusion, VDAC2 could serve as potential biomarkers for identification of electrically stimulated chickens. The existence of these biomarkers will help to monitor the slaughtering and stunning process in the future. It will revolutionize the food authentication field and give a new breathe to the meat industry.ABSTRAK: Kaedah "waterbath stunning" merupakan amalan biasa di pusat-pusat penyembelihan. Kaedah ini adalah ekonomik dan selari dengan amalan kebajikan haiwan. Walaubagaimanapun, syarat-syarat yang digunakan untuk proses kejutan tersebut mungkin

  10. Effects of extracellular potassium on ventricular automaticity and evidence for a pacemaker current in mammalian ventricular myocardium.

    Science.gov (United States)

    Katzung, B G; Morgenstern, J A

    1977-01-01

    Automaticity was induced in isolated guinea pig and cat papillary muscles by application of depolarizing constant current pulses. Increasing extracellular potassium from 1 to 15 mM caused a shift of pacemaker-like activity to less negative diastolic potentials and a decrease in maximum phase 4 slope. Membrane resistance, estimated from the relation of applied current to maximum diastolic potential, decreased when extracellular potassium was increased. Voltage clamps of cat papillary muscle demonstrated that action potentials activate a time-dependent outward current which has a reversal potential of -79.1 mV (+/- 0.99 SE, n = 20) at an extracellular potassium concentration of 5 mM. The reversal potential of this current varies with extracellular K+ with a slope of 50-60 mV per 10-fold concentration change. The current is activated by voltage clamps or action potential plateaus in the range of -30 to +30 mV. It has a time constant of deactivation which increases from approximately 100 to over 400 msec as clamp potential is increased from -90 to -60 mV. It is proposed that this current is equivalent to Ix1 demonstrated in other cardiac tissues and is responsible, in combination with inward currents, for automaticity in ventricular fibers.

  11. Cyclic AMP enhances calcium-dependent potassium current in Aplysia neurons.

    Science.gov (United States)

    Ewald, D; Eckert, R

    1983-12-01

    The effect on the Ca-dependent potassium current, IK(Ca), of procedures that increase intracellular cAMP levels was studied in Aplysia neurons using three different pharmacological approaches. Exposure to cAMP analogues which were either resistant to or protected from phosphodiesterase hydrolysis caused an increase in IK(Ca) from 30 to 50% in 10 min. The degree of reversibility of this effect varied from complete with db cAMP to very little with pcpt cAMP. Exposure to cholera toxin, which stimulates the synthesis of endogenous cAMP, increased IK(Ca) 25% in 10 min and the effect was not reversible. Both approaches were effective in all seven neuron types studied. Application of serotonin plus phosphodiesterase inhibitor caused an increase in IK(Ca) in neuron R15 but not in the other neuron types. Application of pentylene tetrazole (PTZ) led to a decrease in IK(Ca). It is proposed that elevation of cyclic AMP mediates an increased sensitivity of the IK(Ca) channel to Ca ions.

  12. Two outward potassium current types are expressed during the neural differentiation of neural stem cells

    OpenAIRE

    Bai, Ruiying; Gao, Guowei; Xing, Ying; Xue, Hong

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vi...

  13. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons.

    Science.gov (United States)

    Goldberg, Joshua A; Wilson, Charles J

    2005-11-02

    The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs). Large-conductance calcium-activated potassium (BK) channel currents contribute to action potential (AP) repolarization; small-conductance calcium-activated potassium channel currents generate an apamin-sensitive medium AHP (mAHP) after each AP; and bursts of APs generate long-lasting slow AHPs (sAHPs) attributable to apamin-insensitive currents. Because all these currents are calcium dependent, we conducted voltage- and current-clamp whole-cell recordings while pharmacologically manipulating calcium channels of the plasma membrane and intracellular stores to determine what sources of calcium activate the currents underlying AP repolarization and the AHPs. The Cav2.2 (N-type) blocker omega-conotoxin GVIA (1 microM) was the only blocker that significantly reduced the mAHP, and it induced a transition to rhythmic bursting in one-third of the cells tested. Cav1 (L-type) blockers (10 microM dihydropyridines) were the only ones that significantly reduced the sAHP. When applied to cells induced to burst with apamin, dihydropyridines reduced the sAHPs and abolished bursting. Depletion of intracellular stores with 10 mM caffeine also significantly reduced the sAHP current and reversibly regularized firing. Application of 1 microM omega-conotoxin MVIIC (a Cav2.1/2.2 blocker) broadened APs but had a negligible effect on APs in cells in which BK channels were already blocked by submillimolar tetraethylammonium chloride, indicating that Cav2.1 (Q-type) channels provide the calcium to activate BK channels that repolarize the AP. Thus, calcium currents are selectively coupled to the calcium-dependent potassium currents underlying the AHPs, thereby creating mechanisms for control of the spontaneous firing patterns of these neurons.

  14. Lack of negatively charged residues at the external mouth of Kir2.2 channels enable the voltage-dependent block by external Mg2+.

    Directory of Open Access Journals (Sweden)

    Junwei Li

    Full Text Available Kir channels display voltage-dependent block by cytosolic cations such as Mg2+ and polyamines that causes inward rectification. In fact, cations can regulate K channel activity from both the extracellular and intracellular sides. Previous studies have provided insight into the up-regulation of Kir channel activity by extracellular K+ concentration. In contrast, extracellular Mg2+ has been found to reduce the amplitude of the single-channel current at milimolar concentrations. However, little is known about the molecular mechanism of Kir channel blockade by external Mg2+ and the relationship between the Mg2+ blockade and activity potentiation by permeant K+ ions. In this study, we applied an interactive approach between theory and experiment. Electrophysiological recordings on Kir2.2 and its mutants were performed by heterologous expression in Xenopus laevis oocytes. Our results confirmed that extracellular Mg2+ could reduce heterologously expressed WT Kir2.2 currents in a voltage dependent manner. The kinetics of inhibition and recovery of Mg2+ exhibit a 3∼4s time constant. Molecular dynamics simulation results revealed a Mg2+ binding site located at the extracellular mouth of Kir2.2 that showed voltage-dependent Mg2+ binding. The mutants, G119D, Q126E and H128D, increased the number of permeant K+ ions and reduced the voltage-dependent blockade of Kir2.2 by extracellular Mg2+.

  15. p38 Activation Is Required Upstream of Potassium Current Enhancement and Caspase Cleavage in Thiol Oxidant-Induced Neuronal Apoptosis

    Science.gov (United States)

    McLaughlin, BethAnn; Pal, Sumon; Tran, Minhnga P.; Parsons, Andrew A.; Barone, Frank C.; Erhardt, Joseph A.; Aizenman, Elias

    2013-01-01

    Oxidant-induced neuronal apoptosis has been shown to involve potassium and zinc dysregulation, energetic dysfunction, activation of stress-related kinases, and caspase cleavage. The temporal ordering and interdependence of these events was investigated in primary neuronal cultures exposed to the sulfhydryl oxidizing agent 2,2′-dithiodipyridine (DTDP), a compound that induces the intracellular release of zinc. We previously observed that tetraethylammonium (TEA), high extracellular potassium, or cysteine protease inhibitors block apoptosis induced by DTDP. We now report that both p38 and extracellular signal-regulated kinase phosphorylation are evident in neuronal cultures within 2 hr of a brief exposure to 100 μm DTDP. However, only p38 inhibition is capable of blocking oxidant-induced toxicity. Cyclohexamide or actinomycin D does not attenuate DTDP-induced cell death, suggesting that posttranslational modification of existing targets, rather than transcriptional activation, is responsible for the deleterious effects of p38. Indeed, an early robust increase in TEA-sensitive potassium channel currents induced by DTDP is attenuated by p38 inhibition but not by caspase inhibition. Moreover, we found that activation of p38 is required for caspase 3 and 9 cleavage, suggesting that potassium currents enhancement is required for caspase activation. Finally, we observed that DTDP toxicity could be blocked with niacinamide or benzamide, inhibitors of poly (ADP-ribose) synthetase. Based on these findings, we conclude that oxidation of sulfhydryl groups on intracellular targets results in intracellular zinc release, p38 phosphorylation, enhancement of potassium currents, caspase cleavage, energetic dysfunction, and translationally independent apoptotic cell death. PMID:11331359

  16. Sodium and Potassium Currents Influence Wallerian Degeneration of Injured Drosophila Axons

    Science.gov (United States)

    Mishra, Bibhudatta; Carson, Ross; Hume, Richard I.

    2013-01-01

    Axons degenerate after injury and in neuropathies and disease via a self-destruction program whose mechanism is poorly understood. Axons that have lost connection to their cell bodies have altered electrical and synaptic activities, but whether such changes play a role in the axonal degeneration process is not clear. We have used a Drosophila model to study the Wallerian degeneration of motoneuron axons and their neuromuscular junction synapses. We found that degeneration of the distal nerve stump after a nerve crush is greatly delayed when there is increased potassium channel activity (by overexpression of two different potassium channels, Kir2.1 and dORKΔ-C) or decreased voltage-gated sodium channel activity (using mutations in the para sodium channel). Conversely, degeneration is accelerated when potassium channel activity is decreased (by expressing a dominant-negative mutation of Shaker). Despite the effect of altering voltage-gated sodium and potassium channel activity, recordings made after nerve crush demonstrated that the distal stump does not fire action potentials. Rather, a variety of lines of evidence suggest that the sodium and potassium channels manifest their effects upon degeneration through changes in the resting membrane potential, which in turn regulates the level of intracellular free calcium within the isolated distal axon. PMID:24285879

  17. Potassium current kinetics in bursting secretory neurons: effects of intracellular calcium.

    Science.gov (United States)

    Martínez, J J; Onetti, C G; García, E; Hernández, S

    1991-11-01

    1. The kinetics of delayed rectifier (IK) and transient potassium (IA) currents and their modification by intracellular calcium ions in bursting X-organ neurons of the crayfish were studied with whole-cell patch-clamp technique. Activation and inactivation kinetics were analyzed according to Hodgkin and Huxley-type equations. 2. IK activates with sigmoidal time course at membrane potentials more positive than -38.4 +/- 3.5 (SD) mV (n = 5), and does not inactivate. The conductance through delayed rectifier channels (gK) is described by the equation gK = GKn2. 3. IA activates at membrane potentials close to the resting potential (-52.2 +/- 4.3 mV, n = 5) and, after a peak, inactivates completely. The conductance through A-channels (gA) can be described by the product of independent activation and inactivation parameters: gA = GAa4b. Both activation and inactivation processes are voltage and time dependent. 4. Steady-state activation of IK and IA as well as inactivation of IA can be described by Boltzmann distributions for single particles with valencies of 2.55 +/- 0.01 (n = 5), 1.60 +/- 0.25 (n = 5), and 3.87 +/- 0.39 (n = 3), respectively. 5. Increasing [Ca2+]i, we observed the following: 1) a considerable inactivation of IK during test pulses, 2) an increase of maximal conductance for IA, 3) a reduction of the valency of IA inactivation gating particle (from 3.87 to 2.27), 4) a reduction of the inactivation time constants of IA, and 5) a shift of the inactivation steady-state curve to more positive membrane potentials.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Selective serotonin reuptake inhibitor sertraline inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells

    Indian Academy of Sciences (India)

    HAN SOL KIM; HONGLIANG LI; HYE WON KIM; SUNG EUN SHIN; IL-WHAN CHOI; AMY L FIRTH; HYOWEON BANG; YOUNG MIN BAE; WON SUN PARK

    2016-12-01

    We examined the effects of the selective serotonin reuptake inhibitor (SSRI) sertraline on voltage-dependent K+ (Kv)channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Sertralinedecreased the Kv channel current in a dose-dependent manner, with an IC50 value of 0.18 μM and a slope value (Hillcoefficient) of 0.61. Although the application of 1 μM sertraline did not affect the steady-state activation curves,sertraline caused a significant, negative shift in the inactivation curves. Pretreatment with another SSRI, paroxetine,had no significant effect on Kv currents and did not alter the inhibitory effects of sertraline on Kv currents. From theseresults, we concluded that sertraline dose-dependently inhibited Kv currents independently of serotonin reuptakeinhibition by shifting inactivation curves to a more negative potential.

  19. Selective serotonin reuptake inhibitor sertraline inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells.

    Science.gov (United States)

    Kim, Han Sol; Li, Hongliang; Kim, Hye Won; Shin, Sung Eun; Choi, Il-Whan; Firth, Amy L; Bang, Hyoweon; Bae, Young Min; Park, Won Sun

    2016-12-01

    We examined the effects of the selective serotonin reuptake inhibitor (SSRI) sertraline on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Sertraline decreased the Kv channel current in a dose-dependent manner, with an IC50 value of 0.18 mu M and a slope value (Hill coefficient) of 0.61. Although the application of 1 mu M sertraline did not affect the steady-state activation curves, sertraline caused a significant, negative shift in the inactivation curves. Pretreatment with another SSRI, paroxetine, had no significant effect on Kv currents and did not alter the inhibitory effects of sertraline on Kv currents. From these results, we concluded that sertraline dose-dependently inhibited Kv currents independently of serotonin reuptake inhibition by shifting inactivation curves to a more negative potential.

  20. Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons.

    Science.gov (United States)

    Akemann, Walther; Knöpfel, Thomas

    2006-04-26

    Purkinje neurons spontaneously generate action potentials in the absence of synaptic drive and thereby exert a tonic, yet plastic, input to their target cells in the deep cerebellar nuclei. Purkinje neurons express two ionic currents with biophysical properties that are specialized for high-frequency firing: resurgent sodium currents and potassium currents mediated by Kv3.3. How these ionic currents determine the intrinsic activity of Purkinje neurons has only partially been understood. Purkinje neurons from mutant mice lacking Kv3.3 have a reduced rate of spontaneous firing. Dynamic-clamp recordings demonstrated that normal firing rates are rescued by inserting artificial Kv3 currents into Kv3.3 knock-out Purkinje neurons. Numerical simulations indicated that Kv3.3 increases the spontaneous firing rate via cooperation with resurgent sodium currents. We conclude that the rate of spontaneous action potential firing of Purkinje neurons is controlled by the interaction of Kv3.3 potassium currents and resurgent sodium currents.

  1. Effects of Common Antitussive Drugs on the hERG Potassium Channel Current

    National Research Council Canada - National Science Library

    Deisemann, Heike; Ahrens, Nadine; Schlobohm, Irene; Kirchhoff, Christian; Netzer, Rainer; Möller, Clemens

    2008-01-01

    A common over-the-counter (OTC) non-opioid antitussive drug, clobutinol, was recently withdrawn from the market due to its potential to induce cardiac arrhythmias by a blockade of the potassium channel coded by the human ether-à...

  2. Effects of motilin on potassium and calcium currents of rat's proximal colon smooth muscle cells%胃动素对大鼠近端结肠平滑肌细胞钙钾电流的影响

    Institute of Scientific and Technical Information of China (English)

    吴增祐; 罗和生; 梁成柏; 刘颖; 夏虹

    2012-01-01

    Objective To investigate the effects of motilin on the voltage dependent potassium channel and L-type calcium channel currents in rat proximal colon smooth muscle cells (PCSM) and to explore its mechanism in increasing colonic motility.Methods PCSM were isolated by collagenase.The voltage dependent potassium channel transit outward current (IKA ) and delayed rectifier current (IKdr) and L-type calcium currents (ICa(L)) were measured by whole cell patch clamp technique.Groups were analyzed by paired t-test.Results There was no significant effect of motilin on IKA and IKdr.L-type calcium channel was dose-dependently activated by motilin from 0.5 × 105 mmol/L to 10.0 ×10-5 mmol/L.At 6 × 10-5 mmol/L motilin and under - 10,0 and 10 mV stimulating voltage,maximum current density increased by 154.61%,62.69% and 21.02% respectively and activation kinetics curve obviously left shifted.Half activation voltage decreased from (2.740±1.211) mV prior administration to ( - 25.290 ± 0.614) mV (t =8.534,P =0.007 ) and there was no significant difference in slope factor. Conclusions Motilin increases colonic smooth muscle contraction by promoting calcium influx. However the frequency of colonic smooth muscle contraction could not change with frequency of equilibrium potential and action potential of colonic smooth muscle.%目的 研究胃动素对大鼠近端结肠平滑肌细胞(PCSM)膜电压依赖性钾通道及L型钙通道电流的影响,以探讨其增强结肠运动的机制.方法 采用酶解法分离大鼠PCSM,采用全细胞模式膜片钳技术测定PCSM电压依赖性钾离子通道快速激活型钾电流及延迟整流型钾电流和L型钙电流,组间比较采用配对t检验.结果 胃动素对快速激活型钾电流及延迟整流型钾电流无明显作用.(0.5~10.0)×10-5 mmol/L胃动素浓度依赖性地激活L型钙电流,6×10-5 mmol/L胃动素在-10、0及10 mV刺激电压下,使最大电流密度分别增加154.61%、62.69%及21.02%,激

  3. Voltage-dependent modulation of cardiac ryanodine receptors (RyR2 by protamine.

    Directory of Open Access Journals (Sweden)

    Paula L Diaz-Sylvester

    Full Text Available It has been reported that protamine (>10 microg/ml blocks single skeletal RyR1 channels and inhibits RyR1-mediated Ca2+ release from sarcoplasmic reticulum microsomes. We extended these studies to cardiac RyR2 reconstituted into planar lipid bilayers. We found that protamine (0.02-20 microg/ml added to the cytosolic surface of fully activated RyR2 affected channel activity in a voltage-dependent manner. At membrane voltage (V(m; SR lumen-cytosol = 0 mV, protamine induced conductance transitions to several intermediate states (substates as well as full block of RyR2. At V(m>10 mV, the substate with the highest level of conductance was predominant. Increasing V(m from 0 to +80 mV, decreased the number of transitions and residence of the channel in this substate. The drop in current amplitude (full opening to substate had the same magnitude at 0 and +80 mV despite the approximately 3-fold increase in amplitude of the full opening. This is more similar to rectification of channel conductance induced by other polycations than to the action of selective conductance modifiers (ryanoids, imperatoxin. A distinctive effect of protamine (which might be shared with polylysines and histones but not with non-peptidic polycations is the activation of RyR2 in the presence of nanomolar cytosolic Ca2+ and millimolar Mg2+ levels. Our results suggest that RyRs would be subject to dual modulation (activation and block by polycationic domains of neighboring proteins via electrostatic interactions. Understanding these interactions could be important as such anomalies may be associated with the increased RyR2-mediated Ca2+ leak observed in cardiac diseases.

  4. Vestibular integrator neurons have quadratic functions due to voltage dependent conductances.

    Science.gov (United States)

    Magnani, Christophe; Eugène, Daniel; Idoux, Erwin; Moore, Lee E

    2013-12-01

    The nonlinear properties of the dendrites of the prepositus hypoglossi nucleus (PHN) neurons are essential for the operation of the vestibular neural integrator that converts a head velocity signal to one that controls eye position. A novel system of frequency probing, namely quadratic sinusoidal analysis (QSA), was used to decode the intrinsic nonlinear behavior of these neurons under voltage clamp conditions. Voltage clamp currents were measured at harmonic and interactive frequencies using specific nonoverlapping stimulation frequencies. Eigenanalysis of the QSA matrix reduces it to a remarkably compact processing unit, composed of just one or two dominant components (eigenvalues). The QSA matrix of rat PHN neurons provides signatures of the voltage dependent conductances for their particular dendritic and somatic distributions. An important part of the nonlinear response is due to the persistent sodium conductance (gNaP), which is likely to be essential for sustained effects needed for a neural integrator. It was found that responses in the range of 10 mV peak to peak could be well described by quadratic nonlinearities suggesting that effects of higher degree nonlinearities would add only marginal improvement. Therefore, the quadratic response is likely to sufficiently capture most of the nonlinear behavior of neuronal systems except for extremely large synaptic inputs. Thus, neurons have two distinct linear and quadratic functions, which shows that piecewise linear + quadratic analysis is much more complete than just piecewise linear analysis; in addition quadratic analysis can be done at a single holding potential. Furthermore, the nonlinear neuronal responses contain more frequencies over a wider frequency band than the input signal. As a consequence, they convert limited amplitude and bandwidth input signals to wider bandwidth and more complex output responses. Finally, simulations at subthreshold membrane potentials with realistic PHN neuron models

  5. Whole-cell recordings of voltage-gated Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Shuyun Huang; Qing Cai; Weitian Liu; Xiaoling Wang; Tao Wang

    2009-01-01

    Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hip-pocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca2+ currents, delayed rectifier K+ current and voltage-gated Na+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.

  6. The Outwardly Rectifying Current of Layer 5 Neocortical Neurons that was Originally Identified as "Non-Specific Cationic" Is Essentially a Potassium Current.

    Directory of Open Access Journals (Sweden)

    Omer Revah

    Full Text Available In whole-cell patch clamp recordings from layer 5 neocortical neurons, blockade of voltage gated sodium and calcium channels leaves a cesium current that is outward rectifying. This current was originally identified as a "non-specific cationic current", and subsequently it was hypothesized that it is mediated by TRP channels. In order to test this hypothesis, we used fluorescence imaging of intracellular sodium and calcium indicators, and found no evidence to suggest that it is associated with influx of either of these ions to the cell body or dendrites. Moreover, the current is still prominent in neurons from TRPC1-/- and TRPC5-/- mice. The effects on the current of various blocking agents, and especially its sensitivity to intracellular tetraethylammonium, suggest that it is not a non-specific cationic current, but rather that it is generated by cesium-permeable delayed rectifier potassium channels.

  7. Gated currents in isolated olfactory receptor neurons of the larval tiger salamander.

    Science.gov (United States)

    Firestein, S; Werblin, F S

    1987-09-01

    The electrical properties of enzymatically isolated olfactory receptor cells were studied with whole-cell patch clamp. Voltage-dependent currents could be separated into three ionic components: a transient inward sodium current, a sustained inward calcium current, and an outward potassium current. Three components of the outward current could be identified by their gating and kinetics: a calcium-dependent potassium current [IK(Ca)], a voltage-dependent potassium current [IK(V)], and a transient potassium current (Ia). Typical resting potentials were near -54 mV, and typical input resistance was 3-6 G omega. Thus, only 3 pA of injected current was required to depolarize the cell to spike threshold near -45 mV. The response to a current step consisted of either a single spike regardless of stimulus strength, or a train of less than 8 spikes, decrementing in amplitude and frequency over approximately equal to 250 msec. Thus, the receptor response cannot be finely graded with stimulus intensity.

  8. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  9. Lavender Oil-Potent Anxiolytic Properties via Modulating Voltage Dependent Calcium Channels

    OpenAIRE

    2013-01-01

    Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs) as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, bioc...

  10. Zn2+ regulates Kv2.1 voltage-dependent gating and localization following ischemia

    OpenAIRE

    Aras, Mandar A.; Saadi, Robert A.; Aizenman, Elias

    2009-01-01

    The delayed-rectifier K+ channel Kv2.1 exists in highly phosphorylated somatodendritic clusters. Ischemia induces rapid Kv2.1 dephosphorylation and a dispersal of these clusters, accompanied by a hyperpolarizing shift in their voltage-dependent activation kinetics. Transient modulation of Kv2.1 activity and localization following ischemia is dependent on a rise in intracellular Ca2+and the protein phosphatase calcineurin. Here, we show that neuronal free Zn2+also plays a critical role in the ...

  11. Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit.

    Science.gov (United States)

    Keum, Dongil; Baek, Christina; Kim, Dong-Il; Kweon, Hae-Jin; Suh, Byung-Chang

    2014-10-01

    G protein-coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca(2+), and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca(2+) (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of

  12. Proper Voltage-Dependent Ion Channel Function in Dysferlin-Deficient Cardiomyocytes.

    Science.gov (United States)

    Rubi, Lena; Gawali, Vaibhavkumar S; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz; Koenig, Xaver

    2015-01-01

    Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g. limb-girdle muscular dystrophy type 2B (LGMD2B). Besides skeletal muscle degenerative processes, dysferlin deficiency is also associated with cardiac complications. Thus, both LGMD2B patients and dysferlin-deficient mice develop a dilated cardiomyopathy. We and others have recently reported that dystrophin-deficient ventricular cardiomyocytes from mouse models of Duchenne muscular dystrophy show significant abnormalities in voltage-dependent ion channels, which may contribute to the pathophysiology in dystrophic cardiomyopathy. The aim of the present study was to investigate if dysferlin, like dystrophin, is a regulator of cardiac ion channels. By using the whole cell patch-clamp technique, we compared the properties of voltage-dependent calcium and sodium channels, as well as action potentials in ventricular cardiomyocytes isolated from the hearts of normal and dysferlin-deficient (dysf) mice. In contrast to dystrophin deficiency, the lack of dysferlin did not impair the ion channel properties and left action potential parameters unaltered. In connection with normal ECGs in dysf mice these results suggest that dysferlin deficiency does not perturb cardiac electrophysiology. Our study demonstrates that dysferlin does not regulate cardiac voltage-dependent ion channels, and implies that abnormalities in cardiac ion channels are not a universal characteristic of all muscular dystrophy types. © 2015 S. Karger AG, Basel.

  13. Proper Voltage-Dependent Ion Channel Function in Dysferlin-Deficient Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lena Rubi

    2015-06-01

    Full Text Available Background/Aims: Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g. limb-girdle muscular dystrophy type 2B (LGMD2B. Besides skeletal muscle degenerative processes, dysferlin deficiency is also associated with cardiac complications. Thus, both LGMD2B patients and dysferlin-deficient mice develop a dilated cardiomyopathy. We and others have recently reported that dystrophin-deficient ventricular cardiomyocytes from mouse models of Duchenne muscular dystrophy show significant abnormalities in voltage-dependent ion channels, which may contribute to the pathophysiology in dystrophic cardiomyopathy. The aim of the present study was to investigate if dysferlin, like dystrophin, is a regulator of cardiac ion channels. Methods and Results: By using the whole cell patch-clamp technique, we compared the properties of voltage-dependent calcium and sodium channels, as well as action potentials in ventricular cardiomyocytes isolated from the hearts of normal and dysferlin-deficient (dysf mice. In contrast to dystrophin deficiency, the lack of dysferlin did not impair the ion channel properties and left action potential parameters unaltered. In connection with normal ECGs in dysf mice these results suggest that dysferlin deficiency does not perturb cardiac electrophysiology. Conclusion: Our study demonstrates that dysferlin does not regulate cardiac voltage-dependent ion channels, and implies that abnormalities in cardiac ion channels are not a universal characteristic of all muscular dystrophy types.

  14. Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses.

    Science.gov (United States)

    Pattillo, J M; Yazejian, B; DiGregorio, D A; Vergara, J L; Grinnell, A D; Meriney, S D

    2001-01-01

    Using Xenopus nerve-muscle co-cultures, we have examined the contribution of calcium-activated potassium (K(Ca)) channels to the regulation of transmitter release evoked by single action potentials. The presynaptic varicosities that form on muscle cells in these cultures were studied directly using patch-clamp recording techniques. In these developing synapses, blockade of K(Ca) channels with iberiotoxin or charybdotoxin decreased transmitter release by an average of 35%. This effect would be expected to be caused by changes in the late phases of action potential repolarization. We hypothesize that these changes are due to a reduction in the driving force for calcium that is normally enhanced by the local hyperpolarization at the active zone caused by potassium current through the K(Ca) channels that co-localize with calcium channels. In support of this hypothesis, we have shown that when action potential waveforms were used as voltage-clamp commands to elicit calcium current in varicosities, peak calcium current was reduced only when these waveforms were broadened beginning when action potential repolarization was 20% complete. In contrast to peak calcium current, total calcium influx was consistently increased following action potential broadening. A model, based on previously reported properties of ion channels, faithfully reproduced predicted effects on action potential repolarization and calcium currents. From these data, we suggest that the large-conductance K(Ca) channels expressed at presynaptic varicosities regulate transmitter release magnitude during single action potentials by altering the rate of action potential repolarization, and thus the magnitude of peak calcium current.

  15. BmT×3B, a novel scorpion toxin from Buthus martensi Karsch, inhibits delayed rectifier potassium current in rat hippocampal neurons%东亚钳蝎中新分离的毒素BmT×3B抑制大鼠海马神经元延迟整流性钾电流

    Institute of Scientific and Technical Information of China (English)

    李明华; 王跃丰; 陈学勤; 张乃霞; 吴厚铭; 胡国渊

    2003-01-01

    目的:研究从东亚钳蝎毒素中新分离的短肽BmTx3B对电压门控性钾通道的作用.方法:在酶解打散的新生大鼠海马细胞,采用全细胞电压箝位方式记录,并根据动力学特性分离二种电压依赖性钾电流.结果:BmTx3B(10-100 μmol/L)选择地抑制延迟整流性钾电流(IK),不影响瞬时性快钾电流(IA).此抑制作用是可逆的,呈现浓度依赖性,但无电压依赖性.BmTx3B对延迟整流性钾电流的稳态激活和稳态失活的动力学特性无影响.结论:蝎毒短肽BmTx3B选择地抑制海马神经元延迟整流性钾通道.%AIM: To examine the effect of BmTx3B, a novel short-chain peptide isolated from the venom of Asian scorpion Buthus martensi Karsch, on voltage-gated potassium channels. METHODS: Two types of voltage-dependent potassium currents were recorded from dissociated hippocampal neurons of neonatal rat in whole-cell voltageclamp mode, and separated based upon their kinetic properties. RESULTS: BmTx3B (10-100μmol/L) selectively inhibited the delayed rectifier potassium current (IK), without affecting the fast transient potassium current (IA).The inhibition of the peptide on IK was reversible, concentration-dependent and voltage-independent. BmTx3B did not affect the steady-state activation and inactivation kinetics of the current. CONCLUSION: The short-chain scorpion peptide BmTx3B selectively blocked the delayed rectifier potassium channel.

  16. Voltage dependence of Hodgkin-Huxley rate functions for a multistage K+ channel voltage sensor within a membrane

    Science.gov (United States)

    Vaccaro, S. R.

    2014-11-01

    The activation of a K+channel sensor in two sequential stages during a voltage clamp may be described as the translocation of a Brownian particle in an energy landscape with two large barriers between states. A solution of the Smoluchowski equation for a square-well approximation to the potential function of the S4 voltage sensor satisfies a master equation and has two frequencies that may be determined from the forward and backward rate functions. When the higher-frequency terms have small amplitude, the solution reduces to the relaxation of a rate equation, where the derived two-state rate functions are dependent on the relative magnitude of the forward rates (α and γ ) and the backward rates (β and δ ) for each stage. In particular, the voltage dependence of the Hodgkin-Huxley rate functions for a K+channel may be derived by assuming that the rate functions of the first stage are large relative to those of the second stage—α ≫γ and β ≫δ . For a Shaker IR K+ channel, the first forward and backward transitions are rate limiting (α <γ and δ ≪β ), and for an activation process with either two or three stages, the derived two-state rate functions also have a voltage dependence that is of a similar form to that determined for the squid axon. The potential variation generated by the interaction between a two-stage K+ ion channel and a noninactivating Na+ ion channel is determined by the master equation for K+channel activation and the ionic current equation when the Na+channel activation time is small, and if β ≪δ and α ≪γ , the system may exhibit a small amplitude oscillation between spikes, or mixed-mode oscillation, in which the slow closed state modulates the K+ ion channel conductance in the membrane.

  17. trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca2+ Channels

    Directory of Open Access Journals (Sweden)

    Jader Santos Cruz

    2012-10-01

    Full Text Available trans-Caryophyllene is a major component in the essential oils of various species of medicinal plants used in popular medicine in Brazil. It belongs to the chemical class of the sesquiterpenes and has been the subject of a number of studies. Here, we evaluated the effects of this compound in airway smooth muscle. The biological activities of trans-caryophyllene were examined in isolated bath organs to investigate the effect in basal tonus. Electromechanical and pharmacomechanical couplings were evaluated through the responses to K+ depolarization and exposure to acetylcholine (ACh, respectively. Isolated cells of rat tracheal smooth muscle were used to investigate trans-caryophyllene effects on voltage-dependent Ca2+ channels by using the whole-cell voltage-clamp configuration of the patch-clamp technique. trans-Caryophyllene showed more efficiency in the blockade of electromechanical excitation-contraction coupling while it has only minor inhibitory effect on pharmacomechanical coupling. Epithelium removal does not modify tracheal smooth muscle response elicited by trans-caryophyllene in the pharmacomechanical coupling. Under Ca2+-free conditions, pre-exposure to trans-caryophyllene did not reduce the contraction induced by ACh in isolated rat tracheal smooth muscle, regardless of the presence of intact epithelium. In the whole-cell configuration, trans-caryophyllene (3 mM, inhibited the inward Ba2+ current (IBa to approximately 50% of control levels. Altogether, our results demonstrate that trans-caryophyllene has anti-spasmodic activity on rat tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca2+ channels blockade.

  18. MEMS electrostatic inductive transformer using potassium ion electrets for up- or down-conversion of AC current

    Science.gov (United States)

    Suzuki, Masato; Moriyama, Takashi; Toshiyoshi, Hiroshi; Hashiguchi, Gen

    2016-10-01

    In this paper, we report on a novel MEMS electrostatic inductive transformer using potassium ion electrets on mechanically movable silicon microelectrodes. The device consists of a pair of electrostatic comb drive actuators that share a common mass in the middle part of a spring-mass-spring system. When an excitation AC voltage is applied to the electrode of the input-port comb drive at its mechanical resonant frequency, the mass in the middle oscillates to generate electrostatic inductive charges on the electrodes of the output-port comb drive, which could be read out as an output current. By appropriately designing the ratio of force factors of input- and output-port comb drives, the device operates as a transformer to amplify the current at a high efficiency over of 90% under the optimal load condition.

  19. Effects of in vitro and in vivo lead exposure on voltage-dependent calcium channels in central neurons of Lymnaea stagnalis.

    Science.gov (United States)

    Audesirk, G

    1987-01-01

    Currents through calcium channels of members of an identified cluster of neurons (B cells) in the pond snail Lymnaea stagnalis were studied under voltage clamp. The normal physiological saline was modified to maximize the visibility of voltage-dependent calcium currents and minimize contamination by other currents. Barium was used as the charge carrier for the calcium channels. Depolarizing voltage steps induce an inward current, the magnitude of which varies with the barium concentration. In brains taken from animals not exposed in vivo to lead, in vitro addition of lead acetate to the recording medium (0.25 to 14 microM) inhibits the barium current by 59 +/- 14% (mean +/- s.d.), in a manner that is independent of the lead concentration. The magnitude of the residual current still varies with the barium concentration. The voltage dependence of the current appears to be unaffected by lead. In contrast to some other calcium-channel blockers, such as cobalt, the inhibition of barium currents by in vitro lead exposure is irreversible, at least in short-term experiments. Contrary to expectations based on these in vitro results, barium currents in B cells of animals exposed to 5 microM lead for 6 to 12 weeks in vivo were approximately twice as large as barium currents in B cells from unexposed controls, when both were recorded in lead-free saline. It is possible that chronic in vivo lead exposure causes an increase in the number of calcium channels in these neurons.

  20. Modification of sodium and potassium channel gating kinetics by ether and halothane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, B.P.; Shrager, P.; Goldstein, D.A.

    1981-03-01

    The effects of ether and halothane on the kinetics of sodium and potassium currents were investigated in the crayfish giant axon. Both general anesthetics produced a reversible, dose-dependent speeding up of sodium current inactivation at all membrane potentials, with no change in the rising phase of the currents. Double-pulse inactivation experiments with ether also showed faster inactivation, but the rate of recovery from inactivation at negative potentials was not affected. Ether shifted the midpoint of the steady-state fast inactivation curve in the hyperpolarizing direction and made the curve steeper. The activation of potassium currents was faster with ether present, with no change in the voltage dependence of steady-state potassium currents. Ether and halothane are known to perturb the structure of lipid bilayer membranes; the alterations in sodium and potassium channel gating kinetics are consistent with the hypothesis that the rats of the gating processes of the channels can be affected by the state of the lipids surrounding the channels, but a direct effect of ether and halothane on the protein part of the channels cannot be ruled out.

  1. The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum.

    Science.gov (United States)

    Hirst, G D; Johnson, S M; van Helden, D F

    1985-04-01

    Experiments were performed in current-clamped and voltage-clamped after-hyperpolarizing (AH) neurones of the guinea-pig myenteric plexus to examine the properties of the potassium conductance (gK, Ca) underlying the slow calcium-activated after-hyperpolarization (VK, Ca). The action potential plateau lengthened by the addition of tetraethylammonium chloride (TEA) to the bathing medium was compared to VK, Ca. Results were consistent with enhanced calcium entry causing an increase of VK, Ca. 4-Aminopyridine (4-AP) directly reduced VK, Ca. Voltage-clamp data of gK, Ca were well fitted by a process with a delay (approximately equal to 60 ms) followed by exponential activation (time constant approximately equal to 300 ms) and inactivation (time constant approximately equal to 2 s). The presence of a small, much slower inactivating process was noted. Values for time constants were similar to those reported by Morita, North & Tokimasa (1982) and North & Tokimasa (1983) where gK, Ca was measured during VK, Ca subsequent to action potential stimulation. The relation between gK, Ca (or the calcium-activated potassium current IK, Ca) and estimated calcium influx resulting from short-duration calcium currents elicited at various voltages was compared. Both the integral of the calcium current and gK, Ca showed a similar dependence on the depolarizations used to elicit IK, Ca except there was a positive shift of about 4 mV for the gK, Ca curve. This shift was attributed to a requirement for calcium ions to prime the gK, Ca mechanism. An inward ion charge movement of about 8 pC was required before significant activation of gK, Ca occurred. After the 'priming' condition had been established, the sensitivity of gK, Ca to inward calcium current measured at the resting potential was about 500 pS/pC of inward charge. Large calcium entry obtained by prolonged calcium currents caused saturation of the peak amplitude of IK, Ca and initiated currents with slower time to peak amplitude and

  2. The firing patterns of spinal neurons: in situ patch-clamp recordings reveal a key role for potassium currents.

    Science.gov (United States)

    Winlove, Crawford I P; Roberts, Alan

    2012-10-01

    Neuron firing patterns underpin the detection and processing of stimuli, influence synaptic interactions, and contribute to the function of networks. To understand how intrinsic membrane properties determine firing patterns, we investigated the biophysical basis of single and repetitive firing in spinal neurons of hatchling Xenopus laevis tadpoles, a well-understood vertebrate model; experiments were conducted in situ. Primary sensory Rohon-Beard (RB) neurons fire singly in response to depolarising current, and dorsolateral (DL) interneurons fire repetitively. RB neurons exhibited a large tetrodotoxin-sensitive sodium current; in DL neurons, the sodium current density was significantly lower. High-voltage-activated calcium currents were similar in both neuron types. There was no evidence of persistent sodium currents, low-voltage-activated calcium currents, or hyperpolarisation-activated currents. In RB neurons, the potassium current was dominated by a tetraethylammonium-sensitive slow component (I(Ks) ); a fast component (I(Kf) ), sensitive to 4-aminopyridine, predominated in DL neurons. Sequential current-clamp and voltage-clamp recordings in individual neurons suggest that high densities of I(Ks) prevent repetitive firing; where I(Ks) is small, I(Kf) density determines the frequency of repetitive firing. Intermediate densities of I(Ks) and I(Kf) allow neurons to fire a few additional spikes on strong depolarisation; this property typifies a novel subset of RB neurons, and may activate escape responses. We discuss how this ensemble of currents and firing patterns underpins the operation of the Xenopus locomotor network, and suggest how simple mechanisms might underlie the similar firing patterns seen in the neurons of diverse species.

  3. Purification and Characterization of Two Voltage-Dependent Anion Channel Isoforms from Plant Seeds1

    Science.gov (United States)

    Abrecht, Helge; Wattiez, Ruddy; Ruysschaert, Jean-Marie; Homblé, Fabrice

    2000-01-01

    Mitochondria were isolated from imbibed seeds of lentil (Lens culinaris) and Phaseolus vulgaris. We copurified two voltage-dependent anion channel from detergent solubilized mitochondria in a single purification step using hydroxyapatite. The two isoforms from P. vulgaris were separated by chromatofocusing chromatography in 4 m urea without any loss of channel activity. Channel activity of each isoform was characterized upon reconstitution into diphytanoyl phosphatidylcholine planar lipid bilayers. Both isoforms form large conductance channels that are slightly anion selective and display cation selective substates. PMID:11080295

  4. Admittance Spectroscopy in CZTSSe: Metastability Behavior and Voltage Dependent Defect Study

    Energy Technology Data Exchange (ETDEWEB)

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; Levi, Dean; Agrawal, Rakesh

    2016-11-21

    Admittance spectroscopy has been performed on a CZTSSe device with a carrier injection pretreatment and under electronically relaxed conditions to demonstrate metastability behavior. We show that the measurements with the carrier injection pretreatment demonstrate two admittance signatures while the relaxed measurement demonstrates only one admittance signature with a different activation energy. Additionally, voltage dependent admittance spectroscopy was performed using the carrier injection pretreatment method at each of the applied voltage bias. The activation energies of the two admittance signatures were calculated and are shown to be independent of the voltage bias.

  5. Actin Dynamics Regulates Voltage-Dependent Calcium-Permeable Channels of the Vicia faba Guard Cell Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Liu-Min Fan

    2009-01-01

    Free cytosolic Ca~(2+) ([Ca~(2+)]_(cyt)) is an ubiquitous second messenger in plant cell signaling, and [Ca~(2+)]_(cyt) elevation is associated with Ca~(2+)-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca~(2+) channels and their regulation remains limited in planta. A type of voltage-dependent Ca~(2+)-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba~(2+) and Ca~(2+), and their activities can be inhibited by micromolar Gd~(3+). The unitary conductance and the reversal potential of the channels depend on the Ca~(2+) or Ba~(2+) gradients across the plasma membrane. The inward whole-cell Ca~(2+) (Ba~(2+)) current, as well as the unitary current amplitude and NP. of the single Ca~(2+) channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NP_o of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed.

