WorldWideScience

Sample records for voltage-dependent inwardly rectifying

  1. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    Science.gov (United States)

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    Science.gov (United States)

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface andthe transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K+], and could be blocked by Ba2+ or Rb+. In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba2+ (or Rb+) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K+] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10−6 cm s−1 and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K+ depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of

  3. Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.

    Science.gov (United States)

    van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A

    2013-09-01

    Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.

  4. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    Science.gov (United States)

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  5. ‘Sleepy’ inward rectifier channels in guinea-pig cardiomyocytes are activated only during strong hyperpolarization

    Science.gov (United States)

    Liu, Gong Xin; Daut, Jürgen

    2002-01-01

    K+ channels of isolated guinea-pig cardiomyocytes were studied using the patch-clamp technique. At transmembrane potentials between −120 and −220 mV we observed inward currents through an apparently novel channel. The novel channel was strongly rectifying, no outward currents could be recorded. Between −200 and −160 mV it had a slope conductance of 42.8 ± 3.0 pS (s.d.; n = 96). The open probability (Po) showed a sigmoid voltage dependence and reached a maximum of 0.93 at −200 mV, half-maximal activation was approximately −150 mV. The voltage dependence of Po was not affected by application of 50 μm isoproterenol. The open-time distribution could be described by a single exponential function, the mean open time ranged between 73.5 ms at −220 mV and 1.4 ms at −160 mV. At least two exponential components were required to fit the closed time distribution. Experiments with different external Na+, K+ and Cl− concentrations suggested that the novel channel is K+ selective. Extracellular Ba2+ ions gave rise to a voltage-dependent reduction in Po by inducing long closed states; Cs+ markedly reduced mean open time at −200 mV. In cell-attached recordings the novel channel frequently converted to a classical inward rectifier channel, and vice versa. This conversion was not voltage dependent. After excision of the patch, the novel channel always converted to a classical inward rectifier channel within 0–3 min. This conversion was not affected by intracellular Mg2+, phosphatidylinositol (4,5)-bisphosphate or spermine. Taken together, our findings suggest that the novel K+ channel represents a different ‘mode’ of the classical inward rectifier channel in which opening occurs only at very negative potentials. PMID:11897847

  6. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

    Science.gov (United States)

    Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony

    2010-11-01

    HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. © 2010 Wiley-Liss, Inc.

  7. Boosting the signal: Endothelial inward rectifier K+ channels.

    Science.gov (United States)

    Jackson, William F

    2017-04-01

    Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of K IR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K + channel (K IR ) currents display a region of negative slope conductance at membrane potentials positive to the K + equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting K IR to amplify hyperpolarization induced by other K + channels and ion transporters. Increases in extracellular K + concentration activate K IR allowing them to sense extracellular K + concentration and transduce this change into membrane hyperpolarization. These properties position K IR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of K IR in capillaries in electrically active tissues may allow K IR to sense extracellular K + , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial K IR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future. © 2016 John Wiley & Sons Ltd.

  8. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization

    DEFF Research Database (Denmark)

    Liang, Bo; Nissen, Jakob D; Laursen, Morten

    2014-01-01

    The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle.......The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle....

  9. The function and molecular identity of inward rectifier channels in vestibular hair cells of the mouse inner ear

    Science.gov (United States)

    Levin, Michaela E.

    2012-01-01

    Inner ear hair cells respond to mechanical stimuli with graded receptor potentials. These graded responses are modulated by a host of voltage-dependent currents that flow across the basolateral membrane. Here, we examine the molecular identity and the function of a class of voltage-dependent ion channels that carries the potassium-selective inward rectifier current known as IK1. IK1 has been identified in vestibular hair cells of various species, but its molecular composition and functional contributions remain obscure. We used quantitative RT-PCR to show that the inward rectifier gene, Kir2.1, is highly expressed in mouse utricle between embryonic day 15 and adulthood. We confirmed Kir2.1 protein expression in hair cells by immunolocalization. To examine the molecular composition of IK1, we recorded voltage-dependent currents from type II hair cells in response to 50-ms steps from −124 to −54 in 10-mV increments. Wild-type cells had rapidly activating inward currents with reversal potentials close to the K+ equilibrium potential and a whole-cell conductance of 4.8 ± 1.5 nS (n = 46). In utricle hair cells from Kir2.1-deficient (Kir2.1−/−) mice, IK1 was absent at all stages examined. To identify the functional contribution of Kir2.1, we recorded membrane responses in current-clamp mode. Hair cells from Kir2.1−/− mice had significantly (P < 0.001) more depolarized resting potentials and larger, slower membrane responses than those of wild-type cells. These data suggest that Kir2.1 is required for IK1 in type II utricle hair cells and contributes to hyperpolarized resting potentials and fast, small amplitude receptor potentials in response to current inputs, such as those evoked by hair bundle deflections. PMID:22496522

  10. Changes in Inward Rectifier K+ Channels in Hepatic Stellate Cells During Primary Culture

    Science.gov (United States)

    Lee, Dong Hyeon; Kong, In Deok; Lee, Joong-Woo

    2008-01-01

    Purpose This study examined the expression and function of inward rectifier K+ channels in cultured rat hepatic stellate cells (HSC). Materials and Methods The expression of inward rectifier K+ channels was measured using real-time RT-PCR, and electrophysiological properties were determined using the gramicidin-perforated patch-clamp technique. Results The dominant inward rectifier K+ channel subtypes were Kir2.1 and Kir6.1. These dominant K+ channel subtypes decreased significantly during the primary culture throughout activation process. HSC can be classified into two subgroups: one with an inward-rectifying K+ current (type 1) and the other without (type 2). The inward current was blocked by Ba2+ (100 µM) and enhanced by high K+ (140 mM), more prominently in type 1 HSC. There was a correlation between the amplitude of the Ba2+-sensitive current and the membrane potential. In addition, Ba2+ (300 µM) depolarized the membrane potential. After the culture period, the amplitude of the inward current decreased and the membrane potential became depolarized. Conclusion HSC express inward rectifier K+ channels, which physiologically regulate membrane potential and decrease during the activation process. These results will potentially help determine properties of the inward rectifier K+ channels in HSC as well as their roles in the activation process. PMID:18581597

  11. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  12. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  13. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Pásek, Michal; Hořáková, Zuzana; Hošek, Jan; Šimurdová, Milena; Šimurda, Jiří

    2016-10-01

    Alcohol intoxication tends to induce arrhythmias, most often the atrial fibrillation. To elucidate arrhythmogenic mechanisms related to alcohol consumption, the effect of ethanol on main components of the ionic membrane current is investigated step by step. Considering limited knowledge, we aimed to examine the effect of clinically relevant concentrations of ethanol (0.8-80 mM) on acetylcholine-sensitive inward rectifier potassium current I K(Ach). Experiments were performed by the whole-cell patch clamp technique at 23 ± 1 °C on isolated rat and guinea-pig atrial myocytes, and on expressed human Kir3.1/3.4 channels. Ethanol induced changes of I K(Ach) in the whole range of concentrations applied; the effect was not voltage dependent. The constitutively active component of I K(Ach) was significantly increased by ethanol with the maximum effect (an increase by ∼100 %) between 8 and 20 mM. The changes were comparable in rat and guinea-pig atrial myocytes and also in expressed human Kir3.1/3.4 channels (i.e., structural correlate of I K(Ach)). In the case of the acetylcholine-induced component of I K(Ach), a dual ethanol effect was apparent with a striking heterogeneity of changes in individual cells. The effect correlated with the current magnitude in control: the current was increased by eth-anol in the cells showing small current in control and vice versa. The average effect peaked at 20 mM ethanol (an increase of the current by ∼20 %). Observed changes of action potential duration agreed well with the voltage clamp data. Ethanol significantly affected both components of I K(Ach) even in concentrations corresponding to light alcohol consumption.

  14. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine

    Czech Academy of Sciences Publication Activity Database

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Hořáková, Z.; Hošek, J.; Šimurdová, M.; Šimurda, J.

    2016-01-01

    Roč. 389, č. 10 (2016), s. 1049-1058 ISSN 0028-1298 Institutional support: RVO:61388998 Keywords : arrhythmias * atrial cardiomyocyte * inward rectifier potasssium current * ethanol * rat atrial cell model Subject RIV: BO - Biophysics Impact factor: 2.558, year: 2016

  15. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    Science.gov (United States)

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  16. Inhibition of the cardiac inward rectifier potassium currents by KB-R7943.

    Science.gov (United States)

    Abramochkin, Denis V; Alekseeva, Eugenia I; Vornanen, Matti

    2013-09-01

    KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K(+) currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6×10(-6) M and 3.5×10(-6) M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2×10(-7) M for rat and 2.5×10(-7) M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9-3×10(-6) M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1~INCXrectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models. © 2013.

  17. Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes

    OpenAIRE

    Ibarra, J.; Morley, G.E.; Delmar, M.

    1991-01-01

    The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. ...

  18. OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant.

    Science.gov (United States)

    Taylor, Clinton A; An, Sung-Wan; Kankanamalage, Sachith Gallolu; Stippec, Steve; Earnest, Svetlana; Trivedi, Ashesh T; Yang, Jonathan Zijiang; Mirzaei, Hamid; Huang, Chou-Long; Cobb, Melanie H

    2018-04-10

    The with-no-lysine (K) (WNK) signaling pathway to STE20/SPS1-related proline- and alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinase is an important mediator of cell volume and ion transport. SPAK and OSR1 associate with upstream kinases WNK 1-4, substrates, and other proteins through their C-terminal domains which interact with linear R-F-x-V/I sequence motifs. In this study we find that SPAK and OSR1 also interact with similar affinity with a motif variant, R-x-F-x-V/I. Eight of 16 human inward rectifier K + channels have an R-x-F-x-V motif. We demonstrate that two of these channels, Kir2.1 and Kir2.3, are activated by OSR1, while Kir4.1, which does not contain the motif, is not sensitive to changes in OSR1 or WNK activity. Mutation of the motif prevents activation of Kir2.3 by OSR1. Both siRNA knockdown of OSR1 and chemical inhibition of WNK activity disrupt NaCl-induced plasma membrane localization of Kir2.3. Our results suggest a mechanism by which WNK-OSR1 enhance Kir2.1 and Kir2.3 channel activity by increasing their plasma membrane localization. Regulation of members of the inward rectifier K + channel family adds functional and mechanistic insight into the physiological impact of the WNK pathway.

  19. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.

    Science.gov (United States)

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G

    2016-09-01

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.

  20. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  1. Agonist of inward rectifier K+ channels enhances the protection of ischemic postconditioning in isolated rat hearts.

    Science.gov (United States)

    Liao, Z; Feng, Z; Long, C

    2014-07-01

    Selective inhibition of inward rectifier K + channels could abolish the protection mediated by ischemic preconditioning, but the roles of these channels in ischemic postconditioning have not been well characterized. Our study aims to evaluate the effect of inward rectifier K + channels on the protection induced by ischemic postconditioning. Langendorff-perfused rat hearts (n=8 per group) were split into four groups: postconditioning hearts (IPO group); ischemic postconditioning with BaCl 2 hearts (PB group); ischemic postconditioning with zacopride hearts (PZ group); and without ischemic postconditioning (CON group). After suffering 30 minutes of global ischemia, groups IPO, PB and PZ went through 10 seconds of ischemic postconditioning with three different perfusates: respectively, Krebs-Henseleit buffer (IPO group); 20 μmol/L BaCl 2 (antagonist of the channel, PB group); 1 μmol/L zacopride (agonist of the channel, PZ group). At the end of reperfusion, the myocardial performance was better preserved in the PZ group than the other three groups. The PB group showed no significant differences from the CON group. Our study has shown that the I K1 channel agonist zacopride is associated with the enhancement of ischemic postconditioning. © The Author(s) 2014.