  6. A calcium-dependent potassium current is increased by a single-gene mutation in Paramecium.

    Science.gov (United States)

    Hennessey, T M; Kung, C

    1987-01-01

    The membrane currents of wild type Paramecium tetraurelia and the behavioral mutant teaA were analyzed under voltage clamp. The teaA mutant was shown to have a greatly increased outward current which was blocked completely by the combined use of internally delivered Cs+ and external TEA+. This, along with previous work (Satow, Y., Kung, C., 1976, J. Exp. Biol. 65:51-63) identified this as a K+ current. It was further found to be a calcium-activated K+ current since this increased outward K+ current cannot be elicited when the internal calcium is buffered with injected EGTA. The mutation pwB, which blocks the inward calcium current, also blocks this increased outward K+ current in teaA. This shows that this mutant current is activated by calcium through the normal depolarization-sensitive calcium channel. While tail current decay kinetic analysis showed that the apparent inactivation rates for this calcium-dependent K+ current are the same for mutant and wild type, the teaA current activates extremely rapidly. It is fully activated within 2 msec. This early activation of such a large outward current causes a characteristic reduction in the amplitude of the action potential of the teaA mutant. The teaA mutation had no effect on any of the other electrophysiological parameters examined. The phenotype of the teaA mutant is therefore a general decrease in responsiveness to depolarizing stimuli because of a rapidly activating calcium-dependent K+ current which prematurely repolarizes the action potential.

  7. A Drosophila mutation that eliminates a calcium-dependent potassium current.

    Science.gov (United States)

    Elkins, T; Ganetzky, B; Wu, C F

    1986-11-01

    A mutation of Drosophila, slowpoke (slo), specifically abolishes a Ca2+-dependent K+ current, IC, from dorsal longitudinal flight muscles of adult flies. Other K+ currents remain normal, providing evidence that IC is mediated by a molecularly distinguishable set of channels. The pharmacological properties of IC are similar to those of Ca2+-dependent currents in some vertebrate cells. The muscle action potential was significantly lengthened in slo flies, indicating that IC plays the major role in its repolarization.

  8. A Drosophila mutation that eliminates a calcium-dependent potassium current.

    OpenAIRE

    Elkins, T; Ganetzky, B; Wu, C F

    1986-01-01

    A mutation of Drosophila, slowpoke (slo), specifically abolishes a Ca2+-dependent K+ current, IC, from dorsal longitudinal flight muscles of adult flies. Other K+ currents remain normal, providing evidence that IC is mediated by a molecularly distinguishable set of channels. The pharmacological properties of IC are similar to those of Ca2+-dependent currents in some vertebrate cells. The muscle action potential was significantly lengthened in slo flies, indicating that IC plays the major role...

  9. Inhibition of rat hippocampal excitability by the plant alkaloid 3-acetylaconitine mediated by interaction with voltage-dependent sodium channels.

    Science.gov (United States)

    Ameri, A

    1997-02-01

    The effects of the Aconitum alkaloid 3-acetylaconitine on neuronal activity were investigated in the slice preparation and on cultivated neurons of rat hippocampus by extracellular and patch-clamp recordings, respectively. 3-Acetylaconitine (0.01-1 microM) diminished the orthodromic and antidromic population spike in a concentration-dependent manner. The inhibitory action of the drug was preceded by a transiently enhanced excitability. The latency of onset of the inhibition was accelerated by increased stimulation frequency, whereas recovery during washout of the alkaloid was accelerated by decreased stimulation frequency. Moreover, the inhibitory effect of 3-acetylaconitine was evaluated in two different models of epileptiform activity induced either by blockade of GABA receptors by bicuculline (10 microM) or by a nominal Mg(2+)-free bathing medium. In accordance with the activity-dependent mode of action, this compound abolished the synaptically evoked population spikes in the presence of bicuculline or nominal Mg(2+)-free bathing medium, respectively. Whole-cell patch-clamp recordings revealed an interaction of 3-acetylaconitine with the voltage-dependent sodium channel. At a concentration of 1 microM, 3-acetylaconitine did not affect the peak amplitude of the sodium current, but shifted the current-voltage relationship in the hyperpolarized direction such that sodium currents were already activated at the resting potential.

  10. Voltage dependence of rate functions for Na+ channel inactivation within a membrane

    CERN Document Server

    Vaccaro, Samuel R

    2015-01-01

    The inactivation of a Na+ channel occurs when the activation of the charged S4 segment of domain IV, with rate functions $\\alpha_{i}$ and $\\beta_{i}$, is followed by the binding of an intracellular hydrophobic motif which blocks conduction through the ion pore, with rate functions $\\gamma_{i}$ and $\\delta_{i}$. During a voltage clamp of the Na+ channel, the solution of the master equation for inactivation reduces to the relaxation of a rate equation when the binding of the inactivation motif is rate limiting ($\\alpha_{i} \\gg \\gamma_{i}$ and $\\beta_{i} \\gg \\delta_{i}$). The voltage dependence of the derived forward rate function for Na+ channel inactivation has an exponential dependence on the membrane potential for small depolarizations and approaches a constant value for larger depolarizations, whereas the voltage dependence of the backward rate function is exponential, and each rate has a similar form to the Hodgkin-Huxley empirical rate functions for Na+ channel inactivation in the squid axon.

  11. Effects of caffeine on intracellular calcium, calcium current and calcium-dependent potassium current in anterior pituitary GH3 cells.

    Science.gov (United States)

    Kramer, R H; Mokkapatti, R; Levitan, E S

    1994-01-01

    Caffeine elicits physiological responses in a variety of cell types by triggering the mobilization of Ca2+ from intracellular organelles. Here we investigate the effects of caffeine on intracellular Ca2+ concentration ([Ca2+]i) and ionic currents in anterior pituitary cells (GH3) cells. Caffeine has a biphasic effect on Ca(2+)-activated K+ current [IK(Ca)]: it induces a transient increase superimposed upon a sustained inhibition. While the transient increase coincides with a rise in [Ca2+]i, the sustained inhibition of IK(Ca) is correlated with a sustained inhibition of the L-type Ca2+ current. The L-type Ca2+ current is also inhibited by other agents that mobilize intracellular Ca2+, including thyrotropin releasing hormone (TRH) and ryanodine, but in a matter distinct from caffeine. Unlike the caffeine effect, the TRH-induced inhibition "washes-out" under whole-cell patch-clamp conditions and is eliminated by intracellular Ca2+ chelators. Likewise, the ryanodine-induced inhibition desensitizes while the caffeine-induced inhibition does not. Simultaneous [Ca2+]i and Ca2+ current measurements show that caffeine can inhibit Ca2+ current without changing [Ca2+]i. Single-channel recordings show that caffeine reduces mean open time without affecting single-channel conductance of L-type channels. Hence the effects of caffeine on ion channels in GH3 cells are attributable both to mobilization of intracellular Ca2+ and to a direct effect on the gating of L-type Ca2+ channels.

  12. The Calcium-dependent Potassium Current in Olfactory Interneurons of the Cockroach Periplaneta americana

    OpenAIRE

    Schleicher, Sabine

    2014-01-01

    The olfactory system of insects has already served as a suitable model to investigate mechanisms of general information processing. Thus, insect olfactory neurons were used to study physiology, transmitter content, from that evoked currents as well as sensory processing on a network level. As an important step towards understanding how distinct electrophysiological properties of neurons are generated by intrinsic currents, I used whole-cell patch-clamp recordings to analyze biophysical and ph...

  13. Characterization of the rapidly activating delayed rectifier potassium current, I (Kr), in HL-1 mouse atrial myocytes.

    Science.gov (United States)

    Toyoda, Futoshi; Ding, Wei-Guang; Zankov, Dimitar P; Omatsu-Kanbe, Mariko; Isono, Takahiro; Horie, Minoru; Matsuura, Hiroshi

    2010-06-01

    HL-1 is the adult murine cardiac cell line that can be passaged repeatedly in vitro without losing differentiated phenotype. The present study was designed to characterize the rapidly activating delayed rectifier potassium current, I (Kr), endogenously expressed in HL-1 cells using the whole-cell patch-clamp technique. In the presence of nisoldipine, depolarizing voltage steps applied from a holding potential of -50 mV evoked the time-dependent outward current, followed by slowly decaying outward tail current upon return to the holding potential. The amplitude of the current increased with depolarizations up to 0 mV but then progressively decreased with further depolarizations. The time-dependent outward current as well as the tail current were highly sensitive to block by E-4031 and dofetilide (IC(50) of 21.1 and 15.1 nM, respectively) and almost totally abolished by micromolar concentrations of each drug, suggesting that most of the outward current in HL-1 cells was attributable to I (Kr). The magnitude of I (Kr) available from HL-1 cells (18.1 +/- 1.5 pA pF(-1)) was sufficient for reliable measurements of various gating parameters. RT-PCR and Western blot analysis revealed the expression of alternatively spliced forms of mouse ether-a-go-go-related genes (mERG1), the full-length mERG1a and the N-terminally truncated mERG1b isoforms. Knockdown of mERG1 transcripts with small interfering RNA (siRNA) dramatically reduced I (Kr) amplitude, confirming the molecular link of mERG1 and I (Kr) in HL-1 cells. These findings demonstrate that HL-1 cells possess I (Kr) with properties comparable to those in native cardiac I (Kr) and provide an experimental model suitable for studies of I (Kr) channels.

  14. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats.

    Science.gov (United States)

    Sonner, Patrick M; Filosa, Jessica A; Stern, Javier E

    2008-03-15

    Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (I(A)) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca(2+) levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in I(A) current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished I(A) availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K(+) channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca(2+) imaging demonstrated enhanced action potential-evoked intracellular Ca(2+) transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished I(A) availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension.

  15. Characteristics of the inward-rectifying potassium current in mouse ventricular myocytes and its relation to early after-depolarization

    Institute of Scientific and Technical Information of China (English)

    周盈颖; 郝雪梅; 范劲松; 刘泰(木逢)

    1996-01-01

    The properties of the inward-rectifying potassium current (IK1) were studied in the single myocytes isolated from adult mouse ventricles by the whole-cell patch-damp technique for the first time. Most of the properties of IK1 including channel conductances, activation, inactivation, rectification and external K+ sensitivity in mouse ventricular myocyte were similar to those in other species, but the current-voltage (1-V) curve of mouse ventricular myocyte showed no negative slope, i.e the slope in the range of membrane potential 50 mV positive to the reversal potential (VRev) was virtually flat and remained at a low current level ((59±39) pA). Under the superfusion of Tyrode’s solution with 3mmol/L K+ and 3mmol/L Cs+, IK1 in the above region nearly decreased to zero, and then the early after-depolarization (EAD) occurred. The results suggest that this distinctive characteristic of IK1 in mouse ventricular myocyte may relate to the high susceptibility to EA0 in mouse myocardium. The inhibition of IK1 se

  16. Somatostatinergic modulation of firing pattern and calcium-activated potassium currents in medium spiny neostriatal neurons.

    Science.gov (United States)

    Galarraga, E; Vilchis, C; Tkatch, T; Salgado, H; Tecuapetla, F; Perez-Rosello, T; Perez-Garci, E; Hernandez-Echeagaray, E; Surmeier, D J; Bargas, J

    2007-05-11

    Somatostatin is synthesized and released by aspiny GABAergic interneurons of the neostriatum, some of them identified as low threshold spike generating neurons (LTS-interneurons). These neurons make synaptic contacts with spiny neostriatal projection neurons. However, very few somatostatin actions on projection neurons have been described. The present work reports that somatostatin modulates the Ca(2+) activated K(+) currents (K(Ca) currents) expressed by projection cells. These actions contribute in designing the firing pattern of the spiny projection neuron; which is the output of the neostriatum. Small conductance (SK) and large conductance (BK) K(Ca) currents represent between 30% and 50% of the sustained outward current in spiny cells. Somatostatin reduces SK-type K(+) currents and at the same time enhances BK-type K(+) currents. This dual effect enhances the fast component of the after hyperpolarizing potential while reducing the slow component. Somatostatin then modifies the firing pattern of spiny neurons which changed from a tonic regular pattern to an interrupted "stuttering"-like pattern. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) tissue expression analysis of dorsal striatal somatostatinergic receptors (SSTR) mRNA revealed that all five SSTR mRNAs are present. However, single cell RT-PCR profiling suggests that the most probable receptor in charge of this modulation is the SSTR2 receptor. Interestingly, aspiny interneurons may exhibit a "stuttering"-like firing pattern. Therefore, somatostatin actions appear to be the entrainment of projection neurons to the rhythms generated by some interneurons. Somatostatin is then capable of modifying the processing and output of the neostriatum.

  17. Some effects of n-pentane on the sodium and potassium currents of the squid giant axon.

    Science.gov (United States)

    Haydon, D A; Kimura, J E

    1981-01-01

    1. Sodium and potassium currents have been recorded in intracellularly perfused squid giant axons before, during and after exposure to solutions of n-pentane in artificial sea water. 2. The currents were fitted with equations similar to those proposed by Hodgkin & Huxley (1952) and the changes in the parameters of these equations in the presence of pentane were calculated. 3. In the range of membrane potential -40 to 40 mV, the time constants for activation (tau m) and inactivation (tau h) of the Na current, and for activation (tau n) of the K current were all reduced by the pentane. 4. The curve of the steady-state inactivation parameter (h infinity) for the Na current against membrane potential was shifted by the pentane in a hyperpolarizing direction (at h infinity = 0.5 this shift was approx. -15 mV in 275 microM-pentane) and the slope at all potentials was reduced. 5. The curve of the steady-state activation parameter (m infinity) for the Na current against membrane potential was also shifted by the pentane in a hyperpolarizing direction (in 153 microM-pentane, 10 mV at m infinity = 0.5). 6. The maximum Na and K conductances gNa and gK were lowered by the pentane, though not usually completely reversibly. 7. The changes in position and slope of the steady-state inactivation curve have been tentatively accounted for in terms of an increase in membrane thickness. PMID:6267268

  18. Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes

    DEFF Research Database (Denmark)

    Andreasen, Ditte; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2006-01-01

    , and blocking P-type currents (omega-agatoxin IVA 10 nmol/L) led to 20.2+/-3.0% inhibition, whereas 300 nmol/L of omega agatoxin IVA (blocking P/Q-type) inhibited 45.0+/-7.3%. In rat aortic smooth muscle cells (A7r5), blockade of L-type channels resulted in 28.5+/-6.1% inhibition, simultaneous blockade of L...... microscopy revealed expression of both channels in all of the smooth muscle cells. Whole-cell patch clamp on single preglomerular VSMCs from mice showed L-, P-, and Q-type currents. Blockade of the L-type currents by calciseptine (20 nmol/L) inhibited 35.6+/-3.9% of the voltage-dependent Ca2+ current......-type and P-type channels inhibited 58.0+/-11.8%, and simultaneous inhibition of L-, P-, and Q-type channels led to blockade (88.7+/-5.6%) of the Ca2+ current. We conclude that aortic and renal preglomerular smooth muscle cells express L-, P-, and Q-type voltage-dependent Ca2+ channels in the rat and mouse....

  19. Outward potassium current oscillations in macrophage polykaryons: extracellular calcium entry and calcium-induced calcium release

    Directory of Open Access Journals (Sweden)

    Saraiva R.M.

    1997-01-01

    Full Text Available Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation

  20. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus.

    Science.gov (United States)

    Bourque, C W

    1988-03-01

    1. Magnocellular neurosecretory neurones were impaled in the supraoptic nucleus of perfused explants of rat hypothalamus. Membrane currents were studied at 35 degrees C using the single-microelectrode voltage-clamp technique. 2. Depolarizing voltage steps applied from -100 mV evoked a transient outward current (TOC) from a threshold of -75 mV. From this potential, the amplitude of the current increased non-linearly with voltage. 3. Following its activation TOC reached a peak within 7 ms and subsequently decayed monotonically with a time constant of 30 ms. This time constant did not vary significantly with voltage between -75 and -55 mV. 4. The TOC showed complete steady-state inactivation at potentials positive to -55 mV. Inactivation was removed by hyperpolarization, with a mid-point near -80 mV. The removal of inactivation followed a complex time course with distinct fast (tens of milliseconds) and slow (hundreds of milliseconds) components. 5. Tail current measurements revealed that the TOC equilibrium potential (ETOC) lies near -97 mV in the presence of 3 mM [K+]o. Increasing [K+]o caused a decrease of TOC amplitude and a shift in ETOC of 57 mV/log [K+]o. The TOC is therefore predominantly a K+ current. 6. The TOC was unaffected by tetraethylammonium (up to 12 mM) but was reversibly reduced by 4-aminopyridine (ca. 50% block at 1.0 mM) and dendrotoxin (ca. 50% block at 4 nM). 7. The TOC was strongly inhibited (greater than 70%) by adding Co2+ or Mn2+ (1-3 mM) or Cd2+ (50-400 microM) to Ca-containing solutions, or by removal of Ca2+ from the perfusate. These effects were not accompanied by detectable changes in threshold voltage. The amplitude of TOC was also depressed by the organic Ca2+ channel blocker methoxyverapamil (D600). Finally replacement of Ca2+ by Ba2+ in the perfusate completely and reversibly abolished the TOC. 8. These findings suggest that neurosecretory neurones of the rat supraoptic nucleus display a transient K+ current which is strongly

  1. hERG S4-S5 linker acts as a voltage-dependent ligand that binds to the activation gate and locks it in a closed state.

    Science.gov (United States)

    Malak, Olfat A; Es-Salah-Lamoureux, Zeineb; Loussouarn, Gildas

    2017-12-01

    Delayed-rectifier potassium channels (hERG and KCNQ1) play a major role in cardiac repolarization. These channels are formed by a tetrameric pore (S5-S6) surrounded by four voltage sensor domains (S1-S4). Coupling between voltage sensor domains and the pore activation gate is critical for channel voltage-dependence. However, molecular mechanisms remain elusive. Herein, we demonstrate that covalently binding, through a disulfide bridge, a peptide mimicking the S4-S5 linker (S4-S5L) to the channel S6 C-terminus (S6T) completely inhibits hERG. This shows that channel S4-S5L is sufficient to stabilize the pore activation gate in its closed state. Conversely, covalently binding a peptide mimicking S6T to the channel S4-S5L prevents its inhibiting effect and renders the channel almost completely voltage-independent. This shows that the channel S4-S5L is necessary to stabilize the activation gate in its closed state. Altogether, our results provide chemical evidence that S4-S5L acts as a voltage-controlled ligand that binds S6T to lock the channel in a closed state, elucidating the coupling between voltage sensors and the gate in delayed rectifier potassium channels and potentially other voltage-gated channels.

  2. Potassium Secondary Batteries.

    Science.gov (United States)

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  3. Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid.

    Science.gov (United States)

    Blatt, M R

    1990-02-01

    Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H(+)-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K(+) channels at the membrane of intact guard cells of Vicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K(+) channels. On adding 10 μM ABA in the presence of 0.1, 3 or 10 mM extracellular K(+), the free-running membrane potential (V m) shifted negative-going (-)4-7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K(+)-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response in V m. Calculated at V m, the K(+) currents translated to an average 2.65-fold rise in K(+) efflux with ABA. Abscisic acid was not observed to alter either K(+)-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K(+) channels or channel conductance, rather than a direct effect of the phytohormone on K(+)-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K(+) flux. Instead, thev highlight a rise in membrane capacity for K(+) flux, dependent on concerted modulations of K(+)-channel and leak currents, and sufficiently rapid to account generally for the onset of K(+) loss from guard cells and stomatal closure in ABA.

  4. Chemotransduction in the Carotid Body: K+ Current Modulated by Po2 in Type I Chemoreceptor Cells

    Science.gov (United States)

    Lopez-Barneo, Jose; Lopez-Lopez, Jose R.; Urena, Juan; Gonzalez, Constancio

    1988-07-01

    The ionic currents of carotid body type I cells and their possible involvement in the detection of oxygen tension (Po2) in arterial blood are unknown. The electrical properties of these cells were studied with the whole-cell patch clamp technique, and the hypothesis that ionic conductances can be altered by changes in Po2 was tested. The results show that type I cells have voltage-dependent sodium, calcium, and potassium channels. Sodium and calcium currents were unaffected by a decrease in Po2 from 150 to 10 millimeters of mercury, whereas, with the same experimental protocol, potassium currents were reversibly reduced by 25 to 50 percent. The effect of hypoxia was independent of internal adenosine triphosphate and calcium. Thus, ionic conductances, and particularly the O2-sensitive potassium current, play a key role in the transduction mechanism of arterial chemoreceptors.

  5. Inhibition of potassium and calcium currents in neurones by molecularly-defined P2Y receptors.

    Science.gov (United States)

    Brown, D A; Filippov, A K; Barnard, E A

    2000-07-01

    Messenger RNAs and cDNAs for individual cloned P2Y(1), P2Y2 and P2Y(6) nucleotide receptors have been expressed by micro-injection into dissociated rat superior cervical sympathetic neurones and the effects of stimulating the expressed receptors on voltage-activated N-type Ca(2+) currents and M-type K(+) currents recorded. Both currents were reduced by stimulating all three receptors, with the following mean IC(50) values: P2Y(1) (agonist: ADP) - I(K(M)) 6.9 nM, I(Ca) 8.2 nM; P2Y(2) (agonist: UTP) - I(K(M)) 1.5 microM, I(Ca) 0.5 microM; P2Y(6) (agonist: UDP) - I(K(M)) 30 nM, I(Ca) 5.9 nM. Inhibition of I(K(M)) was voltage-independent and insensitive to Pertussis toxin; inhibition of I(Ca) showed both voltage-sensitive and insensitive, and Pertussis toxin-sensitive and insensitive components. It is concluded that these P2Y receptors can couple to more than one G protein and thereby modulate more than one ion channel. It is suggested that these effects on K(M) and Ca(N) channels may induce both postsynaptic excitory and presynaptic inhibitory responses.

  6. Inhibition of cardiac Kv1.5 potassium current by the anesthetic midazolam: mode of action

    Science.gov (United States)

    Vonderlin, Nadine; Fischer, Fathima; Zitron, Edgar; Seyler, Claudia; Scherer, Daniel; Thomas, Dierk; Katus, Hugo A; Scholz, Eberhard P

    2014-01-01

    Midazolam is a short-acting benzodiazepine that is widely used in anesthesia. Despite its widespread clinical use, detailed information about cardiac side effects of midazolam is largely lacking. Using the double-electrode voltage clamp technique, we studied pharmacological effects of midazolam on heterologously expressed Kv1.5 channels underlying atrial repolarizing current IKur. Midazolam dose-dependently inhibited Kv1.5 current, yielding an IC50 of 17 μM in an HEK cell line and an IC50 of 104 μM in Xenopus oocytes. We further showed that midazolam did not affect the half-maximal activation voltage of Kv1.5 channels. However, a small negative shift of the inactivation curve could be observed. Midazolam acted as a typical open-channel inhibitor with rapid onset of block and without frequency dependence of block. Taken together, midazolam is an open channel inhibitor of cardiac Kv1.5 channels. These data add to the current understanding of the pharmacological profile of midazolam. PMID:25422586

  7. Mechanism of accelerated current decay caused by an episodic ataxia type-1-associated mutant in a potassium channel pore.

    Science.gov (United States)

    Peters, Christian J; Werry, Daniel; Gill, Hira S; Accili, Eric A; Fedida, David

    2011-11-30

    In Kv1.1, single point mutants found below the channel activation gate at residue V408 are associated with human episodic ataxia type-1, and impair channel function by accelerating decay of outward current during periods of membrane depolarization and channel opening. This decay is usually attributed to C-type inactivation, but here we provide evidence that this is not the case. Using voltage-clamp fluorimetry in Xenopus oocytes, and single-channel patch clamp in mouse ltk- cells, of the homologous Shaker channel (with the equivalent mutation V478A), we have determined that the mutation may cause current decay through a local effect at the activation gate, by destabilizing channel opening. We demonstrate that the effect of the mutant is similar to that of trapped 4-aminopyridine in antagonizing channel opening, as the mutation and 10 mm 4-AP had similar, nonadditive effects on fluorescence recorded from the voltage-sensitive S4 helix. We propose a model where the Kv1.1 activation gate fails to enter a stabilized open conformation, from which the channel would normally C-type inactivate. Instead, the lower pore lining helix is able to enter an activated-not-open conformation during depolarization. These results provide an understanding of the molecular etiology underlying episodic ataxia type-1 due to V408A, as well as biophysical insights into the links between the potassium channel activation gate, the voltage sensor and the selectivity filter.

  8. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock

    Directory of Open Access Journals (Sweden)

    Sahar Farajnia

    2016-09-01

    Full Text Available One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN, is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light–dark 16:8 and short-day (light–dark 8:16 photoperiods and membrane properties as well as K+ currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K+ current, that is, the circadian modulation of this ion channel’s activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K+ currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment.

  9. A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion.

    Science.gov (United States)

    Grefen, Christopher; Karnik, Rucha; Larson, Emily; Lefoulon, Cécile; Wang, Yizhou; Waghmare, Sakharam; Zhang, Ben; Hills, Adrian; Blatt, Michael R

    2015-01-01

    Growth in plants depends on ion transport for osmotic solute uptake and secretory membrane trafficking to deliver material for wall remodelling and cell expansion. The coordination of these processes lies at the heart of the question, unresolved for more than a century, of how plants regulate cell volume and turgor. Here we report that the SNARE protein SYP121 (SYR1/PEN1), which mediates vesicle fusion at the Arabidopsis plasma membrane, binds the voltage sensor domains (VSDs) of K(+) channels to confer a voltage dependence on secretory traffic in parallel with K(+) uptake. VSD binding enhances secretion in vivo subject to voltage, and mutations affecting VSD conformation alter binding and secretion in parallel with channel gating, net K(+) concentration, osmotic content and growth. These results demonstrate a new and unexpected mechanism for secretory control, in which a subset of plant SNAREs commandeer K(+) channel VSDs to coordinate membrane trafficking with K(+) uptake for growth.

  10. G protein-induced trafficking of voltage-dependent calcium channels.

    Science.gov (United States)

    Tombler, Eugene; Cabanilla, Nory Jun; Carman, Paul; Permaul, Natasha; Hall, John J; Richman, Ryan W; Lee, Jessica; Rodriguez, Jennifer; Felsenfeld, Dan P; Hennigan, Robert F; Diversé-Pierluissi, María A

    2006-01-20

    Calcium channels are well known targets for inhibition by G protein-coupled receptors, and multiple forms of inhibition have been described. Here we report a novel mechanism for G protein-mediated modulation of neuronal voltage-dependent calcium channels that involves the destabilization and subsequent removal of calcium channels from the plasma membrane. Imaging experiments in living sensory neurons show that, within seconds of receptor activation, calcium channels are cleared from the membrane and sequestered in clathrin-coated vesicles. Disruption of the L1-CAM-ankyrin B complex with the calcium channel mimics transmitter-induced trafficking of the channels, reduces calcium influx, and decreases exocytosis. Our results suggest that G protein-induced removal of plasma membrane calcium channels is a consequence of disrupting channel-cytoskeleton interactions and might represent a novel mechanism of presynaptic inhibition.

  11. Calcium-dependent potassium current following penicillin-induced epileptiform discharges in the hippocampal slice.

    Science.gov (United States)

    Domann, R; Dorn, T; Witte, O W

    1989-01-01

    Penicillin-induced paroxysmal depolarization shifts (PDS) are followed by prolonged afterhyperpolarizations of about 2 seconds duration. Intracellular injection of EGTA blocked a late component of the afterhyperpolarizations; an early one lasting up to one second was only slightly reduced by EGTA. It is concluded that afterhyperpolarizations following penicillin-induced PDS comprise different components: an initial one lasting up to one second which is not Ca2+-dependent and a slow one lasting up to two seconds which is caused by a Ca2+-dependent K+ current.

  12. Rab3 interacting molecule 3 mutations associated with autism alter regulation of voltage-dependent Ca²⁺ channels.

    Science.gov (United States)

    Takada, Yoshinori; Hirano, Mitsuru; Kiyonaka, Shigeki; Ueda, Yoshifumi; Yamaguchi, Kazuma; Nakahara, Keiko; Mori, Masayuki X; Mori, Yasuo

    2015-09-01

    Autism is a neurodevelopmental psychiatric disorder characterized by impaired reciprocal social interaction, disrupted communication, and restricted and stereotyped patterns of interests. Autism is known to have a strong genetic component. Although mutations in several genes account for only a small proportion of individuals with autism, they provide insight into potential biological mechanisms that underlie autism, such as dysfunction in Ca(2+) signaling, synaptic dysfunction, and abnormal brain connectivity. In autism patients, two mutations have been reported in the Rab3 interacting molecule 3 (RIM3) gene. We have previously demonstrated that RIM3 physically and functionally interacts with voltage-dependent Ca(2+) channels (VDCCs) expressed in neurons via the β subunits, and increases neurotransmitter release. Here, by introducing corresponding autism-associated mutations that replace glutamic acid residue 176 with alanine (E176A) and methionine residue 259 with valine (M259V) into the C2B domain of mouse RIM3, we demonstrate that both mutations partly cancel the suppressive RIM3 effect on voltage-dependent inactivation of Ba(2+) currents through P/Q-type CaV2.1 recombinantly expressed in HEK293 cells. In recombinant N-type CaV2.2 VDCCs, the attenuation of the suppressive RIM3 effect on voltage-dependent inactivation is conserved for M259V but not E176A. Slowing of activation speed of P/Q-type CaV2.1 currents by RIM3 is abolished in E176A, while the physical interaction between RIM3 and β subunits is significantly attenuated in M259V. Moreover, increases by RIM3 in depolarization-induced Ca(2+) influx and acetylcholine release are significantly attenuated by E176A in rat pheochromocytoma PC12 cells. Thus, our data raise the interesting possibility that autism phenotypes are elicited by synaptic dysfunction via altered regulation of presynaptic VDCC function and neurotransmitter release.

  13. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics.

    Science.gov (United States)

    Chiamvimonvat, Nipavan; Chen-Izu, Ye; Clancy, Colleen E; Deschenes, Isabelle; Dobrev, Dobromir; Heijman, Jordi; Izu, Leighton; Qu, Zhilin; Ripplinger, Crystal M; Vandenberg, Jamie I; Weiss, James N; Koren, Gideon; Banyasz, Tamas; Grandi, Eleonora; Sanguinetti, Michael C; Bers, Donald M; Nerbonne, Jeanne M

    2016-11-03

    This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K(+) channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K(+) channel in health and disease, as well as K(+) channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K(+) channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.

  14. Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents.

    Directory of Open Access Journals (Sweden)

    Jon Robbins

    Full Text Available The KCNQ2 gene product, Kv7.2, is a subunit of the M-channel, a low-threshold voltage-gated K(+ channel that regulates mammalian and human neuronal excitability. Spontaneous mutations one of the KCNQ2 genes cause disorders of neural excitability such as Benign Familial Neonatal Seizures. However there appear to be no reports in which both human KCNQ2 genes are mutated. We therefore asked what happens to M-channel function when both KCNQ2 genes are disrupted. We addressed this using sympathetic neurons isolated from mice in which the KCNQ2 gene was truncated at a position corresponding to the second transmembrane domain of the Kv7.2 protein. Since homozygote KCNQ2-/- mice die postnatally, experiments were largely restricted to neurons from late embryos. Quantitative PCR revealed an absence of KCNQ2 mRNA in ganglia from KCNQ2-/- embryos but 100-120% increase of KCNQ3 and KCNQ5 mRNAs; KCNQ2+/- ganglia showed ∼30% less KCNQ2 mRNA than wild-type (+/+ ganglia but 40-50% more KCNQ3 and KCNQ5 mRNA. Neurons from KCNQ2-/- embryos showed a complete absence of M-current, even after applying the Kv7 channel enhancer, retigabine. Neurons from heterozygote KCNQ2+/- embryos had ∼60% reduced M-current. In contrast, M-currents in neurons from adult KCNQ2+/- mice were no smaller than those in neurons from wild-type mice. Measurements of tetraethylammonium block did not indicate an increased expression of Kv7.5-containing subunits, implying a compensatory increase in Kv7.2 expression from the remaining KCNQ2 gene. We conclude that mouse embryonic M-channels have an absolute requirement for Kv7.2 subunits for functionality, that the reduced M-channel activity in heterozygote KCNQ2+/- mouse embryos results primarily from a gene-dosage effect, and that there is a compensatory increase in Kv7.2 expression in adult mice.

  15. Modulation of membrane potential by an acetylcholine-activated potassium current in trout atrial myocytes

    DEFF Research Database (Denmark)

    Molina, C.E.; Gesser, Hans; Llach, A.

    2007-01-01

    mV from 4.3 pA/pF to 27 pA/pF with an EC50 of 45 nM in atrial myocytes. Moreover, 3 nM ACh increased the slope conductance of Im fourfold, shifted its reversal potential from -78 ± 3 to -84 ± 3 mV, and stabilized the resting membrane potential at -92 ± 4 mV. ACh also shortened the action potential...... hypothesized that this is at least partly due to a small slope conductance of Im around the resting membrane potential in atrial myocytes. In accordance with this hypothesis, the slope conductance of Im was about sevenfold smaller in atrial than in ventricular myocytes. Interestingly, ACh increased Im at -120...... of an inwardly rectifying K+ current can modulate the membrane potential in the trout atrial myocytes and stabilize the resting membrane potential. teleost heart; IK,ACh; cholinergic modulation; action potential...

  16. Calcium-activated potassium current modulates ventricular repolarization in chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Ingrid M Bonilla

    Full Text Available The role of I(KCa in cardiac repolarization remains controversial and varies across species. The relevance of the current as a therapeutic target is therefore undefined. We examined the cellular electrophysiologic effects of I(KCa blockade in controls, chronic heart failure (HF and HF with sustained atrial fibrillation. We used perforated patch action potential recordings to maintain intrinsic calcium cycling. The I(KCa blocker (apamin 100 nM was used to examine the role of the current in atrial and ventricular myocytes. A canine tachypacing induced model of HF (1 and 4 months, n = 5 per group was used, and compared to a group of 4 month HF with 6 weeks of superimposed atrial fibrillation (n = 7. A group of age-matched canine controls were used (n = 8. Human atrial and ventricular myocytes were isolated from explanted end-stage failing hearts which were obtained from transplant recipients, and studied in parallel. Atrial myocyte action potentials were unchanged by I(KCa blockade in all of the groups studied. I(KCa blockade did not affect ventricular myocyte repolarization in controls. HF caused prolongation of ventricular myocyte action potential repolarization. I(KCa blockade caused further prolongation of ventricular repolarization in HF and also caused repolarization instability and early afterdepolarizations. SK2 and SK3 expression in the atria and SK3 in the ventricle were increased in canine heart failure. We conclude that during HF, I(KCa blockade in ventricular myocytes results in cellular arrhythmias. Furthermore, our data suggest an important role for I(KCa in the maintenance of ventricular repolarization stability during chronic heart failure. Our findings suggest that novel antiarrhythmic therapies should have safety and efficacy evaluated in both atria and ventricles.

  17. Effects of Ginkgolide B on action potential and calcium,potassium current in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan QI; Zhi-xiong ZHANG; You-qiu XU

    2004-01-01

    AIM: To investigate the effect of Ginkgolide B (GB) on action potential (AP), delayed rectifier potassium current (IK), and L-type calcium current (ICa-L) in guinea pig ventricular myocytes. METHODS: Single ventricular myocytes were isolated by an enzymatic dissociation method. AP, IK, ICa-L were recorded by whole-cell patch-clamp technique in either current or voltage clamp mode. RESULTS: GB shortened APD in a concentration-dependent manner. GB 0.1, 1, and 10 μmol/L shortened APD50 by 7.9 % (n=5, P>0.05), 18.4 % (n=5, P<0.01), and 28.9 % (n=6, P<0.01), respectively; APD90 by 12.4 % (n=5, P>0.05), 17.6 % (n=5, P<0.01), 26.4 % (n=5, P<0.01),respectively. GB increased IK in a concentration-dependent manner. GB 0.1, 1, and l0 μmol/L increased IK by 20.1% (n=6, P<0.05), 43.1% (n=6, P<0.01), 55.6 % (n=6, P<0.05); increased IKtail by 10.7 % (n=6, P<0.05),25.1% (n=6, P<0.05), and 37.7 % (n=6, P<0.05), respectively at testing potential of +50 mV and shift the I-V curve of Ik upward. But GB had no significant effect on ICa-L at above concentrations. CONCLUSION: GB significantly shortened APD in a concentration-dependent manner which mainly due to increase of IK.

  18. Role of arachidonic acid in hyposmotic membrane stretch-induced increase in calcium-activated potassium currents in gastric myocytes

    Institute of Scientific and Technical Information of China (English)

    Meng YANG; Wen-xie XU; Xing-lan LI; Hui-ying XU; Jia-bin SUN; Bin MEI; Hai-feng ZHENG; Lian-hua PIAO; De-gang XING; Zhai-liu LI

    2005-01-01

    Aim: To study effects of arachidonic acid (AA) and its metabolites on the hyposmotic membrane stretch-induced increase in calcium-activated potassium currents (IKCa) in gastric myocytes. Methods: Membrane currents were recorded by using a conventional whole cell patch-clamp technique in gastric myocytes isolated with collagenase. Results: Hyposmotic membrane stretch and AA increased both IK(Ca) and spontaneous transient outward currents significantly.Exogenous AA could potentiate the hyposmotic membrane stretch-induced increase in IK(Ca). The hyposmotic membrane stretch-induced increase in IK(Ca) was significantly suppressed by dimethyleicosadienoic acid (100 μmol/L in pipette solution), an inhibitor of phospholipase A2. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly suppressed AA and hyposmotic membrane stretch-induced increases in IK(Ca). External calcium-free or gadolinium chloride, a blocker of stretch-activated channels, blocked the AA-induced increase in IK(Ca) significantly, but it was not blocked by nicardipine, an L-type calcium channel blocker. Ryanodine, a calcium-induced calcium release agonist, completely blocked the AA-induced increase in IK(Ca); however, heparin, a potent inhibitor of inositol triphosphate receptor, did not block the AA-induced increase in IK(Ca). Conclusion:Hyposmotic membrane stretch may activate phospholipase A2, which hydrolyzes membrane phospholipids to ultimately produce AA; AA as a second messenger mediates Ca2+ influx, which triggers Ca2+-induced Ca2+ release and elicits activation of IK(Ca) in gastric antral circular myocytes of the guinea pig.

  19. Effect of alpha-cypermethrin and theta-cypermethrin on delayed rectifier potassium currents in rat hippocampal neurons.

    Science.gov (United States)

    Tian, Yu-Tao; Liu, Zhao-Wei; Yao, Yang; Yang, Zhuo; Zhang, Tao

    2009-03-01

    Cypermethrin is a photostable synthetic pyrethroid and the most widely used Type II pyrethroid pesticide. The effects of two different stereoisomers of cypermethrin insecticides, alpha-cypermethrin and theta-cypermethrin, on the delayed rectifier potassium current (IK) in hippocampal neurons of rat, were studied using whole-cell patch clamp technique. Alpha-cypermethrin and theta-cypermethrin decreased the amplitude value of IK, and shifted the steady state activation curve of IK towards negative potential at any concentrations (10(-9) M, 10(-8) M, 10(-7) M). Furthermore, at higher concentration, alpha-cypermethrin (10(-7) M) and theta-cypermethrin (10(-8) M, 10(-7) M) had observable effects of the steady state inactivation of IK. The results suggest that IK is the target of alpha-cypermethrin and theta-cypermethrin, which may explain the mechanism of toxic effects of both steroeisomers of cypermethrin on mammalian neurons. Cypermethrin-altered properties of voltage gated delayed rectifier K+ channels may contribute to neurotoxicity by eliciting abnormal electrical discharges in hippocampal CA3 neurons.

  20. Role of calcium-activated potassium currents in CNP-induced relaxation of gastric antral circular smooth muscle in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Hui-Shu Guo; Zheng-Xu Cai; Hai-Feng Zheng; Xiang-Lan Li; Yi-Feng Cui; Zuo-Yu Wang; Wen-Xie Xu; Sang-Jin Lee; Young-Chul Kim

    2003-01-01

    AIM: To investigate ion channel mechanism in CNP-induced relaxation of gastric circular smooth muscle in guinea pigs.METHODS: Spontaneous contraction of gastric smooth muscle was recorded by a four -channel physiograph. The whole cell patch-clamp technique was used to record calciumactivated potassium currents and membrane potential in the gastric myocytes isolated by collagenase.RESULTS: C-type natriuretic peptide (CNP) markedly inhibited the spontaneous contraction in a dose-dependent manner in gastric circular smooth muscle in guinea pigs.Ly83583, an inhibitor of guanylate cyclase, weakened CNPinduced inhibition on spontaneous contraction but Zaparinast, an inhibitor of cGMP sensitive phosphoesterase,potentiated CNP-induced inhibition in gastric circular smooth muscles. The inhibitory effects of CNP on spontaneous contraction were blocked by tetrathylammonium (TEA), a nonselective potassium channel blocker. CNP hyperpolarized membrane potential from -60.0 mV±2.0 mV to -68.3 meV±3.0 mV in a single gastric myocyte. CNP increased calcium-activated potassium currents (Ik(ca)) in a dose-dependent manner in gastric circular myocytes. CNP also increased the spontaneously transient outward currents (STOCs). Ly83583 partly blocked CNP-induced increase of calcium-activated potassium currents, but Zaparinast potented the effect.CONCLUSION: CNP inhibits spontaneous contraction, and potassium channel may be involved in the process in gastric circular smooth musde of guinea pigs. CNP-induced increase of Ik(ca) is mediated by a cGMP dependent pathway.

  1. Voltage-dependent ionic channels in differentiating neural precursor cells collected from adult mouse brains six hours post-mortem.