  2. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    Science.gov (United States)

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  3. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    Science.gov (United States)

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current I K1 , which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential I K1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that I K1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  4. Characterization of the chicken inward rectifier K+ channel IRK1/Kir2.1 gene

    Directory of Open Access Journals (Sweden)

    Locke Emily

    2004-11-01

    Full Text Available Abstract Background Inward rectifier potassium channels (IRK contribute to the normal function of skeletal and cardiac muscle cells. The chick inward rectifier K+ channel cIRK1/Kir2.1 is expressed in skeletal muscle, heart, brain, but not in liver; a distribution similar but not identical to that of mouse Kir2.1. We set out to explore regulatory domains of the cIRK1 promoter that enhance or inhibit expression of the gene in different cell types. Results We cloned and characterized the 5'-flanking region of cIRK1. cIRK1 contains two exons with splice sites in the 5'-untranslated region, a structure similar to mouse and human orthologs. cIRK1 has multiple transcription initiation sites, a feature also seen in mouse. However, while the chicken and mouse promoter regions share many regulatory motifs, cIRK1 possesses a GC-richer promoter and a putative TATA box, which appears to positively regulate gene expression. We report here the identification of several candidate cell/tissue specific cIRK1 regulatory domains by comparing promoter activities in expressing (Qm7 and non-expressing (DF1 cells using in vitro transcription assays. Conclusion While multiple transcription initiation sites and the combinatorial function of several domains in activating cIRK1 expression are similar to those seen in mKir2.1, the cIRK1 promoter differs by the presence of a putative TATA box. In addition, several domains that regulate the gene's expression differentially in muscle (Qm7 and fibroblast cells (DF1 were identified. These results provide fundamental data to analyze cIRK1 transcriptional mechanisms. The control elements identified here may provide clues to the tissue-specific expression of this K+ channel.

  5. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion

    Science.gov (United States)

    Liu, J-H; Bijlenga, P; Fischer-Lougheed, J; Occhiodoro, T; Kaelin, A; Bader, C R; Bernheim, L

    1998-01-01

    The role of K+ channels and membrane potential in myoblast fusion was evaluated by examining resting membrane potential and timing of expression of K+ currents at three stages of differentiation of human myogenic cells: undifferentiated myoblasts, fusion-competent myoblasts (FCMBs), and freshly formed myotubes. Two K+ currents contribute to a hyperpolarization of myoblasts prior to fusion: IK(NI), a non-inactivating delayed rectifier, and IK(IR), an inward rectifier. IK(NI) density is low in undifferentiated myoblasts, increases in FCMBs and declines in myotubes. On the other hand, IK(IR) is expressed in 28 % of the FCMBs and in all myotubes. IK(IR) is reversibly blocked by Ba2+ or Cs+. Cells expressing IK(IR) have resting membrane potentials of −65 mV. A block by Ba2+ or Cs+ induces a depolarization to a voltage determined by IK(NI) (−32 mV). Cs+ and Ba2+ ions reduce myoblast fusion. It is hypothesized that the IK(IR)-mediated hyperpolarization allows FCMBs to recruit Na+, K+ and T-type Ca2+ channels which are present in these cells and would otherwise be inactivated. FCMBs, rendered thereby capable of firing action potentials, could amplify depolarizing signals and may accelerate fusion. PMID:9705997

  6. Biophysical characterization of inwardly rectifying potassium currents (I(K1) I(K,ACh), I(K,Ca)) using sinus rhythm or atrial fibrillation action potential waveforms

    DEFF Research Database (Denmark)

    Tang, Chuyi; Skibsbye, Lasse; Yuan, Lei

    2015-01-01

    Although several physiological, pathophysiological and regulatory properties of classical inward rectifier K+ current I(K1), G-protein coupled inwardly-rectifying K+ current I(K,ACh) and the small-conductance Ca2+ activated K+ current I(K,Ca) have been identified, quantitative biophysical details...

  7. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster

    Science.gov (United States)

    The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Ki...

  8. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    Science.gov (United States)

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  9. Structural basis of drugs that increase cardiac inward rectifier Kir2.1 currents.

    Science.gov (United States)

    Gómez, Ricardo; Caballero, Ricardo; Barana, Adriana; Amorós, Irene; De Palm, Sue-Haida; Matamoros, Marcos; Núñez, Mercedes; Pérez-Hernández, Marta; Iriepa, Isabel; Tamargo, Juan; Delpón, Eva

    2014-11-01

    We hypothesize that some drugs, besides flecainide, increase the inward rectifier current (IK1) generated by Kir2.1 homotetramers (IKir2.1) and thus, exhibit pro- and/or antiarrhythmic effects particularly at the ventricular level. To test this hypothesis, we analysed the effects of propafenone, atenolol, dronedarone, and timolol on Kir2.x channels. Currents were recorded with the patch-clamp technique using whole-cell, inside-out, and cell-attached configurations. Propafenone (0.1 nM-1 µM) did not modify either IK1 recorded in human right atrial myocytes or the current generated by homo- or heterotetramers of Kir2.2 and 2.3 channels recorded in transiently transfected Chinese hamster ovary cells. On the other hand, propafenone increased IKir2.1 (EC50 = 12.0 ± 3.0 nM) as a consequence of its interaction with Cys311, an effect which decreased inward rectification of the current. Propafenone significantly increased mean open time and opening frequency at all the voltages tested, resulting in a significant increase of the mean open probability of the channel. Timolol, which interacted with Cys311, was also able to increase IKir2.1. On the contrary, neither atenolol nor dronedarone modified IKir2.1. Molecular modelling of the Kir2.1-drugs interaction allowed identification of the pharmacophore of drugs that increase IKir2.1. Kir2.1 channels exhibit a binding site determined by Cys311 that is responsible for drug-induced IKir2.1 increase. Drug binding decreases channel affinity for polyamines and current rectification, and can be a mechanism of drug-induced pro- and antiarrhythmic effects not considered until now. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. Inward rectifier potassium current IKir promotes intrinsic pacemaker activity of thalamocortical neurons.

    Science.gov (United States)

    Amarillo, Yimy; Tissone, Angela I; Mato, Germán; Nadal, Marcela S

    2018-06-01

    Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (rectifier potassium current I Kir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of I Kir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of I Kir and hyperpolarization-activated cationic current I h that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that I Kir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with I h and increases the robustness of low threshold-activated calcium current I T -mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current I Kir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that I Kir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current I h ; and increases the robustness of oscillations mediated by the low threshold-activated calcium current I T . Upregulation of I Kir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).

  11. Divalent ion block of inward rectifier current in human capillary endothelial cells and effects on resting membrane potential

    Science.gov (United States)

    Jow, Flora; Numann, Randy

    1998-01-01

    Cultured human capillary endothelial cells (HCEC) contain a large inward rectifier current, IK(IR), that can be abolished by removing external K+ or by adding 50 μm Ba2+.We show that IK(IR) is responsible for maintaining the hyperpolarized potential (−60.6 ± 0.5 mV, n = 83) of HCEC. Blocking IK(IR) with 50 μm Ba2+ shifts the zero current level and depolarizes HCEC by 36.5 ± 1.3 mV (n = 4).Increasing external Ca2+ concentration ([Ca2+]o) from 0.5 to 7 mm reduces the magnitude of IK(IR) by 36.5 ± 2.3 % (n = 5) and depolarizes the cells by 10.33 ± 2.4 mV (n = 3), whereas decreasing [Ca2+]o from 1.8 to 0.5 mm increases the amplitude of IK(IR) by 6.9 ± 1.9 % (n = 4). The relationship between [Ca2+]o and the percentage block of IK(IR) gives a Kd value of 5.4 ± 0.6 mm at −120 mV.IK(IR) is also blocked by other divalent ions, with Ba2+ >> Sr2+ > Mg2+ > Mn2+= Ca2+, and the block of peak current at −120 mV being 85.3 ± 3.2 % (n = 5) for 50 μm Ba2+, 62.9 ± 2.2 % (n = 5) for 5 mm Sr2+, 40.7 ± 2.5 % (n = 9) for 5 mm Mg2+, 33.4 ± 2.1 % (n = 5) for 5 mm Mn2+ and 32.9 ± 2.1 % (n = 5) for 5 mm Ca2+.The voltage dependence of Sr2+ block of peak IK(IR) occurred with a Kd value of 1.0 ± 0.09 mm for −140 mV, 1.9 ± 0.16 mm for −130 mV, 3.1 ± 0.28 mm for −120 mV, 4.6 ± 0.34 mm for −110 mV and 6.4 ± 0.5 mm for −100 mV (n = 5), with a calculated electrical distance (δ) of 0.44 from the outside. PMID:9729622

  12. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  13. The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels.

    Science.gov (United States)

    Cukras, C A; Jeliazkova, I; Nichols, C G

    2002-09-01

    Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.

  14. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation.

    Science.gov (United States)

    Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing

    2014-07-01

    Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.

  15. Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons.

    Science.gov (United States)

    Yang, Yoon-Sil; Jeon, Sang-Chan; Kim, Dong-Kwan; Eun, Su-Yong; Jung, Sung-Cherl

    2017-03-01

    Excessive influx and the subsequent rapid cytosolic elevation of Ca 2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca 2+ level in normal as well as pathological conditions. Delayed rectifier K + channels (I DR channels) play a role to suppress membrane excitability by inducing K + outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca 2+ -mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of I DR channels to hyperexcitable conditions induced by high Ca 2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca 2+ -treatment significantly increased the amplitude of I DR without changes of gating kinetics. Nimodipine but not APV blocked Ca 2+ -induced I DR enhancement, confirming that the change of I DR might be targeted by Ca 2+ influx through voltage-dependent Ca 2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I DR enhancement was not affected by either Ca 2+ -induced Ca 2+ release (CICR) or small conductance Ca 2+ -activated K + channels (SK channels). Furthermore, PP2 but not H89 completely abolished I DR enhancement under high Ca 2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca 2+ -mediated I DR enhancement. Thus, SFKs may be sensitive to excessive Ca 2+ influx through VDCCs and enhance I DR to activate a neuroprotective mechanism against Ca 2+ -mediated hyperexcitability in neurons.

  16. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  17. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-05-01

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach) , a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  18. EFFECT OF ETHANOL AND ACETALDEHYDE AT CLINICALLY RELEVANT CONCENTRATIONS ON ATRIAL INWARD RECTIFIER POTASSIUM CURRENT I-K1 SEPARATE AND COMBINED EFFECT

    Czech Academy of Sciences Publication Activity Database

    Hořáková, Z.; Matejovič, P.; Pásek, Michal; Hošek, J.; Šimurdová, M.; Šimurda, J.; Bébarová, M.

    2016-01-01

    Roč. 67, č. 3 (2016), s. 339-351 ISSN 0867-5910 Institutional support: RVO:61388998 Keywords : arrhythmias * cardiomyocyte * inward rectifier potassium current * ethanol * mathematical model Subject RIV: BO - Biophysics Impact factor: 2.883, year: 2016

  19. Opening of the inward rectifier potassium channel alleviates maladaptive tissue repair following myocardial infarction.

    Science.gov (United States)

    Liu, Chengfang; Liu, Enli; Luo, Tiane; Zhang, Weifang; He, Rongli

    2016-08-01

    Activation of the inward rectifier potassium current (IK1) channel has been reported to be associated with suppression of ventricular arrhythmias. In this study, we tested the hypothesis that opening of the IK1 channel with zacopride (ZAC) was involved in the modulation of tissue repair after myocardial infarction. Sprague-Dawley rats were subject to coronary artery ligation and ZAC was administered intraperitoneally (15 µg/kg/day) for 28 days. Compared with the ischemia group, treatment with ZAC significantly reduced the ratio of heart/body weight and the cross-sectional area of cardiomyocytes, suggesting less cardiac hypertrophy. ZAC reduced the accumulation of collagen types I and III, accompanied with decrease of collagen area, which were associated with a reduction of collagen deposition in the fibrotic myocardium. Echocardiography showed improved cardiac function, evidenced by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension, and the increased ejection fraction and fractional shortening in ZAC-treated animals (all P < 0.05 vs. ischemia group). In coincidence with these changes, ZAC up-regulated the protein level of the IK1 channel and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 (p70S6) kinase. Administration of chloroquine alone, an IK1 channel antagonist, had no effect on all the parameters measured, but significantly blocked the beneficial effects of ZAC on cardiac repair. In conclusion, opening of the IK1 channel with ZAC inhibits maladaptive tissue repair and improves cardiac function, potentially mediated by the inhibition of ischemia-activated mTOR-p70S6 signaling pathway via the IK1 channel. So the development of pharmacological agents specifically targeting the activation of the IK1 channel may protect the heart against myocardial ischemia-induced cardiac dysfunction. © The Author 2016. Published by Oxford University Press on behalf of

  20. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  1. Inward Rectifier K+ Currents Are Regulated by CaMKII in Endothelial Cells of Primarily Cultured Bovine Pulmonary Arteries.