    Science.gov (United States)

    Bellardita, Carmelo; Bolzoni, Francesco; Sorosina, Melissa; Marfia, Giovanni; Carelli, Stephana; Gorio, Alfredo; Formenti, Alessandro

    2012-04-01

    A novel type of adult neural precursor cells (NPCs) has been isolated from the subventricular zone of the mouse 6 hr after animal death (T6-NPCs). This condition is supposed to select hypoxia-resistant cells of scientific and clinical interest. Ionic channels are ultimately the expression of the functional maturation of neurons, so the aim of this research was to characterize the pattern of the main voltage-dependent ionic channels in T6-NPCs differentiating to a neuronal phenotype, comparing it with NPCs isolated soon after death (T0-NPCs). T6- and T0-NPCs grow in medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Differentiation was performed in small wells without the addition of growth factors, in the presence of adhesion molecules, fetal bovine serum, and leukemia inhibitory factor. Ionic currents, recorded by means of whole-cell patch-clamp, namely, I(Ca2+) HVA, both L- and non-L-type, I(K+) delayed rectifying, I(K+) inward rectifier, transient I(K+A) , and TTX-sensitive I(Na+) have been found, although Na(+) currents were found in only a small percentage of cells and after the fifth week of differentiation. No significant differences in current types, density, orcell capacitance were observed between T6-NPCs and T0-NPCs. The sequence in which the markers appear in new neural cells is not necessarily a fixed program, but the discrepancies in morphological, biochemical, and electrophysiological maturation of mouse NPCs to neurons, possibly different in vivo, suggest that the various steps of the differentiation are independently regulated. Therefore, in addition to morphological and biochemical data, functional tests should be considered for characterizing the maturation of neurons.

  2. A Shab potassium channel contributes to action potential broadening in peptidergic neurons.

    Science.gov (United States)

    Quattrocki, E A; Marshall, J; Kaczmarek, L K

    1994-01-01

    We have cloned the gene for a potassium channel, Aplysia Shab, that is expressed in the bag cell neurons of Aplysia. The voltage dependence and kinetics of the Aplysia Shab current in oocytes match those of IK2, one of the two delayed rectifiers in these neurons. Like IK2, but in contrast with other members of the Shab subfamily, the Aplysia Shab current inactivates within several hundred milliseconds. This inactivation occurs by a process whose properties do not match those previously described for C-type and N-type mechanisms. Neither truncation of the N-terminus nor block by tetraethylammonium alters the time course of inactivation. By incorporating the characteristics of Aplysia Shab into a computational model, we have shown how this current contributes to the normal enhancement of action potentials that occurs in the bag cell neurons at the onset of neuropeptide secretion.

  3. The role of ERK-1/2 in the N/OFQ-induced inhibition of delayed rectifier potassium currents

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081 (China); Cui, Qingbo [Department of Pediatric Surgery, The 2nd Hospital of Harbin Medical University, Harbin 150081 (China); Li, Yurong [Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081 (China); Li, Baoxin [Institute of Pharmacology, Harbin Medical University, Harbin 150081 (China); Yang, Xu; Cui, Lanwei; Jin, Hongbo [Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081 (China); Qu, Lihui, E-mail: lihui_qu@yahoo.com.cn [Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081 (China)

    2010-04-16

    Nociceptin/orphanin FQ (N/OFQ) is an endogenous opioid-like heptadecapeptide involved in many neurocognitive functions, including learning and memory. Our previous report showed that N/OFQ inhibits the delayed rectifier potassium current (I{sub K}), and this effect is associated with protein kinase C (PKC) activation. Therefore, we wanted to determine if extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling is regulated by N/OFQ and associated with the effect of N/OFQ on the I{sub K}. In the current study, we tested if N/OFQ and two PKC activators [phorbol 12,13-dibutyrate (PDBu) and ingenol 3,20-dibenzoate (IDB)] affected the phosphorylation level of ERK-1/2 and its nuclear substrate, ETS-like transcription factor-1 (Elk-1), using western blots. In addition, we tested if ERK-1/2 affected the N/OFQ-induced inhibition of the I{sub K} by using whole-cell patch-clamp recordings in acutely dissociated rat parietal cortical neurons. We found that N/OFQ, PDBu, and IDB increased the amount of phosphorylated ERK-1/2 and Elk-1; U0126, a specific inhibitor for ERK-1/2, attenuated the inhibitory effect of N/OFQ on the I{sub K}. These data suggest that the ERK-1/2 pathway, at least in part, mediates the inhibitory effect of N/OFQ on the I{sub K} in acutely dissociated rat cerebral parietal cortical neurons.

  4. The role of ERK-1/2 in the N/OFQ-induced inhibition of delayed rectifier potassium currents.

    Science.gov (United States)

    Wang, Wei; Cui, Qingbo; Li, Yurong; Li, Baoxin; Yang, Xu; Cui, Lanwei; Jin, Hongbo; Qu, Lihui

    2010-04-16

    Nociceptin/orphanin FQ (N/OFQ) is an endogenous opioid-like heptadecapeptide involved in many neurocognitive functions, including learning and memory. Our previous report showed that N/OFQ inhibits the delayed rectifier potassium current (I(K)), and this effect is associated with protein kinase C (PKC) activation. Therefore, we wanted to determine if extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling is regulated by N/OFQ and associated with the effect of N/OFQ on the I(K). In the current study, we tested if N/OFQ and two PKC activators [phorbol 12,13-dibutyrate (PDBu) and ingenol 3,20-dibenzoate (IDB)] affected the phosphorylation level of ERK-1/2 and its nuclear substrate, ETS-like transcription factor-1 (Elk-1), using western blots. In addition, we tested if ERK-1/2 affected the N/OFQ-induced inhibition of the I(K) by using whole-cell patch-clamp recordings in acutely dissociated rat parietal cortical neurons. We found that N/OFQ, PDBu, and IDB increased the amount of phosphorylated ERK-1/2 and Elk-1; U0126, a specific inhibitor for ERK-1/2, attenuated the inhibitory effect of N/OFQ on the I(K). These data suggest that the ERK-1/2 pathway, at least in part, mediates the inhibitory effect of N/OFQ on the I(K) in acutely dissociated rat cerebral parietal cortical neurons.

  5. Inhibition of calcium currents in cultured rat dorsal root ganglion neurones by (-)-baclofen.

    OpenAIRE

    Dolphin, A C; Scott, R.H.

    1986-01-01

    Voltage-dependent inward calcium currents (ICa) activated in cultured rat dorsal root ganglion neurones were reversibly reduced in a dose-dependent manner by (-)-baclofen (10 microM to 100 microM). Baclofen (100 microM) reduced the calcium-dependent slow outward potassium current (IK(Ca)). This current was abolished in calcium-free medium and by 300 microM cadmium chloride. The action of baclofen on IK(Ca) was reduced when the calcium concentration in the medium was increased from 5 mM to 30 ...

  6. The modulatory effect of zinc ions on voltage-gated potassium currents in cultured rat hippocampal neurons is not related to Kv1.3 channels.

    Science.gov (United States)

    Teisseyre, A; Mercik, K; Mozrzymas, J W

    2007-12-01

    We applied the whole-cell patch-clamp technique to study the influence of zinc ions (Zn(2+)) and extracellular protons at acidic pH (pH(o)) on voltage-gated potassium currents in cultured rat hippocampal neurons. The first goal of the study was to estimate whether Kv1.3 currents significantly contributed to voltage-gated potassium currents in examined cells. Then, the influence of both ions on the activity of other voltage-gated potassium currents in the neurons was examined. We examined both the total current and the delayed - rectifier component. Results obtained in both cases were not significantly different from each other. Available data argued against any significant contribution of Kv1.3 currents to the recorded currents. Nevertheless, application of Zn(2+) in the concentration range from 100 microM to 5 mM reversibly modulated the recorded currents. The activation midpoint was shifted by about 40 mV (total current) and 30 mV (delayed-rectifier current) towards positive membrane potentials and the activation kinetics were slowed significantly (2 - 3 fold) upon application of Zn(2+). The inactivation midpoint was also shifted towards positive membrane potentials, but less significantly (about 14 mV). The current amplitudes were reduced in a concentration-dependent manner to about 0.5 of the control value. The effects of Zn(2+) were saturated at the concentration of 1 mM. Raising extracellular proton concentration by lowering the pH(o) from 7.35 to 6.4 did not affect significantly the currents. Possible mechanisms underlying the observed phenomena and their possible physiological significance are discussed.

  7. Sea Anemone Toxins Affecting Potassium Channels

    Science.gov (United States)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  8. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels.

    Science.gov (United States)

    Yagoda, Nicholas; von Rechenberg, Moritz; Zaganjor, Elma; Bauer, Andras J; Yang, Wan Seok; Fridman, Daniel J; Wolpaw, Adam J; Smukste, Inese; Peltier, John M; Boniface, J Jay; Smith, Richard; Lessnick, Stephen L; Sahasrabudhe, Sudhir; Stockwell, Brent R

    2007-06-14

    Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.

  9. Functional unit size of the neurotoxin receptors on the voltage-dependent sodium channel.

    Science.gov (United States)

    Angelides, K J; Nutter, T J; Elmer, L W; Kempner, E S

    1985-03-25

    Radiation inactivation was used in situ to determine the functional unit sizes of the neurotoxin receptors of the voltage-dependent sodium channel from rat brain. Frozen or lyophilized synaptosomes were irradiated with high energy electrons generated by a linear accelerator and assayed for [3H]saxitoxin, 125I-Leiurus quinquestriatus quinquestriatus (alpha-scorpion toxin), 125I-Centruroides suffusus suffusus (beta-scorpion toxin), and batrachotoxinin-A 20 alpha-[3H]benzoate binding activity. The functional unit size of the neurotoxin receptors determined in situ by target analysis are 220,000 for saxitoxin, 263,000 for alpha-scorpion toxin, and 45,000 for beta-scorpion toxin. Analysis of the inactivation curve for batrachotoxinin-A 20 alpha-benzoate binding to the channel yields two target sizes of Mr approximately 287,000 (50%) and approximately 51,000 (50%). The results are independent of the purity of the membrane preparation. Comparison of the radiation inactivation data with the protein composition of the rat brain sodium channel indicates that there are at least two functional components.

  10. Pharmacological Investigation of Voltage-dependent Ca2+ Channels in Human Ejaculatory Sperm in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Lu; LIU Jihong; LI Jiagui; YE Zhangqun

    2006-01-01

    The types of the voltage-dependent calcium channels (VDCCs) in human ejaculatory sperm and the effects of calcium channel blocker (CCB) on human sperm motility parameters in vitro were investigated. The human sperm motility parameters in vitro in response to the pharmacological agents nifedipine (NIF, inhibitor of L-type VDCC) and ω-conotoxin (GVIA, inhibitor of N-type VDCC) were compared and analyzed statistically. The results showed that NIF (1, 5, 10 μmol/L)could not only significantly affect human sperm's shape but also spermatozoa motility after incubated at least 10 min in vitro (P<0.001). GVIA (0.1, 0.5 and 1 μmol/L) could just only significantly affect human sperm's progressive motility (a %+b %) after incubated for 20 min in vitro (P<0.01), but they both could not significantly affect spermic abnormality rate. It is suggested that L-type VDCC, non L-type VDCCs and isoform of L-type VDCC exist in the cell membrane of human sperm solely or together, and they participate in the spermic physiological processes especially the spermic motility.

  11. Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect.

    Science.gov (United States)

    Lemasters, John J; Holmuhamedov, Ekhson L; Czerny, Christoph; Zhong, Zhi; Maldonado, Eduardo N

    2012-06-01

    Voltage dependent anion channels (VDAC) are highly conserved proteins that are responsible for permeability of the mitochondrial outer membrane to hydrophilic metabolites like ATP, ADP and respiratory substrates. Although previously assumed to remain open, VDAC closure is emerging as an important mechanism for regulation of global mitochondrial metabolism in apoptotic cells and also in cells that are not dying. During hepatic ethanol oxidation to acetaldehyde, VDAC closure suppresses exchange of mitochondrial metabolites, resulting in inhibition of ureagenesis. In vivo, VDAC closure after ethanol occurs coordinately with mitochondrial uncoupling. Since acetaldehyde passes through membranes independently of channels and transporters, VDAC closure and uncoupling together foster selective and more rapid oxidative metabolism of toxic acetaldehyde to nontoxic acetate by mitochondrial aldehyde dehydrogenase. In single reconstituted VDAC, tubulin decreases VDAC conductance, and in HepG2 hepatoma cells, free tubulin negatively modulates mitochondrial membrane potential, an effect enhanced by protein kinase A. Tubulin-dependent closure of VDAC in cancer cells contributes to suppression of mitochondrial metabolism and may underlie the Warburg phenomenon of aerobic glycolysis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.

  12. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  13. Effects of unsaturated fatty acids on calcium-activated potassium current in gastric myocytes of guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng Zheng; Xiang-Lan Li; Zheng-Yuan Jin; Jia-Bin Sun; Zai-Liu Li; Wen-Xie Xu

    2005-01-01

    AIM: To investigate the effects of exogenous unsaturated fatty acids on calcium-activated potassium current [Ik(Ca)]in gastric antral circular myocytes of guinea pigs.METHODS: Gastric myocytes were isolated by collagenase from the antral circular layer of guinea pig stomach. The whole-cell patch clamp technique was used to record Ik(Ca)in the isolated single smooth muscle cells with or without different concentrations of arachidonic acid (AA), linoleic acid (LA), and oleic acid (OA).RESULTS: AA at concentrations of 2,5 and 10 μmol/L markedly increased IK(ca)in a dose-dependent manner. LA at concentrations of 5, 10 and 20 μmol/L also enhanced IK(Ca)in a dose-dependent manner. The increasing potency of AA, LA, and oleic acid (OA) on Ik(Ca) at the same concentration(10 μmol/L) was in the order of AA>LA>OA. AA (10 μmol/L)-induced increase of Ik(Ca) was not blocked by H-7 (10 μmol/L), an inhibitor of protein kinase C (PKC), or indomethacin (10 μmol/L),an inhibitor of the cyclooxygenase pathway, and 17-octadecynoic acid (10 μmol/L), an inhibitor of the cytochrome P450 pathway, but weakened by nordihydroguaiaretic acid(10 μmol/L), an inhibitor of the lipoxygenase pathway.CONCLUSION: Unsaturated fatty acids markedly increase Ik(Ca), and the enhancing potencies are related to the number of double bonds in the fatty acid chain. The lipoxygenase pathway of unsaturated fatty acid metabolism is involved in the unsaturated fatty acid-induced increase of IK(Ca) in gastric antral circular myocytes of guinea pigs.

  14. Interleukin-1R3 mediates interleukin-1–induced potassium current increase through fast activation of Akt kinase

    Science.gov (United States)

    Qian, Jiang; Zhu, Ling; Li, Qiming; Belevych, Natalya; Chen, Qun; Zhao, Fangli; Herness, Scott; Quan, Ning

    2012-01-01

    Inflammatory cytokine interleukin-1 (IL-1) performs multiple functions in the central nervous system. The type 1 IL-1 receptor (IL-1R1) and the IL-1 receptor accessory protein (IL-1RAcP) form a functional IL-1 receptor complex that is thought to mediate most, if not all, IL-1–induced effects. Several recent studies, however, suggest the existence of a heretofore-unidentified receptor for IL-1. In this study, we report that the IL-1R1 gene contains an internal promoter that drives the transcription of a shortened IL-1R1 mRNA. This mRNA is the template for a unique IL-1R protein that is identical to IL-1R1 at the C terminus, but with a shorter extracellular domain at the N terminus. We have termed this molecule IL-1R3. The mRNA and protein for IL-1R3 are expressed in normal and two strains of commercially available IL-1R1 knockout mice. Western blot analysis shows IL-1R3 is preferentially expressed in neural tissues. Furthermore, IL-1β binds specifically to IL-1R3 when it is complexed with the newly discovered alternative IL-1 receptor accessory protein, IL-1RAcPb. Stimulation of neurons expressing both IL-1R3 and IL-1RAcPb with IL-1β causes fast activation of the Akt kinase, which leads to an increase in voltage-gated potassium current. These results demonstrate that IL-1R3/IL-1RAcPb complex mediates a unique subset of IL-1 activity that accounts for many previously unexplained IL-1 effects in the central nervous system. PMID:22778412

  15. The human red cell voltage-dependent cation channel. Part III: Distribution homogeneity and pH dependence

    DEFF Research Database (Denmark)

    Bennekou, P.; Barksmann, T. L.; Christophersen, P.

    2006-01-01

    The homogeneity of the distribution of the non-selective voltage-dependent cation channel (the NSVDC channel) in the human erythrocyte, and the pH dependence was investigated. Activation of this channel caused a uniform cellular dehydration, which was characterized by the changes in the erythrocyte...

  16. Voltage dependence of Hodgkin-Huxley rate functions for a multistage K^{+} channel voltage sensor within a membrane.

    Science.gov (United States)

    Vaccaro, S R

    2014-11-01

    The activation of a K^{+} channel sensor in two sequential stages during a voltage clamp may be described as the translocation of a Brownian particle in an energy landscape with two large barriers between states. A solution of the Smoluchowski equation for a square-well approximation to the potential function of the S4 voltage sensor satisfies a master equation and has two frequencies that may be determined from the forward and backward rate functions. When the higher-frequency terms have small amplitude, the solution reduces to the relaxation of a rate equation, where the derived two-state rate functions are dependent on the relative magnitude of the forward rates (α and γ) and the backward rates (β and δ) for each stage. In particular, the voltage dependence of the Hodgkin-Huxley rate functions for a K^{+} channel may be derived by assuming that the rate functions of the first stage are large relative to those of the second stage-α≫γ and β≫δ. For a Shaker IR K^{+} channel, the first forward and backward transitions are rate limiting (αchannel and a noninactivating Na^{+} ion channel is determined by the master equation for K^{+} channel activation and the ionic current equation when the Na^{+} channel activation time is small, and if β≪δ and α≪γ, the system may exhibit a small amplitude oscillation between spikes, or mixed-mode oscillation, in which the slow closed state modulates the K^{+} ion channel conductance in the membrane.

  17. Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: implications for drug discovery.

    Science.gov (United States)

    Rusinova, Radda; Herold, Karl F; Sanford, R Lea; Greathouse, Denise V; Hemmings, Hugh C; Andersen, Olaf S

    2011-08-01

    The thiazolidinediones (TZDs) are used in the treatment of diabetes mellitus type 2. Their canonical effects are mediated by activation of the peroxisome proliferator-activated receptor γ (PPARγ) transcription factor. In addition to effects mediated by gene activation, the TZDs cause acute, transcription-independent changes in various membrane transport processes, including glucose transport, and they alter the function of a diverse group of membrane proteins, including ion channels. The basis for these off-target effects is unknown, but the TZDs are hydrophobic/amphiphilic and adsorb to the bilayer-water interface, which will alter bilayer properties, meaning that the TZDs may alter membrane protein function by bilayer-mediated mechanisms. We therefore explored whether the TZDs alter lipid bilayer properties sufficiently to be sensed by bilayer-spanning proteins, using gramicidin A (gA) channels as probes. The TZDs altered bilayer elastic properties with potencies that did not correlate with their affinity for PPARγ. At concentrations where they altered gA channel function, they also altered the function of voltage-dependent sodium channels, producing a prepulse-dependent current inhibition and hyperpolarizing shift in the steady-state inactivation curve. The shifts in the inactivation curve produced by the TZDs and other amphiphiles can be superimposed by plotting them as a function of the changes in gA channel lifetimes. The TZDs' partition coefficients into lipid bilayers were measured using isothermal titration calorimetry. The most potent bilayer modifier, troglitazone, alters bilayer properties at clinically relevant free concentrations; the least potent bilayer modifiers, pioglitazone and rosiglitazone, do not. Unlike other TZDs tested, ciglitazone behaves like a hydrophobic anion and alters the gA monomer-dimer equilibrium by more than one mechanism. Our results provide a possible mechanism for some off-target effects of an important group of drugs, and

  18. Potassium Iodide

    Science.gov (United States)

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released ... damage the thyroid gland. You should only take potassium iodide if there is a nuclear radiation emergency and ...

  19. Origin of the voltage dependence of G-protein regulation of P/Q-type Ca2+ channels.

    Science.gov (United States)

    Zhang, Yun; Chen, Yu-Hang; Bangaru, Saroja D; He, Linling; Abele, Kathryn; Tanabe, Shihori; Kozasa, Tohru; Yang, Jian

    2008-12-24

    G-protein (Gbetagamma)-mediated voltage-dependent inhibition of N- and P/Q-type Ca(2+) channels contributes to presynaptic inhibition and short-term synaptic plasticity. The voltage dependence derives from the dissociation of Gbetagamma from the inhibited channels, but the underlying molecular and biophysical mechanisms remain largely unclear. In this study we investigated the role in this process of Ca(2+) channel beta subunit (Ca(v)beta) and a rigid alpha-helical structure between the alpha-interacting domain (AID), the primary Ca(v)beta docking site on the channel alpha(1) subunit, and the pore-lining IS6 segment. Gbetagamma inhibition of P/Q-type channels was reconstituted in giant inside-out membrane patches from Xenopus oocytes. Large populations of channels devoid of Ca(v)beta were produced by washing out a mutant Ca(v)beta with a reduced affinity for the AID. These beta-less channels were still inhibited by Gbetagamma, but without any voltage dependence, indicating that Ca(v)beta is indispensable for voltage-dependent Gbetagamma inhibition. A truncated Ca(v)beta containing only the AID-binding guanylate kinase (GK) domain could fully confer voltage dependence to Gbetagamma inhibition. Gbetagamma did not alter inactivation properties, and channels recovered from Gbetagamma inhibition exhibited the same activation property as un-inhibited channels, indicating that Gbetagamma does not dislodge Ca(v)beta from the inhibited channel. Furthermore, voltage-dependent Gbetagamma inhibition was abolished when the rigid alpha-helix between the AID and IS6 was disrupted by insertion of multiple glycines, which also eliminated Ca(v)beta regulation of channel gating, revealing a pivotal role of this rigid alpha-helix in both processes. These results suggest that depolarization-triggered movement of IS6, coupled to the subsequent conformational change of the Gbetagamma-binding pocket through a rigid alpha-helix induced partly by the Ca(v)beta GK domain, causes the

  20. Long-term effects of imidapril on calcium and potassium currents in rabbit left ventricular hypertrophic myocytes

    Institute of Scientific and Technical Information of China (English)

    李泱; 陆再英; 肖建民; 张存泰; 马杰; 刘念

    2003-01-01

    Objective To investigate the long-term effects of imidapril (IMI) on action potential and calcium and potassium currents in rabbit left ventricular hypertrophic myocytes.Methods Rabbits were randomly divided into three groups: IMI-treated, hypertrophic and sham-operated control groups. Cardiac hypertrophy was induced in hypertrophy group by partial ligation of the abdominal aorta. In the IMI-treated group, the rabbits were administered IMI (1.5 mg·kg-1·d-1) for 8 weeks after surgery. In the sham-operated control group, the animals underwent an abdominal laparotomy without further procedure. Whole-cell patch clamp technique was used to record ionic currents.Results Membrane capacitance was larger in hypertrophic cells than in sham-operated cells or IMI-treated cells. Action potential duration was lengthened in hypertrophic cells and was remarkably shortened by IMI. The density of ICa,L was reduced from 12.8±0.7 pA/pF in the sham-operated cells, to 7.7±0.8 pA/pF in hypertrophic cells, while it resembled the control cells after IMI treatment (11.9±1.0 pA/pF). After IMI treatment, the density of IKs,tail was enhanced from 2.5±0.1 pA/pF in hypertrophic cells to 4.7±0.6 pA/pF (n=7, P<0.01), which was similar to the sham-operated cells. The densities of Ito and IK1 were significantly increased in IMI-treated cells, from 3.8±0.4 pA/pF and 3.7±0.5 pA/pF in the hypertrophic cells to 6.4±0.8 pA/pF and 6.5±0.3 pA/pF, respectively, but the IKr densities were not different in the three groups.Conclusion IMI could reverse the increase in membrane capacitance in hypertrophic cells, shorten action potential duration, and increase the densities of ICa, L, IKs, Ito and IK1 in hypertrophic cells.

  1. Lavender oil-potent anxiolytic properties via modulating voltage dependent calcium channels.

    Science.gov (United States)

    Schuwald, Anita M; Nöldner, Michael; Wilmes, Thomas; Klugbauer, Norbert; Leuner, Kristina; Müller, Walter E

    2013-01-01

    Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs) as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, biochemical, and electrophysiological experiments were investigated in physiological concentrations in the nanomolar range, which correlate to a single dosage of 80 mg/d in humans that was used in clinical trials. We show for the first time that lavender oil bears some similarities with the established anxiolytic pregabalin. Lavender oil inhibits VOCCs in synaptosomes, primary hippocampal neurons and stably overexpressing cell lines in the same range such as pregabalin. Interestingly, Silexan does not primarily bind to P/Q type calcium channels such as pregabalin and does not interact with the binding site of pregabalin, the α2δ subunit of VOCCs. Lavender oil reduces non-selectively the calcium influx through several different types of VOCCs such as the N-type, P/Q-type and T-type VOCCs. In the hippocampus, one brain region important for anxiety disorders, we show that inhibition by lavender oil is mainly mediated via N-type and P/Q-type VOCCs. Taken together, we provide a pharmacological and molecular rationale for the clinical use of the oral application of lavender oil in patients suffering from anxiety.

  2. Lavender oil-potent anxiolytic properties via modulating voltage dependent calcium channels.

    Directory of Open Access Journals (Sweden)

    Anita M Schuwald

    Full Text Available Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, biochemical, and electrophysiological experiments were investigated in physiological concentrations in the nanomolar range, which correlate to a single dosage of 80 mg/d in humans that was used in clinical trials. We show for the first time that lavender oil bears some similarities with the established anxiolytic pregabalin. Lavender oil inhibits VOCCs in synaptosomes, primary hippocampal neurons and stably overexpressing cell lines in the same range such as pregabalin. Interestingly, Silexan does not primarily bind to P/Q type calcium channels such as pregabalin and does not interact with the binding site of pregabalin, the α2δ subunit of VOCCs. Lavender oil reduces non-selectively the calcium influx through several different types of VOCCs such as the N-type, P/Q-type and T-type VOCCs. In the hippocampus, one brain region important for anxiety disorders, we show that inhibition by lavender oil is mainly mediated via N-type and P/Q-type VOCCs. Taken together, we provide a pharmacological and molecular rationale for the clinical use of the oral application of lavender oil in patients suffering from anxiety.

  3. The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Callø, Kirstine; Jespersen, Thomas

    2005-01-01

    H-dependent potentiation by Zn2+ (EC50 = 21.8 microM at pH 7.4), inhibition by acidification (IC50 = 0.75 microM; pKa = 6.1), and regulation by small changes in cell volume. Furthermore, the channels are activated by the anti-convulsant drug retigabine (EC50 = 2.0 microM) and inhibited by the M-current blockers...

  4. Calcium-activated potassium conductance noise in snail neurons.

    Science.gov (United States)

    Westerfield, M; Lux, H D

    1982-11-01

    Current fluctuations were measured in small, 3-6 micrometers-diameter patches of soma membrane in bursting neurons of the snail, Helix pomatia. The fluctuations dramatically increased in magnitude with depolarization of the membrane potential under voltage clamp conditions. Two components of conductance noise were identified in the power spectra calculated from the membrane currents. One component had a corner frequency which increased with depolarization. This component was blocked by intracellular injection of TEA and was relatively insensitive to extracellular calcium levels (as long as the total number of effective divalent cations remained constant). It was identified as fluctuations of the voltage-dependent component of delayed outward current. The second component of conductance noise had a corner frequency which decreased with depolarization. It was relatively unaffected by TEA injection and was reversibly blocked by substitution of extracellular calcium with magnesium, cobalt, or nickel. This second component of noise was identified as fluctuations of the calcium-dependent potassium current. The results suggest that the two components of delayed outward current are conducted through physically distinct channels.

  5. Potassium iodide (KI) to block the thyroid from exposure to I-131: current questions and answers to be discussed.

    Science.gov (United States)

    Reiners, Christoph; Schneider, Rita

    2013-05-01

    Thyroid cancer in children and adolescents has to be considered as the most severe health consequence of a nuclear reactor emergency with release of radioiodine into the atmosphere. High doses of potassium iodide are effective to block radioiodine thyroid uptake and to prevent development of thyroid cancer years later. However, there are controversies concerning thyroid cancer risk induced by radioiodine exposure in adults. Further, the interaction of nutritional supply of potassium iodide and radioiodine uptake as well as the interaction of radioiodine with certain drugs has not been addressed properly in existing guidelines and recommendations. How to proceed in case of repeated release of radioiodine is an open, very important question which came up again recently during the Fukushima accident. Lastly, the side effects of iodine thyroid blocking and alternatives of this procedure have not been addressed systematically up to now in guidelines and recommendations. These questions can be answered as follows: in adults, the risk to develop thyroid cancer is negligible. In countries, where nutritional iodine deficiency is still an issue, the risk to develop thyroid cancer after a nuclear reactor emergency has to be considered higher because the thyroid takes up more radioiodine as in the replete condition. Similarly, in patients suffering from thyrotoxicosis, hypothyroidism or endemic goitre not being adequately treated radioiodine uptake is higher than in healthy people. In case of repeated or continued radioiodine release, more than one dose of potassium iodide may be necessary and be taken up to 1 week. Repeated iodine thyroid blocking obviously is not harmful. Side effects of iodine thyroid blocking should not be overestimated; there is little evidence for adverse effects in adults. Newborns and babies, however, may be more sensitive to side effects. In the rare case of iodine hypersensitivity, potassium perchlorate may be applied as an alternative to iodine for

  6. Potassium physiology.

    Science.gov (United States)

    Thier, S O

    1986-04-25

    Potassium is the most abundant exchangeable cation in the body. It exists predominantly in the intracellular fluid at concentrations of 140 to 150 meq/liter and in the extracellular fluid at concentrations of 3.5 to 5 meq/liter. The maintenance of the serum potassium concentration is a complex bodily function and results from the balance between intake, excretion, and distribution between intracellular and extracellular space. Ingested potassium is virtually completely absorbed from and minimally excreted through the intestine under nonpathologic circumstances. Renal excretion of potassium, which is the major chronic protective mechanism against abnormalities in potassium balance, depends on filtration, reabsorption, and a highly regulated distal nephron secretory process. Factors regulating potassium secretion include prior potassium intake, intracellular potassium, delivery of sodium chloride and poorly reabsorbable anions to the distal nephron, the urine flow rate, hormones such as aldosterone and beta-catecholamines, and the integrity of the renal tubular cell. The maintenance of distribution between the inside and outside of cells depends on the integrity of the cell membrane and its pumps, osmolality, pH, and the hormones insulin, aldosterone, beta 2-catecholamines, alpha-catecholamines, and prostaglandins. Both distribution across cell membranes and/or renal excretion of potassium may be altered by pharmacologic agents such as diuretics, alpha- and beta-catechol antagonists and agonists, depolarizing agents, and digitalis. Problems with hypokalemia and hyperkalemia can be analyzed on the basis of potassium physiology and pharmacology; proper treatment depends on an accurate analysis.

  7. Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon.

    Science.gov (United States)

    Rehn, Matthias; Bader, Sandra; Bell, Anna; Diener, Martin

    2013-09-01

    We recently observed a bradykinin-induced increase in the cytosolic Ca2+ concentration in submucosal neurons of rat colon, an increase inhibited by blockers of voltage-dependent Ca2+ (Ca(v)) channels. As the types of Ca(v) channels used by this part of the enteric nervous system are unknown, the expression of various Ca(v) subunits has been investigated in whole-mount submucosal preparations by immunohistochemistry. Submucosal neurons, identified by a neuronal marker (microtubule-associated protein 2), are immunoreactive for Ca(v)1.2, Ca(v)1.3 and Ca(v)2.2, expression being confirmed by reverse transcription plus the polymerase chain reaction. These data agree with previous observations that the inhibition of L- and N-type Ca2+ currents strongly inhibits the response to bradykinin. However, whole-cell patch-clamp experiments have revealed that bradykinin does not enhance Ca2+ inward currents under voltage-clamp conditions. Consequently, bradykinin does not directly interact with Ca(v) channels. Instead, the kinin-induced Ca2+ influx is caused indirectly by the membrane depolarization evoked by this peptide. As intracellular Ca2+ channels on Ca(2+)-storing organelles can also contribute to Ca2+ signaling, their expression has been investigated by imaging experiments and immunohistochemistry. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) have been functionally demonstrated in submucosal neurons loaded with the Ca(2+)-sensitive fluorescent dye, fura-2. Histamine, a typical agonist coupled to the phospholipase C pathway, induces an increase in the fura-2 signal ratio, which is suppressed by 2-aminophenylborate, a blocker of IP3 receptors. The expression of IP3R1 has been confirmed by immunohistochemistry. In contrast, ryanodine, tested over a wide concentration range, evokes no increase in the cytosolic Ca2+ concentration nor is there immunohistochemical evidence for the expression of ryanodine receptors in these neurons. Thus, rat submucosal neurons are equipped

  8. Genistein inhibition of OGD-induced brain neuron death correlates with its modulation of apoptosis, voltage-gated potassium and sodium currents and glutamate signal pathway.

    Science.gov (United States)

    Ma, Xue-Ling; Zhang, Feng; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Liu, Yan-Qiang

    2016-07-25

    In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2.

  9. VOLTAGE STABILITY ASSESSMENT FOR WIND FARMS INTEGRATION INTO ELECTRICITY GRIDS WITH AND WITHOUT CONSIDERATION OF VOLTAGE DEPENDENT LOADS

    Directory of Open Access Journals (Sweden)

    TOMA R.

    2016-09-01

    Full Text Available The paper presents a comparative study between the effects on voltage stability of the integration of a wind farm into the electricity grid with or without voltage dependent loads in the context of different locations of a synchronous compensator from the grid. The P-V curves are built by using the PowerFactory DigSilent 15.2.2 and a DPL script that implements a simplified form of the Continuation Power Flow method.

  10. A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons.

    Science.gov (United States)

    Hight, Ariel E; Kalluri, Radha

    2016-08-01

    The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182-187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41-51, 1986). Kalluri et al. (J Neurophysiol 104: 2034-2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents (IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium (gNa), low-voltage-activated potassium (gKL), and high-voltage-activated potassium (gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking.

  11. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence.

    Science.gov (United States)

    Keum, Dongil; Kruse, Martin; Kim, Dong-Il; Hille, Bertil; Suh, Byung-Chang

    2016-06-28

    Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation

  12. Modulation of Kv3 Subfamily Potassium Currents by the Sea Anemone Toxin BDS: Significance for CNS and Biophysical Studies

    OpenAIRE

    Yeung, Shuk Yin M; Thompson, Dawn; Wang, Zhuren; Fedida, David; Robertson, Brian

    2005-01-01

    Kv3 potassium channels, with their ultra-rapid gating and high activation threshold, are essential for high-frequency firing in many CNS neurons. Significantly, the Kv3.4 subunit has been implicated in the major CNS disorders Parkinson’s and Alzheimer’s diseases, and it is claimed that selectively targeting this subunit will have therapeutic utility. Previous work suggested that BDS toxins (“blood depressing substance,” from the sea anemone Anemonia sulcata) were specific blockers for rapidly...

  13. Effect of angiotensin II-induced arterial hypertension on the voltage-dependent contractions of mouse arteries.

    Science.gov (United States)

    Fransen, Paul; Van Hove, Cor E; Leloup, Arthur J A; Schrijvers, Dorien M; De Meyer, Guido R Y; De Keulenaer, Gilles W

    2016-02-01

    Arterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks). Normotensive mice treated with saline-filled osmotic mini-pumps were used for comparison. Voltage-dependent contractions mediated by L-type Ca(2+) channels were studied in vaso-reactive studies in vitro in isolated aortic and femoral arteries by using extracellular K(+) concentration-response (KDR) experiments. In aortic segments, AngII-induced AHT significantly sensitized isometric contractions induced by elevated extracellular K(+) and depolarization. This sensitization was partly prevented by normalizing blood pressure with hydralazine, suggesting that it was caused by AHT rather than by direct AngII effects on aortic smooth muscle cells. The EC50 for extracellular K(+) obtained in vitro correlated significantly with the rise in arterial blood pressure induced by AngII in vivo. The AHT-induced sensitization persisted when aortic segments were exposed to levcromakalim or to inhibitors of basal nitric oxide release. Consistent with these observations, AngII-treatment also sensitized the vaso-relaxing effects of the L-type Ca(2+) channel blocker diltiazem during K(+)-induced contractions. Unlike aorta, AngII-treatment desensitized the isometric contractions to depolarization in femoral arteries pointing to vascular bed specific responses of arteries to hypertension. AHT affects the voltage-dependent L-type Ca(2+) channel-mediated contraction of conduit arteries. This effect may contribute to the decreased vascular compliance in AHT and explain the efficacy of Ca(2+) channel blockers to reduce vascular stiffness and central blood pressure in AHT.

  14. Effect of chronic stress and mifepristone treatment on voltage-dependent Ca2+ currents in rat hippocampal dentate gyrus.

    NARCIS (Netherlands)

    van Gemert, N.G.; Joëls, M.

    2006-01-01

    Chronic unpredictable stress affects many properties in rat brain. In the dentate gyrus, among other things, increased mRNA expression of the Ca2+ channel alpha1C subunit has been found after 21 days of unpredictable stress in combination with acute corticosterone application (100 nM). In the presen

  15. Analysis and Comparison of Voltage Dependent Charging Strategies for Single-Phase Electric Vehicles in an Unbalanced Danish Distribution Grid

    DEFF Research Database (Denmark)

    Álvarez, Jorge Nájera; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    This paper studies four voltage dependent solutions for modulating the charging of multiple Electric Vehicles (EVs) in a real Danish network. Uncontrolled EV charging, especially in grid with high EV penetration, can result in overloaded lines and transformers, low-voltages and other performance......-in on phases with lower voltages are constrained during the charging period. In order to solve instability issues which may occur due to lack of communication between the controllers, several improvements are applied to the aforementioned droop control. Simulation results demonstrate the performance...

  16. Alteration in rectification of potassium channels in perinatal hypoxia ischemia brain damage.

    Science.gov (United States)

    Chen, Penghui; Wang, Liyan; Deng, Qiyue; Ruan, Huaizhen; Cai, Wenqin

    2015-01-15

    Oligodendrocyte progenitor cells (OPCs) are susceptible to perinatal hypoxia ischemia brain damage (HIBD), which results in infant cerebral palsy due to the effects on myelination. The origin of OPC vulnerability in HIBD, however, remains controversial. In this study, we defined the HIBD punctate lesions by MRI diffuse excessive high signal intensity (DEHSI) in postnatal 7-day-old rats. The electrophysiological functional properties of OPCs in HIBD were recorded by patch-clamp in acute cerebral cortex slices. The slices were intracellularly injected with Lucifer yellow and immunohistochemically labeled with NG2 antibody to identify local OPCs. Passive membrane properties and K(+) channel functions in OPCs were analyzed to estimate the onset of vulnerability in HIBD. The resting membrane potential, membrane resistance, and membrane capacitance of OPCs were increased in both the gray and white matter of the cerebral cortex. OPCs in both the gray and white matter exhibited voltage-dependent K(+) currents, which consisted of the initiated rectified potassium currents (IA) and the sustained rectified currents (IK). The significant alternation in membrane resistance was influenced by the diversity of potassium channel kinetics. These findings suggest that the rectification of IA and IK channels may play a significant role in OPC vulnerability in HIBD.

  17. Lidocaine stabilizes the open state of CNS voltage-dependent sodium channels.

    Science.gov (United States)

    Castañeda-Castellanos, David R; Nikonorov, Igor; Kallen, Roland G; Recio-Pinto, E

    2002-03-28

    We have previously reported that the lidocaine action is different between CNS and muscle batrachotoxin-modified Na+ channels [Salazar et al., J. Gen. Physiol. 107 (1996) 743-754; Brain Res. 699 (1995) 305-314]. In this study we examined lidocaine action on CNS Na+ currents, to investigate the mechanism of lidocaine action on this channel isoform and to compare it with that proposed for muscle Na+ currents. Na+ currents were measured with the whole cell voltage clamp configuration in stably transfected cells expressing the brain alpha-subunit (type IIA) by itself (alpha-brain) or together with the brain beta(1)-subunit (alphabeta(1)-brain), or the cardiac alpha-subunit (hH1) (alpha-cardiac). Lidocaine (100 microM) produced comparable levels of Na+ current block at positive potentials and of hyperpolarizing shift of the steady-state inactivation curve in alpha-brain and alphabeta(1)-brain Na+ currents. Lidocaine accelerated the rates of activation and inactivation, produced an hyperpolarizing shift in the steady-state activation curve and increased the current magnitude at negative potentials in alpha-brain but not in alphabeta(1)-brain Na+ currents. The lidocaine action in alphabeta(1)-brain resembled that observed in alpha-cardiac Na+ currents. The lidocaine-induced increase in current magnitude at negative potentials and the hyperpolarizing shift in the steady-state activation curve of alpha-brain, are novel effects and suggest that lidocaine treatment does not always lead to current reduction/block when it interacts with Na+ channels. The data are explained by using a modified version of the model proposed by Vedantham and Cannon [J. Gen. Physiol., 113 (1999) 7-16] in which we postulate that the difference in lidocaine action between alpha-brain and alphabeta(1)-brain Na+ currents could be explained by differences in the lidocaine action on the open channel state.

  18. MinK, MiRP1, and MiRP2 diversify Kv3.1 and Kv3.2 potassium channel gating.

    Science.gov (United States)

    Lewis, Anthony; McCrossan, Zoe A; Abbott, Geoffrey W

    2004-02-27

    High frequency firing in mammalian neurons requires ultra-rapid delayed rectifier potassium currents generated by homomeric or heteromeric assemblies of Kv3.1 and Kv3.2 potassium channel alpha subunits. Kv3.1 alpha subunits can also form slower activating channels by coassembling with MinK-related peptide 2 (MiRP2), a single transmembrane domain potassium channel ancillary subunit. Here, using channel subunits cloned from rat and expressed in Chinese hamster ovary cells, we show that modulation by MinK, MiRP1, and MiRP2 is a general mechanism for slowing of Kv3.1 and Kv3.2 channel activation and deactivation and acceleration of inactivation, creating a functionally diverse range of channel complexes. MiRP1 also negatively shifts the voltage dependence of Kv3.1 and Kv3.2 channel activation. Furthermore, MinK, MiRP1, and MiRP2 each form channels with Kv3.1-Kv3.2 heteromers that are kinetically distinct from one another and from MiRP/homomeric Kv3 channels. The findings illustrate a mechanism for dynamic expansion of the functional repertoire of Kv3.1 and Kv3.2 potassium currents and suggest roles for these alpha subunits outside the scope of sustained rapid neuronal firing.

  19. Voltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-releasing hormone neurons in mice.

    Science.gov (United States)

    Pielecka-Fortuna, Justyna; DeFazio, R Anthony; Moenter, Suzanne M

    2011-11-01

    Estradiol has both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters two components of potassium currents in these cells: a transient current, I(A), and a sustained current, I(K). Kisspeptin is a potential mediator between estradiol and GnRH neurons and can act directly on GnRH neurons. We examined how estradiol, time of day, and kisspeptin interact to regulate these conductances in a mouse model exhibiting daily switches between estradiol negative (morning) and positive feedback (evening). Whole-cell voltage clamp recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice and from OVX mice treated with estradiol (OVX+E). There were no diurnal changes in either I(A) or I(K) in GnRH neurons from OVX mice. In contrast, in GnRH neurons from OVX+E mice, I(A) and I(K) were greater during the morning when GnRH neuron activity is low and smaller in the evening when GnRH neuron activity is high. Estradiol increased I(A) in the morning and decreased it in the evening, relative to that in cells from OVX mice. Exogenously applied kisspeptin reduced I(A) regardless of time of day or estradiol status. Estradiol, interacting with time of day, and kisspeptin both depolarized I(A) activation. These findings extend our understanding of both the neurobiological mechanisms of estradiol negative vs. positive regulation of GnRH neurons and of kisspeptin action on these cells.

  20. Ca2+ channel inhibitor NNC 55-0396 inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells.

    Science.gov (United States)

    Son, Youn Kyoung; Hong, Da Hye; Li, Hongliang; Kim, Dae-Joong; Na, Sung Hun; Park, Hongzoo; Jung, Won-Kyo; Choi, Il-Whan; Park, Won Sun

    2014-01-01

    We demonstrated the inhibitory effect of NNC 55-0396, a T-type Ca(2+) channel inhibitor, on voltage-dependent K(+) (K(V)) channels in freshly isolated rabbit coronary arterial smooth muscle cells. NNC 55-0396 decreased the amplitude of K(V) currents in a concentration-dependent manner, with an IC(50) of 0.080 μM and a Hill coefficient of 0.76.NNC 55-0396 did not affect steady-state activation and inactivation curves, indicating that the compound does not affect the voltage sensitivity of K(V) channel gating. Both the K(V) currents and the inhibitory effect of NNC 55-0396 on K(V) channels were not altered by depletion of extracellular Ca(2+) or intracellular ATP, suggesting that the inhibitory effect of NNC 55-0396 is independent of Ca(2+)-channel activity and phosphorylation-dependent signaling cascades. From these results, we concluded that NNC 55-0396 dosedependently inhibits K(V) currents, independently of Ca(2+)-channel activity and intracellular signaling cascades.

  1. Reversal of HCN channel voltage dependence via bridging of the S4-S5 linker and Post-S6.

    Science.gov (United States)

    Prole, David L; Yellen, Gary

    2006-09-01

    Voltage-gated ion channels possess charged domains that move in response to changes in transmembrane voltage. How this movement is transduced into gating of the channel pore is largely unknown. Here we show directly that two functionally important regions of the spHCN1 pacemaker channel, the S4-S5 linker and the C-linker, come into close proximity during gating. Cross-linking these regions with high-affinity metal bridges or disulfide bridges dramatically alters channel gating in the absence of cAMP; after modification the polarity of voltage dependence is reversed. Instead of being closed at positive voltage and activating with hyperpolarization, modified channels are closed at negative voltage and activate with depolarization. Mechanistically, this reversal of voltage dependence occurs as a result of selectively eliminating channel deactivation, while retaining an existing inactivation process. Bridging also alters channel activation by cAMP, showing that interaction of these two regions can also affect the efficacy of physiological ligands.

  2. A major role for calcium-dependent potassium current in action potential repolarization in adrenal chromaffin cells.

    Science.gov (United States)

    Pancrazio, J J; Johnson, P A; Lynch, C

    1994-12-30

    To determine the extent which Ca dependent K current (IKCa) contributes during an action potential (AP), bovine chromaffin cells were voltage-clamped using a pre-recorded AP as the command voltage waveform. Based on (1) differential sensitivity of IKCa and Ca-independent K current (IK) to tetraethylammonium; (2) measurements of AP currents under conditions where Ca activation of IKCa had been abolished; and (3) blockade by charybdotoxin, IKCa comprised 70-90% of the outward K current during AP repolarization. In addition, observations are made concerning the form of AP-evoked Ca current.

  3. High-threshold, Kv3-like potassium currents in magnocellular neurosecretory neurons and their role in spike repolarization.

    Science.gov (United States)

    Shevchenko, Talent; Teruyama, Ryoichi; Armstrong, William E

    2004-11-01

    We identified Kv3-like high-threshold K+ currents in hypothalamic supraoptic neurons using whole cell recordings in hypothalamic slices and in acutely dissociated neurons. Tetraethylammonium (TEA)-sensitive currents (Kv3-like channels. In slices, tests with 0.01-0.7 mM TEA produced an IC50 of 200-300 nM for both fast and persistent currents. The fast transient current was similar to currents associated with the expression of Kv3.4 subunits, given that it was sensitive to BDS-I (100 nM). The persistent TEA-sensitive current appeared similar to those attributed to Kv3.1/3.2 subunits. Although qualitatively similar, oxytocin (OT) and vasopressin (VP) neurons in slices differed in the stronger presence of persistent current in VP neurons. In both cell types, the IC50 for TEA-induced spike broadening was similar to that observed for current suppression in voltage clamp. However, TEA had a greater effect on the spike width of VP neurons than of OT neurons. Immunochemical studies revealed a stronger expression of the Kv3.1b alpha-subunit in VP neurons, which may be related to the greater importance of this current type in VP spike repolarization. Because OT and VP neurons are not considered fast firing, but do exhibit frequency- and calcium-dependent spike broadening, Kv3-like currents may be important for maintaining spike width and calcium influx within acceptable limits during repetitive firing.

  4. Comparison of the effects of DC031050,a class Ⅲ antiarrhythmic agent, on hERG channel and three neuronal potassium channels

    Institute of Scientific and Technical Information of China (English)

    Ping LI; Hai-feng SUN; Ping-zheng ZHOU; Chao-ying MA; Guo-yuan HU; Hua-liang JIANG; Min LI; Hong LIU; Zhao-bing GAO

    2012-01-01

    Aim:This study was conducted to test the selectivity of DC031050 on cardiac and neuronal potassium channels.Methods:Human ether-à-go-go related gene (hERG),KCNQ and Kv1.2 channels were expressed in CHO cells.The delayed rectifier potassium current (IK) was recorded from dissociated hippocampal pyramidal neurons of neonatal rats.Whole-cell voltage patch clamp was used to record the voltage-activated potassium currents.Drug-containing solution was delivered using a RSC-100 Rapid Solution Changer.Results:Both DC031050 and dofetilide potently inhibited hERG currents with IC50 values of 2.3±1.0 and 17.9±1.2 nmol/L,respectively.DC031050 inhibited the IK current with an IC50 value of 2.7±1.5 μmol/L,which was >1000 times the concentration required to inhibit hERG current.DC031050 at 3 μmol/L did not significantly affect the voltage-dependence of the steady activation,steady inactivation of IK,or the rate of IK from inactivation.Intracellular application of DC031050 (5μmol/L) was insufficient to inhibit IK.DC031050 up to 10μmol/L had no effects on KCNQ2 and Kv1.2 channel currents.Conclusion:DC031050 is a highly selective hERG potassium channel blocker with a substantial safety margin of activity over neuronal potassium channels,thus holds significant potential for therapeutic application as a class Ⅲ antiarrhythmic agent.

  5. The voltage dependence of GABAA receptor gating depends on extracellular pH.

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W

    2005-11-28

    Recent studies have indicated that changes in extracellular pH and in membrane voltage affect the gamma-amino-n-butyric acid type A receptor gating mainly by altering desensitization and binding. To test whether the effects of membrane potential and pH are additive, their combined actions were investigated. By analyzing the current responses to rapid gamma-amino-n-butyric acid applications, we found that the current to voltage relationship was close to linear at acid pH but the increasing pH induced an inward rectification. Desensitization was enhanced at depolarizing potentials, but this strongly depended on pH, being weak at acidic and strong at basic pH values. A similar trend was observed for the onset rate of responses to saturating gamma-amino-n-butyric acid concentration. These data provide evidence that the voltage sensitivity of GABAA receptors depends on extracellular pH.

  6. The voltage dependence of GABAA receptor gating depends on extracellular pH

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W.

    2007-01-01

    Recent studies have indicated that changes in extracellular pH and in membrane voltage affect the γ-amino-n-butyric acid type A receptor gating mainly by altering desensitization and binding. To test whether the effects of membrane potential and pH are additive, their combined actions were investigated. By analyzing the current responses to rapid γ-amino-n-butyric acid applications, we found that the current to voltage relationship was close to linear at acid pH but the increasing pH induced an inward rectification. Desensitization was enhanced at depolarizing potentials, but this strongly depended on pH, being weak at acidic and strong at basic pH values. A similar trend was observed for the onset rate of responses to saturating γ-amino-n-butyric acid concentration. These data provide evidence that the voltage sensitivity of GABAA receptors depends on extracellular pH. PMID:16272885

  7. Extracellular Linkers Completely Transplant the Voltage Dependence from Kv1.2 Ion Channels to Kv2.1.

    Science.gov (United States)

    Elinder, Fredrik; Madeja, Michael; Zeberg, Hugo; Århem, Peter

    2016-10-18

    The transmembrane voltage needed to open different voltage-gated K (Kv) channels differs by up to 50 mV from each other. In this study we test the hypothesis that the channels' voltage dependences to a large extent are set by charged amino-acid residues of the extracellular linkers of the Kv channels, which electrostatically affect the charged amino-acid residues of the voltage sensor S4. Extracellular cations shift the conductance-versus-voltage curve, G(V), by interfering with these extracellular charges. We have explored these issues by analyzing the effects of the divalent strontium ion (Sr(2+)) on the voltage dependence of the G(V) curves of wild-type and chimeric Kv channels expressed in Xenopus oocytes, using the voltage-clamp technique. Out of seven Kv channels, Kv1.2 was found to be most sensitive to Sr(2+) (50 mM shifted G(V) by +21.7 mV), and Kv2.1 to be the least sensitive (+7.8 mV). Experiments on 25 chimeras, constructed from Kv1.2 and Kv2.1, showed that the large Sr(2+)-induced G(V) shift of Kv1.2 can be transferred to Kv2.1 by exchanging the extracellular linker between S3 and S4 (L3/4) in combination with either the extracellular linker between S5 and the pore (L5/P) or that between the pore and S6 (LP/6). The effects of the linker substitutions were nonadditive, suggesting specific structural interactions. The free energy of these interactions was ∼20 kJ/mol, suggesting involvement of hydrophobic interactions and/or hydrogen bonds. Using principles from double-layer theory we derived an approximate linear equation (relating the voltage shifts to altered ionic strength), which proved to well match experimental data, suggesting that Sr(2+) acts on these channels mainly by screening surface charges. Taken together, these results highlight the extracellular surface potential at the voltage sensor as an important determinant of the channels' voltage dependence, making the extracellular linkers essential targets for evolutionary selection.

  8. Intramitochondrial accumulation of cationic Atto520-biotin proceeds via voltage-dependent slow permeation through lipid membrane.

    Science.gov (United States)

    Antonenko, Yuri N; Nechaeva, Natalya L; Baksheeva, Victoria E; Rokitskaya, Tatyana I; Plotnikov, Egor Y; Kotova, Elena A; Zorov, Dmitry B

    2015-06-01

    Conjugation to penetrating cations is a general approach for intramitochondrial delivery of physiologically active compounds, supported by a high membrane potential of mitochondria having negative sign on the matrix side. By using fluorescence correlation spectroscopy, we found here that Atto520-biotin, a conjugate of a fluorescent cationic rhodamine-based dye with the membrane-impermeable vitamin biotin, accumulated in energized mitochondria in contrast to biotin-rhodamine 110. The energy-dependent uptake of Atto520-biotin by mitochondria, being slower than that of the conventional mitochondrial dye tetramethyl-rhodamine ethyl ester, was enhanced by the hydrophobic anion tetraphenylborate (TPB). Atto520-biotin also exhibited accumulation in liposomes driven by membrane potential resulting from potassium ion gradient in the presence valinomycin. The induction of electrical current across planar bilayer lipid membrane by Atto520-biotin proved the ability of the compound to permeate through lipid membrane in a cationic form. Atto520-biotin stained mitochondria in a culture of L929 cells, and the staining was enhanced in the presence of TPB. Therefore, the fluorescent Atto520 moiety can serve as a vehicle for intramitochondrial delivery of hydrophilic drugs. Of importance for biotin-streptavidin technology, binding of Atto520-biotin to streptavidin was found to cause quenching of its fluorescence similar to the case of fluorescein-4-biotin.

  9. Effect of Pinellia ternata Lectin on Membrane Currents of Mouse Motor Nerve Terminals

    Institute of Scientific and Technical Information of China (English)

    施玉樑; 徐幼芬; 张辉

    1994-01-01

    Pinellia ternata lectin (PTL) extracted from the fresh juice of rhizome of pinellia ternata used as a traditional Chinese medicine facilitated the quantal release of acetylcholine (ACh) in the mouse motor nerve terminals and formed cation channels in artificial lipid bilayer. Here we report the action of PTL on presynaptic membrane currents of motor nerve terminals.The experiments were performed on the intercostal nerve triangularis sterni muscle preparations. By means of the perineurial recording, the effects of PTL on the sodium current in the preterminal part , three potassium currents and two calcium currents generated from the nerve terminals were investigated. The results show that PTL increases voltage-dependent fast Ca2+ current (ICa,f), Na+ current (INa) and Ca2+-acti-vated K+ current (IK,Ca) without action on either the voltage-dependent fast K+ current (IK,f) or the slow K+ current (IK,S). These effects are irreversible, but can be reversed by mannan, the specific binding sugar for PTL.The to

  10. Voltage-dependent effects of barnidipine in rat vascular smooth muscle.

    Science.gov (United States)

    Wegener, J W; Korstanje, C; Nawrath, H

    2003-08-01

    The effects of the dihydropyridine nifedipine and its more lipophilic congener, barnidipine, were investigated in smooth muscle preparations from the rat in resting and depolarizing conditions. Both drugs relaxed precontracted aortic rings more potently in depolarizing conditions, barnidipine being more potent than nifedipine. Currents through Ca2+ channels in rat vascular smooth muscle cells (A7r5) and in isolated rat cardiomyocytes were reduced more potently by both drugs at a holding potential of -40 mV than at -80 mV. However, barnidipine and nifedipine were more effective in reducing the current in A7r5 cells than in cardiomyocytes. The IC(50) obtained in aortic rings and in A7r5 cells were similar for barnidipine but an order of magnitude different for nifedipine. The results show that, in depolarizing conditions, barnidipine was more effective than nifedipine. It is suggested that the higher potency of barnidipine acting in vascular smooth muscle is related to both a higher affinity to the inactivated state of vascular Ca2+ channels and to a more lipophilic property as compared with nifedipine.

  11. Involvement of inositol 1,4,5-trisphosphate formation in the voltage-dependent regulation of the Ca(2+) concentration in porcine coronary arterial smooth muscle cells.

    Science.gov (United States)

    Yamamura, Hisao; Ohya, Susumu; Muraki, Katsuhiko; Imaizumi, Yuji

    2012-08-01

    The involvement of inositol 1,4,5-trisphosphate (IP(3)) formation in the voltage-dependent regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) was examined in smooth muscle cells of the porcine coronary artery. Slow ramp depolarization from -90 to 0 mV induced progressive [Ca(2+)](i) increase. The slope was reduced or increased in the presence of Cd(2+) or (±)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]-phenyl)pyridine-3-carboxlic acid methyl ester (Bay K 8644), respectively. The decrease in [Ca(2+)](i) via the membrane hyperpolarization induced by K(+) channel openers (levcromakalim and Evans blue) under current clamp was identical to that under voltage clamp. The step hyperpolarization from -40 to -80 mV reduced [Ca(2+)](i) uniformly over the whole-cell area with a time constant of ∼10 s. The [Ca(2+)](i) at either potential was unaffected by heparin, an inhibitor of IP(3) receptors. Alternatively, [Ca(2+)](i) rapidly increased in the peripheral regions by depolarization from -80 to 0 mV and stayed at that level (∼400 nM) during a 60-s pulse. When the pipette solution contained IP(3) pathway blockers [heparin, 2-aminoethoxydiphenylborate, xestospongin C, or 1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122)], the peak [Ca(2+)](i) was unchanged, but the sustained [Ca(2+)](i) was gradually reduced by ∼250 nM within 30 s. In the presence of Cd(2+), a long depolarization period slightly increased the [Ca(2+)](i), which was lower than that in the presence of heparin alone. In coronary arterial myocytes, the sustained increase in the [Ca(2+)](i) during depolarization was partly caused by the Ca(2+) release mediated by the enhanced formation of IP(3). The initial [Ca(2+)](i) elevation triggered by the Ca(2+) influx though voltage-dependent Ca(2+) channels may be predominantly responsible for the activation of phospholipase C for IP(3) formation.

  12. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D;

    2001-01-01

    .2 protein was demonstrated by immunochemical labeling of rat preglomerular vasculature and juxtamedullary efferent arterioles and vasa recta. Cortical efferent arterioles were not immunopositive. Recordings of intracellular calcium concentration with digital fluorescence imaging microscopy showed......The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... showed coexpression of mRNAs for T-type subunits (Ca(V)3.1, Ca(V)3.2) and for an L-type subunit (Ca(V)1.2). The same expression pattern was observed in juxtamedullary efferent arterioles and outer medullary vasa recta. No calcium channel messages were detected in cortical efferent arterioles. Ca(V)1...

  13. Characterization and functional analysis of voltage-dependent anion channel 1 (VDAC1) from orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Shi, Yan; Zhao, Zhe; Hong, Xiaoyou; Chen, Kunci; Zhu, Xinping

    2014-07-01

    The voltage-dependent anion channel (VDAC) is a highly conserved integral protein of mitochondria in different eukaryotic species. It forms a selective channel in the mitochondrial outer membrane that serves as the controlled pathway for small metabolites and ions. In this study, a VDAC gene, EcVDAC1, was isolated from orange-spotted grouper (Epinephelus coioides). The EcVDAC1 exhibits ubiquitous expression in various tissues of orange-spotted grouper and is upregulated in liver, gill, and spleen after stimulation with lipopolysaccharides (LPS). Subcellular localization analysis shows that the EcVDAC1 protein colocalized with the mitochondria. A caspase-3 assay demonstrates that overexpression of the EcVDAC1 induced apoptotic cell death in fathead minnow cells. The data presented in this study provide new information regarding the relationship between LPS and the EcVDAC1 gene, suggesting that the fish VDAC1 gene may play an important role in antibacterial immune response.

  14. Temperature and bias voltage dependence of Co/Pd multilayer-based magnetic tunnel junctions with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, Zoe, E-mail: zkugler@physik.uni-bielefeld.d [Bielefeld University, Department of Physics, Universitaetsstr. 25, 33615 Bielefeld (Germany); Drewello, Volker; Schaefers, Markus; Schmalhorst, Jan; Reiss, Guenter; Thomas, Andy [Bielefeld University, Department of Physics, Universitaetsstr. 25, 33615 Bielefeld (Germany)

    2011-01-15

    Temperature- and bias voltage-dependent transport measurements of magnetic tunnel junctions (MTJs) with perpendicularly magnetized Co/Pd electrodes are presented. Magnetization measurements of the Co/Pd multilayers are performed to characterize the electrodes. The effects of the Co layer thickness in the Co/Pd bilayers, the annealing temperature, the Co thickness at the MgO barrier interface, and the number of bilayers on the tunneling magneto resistance (TMR) effect are investigated. TMR-ratios of about 11% at room temperature and 18.5% at 13 K are measured and two well-defined switching fields are observed. The results are compared to measurements of MTJs with Co-Fe-B electrodes and in-plane anisotropy.

  15. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2001-01-01

    The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... showed coexpression of mRNAs for T-type subunits (Ca(V)3.1, Ca(V)3.2) and for an L-type subunit (Ca(V)1.2). The same expression pattern was observed in juxtamedullary efferent arterioles and outer medullary vasa recta. No calcium channel messages were detected in cortical efferent arterioles. Ca(V)1.......2 protein was demonstrated by immunochemical labeling of rat preglomerular vasculature and juxtamedullary efferent arterioles and vasa recta. Cortical efferent arterioles were not immunopositive. Recordings of intracellular calcium concentration with digital fluorescence imaging microscopy showed...

  16. Voltage-dependent K channels in protoplasts of trap-lobe cells of Dionaea muscipula.

    Science.gov (United States)

    Iijima, T; Hagiwara, S

    1987-01-01

    The outward rectification of the K+ current in mesophyll cell protoplasts from trap-lobes of Dionaea muscipula was studied with the patch-clamp technique. The rectification had instantaneous and time-dependent components. Changes in [K+]i strongly affected the conductance voltage relation of the plasma membrane while changes in [K+]o had little effect on the relation. Thus, the outward rectification depends on the membrane voltage and the concentration of intracellular K+. Corresponding single-channel activities were observed both in the intact membrane (cell-attached recording) and in excised patches. The single-channel conductance was about 3.3 pS with symmetrical solutions containing 30 mM K+.

  17. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of); Jung, Won-Kyo [Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737 (Korea, Republic of); Na, Sung Hun [Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 200-701 (Korea, Republic of); Jung, In Duk; Park, Yeong-Min [Department of Immunology, Lab of Dendritic Cell Differentiation and Regulation, College of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Choi, Il-Whan, E-mail: cihima@inje.ac.kr [Department of Microbiology, Inje University College of Medicine, Busan, 614-735 (Korea, Republic of); Park, Won Sun, E-mail: parkws@kangwon.ac.kr [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of)

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  18. Inhibitory effects of psychotropic drugs on the acetylcholine receptor-operated potassium current (IK.ACh) in guinea-pig atrial myocytes.

    Science.gov (United States)

    Okada, Muneyoshi; Watanabe, Shinya; Matada, Takashi; Asao, Yoko; Hamatani, Ramu; Yamawaki, Hideyuki; Hara, Yukio

    2013-01-01

    Influences of psychotropic drugs, six antipsychotics and three antidepressants, on acetylcholine receptor-operated potassium current (IK.ACh) were examined by a whole-cell patch clamp method in freshly isolated guinea-pig atrial myocyte. IK.ACh was induced by a superfusion of carbachol (CCh) or by an intracellular application of guanosine 5'-[thio] triphosphate (GTPγS). To elucidate mechanism for anticholinergic action, IC50 ratio, the ratio of IC50 for GTPγS-activated IK.ACh to CCh-induced IK.ACh, was calculated. Antipsychotics and antidepressants inhibited CCh-induced IK.ACh in a concentration-dependent manner. The IC50 values were as follows; chlorpromazine 0.53 μM, clozapine 0.06 μM, fluphenazine 2.69 μM, haloperidol 2.66 μM, sulpiride 42.3 μM, thioridazine 0.07 μM, amitriptyline 0.03 μM, imipramine 0.22 μM and maprotiline 1.81 μM. The drugs, except for sulpiride, inhibited GTPγS-activated IK.ACh with following IC50 values; chlorpromazine 1.71 μM, clozapine 14.9 μM, fluphenazine 3.55 μM, haloperidol 2.73 μM, thioridazine 1.90 μM, amitriptyline 7.55 μM, imipramine 7.09 μM and maprotiline 5.93 μM. The IC50 ratio for fluphenazine and haloperidol was close to unity. The IC50 ratio for chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine and maprotiline was much higher than unity. The present findings suggest that the psychotropics studied suppress IK.ACh. Chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine, maprotiline and sulpiride are preferentially acting on muscarinic receptor. Fluphenazine and haloperidol may act on G protein and/or potassium channel.

  19. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs.

    Science.gov (United States)

    Ye, Rui; Liu, Jun; Jia, Zhiying; Wang, Hongyang; Wang, YongAn; Sun, Wei; Wu, Xuan; Zhao, Zhifei; Niu, Baolong; Li, Xingqi; Dai, Guanghai; Li, Jianxiong

    2016-06-13

    BACKGROUND There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. MATERIAL AND METHODS Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen's cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. RESULTS ATP (0.1-10 µM) reduced the potassium current (IK+) in the majority of the recorded Hensen's cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 µM to 10 mM), which was reversibly blocked by 100 µM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. CONCLUSIONS Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL).

  20. Flow- and voltage-dependent blocking effect of ethosuximide on the inward rectifier K⁺ (Kir2.1) channel.

    Science.gov (United States)

    Huang, Chiung-Wei; Kuo, Chung-Chin

    2015-08-01

    Absence seizures are manifestations of abnormal thalamocortical oscillations characterized by spike-and-wave complexes in EEG. Ethosuximide (ETX) is one of the principal medications against absence seizures. We investigate the effect of ETX on the Kir2.1 channel, a prototypical inward rectifier K(+) channel possibly playing an important role in the setting of neuronal membrane potential. We demonstrate that the outward currents of Kir2.1 channels are significantly inhibited by intracellular ETX. We further show that the movement of neutral molecule ETX in the Kir2.1 channel is accompanied by ∼1.2 K(+), giving rise to the vivid voltage dependence of ETX unbinding rate. Moreover, the apparent affinity (K d ) of ETX in the channels are decreased by single-point mutations involving M183, E224, and S165, and especially by double mutations involving T141/S165, which always also disrupt the flux-coupling feature of ETX block. Molecular dynamics simulation demonstrates narrowing of the pore at ∼D172 by binding of ETX to S165 or T141. ETX block of the Kir2.1 channels may cause a modest but critical depolarization of the relevant neurons, decreasing available T-type Ca(2+) channels and consequently lessening pathological thalamocortical burst discharges.

  1. Silencing gamma-aminobutyric acid A receptor alpha 1 subunit expression and outward potassium current in developing cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Tao Bo; Jiang Li; Jian Li; Xingfang Li; Kaihui Xing

    2011-01-01

    We used RNA interference (RNAi) to disrupt synthesis of the cortical neuronal γ-aminobutyric acid A receptor (GABAAR) α1 in rats during development, and measured outward K+ currents during neuronal electrical activity using whole-cell patch-clamp techniques. Three pairs of small interfering RNA (siRNA) for GABAAR α1 subunit were designed using OligoEngine RNAi software. This siRNA was found to effectively inhibited GABAAR α1 mRNA expression in cortical neuronal culture in vitro, but did not significantly affect neuronal survival. Outward K+ currents were decreased, indicating that GABAAR α1 subunits in developing neurons participate in neuronal function by regulating outward K+ current.

  2. The effects of paeoniflorin monomer on cardiac potassium currents.%芍药苷对心脏钾通道电生理功能的影响

    Institute of Scientific and Technical Information of China (English)

    王蓉蓉; 王可; 李宁; 冉玉琴; 浦介麟

    2011-01-01

    Objective The present study was to determine the effects of paeoniflorin on inward rectifier potassium current (IK1), transient outward potassium current (I∞), and delayed rectifier current (IKs and IK1).Methods Whole-cell patch-clamp technique was used to record ion channel currents. IK1 and I∞ were studied in rat ventricular myocytes; and IK1, and IKs were investigated in transfected HEK293 cells. Results 100μ mol/L paeoniflorin inhibited the IK1 by 30.13%, at the test potential of -100mV (from (-25.26 ± 8.21) pA/pF to (- 17.65 ± 6.52) pA/pF,n=6, P<0.05) without effects on the reversal potenital and the rectification property. Moreover, 100μmol/L paeoniflorin had no effects on Ito, IKs or IKf chanels. Conclusions The study demonstrated that paeoniflorin blocked IK1 without affecting Ito,IKs or IKf.%目的:研究芍药苷对内向整流钾电流(Ik1)、瞬时外向钾电流(Ito)以及延迟整流钾电流(Iks和Ikr)的作用.方法:用全细胞膜片钳技术记录大鼠心室肌细胞的Ito和Ik1电流.而Iks和Ikr电流在转染相应质粒的HEK293细胞上记录.对比芍药苷使用前后的电流图,观察芍药苷对各种离子通道电流的影响.结果:在-100mV测试电压下,100μmol/L的芍药苷能使Ik1,峰值密度从(-25.26±8.21)pA/pF降至(-17.65±6.52)pA/pF,平均抑制率为30.13%(n=6,P<0.05),但对其反转电位以及内向整流特性无影响.此外,100μmol/L芍药苷对Ito、Iks和Ikr电流无明显作用.结论:芍药苷对Ik1电流具有明显的抑制作用,而对Ito、Iks及Ikr,无明显作用.

  3. Potassium Iodide (KI)

    Science.gov (United States)

    ... Health Matters Information on Specific Types of Emergencies Potassium Iodide (KI) Language: English Español (Spanish) Recommend on Facebook ... can I get KI (potassium iodide)? What is Potassium Iodide (KI)? KI (potassium iodide) is a salt of ...

  4. Niflumic acid-induced increase in potassium currents in frog motor nerve terminals: effects on transmitter release.

    Science.gov (United States)

    Miralles, F; Marsal, J; Peres, J; Solsona, C

    1996-04-01

    The actions of the nonsteroidal antiinflammatory drug niflumic acid were studied on frog neuromuscular preparations by conventional electrophysiological techniques. Niflumic acid reduced the amplitude and increased the latency of endplate potentials in a concentration-dependent manner. Neuromuscular junctions pretreated with niflumic acid (0.05-0.5 mM) showed much less depression than control when they were stimulated with trains of impulses. Inhibition of acetylcholine release was reverted by raising the extracellular Ca(2+) concentration but not by simply washing out the preparations with niflumic acid-free solutions. Pretreatment with indomethacin (0.1 mM), another nonsteroidal antiinflammatory drug, did not affect the niflumic acid-induced inhibition of evoked responses. Niflumic acid (0.1 mM) did not change the amplitude of miniature endplate potentials and had a dual action on the frequency of miniatures: it decreased their frequency at 0.1 mM whereas it produced an enormous increase in the rate of spontaneous discharge at 0.5 mM. Niflumic acid (0.1 - 1 mM) reversibly increased the amplitude and affected the kinetics of presynaptic voltage-activated K+ current and Ca(2+)-activated K(+) current in a concentration-dependent manner. Niflumic acid (0.1 - 1 mM) irreversibly decreased the amplitude and reversibly affected the kinetics of the nodal Na(+) current. Indomethacin (0.1 mM) had no effect on presynaptic currents. In conclusion, niflumic acid reduces acetylcholine release by increasing presynaptic K+ currents. This may shorten the depolarizing phase of the presynaptic action potential and may reduce the entry of Ca(2+) with each impulse.

  5. Octopamine increases the excitability of neurons in the snail feeding system by modulation of inward sodium current but not outward potassium currents

    Directory of Open Access Journals (Sweden)

    Szabó Henriette

    2005-12-01

    Full Text Available Abstract Background Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. Results The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P IA current and a sustained IK delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium – free saline and so is likely to be carried by sodium ions. 10 μM octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P Conclusion We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense.

  6. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor.

    Science.gov (United States)

    Gravati, Marta; Busnelli, Marta; Bulgheroni, Elisabetta; Reversi, Alessandra; Spaiardi, Paolo; Parenti, Marco; Toselli, Mauro; Chini, Bice

    2010-09-01

    Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.

  7. Prolonged Action Potential and After depolarizations Are Not due to Changes in Potassium Currents in NOS3 Knockout Ventricular Myocytes.

    Science.gov (United States)

    Wang, Honglan; Bonilla, Ingrid M; Huang, Xin; He, Quanhua; Kohr, Mark J; Carnes, Cynthia A; Ziolo, Mark T

    2012-01-01

    Ventricular myocytes deficient in endothelial nitric oxide synthase (NOS3(-/-)) exhibit prolonged action potential (AP) duration and enhanced spontaneous activity (early and delayed afterdepolarizations) during β-adrenergic (β-AR) stimulation. Studies have shown that nitric oxide is able to regulate various K(+) channels. Our objective was to examine if NOS3(-/-) myocytes had altered K(+) currents. APs, transient outward (I(to)), sustained (I(Ksus)), and inward rectifier (I(K1)) K(+) currents were measured in NOS3(-/-) and wild-type (WT) myocytes. During β-AR stimulation, AP duration (measured as 90% repolarization-APD(90)) was prolonged in NOS3(-/-) compared to WT myocytes. Nevertheless, we did not observe differences in I(to), I(Ksus), or I(K1) between WT and NOS3(-/-) myocytes. Our previous work showed that NOS3(-/-) myocytes had a greater Ca(2+) influx via L-type Ca(2+) channels with β-AR stimulation. Thus, we measured β-AR-stimulated SR Ca(2+) load and found a greater increase in NOS3(-/-) versus WT myocytes. Hence, our data suggest that the prolonged AP in NOS3(-/-) myocytes is not due to changes in I(to), I(Ksus), or I(K1). Furthermore, the increase in spontaneous activity in NOS3(-/-) myocytes may be due to a greater increase in SR Ca(2+) load. This may have important implications for heart failure patients, where arrhythmias are increased and NOS3 expression is decreased.

  8. Aminoglycosides block the Kv3.1 potassium channel and reduce the ability of inferior colliculus neurons to fire at high frequencies.

    Science.gov (United States)

    Liu, Si-Qiong J; Kaczmarek, Leonard K

    2005-03-01

    The Kv3.1 potassium channel is expressed at high levels in auditory nuclei and contributes to the ability of auditory neurons to fire at high frequencies. We have tested the effects of streptomycin, an agent that produces progressive hearing loss, on the firing properties of inferior colliculus neurons and on Kv3.1 currents in transfected cells. We found that in inferior colliculus neurons, intracellular streptomycin decreased the current density of a high threshold, noninactivating outward current and reduced the rate of repolarization of action potentials and the ability of these neurons to fire at high frequencies. Furthermore, potassium current in CHO cells transfected with the Kv3.1 gene was reduced by 50% when cells were cultured in the presence of streptomycin or when streptomycin was introduced intracellularly in the pipette solution. In the presence of intracellular streptomycin, the activation rate of Kv3.1 current increased and inhibition by extracellular TEA become voltage-dependent. The data indicate that streptomycin inhibits Kv3.1 currents by inducing a conformational change in the Kv3.1 channel. The hearing loss caused by aminoglycoside antibiotics may be partially mediated by their inhibition of Kv3.1 current in auditory neurons.

  9. Potassium clavulanate

    Directory of Open Access Journals (Sweden)

    Kotaro Fujii

    2010-08-01

    Full Text Available The title salt, K+·C8H8NO5− [systematic name: potassium (2R,5R,Z-3-(2-hydroxyethylidene-7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylate], a widely used β-lactam antibiotic, is usually chemically unstable even in the solid state owing to its tendency to be hydrolysed. In the crystal structure, the potassium cations are arranged along the a axis, forming interactions to the carboxylate and hydroxy groups, resulting in one-dimensional ionic columns. These columns are arranged along the b axis, connected by O—H...O hydrogen bonds, forming a layer in the ab plane.

  10. Prolonged Action Potential and After depolarizations Are Not due to Changes in Potassium Currents in NOS3 Knockout Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Honglan Wang

    2012-01-01

    Full Text Available Ventricular myocytes deficient in endothelial nitric oxide synthase (NOS3−/− exhibit prolonged action potential (AP duration and enhanced spontaneous activity (early and delayed afterdepolarizations during β-adrenergic (β-AR stimulation. Studies have shown that nitric oxide is able to regulate various K+ channels. Our objective was to examine if NOS3-/- myocytes had altered K+ currents. APs, transient outward (to, sustained (Ksus, and inward rectifier (K1 K+ currents were measured in NOS3-/- and wild-type (WT myocytes. During β-AR stimulation, AP duration (measured as 90% repolarization-APD90 was prolonged in NOS3−/− compared to WT myocytes. Nevertheless, we did not observe differences in to, Ksus, or K1 between WT and NOS3−/− myocytes. Our previous work showed that NOS3−/− myocytes had a greater Ca2+ influx via L-type Ca2+ channels with β-AR stimulation. Thus, we measured β-AR-stimulated SR Ca2+ load and found a greater increase in NOS3−/− versus WT myocytes. Hence, our data suggest that the prolonged AP in NOS3−/− myocytes is not due to changes in to, Ksus, or K1. Furthermore, the increase in spontaneous activity in NOS3−/− myocytes may be due to a greater increase in SR Ca2+ load. This may have important implications for heart failure patients, where arrhythmias are increased and NOS3 expression is decreased.

  11. Inhibition of human ether-a-go-go-related gene potassium channels by alpha 1-adrenoceptor antagonists prazosin, doxazosin, and terazosin.

    Science.gov (United States)

    Thomas, Dierk; Wimmer, Anna-Britt; Wu, Kezhong; Hammerling, Bettina C; Ficker, Eckhard K; Kuryshev, Yuri A; Kiehn, Johann; Katus, Hugo A; Schoels, Wolfgang; Karle, Christoph A

    2004-05-01

    Human ether-a-go-go-related gene (HERG) potassium channels are expressed in multiple tissues including the heart and adenocarcinomas. In cardiomyocytes, HERG encodes the alpha-subunit underlying the rapid component of the delayed rectifier potassium current, I(Kr), and pharmacological reduction of HERG currents may cause acquired long QT syndrome. In addition, HERG currents have been shown to be involved in the regulation of cell proliferation and apoptosis. Selective alpha 1-adrenoceptor antagonists are commonly used in the treatment of hypertension and benign prostatic hyperplasia. Recently, doxazosin has been associated with an increased risk of heart failure. Moreover, quinazoline-derived alpha 1-inhibitors induce apoptosis in cardiomyocytes and prostate tumor cells independently of alpha1-adrenoceptor blockade. To assess the action of the effects of prazosin, doxazosin, and terazosin on HERG currents, we investigated their acute electrophysiological effects on cloned HERG potassium channels heterologously expressed in Xenopus oocytes and HEK 293 cells.Prazosin, doxazosin, and terazosin blocked HERG currents in Xenopus oocytes with IC(50) values of 10.1, 18.2, and 113.2 microM respectively, whereas the IC(50) values for HERG channel inhibition in human HEK 293 cells were 1.57 microM, 585.1 nM, and 17.7 microM. Detailed biophysical studies revealed that inhibition by the prototype alpha 1-blocker prazosin occurred in closed, open, and inactivated channels. Analysis of the voltage-dependence of block displayed a reduction of inhibition at positive membrane potentials. Frequency-dependence was not observed. Prazosin caused a negative shift in the voltage-dependence of both activation (-3.8 mV) and inactivation (-9.4 mV). The S6 mutations Y652A and F656A partially attenuated (Y652A) or abolished (F656A) HERG current blockade, indicating that prazosin binds to a common drug receptor within the pore-S6 region. In conclusion, this study demonstrates that HERG

  12. High firing rate of neonatal hippocampal interneurons is caused by attenuation of afterhyperpolarizing potassium currents by tonically active kainate receptors.

    Science.gov (United States)

    Segerstråle, Mikael; Juuri, Juuso; Lanore, Frédéric; Piepponen, Petteri; Lauri, Sari E; Mulle, Christophe; Taira, Tomi

    2010-05-12

    In the neonatal hippocampus, the activity of interneurons shapes early network bursts that are important for the establishment of neuronal connectivity. However, mechanisms controlling the firing of immature interneurons remain elusive. We now show that the spontaneous firing rate of CA3 stratum lucidum interneurons markedly decreases during early postnatal development because of changes in the properties of GluK1 (formerly known as GluR5) subunit-containing kainate receptors (KARs). In the neonate, activation of KARs by ambient glutamate exerts a tonic inhibition of the medium-duration afterhyperpolarization (mAHP) by a G-protein-dependent mechanism, permitting a high interneuronal firing rate. During development, the amplitude of the apamine-sensitive K+ currents responsible for the mAHP increases dramatically because of decoupling between KAR activation and mAHP modulation, leading to decreased interneuronal firing. The developmental shift in the KAR function and its consequences on interneuronal activity are likely to have a fundamental role in the maturation of the synchronous neuronal oscillations typical for adult hippocampal circuitry.

  13. The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus.

    Science.gov (United States)

    Cao, Xiao-Jie; Oertel, Donata

    2011-08-01

    In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1(-/-)) (Nolan et al. 2003) with wild-type controls (HCN1(+/+)) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I(h)) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1(-/-) than in HCN1(+/+) in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I(h), input resistances, and time constants between HCN1(+/+) and ICR mice, but the resting potentials did not differ between strains. I(h) is opposed by a low-voltage-activated potassium (I(KL)) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I(h) and I(KL) were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I(h) and I(KL) is linked in bushy and octopus cells and varies not only between HCN1(-/-) and HCN1(+/+) but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice.

  14. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.

    Science.gov (United States)

    Abbott, Geoffrey W; Butler, Margaret H; Goldstein, Steve A N

    2006-02-01

    MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK(a) approximately 7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis.

  15. Voltage-Dependent Anion Channel 1(VDAC1) Participates the Apoptosis of the Mitochondrial Dysfunction in Desminopathy

    Science.gov (United States)

    Mo, Yanqing; Gong, Qi; Jiang, Aihua; Zhao, Jing

    2016-01-01

    Desminopathies caused by the mutation in the gene coding for desmin are genetically protein aggregation myopathies. Mitochondrial dysfunction is one of pathological changes in the desminopathies at the earliest stage. The molecular mechanisms of mitochondria dysfunction in desminopathies remain exclusive. VDAC1 regulates mitochondrial uptake across the outer membrane and mitochondrial outer membrane permeabilization (MOMP). Relationships between desminopathies and Voltage-dependent anion channel 1 (VDAC1) remain unclear. Here we successfully constructed the desminopathy rat model, evaluated with conventional stains, containing hematoxylin and eosin (HE), Gomori Trichrome (MGT), (PAS), red oil (ORO), NADH-TR, SDH staining and immunohistochemistry. Immunofluorescence results showed that VDAC1 was accumulated in the desmin highly stained area of muscle fibers of desminopathy patients or desminopathy rat model compared to the normal ones. Meanwhile apoptosis related proteins bax and ATF2 were involved in desminopathy patients and desminopathy rat model, but not bcl-2, bcl-xl or HK2.VDAC1 and desmin are closely relevant in the tissue splices of deminopathies patients and rats with desminopathy at protein lever. Moreover, apoptotic proteins are also involved in the desminopathies, like bax, ATF2, but not bcl-2, bcl-xl or HK2. This pathological analysis presents the correlation between VDAC1 and desmin, and apoptosis related proteins are correlated in the desminopathy. Furthermore, we provide a rat model of desminopathy for the investigation of desmin related myopathy. PMID:27941998

  16. Multiphasic profiles for voltage-dependent K+ channels: Reanalysis of data of MacKinnon and coworkers

    CERN Document Server

    Nissen, Per

    2016-01-01

    In a study of the role that voltage-dependent K+ channels may have in the mechanosensation of living cells (Schmidt et al. Proc Soc Natl Acad Sci USA 109: 10352-10357. 2012), the data were as conventionally done fitted by a Boltzmann function. However, as also found for other data for ion channels, this interpretation must be rejected in favor of a multiphasic profile, a series of straight lines separated by discontinuous transitions, quite often in the form of noncontiguities (jumps). The data points in the present study are often very unevenly distributed around the curvilinear profiles. Thus, for 43 of the 75 profiles, the probability is less than 5% that the uneven distribution is due to chance, for 26 the probability is less than 1%, and for 12 the probability is less than 0.1%, giving a vanishingly low overall probability for all profiles. Especially at low voltages, the differences between the fits to curvilinear and multiphasic profiles may be huge. In the multiphasic profiles, adjacent lines are quit...