    Science.gov (United States)

    Qu, Lihui; Yu, Lei; Wang, Yanli; Jin, Xin; Zhang, Qianlong; Lu, Ping; Yu, Xiufeng; Zhong, Weiwei; Zheng, Xiaodong; Cui, Ningren; Jiang, Chun; Zhu, Daling

    2015-01-01

    Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir) play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs) that was regulated by the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren't determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.

  2. Inward Rectifier K+ Currents Are Regulated by CaMKII in Endothelial Cells of Primarily Cultured Bovine Pulmonary Arteries.

    Directory of Open Access Journals (Sweden)

    Lihui Qu

    Full Text Available Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs that was regulated by the Ca2+/calmodulin (CaM-dependent protein kinase II (CaMKII. In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren't determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.

  3. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  4. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  5. Short- and long-term inhibition of cardiac inward-rectifier potassium channel current by an antiarrhythmic drug bepridil.

    Science.gov (United States)

    Ma, Fangfang; Takanari, Hiroki; Masuda, Kimiko; Morishima, Masaki; Ono, Katsushige

    2016-07-01

    Bepridil is an effective antiarrhythmic drug on supraventricular and ventricular arrhythmias, and inhibitor of calmodulin. Recent investigations have been elucidating that bepridil exerts antiarrhythmic effects through its acute and chronic application for patients. The aim of this study was to identify the efficacy and the potential mechanism of bepridil on the inward-rectifier potassium channel in neonatal rat cardiomyocytes in acute- and long-term conditions. Bepridil inhibited inward-rectifier potassium current (I K1) as a short-term effect with IC50 of 17 μM. Bepridil also reduced I K1 of neonatal cardiomyocytes when applied for 24 h in the culture medium with IC50 of 2.7 μM. Both a calmodulin inhibitor (W-7) and an inhibitor of calmodulin-kinase II (KN93) reduced I K1 when applied for 24 h as a long-term effect in the same fashion, suggesting that the long-term application of bepridil inhibits I K1 more potently than that of the short-term application through the inhibition of calmodulin kinase II pathway in cardiomyocytes.

  6. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier.

    Science.gov (United States)

    Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre

    2017-07-01

    Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4  M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7  M) or selective GIRK channels blocker tertiapin (10 -6  M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4  M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.

  7. Kir 4.1 inward rectifier potassium channel is upregulated in astrocytes in a murine multiple sclerosis model.

    Science.gov (United States)

    Mercado, Francisco; Almanza, Angélica; Rubio, Nazario; Soto, Enrique

    2018-06-11

    Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K + inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  9. N-(2-methoxyphenyl) benzenesulfonamide, a novel regulator of neuronal G protein-gated inward rectifier K+ channels.

    Science.gov (United States)

    Walsh, Kenneth B; Gay, Elaine A; Blough, Bruce E; Geurkink, David W

    2017-11-15

    G protein-gated inward rectifier K + (GIRK) channels are members of the super-family of proteins known as inward rectifier K + (Kir) channels and are expressed throughout the peripheral and central nervous systems. Neuronal GIRK channels are the downstream targets of a number of neuromodulators including opioids, somatostatin, dopamine and cannabinoids. Previous studies have demonstrated that the ATP-sensitive K + channel, another member of the Kir channel family, is regulated by sulfonamide drugs. Therefore, to determine if sulfonamides also modulate GIRK channels, we screened a library of arylsulfonamide compounds using a GIRK channel fluorescent assay that utilized pituitary AtT20 cells expressing GIRK channels along with the somatostatin type-2 and -5 receptors. Enhancement of the GIRK channel fluorescent signal by one compound, N-(2-methoxyphenyl) benzenesulfonamide (MPBS), was dependent on the activation of the channel by somatostatin. In whole-cell patch clamp experiments, application of MPBS both shifted the somatostatin concentration-response curve (EC 50 = 3.5nM [control] vs.1.0nM [MPBS]) for GIRK channel activation and increased the maximum GIRK current measured with 100nM somatostatin. However, GIRK channel activation was not observed when MPBS was applied to the cells in the absence of somatostatin. While the MPBS structural analog 4-fluoro-N-(2-methoxyphenyl) benzenesulfonamide also augmented the somatostatin-induced GIRK fluorescent signal, no increase in the signal was observed with the sulfonamides tolbutamide, sulfapyridine and celecoxib. In conclusion, MPBS represents a novel prototypic GPCR-dependent regulator of neuronal GIRK channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.

    Science.gov (United States)

    Masia, Ricard; Krause, Daniela S; Yellen, Gary

    2015-02-01

    Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. Copyright © 2015 the American Physiological Society.

  11. LRET Determination of Molecular Distances during pH Gating of the Mammalian Inward Rectifier Kir1.1b.

    Science.gov (United States)

    Nanazashvili, Mikheil; Sánchez-Rodríguez, Jorge E; Fosque, Ben; Bezanilla, Francisco; Sackin, Henry

    2018-01-09

    Gating of the mammalian inward rectifier Kir1.1 at the helix bundle crossing (HBC) by intracellular pH is believed to be mediated by conformational changes in the C-terminal domain (CTD). However, the exact motion of the CTD during Kir gating remains controversial. Crystal structures and single-molecule fluorescence resonance energy transfer of KirBac channels have implied a rigid body rotation and/or a contraction of the CTD as possible triggers for opening of the HBC gate. In our study, we used lanthanide-based resonance energy transfer on single-Cys dimeric constructs of the mammalian renal inward rectifier, Kir1.1b, incorporated into anionic liposomes plus PIP 2 , to determine unambiguous, state-dependent distances between paired Cys residues on diagonally opposite subunits. Functionality and pH dependence of our proteoliposome channels were verified in separate electrophysiological experiments. The lanthanide-based resonance energy transfer distances measured in closed (pH 6) and open (pH 8) conditions indicated neither expansion nor contraction of the CTD during gating, whereas the HBC gate widened by 8.8 ± 4 Å, from 6.3 ± 2 to 15.1 ± 6 Å, during opening. These results are consistent with a Kir gating model in which rigid body rotation of the large CTD around the permeation axis is correlated with opening of the HBC hydrophobic gate, allowing permeation of a 7 Å hydrated K ion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects.

    Science.gov (United States)

    Chen, Rui; Swale, Daniel R

    2018-01-25

    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  13. The inward rectifier current inhibitor PA-6 terminates atrial fibrillation and does not cause ventricular arrhythmias in goat and dog models

    NARCIS (Netherlands)

    Ji, Yuan; Varkevisser, Rosanne; Opacic, Dragan; Bossu, Alexandre; Kuiper, Marion; Beekman, Jet D.M.; Yang, Sihyung; Khan, Azinwi Phina; Dobrev, Dobromir; Voigt, Niels; Wang, Michael Zhuo; Verheule, Sander; Vos, Marc A.; van der Heyden, Marcel A.G.

    2017-01-01

    Background and Purpose: The density of the inward rectifier current (IK1) increases in atrial fibrillation (AF), shortening effective refractory period and thus promoting atrial re-entry. The synthetic compound pentamidine analogue 6 (PA-6) is a selective and potent IK1 inhibitor. We tested PA-6 for

  14. Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart.

    Science.gov (United States)

    Hassinen, Minna; Haverinen, Jaakko; Hardy, Matt E; Shiels, Holly A; Vornanen, Matti

    2015-12-01

    Electrophysiological properties and molecular background of the zebrafish (Danio rerio) cardiac inward rectifier current (IK1) were examined. Ventricular myocytes of zebrafish have a robust (-6.7 ± 1.2 pA pF(-1) at -120 mV) strongly rectifying and Ba(2+)-sensitive (IC50 = 3.8 μM) IK1. Transcripts of six Kir2 channels (drKir2.1a, drKir2.1b, drKir2.2a, drKir2.2b, drKir2.3, and drKir2.4) were expressed in the zebrafish heart. drKir2.4 and drKir2.2a were the dominant isoforms in both the ventricle (92.9 ± 1.5 and 6.3 ± 1.5%) and the atrium (28.9 ± 2.9 and 64.7 ± 3.0%). The remaining four channels comprised together less than 1 and 7 % of the total transcripts in ventricle and atrium, respectively. The four main gene products (drKir2.1a, drKir2.2a, drKir2.2b, drKir2.4) were cloned, sequenced, and expressed in HEK cells for electrophysiological characterization. drKir2.1a was the most weakly rectifying (passed more outward current) and drKir2.2b the most strongly rectifying (passed less outward current) channel, whilst drKir2.2a and drKir2.4 were intermediate between the two. In regard to sensitivity to Ba(2+) block, drKir2.4 was the most sensitive (IC50 = 1.8 μM) and drKir2.1a the least sensitive channel (IC50 = 132 μM). These findings indicate that the Kir2 isoform composition of the zebrafish heart markedly differs from that of mammalian hearts. Furthermore orthologous Kir2 channels (Kir2.1 and Kir2.4) of zebrafish and mammals show striking differences in Ba(2+)-sensitivity. Structural and functional differences needs to be taken into account when zebrafish is used as a model for human cardiac electrophysiology, cardiac diseases, and in screening cardioactive substances.

  15. Left-to-Right Atrial Inward Rectifier Potassium Current Gradients in Patients With Paroxysmal Versus Chronic Atrial Fibrillation

    Science.gov (United States)

    Voigt, Niels; Trausch, Anne; Knaut, Michael; Matschke, Klaus; Varró, András; Van Wagoner, David R.; Nattel, Stanley; Ravens, Ursula; Dobrev, Dobromir

    2018-01-01

    Background Recent evidence suggests that atrial fibrillation (AF) is maintained by high-frequency reentrant sources with a left-to-right–dominant frequency gradient, particularly in patients with paroxysmal AF (pAF). Unequal left-to-right distribution of inward rectifier K+ currents has been suggested to underlie this dominant frequency gradient, but this hypothesis has never been tested in humans. Methods and Results Currents were measured with whole-cell voltage-clamp in cardiomyocytes from right atrial (RA) and left (LA) atrial appendages of patients in sinus rhythm (SR) and patients with AF undergoing cardiac surgery. Western blot was used to quantify protein expression of IK1 (Kir2.1 and Kir2.3) and IK,ACh (Kir3.1 and Kir3.4) subunits. Basal current was ≈2-fold larger in chronic AF (cAF) versus SR patients, without RA-LA differences. In pAF, basal current was ≈2-fold larger in LA versus RA, indicating a left-to-right atrial gradient. In both atria, Kir2.1 expression was ≈2-fold greater in cAF but comparable in pAF versus SR. Kir2.3 levels were unchanged in cAF and RA-pAF but showed a 51% decrease in LA-pAF. In SR, carbachol-activated (2 μmol/L) IK,ACh was 70% larger in RA versus LA. This right-to-left atrial gradient was decreased in pAF and cAF caused by reduced IK,ACh in RA only. Similarly, in SR, Kir3.1 and Kir3.4 proteins were greater in RA versus LA and decreased in RA of pAF and cAF. Kir3.1 and Kir3.4 expression was unchanged in LA of pAF and cAF. Conclusions Our results support the hypothesis that a left-to-right gradient in inward rectifier background current contributes to high-frequency sources in LA that maintain pAF. These findings have potentially important implications for development of atrial-selective therapeutic approaches. PMID:20657029

  16. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    Science.gov (United States)

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel

  17. Inverse agonist-like action of cadmium on G-protein-gated inward-rectifier K+ channels

    International Nuclear Information System (INIS)

    Inanobe, Atsushi; Matsuura, Takanori; Nakagawa, Atsushi; Kurachi, Yoshihisa

    2011-01-01

    Highlights: → We examined allosteric control of K + channel gating. → We identified a high-affinity site for Cd 2+ to inhibit Kir3.2 activity. → The 6-coordination geometry supports the binding. → Cd 2+ inhibits Kir3.2 by trapping the conformation in the closed state. -- Abstract: The gate at the pore-forming domain of potassium channels is allosterically controlled by a stimulus-sensing domain. Using Cd 2+ as a probe, we examined the structural elements responsible for gating in an inward-rectifier K + channel (Kir3.2). One of four endogenous cysteines facing the cytoplasm contributes to a high-affinity site for inhibition by internal Cd 2+ . Crystal structure of its cytoplasmic domain in complex with Cd 2+ reveals that octahedral coordination geometry supports the high-affinity binding. This mode of action causes the tethering of the N-terminus to CD loop in the stimulus-sensing domain, suggesting that their conformational changes participate in gating and Cd 2+ inhibits Kir3.2 by trapping the conformation in the closed state like 'inverse agonist'.

  18. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production.

    Science.gov (United States)

    Raphemot, Rene; Estévez-Lao, Tania Y; Rouhier, Matthew F; Piermarini, Peter M; Denton, Jerod S; Hillyer, Julián F

    2014-08-01

    Inward rectifier potassium (Kir) channels play essential roles in regulating diverse physiological processes. Although Kir channels are encoded in mosquito genomes, their functions remain largely unknown. In this study, we identified the members of the Anopheles gambiae Kir gene family and began to investigate their function. Notably, we sequenced the A. gambiae Kir1 (AgKir1) gene and showed that it encodes all the canonical features of a Kir channel: an ion pore that is composed of a pore helix and a selectivity filter, two transmembrane domains that flank the ion pore, and the so-called G-loop. Heterologous expression of AgKir1 in Xenopus oocytes revealed that this gene encodes a functional, barium-sensitive Kir channel. Quantitative RT-PCR experiments then showed that relative AgKir1 mRNA levels are highest in the pupal stage, and that AgKir1 mRNA is enriched in the adult ovaries. Gene silencing of AgKir1 by RNA interference did not affect the survival of female mosquitoes following a blood meal, but decreased their egg output. These data provide evidence for a new role of Kir channels in mosquito fecundity, and further validates them as promising molecular targets for the development of a new class of mosquitocides to be used in vector control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Inverse agonist-like action of cadmium on G-protein-gated inward-rectifier K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Inanobe, Atsushi, E-mail: inanobe@pharma2.med.osaka-u.ac.jp [Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka (Japan); Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka (Japan); Matsuura, Takanori [Laboratory of Protein Informatics, Institute for Protein Research, Osaka University, Osaka (Japan); Nakagawa, Atsushi [Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Osaka (Japan); Kurachi, Yoshihisa, E-mail: ykurachi@pharma2.med.osaka-u.ac.jp [Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka (Japan); Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka (Japan)

    2011-04-08

    Highlights: {yields} We examined allosteric control of K{sup +} channel gating. {yields} We identified a high-affinity site for Cd{sup 2+} to inhibit Kir3.2 activity. {yields} The 6-coordination geometry supports the binding. {yields} Cd{sup 2+} inhibits Kir3.2 by trapping the conformation in the closed state. -- Abstract: The gate at the pore-forming domain of potassium channels is allosterically controlled by a stimulus-sensing domain. Using Cd{sup 2+} as a probe, we examined the structural elements responsible for gating in an inward-rectifier K{sup +} channel (Kir3.2). One of four endogenous cysteines facing the cytoplasm contributes to a high-affinity site for inhibition by internal Cd{sup 2+}. Crystal structure of its cytoplasmic domain in complex with Cd{sup 2+} reveals that octahedral coordination geometry supports the high-affinity binding. This mode of action causes the tethering of the N-terminus to CD loop in the stimulus-sensing domain, suggesting that their conformational changes participate in gating and Cd{sup 2+} inhibits Kir3.2 by trapping the conformation in the closed state like 'inverse agonist'.

  1. Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes.

    Science.gov (United States)

    Horváth, András; Lemoine, Marc D; Löser, Alexandra; Mannhardt, Ingra; Flenner, Frederik; Uzun, Ahmet Umur; Neuber, Christiane; Breckwoldt, Kaja; Hansen, Arne; Girdauskas, Evaldas; Reichenspurner, Hermann; Willems, Stephan; Jost, Norbert; Wettwer, Erich; Eschenhagen, Thomas; Christ, Torsten

    2018-03-13

    Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (I K1 ). Here, I K1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. I K1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. I K1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and I K,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that I K1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Effects of different components of serum after radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of myocardial cells

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianmin; Xiao Jiasi

    1997-01-01

    Objective: To study the effects of different components of serum in rats inflicted with radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of cultured myocardial cells. Method: Using patch clamp method to study the action of single ion channel. Results: The low molecular and lipid components of serum after different injuries models could all activate the inward rectifier potassium channel in cultured myocardial cells. The components of serum after combined radiation-burn injury showed the most significant effect, and the way of this effect was different from that from single injury. Conclusion: The serum components post injury altered the electric characteristic of myocardial cells, which may play a role in the combined effect of depressed cardiac function after combined radiation-burn injury

  3. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.

    Science.gov (United States)

    Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf

    2006-03-01

    We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.

  4. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators

    Science.gov (United States)

    Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.

    2016-01-01

    Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial

  5. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  6. Inhibition of G-Protein-Activated Inwardly Rectifying K+ Channels by the Selective Norepinephrine Reuptake Inhibitors Atomoxetine and Reboxetine

    Science.gov (United States)

    Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka

    2010-01-01

    Atomoxetine and reboxetine are commonly used as selective norepinephrine reuptake inhibitors (NRIs) for the treatment of attention-deficit/hyperactivity disorder and depression, respectively. Furthermore, recent studies have suggested that NRIs may be useful for the treatment of several other psychiatric disorders. However, the molecular mechanisms underlying the various effects of NRIs have not yet been sufficiently clarified. G-protein-activated inwardly rectifying K+ (GIRK or Kir3) channels have an important function in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to be a potential treatment for several neuropsychiatric disorders and cardiac arrhythmias. In this study, we investigated the effects of atomoxetine and reboxetine on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, extracellular application of atomoxetine or reboxetine reversibly reduced GIRK currents. The inhibitory effects were concentration-dependent, but voltage-independent, and time-independent during each voltage pulse. However, Kir1.1 and Kir2.1 channels were insensitive to atomoxetine and reboxetine. Atomoxetine and reboxetine also inhibited GIRK currents induced by activation of cloned A1 adenosine receptors or by intracellularly applied GTPγS, a nonhydrolyzable GTP analogue. Furthermore, the GIRK currents induced by ethanol were concentration-dependently inhibited by extracellularly applied atomoxetine but not by intracellularly applied atomoxetine. The present results suggest that atomoxetine and reboxetine inhibit brain- and cardiac-type GIRK channels, revealing a novel characteristic of clinically used NRIs. GIRK channel inhibition may contribute to some of the therapeutic effects of NRIs and adverse side effects related to nervous system and heart function. PMID:20393461

  7. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Science.gov (United States)

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Role of suppression of the inward rectifier current in terminal action potential repolarization in the failing heart.

    Science.gov (United States)

    Klein, Michael G; Shou, Matie; Stohlman, Jayna; Solhjoo, Soroosh; Haigney, Myles; Tidwell, Richard R; Goldstein, Robert E; Flagg, Thomas P; Haigney, Mark C

    2017-08-01

    The failing heart exhibits an increased arrhythmia susceptibility that is often attributed to action potential (AP) prolongation due to significant ion channel remodeling. The inwardly rectifying K + current (I K1 ) has been reported to be reduced, but its contribution to shaping the AP waveform and cell excitability in the failing heart remains unclear. The purpose of this study was to define the effect of I K1 suppression on the cardiac AP and excitability in the normal and failing hearts. We used electrophysiological and pharmacological approaches to investigate I K1 function in a swine tachy-pacing model of heart failure (HF). Terminal repolarization of the AP (TRAP; the time constant of the exponential fit to terminal repolarization) was markedly prolonged in both myocytes and arterially perfused wedges from animals with HF. TRAP was increased by 54.1% in HF myocytes (P < .001) and 26.2% in HF wedges (P = .014). The increase in TRAP was recapitulated by the potent and specific I K1 inhibitor, PA-6 (pentamidine analog 6), indicating that I K1 is the primary determinant of the final phase of repolarization. Moreover, we find that I K1 suppression reduced the ratio of effective refractory period to AP duration at 90% of repolarization, permitting re-excitation before full repolarization, reduction of AP upstroke velocity, and likely promotion of slow conduction. Using an objective measure of terminal repolarization, we conclude that I K1 is the major determinant of the terminal repolarization time course. Moreover, suppression of I K1 prolongs repolarization and reduces postrepolarization refractoriness without marked effects on the overall AP duration. Collectively, these findings demonstrate how I K1 suppression may contribute to arrhythmogenesis in the failing heart. Published by Elsevier Inc.

  9. Acute desensitization of acetylcholine and endothelin-1 activated inward rectifier K+ current in myocytes from the cardiac atrioventricular node.

    Science.gov (United States)

    Choisy, Stéphanie C M; James, Andrew F; Hancox, Jules C

    2012-07-06

    The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Investigations on contribution of glial inwardly-rectifying K+ current to membrane potential and ion flux: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The inwardly rectifying K+ current [IK(IR] allows large inward K+ currents at potentials negative to K+ equilibrium potential (EK and it becomes small outward K+ currents at those positive to EK. How changes of such currents enriched in glial cells can influence the functions of glial cell, neurons, or both is not clearly defined, although mutations of Kir4.1 channels have been demonstrated to cause serious neurological disorders. In this study, we identified the presence of IK(IR in human glioma cells (U373 and U87 cells. The amplitude of IK(IR in U373 cells was subject to inhibition by amitriptyline, arecoline, or BaCl2. The activity of inwardly rectifying K+ channels was also clearly detected, and single-channel conductance of these channels was calculated to be around 23 pS. Moreover, based on a simulation model derived from neuron–glial interaction mediated by ion flux, we further found out that incorporation of glial IK(IR conductance into the model can significantly contribute to regulation of extracellular K+ concentrations and glial resting potential, particularly during high-frequency stimulation. Glial cells and neurons can mutually modulate their expression of ion channels through K+ ions released into the extracellular space. It is thus anticipated that glial IK(IR may be a potential target utilized to influence the activity of neuronal and glial cells as well as their interaction.

  11. Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines

    International Nuclear Information System (INIS)

    Plummer, Howard K III; Yu, Qiang; Cakir, Yavuz; Schuller, Hildegard M

    2004-01-01

    Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1) has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM) increased the GIRK1 mRNA levels and decreased beta 2 -adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K + flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer

  12. Rectifiers

    CERN Document Server

    Visintini, R

    2006-01-01

    In particle accelerators, rectifiers are used to convert the AC voltage into DC or low-frequency AC to supply loads like magnets or klystrons. Some loads require high currents, others high voltages, and others both high current and high voltage. This presentation deals with the particular class of line commutated rectifiers (the switching techniques are treated elsewhere). The basic principles of rectification are presented. The effects of real world parameters are then taken into consideration. Some aspects related to the filtering of the harmonics both on the DC side and on the AC side are presented. Some protection issues associated with the use of thyristors and diodes are also treated. An example of power converter design, referring to a currently operating magnet power supply, is included. An extended bibliography (including some internet links) ends this presentation.

  13. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27

    Science.gov (United States)

    Balana, Bartosz; Maslennikov, Innokentiy; Kwiatkowski, Witek; Stern, Kalyn M.; Bahima, Laia; Choe, Senyon; Slesinger, Paul A.

    2011-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels are important gatekeepers of neuronal excitability. The surface expression of neuronal GIRK channels is regulated by the psychostimulant-sensitive sorting nexin 27 (SNX27) protein through a class I (-X-Ser/Thr-X-Φ, where X is any residue and Φ is a hydrophobic amino acid) PDZ-binding interaction. The G protein-insensitive inward rectifier channel (IRK1) contains the same class I PDZ-binding motif but associates with a different synaptic PDZ protein, postsynaptic density protein 95 (PSD95). The mechanism by which SNX27 and PSD95 discriminate these channels was previously unclear. Using high-resolution structures coupled with biochemical and functional analyses, we identified key amino acids upstream of the channel's canonical PDZ-binding motif that associate electrostatically with a unique structural pocket in the SNX27-PDZ domain. Changing specific charged residues in the channel's carboxyl terminus or in the PDZ domain converts the selective association and functional regulation by SNX27. Elucidation of this unique interaction site between ion channels and PDZ-containing proteins could provide a therapeutic target for treating brain diseases. PMID:21422294

  14. Voltage Dependence of a Neuromodulator-Activated Ionic Current123

    Science.gov (United States)

    2016-01-01

    Abstract The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca2+, but that, in conditions of low Ca2+, calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca2+/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR. PMID:27257619

  15. 5-HT modulation of multiple inward rectifiers in motoneurons in intact preparations of the neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Kjaerulff, Ole; Kiehn, Ole

    2001-01-01

    This study introduces novel aspects of inward rectification in neonatal rat spinal motoneurons (MNs) and its modulation by serotonin (5-HT). Whole cell tight-seal recordings were made from MNs in an isolated lumbar spinal cord preparation from rats 1-2 days of age. In voltage clamp, hyperpolarizi...