  17. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  18. Voltage-dependent anion channels (VDACs, porin) expressed in the plasma membrane regulate the differentiation and function of human osteoclasts.

    Science.gov (United States)

    Kotake, Shigeru; Yago, Toru; Kawamoto, Manabu; Nanke, Yuki

    2013-01-01

    Fewer molecules have been identified on human than murine osteoclasts, the former differing from murine osteoclasts in many ways. We show that voltage-dependent anion channels (VDACs, porin) are expressed in the plasma membrane of human osteoclasts. A search for novel proteins expressed in the plasma membrane of human osteoclasts identified VDAC. Anti-VDAC antibodies inhibited human osteoclastogenesis in vitro. VDAC expression was detected in membranes by immunoelectron microscopy and immunocytochemical double staining. The VDAC protein functions as a Cl(-) channel. VDACs regulate bone resorption, which show using Osteologic™ plates. The epitope of the antibody lay within a 10-amino acid sequence in the VDAC. The findings suggest that the VDAC is, at least partly, a novel Cl(-) channel regulating the differentiation and function of human osteoclasts. VDACs may play a crucial role in acidifying the resorption lacunae between osteoclasts and bone. Inhibitors of VDACs could be used to treat diseases involving increased resorption, such as osteoporosis, rheumatoid arthritis, and Paget's disease. © 2012 International Federation for Cell Biology.

  19. The voltage-dependent K+ channels Kv1.3 and Kv1.5 in human cancer

    Science.gov (United States)

    Comes, Núria; Bielanska, Joanna; Vallejo-Gracia, Albert; Serrano-Albarrás, Antonio; Marruecos, Laura; Gómez, Diana; Soler, Concepció; Condom, Enric; Ramón y Cajal, Santiago; Hernández-Losa, Javier; Ferreres, Joan C.; Felipe, Antonio

    2013-01-01

    Voltage-dependent K+ channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer. PMID:24133455

  20. The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer.

    Science.gov (United States)

    Comes, Núria; Bielanska, Joanna; Vallejo-Gracia, Albert; Serrano-Albarrás, Antonio; Marruecos, Laura; Gómez, Diana; Soler, Concepció; Condom, Enric; Ramón Y Cajal, Santiago; Hernández-Losa, Javier; Ferreres, Joan C; Felipe, Antonio

    2013-10-10

    Voltage-dependent K(+) channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer.

  1. Probing the gate--voltage-dependent surface potential of individual InAs nanowires using random telegraph signals.

    Science.gov (United States)

    Salfi, Joe; Paradiso, Nicola; Roddaro, Stefano; Heun, Stefan; Nair, Selvakumar V; Savelyev, Igor G; Blumin, Marina; Beltram, Fabio; Ruda, Harry E

    2011-03-22

    We report a novel method for probing the gate-voltage dependence of the surface potential of individual semiconductor nanowires. The statistics of electronic occupation of a single defect on the surface of the nanowire, determined from a random telegraph signal, is used as a measure for the local potential. The method is demonstrated for the case of one or two switching defects in indium arsenide (InAs) nanowire field effect transistors at temperatures T=25-77 K. Comparison with a self-consistent model shows that surface potential variation is retarded in the conducting regime due to screening by surface states with density Dss≈10(12) cm(-2) eV(-1). Temperature-dependent dynamics of electron capture and emission producing the random telegraph signals are also analyzed, and multiphonon emission is identified as the process responsible for capture and emission of electrons from the surface traps. Two defects studied in detail had capture activation energies of EB≈50 meV and EB≈110 meV and cross sections of σ∞≈3×10(-19) cm2 and σ∞≈2×10(-17) cm2, respectively. A lattice relaxation energy of Sℏω=187±15 meV was found for the first defect.

  2. Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin.

    Science.gov (United States)

    Maldonado, Eduardo N; Sheldon, Kely L; DeHart, David N; Patnaik, Jyoti; Manevich, Yefim; Townsend, Danyelle M; Bezrukov, Sergey M; Rostovtseva, Tatiana K; Lemasters, John J

    2013-04-26

    Respiratory substrates and adenine nucleotides cross the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC), comprising three isoforms--VDAC1, 2, and 3. We characterized the role of individual isoforms in mitochondrial metabolism by HepG2 human hepatoma cells using siRNA. With VDAC3 to the greatest extent, all VDAC isoforms contributed to the maintenance of mitochondrial membrane potential, but only VDAC3 knockdown decreased ATP, ADP, NAD(P)H, and mitochondrial redox state. Cells expressing predominantly VDAC3 were least sensitive to depolarization induced by increased free tubulin. In planar lipid bilayers, free tubulin inhibited VDAC1 and VDAC2 but not VDAC3. Erastin, a compound that interacts with VDAC, blocked and reversed mitochondrial depolarization after microtubule destabilizers in intact cells and antagonized tubulin-induced VDAC blockage in planar bilayers. In conclusion, free tubulin inhibits VDAC1/2 and limits mitochondrial metabolism in HepG2 cells, contributing to the Warburg phenomenon. Reversal of tubulin-VDAC interaction by erastin antagonizes Warburg metabolism and restores oxidative mitochondrial metabolism.

  3. Transcriptional upregulation of α2δ-1 elevates arterial smooth muscle cell voltage-dependent Ca2+ channel surface expression and cerebrovascular constriction in genetic hypertension.

    Science.gov (United States)

    Bannister, John P; Bulley, Simon; Narayanan, Damodaran; Thomas-Gatewood, Candice; Luzny, Patrik; Pachuau, Judith; Jaggar, Jonathan H

    2012-10-01

    A hallmark of hypertension is an increase in arterial myocyte voltage-dependent Ca2+ (CaV1.2) currents that induces pathological vasoconstriction. CaV1.2 channels are heteromeric complexes composed of a pore-forming CaV1.2α1 with auxiliary α2δ and β subunits. Molecular mechanisms that elevate CaV1.2 currents during hypertension and the potential contribution of CaV1.2 auxiliary subunits are unclear. Here, we investigated the pathological significance of α2δ subunits in vasoconstriction associated with hypertension. Age-dependent development of hypertension in spontaneously hypertensive rats was associated with an unequal elevation in α2δ-1 and CaV1.2α1 mRNA and protein in cerebral artery myocytes, with α2δ-1 increasing more than CaV1.2α1. Other α2δ isoforms did not emerge in hypertension. Myocytes and arteries of hypertensive spontaneously hypertensive rats displayed higher surface-localized α2δ-1 and CaV1.2α1 proteins, surface α2δ-1:CaV1.2α1 ratio, CaV1.2 current density and noninactivating current, and pressure- and depolarization-induced vasoconstriction than those of Wistar-Kyoto controls. Pregabalin, an α2δ-1 ligand, did not alter α2δ-1 or CaV1.2α1 total protein but normalized α2δ-1 and CaV1.2α1 surface expression, surface α2δ-1:CaV1.2α1, CaV1.2 current density and inactivation, and vasoconstriction in myocytes and arteries of hypertensive rats to control levels. Genetic hypertension is associated with an elevation in α2δ-1 expression that promotes surface trafficking of CaV1.2 channels in cerebral artery myocytes. This leads to an increase in CaV1.2 current-density and a reduction in current inactivation that induces vasoconstriction. Data also suggest that α2δ-1 targeting is a novel strategy that may be used to reverse pathological CaV1.2 channel trafficking to induce cerebrovascular dilation in hypertension.

  4. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from t

  5. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Steffensen, Annette Buur; Grunnet, Morten;

    2011-01-01

    Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also...... modulates wild-type Kv7.1 channels. The Kv7.1 currents were measured in Xenopus laevis oocytes at different concentrations of extracellular potassium (1-50 mM). As extracellular potassium was elevated, Kv7.1 currents were reduced significantly more than expected from theoretical calculations based...... on the Goldman-Hodgkin-Katz flux equation. Potassium inhibited the steady-state current with an IC(50) of 6.0 ± 0.2 mM. Analysis of tail-currents showed that potassium increased the fraction of channels in the inactivated state. Similarly, the recovery from inactivation was slowed by potassium, suggesting...

  6. Regulation of voltage-gated sodium current by endogenous Src family kinases in cochlear spiral ganglion neurons in culture.

    Science.gov (United States)

    Feng, Shuang; Pflueger, Melissa; Lin, Shuang-Xiu; Groveman, Bradley R; Su, Jiping; Yu, Xian-Min

    2012-04-01

    Voltage-gated sodium (Na+) and potassium (K+)channels have been found to be regulated by Src family kinases(SFKs).However, how these channels are regulated by SFKs in cochlear spiral ganglion neurons (SGNs) remains unknown.Here, we report that altering the activity of endogenous SFKs modulated voltage-gated Na+, but not K+, currents recorded in embryonic SGNs in culture. Voltage-gated Na+ current was suppressed by inhibition of endogenous SFKs or just Src and potentiated by the activation of these enzymes. Detailed investigations showed that under basal conditions, SFK inhibitor application did not significantly affect the voltage-dependent activation, but shifted the steady-state inactivation curves of Na+ currents and delayed the recovery of Na+ currents from inactivation. Application of Src specific inhibitor, Src40–58,not only shifted the inactivation curve but also delayed the recovery of Na+ currents and moved the voltage-dependent activation curve towards the left. The pre-inhibition of SFKs occluded all the effects induced by Src40–58 application, except the left shift of the activation curve. The activation of SFKs did not change either steady-state inactivation or recovery of Na+ currents, but caused the left shift of the activation curve.SFK inhibitor application effectively prevented all the effects induced by SFK activation, suggesting that both the voltage-dependent activation and steady-state inactivation of Na+ current are subjects of SFK regulation. The different effects induced by activation versus inhibition of SFKs implied that under basal conditions, endogenously active and inactive SFKs might be differentially involved in the regulation of voltage-gated Na+ channels in SGNs.

  7. Altered ischemic cerebral injury in mice lacking αIE subunit of the voltage-dependent Ca2+ channel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective ①To set up a stable and reproducible focal cerebral infarct modelin mice; (②To examine theinvolvement of αIE subunit of voltage-dependent Ca2 + channel in cerebral ischemic injury. Methods Male C57BL/6J Jclmice 8 ~ 12w and F4 ~ F6αIE subunit of Ca2+ channel mutant mice were both used in this study. All animals were allowedto freely access to food and water before and after operation. Animals were anesthetized with pentobarbital sodium 60mg/kg,ip. Rectal temperature was continuously monitored before, during and after operation, and maintained at (36.6 +0.1 )°C by a autoregulating pad. To produce pilot models, the middle cerebral artery (MCA) was occluded either by sur-gical ligation or electrical coagulation and in some models the common carotid artery (CCA) was surgically ligated in tan-dem. In our latter work the MCA was cut off soon after it was ligated or coagulated in order to make sure that the bloodflow was occluded completely. The MCA was coagulated or ligated with a bipolar coagulator or microsurgery suture at thesite just superior to the rhinal fissure. Twenty~four hours after the operation, the mice were anesthetized and decapitated,then their brains were dissected from the skull and put into cold artificial brain spinal fluid as soon as possible. Lmm thickcoronal sections were cut by vibratome and stained with 2% 2,3,5-triphenyltetrazolium chloride (TTC) at 37°C for30min. Every section was photographed positively and the whole infarction volume was calculated by summing up the in-farction volumes of all sections by NIH Image System. Infarction ratio ( % ) was also calculated by the following fommula:(contralateral volume-ipsilateral undamaged volume)/contralateral volume × 100% to eliminate the influence of edema.In brief, the mutant mice were produced with gene targeting technique. F4 ~ F6 mice were used in this experiment. Alloffsprings were genotyped by the polymerase chain reaction (PCR) and the genotypes remained umknown

  8. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    Science.gov (United States)

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment.

  9. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    Science.gov (United States)

    Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-06-02

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI-tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr(83) and Glu(73), respectively. When Glu(73) was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr(62) within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu(73) residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Voltage-dependent changes in specific membrane capacitance caused by prestin, the outer hair cell lateral membrane motor.

    Science.gov (United States)

    Santos-Sacchi, Joseph; Navarrete, Enrique

    2002-05-01

    In the outer hair cell (OHC), membrane capacitance principally derives from two components - that associated with lateral membrane sensor/motor charge movement, and that proportional to the membrane surface area (C(sa)). We used measures of membrane capacitance to test a model hypothesis that OHC lateral membrane molecular motors, recently identified as the protein prestin, fluctuate between two area states. By measuring membrane capacitance in native OHCs or prestin-transfected HEK cells at extreme voltages (+/-200 mV) where motor-derived charge movement is small or absent, we observed that C(sa) depends on the state of the motors, or correspondingly on membrane voltage. Deiters cells or control HEK cells, which lack motors, do not show this dependence. We modeled the voltage-dependent change in C(sa) as a Boltzmann process with the same parameters that describe the charge movement of the motors' voltage sensors. C(sa) is 3.28+/-0.75 pF (mean +/-SD; n=23) larger during extreme hyperpolarization, and the number of motors in OHCs and prestin-transfected HEK cells correlates with the magnitude of Delta C(sa)( r=0.78). Although these data are consistent with the area motor model, the corresponding area change, assuming 0.5 microF/cm(2) under constant membrane thickness, is unphysiologically large, and indicates that the capacitance change must result from changes not only in lateral membrane area but also specific capacitance. Thus, we conclude that a conformational change in the lateral membrane motor, prestin, additionally alters the dielectric constant and/or thickness of the lateral plasma membrane.

  11. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    Science.gov (United States)

    Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo

    2014-01-01

    Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.

  12. Activity-dependent Phosphorylation of Neuronal Kv2.1 Potassium Channels by CDK5*

    OpenAIRE

    Cerda, Oscar; Trimmer, James S.

    2011-01-01

    Dynamic modulation of ion channel expression, localization, and/or function drives plasticity in intrinsic neuronal excitability. Voltage-gated Kv2.1 potassium channels are constitutively maintained in a highly phosphorylated state in neurons. Increased neuronal activity triggers rapid calcineurin-dependent dephosphorylation, loss of channel clustering, and hyperpolarizing shifts in voltage-dependent activation that homeostatically suppress neuronal excitability. These changes are reversible,...

  13. High potassium level

    Science.gov (United States)

    Hyperkalemia; Potassium - high; High blood potassium ... There are often no symptoms with a high level of potassium. When symptoms do occur, they may include: Nausea Slow, weak, or irregular pulse Sudden collapse, when the heartbeat gets too ...

  14. Effect of trimetazidine treatment on the transient outward potassium current of the left ventricular myocytes of rats with streptozotocin-induced type 1 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Yu-luan; He, Li [Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xiao, Jun [Department of Cardiology, Chongqing Emergency Medical Center, Chongqing (China); Xia, Shuang; Deng, Song-bai [Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xiu, Yun [Institute of Life Science, Chongqing Medical University, Chongqing (China); She, Qiang [Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2012-02-17

    Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (I{sub to}) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM+TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg{sup −1}·day{sup −1}). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of I{sub to} was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated I{sub to} reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced I{sub to} of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM.

  15. Differential regulation of voltage- and calcium-activated potassium channels in human B lymphocytes.

    Science.gov (United States)

    Partiseti, M; Choquet, D; Diu, A; Korn, H

    1992-06-01

    The expression and characteristics of K+ channels of human B lymphocytes were studied by using single and whole-cell patch-clamp recordings. They were gated by depolarization (voltage-gated potassium current, IKv, 11-20 pS) and by an increase in intracellular Ca2+ concentration (calcium-activated potassium current, IKCa, 26 pS), respectively. The level of expression of these channels was correlated with the activational status of the cell. Both conductances are blocked by tetraethylammonium, verapamil, and charybdotoxin, and are insensitive to apamin; 4-aminopyridine blocks IK, preferentially. We used a protein kinase C activator (PMA) or antibodies to membrane Ig (anti-mu) to activate resting splenocytes in culture. Although IKv was recorded in the majority of the resting lymphocytic population, less than 20% of the activated cells expressed this conductance. However, in this subset the magnitude of IKv was 20-fold larger than in resting cells. On the other hand, IKCa was detected in nearly one half of the resting cells, whereas all activated cells expressed this current. The magnitude of IKCa was, on average, 30 times larger in activated than in nonactivated cells. These results probably reflect that during the course of activation 1) the number of voltage-dependent K+ channels per cell decreases and increases in a small subset and 2) the number of Ca(2+)-dependent K+ channels per cell increases in all cells. We suggest that the expression of functional Ca(2+)- and voltage-activated K+ channels are under the control of different regulatory signals.

  16. Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures

    Science.gov (United States)

    Altındal Yerişkin, S.; Balbaşı, M.; Demirezen, S.

    2017-01-01

    In this study, Au/0.07 graphene-doped PVA/n-Si structures were fabricated and current conduction mechanism in these structures were investigated in the temperature range of 80-380 K through forward bias current-voltage (I-V) measurements. Main electrical parameters were extracted from I-V data. Zero-bias barrier height (overline{Φ}_{B0} ) and ideality factor (n) were found strong functions of temperature and their values ranged from 0.234 eV and 4.98 (at 80 K) to 0.882 eV and 1.15 (at 380 K), respectively. Φ ap versus q/2kT plot was drawn to obtain an evidence of a Gaussian distribution of the barrier heights (BHs) and it revealed two distinct linear regions with different slopes and intercepts. The mean values of BH (Φ Bo) and zero-bias standard deviation (σ s ) were obtained from the intercept and slope of the linear regions of this plot as 1.30 eV and 0.16 V for the first region (280-380 K) and 0.74 eV and 0.085 V for the second region (80-240 K), respectively. Thus, the values of overline{Φ}_{B0} and effective Richardson constant (A*) were also found from the intercept and slope of the modified Richardson plot [ln(I s /T 2) - q 2 σ {/o 2} /2k 2 T 2 vs q/kT] as 1.31 eV and 130 A/cm2 K2 for the first region and 0.76 eV and 922 A/cm2 K2 for the second region, respectively. The value of A* for the first region was very close to the theoretical value for n-Si (112 A/cm2 K2). The energy density distribution profile of surface states (Nss) was also extracted from the forward bias I-V data by taking into account voltage dependent effective BH (Φe) and n.

  17. Time-resolved photoluminescence measurements for determining voltage-dependent charge-separation efficiencies of subcells in triple-junction solar cells

    Science.gov (United States)

    Tex, David M.; Ihara, Toshiyuki; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-01-01

    Conventional external quantum-efficiency measurement of solar cells provides charge-collection efficiency for approximate short-circuit conditions. Because this differs from actual operating voltages, the optimization of high-quality tandem solar cells is especially complicated. Here, we propose a contactless method, which allows for the determination of the voltage dependence of charge-collection efficiency for each subcell independently. By investigating the power dependence of photoluminescence decays, charge-separation and recombination-loss time constants are obtained. The upper limit of the charge-collection efficiencies at the operating points is then obtained by applying the uniform field model. This technique may complement electrical characterization of the voltage dependence of charge collection, since subcells are directly accessible.

  18. Voltage-dependent capacitance behavior and underlying mechanisms in metal-insulator-metal capacitors with Al2O3-ZrO2-SiO2 nano-laminates

    Science.gov (United States)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Ding, Shi-Jin

    2016-04-01

    Nano-laminates consisting of high-permittivity dielectrics and SiO2 have been extensively studied for radio frequency metal-insulator-metal (MIM) capacitors because of their superior voltage linearity and low leakage current. However, there are no reports on the capacitance-voltage (C-V) characteristics at a high sweep voltage range. In this work, an interesting variation in the voltage-dependent capacitance that forms a ‘ω’-like shape is demonstrated for the MIM capacitors with Al2O3/ZrO2/SiO2 nano-laminates. As the thickness ratio of the SiO2 film to the total insulator increases to around 0.15, the C-V curve changes from an upward parabolic shape to a ‘ω’ shape. This can be explained based on the competition between the orientation polarization from SiO2 and the electrode polarization from Al2O3 and ZrO2. When the SiO2 film is very thin, the electrode polarization dominates in the MIM capacitor, generating a positive curvature C-V curve. When the thickness of SiO2 is increased, the orientation polarization is enhanced and thus both polarizations are operating in the MIM capacitors. This leads to the appearance of a multiple domain C-V curve containing positive and negative curvatures. Therefore, good consistency between the experimental results and the theoretical simulations is demonstrated. Such voltage-dependent capacitance behavior is not determined by the stack structure of the insulator, measurement frequency and oscillator voltage, but by the thickness ratio of the SiO2 film to the whole insulator. These findings are helpful to engineer MIM capacitors with good voltage linearity.

  19. Rapid component I(Kr) of cardiac delayed rectifier potassium currents in guinea-pig is inhibited by alpha(1)-adrenoreceptor activation via protein kinase A and protein kinase C-dependent pathways.

    Science.gov (United States)

    Wang, Sen; Xu, Dong-Jie; Cai, Jing-Bo; Huang, Yuan-Zhu; Zou, Jian-Gang; Cao, Ke-Jiang

    2009-04-17

    Ventricular tachyarrhythmias are often precipitated by physical or emotional stress, indicating a link between increased adrenergic stimulation and cardiac ion channel activity. Human ether-a-go-go related gene (hERG) potassium channels conduct the rapid component of delayed rectifier potassium current, I(kr), a crucial component for action potential repolarization. To evaluate the correlation between increased alpha(1)-adrenergic activity and the rapid component of cardiac I(kr), whole-cell patch-clamp recording was performed in isolated guinea-pig ventricular myocytes. Stimulation of alpha(1)-adrenoceptors using phenylephrine (0.1 nM-100 microM) reduced I(kr) current in a dose-dependent manner at 37 degrees C. Phenylephrine (0.1 microM) reduced I(kr) current to 66.83+/-3.16%. Chelerythrine (1 microM), a specific inhibitor of protein kinase C (PKC) completely inhibited the changes in I(kr) trigged by 0.1 microM phenylephrine. KT5720 (2.5 microM), a specific inhibitor of protein kinase A (PKA) partially inhibited the current decrease induced by 0.1 microM phenylephrine. Both chelerythrine and KT5720 drastically reduced the phenylephrine-induced effects, indicating possible involvement of PKC and PKA in the alpha(1)-adrenergic inhibition of I(kr). Our data suggest a link between I(kr) and the alpha(1)-adrenoceptor, involving activation of PKC and PKA in arrhythmogenesis.

  20. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses to norepineph......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular...... chloride. We conclude that norepinephrine and ANG II use different mechanisms for contraction and that extracellular chloride is essential for contraction in afferent arterioles after activation of voltage-dependent calcium channels. We suggest that a chloride influx pathway is activated concomitantly...

  1. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  2. Large-conductance Ca2+-activated potassium channels in secretory neurons.

    Science.gov (United States)

    Lara, J; Acevedo, J J; Onetti, C G

    1999-09-01

    Large-conductance Ca2+-activated K+ channels (BK) are believed to underlie interburst intervals and contribute to the control of hormone release in several secretory cells. In crustacean neurosecretory cells, Ca2+ entry associated with electrical activity could act as a modulator of membrane K+ conductance. Therefore we studied the contribution of BK channels to the macroscopic outward current in the X-organ of crayfish, and their participation in electrophysiological activity, as well as their sensitivity toward intracellular Ca2+, ATP, and voltage, by using the patch-clamp technique. The BK channels had a conductance of 223 pS and rectified inwardly in symmetrical K+. These channels were highly selective to K+ ions; potassium permeability (PK) value was 2.3 x 10(-13) cm(3) s(-1). The BK channels were sensitive to internal Ca2+ concentration, voltage dependent, and activated by intracellular MgATP. Voltage sensitivity (k) was approximately 13 mV, and the half-activation membrane potentials depended on the internal Ca2+ concentration. Calcium ions (0.3-3 microM) applied to the internal membrane surface caused an enhancement of the channel activity. This activation of BK channels by internal calcium had a KD(0) of 0.22 microM and was probably due to the binding of only one or two Ca2+ ions to the channel. Addition of MgATP (0.01-3 mM) to the internal solution increased steady state-open probability. The dissociation constant for MgATP (KD) was 119 microM, and the Hill coefficient (h) was 0.6, according to the Hill analysis. Ca2+-activated K+ currents recorded from whole cells were suppressed by either adding Cd2+ (0.4 mM) or removing Ca2+ ions from the external solution. TEA (1 mM) or charybdotoxin (100 nM) blocked these currents. Our results showed that both BK and K(ATP) channels are present in the same cell. Even when BK and K(ATP) channels were voltage dependent and modulated by internal Ca2+ and ATP, the profile of sensitivity was quite different for each kind

  3. Potassium carbonate poisoning

    Science.gov (United States)

    Potassium carbonate is a white powder used to make soap, glass, and other items. This article discusses poisoning from swallowing or breathing in potassium carbonate. This article is for information only. Do ...

  4. Potassium maldistribution revisited

    African Journals Online (AJOL)

    distributor of 15% potassium chloride has printed instructions ... maldistribution of concentrated 15% potassium chloride after injection into one-liter, flexible, ... rates should be controlled, preferably using an electronic infusion controller.

  5. Gαi2- and Gαi3-specific regulation of voltage-dependent L-type calcium channels in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sara Dizayee

    Full Text Available BACKGROUND: Two pertussis toxin sensitive G(i proteins, G(i2 and G(i3, are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous G(i isoforms are functionally distinct. To test for isoform-specific functions of G(i proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC. METHODS: Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gα(i2 (Gα(i2 (-/- or Gα(i3 (Gα(i3 (-/-. mRNA levels of Gα(i/o isoforms and L-VDCC subunits were quantified by real-time PCR. Gα(i and Ca(vα(1 protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2 phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings. RESULTS: In cardiac tissue from Gα(i2 (-/- mice, Gα(i3 mRNA and protein expression was upregulated to 187 ± 21% and 567 ± 59%, respectively. In Gα(i3 (-/- mouse hearts, Gα(i2 mRNA (127 ± 5% and protein (131 ± 10% levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gα(i2 (-/- mice was lowered (-7.9 ± 0.6 pA/pF, n = 11, p<0.05 compared to wild-type cells (-10.7 ± 0.5 pA/pF, n = 22, whereas it was increased in myocytes from Gα(i3 (-/- mice (-14.3 ± 0.8 pA/pF, n = 14, p<0.05. Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gα(i2 (but not of Gα(i3 and following treatment with pertussis toxin in Gα(i3 (-/-. The pore forming Ca(vα(1 protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Ca(vα(1 and Ca(vβ(2 subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gα(i2. CONCLUSION: Our data provide novel evidence for an isoform

  6. 急性激活α1和β1肾上腺素能受体对豚鼠心室肌细胞快激活延迟整流钾电流的交叉影响%Cross effects of acute adrenergic stimulation on rapid component of delayed rectifier potassium channel current in guinea-pig left ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    吴婷婷; 王森; 邹建刚; 曹克将; 许迪

    2014-01-01

    different subtype and both of adrenergic receptors (α1-AR or β1-AR) on the rapidly activating delayed rectifier potassium current ( IKr ) in guinea-pig ventricular myocytes,and the effects of acute stimulation of both α1-AR and β1-AR on IKr current. Methods Single ventricular myocyte was obtained from guinea-pig using enzymatic dissociation technique. Whole-cell patch clamp technique was used to record IKr current. The amplitudes of IKr current before and after stimulation of adrenergic receptors were measured to reflect the effects of acute stimulation of different adrener-gic receptors. The expression level of IKr channel protein after acute stimulation of different subtype of adrenergic receptors was detected by western-blot. Results Phenylephrine( PE) and xamoterol( Xamo) inhibited IKr cur-rent amplitude by a content dependent way,the IC50 was 0. 93 μmol/L and 6. 40 μmol/L respectively. In our study,1 μmol/L PE (PE group) reduced IKr current to 0. 79±0. 02,and shifted the voltage-dependent activa-ting curve to the negative voltage,where U0.5 changed from (-2. 99±1. 44) mV to (-9. 10±1. 74) mV,and k changed a little. 10μmol/L Xamo (Xamo group) reduced IKr current to 0. 72±0. 01,and shifted the voltage-de-pendent activating curve to the negative voltage, where U0. 5 changed from (-4. 54 ± 1. 48 ) mV to (-7. 24 ± 1. 93) mV,and k changed a little. While simultaneously administration of 1 μmol/L PE and 10 μmol/L Xamo (PE+Xamo group) only reduced IKr current to 0. 69±0. 02,and it also shifted the voltage-dependent activating curve to the negative voltage,where U0.5 changed from (-2. 71±1. 95) mV to (-8. 45±1. 97) mV,and k changed a little. In PE group, Xamo group and PE+XAMO group, IKr tail current amplitude decreased by (20. 73±2. 46)%,(27. 99±0. 68)% and (30. 56±1. 80)%,separately. By western-blot,the expression level of IKr channel protein after acute adrenergic stimulation did not show a statistical change. Conclusions Acute stimulation of α1-AR or

  7. Effects of strychnine on the potassium conductance of the frog node of Ranvier

    Science.gov (United States)

    1977-01-01

    The nature of the block of potassium conductance by strychnine in frog node of Ranvier was investigated. The block is voltage-dependent and reaches a steady level with a relaxation time of 1 to several ms. Block is increased by depolarization or a reduction in [K+]O as well as by increasing strychnine concentration. A quaternary derivative of strychnine produces a similar block only when applied intracellularly. In general and in detail, strychnine block resembles that produced by intracellular application of the substituted tetraethylammonium compounds extensively studied by C.M. Armstrong (1969. J. Gen Physiol. 54:553-575. 1971. J. Gen. Physiol. 58:413-437). The kinetics, voltage dependence, and dependence on [K+]O of strychnine block are of the same form. It is concluded that tertiary strychnine must cross the axon membrane and block from the axoplasmic side in the same fashion as these quaternary amines. PMID:302320

  8. Minireview: potassium channels and aldosterone dysregulation: is primary aldosteronism a potassium channelopathy?

    Science.gov (United States)

    Gomez-Sanchez, Celso E; Oki, Kenji

    2014-01-01

    Primary aldosteronism is the most common form of secondary hypertension and has significant cardiovascular consequences. Aldosterone-producing adenomas (APAs) are responsible for half the cases of primary aldosteronism, and about half have mutations of the G protein-activated inward rectifying potassium channel Kir3.4. Under basal conditions, the adrenal zona glomerulosa cells are hyperpolarized with negative resting potentials determined by membrane permeability to K(+) mediated through various K(+) channels, including the leak K(+) channels TASK-1, TASK-3, and Twik-Related Potassium Channel 1, and G protein inward rectifying potassium channel Kir3.4. Angiotensin II decreases the activity of the leak K(+) channels and Kir3.4 channel and decreases the expression of the Kir3.4 channel, resulting in membrane depolarization, increased intracellular calcium, calcium-calmodulin pathway activation, and increased expression of cytochrome P450 aldosterone synthase (CYP11B2), the last enzyme for aldosterone production. Somatic mutations of the selectivity filter of the Kir3.4 channel in APA results in loss of selectivity for K(+) and entry of sodium, resulting in membrane depolarization, calcium mobilization, increased CYP11B2 expression, and hyperaldosteronism. Germ cell mutations cause familial hyperaldosteronism type 3, which is associated with adrenal zona glomerulosa hyperplasia, rather than adenoma. Less commonly, somatic mutations of the sodium-potassium ATPase, calcium ATPase, or the calcium channel calcium channel voltage-dependent L type alpha 1D have been found in some APAs. The regulation of aldosterone secretion is exerted to a significant degree by activation of membrane K(+) and calcium channels or pumps, so it is not surprising that the known causes of disorders of aldosterone secretion in APA have been channelopathies, which activate mechanisms that increase aldosterone synthesis.

  9. Structural mapping of the voltage-dependent sodium channel. Distance between the tetrodotoxin and Centruroides suffusus suffusus II beta-scorpion toxin receptors.

    Science.gov (United States)

    Darbon, H; Angelides, K J

    1984-05-25

    A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.

  10. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels' activation in a genetic model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Guatteo, Ezia; Carunchio, Irene; Pieri, Massimo; Albo, Federica; Canu, Nadia; Mercuri, Nicola B; Zona, Cristina

    2007-10-01

    Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem and motor cortex. By combining electrophysiological recordings with imaging techniques, clearance/buffering capacity of cultured spinal cord motor neurons after a calcium accumulation has been analyzed in response to AMPA receptors' (AMPARs') activation and to depolarizing stimuli in a genetic mouse model of ALS (G93A). Our studies demonstrate that the amplitude of the calcium signal in response to AMPARs' or voltage-dependent calcium channels' activation is not significantly different in controls and G93A motor neurons. On the contrary, in G93A motor neurons, the [Ca(2+)](i) recovery to basal level is significantly slower compared to control neurons following AMPARs but not voltage-dependent calcium channels' activation. This difference was not observed in G93A cultured cortical neurons. This observation is the first to indicate a specific alteration of the calcium clearance linked to AMPA receptors' activation in G93A motor neurons and the involvement of AMPA receptor regulatory proteins controlling both AMPA receptor functionality and the sequence of events connected to them.

  11. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure......About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...

  12. 白藜芦醇甙增强大鼠心室肌细胞内向整流钾通道电流%Enhancement of polydatin on inward rectifier potassium channel current in rat ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    魏燕; 周京京; 杨晶; 张娇; 张利萍; 张翼

    2013-01-01

    本研究旨在应用全细胞膜片钳技术观察白藜芦醇甙(polydatin)对大鼠心室肌细胞瞬时外向钾通道电流(Ito)、稳态外向钾通道电流(Iss)和内向整流钾通道电流(IK1)的影响.结果显示:(1)白藜芦醇甙(10 μmol/L以上浓度)可通过非浓度依赖性方式增加心室肌细胞IK1.(2)白藜芦醇甙对心室肌细胞Ito无影响,对Ito的激活、失活和失活后的恢复动力学亦无影响.(3)白藜芦醇甙对心室肌细胞Iss无明显影响.以上结果提示,白藜芦醇甙对大鼠心室肌细胞IK1具有激活作用,可增加IK1,但对Ito和Iss无明显影响;白藜芦醇甙对IK1的作用可能是其抗心律失常作用的离子机制之一.%The aim of this study was to investigate the effect of polydatin on transient outward potassium channel current (Ito),steadystate outward potassium channel current (Iss) and inward rectifier potassium channel current (IK1) in ventricular myocytes of rat using the whole-cell patch clamp technique.The results showed:(1) Polydatin (above 10 μmol/L) increasedIK1 of ventricular myocytes in a non-concentration dependent manner.(2) Polydatin neither had any effect on Ito peak current of ventricular myocytes,nor changed activation,inactivation and recovery kinetics of Ito.(3) Polydatin had no effect on Iss of ventricular myocytes.These results suggest that polydatin enhances IK1 channel activity,but has no effect on Ito and Iss channels in rat ventricular myocytes,which might be one of the ionic mechanisms for antiarrhythmic effect of polydatin.

  13. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  14. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents

    DEFF Research Database (Denmark)

    Christensen, Gitte L.; Jacobsen, Maria L. B.; Wendt, Anna

    2015-01-01

    cells reduced GSIS, and the effect of BMP4 on GSIS was lost in islets from calbindin1 (Calb1) knockout mice. CONCLUSIONS/INTERPRETATION: We found BMP4 treatment to markedly inhibit GSIS from rodent pancreatic islets in a calbindin1-dependent manner. Calbindin1 is suggested to mediate the effect of BMP4...

  15. 心房肌细胞钙通道和钾通道免疫电镜定位研究%The study of distribution of calcium channel and potassium channel in atrial myocytes by immunoelectromicroscopy

    Institute of Scientific and Technical Information of China (English)

    袁平; 张建成; 何爱华; 颜永碧

    2002-01-01

    @@ 离子通道是一种跨膜蛋白,迄今为止,尚未见关于离子通道的细胞内分布情况的报道.心脏L-型电压依赖钙通道(L-type voltage dependent calcium channel, LVDCC)和电压依赖KV4.3钾通道(voltage dependent potassium channel,VDKV4.3)对心肌细胞动作电位有重要作用.

  16. Properties of shaker-type potassium channels in higher plants.

    Science.gov (United States)

    Gambale, F; Uozumi, N

    2006-03-01

    Potassium (K(+)), the most abundant cation in biological organisms, plays a crucial role in the survival and development of plant cells, modulation of basic mechanisms such as enzyme activity, electrical membrane potentials, plant turgor and cellular homeostasis. Due to the absence of a Na(+)/K(+) exchanger, which widely exists in animal cells, K(+) channels and some type of K(+) transporters function as K(+) uptake systems in plants. Plant voltage-dependent K(+) channels, which display striking topological and functional similarities with the voltage-dependent six-transmembrane segment animal Shaker-type K(+) channels, have been found to play an important role in the plasma membrane of a variety of tissues and organs in higher plants. Outward-rectifying, inward-rectifying and weakly-rectifying K(+) channels have been identified and play a crucial role in K(+) homeostasis in plant cells. To adapt to the environmental conditions, plants must take advantage of the large variety of Shaker-type K(+) channels naturally present in the plant kingdom. This review summarizes the extensive data on the structure, function, membrane topogenesis, heteromerization, expression, localization, physiological roles and modulation of Shaker-type K(+) channels from various plant species. The accumulated results also help in understanding the similarities and differences in the properties of Shaker-type K(+) channels in plants in comparison to those of Shaker channels in animals and bacteria.

  17. Physics-Based Compact Model for CIGS and CdTe Solar Cells: From Voltage-Dependent Carrier Collection to Light-Enhanced Reverse Breakdown: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xingshu; Alam, Muhammad Ashraful; Raguse, John; Garris, Rebekah; Deline, Chris; Silverman, Timothy

    2015-10-15

    In this paper, we develop a physics-based compact model for copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) heterojunction solar cells that attributes the failure of superposition to voltage-dependent carrier collection in the absorber layer, and interprets light-enhanced reverse breakdown as a consequence of tunneling-assisted Poole-Frenkel conduction. The temperature dependence of the model is validated against both simulation and experimental data for the entire range of bias conditions. The model can be used to characterize device parameters, optimize new designs, and most importantly, predict performance and reliability of solar panels including the effects of self-heating and reverse breakdown due to partial-shading degradation.

  18. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  19. Quantum entanglement in the voltage dependent sodium channel can reproduce the salient features of neuronal action potential initiation

    CERN Document Server

    Summhammer, Johann

    2007-01-01

    We investigate the effects of a quantum entanglement regime within an ion conducting molecule (ion channel) of the neuronal plasma membrane on the onset dynamics of propagating nerve pulses (action potentials). In particular, we model the onset parameters of the sodium current in the Hodgkin Huxley equation as three similar but independent probabilistic mechanisms which become quantum entangled. The underlying physics is general and can involve entanglement between various degrees of freedom underlaying ion transition states or 'gating states' during conduction, e.g. Na$^+$ ions in different channel locations, or different 'affinity' states of ions with atoms lining the sub-regions of the channel protein ('filter-states'). We find that the 'quantum corrected' Hodgkin Huxley equation incorporating entangled systems states can reproduce action potential pulses with the critical onset dynamics observed recently in neocortical neurons in vivo by Naundorf et al. [Nature {\\bf 440}, 1060 (20 April 2006)]. Interestin...

  20. Involvement of presynaptic voltage-dependent Kv3 channel in endothelin-1-induced inhibition of noradrenaline release from rat gastric sympathetic nerves.

    Science.gov (United States)

    Nakamura, Kumiko; Shimizu, Takahiro; Tanaka, Kenjiro; Taniuchi, Keisuke; Yokotani, Kunihiko

    2012-11-05

    We previously reported that two types of K(+) channels, the BK type Ca(2+)-activated K(+) channel coupled with phospholipase C (PLC) and the voltage-dependent K(+) channel (Kv channel), are, respectively, involved in the prostanoid TP receptor- and muscarinic M(2) receptor-mediated inhibition of noradrenaline (NA) release from rat gastric sympathetic nerves. In the present study, therefore, we examined whether these K(+) channels are involved in endothelin-1-induced inhibition of NA release, using an isolated, vascularly perfused rat stomach. The gastric sympathetic postganglionic nerves around the left gastric artery were electrically stimulated twice at 2.5 Hz for 1 min, and endothelin-1 was added during the second stimulation. Endothelin-1 (1, 2 and 10 nM) dose-dependently inhibited gastric NA release. Endothelin-1 (2 nM)-induced inhibition of NA release was neither attenuated by PLC inhibitors [U-73122 (3 μM) and ET-18-OCH(3) (3 μM)] nor by Ca(2+)-activated K(+) channel blockers [charybdotoxin (0.1 μM) (a blocker of BK type K(+) channel) and apamin (0.3 μM) (a blocker of SK type K(+) channel)]. The endothelin-1-induced inhibitory response was also not attenuated by α-dendrotoxin (0.1 μM) (a selective inhibitor of Kv1 channel), but abolished by 4-aminopyridine (20 μM) (a selectively inhibitory dose for Kv3 channel). These results suggest the involvement of a voltage-dependent Kv3 channel in the endothelin-1-induced inhibition of NA release from the gastric sympathetic nerves in rats.

  1. Heparin/heparan sulfates bind to and modulate neuronal L-type (Cav1.2) voltage-dependent Ca(2+) channels.

    Science.gov (United States)

    Garau, Gianpiero; Magotti, Paola; Heine, Martin; Korotchenko, Svetlana; Lievens, Patricia Marie-Jeanne; Berezin, Vladimir; Dityatev, Alexander

    2015-12-01

    Our previous studies revealed that L-type voltage-dependent Ca(2+) channels (Cav1.2 L-VDCCs) are modulated by the neural extracellular matrix backbone, polyanionic glycan hyaluronic acid. Here we used isothermal titration calorimetry and screened a set of peptides derived from the extracellular domains of Cav1.2α1 to identify putative binding sites between the channel and hyaluronic acid or another class of polyanionic glycans, such as heparin/heparan sulfates. None of the tested peptides showed detectable interaction with hyaluronic acid, but two peptides derived from the first pore-forming domain of Cav1.2α1 subunit bound to heparin. At 25 °C the binding of the peptide P7 (MGKMHKTCYN) was at ~50 μM, and that of the peptide P8 (GHGRQCQNGTVCKPGWDGPKHG) was at ~21 μM. The Cav1.2α1 first pore forming segment that contained both peptides maintained a high affinity for heparin (~23 μM), integrating their enthalpic and entropic binding contributions. Interaction between heparin and recombinant as well as native full-length neuronal Cav1.2α1 channels was confirmed using the heparin-agarose pull down assay. Whole cell patch clamp recordings in HEK293 cells transfected with neuronal Cav1.2 channels revealed that enzymatic digestion of highly sulfated heparan sulfates with heparinase 1 affects neither voltage-dependence of channel activation nor the level of steady state inactivation, but did speed up channel inactivation. Treatment of hippocampal cultures with heparinase 1 reduced the firing rate and led to appearance of long-lasting bursts in the same manner as treatment with the inhibitor of L-VDCC diltiazem. Thus, heparan sulfate proteoglycans may bind to and regulate L-VDCC inactivation and network activity.

  2. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes).

    Science.gov (United States)

    Hung, Kun-Long; Wang, Chia-Chuan; Huang, Chia-Yu; Wang, Su-Jane

    2009-01-14

    The effect of cyanocobalamin, vitamin B12, on glutamate release in isolated nerve terminals (synaptosomes) prepared from rat prefrontal cortex was examined. Cyanocobalamin inhibited the release of glutamate evoked by 4-aminopyridine in a concentration-dependent manner. The inhibitory action of cyanocobalamin was blocked by the vesicular transporter inhibitor bafilomycin A1, not by the glutamate transporter inhibitor L-transpyrrolidine-2,4-dicarboxylic acid or the nontransportable glutamate inhibitor DL-threo-beta-benzyloxyaspartate, indicating that this release inhibition results from a reduction of vesicular exocytosis and not from an inhibition of Ca(2+)-independent efflux via glutamate transporter. Examination of the effect of cyanocobalamin on cytosolic free Ca(2+) concentration revealed that the inhibition of glutamate release could be attributed to a reduction in voltage-dependent Ca(2+) influx. Consistent with this, the N- and P/Q-type Ca(2+) channel blocker omega-conotoxin MVIIC, largely attenuated the inhibitory effect of cyanocobalamin on 4-aminopyridine-evoked glutamate release, but the Ca(2+) release inhibitor dantrolene had no effect. Cyanocobalamin did not alter the resting synaptosomal membrane potential or 4-aminopyridine-mediated depolarization; thus, the inhibition of 4-aminopyridine-evoked Ca(2+) influx and glutamate release produced by cyanocobalamin was not due to its decreasing synaptosomal excitability. In addition, cyanocobalamin-mediated inhibition of 4-aminopyridine-evoked Ca(2+) influx and glutamate release was significantly attenuated by protein kinase C inhibitors GF109203X and Ro318220. Furthermore, 4-aminopyridine-induced phosphorylation of protein kinase C was significantly reduced by cyanocobalamin. These results suggest that cyanocobalamin effects a decrease in protein kinase C activation, which subsequently reduces the Ca(2+) entry through voltage-dependent N- and P/Q-type Ca(2+) channels to cause a decrease in evoked glutamate

  3. "Slow" Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA.

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    Full Text Available CaV2.2 (N-type voltage-gated calcium channels (Ca2+ channels play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. "Fast" voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of "slow" voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate "slow" inactivation of sodium channels, but little is known about if/how second messengers control "slow" inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA dramatically prolonged recovery from "slow" inactivation, but an inactive control (4α-PMA had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating "slow" inactivation. We postulate that the kinetics of recovery from "slow" inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe.

  4. Types of voltage—dependent calcium channels involved in high potassium depolarization—induced amylase secretion in the exocrine pancreatic tumour cell line AR4—2J

    Institute of Scientific and Technical Information of China (English)

    CUIZONGJIE

    1998-01-01

    In the perifused fura-2 loaded exocrine pancreatic acinar cell line AR4-2J pulses of high potassium induced repetitive increases in intracellular calcium,Attached cells when stimulated with high potassium secreted large amount of amylase.High potassium-induced secretion was dependent both on the concentration of potassium and duration of stimulation.High potassium induced increases in intracellular calcium were inhibited by voltage-dependent calcium channel anatagonists with an order of potency as follows:nifedipine>ω-agatoxin IVA>ω-conotoxin GVIA.In contrast,the L-type calcium channel anatagonist nifedipine almost completely inhibited potassium-induced amylase secretion,whereas the N-type channel antagonist ω-conotoxin GVIA was without effect.The P-type channel antagonist ω-agatoxin IVA had a small inhibitory effect,but this inhibition was not significant at the level of amylase secretion.In conclusion,the AR4-2J cell line posesses different voltage-dependent calcium channels(L,P,N)with the L-type predominantly involved in depolarization induced amylase secretion.

  5. Series resistance mapping of Cu(In,Ga)Se{sub 2} solar cells by voltage dependent electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Daume, Felix; Puttnins, Stefan [Solarion AG, Ostende 5, 04288 Leipzig (Germany); Institut fuer Experimentelle Physik II, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Scheit, Christian; Rahm, Andreas [Solarion AG, Ostende 5, 04288 Leipzig (Germany); Grundmann, Marius [Institut fuer Experimentelle Physik II, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2011-07-01

    Cu(In,Ga)Se{sub 2} (CIGSe) thin film solar cells deposited on flexible polyimide foil promising innovative applications and a fabrication in continuous roll-to-roll processes currently reach efficiencies up to 17.6 %. The optimization of the solar cell efficiency requires the reduction of inherent losses in the cell. In order to achieve this goal preferably spatially resolved access to parameters characterizing ohmic losses like series and shunt resistances are indispensable. We apply an interpretation method for electroluminescence (EL) images taken at different voltages which is known for solar cells made of crystalline silicon from literature to solar cells made of polycrystalline CIGSe. The theory of this method to obtain a mapping of the series resistance and the EL imaging process as well as the data interpretation ils reviewed and demonstrated on an example. Furthermore, the benefit of this method for the characterization of solar cells under accelerated aging conditions (damp heat) which is important for the estimation of the long-term stability is shown.

  6. [The characteristics and oxidative modulation of large-conductance calcium-activated potassium channels in guinea-pig colon smooth muscle cells.].

    Science.gov (United States)

    Huang, Wei-Feng; Ouyang, Shou; Zhang, Hui

    2009-06-25

    To investigate the characteristics of large-conductance calcium-activated potassium channels (BK(Ca)) and the effect of hydrogen peroxide (H2O2) on BK(Ca) in guinea-pig proximal colon smooth muscle cells, single smooth muscle cells of guinea-pig colon were enzymatically isolated in low calcium solution containing papain (3 mg/mL), DTT (2 mg/mL), and bovine serum albumin (BSA, 2 mg/mL). Tissues were incubated at 36 degrees C in enzyme solution for 15 min and were then suspended in enzyme-free low calcium solution. Inside-out single channel recording technique was used to record BK(Ca) current. The intracellular (bath) and microelectrode solution both contained symmetrical high potassium. The BK(Ca) in guinea-pig colon smooth muscle cell possesses: 1) voltage-dependence, 2) high selectivity for potassium ion, 3) large conductance (223.7 pS+/-9.2 pS), 4) dependence of [Ca(2+)](i). Intracellular application of H2O2 decreased the open probability (P(o)) of BK(Ca) at low concentration (Ca) at high concentration (5 mmol/L), without affecting the unitary conductance. The effects of H2O2 were reversed by reducing agent dithiothreitol (DTT). Similarly, cysteine specific oxidizing agent, DTNB, also increased or decreased P(o) of BK(Ca) and DTT partially reversed the effect of DTNB. It is thus suggested that H2O2 and DTNB may modulate P(o) of BK(Ca) via the oxidation of cysteine residue.

  7. Biophysical characterization of inwardly rectifying potassium currents (I(K1) I(K,ACh), I(K,Ca)) using sinus rhythm or atrial fibrillation action potential waveforms

    DEFF Research Database (Denmark)

    Tang, Chuyi; Skibsbye, Lasse; Yuan, Lei

    2015-01-01

    to voltage protocols adapted from atrial action potentials recorded in human tissue at 1 and 3 Hz. The current recordings were performed in the HEK-293 heterologous cell system expressing either I(K1), I(K,ACh) or I(K,Ca) to establish the individual contribution of each of these currents during the voltage...... changes of atrial action potential waveforms. I(K1) primarily contributes to the atrial electrophysiology at the latter part of repolarization and during the diastolic phase, while both I(K,Ca) under high [Ca2+]i and I(K,ACh) contribute relatively most during repolarization.......Although several physiological, pathophysiological and regulatory properties of classical inward rectifier K+ current I(K1), G-protein coupled inwardly-rectifying K+ current I(K,ACh) and the small-conductance Ca2+ activated K+ current I(K,Ca) have been identified, quantitative biophysical details...

  8. Potassium food supplement

    Science.gov (United States)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  9. Penicillin V Potassium Oral

    Science.gov (United States)

    V-Cillin K® ... Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, scarlet fever, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken every 6 ...

  10. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  11. Comparison of the effects of nitric oxide and hydrogen sulfide on calcium and potassium currents of rat colonic smooth muscle%一氧化氮和硫化氢对大鼠结肠平滑肌钙钾电流影响的比较

    Institute of Scientific and Technical Information of China (English)

    全晓静; 罗和生; 陈炜; 崔凝; 夏虹; 余光

    2015-01-01

    [(-3.76 ± 0.66) pA/pF] and [(-4.13±0.29) pA/pF] to[(-2.67±0.42) pA/pF]and[(-2.73±0.76) pA/pF], respectively (P < 0.05).SNP had no effect on the voltage-dependent property of ICa, L, While the Ⅰ-Ⅴ relationship of L-type calcium channels was modified by NaHS, the peak of Ⅰ-Ⅴ curve was shifted to right.SNP did not affect the curves of the steady-state activation, but evoked a leftward shift of the steady-state inactivation curve.However, NaHS evoked a significant rightward shift of the steady-state activation curve and inhibited the inactivation of L-type calcium channels (P < 0.05).BKCa channel currents were significantly increased by SNP, the current density was increased from [(12.7 ± 1.9) pA/pF] to[(14.7 ± 2.1) pA/pF] (P < 0.05);while inhibited by NaHS (control [(15.5 ± 2.4) pA/pF] vs.NaHS [(12.4 ± 2.9) pA/pF] (P < 0.05).Conclusion Both NO and H2S inhibit the contraction of colonic SMCs, while the mechanisms are different.The relaxant effect of NO on rat colonic muscle is due to direct inhibition of L type calcium channels and activation of BKCa channels.The relaxant effect of H2S on colonic muscle may be associated with the direct inhibition of H2S on L-type calcium channels.H2S may involve in the regulation of calcium homeostasis in colonic SMCs of rat colon.

  12. Characterization of the Ca2+-gated and voltage-dependent K+-channel Slo-1 of nematodes and its interaction with emodepside.

    Science.gov (United States)

    Kulke, Daniel; von Samson-Himmelstjerna, Georg; Miltsch, Sandra M; Wolstenholme, Adrian J; Jex, Aaron R; Gasser, Robin B; Ballesteros, Cristina; Geary, Timothy G; Keiser, Jennifer; Townson, Simon; Harder, Achim; Krücken, Jürgen

    2014-12-01

    The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp) experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in channel properties among

  13. Characterization of the Ca2+-gated and voltage-dependent K+-channel Slo-1 of nematodes and its interaction with emodepside.

    Directory of Open Access Journals (Sweden)

    Daniel Kulke

    2014-12-01

    Full Text Available The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in

  14. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    Science.gov (United States)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  15. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    identified as being crucial mediators of this process in a variety of smooth muscle. Recently, KV7 channels have been shown to be involved in the pathogenesis of hypertension, as well as being implicated in other smooth muscle disorders, providing a new and inviting target for smooth muscle disorders.......Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  16. THE INFLUENCE OF THIOSEMICARBAZONE 2,3-DIHYDROXYBENZALDEHYDE ON CATALYTIC CURRENTS IN THE SYSTEM MOLYBDENUM (VI – POTASSIUM CHLORATE IN ACID SULFATE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Ludmila Chiriac

    2011-06-01

    Full Text Available The polarographic catalytic current in acid solutions of Mo(VI, thiosemicarbazone 2,3-dihydroxybenzaldehyde (TSC 2,3-DHBA and chlorate ions has been investigated. The scheme of reactions, taking place in the solutions and on the electrode, has been proposed. The increase of the catalytic current is explained by the formation of an active intermediate complex [Mo(V×TSC 2,3-DHBA (ClO-3]. The rate constant of this complex formation K = 2.56 × 106 mol-1×dm3×s-1, the activation energy Ea = 15.9 kcal×mol-1 and the reaction activation entropy ∆Sa¹ = -23.5 e.u. have been calculated.

  17. Difference of Sodium Currents between Pediatric and Adult Human Atrial Myocytes: Evidence for Developmental Changes of Sodium Channels

    Directory of Open Access Journals (Sweden)

    Benzhi Cai, Xiaoqin Mu, Dongmei Gong, Shulin Jiang, Jianping Li, Qingxin Meng, Yunlong Bai, Yanju Liu, Xinyue Wang, Xueying Tan, Baofeng Yang, Yanjie Lu

    2011-01-01

    Full Text Available Voltage-gated calcium currents and potassium currents were shown to undergo developmental changes in postnatal human and animal cardiomocytes. However, so far, there is no evidence whether sodium currents also presented the developmental changes in postnatal human atrial cells. The aim of this study was to observe age-related changes of sodium currents between pediatric and adult atrial myocytes. Human atrial myocytes were acutely isolated and the whole-cell patch clamp technique was used to record sodium currents isolated from pediatric and adult atrial cardiomocytes. The peak amplitude of sodium currents recorded in adult atrial cells was significantly larger than that in pediatric atrial myocytes. However, there was no significant difference of the activation voltage for peak sodium currents between two kinds of atrial myocytes. The time constants for the activation and inactivation of sodium currents were smaller in adult atria than pediatric atria. The further study revealed that the voltage-dependent inactivation of sodium currents were more slow in adult atrial cardiomyocytes than pediatric atrial cells. A significant difference was also observed in the recovery process of sodium channel from inactivation. In summary, a few significant differences were demonstrated in sodium currents characteristics between pediatric and adult atrial myocytes, which indicates that sodium currents in human atria also undergo developmental changes.

  18. BmP02 Atypically Delays Kv4.2 Inactivation: Implication for a Unique Interaction between Scorpion Toxin and Potassium Channel

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2016-09-01

    Full Text Available BmP02, a short-chain peptide with 28 residues from the venom of Chinese scorpion Buthus martensi Karsch, has been reported to inhibit the transient outward potassium currents (Ito in rat ventricular muscle cells. However, it remains unclear whether BmP02 modulates the Kv4.2 channel, one of the main contributors to Ito. The present study investigated the effects of BmP02 on Kv4.2 kinetics and its underlying molecular mechanism. The electrophysiological recordings showed that the inactivation of Kv4.2 expressed in HEK293T cells was significantly delayed by BmP02 in a dose-response manner with EC50 of ~850 nM while the peak current, activation and voltage-dependent inactivation of Kv4.2 were not affected. Meanwhile, the recovery from inactivation of Kv4.2 was accelerated and the deactivation was slowed after the application of BmP02. The site-directed mutagenesis combined with computational modelling identified that K347 and K353, located in the turret motif of the Kv4.2, and E4/E5, D20/D21 in BmP02 are key residues to interact with BmP02 through electrostatic force. These findings not only reveal a novel interaction between Kv4.2 channel and its peptidyl modulator, but also provide valuable information for design of highly-selective Kv4.2 modulators.

  19. BmP02 Atypically Delays Kv4.2 Inactivation: Implication for a Unique Interaction between Scorpion Toxin and Potassium Channel

    Science.gov (United States)

    Wu, Bin; Zhu, Yan; Shi, Jian; Tao, Jie; Ji, Yonghua

    2016-01-01

    BmP02, a short-chain peptide with 28 residues from the venom of Chinese scorpion Buthus martensi Karsch, has been reported to inhibit the transient outward potassium currents (Ito) in rat ventricular muscle cells. However, it remains unclear whether BmP02 modulates the Kv4.2 channel, one of the main contributors to Ito. The present study investigated the effects of BmP02 on Kv4.2 kinetics and its underlying molecular mechanism. The electrophysiological recordings showed that the inactivation of Kv4.2 expressed in HEK293T cells was significantly delayed by BmP02 in a dose-response manner with EC50 of ~850 nM while the peak current, activation and voltage-dependent inactivation of Kv4.2 were not affected. Meanwhile, the recovery from inactivation of Kv4.2 was accelerated and the deactivation was slowed after the application of BmP02. The site-directed mutagenesis combined with computational modelling identified that K347 and K353, located in the turret motif of the Kv4.2, and E4/E5, D20/D21 in BmP02 are key residues to interact with BmP02 through electrostatic force. These findings not only reveal a novel interaction between Kv4.2 channel and its peptidyl modulator, but also provide valuable information for design of highly-selective Kv4.2 modulators. PMID:27690098

  20. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin

    Science.gov (United States)

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; de Oliveira Alvares, Lucas

    2016-01-01

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca2+ channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca2+ influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time. PMID:26947131

  1. Evidence for functional interaction of plasma membrane electron transport, voltage-dependent anion channel and volume-regulated anion channel in frog aorta

    Indian Academy of Sciences (India)

    Rashmi P Rao; J Prakasa Rao

    2010-12-01

    Frog aortic tissue exhibits plasma membrane electron transport (PMET) owing to its ability to reduce ferricyanide even in the presence of mitochondrial poisons, such as cyanide and azide. Exposure to hypotonic solution (108 mOsmol/kg H2O) enhanced the reduction of ferricyanide in excised aortic tissue of frog. Increment in ferricyanide reductase activity was also brought about by the presence of homocysteine (100 M dissolved in isotonic frog Ringer solution), a redox active compound and a potent modulator of PMET. Two plasma-membrane-bound channels, the volume regulated anion channel (VRAC) and the voltage-dependent anion channel (VDAC), are involved in the response to hypotonic stress. The presence of VRAC and VDAC antagonists–tamoxifen, glibenclamide, fluoxetine and verapamil, and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS), respectively–inhibited this enhanced activity brought about by either hypotonic stress or homocysteine. The blockers do not affect the ferricyanide reductase activity under isotonic conditions. Taken together, these findings indicate a functional interaction of the three plasma membrane proteins, namely, ferricyanide reductase (PMET), VDAC and VRAC.

  2. Correlation between Barrier Width, Barrier Height, and DC Bias Voltage Dependences on the Magnetoresistance Ratio in Ir-Mn Exchange Biased Single and Double Tunnel Junctions

    Science.gov (United States)

    Saito, Yoshiaki; Amano, Minoru; Nakajima, Kentaro; Takahashi, Shigeki; Sagoi, Masayuki; Inomata, Koichiro

    2000-10-01

    Dual spin-valve-type double tunnel junctions (DTJs) of Ir-Mn/CoFe/AlOx/Co90Fe10/AlOx/CoFe/Ir-Mn and spin-valve-type single tunnel junctions (STJs) of Ir-Mn/CoFe/AlOx/CoFe/Ni-Fe were fabricated using an ultrahigh vacuum sputtering system, conventional photolithography and ion-beam milling. The STJs could be fabricated with various barrier heights by changing the oxidization conditions during deposition and changing the annealing temperature after deposition, while the AlOx layer thickness remained unchanged. There was a correlation between barrier width, height estimated using Simmons’ expressions, and dc bias voltage dependence on the MR ratio. The VB dependence on the tunneling magnetoresistance (TMR) ratio was mainly related to the barrier width, and the decrease in the TMR ratio with increasing bias voltage is well explained, taking into account the spin-independent two-step tunneling via defect states in the barrier, as a main mechanism, at room temperature. Under optimized oxidization and annealing conditions, the maximum TMR ratio at a low bias voltage, and the dc bias voltage value at which the TMR ratio decreases in value by half (V1/2) were 42.4% and 952 mV in DTJs, and 49.0% and 425 mV in STJs, respectively.

  3. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin.

    Science.gov (United States)

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; Alvares, Lucas de Oliveira

    2016-03-07

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca(2+) channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca(2+) influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time.

  4. Differential rescue of spatial memory deficits in aged rats by L-type voltage-dependent calcium channel and ryanodine receptor antagonism.

    Science.gov (United States)

    Hopp, S C; D'Angelo, H M; Royer, S E; Kaercher, R M; Adzovic, L; Wenk, G L

    2014-11-01

    Age-associated memory impairments may result as a consequence of neuroinflammatory induction of intracellular calcium (Ca(+2)) dysregulation. Altered L-type voltage-dependent calcium channel (L-VDCC) and ryanodine receptor (RyR) activity may underlie age-associated learning and memory impairments. Various neuroinflammatory markers are associated with increased activity of both L-VDCCs and RyRs, and increased neuroinflammation is associated with normal aging. In vitro, pharmacological blockade of L-VDCCs and RyRs has been shown to be anti-inflammatory. Here, we examined whether pharmacological blockade of L-VDCCs or RyRs with the drugs nimodipine and dantrolene, respectively, could improve spatial memory and reduce age-associated increases in microglia activation. Dantrolene and nimodipine differentially attenuated age-associated spatial memory deficits but were not anti-inflammatory in vivo. Furthermore, RyR gene expression was inversely correlated with spatial memory, highlighting the central role of Ca(+2) dysregulation in age-associated memory deficits.

  5. α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease.

    Science.gov (United States)

    Rostovtseva, Tatiana K; Gurnev, Philip A; Protchenko, Olga; Hoogerheide, David P; Yap, Thai Leong; Philpott, Caroline C; Lee, Jennifer C; Bezrukov, Sergey M

    2015-07-24

    Participation of the small, intrinsically disordered protein α-synuclein (α-syn) in Parkinson disease (PD) pathogenesis has been well documented. Although recent research demonstrates the involvement of α-syn in mitochondrial dysfunction in neurodegeneration and suggests direct interaction of α-syn with mitochondria, the molecular mechanism(s) of α-syn toxicity and its effect on neuronal mitochondria remain vague. Here we report that at nanomolar concentrations, α-syn reversibly blocks the voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane that controls most of the metabolite fluxes in and out of the mitochondria. Detailed analysis of the blockage kinetics of VDAC reconstituted into planar lipid membranes suggests that α-syn is able to translocate through the channel and thus target complexes of the mitochondrial respiratory chain in the inner mitochondrial membrane. Supporting our in vitro experiments, a yeast model of PD shows that α-syn toxicity in yeast depends on VDAC. The functional interactions between VDAC and α-syn, revealed by the present study, point toward the long sought after physiological and pathophysiological roles for monomeric α-syn in PD and in other α-synucleinopathies.

  6. Potassium in diet

    Science.gov (United States)

    ... pills) to treat high blood pressure or heart failure Take too many laxatives Have severe or prolonged vomiting and diarrhea Have certain kidney or adrenal gland disorders Too much potassium in the blood ...

  7. Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine.

    Science.gov (United States)

    Perez-Cortes, E J; Islas, A A; Arevalo, J P; Mancilla, C; Monjaraz, E; Salinas-Stefanon, E M

    2015-10-15

    The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (Ito) and the molecular correlate, the Kv4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular Ito and of CHO cells co-transfected with human Kv4.3 and its accessory subunit hKChIP2C by whole-cell voltage-clamp. Mefloquine inhibited rat Ito and hKv4.3+KChIP2C currents in a concentration-dependent manner with a limited voltage dependence and similar potencies (IC50=8.9μM and 10.5μM for cardiac myocytes and Kv4.3 channels, respectively). In addition, mefloquine did not affect the activation of either current but significantly modified the hKv4.3 steady-state inactivation and recovery from inactivation. The effects of this drug was compared with that of 4-aminopyridine (4-AP), a well-known potassium channel blocker and its binding site does not seem to overlap with that of 4-AP.

  8. 14-3-3θ is a binding partner of rat Eag1 potassium channels.

    Directory of Open Access Journals (Sweden)

    Po-Hao Hsu

    Full Text Available The ether-à-go-go (Eag potassium (K(+ channel belongs to the superfamily of voltage-gated K(+ channel. In mammals, the expression of Eag channels is neuron-specific but their neurophysiological role remains obscure. We have applied the yeast two-hybrid screening system to identify rat Eag1 (rEag1-interacting proteins from a rat brain cDNA library. One of the clones we identified was 14-3-3θ, which belongs to a family of small acidic protein abundantly expressed in the brain. Data from in vitro yeast two-hybrid and GST pull-down assays suggested that the direct association with 14-3-3θ was mediated by both the N- and the C-termini of rEag1. Co-precipitation of the two proteins was confirmed in both heterologous HEK293T cells and native hippocampal neurons. Electrophysiological studies showed that over-expression of 14-3-3θ led to a sizable suppression of rEag1 K(+ currents with no apparent alteration of the steady-state voltage dependence and gating kinetics. Furthermore, co-expression with 14-3-3θ failed to affect the total protein level, membrane trafficking, and single channel conductance of rEag1, implying that 14-3-3θ binding may render a fraction of the channel locked in a non-conducting state. Together these data suggest that 14-3-3θ is a binding partner of rEag1 and may modulate the functional expression of the K(+ channel in neurons.

  9. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  10. Characterization of ionic currents of cells of the subfornical organ that project to the supraoptic nuclei

    Science.gov (United States)

    Johnson, R. F.; Beltz, T. G.; Jurzak, M.; Wachtel, R. E.; Johnson, A. K.

    1999-01-01

    The subfornical organ (SFO) is a forebrain structure that converts peripheral blood-borne signals reflecting the hydrational state of the body to neural signals and then through efferent fibers conveys this information to several central nervous system structures. One of the forebrain areas receiving input from the SFO is the supraoptic nucleus (SON), a source of vasopressin synthesis and control of release from the posterior pituitary. Little is known of the transduction and transmission processes by which this conversion of systemic information to brain input occurs. As a step in elucidating these mechanisms, the present study characterized the ionic currents of dissociated cells of the SFO that were identified as neurons that send efferents to the SON. A retrograde tracer was injected into the SON area in eleven-day-old rats. After three days for retrograde transport of the label, the SFOs of these animals were dissociated and plated for tissue culture. The retrograde tracer was used to identify the soma of SFO cells projecting to the SON so that voltage-dependent ionic currents using whole-cell voltage clamp methods could be studied. The three types of currents in labeled SFO neurons were characterized as a 1) rapid, transient inward current that can be blocked by tetrodotoxin (TTX) characteristic of a sodium current; 2) slow-onset sustained outward current that can be blocked by tetraethylammonium (TEA) characteristic of a delayed rectifier potassium current; and 3) remaining outward current that has a rapid-onset and transient characteristic of a potassium A-type current. Copyright 1999 Elsevier Science B.V.

  11. Dietary patterns extracted from the current Japanese diet and their associations with sodium and potassium intakes estimated by repeated 24 h urine collection.

    Science.gov (United States)

    Fujiwara, Aya; Asakura, Keiko; Uechi, Ken; Masayasu, Shizuko; Sasaki, Satoshi

    2016-10-01

    To identify dietary patterns in the current Japanese diet and evaluate the associations between these patterns and Na and K intakes. Dietary patterns were extracted by factor analysis from the intakes of food groups assessed with a validated self-administrated diet history questionnaire. Na and K intakes and urinary Na:K were assessed by repeated 24 h urine collection. Healthy Japanese adults aged 20-69 years (353 men and 349 women). Twenty study areas in twenty-three prefectures in Japan. Result Four dietary patterns were identified in each sex. After adjustment for several confounding factors, the 'Fish and vegetable' pattern was associated with higher urinary Na excretion, but the association was not significant (P=0·37 in men and P=0·06 in women). This pattern was also associated with higher K excretion in both sexes. The 'Noodle' pattern tended to be associated with higher urinary Na excretion (P=0·17 in men and P=0·04 in women) and higher Na:K (P=0·02 in men). The 'Meat, vegetable and oil' (in men)/'Meat and oil' (in women) and 'Bread and confectioneries' patterns were not associated with urinary Na excretion (in men) or were negatively associated (in women). Contrary to the case in Western countries, the 'Fish and vegetable' and 'Noodle' patterns contributed to higher Na intake in Japan. Target foods for salt reduction should be set based on careful consideration of the relationships between dietary patterns and Na and K intakes in the target population.

  12. Elevated potassium elicits recurrent surges of large GABAA-receptor-mediated post-synaptic currents in hippocampal CA3 pyramidal neurons.

    Science.gov (United States)

    Shin, Damian Seung-Ho; Yu, Wilson; Sutton, Alex; Calos, Megan; Carlen, Peter Louis

    2011-03-01

    Previously, we found that rat hippocampal CA3 interneurons become hyperactive with increasing concentrations of extracellular K(+) up to 10 mM. However, it is unclear how this enhanced interneuronal activity affects pyramidal neurons. Here we voltage-clamped rat hippocampal CA3 pyramidal neurons in vitro at 0 mV to isolate γ-aminobutyric acid (GABA)-activated inhibitory post-synaptic currents (IPSCs) and measured these in artificial cerebrospinal fluid (aCSF) and with 10 mM K(+) bath perfusion. In aCSF, small IPSCs were present with amplitudes of 0.053 ± 0.007 nA and a frequency of 0.27 ± 0.14 Hz. With 10 mM K(+) perfusion, IPSCs increased greatly in frequency and amplitude, culminating in surge events with peak amplitudes of 0.56 ± 0.08 nA, that appeared and disappeared cyclically with durations lasting 2.02 ± 0.37 min repeatedly, up to 10 times over a 30-min bath perfusion of elevated K(+). These large IPSCs were GABA(A)-receptor mediated and did not involve significant desensitization of this receptor. Perfusion of a GABA transporter inhibitor (NO-711), glutamate receptor inhibitors CNQX and APV, or a gap junctional blocker (carbenoxolone) prevented the resurgence of large IPSCs. Pressure ejected sucrose resulted in the abolishment of subsequent surges. No elevated K(+)-mediated surges were observed in CA3 interneurons from the stratum oriens layer. In conclusion, these cyclic large IPSC events observable in CA3 pyramidal neurons in 10 mM KCl may be due to transient GABA depletion from continuously active interneuronal afferents.

  13. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  14. Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca(2+) channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Walwyn, Wendy; John, Scott; Maga, Matthew; Evans, Christopher J; Hales, Tim G

    2009-07-01

    Recombinant micro and delta opioid receptors expressed in cell lines can form heterodimers with distinctive properties and trafficking. However, a role for opioid receptor heterodimerization in neurons has yet to be identified. The inhibitory coupling of opioid receptors to voltage-dependent Ca(2+) channels (VDCCs) is a relatively inefficient process and therefore provides a sensitive assay of altered opioid receptor function and expression. We examined micro-receptor coupling to VDCCs in dorsal root ganglion neurons of delta(+/+), delta(+/-), and delta(-/-) mice. Neurons deficient in delta receptors exhibited reduced inhibition of VDCCs by morphine and [D-Ala(2),Phe(4),Gly(5)-ol]-enkephalin (DAMGO). An absence of delta receptors caused reduced efficacy of DAMGO without affecting potency. An absence of delta receptors reduced neither the density of VDCCs nor their inhibition by either the GABA(B) receptor agonist baclofen or intracellular guanosine 5'-O-(3-thio)triphosphate. Flow cytometry revealed a reduction in micro-receptor surface expression in delta(-/-) neurons without altered DAMGO-induced internalization. There was no change in micro-receptor mRNA levels. D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)-sensitive mu-receptor-coupling efficacy was fully restored to delta(+/+) levels in delta(-/-) neurons by expression of recombinant delta receptors. However, the dimerization-deficient delta-15 construct expressed in delta(-/-) neurons failed to fully restore the inhibitory coupling of micro-receptors compared with that seen in delta(+/+) neurons, suggesting that, although not essential for micro-receptor function, micro-delta receptor dimerization contributes to full micro-agonist efficacy. Because DAMGO exhibited a similar potency in delta(+/+) and delta(-/-) neurons and caused similar levels of internalization, the role for heterodimerization is probably at the level of receptor biosynthesis.

  15. 线粒体电压依赖性阴离子通道与心血管疾病%Voltage-dependent Anion Channel and Cardiovascular Diseases

    Institute of Scientific and Technical Information of China (English)

    夏晶

    2013-01-01

    电压依赖性阴离子通道(VDAC)是位于线粒体外膜的通道蛋白,是线粒体与细胞质之间转运ATP以及其他代谢产物的主要通道,在线粒体代谢和细胞生长中发挥重要调控作用.近期研究发现,在心肌缺血再灌、糖尿病、心衰、高血压和动脉粥样硬化时,VDAC表达明显增加,引起细胞内钙离子循环紊乱、氧化应激,进而导致细胞凋亡,已成为心血管疾病研究的新热点.本文就VDAC的分子功能,调控及其在心血管疾病中的作用和相关机制进行综述.%The voltage-dependent anion channel (VDAC),a mitochondrial membrane channel protein located in the outer of mitochondrial membrane,is the main pathway between mitochondria and cytoplasm exchanging ADP,ATP,and other metabolites,and plays an important role in mitochondrial metabolism and cell growth.A growing evidence showed that VDAC was increased in cardiovascular diseases including myocardial ischemia and reperfusion,diabetes,heart failure,hypertension and atherosclerosis.The abnormal state of VDAC will result in cell death by inducing calcium cycling dysfunction and oxidative stress.And VDAC has become a hot topic in the field of cardiovascular diseases research.In this article,we will introduce the molecular function and regulation of VDAC and its role in cardiovascular diseases.

  16. Voltage-dependent anion channels (VDACs) promote mitophagy to protect neuron from death in an early brain injury following a subarachnoid hemorrhage in rats.

    Science.gov (United States)

    Li, Jian; Lu, Jianfei; Mi, Yongjie; Shi, Zhao; Chen, Chunhua; Riley, John; Zhou, Changman

    2014-07-21

    The term mitophagy is coined to describe the selective removal of mitochondria by autophagy but the process itself is still contentious, especially in the early period following subarachnoid hemorrhage (SAH). In the present study, we investigated the role of mitophagy following 48h after SAH injury in rats. Specifically evaluating whether mitophagy, through voltage dependant anion channels (VDACs) interacting with microtubule-associated protein 1 light chain 3, could orchestrate the induction of apoptotic and necrotic cell death in neurons, a VDAC1siRNA and an activitor Rapamycian (RAPA), were engaged. One hundred and twelve male Sprague-Dawley rats were randomly divided into 4 groups: Sham, SAH, SAH+VDAC1siRNA, and SAH+RAPA. Outcomes measured included mortality rate, brain edema, BBB disruption, and neurobehavioral testing. We also used western blotting techniques to analyze the expressions of key mitophagic/autophagic proteins and pro-apoptotic protein such as ROS, VDAC1, LC-3II and Caspase-3. Rapamycin treatment significantly improved the mortality rate, cerebral edema, and neurobehavioral deficits; apoptotic and necrotic cell death in neurons were reduced by Rapamycin following SAH injury. However, VDAC1siRNA worsened the brain injury following SAH. Immunohistochemical staining and western blot analysis demonstrated a decreased expression of VDAC1, LC3II, and an increase of ROS and Caspase-3 followed by VDAC1siRNA administration. In conclusion, mitophagy induced by VDAC1 following SAH injury may in fact play a significant role in neuroprotection, the mechanism which may be through the attenuation of the apoptosic and necrosic molecular pathways. This translates a preservation of functional integrity and an improvement in mortality.

  17. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.

    Science.gov (United States)

    Decher, Niels; Chen, Jun; Sanguinetti, Michael C

    2004-04-02

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have a transmembrane topology that is highly similar to voltage-gated K(+) channels, yet HCN channels open in response to membrane hyperpolarization instead of depolarization. The structural basis for the "inverted" voltage dependence of HCN gating and how voltage sensing by the S1-S4 domains is coupled to the opening of the intracellular gate formed by the S6 domain are unknown. Coupling could arise from interaction between specific residues or entire transmembrane domains. We previously reported that the mutation of specific residues in the S4-S5 linker of HCN2 (i.e. Tyr-331 and Arg-339) prevented normal channel closure presumably by disruption of a crucial interaction with the activation gate. Here we hypothesized that the C-linker, a carboxyl terminus segment that connects S6 to the cyclic nucleotide binding domain, interacts with specific residues of the S4-S5 linker to mediate coupling. The recently solved structure of the C-linker of HCN2 indicates that an alpha-helix (the A'-helix) is located near the end of each S6 domain, the presumed location of the activation gate. Ala-scanning mutagenesis of the end of S6 and the A'-helix identified five residues that were important for normal gating as mutations disrupted channel closure. However, partial deletion of the C-linker indicated that the presence of only two of these residues was required for normal coupling. Further mutation analyses suggested that a specific electrostatic interaction between Arg-339 of the S4-S5 linker and Asp-443 of the C-linker stabilizes the closed state and thus participates in the coupling of voltage sensing and activation gating in HCN channels.

  18. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities.

    Science.gov (United States)

    Guardiani, Carlo; Scorciapino, Mariano Andrea; Amodeo, Giuseppe Federico; Grdadolnik, Joze; Pappalardo, Giuseppe; De Pinto, Vito; Ceccarelli, Matteo; Casu, Mariano

    2015-09-15

    The voltage-dependent anion channel (VDAC) is the main mitochondrial porin allowing the exchange of ions and metabolites between the cytosol and the mitochondrion. In addition, VDAC was found to actively interact with proteins playing a fundamental role in the regulation of apoptosis and being of central interest in cancer research. VDAC is a large transmembrane β-barrel channel, whose N-terminal helical fragment adheres to the channel interior, partially closing the pore. This fragment is considered to play a key role in protein stability and function as well as in the interaction with apoptosis-related proteins. Three VDAC isoforms are differently expressed in higher eukaryotes, for which distinct and complementary roles are proposed. In this work, the folding propensity of their N-terminal fragments has been compared. By using multiple spectroscopic techniques, and complementing the experimental results with theoretical computer-assisted approaches, we have characterized their conformational equilibrium. Significant differences were found in the intrinsic helical propensity of the three peptides, decreasing in the following order: hVDAC2 > hVDAC3 > hVDAC1. In light of the models proposed in the literature to explain voltage gating, selectivity, and permeability, as well as interactions with functionally related proteins, our results suggest that the different chemicophysical properties of the N-terminal domain are possibly correlated to different functions for the three isoforms. The overall emerging picture is that a similar transmembrane water accessible conduit has been equipped with not identical domains, whose differences can modulate the functional roles of the three VDAC isoforms.

  19. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures

    Science.gov (United States)

    Bilkan, Çiğdem; Azizian-Kalandaragh, Yashar; Altındal, Şemsettin; Shokrani-Havigh, Roya

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε‧, ε″) and electric modulus (M‧ and M″), loss tangent (tanδ), and ac electrical conductivity (σac) values of Al/Co3O4-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε‧, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σdc and σac, respectively. The M‧ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M‧ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and Nss effects with increasing frequency.

  20. A Novel Modulator of Kv3 Potassium Channels Regulates the Firing of Parvalbumin-Positive Cortical Interneurons.

    Science.gov (United States)

    Rosato-Siri, Marcelo D; Zambello, Erika; Mutinelli, Chiara; Garbati, Nicoletta; Benedetti, Roberto; Aldegheri, Laura; Graziani, Francesca; Virginio, Caterina; Alvaro, Giuseppe; Large, Charles H

    2015-09-01

    Kv3.1 and Kv3.2 high voltage-activated potassium channels, which display fast activation and deactivation kinetics, are known to make a crucial contribution to the fast-spiking phenotype of certain neurons. Pharmacological experiments show that the blockade of native Kv3 currents with low concentrations of tetraethylammonium or 4-aminopyridine impairs the expression of this firing phenotype. In particular, Kv3 channels are highly expressed by fast-spiking, parvalbumin-positive interneurons in corticolimbic brain circuits, which modulate the synchronization of cortical circuits and the generation of brain rhythms. Here, we describe a novel small molecule, (5R)-5-ethyl-3-(6-{[4-methyl-3-(methyloxy)phenyl]oxy}-3-pyridinyl)-2,4-imidazolidinedione (AUT1), which modulates Kv3.1 and Kv3.2 channels in human recombinant and rodent native neurons. AUT1 increased whole currents mediated by human Kv3.1b and Kv3.2a channels, with a concomitant leftward shift in the voltage dependence of activation. A less potent effect was observed on hKv3.3 currents. In mouse somatosensory cortex slices in vitro, AUT1 rescued the fast-spiking phenotype of parvalbumin-positive-fast-spiking interneurons following an impairment of their firing capacity by blocking a proportion of Kv3 channels with a low concentration of tetraethylammonium. Notably, AUT1 had no effect on interneuron firing when applied alone. Together, these data confirm the role played by Kv3 channels in the regulation of the firing phenotype of somatosensory interneurons and suggest that AUT1 and other Kv3 modulators could represent a new and promising therapeutic approach to the treatment of disorders associated with dysfunction of inhibitory feedback in corticolimbic circuits, such as schizophrenia.

  1. A selective blocker of Kv1.2 and Kv1.3 potassium channels from the venom of the scorpion Centruroides suffusus suffusus.