  16. Impaired Na⁺-dependent regulation of acetylcholine-activated inward-rectifier K⁺ current modulates action potential rate dependence in patients with chronic atrial fibrillation.

    Science.gov (United States)

    Voigt, Niels; Heijman, Jordi; Trausch, Anne; Mintert-Jancke, Elisa; Pott, Lutz; Ravens, Ursula; Dobrev, Dobromir

    2013-08-01

    Shortened action-potential duration (APD) and blunted APD rate adaptation are hallmarks of chronic atrial fibrillation (cAF). Basal and muscarinic (M)-receptor-activated inward-rectifier K(+) currents (IK1 and IK,ACh, respectively) contribute to regulation of human atrial APD and are subject to cAF-dependent remodeling. Intracellular Na(+) ([Na(+)]i) enhances IK,ACh in experimental models but the effect of [Na(+)]i-dependent regulation of inward-rectifier K(+) currents on APD in human atrial myocytes is currently unknown. Here, we report a [Na(+)]i-dependent inhibition of outward IK1 in atrial myocytes from sinus rhythm (SR) or cAF patients. In contrast, IK,ACh activated by carbachol, a non-selective M-receptor agonist, increased with elevation of [Na(+)]i in SR. This [Na(+)]i-dependent IK,ACh regulation was absent in cAF. Including [Na(+)]i dependence of IK1 and IK,ACh in a recent computational model of the human atrial myocyte revealed that [Na(+)]i accumulation at fast rates inhibits IK1 and blunts physiological APD rate dependence in both groups. [Na(+)]i-dependent IK,ACh augmentation at fast rates increased APD rate dependence in SR, but not in cAF. These results identify impaired Na(+)-sensitivity of IK,ACh as one potential mechanism contributing to the blunted APD rate dependence in patients with cAF. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes". Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H1 and H2 receptors, Na+ -permeable cation channels, and inward rectifier K+ channels.

    Science.gov (United States)

    Cilz, Nicholas I; Lei, Saobo

    2017-05-01

    In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H 1 , H 2 , and H 3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC 50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca 2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H 1 and H 2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H 1 and H 2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na + -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K + channel, although HA also inhibited the delayed rectifier K + channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel.

    Science.gov (United States)

    Trezza, Alfonso; Cicaloni, Vittoria; Porciatti, Piera; Langella, Andrea; Fusi, Fabio; Saponara, Simona; Spiga, Ottavia

    2018-01-01

    ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. K ATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina-like symptoms, cardiovascular diseases. A broader view of the K ATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit K ATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.

  19. External K+ dependence of strong inward rectifier K+ channel conductance is caused not by K+ but by competitive pore blockade by external Na.

    Science.gov (United States)

    Ishihara, Keiko

    2018-06-15

    Strong inward rectifier K + (sKir) channels determine the membrane potentials of many types of excitable and nonexcitable cells, most notably the resting potentials of cardiac myocytes. They show little outward current during membrane depolarization (i.e., strong inward rectification) because of the channel blockade by cytoplasmic polyamines, which depends on the deviation of the membrane potential from the K + equilibrium potential ( V - E K ) when the extracellular K + concentration ([K + ] out ) is changed. Because their open - channel conductance is apparently proportional to the "square root" of [K + ] out , increases/decreases in [K + ] out enhance/diminish outward currents through sKir channels at membrane potentials near their reversal potential, which also affects, for example, the repolarization and action-potential duration of cardiac myocytes. Despite its importance, however, the mechanism underlying the [K + ] out dependence of the open sKir channel conductance has remained elusive. By studying Kir2.1, the canonical member of the sKir channel family, we first show that the outward currents of Kir2.1 are observed under the external K + -free condition when its inward rectification is reduced and that the complete inhibition of the currents at 0 [K + ] out results solely from pore blockade caused by the polyamines. Moreover, the noted square-root proportionality of the open sKir channel conductance to [K + ] out is mediated by the pore blockade by the external Na + , which is competitive with the external K + Our results show that external K + itself does not activate or facilitate K + permeation through the open sKir channel to mediate the apparent external K + dependence of its open channel conductance. The paradoxical increase/decrease in outward sKir channel currents during alternations in [K + ] out , which is physiologically relevant, is caused by competition from impermeant extracellular Na . © 2018 Ishihara.

  20. Cellular elements for seeing in the dark: voltage-dependent conductances in cockroach photoreceptors

    Directory of Open Access Journals (Sweden)

    Salmela Iikka

    2012-08-01

    Full Text Available Abstract Background The importance of voltage-dependent conductances in sensory information processing is well-established in insect photoreceptors. Here we present the characterization of electrical properties in photoreceptors of the cockroach (Periplaneta americana, a nocturnal insect with a visual system adapted for dim light. Results Whole-cell patch-clamped photoreceptors had high capacitances and input resistances, indicating large photosensitive rhabdomeres suitable for efficient photon capture and amplification of small photocurrents at low light levels. Two voltage-dependent potassium conductances were found in the photoreceptors: a delayed rectifier type (KDR and a fast transient inactivating type (KA. Activation of KDR occurred during physiological voltage responses induced by light stimulation, whereas KA was nearly fully inactivated already at the dark resting potential. In addition, hyperpolarization of photoreceptors activated a small-amplitude inward-rectifying (IR current mediated at least partially by chloride. Computer simulations showed that KDR shapes light responses by opposing the light-induced depolarization and speeding up the membrane time constant, whereas KA and IR have a negligible role in the majority of cells. However, larger KA conductances were found in smaller and rapidly adapting photoreceptors, where KA could have a functional role. Conclusions The relative expression of KA and KDR in cockroach photoreceptors was opposite to the previously hypothesized framework for dark-active insects, necessitating further comparative work on the conductances. In general, the varying deployment of stereotypical K+ conductances in insect photoreceptors highlights their functional flexibility in neural coding.

  1. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels.

    Science.gov (United States)

    Cukras, Catherine A; Jeliazkova, Iana; Nichols, Colin G

    2002-06-01

    All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.

  2. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    Science.gov (United States)

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  3. G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Takanami, Iwao; Inoue, Yoshimasa; Gika, Masatoshi

    2004-01-01

    G-protein inwardly rectifying potassium channel 1 (GIRK1) is thought to play a role in cell proliferation in cancer, and GIRK1 gene expression level may define a more aggressive phenotype. We detected GIRK1 expression in tissue specimens from patients with non-small cell lung cancers (NSCLCs) and assessed their clinical characteristics. Using reverse transcription-polymerase chain reaction (RT-PCR) analyses, we quantified the expression of GIRK1 in 72 patients with NSCLCs to investigate the relationship between GIRK1 expression and clinicopathologic factors and prognosis. In 72 NSCLC patients, 50 (69%) samples were evaluated as having high GIRK1 gene expression, and 22 (31%) were evaluated as having low GIRK1 gene expression. GIRK1 gene expression was significantly associated with lymph node metastasis, stage (p = 0.0194 for lymph node metastasis; p = 0.0207 for stage). The overall and stage I survival rates for patients with high GIRK1 gene expressed tumors was significantly worse than for those individuals whose tumors had low GIRK1 expression (p = 0.0004 for the overall group; p = 0.0376 for stage I). These data indicate that GIRK1 may contribute to tumor progression and GIRK1 gene expression can serve as a useful prognostic marker in the overall and stage I NSCLCs

  4. Over-Expression of Dopamine D2 Receptor and Inwardly Rectifying Potassium Channel Genes in Drug-Naive Schizophrenic Peripheral Blood Lymphocytes as Potential Diagnostic Markers

    Directory of Open Access Journals (Sweden)

    Ágnes Zvara

    2005-01-01

    Full Text Available Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3 was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2 and the inwardly rectifying potassium channel (Kir2.3 were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  5. Inward rectifier K+ channel and T-type Ca2+ channel contribute to enhancement of GABAergic transmission induced by β1-adrenoceptor in the prefrontal cortex.

    Science.gov (United States)

    Luo, Fei; Zheng, Jian; Sun, Xuan; Tang, Hua

    2017-02-01

    The functions of prefrontal cortex (PFC) are sensitive to norepinephrine (NE). Endogenously released NE influences synaptic transmission through activation of different subtypes of adrenergic receptors in PFC including α 1 , α 2 , β 1 or β 2 -adrenoceptor. Our recent study has revealed that β 1 -adrenoceptor (β 1 -AR) activation modulates glutamatergic transmission in the PFC, whereas the roles of β 1 -AR in GABAergic transmission are elusive. In the current study, we probed the effects of the β 1 -AR agonist dobutamine (Dobu) on GABAergic transmission onto pyramidal neurons in the PFC of juvenile rats. Dobu increased both the frequency and amplitude of miniature IPSCs (mIPSCs). Ca 2+ influx through T-type voltage-gated Ca 2+ channel was required for Dobu-enhanced mIPSC frequency. We also found that Dobu facilitated GABA release probability and the number of releasable vesicles through regulating T-type Ca 2+ channel. Dobu depolarized GABAergic fast-spiking (FS) interneurons with no effects on the firing rate of action potentials (APs) of interneurons. Dobu-induced depolarization of FS interneurons required inward rectifier K + channel (Kir). Our results suggest that Dobu increase GABA release via inhibition of Kir, which further depolarizes FS interneurons resulting in Ca 2+ influx via T-type Ca 2+ channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of aquaporin 4 and inward rectifier potassium channel 4.1 on medullospinal edema after methylprednisolone treatment to suppress acute spinal cord injury in rats.

    Science.gov (United States)

    Li, Ye; Hu, Haifeng; Liu, Jingchen; Zhu, Qingsan; Gu, Rui

    2018-02-01

    To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP-treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet-dry weights method was applied to measure the water content of the spinal cord. The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased. In addition, the levels of AQP4 and Kir4.1 were significantly increased, as was their degree of coexpression. Compared with that in the ASCI group, the motor function score and the water content were significantly increased in the MP group; in addition, the expression and coexpression of AQP4 and Kir4.1 were significantly reduced. Methylprednisolone inhibited medullospinal edema in rats with acute spinal cord injury, possibly by reducing the coexpression of aquaporin 4 and Kir4.1 in medullospinal tissues.

  7. Isolation of proflavine as a blocker of G protein-gated inward rectifier potassium channels by a cell growth-based screening system.

    Science.gov (United States)

    Kawada, Hitoshi; Inanobe, Atsushi; Kurachi, Yoshihisa

    2016-10-01

    The overexpression of Kir3.2, a subunit of the G protein-gated inwardly rectifying K(+) channel, is implicated in some of the neurological phenotypes of Down syndrome (DS). Chemical compounds that block Kir3.2 are expected to improve the symptoms of DS. The purpose of this study is to develop a cell-based screening system to identify Kir3.2 blockers and then investigate the mode of action of the blocker. Chemical screening was carried out using a K(+) transporter-deficient yeast strain that expressed a constitutively active Kir3.2 mutant. The mode of action of an effective blocker was electrophysiologically analyzed using Kir channels expressed in Xenopus oocytes. Proflavine was identified to inhibit the growth of Kir3.2-transformant cells and Kir3.2 activity in a concentration-dependent manner. The current inhibition was strong when membrane potentials (Vm) was above equilibrium potential of K(+) (EK). When Vm was below EK, the blockage apparently depended on the difference between Vm and [K(+)]. Furthermore, the inhibition became stronger by lowering extracellular [K(+)]. These results indicated that the yeast strain serves as a screening system to isolate Kir3.2 blockers and proflavine is a prototype of a pore blocker of Kir3.2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Expression and contributions of the Kir2.1 inward-rectifier K+ channel to proliferation, migration and chemotaxis of microglia in unstimulated and anti-inflammatory states

    Directory of Open Access Journals (Sweden)

    Doris eLam

    2015-05-01

    Full Text Available When microglia respond to CNS damage, they can range from pro-inflammatory (classical, M1 to anti-inflammatory, alternative (M2 and acquired deactivation states. It is important to determine how microglial functions are affected by these activation states, and to identify molecules that regulate their behavior. Microglial proliferation and migration are crucial during development and following damage in the adult, and both functions are Ca2+-dependent. In many cell types, the membrane potential and driving force for Ca2+ influx are regulated by inward-rectifier K+ channels, including Kir2.1, which is prevalent in microglia. However, it is not known whether Kir2.1 expression and contributions are altered in anti-inflammatory states. We tested the hypothesis that Kir2.1 contributes to Ca2+ entry, proliferation and migration of rat microglia. Kir2.1 (KCNJ2 transcript expression, current amplitude, and proliferation were comparable in unstimulated microglia and following alternative activation (IL-4 stimulated and acquired deactivation (IL-10 stimulated. To examine functional roles of Kir2.1 in microglia, we first determined that ML133 was more effective than the commonly used blocker, Ba2+; i.e., ML133 was potent (IC50=3.5 M and voltage independent. Both blockers slightly increased proliferation in unstimulated or IL-4 (but not IL-10-stimulated microglia. Stimulation with IL-4 or IL-10 increased migration and ATP-induced chemotaxis, and blocking Kir2.1 greatly reduced both but ML133 was more effective. In all three activation states, blocking Kir2.1 with ML133 dramatically reduced Ca2+ influx through Ca2+-release-activated Ca2+ (CRAC channels. Thus, Kir2.1 channel activity is necessary for microglial Ca2+ signaling and migration under resting and anti-inflammatory states but the channel weakly inhibits proliferation.

  9. Regulation of inward rectifier potassium current ionic channel remodeling by AT1 -Calcineurin-NFAT signaling pathway in stretch-induced hypertrophic atrial myocytes.

    Science.gov (United States)

    He, Jionghong; Xu, Yanan; Yang, Long; Xia, Guiling; Deng, Na; Yang, Yongyao; Tian, Ye; Fu, Zenan; Huang, Yongqi

    2018-05-02

    Previous studies have shown that the activation of angiotensin II receptor type I (AT 1 ) is attributed to cardiac remodeling stimulated by increased heart load, and that it is followed by the activation of the calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway. Additionally, AT 1 has been found to be a regulator of cardiocyte ionic channel remodeling, and calcineurin-NFAT signals participate in the regulation of cardiocyte ionic channel expression. A hypothesis therefore follows that stretch stimulation may regulate cardiocyte ionic channel remodeling by activating the AT 1 -calcineurin-NFAT pathway. Here, we investigated the role of the AT 1 -calcineurin-NFAT pathway in the remodeling of inward rectifier potassium (I k1 ) channel, in addition to its role in changing action potential, in stretch-induced hypertrophic atrial myocytes of neonatal rats. Our results showed that increased stretch significantly led to atrial myocytes hypertrophy; it also increased the activity of calcineurin enzymatic activity, which was subsequently attenuated by telmisartan or cyclosporine-A. The level of NFAT 3 protein in nuclear extracts, the mRNA and protein expression of Kir2.1 in whole cell extracts, and the density of I k1 were noticeably increased in stretched samples. Stretch stimulation significantly shortened the action potential duration (APD) of repolarization at the 50% and 90% level. Telmisartan, cyclosporine-A, and 11R-VIVIT attenuated stretch-induced alterations in the levels of NFAT 3 , mRNA and protein expression of Kir2.1, the density of I k1 , and the APD. Our findings suggest that the AT 1 -calcineurin-NFAT signaling pathway played an important role in regulating I k1 channel remodeling and APD change in stretch-induced hypertrophic atrial myocytes of neonatal rats. This article is protected by copyright. All rights reserved.

  10. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    Science.gov (United States)

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Tissue Distribution of Kir7.1 Inwardly Rectifying K+ Channel Probed in a Knock-in Mouse Expressing a Haemagglutinin-Tagged Protein

    Directory of Open Access Journals (Sweden)

    Isabel Cornejo

    2018-04-01

    Full Text Available Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb+ currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation

  12. Tissue Distribution of Kir7.1 Inwardly Rectifying K+ Channel Probed in a Knock-in Mouse Expressing a Haemagglutinin-Tagged Protein.

    Science.gov (United States)

    Cornejo, Isabel; Villanueva, Sandra; Burgos, Johanna; López-Cayuqueo, Karen I; Chambrey, Régine; Julio-Kalajzić, Francisca; Buelvas, Neudo; Niemeyer, María I; Figueiras-Fierro, Dulce; Brown, Peter D; Sepúlveda, Francisco V; Cid, L P

    2018-01-01

    Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K + channel present in epithelia where it shares membrane localization with the Na + /K + -pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA) epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb + currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation studies. It

  13. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  14. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Ting-Feng Lin

    Full Text Available Eag (Kv10 and Erg (Kv11 belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH. While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1 and human Erg (hERG1 channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.

  15. Discovery, characterization and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir channels with preference for Kir2.3, Kir3.X and Kir7.1

    Directory of Open Access Journals (Sweden)

    Jerod S Denton

    2011-11-01

    Full Text Available The inward rectifier family of potassium (Kir channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that GIRK (G protein-regulated inward rectifier K channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl+ flux-based high-throughput screen (HTS of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC50 = 1.9 M and 19 M, respectively and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK and Kir3.1/3.4 (cardiac GIRK channels with equal potency and preferentially inhibited GIRK, Kir2.3 and Kir7.1 over Kir1.1 and Kir2.1. Tl+ flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure-activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure-function relationships of these Kir channels.

  16. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed in a human cell line.

    Science.gov (United States)

    Ishihara, Keiko; Ehara, Tsuguhisa

    2004-04-01

    The strong inward rectifier K(+) current, I(K1), shows significant outward current amplitude in the voltage range near the reversal potential and thereby causes rapid repolarization at the final phase of cardiac action potentials. However, the mechanism that generates the outward I(K1) is not well understood. We recorded currents from the inside-out patches of HEK 293T cells that express the strong inward rectifier K(+) channel Kir2.1 and studied the blockage of the currents caused by cytoplasmic polyamines, namely, spermine and spermidine. The outward current-voltage (I-V) relationships of Kir2.1, obtained with 5-10 microm spermine or 10-100 microm spermidine, were similar to the steady-state outward I-V relationship of I(K1), showing a peak at a level that is approximately 20 mV more positive than the reversal potential, with a negative slope at more positive voltages. The relationships exhibited a plateau or a double-hump shape with 1 microm spermine/spermidine or 0.1 microm spermine, respectively. In the chord conductance-voltage relationships, there were extra conductances in the positive voltage range, which could not be described by the Boltzmann relations fitting the major part of the relationships. The extra conductances, which generated most of the outward currents in the presence of 5-10 microm spermine or 10-100 microm spermidine, were quantitatively explained by a model that considered two populations of Kir2.1 channels, which were blocked by polyamines in either a high-affinity mode (Mode 1 channel) or a low-affinity mode (Mode 2 channel). Analysis of the inward tail currents following test pulses indicated that the relief from the spermine block of Kir2.1 consisted of an exponential component and a virtually instantaneous component. The fractions of the two components nearly agreed with the fractions of the blockages in Mode 1 and Mode 2 calculated by the model. The estimated proportion of Mode 1 channels to total channels was 0.9 with 0.1-10 microm

  17. Voltage-dependent amplification of synaptic inputs in respiratory motoneurones

    Science.gov (United States)

    Enríquez Denton, M; Wienecke, J; Zhang, M; Hultborn, H; Kirkwood, P A

    2012-01-01

    The role of persistent inward currents (PICs) in cat respiratory motoneurones (phrenic inspiratory and thoracic expiratory) was investigated by studying the voltage-dependent amplification of central respiratory drive potentials (CRDPs), recorded intracellularly, with action potentials blocked with the local anaesthetic derivative, QX-314. Decerebrate unanaesthetized or barbiturate-anaesthetized preparations were used. In expiratory motoneurones, plateau potentials were observed in the decerebrates, but not under anaesthesia. For phrenic motoneurones, no plateau potentials were observed in either state (except in one motoneurone after the abolition of the respiratory drive by means of a medullary lesion), but all motoneurones showed voltage-dependent amplification of the CRDPs, over a wide range of membrane potentials, too wide to result mainly from PIC activation. The measurements of the amplification were restricted to the phase of excitation, thus excluding the inhibitory phase. Amplification was found to be greatest for the smallest CRDPs in the lowest resistance motoneurones and was reduced or abolished following intracellular injection of the NMDA channel blocker, MK-801. Plateau potentials were readily evoked in non-phrenic cervical motoneurones in the same (decerebrate) preparations. We conclude that the voltage-dependent amplification of synaptic excitation in phrenic motoneurones is mainly the result of NMDA channel modulation rather than the activation of Ca2+ channel mediated PICs, despite phrenic motoneurones being strongly immunohistochemically labelled for CaV1.3 channels. The differential PIC activation in different motoneurones, all of which are CaV1.3 positive, leads us to postulate that the descending modulation of PICs is more selective than has hitherto been believed. PMID:22495582

  18. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  19. Block of the delayed rectifier current (IK) by the 5-HT3 antagonists ondansetron and granisetron in feline ventricular myocytes.

    Science.gov (United States)

    de Lorenzi, F G; Bridal, T R; Spinelli, W

    1994-01-01

    1. We investigated the effects of two 5-HT3 antagonists, ondansetron and granisetron, on the action potential duration (APD) and the delayed rectifier current (IK) of feline isolated ventricular myocytes. Whole-cell current and action potential recordings were performed at 37 degrees C with the patch clamp technique. 2. Ondansetron and granisetron blocked IK with a KD of 1.7 +/- 1.0 and 4.3 +/- 1.7 microM, respectively. At a higher concentration (30 microM), both drugs blocked the inward rectifier (IKl). 3. The block of IK was dependent on channel activation. Both drugs slowed the decay of IK tail currents and produced a crossover with the pre-drug current trace. These results are consistent with block and unblock from the open state of the channel. 4. Granisetron showed an intrinsic voltage-dependence as the block increased with depolarization. The equivalent voltage-dependency of block (delta) was 0.10 +/- 0.04, suggesting that granisetron blocks from the intracellular side at a binding site located 10% across the transmembrane electrical field. 5. Ondansetron (1 microM) and granisetron (3 microM) prolonged APD by about 30% at 0.5 Hz. The prolongation of APD by ondansetron was abolished at faster frequencies (3 Hz) showing reverse rate dependence. 6. In conclusion, the 5-HT3 antagonists, ondansetron and granisetron, are open state blockers of the ventricular delayed rectifier and show a clear class III action. PMID:7834204

  20. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  1. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-01-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact

  2. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Cloning and functional expression of a plant voltage-dependent chloride channel.

    Science.gov (United States)

    Lurin, C; Geelen, D; Barbier-Brygoo, H; Guern, J; Maurel, C

    1996-01-01

    Plant cell membrane anion channels participate in basic physiological functions, such as cell volume regulation and signal transduction. However, nothing is known about their molecular structure. Using a polymerase chain reaction strategy, we have cloned a tobacco cDNA (CIC-Nt1) encoding a 780-amino acid protein with several putative transmembrane domains. CIC-Nt1 displays 24 to 32% amino acid identity with members of the animal voltage-dependent chloride channel (CIC) family, whose archetype is CIC-0 from the Torpedo marmorata electric organ. Injection of CIC-Nt1 complementary RNA into Xenopus oocytes elicited slowly activating inward currents upon membrane hyperpolarization more negative than -120 mV. These currents were carried mainly by anions, modulated by extracellular anions, and totally blocked by 10 mM extracellular calcium. The identification of CIC-Nt1 extends the CIC family to higher plants and provides a molecular probe for the study of voltage-dependent anion channels in plants. PMID:8624442

  4. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters. 

  5. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Lisha Yang

    Full Text Available This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa, whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa, a Ca2+-activated K+ current (IK(Ca, and a sustained voltage-dependent delayed rectifier K+ current (IKV. A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.

  6. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels

    Science.gov (United States)

    Cui, Jianmin

    2016-01-01

    Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405

  7. Evalutating Inward Rectifier Current Inhibiton for Treatment of Atrial Fibrillation

    NARCIS (Netherlands)

    Ji, Yuan

    2017-01-01

    Atrial Fibrillation (AF) is one of the most common forms of cardiac arrhythmia and affects a large percentage of the human population, especially in the elderly. Currently, more than 6 million Europeans suffer from AF, and due to ageing this number will at least double in the next 50 years.

  8. Voltage-dependent amplification of synaptic inputs in respiratory motoneurones

    DEFF Research Database (Denmark)

    Enríquez Denton, M; Wienecke, Jacob; Zhang, Mengliang

    2012-01-01

    time, the likely amplifying processes at work in respiratory motoneurones. In phrenic motoneurones, which control the most important respiratory muscle, the diaphragm, we found that the mechanism most favoured by investigations in other motoneurones, the activation of persistent inward currents via...