    Science.gov (United States)

    Corzo, Gerardo; Papp, Ferenc; Varga, Zoltan; Barraza, Omar; Espino-Solis, Pavel G; Rodríguez de la Vega, Ricardo C; Gaspar, Rezso; Panyi, Gyorgy; Possani, Lourival D

    2008-10-30

    A novel potassium channel blocker peptide was purified from the venom of the scorpion Centruroides suffusus suffusus by high-performance liquid chromatography and its amino acid sequence was completed by Edman degradation and mass spectrometry analysis. It contains 38 amino acid residues with a molecular weight of 4000.3Da, tightly folded by three disulfide bridges. This peptide, named Css20, was shown to block preferentially the currents of the voltage-dependent K+-channels Kv1.2 and Kv1.3. It did not affect several other ion channels tested at 10 nM concentration. Concentration-response curves of Css20 yielded an IC50 of 1.3 and 7.2 nM for Kv1.2- and Kv1.3-channels, respectively. Interestingly, despite the similar affinities for the two channels the association and dissociation rates of the toxin were much slower for Kv1.2, implying that different interactions may be involved in binding to the two channel types; an implication further supported by in silico docking analyses. Based on the primary structure of Css20, the systematic nomenclature proposed for this toxin is alpha-KTx 2.13.

  2. Inflammatory cytokine signaling in insulin producing beta-cells enhances the colocalization correlation coefficient between L-type voltage-dependent calcium channel and calcium-sensing receptor.

    Science.gov (United States)

    Parkash, Jai

    2008-08-01

    The immunological processes in type 1 diabetes and metabolic/inflammatory disorder in type 2 diabetes converge on common signaling pathway(s) leading to beta-cell death in these two diseases. The cytokine-mediated beta-cell death seems to be dependent on voltage-dependent calcium channel (VDCC)-mediated Ca2+ entry. The Ca2+ handling molecular networks control the homeostasis of [Ca2+]i in the beta-cell. The activity and membrane density of VDCC are regulated by several mechanisms including G protein-coupled receptors (GPCRs). CaR is a 123-kDa seven transmembrane extracellular Ca2+ sensing protein that belongs to GPCR family C. Tumor necrosis factor-alpha (TNF-alpha), is a cytokine widely known to activate nuclear factor-kappaB (NF-kappaB) transcription in beta-cells. To obtain a better understanding of TNF-alpha-induced molecular interactions between CaR and VDCC, confocal fluorescence measurements were performed on insulin-producing beta-cells exposed to varying concentrations of TNF-alpha and the results are discussed in the light of increased colocalization correlation coefficient. The insulin producing beta-cells were exposed to 5, 10, 20, 30, and 50 ng/ml TNF-alpha for 24 h at 37 degrees . The cells were then immunolabelled with antibodies directed against CaR, VDCC, and NF-kappaB. The confocal fluorescence imaging data showed enhancement in the colocalization correlation coefficient between CaR and VDCC in beta-cells exposed to TNF-alpha thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. TNF-alpha-induced colocalization of VDCC with CaR was inhibited by nimodipine, an inhibitor of L-type VDCC thereby suggesting that VDCC activity is required for spatial interactions with CaR. The 3-D confocal fluorescence imaging data also demonstrated that addition of TNF-alpha to RIN cells led to the translocation of NF-kappaB from the cytoplasm to the nucleus. Such molecular interactions between CaR and VDCC in tissues

  3. New type of potassium deposit: Modal analysis and preparation of potassium carbonate

    Institute of Scientific and Technical Information of China (English)

    MA; Hongwen; FENG; Wuwei; MIAO; Shiding; WANG; Yingbin; TI

    2005-01-01

    A kind of dolomitic mudstone newly found in North China has high amounts of K2O up to 10wB% in average, and potassium reserve is at superior scale. Mineral assemblage of the potassium ore indicates a specific and complicated geological environment under which the potassium deposit formed. Modal analysis of the potassium host rock shows that the principal minerals in the ore include microcline, dolomite, and clay minerals such as illite, illite/smectite mixed layer, and kaolinite, attributable to a new type of insoluble potassium deposits in ore genesis. The experiments in this research demonstrated that with sodium carbonate as flux agent, the potassium ore could be decomposed with a proportion as high as 99.4% by calcinations at moderate temperature for no more than 1.5―2.0 h; more than 70% of K2O in the calcined materials were leached into the liquor, and by acidification reaction of the filter liquor, a large amount of impurities such as Fe3+, Ti4+, Mn2+, Mg2+, and Ca2+ were removed with precipitation of alumino-silicious colloid residue, which makes it possible to prepare potassium carbonate of electronic grade from the filter liquor, whereas the alumino-silicious residue could be utilized to make mineral polymer, a new type of inorganic construction structural materials. The current research shows that industrial exploitation and comprehensive utilization of this new type of insoluble potassium resource are feasible both in economic benefits and environmental kindness with the fairly clean production process as sketched in this paper.

  4. Action of angiotensin II, 5-hydroxytryptamine and adenosine triphosphate on ionic currents in single ear artery cells of the rabbit.

    Science.gov (United States)

    Hughes, A D; Bolton, T B

    1995-10-01

    1. Angiotensin II, 5-hydroxytryptamine (5-HT) and adenosine triphosphate (ATP) evoked a transient inward current in isolated single car artery cells of rabbit held at -60 mV by whole cell voltage clamp in physiological saline using a KCL-containing pipette solution. Under these conditions agonist did not activate a calcium-dependent potassium current. 2. Responses to each agonist were transient and desensitized rapidly. Inward current at -60 mV holding potential was not abolished by blockade of voltage-dependent calcium channels or by buffering intracellular calcium with BAPTA, a calcium chelator, or following depletion of intracellular calcium stores with ryanodine. 3. The shape of the current-voltage relationships and the reversal potentials of the current induced by angiotensin II, 5-HT and ATP were similar under a variety of ionic conditions. Agonist-induced current was unaffected by replacing intracellular chloride with citrate ions or by replacing intracellular sodium with caesium or extracellular sodium with barium or calcium. Replacement of extracellular sodium with Tris shifted the reversal potential in all cases by around 30 mV negatively. 4. These data suggest that angiotensin II, 5-HT and ATP activate similar cationic conductances which are relatively non-selective allowing mono- and divalent cations to cross the smooth muscle cell membrane. These channels may allow the influx of calcium under physiological conditions.

  5. β-Secretase BACE1 regulates hippocampal and reconstituted M-currents in a β-subunit-like fashion.

    Science.gov (United States)

    Hessler, Sabine; Zheng, Fang; Hartmann, Stephanie; Rittger, Andrea; Lehnert, Sandra; Völkel, Meike; Nissen, Matthias; Edelmann, Elke; Saftig, Paul; Schwake, Michael; Huth, Tobias; Alzheimer, Christian

    2015-02-25

    The β-secretase BACE1 is widely known for its pivotal role in the amyloidogenic pathway leading to Alzheimer's disease, but how its action on transmembrane proteins other than the amyloid precursor protein affects the nervous system is only beginning to be understood. We report here that BACE1 regulates neuronal excitability through an unorthodox, nonenzymatic interaction with members of the KCNQ (Kv7) family that give rise to the M-current, a noninactivating potassium current with slow kinetics. In hippocampal neurons from BACE1(-/-) mice, loss of M-current enhanced neuronal excitability. We relate the diminished M-current to the previously reported epileptic phenotype of BACE1-deficient mice. In HEK293T cells, BACE1 amplified reconstituted M-currents, altered their voltage dependence, accelerated activation, and slowed deactivation. Biochemical evidence strongly suggested that BACE1 physically associates with channel proteins in a β-subunit-like fashion. Our results establish BACE1 as a physiologically essential constituent of regular M-current function and elucidate a striking new feature of how BACE1 impacts on neuronal activity in the intact and diseased brain. Copyright © 2015 the authors 0270-6474/15/353298-14$15.00/0.

  6. [Diet low in potassium].

    Science.gov (United States)

    Sáez Rodríguez, Loreto; Meizoso Ameneiro, Ana; Pérez Paz, Ma Jesús; Valiño Pazos, Cristina

    2011-11-01

    After confirming the high prevalence rates in our hemodialysis unit of the following nursing diagnoses: nutritional imbalances--both excesses and shortages, willingness to improve nutrition and fear related to the consequences of excessive intake of potassium and manifested by the inhibition in some people towards the enjoyment of food, we decided to plan an educational strategy which later resulted in a nursing intervention for these diagnoses, with the objective of providing adequate resources for the monitoring of balanced diets with a restriction of potassium. Inspired by dietary rations, as well as recognized dietary programs of learning by points, we decided to incorporate these ideas to design an educational tool to facilitate advice to our patients on how to follow diet plans as well as the choice of appropriate foods. The result was a set of cards incorporating nutritional information of various kinds, aimed at our patients covering different aspects of the diet appropriate food rations using household measurements, promoting good food preparation, appropriate dietary advice for different chronic diseases and a scoring system of foods according to their potassium content. Together they form a board game available during the hemodialysis sessions that also takes into consideration other issues of importance related to conditions such as cognitive stimulation, coping with the disease, improving the therapeutic performance or resources to increase patient motivation. Although initially it was only an educational exercise, the result has turned out to be both enjoyable and entertaining.

  7. Potassium Channelopathies and Gastrointestinal Ulceration

    Science.gov (United States)

    Han, Jaeyong; Lee, Seung Hun; Giebisch, Gerhard; Wang, Tong

    2016-01-01

    Potassium channels and transporters maintain potassium homeostasis and play significant roles in several different biological actions via potassium ion regulation. In previous decades, the key revelations that potassium channels and transporters are involved in the production of gastric acid and the regulation of secretion in the stomach have been recognized. Drugs used to treat peptic ulceration are often potassium transporter inhibitors. It has also been reported that potassium channels are involved in ulcerative colitis. Direct toxicity to the intestines from nonsteroidal anti-inflammatory drugs has been associated with altered potassium channel activities. Several reports have indicated that the long-term use of the antianginal drug Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, increases the chances of ulceration and perforation from the oral to anal regions throughout the gastrointestinal (GI) tract. Several of these drug features provide further insights into the role of potassium channels in the occurrence of ulceration in the GI tract. The purpose of this review is to investigate whether potassium channelopathies are involved in the mechanisms responsible for ulceration that occurs throughout the GI tract. PMID:27784845

  8. Potassium Channelopathies and Gastrointestinal Ulceration.

    Science.gov (United States)

    Han, Jaeyong; Lee, Seung Hun; Giebisch, Gerhard; Wang, Tong

    2016-11-15

    Potassium channels and transporters maintain potassium homeostasis and play significant roles in several different biological actions via potassium ion regulation. In previous decades, the key revelations that potassium channels and transporters are involved in the production of gastric acid and the regulation of secretion in the stomach have been recognized. Drugs used to treat peptic ulceration are often potassium transporter inhibitors. It has also been reported that potassium channels are involved in ulcerative colitis. Direct toxicity to the intestines from nonsteroidal anti-inflammatory drugs has been associated with altered potassium channel activities. Several reports have indicated that the long-term use of the antianginal drug Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, increases the chances of ulceration and perforation from the oral to anal regions throughout the gastrointestinal (GI) tract. Several of these drug features provide further insights into the role of potassium channels in the occurrence of ulceration in the GI tract. The purpose of this review is to investigate whether potassium channelopathies are involved in the mechanisms responsible for ulceration that occurs throughout the GI tract.

  9. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    Science.gov (United States)

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement.

  10. Rectification of Acetylcholine-Elicited Currents in PC12 Pheochromocytoma Cells

    Science.gov (United States)

    Ifune, C. K.; Steinbach, J. H.

    1990-06-01

    The current-voltage (I-V) relationship for acetylcholine-elicited currents in the rat pheochromocytoma cell line PC12 is nonlinear. Two voltage-dependent processes that could account for the whole-cell current rectification were examined, receptor channel gating and single receptor channel permeation. We found that both factors are involved in the rectification of the whole-cell currents. The voltage dependence of channel gating determines the shape of the I-V curve at negative potentials. The single-channel I-V relationship is inwardly rectifying and largely responsible for the characteristic shape of the whole-cell I-V curve at positive potentials. The rectification of the single-channel currents is produced by the voltage-dependent block of outward currents by intracellular Mg2+ ions.

  11. Dendritic potassium channels in hippocampal pyramidal neurons.

    Science.gov (United States)

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  12. Potent suppression of Kv1.3 potassium channel and IL-2 secretion by diphenyl phosphine oxide-1 in human T cells.

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    Full Text Available Diphenyl phosphine oxide-1 (DPO-1 is a potent Kv1.5 channel inhibitor that has therapeutic potential for the treatment of atrial fibrillation. Many other Kv1.5 channel blockers also potently inhibit the Kv1.3 channel, but whether DPO-1 blocks Kv1.3 channels has not been investigated. The Kv1.3 channel is highly expressed in activated T cells, which is considered a favorable target for immunomodulation. Accordingly, we hypothesized that DPO-1 may exert immunosuppressive and anti-inflammatory effects by inhibiting Kv1.3 channel activity. In this study, DPO-1 blocked Kv1.3 current in a voltage-dependent and concentration-dependent manner, with IC₅₀ values of 2.58 µM in Jurkat cells and 3.11 µM in human peripheral blood T cells. DPO-1 also accelerated the inactivation rate and negatively shifted steady-state inactivation. Moreover, DPO-1 at 3 µM had no apparent effect on the Ca²⁺ activated potassium channel (K(Ca current in both Jurkat cells and human peripheral blood T cells. In Jurkat cells, pre-treatment with DPO-1 for 24 h decreased Kv1.3 current density, and protein expression by 48±6% and 60±9%, at 3 and 10 µM, respectively (both p<0.05. In addition, Ca²⁺ influx to Ca²⁺-depleted cells was blunted and IL-2 production was also reduced in activated Jurkat cells. IL-2 secretion was also inhibited by the Kv1.3 inhibitors margatoxin and charybdotoxin. Our results demonstrate for the first time that that DPO-1, at clinically relevant concentrations, blocks Kv1.3 channels, decreases Kv1.3 channel expression and suppresses IL-2 secretion. Therefore, DPO-1 may be a useful treatment strategy for immunologic disorders.

  13. Potassium oxalurate monohydrate

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title salt, poly[aqua-μ3-oxalurato-potassium(I], [K(C3H3N2O4(H2O]n, which was obtained from a water solution of oxaluric acid and KOH at room temperature, crystallizes as potassium and oxalurate ions along with a water molecule. The K+ cation lies on a crystallographic twofold rotation axis (site symmetry 2, Wyckoff position f, and the water and oxalurate molecules are located within different mirror planes (site symmetry m, Wyckoff position g. The K+ cation is eight-coordinated by six O atoms of six oxalurate ligands and two O atoms from two water molecules in a distorted square-antiprismatic geometry. All of the eight coordinated O atoms are in a monodentate bridging mode, with alternate bridged K...K distances of 3.5575 (12 and 3.3738 (12 Å. The oxalurate ligand shows a μ3-bridging coordination mode, which links the K+ cation into a three-dimensional network. The oxalurate ligands and the water molecules are involved in inter- and intramolecular N—H...O, and O—H...O hydrogen bonds, which stabilize the network.

  14. Kv3.3 potassium channels and spinocerebellar ataxia.

    Science.gov (United States)

    Zhang, Yalan; Kaczmarek, Leonard K

    2016-08-15

    The voltage-dependent potassium channel subunit Kv3.3 is expressed at high levels in cerebellar Purkinje cells, in auditory brainstem nuclei and in many other neurons capable of firing at high rates. In the cerebellum, it helps to shape the very characteristic complex spike of Purkinje cells. Kv3.3 differs from other closely related channels in that human mutations in the gene encoding Kv3.3 (KCNC3) result in a unique neurodegenerative disease termed spinocerebellar ataxia type 13 (SCA13). This primarily affects the cerebellum, but also results in extracerebellar symptoms. Different mutations produce either early onset SCA13, associated with delayed motor and impaired cognitive skill acquisition, or late onset SCA13, which typically produces cerebellar degeneration in middle age. This review covers the localization and physiological function of Kv3.3 in the central nervous system and how the normal function of the channel is altered by the disease-causing mutations. It also describes experimental approaches that are being used to understand how Kv3.3 mutations are linked to neuronal survival, and to develop strategies for treatment.

  15. Beta-scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels. : Electrostatic interactions between segments IIS2, IIS3 and IIS4 of Na+ channel.

    OpenAIRE

    Mantegazza, Massimo; Cestèle, Sandrine

    2005-01-01

    International audience; Beta-scorpion toxins specifically modulate the voltage dependence of sodium channel activation by acting through a voltage-sensor trapping model. We used mutagenesis, functional analysis and the action of beta-toxin as tools to investigate the existence and role in channel activation of molecular interactions between the charged residues of the S2, S3 and S4 segments in domain II of sodium channels. Mutating to arginine the acidic residues of the S2 and S3 transmembran...

  16. Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

    Science.gov (United States)

    Sánchez-Ponce, Diana; DeFelipe, Javier; Garrido, Juan José; Muñoz, Alberto

    2012-01-01

    Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation. PMID:23119056

  17. Effects of piperine on abnormalities of inward rectifier potassium current and ultra rapid delayed rectifier potassium current induced by hydrogen peroxide in rabbit atrial myocytes%胡椒碱减轻H2O2引起的兔心房肌细胞内向整流钾电流及超速激活延迟整流钾电流的异常改变

    Institute of Scientific and Technical Information of China (English)

    刘岩; 李泱; 林琨; 田苗; 王玉堂; 单兆亮

    2012-01-01

    目的:研究胡椒碱对H2O2引起的兔单个心房肌细胞内向整流钾电流(IK1)及超速激活的延迟整流钾电流(IKUr)异常的影响.方法:采用全细胞膜片钳技术分析50 μmol/L H2O2对兔单个心房肌细胞IK1和IKUr的影响,并研究预先应用7 μmol/L胡椒碱对其的保护作用.结果:7 μmol/L胡椒碱对正常兔心房肌细胞IK1和IKUr及其通道动力学无显著影响.在50 μmol/L H2O2作用下,兔心房肌细胞IK1峰值由(-148.2±16.7)pA/pF降低至(-64.2±9.8)pA/pF (P<0.05),电流-电压曲线上移;而IKUr峰值由(16.0±2.1)pA/pF降低至(6.1±1.4)pA/pF (P<0.05),电流-电压曲线下移,通道稳态激活曲线右移,通道稳态失活曲线左移及恢复时间减慢,而且存在频率依赖性特征.预先给予7 μmol/L胡椒碱,明显减轻H2O2对IK1和IKUr的抑制作用(P<0.01),并可减少H2O2对超速激活延迟整流钾通道动力学的异常影响.结论:胡椒碱可减轻氧化应激对心房肌细胞IK1和IKUr的影响.%AIM: To study the proleclive effect of piperine on abnormalilyies of inward rectifier potassium cur-rent ( IK1 ) and ultra rapid delayed rectifier polassium currenl ( IKUT) induced by hydrogen peroxide ( H2 O2 ) in single rabbil alrial myocytes. METHODS: The technique of whole - cell patch - clamp was used Lo study the effecl of H2 O2 at concen-tralion of 50 μmol/L on IK1 and /Kut in single rabbil alrial myocyles. The proleclive effecl of prelrealmenl with piperine (7 μmol/L) was also observed. RESULTS:The piperine al concenlralion of 7 μmol/L had no significant effecl on IK1 and IKUt and their channel dynamics. In the presence of H2O2 at concenlralion of 50 μmol/L, the peak currents of /K1 and /KUT reduced significanlly ( P < 0. 05 ) . The sleady - state aclivalion curve of /Kut was shifted right, the sleady - state inaclivalion curve of IKUt was shifted left, and the recovery from inaclivalion of IKUt was shifted downward. The IKUt showed frequency -dependenl characteristics

  18. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  19. Potassium supplementation and heart rate

    NARCIS (Netherlands)

    Gijsbers, L.; Molenberg, Famke; Bakker, S.J.L.; Geleijnse, J.M.

    2016-01-01

    Background and aims: Increasing the intake of potassium has been shown to lower blood pressure, but whether it also affects heart rate (HR) is largely unknown. We therefore assessed the effect of potassium supplementation on HR in a meta-analysis of randomized controlled trials. Methods and resul

  20. Effect of transient outward potassium current on ventricular electrophysi-ological remodeling in diabetic cardiomyopathy%瞬时外向钾电流在糖尿病心肌病电重构中的作用

    Institute of Scientific and Technical Information of China (English)

    刘星; 张良胜; 诸波; 査克岚; 张雪梅; 杨悠; 范忠才

    2014-01-01

    目的:探讨糖尿病心肌病(DCM)大鼠心室肌细胞瞬时外向钾电流(Ito)的变化,了解其在电重构中的作用。方法选用20只健康成年SD大鼠,随机分为对照组(n=10)和DCM组(n=10),并通过病理组织学证实为DCM心肌病理学改变。分别对两组大鼠采用改进的耐钙成年大鼠急性酶分离方法分离心肌细胞,运用膜片钳技术以全细胞模式分别记录两组大鼠心室肌单细胞的Ito和膜电容,并分析比较两组大鼠心室肌Ito的变化。结果与对照组比较,DCM组大鼠左心室心肌细胞的Ito电流密度显著低于对照组[+70 mV时,(16.80±9.10) pA/pF v s(36.25±5.20)pA/pF](P<0.05),DCM组的Ito的I-V曲线明显较对照组下移。结论 DCM的Ito数量明显减少,在DCM心肌电重构中起着重要作用。 Ito的减少及Ito通道的分布密度不同,可导致动作电位时程与有效不应期发生变化,可能与临床严重心律失常的发生有关。%Objective To investigate the changes of the transient outward potassium current (Ito) on ventricular my-ocardium in diabetic cardiomyopathy (DCM) rat and to explore the meaning of theses changes for ventricular electro-physiological remodeling. Methods 20 healthy adult Spprague-dawley rats were selected and randomly divided into control group (n=10) and DCM group (n=10).The myocardial pathological alterations of DCM were identified in DCM group by histopathologic test,and cardiomyocytes in both groups were separated by advanced calcium-tolerant separa-tion method.Whole-cell path clamp technique was used to record the unicellular changes of Ito and membrane capaci-tance in left ventricular myocytes for DCM and control group respectively.All data were analysed and compaired by software. Results Compared with control group,the Ito density on left ventricular myocytes was significantly lower in DCM group than that of the control group [(16.80±9.10) pA/pF vs (36.25±5.20) pA/pF,at +70 mV](P<0.05),and

  1. P物质对大鼠结肠平滑肌细胞钾钙电流的影响%Effect of substance P on the potassium and calcium currents of colonic smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    唐勤彩; 罗和生; 全晓静; 樊菡; 余光

    2015-01-01

    Objective To investigate the effect of substance P(SP) on the spontaneous contractile activity of smooth muscle cells,the large-conductance calcium-activated potassium channel currents (IBKCa) and the L-type calcium channel currents (ICaL) in rat smooth muscle cells of the proximal colon.Methods A total of 24 healthy male Wista rats were used in this test.The change of smooth muscle strips spontaneous contraction of rat proximal colon after adding SP was recorded by a physiological signal stystem (RM6240).The IBKCa and ICaL were measured via the whole cell patch-clamp technique.Results The longitudinal muscle contraction was obviously increased concentration-dependently after adding different concentrations of SP (10-7-10-6 mol/L),so as the circular muscle while adding SP(10-8-10-6 mol/L) (all P < 0.05).Compared with the control group,IBKCa was decreased after adding SP(10-6mol/L).Under the stimulating voltage of 60 mY,the IBKCa current density was (11.71 ± 1.65) pA/pF,which was significantly lower compared with the control group (14.42 ± 2.89) pA/pF (P < 0.05).The ICaL was apparently increased.Under the stimulating voltage of 0 mY,the ICaL currents density was (-5.04 ± 0.67) pA/pF,compared with the control group (-4.25 ± 0.46) pA/pF,which was significantly increased (P < 0.01).Conclusions SP can promote the spontaneous contractile activity of colon smooth muscle of rats in vitro.And SP decrease IBKCa representatively while apparently increase ICaL.That is probably one of the mechanism SP regulate the gastrointestinal motility.%目的 研究P物质(SP)对大鼠近端结肠平滑肌细胞大电导钙激活钾通道电流(IBKCa)和L型钙通道电流(ICaL)的影响,探讨其促结肠动力的作用机制.方法 选取健康雄性Wistar大鼠24只,采用RM6240生理信号采集处理系统记录SP对大鼠近端结肠平滑肌肌条收缩的影响;采用全细胞膜片钳技术检测SP对近端结肠平滑肌细胞IBKCa和ICaL的影响.结果 10-7~10-6 mol

  2. Effects of diltiazem and propafenone on the inactivation and recovery kinetics of fKvl.4 channel currents expressed in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Dong ZHANG; Shi-min WANG; Hui CHEN; Xue-jun JIANG; Sheng-ping CHAO

    2011-01-01

    Alm: TO investigate the effects of diltiazem. an L-type calcium channel blocker, and propafenone, a sodium channel blocker,on the inactivation and recovery kinetics of fKvl.4.a potassium channel that generates the cardiac transient outward potassium current.Methods:The cRNA for fKv1.4△N.an N-rerminal deleted mutant of the flerret Kvl.4 potassium channel.was injected into Xenopusoocytes to express the fKv1.4△N channel in these cells. Currents were recorded using a two electrode voltage clamp technique. Results: Diltiazem(10 to 1000 μmol/L)inhibited the fKv1.4△N channel in a frequency-dependent,voltage-dependent,and concerttration-dependent manneh Suggesting an open channel block.The ICso was 241.04±23.06 μmol/L for the fKvl.4&N channel(at+50mY).and propafenone(10 to 500 μmol/L)showed a similar effect(IC50=103.68±10.13 μmol/L).After application of diltiazem and propafenone, fKv1.4AN inactivation was bi-exponential.with a faster drug-induced inactivation and a slower C-type inactivation.Diltiazem increased the C-type inactivation rate and slowed recovery in fKv1.4△N channels.Howeve, propafenone had no effect on either the slow inactivation time constant or the recovery.Conclusion:Diltiazem and propafenone accelerate the inactivation of the Kvl.4AN channeI by binding to the open state of the channel.Unlike propafenone, diltiazem slows the recovery of the Kv1.4AN channel.

  3. KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel

    DEFF Research Database (Denmark)

    Lundby, Alicia; Olesen, Søren-Peter

    2006-01-01

    The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance...

  4. Permeation study of the potassium channel from streptomyces Lividans

    Institute of Scientific and Technical Information of China (English)

    XU Xiuzhi; ZHAN Yong; ZHAO Tongjun

    2004-01-01

    A three-state hopping model is established according to experiments to study permeation of an open-state potassium channel from Streptomyces Lividans (KcsA potassium channel). The master equations are used to characterize the dynamics of the system. In this model, ion conduction involves transitions of three states, with one three-ion state and two two-ion states in the selectivity filter respectively. In equilibrium, the well-known Nernst equation is deduced. It is further shown that the current follows Michaelis-Menten kinetics in steady state. According to the parameters provided by Nelson, the current-voltage relationship is proved to be ohmic and the current-concentration relationship is also obtained reasonably. Additional validation of the model in the characteristic time to reach the steady state for the potassium channel is also discussed. This model lays a possible physical basis for the permeation of ion channel, and opens an avenue for further research.

  5. 21 CFR 184.1635 - Potassium iodate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  6. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  7. 21 CFR 184.1634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  8. 21 CFR 184.1610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No... algae. Potassium alginate is prepared by the neutralization of purified alginic acid with appropriate...

  9. APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel.

    Science.gov (United States)

    Zhang, M; Liu, X-S; Diochot, S; Lazdunski, M; Tseng, G-N

    2007-08-01

    We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts the voltage-dependence of hERG activation in the positive direction and suppresses its current amplitudes elicited by strong depolarizing pulses that maximally activate the channels. The APETx1 binding site is distinctly different from that of a pore-blocking peptide toxin, BeKm-1. Mutations in the S3b region of hERG have dramatic impact on the responsiveness to APETx1: G514C potentiates whereas E518C abolishes the APETx1 effect. Restoring the negative charge at position 518 (methanethiosulfonate ethylsulfonate modification of 518C) partially restores APETx1 responsiveness, supporting an electrostatic interaction between E518 and APETx1. Among the three hERG isoforms, hERG1 and hERG3 are equally responsive to APETx1, whereas hERG2 is insensitive. The key feature seems to be an arginine residue uniquely present at the 514-equivalent position in hERG2, where the other two isoforms possess a glycine. Our data show that APETx1 is a gating modifier toxin of the hERG channel, and its binding site shares characteristics with those of gating modifier toxin binding sites on other Kv channels.

  10. 通过控制钙和钾离子流抑制心脏中的螺旋波和时空混沌%Suppression of Spiral Waves and Spatiotemporal Chaos in Cardiac Tissues with Controll of Calcium and Potassium Ionic Currents

    Institute of Scientific and Technical Information of China (English)

    钟敏; 唐国宁

    2011-01-01

    Suppression of spiral waves and spatiotemporal chaos in cardiac tissues described by LuoRudy 91 model are studied. We suggest a control strategy which applys calcium channel agonist to enlarge maximum conductivity of calcium current, and applys potassium channel blocker to reduce maximum conductivity of potassium current, for suppression of spiral waves and spatiotemporal chaos. It shows that the method can effectively suppress spiral waves and spatiotemporal chaos even if there exist defects without function of diffusion in a medium. The control mechanism is analyzed.%采用LuoRudy91心脏模型研究螺旋波和时空混沌的控制,提出联合使用钙通道激动剂和钾通道阻滞剂的控制策略来增大钙离子电导率和减小钾离子电导率,达到消除心脏组织中的螺旋波和时空混沌的目的.数值模拟结果表明,该方法可以有效抑制螺旋波和时空混沌,即使介质存在无扩散功能的缺陷时该方法仍有效.对控制机制做简单探讨.

  11. Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits.

    Science.gov (United States)

    Franqueza, L; Lin, M; Shen, J; Splawski, I; Keating, M T; Sanguinetti, M C

    1999-07-23

    Long QT syndrome is an inherited disorder of cardiac repolarization caused by mutations in cardiac ion channel genes, including KVLQT1. In this study, the functional consequences of three long QT-associated missense mutations in KvLQT1 (R243C, W248R, E261K) were characterized using the Xenopus oocyte heterologous expression system and two-microelectrode voltage clamp techniques. These mutations are located in or near the intracellular linker between the S4 and S5 transmembrane domains, a region implicated in activation gating of potassium channels. The E261K mutation caused loss of function and did not interact with wild-type KvLQT1 subunits. R243C or W248R KvLQT1 subunits formed functional channels, but compared with wild-type KvLQT1 current, the rate of activation was slower, and the voltage dependence of activation and inactivation was shifted to more positive potentials. Co expression of minK and KvLQT1 channel subunits induces a slow delayed rectifier K(+) current, I(Ks), characterized by slow activation and a markedly increased magnitude compared with current induced by KvLQT1 subunits alone. Coexpression of minK with R243C or W248R KvLQT1 subunits suppressed current, suggesting that coassembly of mutant subunits with minK prevented normal channel gating. The decrease in I(Ks) caused by loss of function or altered gating properties explains the prolonged QT interval and increased risk of arrhythmia and sudden death associated with these mutations in KVLQT1.

  12. Glucose deprivation activates diversity of potassium channels in cultured rat hippocampal neurons.

    Science.gov (United States)

    Velasco, Myrian; García, Esperanza; Onetti, Carlos G

    2006-05-01

    1. Glucose is one of the most important substrates for generating metabolic energy required for the maintenance of cellular functions. Glucose-mediated changes in neuronal firing pattern have been observed in the central nervous system of mammals. K(+) channels directly regulated by intracellular ATP have been postulated as a linkage between cellular energetic metabolism and excitability; the functional roles ascribed to these channels include glucose-sensing to regulate energy homeostasis and neuroprotection under energy depletion conditions. The hippocampus is highly sensitive to metabolic insults and is the brain region most sensitive to ischemic damage. Because the identity of metabolically regulated potassium channels present in hippocampal neurons is obscure, we decided to study the biophysical properties of glucose-sensitive potassium channels in hippocampal neurons. 2. The dependence of membrane potential and the sensitivity of potassium channels to glucose and ATP in rat hippocampal neurons were studied in cell-attached and excised inside-out membrane patches. 3. We found that under hypoglycemic conditions, at least three types of potassium channels were activated; their unitary conductance values were 37, 147, and 241 pS in symmetrical K(+), and they were sensitive to ATP. For K(+) channels with unitary conductance of 37 and 241, when the membrane potential was depolarized the longer closed time constant diminished and this produced an increase in the open-state probability; nevertheless, the 147-pS channels were not voltage-dependent. 4. We propose that neuronal glucose-sensitive K(+) channels in rat hippocampus include subtypes of ATP-sensitive channels with a potential role in neuroprotection during short-term or prolonged metabolic stress.

  13. Current blocking and current collection in CIGSe solar cells depending on sodium content

    Energy Technology Data Exchange (ETDEWEB)

    Puttnins, Stefan; Daume, Felix [Solarion AG, Leipzig (Germany); Institut fuer Experimentelle Physik II, Universitaet Leipzig (Germany); Zachmann, Hendrik; Rahm, Andreas [Solarion AG, Leipzig (Germany); Grundmann, Marius [Institut fuer Experimentelle Physik II, Universitaet Leipzig (Germany)

    2010-07-01

    IV-curves of thin film solar cells often show non-idealites like voltage dependent carrier collection and current blocking behaviour. Sodium is long known to improve the efficiency of Cu(In,Ga)Se{sub 2} solar cells by increasing V{sub OC} and FF. However, the way in which sodium influences the electrical properties is still under discussion. We investigated the influence of sodium on voltage dependent carrier collection and current blocking behaviour. Losses caused by incomplete photocurrent collection can be reduced by increased sodium content in the CIGSe layer. Current blocking behaviour like the rollover effect is less pronounced with increased sodium content. The influences were analyzed both in detailed illumination intensity and temperature dependent IV-measurements as well as by extensive statistical analysis over thousands of produced flexible CIGSe solar cells. Theoretical models for this dependency were simulated with SCAPS-1D and show good agreement with respective measurements.

  14. Potentiation of prolactin secretion following lactotrope escape from dopamine action. II. Phosphorylation of the alpha(1) subunit of L-type, voltage-dependent calcium channels.

    Science.gov (United States)

    Hernández, M E; del Mar Hernández, M; Díaz-Muñoz, M; Clapp, C; de la Escalera, G M

    1999-07-01

    Modulation of Ca(2+) channels has been shown to alter cellular functions. It can play an important role in the amplification of signals in the endocrine system, including the pleiotropically regulated pituitary lactotropes. Prolactin (PRL) secretion is tonically inhibited by dopamine (DA), the escape from which triggers acute episodes of hormone secretion. The magnitude of these episodes is explained by a potentiation of the PRL-releasing action of secretagogues such as thyrotropin-releasing hormone (TRH). While the mechanisms of this potentiation are not fully understood, it is known to be mimicked by the dihydropyridine, L-type Ca(2+) channel agonist Bay K 8644 and blocked by nifedipine and methoxyverapamil. The potentiation is also blocked by inhibitors of cyclic AMP-dependent protein kinase and protein kinase C. We recently described that the escape from tonic actions of DA results in increased macroscopic Ca(2+) currents in GH(4)C(1) lactotropic clonal cells transfected with a cDNA encoding the long form of the human D(2)-DA receptor. Here we show that the withdrawal from DA potentiates the PRL-releasing action of TRH in GH(4)C(1)/D(2)-DAR cells to the same extent as in enriched lactotropes in primary culture. In both experimental models a low density of dihydropyridine receptors was shown by (+)-[(3)H]PN200-110 binding. Photoaffinity labelling with the dihydropyridine [(3)H]azidopine revealed a protein consistent with the alpha(1) subunit of L-type Ca(2+) channels of 165-170 kDa. In both experimental models, the facilitation of TRH action triggered by the escape from DA was correlated with an enhanced rate of phosphorylation of this putative alpha(1) subunit, the nature of which was further supported by immunoprecipitation with selective antibodies directed against the alpha(1C) and alpha(1D) subunit of voltage-gated calcium channels. We propose that PKA- and PKC-dependent phosphorylation of the alpha(1) subunit of high voltage activated, L-type Ca(2

  15. Variations in onset of action potential broadening: effects on calcium current studied in chick ciliary ganglion neurones.

    Science.gov (United States)

    Pattillo, J M; Artim, D E; Simples, J E; Meriney, S D

    1999-02-01

    1. The voltage dependence and kinetic properties of stage 40 ciliary ganglion calcium currents were determined using short (10 ms) voltage steps. These properties aided the interpretation of the action potential-evoked calcium current described below, and the comparison of our data with those observed in other preparations. 2. Three different natural action potential waveforms were modelled by a series of ramps to generate voltage clamp commands. Calcium currents evoked by these model action potentials were compared before and after alterations in the repolarization phase of each action potential. 3. Abrupt step repolarizations from various time points were used to estimate the time course of calcium current activation during each action potential. Calcium current evoked by fast action potentials (duration at half-amplitude, 0.5 or 1.0 ms) did not reach maximal activation until the action potential had repolarized by 40-50 %. In contrast, calcium current evoked by a slow action potential (duration at half-amplitude, 2.2 ms) was maximally activated near the peak of the action potential. 4. Slowing the rate of repolarization of the action potential (broadening) from different times was used to examine effects on peak and total calcium influx. With all three waveforms tested, broadening consistently increased total calcium influx (integral). However, peak calcium current was either increased or decreased depending on the duration of the control action potential tested and the specific timing of the initiation of broadening the repolarization phase. 5. The opposite effects on peak calcium current observed with action potential broadening beginning at different time points in repolarization may provide a mechanism for the variable effects of potassium channel blockers on transmitter release magnitude.

  16. Vascular potassium channels in NVC.

    Science.gov (United States)

    Yamada, K

    2016-01-01

    It has long been proposed that the external potassium ion ([K(+)]0) works as a potent vasodilator in the dynamic regulation of local cerebral blood flow. Astrocytes may play a central role for producing K(+) outflow possibly through calcium-activated potassium channels on the end feet, responding to a rise in the intracellular Ca(2+) concentration, which might well reflect local neuronal activity. A mild elevation of [K(+)]0 in the end feet/vascular smooth muscle space could activate Na(+)/K(+)-ATPase concomitant with inwardly rectifying potassium (Kir) channels in vascular smooth muscle cells, leading to a hyperpolarization of vascular smooth muscle and relaxation of smooth muscle actin-positive vessels. Also proposed notion is endothelial calcium-activated potassium channels and/or inwardly rectifying potassium channel-mediated hyperpolarization of vascular smooth muscle. A larger elevation of [K(+)]0, which may occur pathophysiologically in such as spreading depression or stroke, can trigger a depolarization of vascular smooth muscle cells and vasoconstriction instead.

  17. Electrical Pacing of Cardiac Tissue Including Potassium Inward Rectification.

    Science.gov (United States)

    Galappaththige, Suran; Roth, Bradley J

    2015-01-01

    In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward rectifying potassium current (IK1) causes the inhibition of hyperpolarization. Numerical simulations were carried out using the bidomain model with potassium dynamics specified to be inward rectifying. In the simulations, adjacent regions of depolarization and hyperpolarization were observed surrounding the electrode. For cathodal currents the virtual anode produces a hyperpolarization that decreases over time. For long duration pulses the current-voltage curve is non-linear, with very small hyperpolarization compared to depolarization. For short pulses, the hyperpolarization is more prominent. Without the inward potassium rectification, the current voltage curve is linear and the hyperpolarization is evident for both long and short pulses. In conclusion, the inward rectification of the potassium current explains the inhibition of hyperpolarization for long duration stimulus pulses, but not for short duration pulses.

  18. Electrical Pacing of Cardiac Tissue Including Potassium Inward Rectification.

    Directory of Open Access Journals (Sweden)

    Suran Galappaththige

    Full Text Available In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward rectifying potassium current (IK1 causes the inhibition of hyperpolarization. Numerical simulations were carried out using the bidomain model with potassium dynamics specified to be inward rectifying. In the simulations, adjacent regions of depolarization and hyperpolarization were observed surrounding the electrode. For cathodal currents the virtual anode produces a hyperpolarization that decreases over time. For long duration pulses the current-voltage curve is non-linear, with very small hyperpolarization compared to depolarization. For short pulses, the hyperpolarization is more prominent. Without the inward potassium rectification, the current voltage curve is linear and the hyperpolarization is evident for both long and short pulses. In conclusion, the inward rectification of the potassium current explains the inhibition of hyperpolarization for long duration stimulus pulses, but not for short duration pulses.

  19. THE EFFECT OF CHRONIC INTERMITTENT HYPOBARIC HYPOXIA ON TRANSIENT OUTWARD AND STEADY-STATE OUTWARD POTASSIUM CHANNELS CURRENT IN VENTRICULAR MYOCYTES OF RATS%慢性间歇性低压低氧对大鼠心室肌细胞瞬时外向和稳态外向钾通道电流的影响

    Institute of Scientific and Technical Information of China (English)

    李伟聪; 杨晶; 魏燕; 张翼; 朱晓光; 张黎

    2013-01-01

    目的 探讨慢性间歇性低压低氧(chronic intermittent hypobaric hypoxia,CIHH)对大鼠心室肌细胞瞬时外向钾通道电流(transient outward potassium channel current,Ito)和稳态外向钾通道电流(steady-state outward potassium channel current,Iss)的影响.方法 通过低压氧舱制备CIHH大鼠模型,全细胞膜片钳方法 记录大鼠心室肌细胞Ito和Iss.结果 基础条件下,28d CIHH处理大鼠心室肌细胞Ito电流密度较对照组大鼠心室肌细胞明显增强(P<0.05),而Iss电流密度与对照组大鼠心室肌细胞相比较差异无统计学意义(P>0.05).模拟缺血可明显降低大鼠心室肌细胞Ito和Iss(P<0.05),但CIHH处理大鼠心室肌细胞Ito的降低明显小于对照组大鼠心室肌细胞(P<0.05),而Iss的降低与对照组心室肌细胞差异无统计学意义(P>0.05).结论 CIHH可增强大鼠心肌细胞Ito通道电流,并有效对抗模拟缺血对Ito通道的抑制,此作用可能是CIHH抗心律失常作用的离子机制之一.%Objective To observe the effect of chronic intermittent hypobaric hypoxia (CIHH) on transient outward potassium channel current (Ⅰto) and steady-state outward potassium channel current (Ⅰss) in ventricular myocytes of rats. Methods The rats were treated with CIHH for 28 days in a hypobaric chamber and the whole-cell patch clamp technique was used to record Ⅰto and Ⅰss in ventricular myocytes of rats. Results Compared with the control rats, the current density of Ito in the CIHH rats under basic conditions increased significantly ( P 0. 05 ) . The simulated ischemia decreased Ⅰto and Ⅰss obviously in ventricular myocytes of rats (P 0.05). Conclusion CIHH increased Ⅰto current and effectively antagonized the inhibition of simulated ischemia on Ⅰto channel in ventricular myocytes of rats, which might be one of the ionic mechanisms of anti-arrhythmia of CIHH.