  9. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  10. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    Science.gov (United States)

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  11. Semi-conductor rectifiers

    International Nuclear Information System (INIS)

    1981-01-01

    A method is described for treating a semiconductor rectifier, comprising: heating the rectifier to a temperature in the range of 100 0 C to 500 0 C, irradiating the rectifier while maintaining its temperature within the said range, and then annealing the rectifier at a temperature of between 280 0 C and 350 0 C for between two and ten hours. (author)

  12. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-10-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact on current-driven magnetization dynamics and on devices performances. After a brief overview of the progress made to date in the theoretical description of the spin torque in tunnel junctions, I present different ways to alter and control the bias dependence of both components of the spin torque. Engineering the junction (barrier and electrodes) structural asymmetries or controlling the spin accumulation profile in the free layer offer promising tools to design effcient spin devices.

  13. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  14. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence

    Directory of Open Access Journals (Sweden)

    Rajeev Gupta

    2017-06-01

    Full Text Available Voltage-Dependent Anion Channel (VDAC phosphorylated by c-Jun N-terminal Kinase-3 (JNK3 was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  15. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    Science.gov (United States)

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  16. trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca2+ Channels

    Directory of Open Access Journals (Sweden)

    Jader Santos Cruz

    2012-10-01

    Full Text Available trans-Caryophyllene is a major component in the essential oils of various species of medicinal plants used in popular medicine in Brazil. It belongs to the chemical class of the sesquiterpenes and has been the subject of a number of studies. Here, we evaluated the effects of this compound in airway smooth muscle. The biological activities of trans-caryophyllene were examined in isolated bath organs to investigate the effect in basal tonus. Electromechanical and pharmacomechanical couplings were evaluated through the responses to K+ depolarization and exposure to acetylcholine (ACh, respectively. Isolated cells of rat tracheal smooth muscle were used to investigate trans-caryophyllene effects on voltage-dependent Ca2+ channels by using the whole-cell voltage-clamp configuration of the patch-clamp technique. trans-Caryophyllene showed more efficiency in the blockade of electromechanical excitation-contraction coupling while it has only minor inhibitory effect on pharmacomechanical coupling. Epithelium removal does not modify tracheal smooth muscle response elicited by trans-caryophyllene in the pharmacomechanical coupling. Under Ca2+-free conditions, pre-exposure to trans-caryophyllene did not reduce the contraction induced by ACh in isolated rat tracheal smooth muscle, regardless of the presence of intact epithelium. In the whole-cell configuration, trans-caryophyllene (3 mM, inhibited the inward Ba2+ current (IBa to approximately 50% of control levels. Altogether, our results demonstrate that trans-caryophyllene has anti-spasmodic activity on rat tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca2+ channels blockade.

  17. SPS rectifier stations

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The first of the twelves SPS rectifier stations for the bending magnets arrived at CERN at the end of the year. The photograph shows a station with the rectifiers on the left and in the other three cubicles the chokes, capacitors and resistor of the passive filter.

  18. Phase controlled rectifier study

    International Nuclear Information System (INIS)

    Bronner, G.; Murray, J.G.

    1976-03-01

    This report introduces the results of an engineering study incorporating a computer program to determine the transient and steady-state voltage and current wave shapes for a 12-pulse rectifier system. Generally, rectifier engineering studies are completed by making simplified assumptions and neglecting many circuit parameters. The studies incorporate the 3-phase AC parameters including nonlinear source or generator, 3-winding transformer impedances, and shunt and series capacitors. It includes firing angle control, and DC filter circuits with inductive loads

  19. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  20. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    International Nuclear Information System (INIS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-01-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects

  1. Optimized expression and purification of NavAb provide the structural insight into the voltage dependence.

    Science.gov (United States)

    Irie, Katsumasa; Haga, Yukari; Shimomura, Takushi; Fujiyoshi, Yoshinori

    2018-01-01

    Voltage-gated sodium channels are crucial for electro-signalling in living systems. Analysis of the molecular mechanism requires both fine electrophysiological evaluation and high-resolution channel structures. Here, we optimized a dual expression system of NavAb, which is a well-established standard of prokaryotic voltage-gated sodium channels, for E. coli and insect cells using a single plasmid vector to analyse high-resolution protein structures and measure large ionic currents. Using this expression system, we evaluated the voltage dependence and determined the crystal structures of NavAb wild-type and two mutants, E32Q and N49K, whose voltage dependence were positively shifted and essential interactions were lost in voltage sensor domain. The structural and functional comparison elucidated the molecular mechanisms of the voltage dependence of prokaryotic voltage-gated sodium channels. © 2017 Federation of European Biochemical Societies.

  2. The NH2 terminus regulates voltage-dependent gating of CALHM ion channels.

    Science.gov (United States)

    Tanis, Jessica E; Ma, Zhongming; Foskett, J Kevin

    2017-08-01

    Calcium homeostasis modulator protein-1 (CALHM1) and its Caenorhabditis elegans (ce) homolog, CLHM-1, belong to a new family of physiologically important ion channels that are regulated by voltage and extracellular Ca 2+ (Ca 2+ o ) but lack a canonical voltage-sensing domain. Consequently, the intrinsic voltage-dependent gating mechanisms for CALHM channels are unknown. Here, we performed voltage-clamp experiments on ceCLHM-1 chimeric, deletion, insertion, and point mutants to assess the role of the NH 2 terminus (NT) in CALHM channel gating. Analyses of chimeric channels in which the ceCLHM-1 and human (h)CALHM1 NH 2 termini were interchanged showed that the hCALHM1 NT destabilized channel-closed states, whereas the ceCLHM-1 NT had a stabilizing effect. In the absence of Ca 2+ o , deletion of up to eight amino acids from the ceCLHM-1 NT caused a hyperpolarizing shift in the conductance-voltage relationship with little effect on voltage-dependent slope. However, deletion of nine or more amino acids decreased voltage dependence and induced a residual conductance at hyperpolarized voltages. Insertion of amino acids into the NH 2 -terminal helix also decreased voltage dependence but did not prevent channel closure. Mutation of ceCLHM-1 valine 9 and glutamine 13 altered half-maximal activation and voltage dependence, respectively, in 0 Ca 2+ In 2 mM Ca 2+ o , ceCLHM-1 NH 2 -terminal deletion and point mutant channels closed completely at hyperpolarized voltages with apparent affinity for Ca 2+ o indistinguishable from wild-type ceCLHM-1, although the ceCLHM-1 valine 9 mutant exhibited an altered conductance-voltage relationship and kinetics. We conclude that the NT plays critical roles modulating voltage dependence and stabilizing the closed states of CALHM channels. Copyright © 2017 the American Physiological Society.

  3. Rectifier cabinet static breaker

    International Nuclear Information System (INIS)

    Costantino, R.A. Jr; Gliebe, R.J.

    1992-01-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs

  4. Rectifier cabinet static breaker

    Science.gov (United States)

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  5. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.

    Directory of Open Access Journals (Sweden)

    Zhixin Lin

    Full Text Available The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799 which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.

  6. Kir2.1 channels set two levels of resting membrane potential with inward rectification.

    Science.gov (United States)

    Chen, Kuihao; Zuo, Dongchuan; Liu, Zheng; Chen, Haijun

    2018-04-01

    Strong inward rectifier K + channels (Kir2.1) mediate background K + currents primarily responsible for maintenance of resting membrane potential. Multiple types of cells exhibit two levels of resting membrane potential. Kir2.1 and K2P1 currents counterbalance, partially accounting for the phenomenon of human cardiomyocytes in subphysiological extracellular K + concentrations or pathological hypokalemic conditions. The mechanism of how Kir2.1 channels contribute to the two levels of resting membrane potential in different types of cells is not well understood. Here we test the hypothesis that Kir2.1 channels set two levels of resting membrane potential with inward rectification. Under hypokalemic conditions, Kir2.1 currents counterbalance HCN2 or HCN4 cation currents in CHO cells that heterologously express both channels, generating N-shaped current-voltage relationships that cross the voltage axis three times and reconstituting two levels of resting membrane potential. Blockade of HCN channels eliminated the phenomenon in K2P1-deficient Kir2.1-expressing human cardiomyocytes derived from induced pluripotent stem cells or CHO cells expressing both Kir2.1 and HCN2 channels. Weakly inward rectifier Kir4.1 or inward rectification-deficient Kir2.1•E224G mutant channels do not set such two levels of resting membrane potential when co-expressed with HCN2 channels in CHO cells or when overexpressed in human cardiomyocytes derived from induced pluripotent stem cells. These findings demonstrate a common mechanism that Kir2.1 channels set two levels of resting membrane potential with inward rectification by balancing inward currents through different cation channels such as hyperpolarization-activated HCN channels or hypokalemia-induced K2P1 leak channels.

  7. Topology optimization of viscoelastic rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  8. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  9. Simple and accurate model for voltage-dependent resistance of metallic carbon nanotube interconnects: An ab initio study

    International Nuclear Information System (INIS)

    Yamacli, Serhan; Avci, Mutlu

    2009-01-01

    In this work, development of a voltage dependent resistance model for metallic carbon nanotubes is aimed. Firstly, the resistance of metallic carbon nanotube interconnects are obtained from ab initio simulations and then the voltage dependence of the resistance is modeled through regression. Self-consistent non-equilibrium Green's function formalism combined with density functional theory is used for calculating the voltage dependent resistance of metallic carbon nanotubes. It is shown that voltage dependent resistances of carbon nanotubes can be accurately modeled as a polynomial function which enables rapid integration of carbon nanotube interconnect models into electronic design automation tools.

  10. Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel

    International Nuclear Information System (INIS)

    Barchi, R.L.; Tanaka, J.C.

    1984-01-01

    In excitable membranes, the voltage-dependent sodium channel controls the primary membrane conductance change necessary for the generation of an action potential. Over the past four decades, the time- and voltage-dependent sodium currents gated by this channel have been thoroughly documented with increasingly sophisticated voltage-clamp techniques. Recent advances in the biochemistry of membrane proteins have led to the solubilization and purification of this channel protein from nerve (6) and from muscle (4) or muscle-derived (1) membranes, and have provided an approach to the correlation of the channel's molecular structure with its functional properties. Each of these sodium channel preparations appears to contain a large glycoprotein either as its sole component (2) or in association with several small subunits (6, 3). Evidence that these purified proteins represent the excitable membrane sodium channel is presented. 8 refs., 1 fig., 1 tab

  11. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    Science.gov (United States)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  12. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  13. EMC Increasing of PWM Rectifier in Comparison with Classical Rectifier

    Directory of Open Access Journals (Sweden)

    R. Dolecek

    2008-12-01

    Full Text Available Pulse width modulated rectifier is a very popular topic nowadays. The modern industrial production demands continuous and lossless conversion of electrical energy parameters. This need leads to wide spread of power semiconductor converters. The rapid development in power electronics and microprocessor technology enables to apply sophisticated control methods that eliminate negative side effects of the power converters on the supply network. The phase controlled thyristor rectifiers overload the supply network with higher harmonics and reactive power consumption. That is why the PWM rectifier is being examined. In comparison with the phase controlled rectifier it can be controlled to consume nearly sinusoidal current with power factor equal to unity. Another advantage is its capability of energy recuperation. The PWM rectifier can assert itself for its good behavior in many applications, for example as an input rectifier in indirect frequency converter, or in traction. Traction vehicles equipped with PWM rectifier do not consume reactive power, do not load the supply network with higher harmonics, and the recuperation is possible. The paper deals with the PWM rectifier functional model realization and examination. Electromagnetic compatibility of PWM rectifier and classical phase controlled rectifier is compared on the basis of the input current harmonic analysis.

  14. Solid state thermal rectifier

    Science.gov (United States)

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  15. Interplay between tip-induced band bending and voltage-dependent surface corrugation on GaAs(110) surfaces

    NARCIS (Netherlands)

    Raad, de G.J.; Bruls, D.M.; Koenraad, P.M.; Wolter, J.H.

    2002-01-01

    Atomically resolved, voltage-dependent scanning tunneling microscopy (STM) images of GaAs(110) are compared to the results of a one-dimensional model used to calculate the amount of tip-induced band bending for a tunneling junction between a metal and a semiconductor. The voltage-dependent changes

  16. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current

    DEFF Research Database (Denmark)

    Angelo, Kamilla; Jespersen, Thomas; Grunnet, Morten

    2002-01-01

    The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 mV in th...... the I(Ks) current in certain parts of the mammalian heart....

  17. Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena

    Science.gov (United States)

    White, William E.