  20. Membrane Currents in Airway Smooth Muscle: Mechanisms and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Luke J Janssen

    1997-01-01

    Full Text Available Electrophysiological and pharmacological techniques were used to characterize the membrane conductance changes underlying spasmogen-evoked depolarization in airway smooth muscle (ASM. Changes included a transient activation of chloride ion channels and prolonged suppression of potassium ion channels; both changes are triggered by release of internally sequestered calcium ion and in turn cause opening of voltage-dependent calcium channels. The resultant influx of calcium ions contributes to contraction as well as to refilling of the internal calcium ion pool. Bronchodilators, on the other hand, act in part through activation of potassium channels, with consequent closure of calcium channels. The tools used to study ion channels in ASM are described, and the investigations of the roles of ion channels in ASM physiology (autacoid-evoked depolarization and hyperpolarization and pathophysiology (airway hyperresponsiveness are summarized. Finally, how the relationship between ion channels and ASM function/dysfunction may relate to the treatment of asthma and related breathing disorders is discussed.

  1. Frequently Asked Questions on Potassium Iodide (KI)

    Science.gov (United States)

    ... Bioterrorism and Drug Preparedness Frequently Asked Questions on Potassium Iodide (KI) Share Tweet Linkedin Pin it More sharing ... Drug Administration (FDA) issued a final Guidance on Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies) ( ...

  2. Can Diuretics Decrease Your Potassium Level?

    Science.gov (United States)

    ... and Conditions High blood pressure (hypertension) Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, ... D. Yes, some diuretics — also called water pills — decrease potassium in the blood. Diuretics are commonly used ...

  3. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse.

    Science.gov (United States)

    Goldberg, Ethan M; Watanabe, Shigeo; Chang, Su Ying; Joho, Rolf H; Huang, Z Josh; Leonard, Christopher S; Rudy, Bernardo

    2005-05-25

    Potassium (K+) channel subunits of the Kv3 subfamily (Kv3.1-Kv3.4) display a positively shifted voltage dependence of activation and fast activation/deactivation kinetics when compared with other voltage-gated K+ channels, features that confer on Kv3 channels the ability to accelerate the repolarization of the action potential (AP) efficiently and specifically. In the cortex, the Kv3.1 and Kv3.2 proteins are expressed prominently in a subset of GABAergic interneurons known as fast-spiking (FS) cells and in fact are a significant determinant of the fast-spiking discharge pattern. However, in addition to expression at FS cell somata, Kv3.1 and Kv3.2 proteins also are expressed prominently at FS cell terminals, suggesting roles for Kv3 channels in neurotransmitter release. We investigated the effect of 1.0 mM tetraethylammonium (TEA; which blocks Kv3 channels) on inhibitory synaptic currents recorded in layer II/III neocortical pyramidal cells. Spike-evoked GABA release by FS cells was enhanced nearly twofold by 1.0 mM TEA, with a decrease in the paired pulse ratio (PPR), effects not reproduced by blockade of the non-Kv3 subfamily K+ channels also blocked by low concentrations of TEA. Moreover, in Kv3.1/Kv3.2 double knock-out (DKO) mice, the large effects of TEA were absent, spike-evoked GABA release was larger, and the PPR was lower than in wild-type mice. Together, these results suggest specific roles for Kv3 channels at FS cell terminals that are distinct from those of Kv1 and large-conductance Ca2+-activated K+ channels (also present at the FS cell synapse). We propose that at FS cell terminals synaptically localized Kv3 channels keep APs brief, limiting Ca2+ influx and hence release probability, thereby influencing synaptic depression at a synapse designed for sustained high-frequency synaptic transmission.

  4. The Efflux of Potassium from Electroplaques of Electric Eels

    Science.gov (United States)

    Whittam, R.; Guinnebault, M.

    1960-01-01

    1. The movement of labeled potassium ions has been measured across the innervated membranes of single isolated electroplaques, obtained from the organ of Sachs of Electrophorus electricus, mounted in an apparatus which allowed a separate washing of the two membranes. 2. Equations have been derived for a 3 compartment system in series in which tracer from a large pool in one outer compartment is collected in the other outer compartment. The amount of unlabeled ion in the middle compartment may be calculated and also the fluxes across the two membranes. 3. The flux of potassium across the innervated membranes of resting cells in a steady state was between 700 to 1000 µµmoles/cm.2/sec. and was unaffected by d-tubocurarine. 4. Direct stimulation of electroplaques with external electrodes caused an increase in the efflux of potassium from the innervated membrane of 5 to 8 µµmoles/cm.2/impulse, which was unaffected by d-tubocurarine; no change occurred in the efflux across the non-innervated membrane. 5. It is concluded that the discharge of electroplaques is accompanied by a small outward movement of potassium ions across the innervated membrane of the same order of magnitude as that found on excitation of squid giant axons. The data show a basic similarity of potassium movements across these two entirely different types of conducting membranes and suggest that this phenomenon may be a general feature of bioelectric currents propagating an action potential. PMID:13784938

  5. Increased serum potassium affects renal outcomes

    DEFF Research Database (Denmark)

    Miao, Y; Dobre, D; Heerspink, H J Lambers;

    2011-01-01

    To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.......To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy....

  6. 21 CFR 184.1639 - Potassium lactate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  7. 21 CFR 182.3640 - Potassium sorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  9. 21 CFR 172.730 - Potassium bromate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may be...

  10. 21 CFR 582.6625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  11. 21 CFR 582.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  12. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  13. 21 CFR 582.3640 - Potassium sorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  14. 21 CFR 582.5634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  15. 21 CFR 582.7610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  16. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  17. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    Science.gov (United States)

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell.

  18. [Effects of fertilization on aquic brown soil potassium budget and crop potassium allocation].

    Science.gov (United States)

    Jiang, Zishao; Yu, Wantai; Zhang, Lu

    2006-12-01

    Through a consecutive 15 years field trial on the aquic brown soil in Shenyang suburb of Northeast China, this paper studied the soil potassium budget and crop potassium allocation under effects of different fertilization systems. The results indicated that applying nitrogen or nitrogen plus phosphorous without potassium application accelerated the deficit of soil potassium. The potassium concentration in soybean grain and stalk was higher under potassium application than with no potassium supply, while that in maize grain had no significant difference in different fertilization treatments. The reutilization of recycled nutrients in farming system could mitigate the deficit of soil potassium budget, and such reutilization assorted with appropriate amount of potassium fertilization could not only produce high crop yield, but also balance soil potassium budget.

  19. Genotypic to expression profiling of bovine calcium channel, voltage-dependent, alpha-2/delta subunit 1 gene, and their association with bovine mastitis among Frieswal (HFX Sahiwal) crossbred cattle of Indian origin.

    Science.gov (United States)

    Deb, Rajib; Singh, Umesh; Kumar, Sushil; Kumar, Arun; Singh, Rani; Sengar, Gyanendra; Mann, Sandeep; Sharma, Arjava

    2014-04-01

    Calcium channel, voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene is considered to be an important noncytokine candidate gene influencing mastitis. Scanty of reports are available until today regarding the role play of CACNA2D1 gene on the susceptibility of bovine mastitis. We interrogated the CACNA2D1 G519663A [A>G] SNP by PCR-RFLP among two hundreds Frieswal (HF X Sahiwal) crossbred cattle of Indian origin. Genotypic frequency of AA (51.5, n=101) was comparatively higher than AG (35, n=70) and GG (14.5, n=29). Association of Somatic cell score (SCS) with genotypes revealed that, GG genotypes showing lesser count (less susceptible to mastitis) compare to AA and AG. Relative expression of CACNA2D1 transcript (in milk samples) was significantly higher among GG than AG and AA. Further we have also isolated blood sample from the all groups and PBMCs were cultured from each blood sample as per the standard protocol. They were treated with Calcium channel blocker and the expression level of the CACNA2D1 gene was evaluated by Real Time PCR. Results show that expression level decline in each genotypic group after treatment and expression level of GG are again significantly higher than AA and AG. Thus, it may be concluded that GG genotypic animals are favorable for selecting disease resistant breeds.

  20. The Voltage-Dependent Anion Channel 1 (AtVDAC1 Negatively Regulates Plant Cold Responses during Germination and Seedling Development in Arabidopsis and Interacts with Calcium Sensor CBL1

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Li

    2013-01-01

    Full Text Available The voltage-dependent anion channel (VDAC, a highly conserved major mitochondrial outer membrane protein, plays crucial roles in energy metabolism and metabolite transport. However, knowledge about the roles of the VDAC family in plants is limited. In this study, we investigated the expression pattern of VDAC1 in Arabidopsis and found that cold stress promoted the accumulation of VDAC1 transcripts in imbibed seeds and mature plants. Overexpression of VDAC1 reduced tolerance to cold stress in Arabidopsis. Phenotype analysis of VDAC1 T-DNA insertion mutant plants indicated that a vdac1 mutant line had faster germination kinetics under cold treatment and showed enhanced tolerance to freezing. The yeast two-hybrid system revealed that VDAC1 interacts with CBL1, a calcium sensor in plants. Like the vdac1, a cbl1 mutant also exhibited a higher seed germination rate. We conclude that both VDAC1 and CBL1 regulate cold stress responses during seed germination and plant development.

  1. Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes

    Science.gov (United States)

    Tanrıkulu, E. E.; Yıldız, D. E.; Günen, A.; Altındal, Ş.

    2015-09-01

    The main electrical and dielectric properties of Au/TiO2/n-4H-SiC (MIS) type Schottky barrier diodes (SBDs) have been investigated as functions of frequency and applied bias voltage. We believe that the use of high dielectric interfacial layer between metal and semiconductor can improve the performance of Schottky diodes. From the experimental data, both electrical and dielectric parameters were found as strong function of frequency and applied bias voltage. The Fermi energy level (EF), the concentration of doping donor atoms (P), barrier height (ΦB) and series resistance (Rs) values were obtained from reverse and forward bias C-V characteristics. The changes in EF and ND with frequency are considerably low. Therefore, their values were taken at about constant. The real and imaginary parts of dielectric constant (\\varepsilon \\prime , \\varepsilon \\prime\\prime ), tangent loss (tanδ), ac electrical conductivity (σac), and real and imaginary parts of electric modulus (M‧ and M″) values were also obtained from reverse and forward bias C-V and G/ω-V characteristics. In addition, the voltage dependent profiles of all these electrical and dielectric parameters were drawn for each frequency. These results confirmed that both electrical and dielectric properties of Au/TiO2/n-4H-SiC (MIS) type SBD are quite sensitive to both the frequency and applied bias voltage due to surface polarization, density distribution of interface traps (Dit), and interfacial layer.

  2. N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice.

    Science.gov (United States)

    Duan, J-H; Hodgdon, K E; Hingtgen, C M; Nicol, G D

    2014-06-13

    Major aspects of neuronal function are regulated by Ca(2+) including neurotransmitter release, excitability, developmental plasticity, and gene expression. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited both greater excitability and evoked release of neuropeptides compared to wildtype mice. Furthermore, augmented voltage-dependent sodium currents but not potassium currents contribute to the enhanced excitability. To determine the mechanisms giving rise to the enhanced release of substance P and calcitonin gene-related peptide in the Nf1+/- sensory neurons, the potential differences in the total voltage-dependent calcium current (ICa) as well as the contributions of individual Ca(2+) channel subtypes were assessed. Whole-cell patch-clamp recordings from small-diameter capsaicin-sensitive sensory neurons demonstrated that the average peak ICa densities were not different between the two genotypes. However, by using selective blockers of channel subtypes, the current density of N-type (Cav2.2) ICa was significantly larger in Nf1+/- neurons compared to wildtype neurons. In contrast, there were no significant differences in L-, P/Q- and R-type currents between the two genotypes. Quantitative real-time polymerase chain reaction measurements made from the isolated but intact dorsal root ganglia indicated that N-type (Cav2.2) and P/Q-type (Cav2.1) Ca(2+) channels exhibited the highest mRNA expression levels although there were no significant differences in the levels of mRNA expression between the genotypes. These results suggest that the augmented N-type (Cav2.2) ICa observed in the Nf1+/- sensory neurons does not result from genomic differences but may reflect post-translational or some other non-genomic modifications. Thus, our results demonstrate that sensory neurons from Nf1+/- mice, exhibit increased N-type ICa and likely account for the increased release of substance P and

  3. Bis(7)-tacrine/tacrine对大鼠DRG神经元延时整流钾通道电流的调制作用%Inhibitory effect of Bis(7)-tacrine/tacrine on delayed rectified potassium currents in rat DRG neurons

    Institute of Scientific and Technical Information of China (English)

    李享元; 李之望

    2012-01-01

    目的 研究乙酰胆碱酯酶抑制剂bis(7)-tacrine/tacrine[bis(7)-tetrahydroaminacrine]对大鼠DRG神经元的延时整流钾通道电流的调制作用.方法 在急性分离的DRG神经元标本上,采用全细胞膜片钳技术记录钾通道电流,研究bis(7)-tacrine/tacrine对DRG神经元延时整流钾通道电流的影响和作用.结果 bis(7)-tacrine对延迟整流钾通道电流IDR具有浓度依赖性的抑制作用,其半量效浓度为(IC50)(0.72±0.05)μmol*L-1,而tacrine抑制的半量效浓度(IC50)(58.3±3.7)μmol*L-1.结论 两种药物对DRG延时整流钾通道电流有浓度依赖性的抑制作用,bis(7)-tacrine的抑制强度高一个数量级,有利于抑制神经元的钾通道过于激活和兴奋,预防胞内钾离子过度丢失而引起的神经元凋亡,起到神经保护的作用.%Aim To investigate modulatory effect of bis ( 7 )-tacrine [ bis ( 7 )-tetrahydroaminacrine ], a novel dimeric AChE inhibitor, on rat DRG delayed rectified potassium channels. Methods Experiments were per -formed on neurons acutely isolated from rat dorsal root ganglion ( DRG ) potassium channels, and the delayed rectified currents ( IDR ) were recorded with whole-cell patch clamp technique. Results IDR were inhibited by bis( 7 )-tacrine, which were much more potent ( IC50 = 0. 72 ±0. 05 μmol · L-1 for IDR ) than those by tacrine ( IC50 =58. 3 ± 3. 7 μmol · L-1 for IDR ). bis( 7 )-tac-rine ( 1 μmol · L-1 ) shifts steady state activation curve and inactivation curve of IDR to the hyperpolar-izing direction. Conclusions The inhibitory effect of bis( 7 )-tacrine on IDR may be attributed to reduction of potential ranges of steady state activation and inactivation and delay of decay phase. Drugs may prevent loss of potassium ions and excitory toxicosis for neuron, and may be neuroprotective in A. D treatment.

  4. Thanatochemistry: Study of vitreous humor potassium

    Directory of Open Access Journals (Sweden)

    Nilesh Keshav Tumram

    2014-12-01

    Full Text Available This study has been carried out to determine the death interval from the biochemical parameter of vitreous potassium. In 308 medicolegal cases vitreous humor was taken and analyzed for potassium with known time of death. There was a linear rise in potassium concentration with increasing death interval. Regression equation was calculated for the same. The study indicates that potassium levels in vitreous for determining death interval are useful and can afford a good method of determining the death interval along with other traditional methods. Also the previously established formulae for estimating death interval from vitreous potassium were also studied.

  5. Analysis of a potassium lidar system for upper-atmospheric wind-temperature measurements.

    Science.gov (United States)

    Papen, G C; Gardner, C S; Pfenninger, W M

    1995-10-20

    We report a detailed analysis of wind-temperature (W/T) lidar systems based on mesospheric potassium as the tracer. Currently, most narrow-band (W/T) systems use sodium (Na) as the tracer because of its relatively large natural abundance, large cross section, and the ability to use Doppler-free Na spectroscopy to generate accurate absolute frequency markers. We show that a potassium-based system with existing near-infrared solid-state laser technology operating at the potassium D lines has the potential to make W/T measurements that are more accurate than current Na narrow-band systems and can be far simpler technically.

  6. The relation of potassium and sodium intakes to diet cost among U.S. adults.

    Science.gov (United States)

    Drewnowski, A; Rehm, C D; Maillot, M; Monsivais, P

    2015-01-01

    The 2010 Dietary Guidelines recommended that Americans increase potassium and decrease sodium intakes to reduce the burden of hypertension. One reason why so few Americans meet the recommended potassium or sodium goals may be perceived or actual food costs. This study explored the monetary costs associated with potassium and sodium intakes using national food prices and a representative sample of US adults. Dietary intake data from the 2001-2002 National Health and Nutrition Examination Survey were merged with a national food prices database. In a population of 4744 adults, the association between the energy-adjusted sodium and potassium intakes, and the sodium-to-potassium ratio (Na:K) and energy-adjusted diet cost was evaluated. Diets that were more potassium-rich or had lower Na:K ratios were associated with higher diet costs, while sodium intakes were not related to cost. The difference in diet cost between extreme quintiles of potassium intakes was $1.49 (95% confidence interval: 1.29, 1.69). A food-level analysis showed that beans, potatoes, coffee, milk, bananas, citrus juices and carrots are frequently consumed and low-cost sources of potassium. Based on existing dietary data and current American eating habits, a potassium-dense diet was associated with higher diet costs, while sodium was not. Price interventions may be an effective approach to improve potassium intakes and reduce the Na:K ratio of the diet. The present methods helped identify some alternative low-cost foods that were effective in increasing potassium intakes. The identification and promotion of lower-cost foods to help individuals meet targeted dietary recommendations could accompany future dietary guidelines.

  7. Plasma Potassium Levels in Healthy Prehypertension Subjects and the Role of A High Potassium Drink.

    Science.gov (United States)

    Farapti, Farapti; Sayogo, Savitri; Siregar, Parlindungan

    2017-02-24

    Most populations around the world consume less than the recommended levels of potassium. Long term low potassium intake could lead to decreased plasma potassium levels and induce hypokalemia. The increasing of plasma potassium levels 0,2-0,4 mmol/L by improving potassium intake decreased significantly blood pressure (BP). Assessing plasma potassium levels in healthy people related to potassium intake have not been studied. In this study, we analysed plasma potassium levels in prehypertension (PHT) subjects and to evaluate the effect of tender coconut water (TCW) as a high potassium drink on plasma potassium levels in PHT adults. Thirthy-two female aged 25-44 years were randomly allocated to 14 days on TCW or water in a parallel randomized clinical trial . The treatment (T) group received TCW 300 ml twice daily and the control (C) group received water 300 ml twice daily too. At baseline, plasma potassium levels was 3.71±0.41 mmol/L, and 22.58% were categorized as hypokalemia. After 14 days treatment, potassium plasma level between T and C groups were not significantly different (p=0,247). The change of plasma potassium levels in both groups showed tendency to increase but not statistically significant (p=0.166). In healthy prehypertension women, the low levels of potassium plasma may be caused by low potassium intake for long time and intervension with TCW 300 ml twice daily for 14 consecutive days has not proven yet to increase plasma potassium levels. It is necessary to give higher dose and longer time to increase potassium plasma in low potassium plasma level subjects.

  8. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    Science.gov (United States)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique

    Directory of Open Access Journals (Sweden)

    Leo van Buren

    2016-04-01

    Full Text Available Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106. Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day. Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products.

  10. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  11. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Science.gov (United States)

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  12. 低强度自主神经节刺激对犬心房离子电流的影响%Effects of 6 hours low level ganglionated plexi stimulation on canine atrial acetylcholine-regulated potassium current and L-type calcium current

    Institute of Scientific and Technical Information of China (English)

    黄兵; 鲁志兵; 吴柳; 何勃; 何文博; 崔博; 胡笑容; 江洪

    2012-01-01

    目的 研究6h低强度自主神经节(GP)刺激对犬乙酰胆碱依赖性钾电流(IKACh)和L型钙电流(ICaL)的影响.方法 22只成年杂种犬随机分为2组:实验组16只,对左上GP及右前GP予以6h低强度高频刺激;对照组6只,在心房远离GP处同样予以6h低强度刺激.刺激结束后分别用膜片钳、实时定量反转录-聚合酶链反应( RT-PCR)和蛋白免疫印迹(Western Blot)技术检测右心房(RA)、左心房(LA)及左上肺静脉(LSPV)处组织IKACh和ICaL密度,以及相应通道亚单位Kir 3.4和CaV 1.2的mRNA水平和蛋白含量水平.结果 与对照组相比,6h低强度高频刺激可以导致:①LSPV处IKACh电流密度[ (9.8±0.6) pA/pF对(7.9±0.3)pA/pF,P<0.01]和相应的通道亚单位Kir 3.4蛋白水平(3.3±0.5对1.6±0.1,P<0.001)显著增加;②RA、LA及LSPV处ICaL电流密度[RA:(2.0±0.2) pA/pF对(2.8±0.2) pA/pF,P<0.01;LA:(2.3±0.3) pA/pF对(5.0±0.3) pA/pF,P<0.001; LSPV:(2.5±0.2) pA/pF对(4.3±0.4)pA/pF,P<0.01]和相应的通道亚单位CaV 1.2蛋白水平(RA:0.8±0.1对1.1±0.1,P<0.01;LA:1.1±0.1对1.7±0.2,P<0.01;LSPV:0.5±0.1对0.8±0.1,P<0.001)显著下降;③Kir 3.4(RA:0.9±0.1对0.8±0.1,P>0.05;LA:1.0±0.1对0.9±0.1,P>0.05;LSPV:1.1±0.1对1.1 ±0.0,P>0.05)和CaV 1.2(RA:0.9±0.1对1.0±0.1,P>0.05;LA:0.8±0.1对0.9±0.1,P>0.05;LSPV:1.1±0.1对1.1±0.1,P>0.05)的mRNA水平差异无统计学意义.结论 6h低强度GP刺激可以通过转录后调节引起IKACh电流密度增加和ICaL电流密度的下降.%Objective To investigate the effects of 6 hours low level ganglionated plexi(GP) stimulation (LL-GPS) on canine atrial acetylcholine- regulated potassium current(IKACh ) and L-type calcium current( ICaL ).Methods In twenty-two anesthetized open-chest dogs,electrodes on the anterior right GP(ARGP) and superior left GP(SLGP) allowed 6 hours low level GP stimulation(0.1-1.0V)in 16 dogs and the similar low-level stimulation( without myocardial capture

  13. Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway.

    Science.gov (United States)

    Monnerat-Cahli, Gustavo; Alonso, Hiart; Gallego, Monica; Alarcón, Micaela Lopez; Bassani, Rosana A; Casis, Oscar; Medei, Emiliano

    2014-11-01

    Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.

  14. Sodium and potassium conductance changes during a membrane action potential.

    Science.gov (United States)

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.

  15. 钾电流在甲基苯丙胺引起神经元损伤中的作用%The involvement of outward potassium currents in methamphetamine-induced hippocampal neuron damage in fetal rat

    Institute of Scientific and Technical Information of China (English)

    蒋雷; 王军; 高蓉; 肖杭; 张劲松

    2013-01-01

    Objective To investigate the effects of methamphetamine (Meth) on the outward K+ currents and elucidate the role of outward K+ channels in Meth induced hippocampal neuron damage.Methods Hippocampal neurons were harvest from 18-day-old embryonic rats and were divided into two groups:the control group and the Meth treated group.Both of 4-AP and TEA sensitive K+ currents were recorded after the treatment of Meth by performing the whole cell patch clamp.Furthermore,the MTT and TUNEL assays were performed to evaluate the effects of K+ channel on hippocampal neuron damage mediated by Meth.For statistical comparison,One-way ANOVA and LSD multiple comparison test or t-test was used.P-value < 0.05 was considered to be statistically significant.Results The density of 4-AP sensitive K+ channel currents in Meth treated group [(120.1 ± 19.6) pA/pF,n =7] were significantly increased when compared with control group [(87.4 ± 12.5) pA/pF,n =10,P <0.01] and the increments of the currents induced by Meth was dose dependent.The MTT data showed that the cell viability was obviously decreased in Meth treated group (48.72 ± 4.38) % relative to the control group (100.07 ± 3.36) %.Moreover,application of K+ channel antagonist,4-AP (61.39 ± 3.15)%,and the high K+ solution (78.25 ± 9.42) % substantially enhanced the cell viability.The TUNEL assay showed there were protective effects of 4-AP and the high K+ solution against neuron damage observed during cells exposed to Meth.Conclusions The increments of 4-AP sensitive K+ channel currents induced by Meth might be involved in hippocampal neuron damage.%目的 探讨甲基苯丙胺(Meth)对外向钾电流的影响及外向型钾通道在Meth引起的海马神经元损伤过程中的作用.方法 以分离出的怀孕18 d Sprague-Dawley大鼠胎鼠的海马神经元作为实验对象,分为对照组和Meth处理组,采用全细胞膜片钳的实验方法,分别记录Meth处理后外向4-AP和TEA敏感型钾电流大小的变

  16. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  17. [Rare, severe hypersensitivity reaction to potassium iodide].

    Science.gov (United States)

    Korsholm, Anne Sofie; Ebbehøj, Eva; Richelsen, Bjørn

    2014-07-07

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acneiform iododerma that responded dramatically to withdrawal of the potassium iodide and administration with corticosteroids. Awareness of these adverse reactions may prevent prolonged hospitalization and unnecessary tests and treatments.

  18. RADIOACTIVITY AND PHYSIOLOGICAL ACTION OF POTASSIUM.

    Science.gov (United States)

    Loeb, R F

    1920-11-20

    1. The non-radioactive cesium ion can replace the potassium ion almost quantitatively in solutions required for the development of the egg of the sea urchin into swimming blastulae. 2. Thorium chloride and uranium acetate cannot replace the potassium chloride in the solutions required for the development of the egg. 3. Thorium chloride and uranium acetate do not antagonize the action of the potassium contained in sea water upon the development of eggs.

  19. 胡椒碱对H2O2所致兔心房肌细胞瞬时外向钾电流异常的保护作用%Protective effect of piperine on H2O2-induced abnormal transient outward potassium current in rabbit atrial myocytes

    Institute of Scientific and Technical Information of China (English)

    刘岩; 李泱; 林琨; 田苗; 王玉堂; 单兆亮

    2012-01-01

    目的 研究胡椒碱对H2O2引起的兔单个心房肌细胞瞬时外向钾电流(Ito)异常的保护作用.方法 采用全细胞膜片钳技术分析50μmol/L的H2O2对兔单个心房肌细胞Ito的影响,并研究预先应用7μmol/L的胡椒碱对其的保护作用.结果 7μmol/L胡椒碱对正常兔心房肌细胞Ito及其通道动力学无显著影响.在50μmol/L H2O2作用下,兔心房肌细胞Ito峰值由(39.3±5.4)pA/pF降低至(32.8±2.0)pA/pF(P<0.05),电流-电压曲线下移,通道稳态激活曲线右移,通道稳态失活曲线及恢复时间不变,关闭态失活加速.预先给予7 μ mol/L胡椒碱,明显减轻H2O2对Ito的抑制作用(P<0.01),并可减轻H2O2对瞬时外向钾通道动力学的异常影响.结论 胡椒碱可减轻氧化应激对心房肌细胞Ito的影响.%Objective To study the protective effect of piperine on H2O2-induced abnormal transient outward potassium current(Ito) in single rabbit atrial myocyte. Methods Effect of H2O2(50 μ mol/L) and piperine(7 μ mol/L) on Lto in single rabbit atrial myocyte was analyzed using the whole cell patch clamp technique. Results Piperine(7 μ mol/L) had no significant effect on Ito and its transient outward potassium channel dynamics. The peak value of IB in rabbit atrial myocytes decreased to (32.8 ± 2.0)pA/pF from (39.3 ± 5.4) pA/pF(P<0.05), the current-voltage curve of Ito was shifted down, the channel steady-state activation curve of Ito, was shifted to the right, the steady-state inactivation curve and the recovery time of Ito from inactivation did not change, the closed-state inactivation of Ito was accelerated, when H2O2(50 μ , mol/L) was applied. Piperine(7 μ mol/L) significantly alleviated the inhibitory effect of H2O2 on Lto and its transient outward potassium channel dynamics(P<0.01). Conclusion Piperine can alleviate H2O2induced abnormal Ito in rabbit atrial myocytes.

  20. Inward-rectifying potassium channelopathies: new insights into disorders of sodium and potassium homeostasis.

    Science.gov (United States)

    Cheng, Chih-Jen; Sung, Chih-Chien; Huang, Chou-Long; Lin, Shih-Hua

    2015-03-01

    Inward-rectifying potassium (Kir) channels allow more inward than outward potassium flux when channels are open in mammalian cells. At physiological resting membrane potentials, however, they predominantly mediate outward potassium flux and play important roles in regulating the resting membrane potential in diverse cell types and potassium secretion in the kidneys. Mutations of Kir channels cause human hereditary diseases collectively called Kir channelopathies, many of which are characterized by disorders of sodium and potassium homeostasis. Studies on these genetic Kir channelopathies have shed light on novel pathophysiological mechanisms, including renal sodium and potassium handling, potassium shifting in skeletal muscles, and aldosterone production in the adrenal glands. Here, we review several recent advances in Kir channels and their clinical implications in sodium and potassium homeostasis.

  1. Genetic Control of Potassium Channels.

    Science.gov (United States)

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  2. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    Science.gov (United States)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  3. Dendrotoxins: structure-activity relationships and effects on potassium ion channels.

    Science.gov (United States)

    Harvey, A L; Robertson, B

    2004-12-01

    Dendrotoxins are small proteins isolated from mamba (Dendroaspis) snakes. The original dendrotoxin was found in venom of the Eastern green mamba, Dendroaspis angusticeps, and related proteins were subsequently found in other mamba venoms. The dendrotoxins contain 57-60 amino acid residues cross-linked by three disulphide bridges, and they are homologous to Kunitz-type serine protease inhibitors, such as aprotinin (BPTI). The dendrotoxins have little or no anti-protease activity, but they block particular subtypes of voltage-dependent potassium channels of the Kv1 subfamily in neurones. Alpha-dendrotoxin from green mamba Dendroaspis angusticeps and toxin I from the black mamba Dendroaspis polylepis block cloned Kv1.1, Kv1.2 and Kv1.6 channels in the low nanomolar range; toxin K, also from the black mamba Dendroaspis polylepis, preferentially blocks Kv1.1 channels and is active at picomolar concentrations. Structural modifications and mutations to dendrotoxins have helped to define the molecular recognition properties of different types of K+ channels, although more work is needed to characterise the chemical features of the toxins that underlie their selectivity and potency at particular subtypes of channels. Dendrotoxins have been useful markers of subtypes of K+ channels in vivo, and dendrotoxins have become widely used as probes for studying the function of K+ channels in physiology and pathophysiology. With some pathological conditions being associated with voltage-gated K+ channels, analogues of dendrotoxins might have therapeutic potential.

  4. Cloning and characterization of a human delayed rectifier potassium channel gene.

    Science.gov (United States)

    Albrecht, B; Lorra, C; Stocker, M; Pongs, O

    1993-01-01

    A human genomic DNA library was screened for sequences homologues to the rat delayed rectifier Kv 2.1 (DRK1) K+ channel cDNA. Three phages were isolated which hybridized to Kv 2.1 cDNA probes. Alignment of the human genomic DNA sequence with the rat cDNA sequence indicated that the open reading frame (ORF) is interrupted by a large intervening sequence, that separates exons encoding the membrane spanning core region of the K+ channel polypeptide. The Kv 2.1 gene occurs once in the human genome and has been mapped to chromosome 20. The human, mouse and rat Kv 2.1 proteins have been highly conserved, showing only a few substitutions outside of the membrane spanning domains in the amino- and carboxy-terminal cytoplasmic domains. Nevertheless, expression of human DRK1 channels in Xenopus oocytes showed that mouse, rat and human Kv 2.1 channels have distinct pharmacological and electrophysiological properties. The observed differences in activation, voltage-dependence, 4-aminopyridine sensitivity and single-channel conductance have to be attributed to amino acid substitutions in the amino-and/or carboxy-terminal cytoplasmic domains. Obviously, these domains of Kv 2.1 channels influence biophysical K+ channel properties, which are thought to be determined solely by the membrane spanning core domain of potassium channels.

  5. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps.

    Science.gov (United States)

    Scherzer, Sönke; Böhm, Jennifer; Krol, Elzbieta; Shabala, Lana; Kreuzer, Ines; Larisch, Christina; Bemm, Felix; Al-Rasheid, Khaled A S; Shabala, Sergey; Rennenberg, Heinz; Neher, Erwin; Hedrich, Rainer

    2015-06-09

    The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels.

  6. METHODS OF AVAILABLE POTASSIUM ASSESSMENT IN ...

    African Journals Online (AJOL)

    AGROSEARCH UIL

    Soil potassium (K+) exists in solution, exchangeable, and non-exchangeable ... evaluating K availability under intensive cropping; as those soils considered sufficient in ... response to potassium, soil test methods should have a high correlation with .... loamy sand to sandy loam in texture with kaolinite being the dominant.

  7. Thanatochemistry: Study of synovial fluid potassium

    African Journals Online (AJOL)

    Nilesh Keshav Tumram

    2014-03-28

    Mar 28, 2014 ... sion equations, but these may be useless when dealing with eye trauma, ocular disorders or in muti- lated remains. .... potassium concentration which rises more rapidly in the first .... postmortem interval based on differential behaviour of vitreous ... course of potassium ion activity in cadaveric synovial fluid.

  8. Potassium in hypertension and cardiovascular disease.

    Science.gov (United States)

    Castro, Hector; Raij, Leopoldo

    2013-05-01

    The increased prevalence of hypertension and cardiovascular disease in industrialized societies undoubtedly is associated with the modern high-sodium/low-potassium diet. Extensive experimental and clinical data strongly link potassium intake to cardiovascular outcome. Most studies suggest that the sodium-to-potassium intake ratio is a better predictor of cardiovascular outcome than either nutrient individually. A high-sodium/low-potassium environment results in significant abnormalities in central hemodynamics, leading to potential target organ damage. Altered renal sodium handling, impaired endothelium-dependent vasodilatation, and increased oxidative stress are important mediators of this effect. It remains of paramount importance to reinforce consumption of a low-sodium/high-potassium diet as a critical strategy for prevention and treatment of hypertension and cardiovascular disease.

  9. Escitalopram block of hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Jeon, Ji Hyun; Lee, Hong Joon; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2014-01-01

    Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

  10. Effect of genistein on voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Shi-Ying Li; Bin-Bin Huang; Shou Ouyang

    2006-01-01

    AIM: To investigate the action of genistein (GST), a broad spectrum tyrosine kinase inhibitor, on voltagegated potassium channels in guinea pig proximal colon smooth muscle cells.METHODS: Smooth muscle cells in guinea pig proximal colon were enzymatically isolated. Nystatin-perforated whole cell patch clamp technique was used to record potassium currents including fast transient outward current (IKto) and delayed rectifier current (IKdr), two of which were isolated pharmacologically with 10 mmol/L tetraethylammonium or 5 mmol/L 4-aminopyridine.Contamination of calcium-dependent potassium currents was minimized with no calcium and 0.2 mmol/L CdCl2 in an external solution.RESULTS: GST (10-100 μmol/L) reversibly and dosedependently reduced the peak amplitude of IKto with an IC50value of 22.0±6.9 μmol/L. To a lesser extent, IKdr was also inhibited in both peak current and sustained current.GST could not totally block the outward potassium current as a fraction of the outWard potassium current,which was insensitive to GST. GST had no effect on the steady-state activation (n = 6) and inactivation kinetics(n =6) of IKto. Sodium orthovanadate (1 mmol/L), a potent inhibitor of tyrosine phosphatase, significantly inhibited GST-induced inhibition (P< 0.05).CONCLUSION: GST can dose-dependently and reversibly block voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells.

  11. Serum potassium concentrations: Importance of normokalaemia.

    Science.gov (United States)

    Heras, Manuel; Fernández-Reyes, María José

    2017-06-21

    Abnormalities in potassium concentrations are associated with morbidity and mortality. In recent years it has been considered that small variations in serum potassium concentrations within normal intervals may also be associated with mortality. Strategies for achieving normokalaemia include dietary measures, limiting the use of potassium retaining drugs, and use of conventional cation exchange resins (calcium/sodium polystyrene sulfonate) and/or the new non-absorbed cation exchange polymer (patiromer). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  12. The inactivating K+ current in GH3 pituitary cells and its modification by chemical reagents.

    Science.gov (United States)

    Oxford, G S; Wagoner, P K

    1989-01-01

    1. Whole-cell and single-channel recording techniques were applied to the study of the permeability and gating of inactivating K+ channels from clonal pituitary cells. 2. The cation selectivity sequence (measured from reversal potentials) for the channels underlying the inactivating K+ current was Tl+ greater than K+ greater than Rb+ greater than NH4+. The conductance sequence (determined from current amplitudes) was K+ = Tl+ greater than Rb+ greater than NH4+. 3. The inactivating current (IK(i] which was blocked by 4-aminopyridine (4-AP), activated at voltages more positive than -40 mV and half-inactivated at that voltage. Inactivation proceeded as the sum of two exponentials with mean time constants of 21 and 82 ms. Deactivation followed a single-exponential time course. 4. Recovery from inactivation was slow, voltage dependent and multi-exponential, taking more than 50 s near the cell's resting potential. 5. The magnitudes of outward current and of slope conductance increased as the concentration of external K+ was increased. 6. On-cell and outside-out membrane patches revealed minicurrents with gating and pharmacological properties identical to whole-cell currents. Single channels with inactivating characteristics, while rarely observed, had an average slope conductance of 6-8 pS. 7. Intracellular application of the disulphonic stilbene derivative, SITS, and the protein-modifying reagent, N-bromoacetamide (NBA), at concentrations of 0.2-1 mM for several tens of minutes dramatically slowed the decay (inactivation) of K+ currents and caused coincident increases in the magnitude of outward IK(i). 8. Extracellular application of NBA at much lower concentrations (1-100 microM) and much shorter exposure times (1-30 s) also slowed inactivation. This effect was reversible for brief applications at low doses, but became irreversible after longer exposures. 9. Both internal and external NBA shifted the steady-state inactivation-voltage relation by +10 mV and reduced

  13. Effects of angiotensin Ⅱ and captopril on outward potassium channel currents in canine atrial myocytes%血管紧张素Ⅱ及卡托普利对犬心房肌细胞外向钾通道电流的作用

    Institute of Scientific and Technical Information of China (English)

    代建军; 李广平; 李健; 许纲; 杨万松

    2009-01-01

    Objective To observe effects of angieminⅡ(AngⅡ)and captopril on outward potassium channel currents in canine atrial myoeytes,and to study mechanisnof Ang II and capupril on atrial arrhythmia.Method Ten healthy adult mongrel dogs(general class),weighing 15 to 20 kg,male and female informality,were provided bythe service centre of Tianjin Li-qun experimental animals.Single canine atrial myotcyte was acutely isolated and whole-cell configtmtion of the patch-clamp tchnique was used to detec trapidly activating delayed reefifier outward K+ current(Ikr),slowly activating delayed recti fier outward K+ current(Iks),ultra-rapidly aetivatin delayed rectifier outward K+ current(Ikur)and transient outward potassium current(Ito)before and after An II and captopril peffion.Software of pClamp 7.0 for windows and pClampfit 7.0 Was used to measure current and data were expressed as mean±standard deviation(x±s).SPSS 10.0 statistical was used for statistical analysis.The paired t test was useel for comparison betwn before and after treatment.P<0.05 was comidered as statistical significance.Results AngII(0.5/mol/L)increased Ikr and Iks,ilfibited Ito[(19.54±2.41)pA/pF vs.(24.83±2.52)pA/pF,P=0.001;(20.69±2.29)pA/pF Vfl.(25.59±3.42)pA/pF,P:0.0003;(6.34±1.93)pA/pF vs.(3.71±1.50)pA/pF,P=0.001)],and had no effect on k[(19.78±1.22 pA/pr Vs.(20.39±1.50)pA/pF,P=0.258)].Captopril(5tot/L)had no significant effect on Ikr.,b.k and[(19.11 4-4.91)pA/pF vs.(18.99 4-4.04)-∥pF,P=0.808;(20.76 4-2.89)pA/pF vs.(20.27 a-3.46)pA/pF,P=0.305;(18.50 4-3.78)pA/pF vs.(18.25 4-4.02)pA/pF,P=0.704;(7.31±1.99)pA/pF vs.(6.89±2.12)pA/pF,P=0.136)].Conclusioas AngⅡmay promote atrial electrical remocof atrial fibrillation through outward potassium currents.As angiotemin-eonverting enzy/ne inhibitor.captioruk can prevent atrial electrical rodding of atrial fibrillation by inhibiting renin-angiotensin-system.%目的 观察血管紧张素Ⅱ(AngⅡ)及卡托普利对犬心房肌细胞外向钾通道电

  14. Effects of potassium channel activators on transient inward current in guinea pig ventricular myocytes%钾通道激动剂对豚鼠心室肌动作电位及瞬间内向电流作用机制的探讨

    Institute of Scientific and Technical Information of China (English)

    张宏艳; 范崇济; 李小梅; 邢淑华; 潘永祜; 陈静; 杨楠; 陈朝晖

    2008-01-01

    Objective To investigate the mechanism of ATP-sensitive potassium channel(KATP) activator cromakaliam(CRK)on action potentials and transient inward current(Iti)in isolated guinea pig papillary and ventricular myocytes and to explore the mechanisms of effects of Iti and KATP treatment in idiopathic ventricular tachycardia.Methods The whole-cell patch clamp recording tec