    2013-01-01

    Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698

  18. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    Science.gov (United States)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  19. Ca2+ and voltage dependence of cardiac ryanodine receptor channel block by sphingosylphosphorylcholine.

    Science.gov (United States)

    Yasukochi, Midori; Uehara, Akira; Kobayashi, Sei; Berlin, Joshua R

    2003-03-01

    The effect of sphingosylphosphorylcholine (SPC) on the cytoplasmic Ca(2+) and voltage dependence of channel gating by cardiac ryanodine receptors (RyR) was examined in lipid bilayer experiments. Micromolar concentrations of the lysosphingolipid SPC added to cis solutions rapidly and reversibly decreased the single-channel open probability (P(o)) of reconstituted RyR channels. The SPC-induced decrease in P(o) was marked by an increase in mean closed time and burst-like channel gating. Gating kinetics during intraburst periods were unchanged from those observed in the absence of the sphingolipid, although SPC induced a long-lived closed state that appeared to explain the observed decrease in channel P(o). SPC effects were observed over a broad range of cis [Ca(2+)] but were not competitive with Ca(2+). Interestingly, the sphingolipid-induced, long-lived closed state displayed voltage-dependent kinetics, even though other channel gating kinetics were not sensitive to voltage. Assuming SPC effects represent channel blockade, these results suggest that the blocking rate is independent of voltage whereas the unblocking rate is voltage dependent. Together, these results suggest that SPC binds directly to the cytoplasmic side of the RyR protein in a location in or near the membrane dielectric, but distinct from cytoplasmic Ca(2+) binding sites on the protein.

  20. Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon.

    Science.gov (United States)

    Rehn, Matthias; Bader, Sandra; Bell, Anna; Diener, Martin

    2013-09-01

    We recently observed a bradykinin-induced increase in the cytosolic Ca2+ concentration in submucosal neurons of rat colon, an increase inhibited by blockers of voltage-dependent Ca2+ (Ca(v)) channels. As the types of Ca(v) channels used by this part of the enteric nervous system are unknown, the expression of various Ca(v) subunits has been investigated in whole-mount submucosal preparations by immunohistochemistry. Submucosal neurons, identified by a neuronal marker (microtubule-associated protein 2), are immunoreactive for Ca(v)1.2, Ca(v)1.3 and Ca(v)2.2, expression being confirmed by reverse transcription plus the polymerase chain reaction. These data agree with previous observations that the inhibition of L- and N-type Ca2+ currents strongly inhibits the response to bradykinin. However, whole-cell patch-clamp experiments have revealed that bradykinin does not enhance Ca2+ inward currents under voltage-clamp conditions. Consequently, bradykinin does not directly interact with Ca(v) channels. Instead, the kinin-induced Ca2+ influx is caused indirectly by the membrane depolarization evoked by this peptide. As intracellular Ca2+ channels on Ca(2+)-storing organelles can also contribute to Ca2+ signaling, their expression has been investigated by imaging experiments and immunohistochemistry. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) have been functionally demonstrated in submucosal neurons loaded with the Ca(2+)-sensitive fluorescent dye, fura-2. Histamine, a typical agonist coupled to the phospholipase C pathway, induces an increase in the fura-2 signal ratio, which is suppressed by 2-aminophenylborate, a blocker of IP3 receptors. The expression of IP3R1 has been confirmed by immunohistochemistry. In contrast, ryanodine, tested over a wide concentration range, evokes no increase in the cytosolic Ca2+ concentration nor is there immunohistochemical evidence for the expression of ryanodine receptors in these neurons. Thus, rat submucosal neurons are equipped

  1. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  2. A conductance maximum observed in an inward-rectifier potassium channel

    OpenAIRE

    1994-01-01

    One prediction of a multi-ion pore is that its conductance should reach a maximum and then begin to decrease as the concentration of permeant ion is raised equally on both sides of the membrane. A conductance maximum has been observed at the single-channel level in gramicidin and in a Ca(2+)-activated K+ channel at extremely high ion concentration (> 1,000 mM) (Hladky, S. B., and D. A. Haydon. 1972. Biochimica et Biophysica Acta. 274:294-312; Eisenmam, G., J. Sandblom, and E. Neher. 1977. In ...

  3. Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels.

    Directory of Open Access Journals (Sweden)

    Rene Raphemot

    Full Text Available Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1 channels heterologously expressed in HEK293 cells. Of 283 confirmed screening 'hits', the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito Kir channels can be developed using conventional drug discovery approaches. Furthermore, it reinforces the notion that the physical and chemical properties that determine a compound's bioavailability in vivo will be critical in determining the efficacy of Kir channel inhibitors as insecticides.

  4. Dual effect of ethanol on inward rectifier potassium current IK1 in rat ventricular myocytes

    Czech Academy of Sciences Publication Activity Database

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Šimurdová, M.; Šimurda, J.

    2014-01-01

    Roč. 65, č. 4 (2014), s. 497-509 ISSN 0867-5910 Grant - others:GA MZd NT14301 Institutional support: RVO:61388998 Keywords : ethanol * rat ventricular myocyte * rat ventricular action potential model Subject RIV: BO - Biophysics Impact factor: 2.386, year: 2014

  5. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers

    Science.gov (United States)

    DiFranco, Marino; Quinonez, Marbella

    2012-01-01

    A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IKV) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IKV displays the canonical hallmarks of KV channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gKV) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IKV. Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IKV, but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IKV records. A two-channel model that faithfully simulates IKV records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gKV, and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IKV1.4 and IKV3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IKV resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IKV records. Normalized peak attenuations showed the same voltage dependence as peak IKV plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IKV and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gKV in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that KV channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IKV

  6. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.

    Science.gov (United States)

    Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos A; Hulse, Raymond E; Roux, Benoît; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo

    2014-03-01

    The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.

  7. Skin secretion of Siphonops paulensis (Gymnophiona, Amphibia forms voltage-dependent ionic channels in lipid membranes

    Directory of Open Access Journals (Sweden)

    E.F. Schwartz

    2003-09-01

    Full Text Available The effect of the skin secretion of the amphibian Siphonops paulensis was investigated by monitoring the changes in conductance of an artificial planar lipid bilayer. Skin secretion was obtained by exposure of the animals to ether-saturated air, and then rinsing the animals with distilled water. Artificial lipid bilayers were obtained by spreading a solution of azolectin over an aperture of a Delrin cup inserted into a cut-away polyvinyl chloride block. In 9 of 12 experiments, the addition of the skin secretion to lipid bilayers displayed voltage-dependent channels with average unitary conductance of 258 ± 41.67 pS, rather than nonspecific changes in bilayer conductance. These channels were not sensitive to 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid or tetraethylammonium ion, but the experimental protocol used does not permit us to specify their characteristics.

  8. Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.

    Science.gov (United States)

    Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A

    2018-02-21

    Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.

  9. Sodium and Proton Effects on Inward Proton Transport through Na/K Pumps

    Science.gov (United States)

    Mitchell, Travis J.; Zugarramurdi, Camila; Olivera, J. Fernando; Gatto, Craig; Artigas, Pablo

    2014-01-01

    The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons. PMID:24940773

  10. Synchronous Half-Wave Rectifier

    Science.gov (United States)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  11. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  12. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2001-01-01

    The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... on vascular diameter in the afferent arteriole. We conclude that voltage-dependent L- and T-type calcium channels are expressed and of functional significance in renal cortical preglomerular vessels, in juxtamedullary efferent arterioles, and in outer medullary vasa recta, but not in cortical efferent...

  13. Mutagenesis in mammalian cells can be modulated by radiation-induced voltage-dependent potassium channels

    International Nuclear Information System (INIS)

    Saad, A.H.; Zhou, L.Y.; Lambe, E.K.; Hahn, G.M.

    1994-01-01

    In mammalian cells, little is known about the initial events whose ultimate consequence is mutagenesis or DNA repair. The role the plasma membrane may play as an initiator of such a pathway is not understood. We show, for the first time, that membrane voltage-dependent potassium (K + ) currents, activated by ionizing radiation play a significant role in radiation mutagenesis. Specifically, we show that the frequency of mutation at the HGPRT locus is increased as expected to 37.6±4.0 mutations per 100,000 survivors by 800 cGy of ionizing radiation from a spontaneous frequency of 1.5±1.5. This increase, however, is abolished if either K + channel blocker, CsCl or BaCl 2 , is present for 2h following irradiation of the cells. RbCl, chemically similar to CsCl but known not to block K + channels, is ineffective in reducing the mutation frequency. Treatment of cells with CsCl or BaCl 2 had no effect on radiation-induced cell killing

  14. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    Science.gov (United States)

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  15. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  16. Signature and Pathophysiology of Non-canonical Pores in Voltage-Dependent Cation Channels.

    Science.gov (United States)

    Held, Katharina; Voets, Thomas; Vriens, Joris

    2016-01-01

    Opening and closing of voltage-gated cation channels allows the regulated flow of cations such as Na(+), K(+), and Ca(2+) across cell membranes, which steers essential physiological processes including shaping of action potentials and triggering Ca(2+)-dependent processes. Classical textbooks describe the voltage-gated cation channels as membrane proteins with a single, central aqueous pore. In recent years, however, evidence has accumulated for the existence of additional ion permeation pathways in this group of cation channels, distinct from the central pore, which here we collectively name non-canonical pores. Whereas the first non-canonical pores were unveiled only after making specific point mutations in the voltage-sensor region of voltage-gated Na(+) and K(+) channels, recent evidence indicates that they may also be functional in non-mutated channels. Moreover, several channelopathies have been linked to mutations that cause the appearance of a non-canonical ion permeation pathway as a new pathological mechanism. This review provides an integrated overview of the biophysical properties of non-canonical pores described in voltage-dependent cation channels (KV, NaV, Cav, Hv1, and TRPM3) and of the (patho)physiological impact of opening of such pores.

  17. Analysis and Comparison of Voltage Dependent Charging Strategies for Single-Phase Electric Vehicles in an Unbalanced Danish Distribution Grid

    DEFF Research Database (Denmark)

    Álvarez, Jorge Nájera; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    This paper studies four voltage dependent solutions for modulating the charging of multiple Electric Vehicles (EVs) in a real Danish network. Uncontrolled EV charging, especially in grid with high EV penetration, can result in overloaded lines and transformers, low-voltages and other performance...

  18. Effects of gamma irradiation on voltage-dependant NA+ and K+ currents in N1E-115 cells

    International Nuclear Information System (INIS)

    Diserbo, M.; Barbier, M.; Quignard, J.F.

    1998-01-01

    Effects of 15 Gy gamma irradiation on voltage-dependent Na + and K + currents in differentiated N1E-115 cells are studied by using whole cell recording. Only, we observed an activation of Na + currents at a lower threshold. (authors)

  19. New insights on the voltage dependence of the KCa3.1 channel block by internal TBA.

    Science.gov (United States)

    Banderali, Umberto; Klein, Hélène; Garneau, Line; Simoes, Manuel; Parent, Lucie; Sauvé, Rémy

    2004-10-01

    We present in this work a structural model of the open IKCa (KCa3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% and 16% of the transmembrane potential difference. We found however that the voltage dependence of the IKCa block by the quaternary ammonium ion TBA applied internally is compatible with an apparent electrical distance delta of 0.49 +/- 0.02 (n = 6) for negative potentials. To reconcile this observation with the electrostatic potential profile predicted for the channel pore, we modeled the IKCa block by TBA assuming that the voltage dependence of the block is governed by both the difference in potential between the channel cavity and the internal medium, and the potential profile along the selectivity filter region through an effect on the filter ion occupancy states. The resulting model predicts that delta should be voltage dependent, being larger at negative than positive potentials. The model also indicates that raising the internal K+ concentration should decrease the value of delta measured at negative potentials independently of the external K+ concentration, whereas raising the external K+ concentration should minimally affect delta for concentrations >50 mM. All these predictions are born out by our current experimental results. Finally, we found that the substitutions V275C and V275A increased the voltage sensitivity of the TBA block, suggesting that TBA could move further into the pore, thus leading to stronger interactions between TBA and the ions in the selectivity filter. Globally, these results support a model whereby the voltage dependence of the TBA block in IKCa is mainly governed by the voltage dependence of the ion occupancy states of the selectivity filter.

  20. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  1. Voltage-dependent modulation of cardiac ryanodine receptors (RyR2 by protamine.

    Directory of Open Access Journals (Sweden)

    Paula L Diaz-Sylvester

    Full Text Available It has been reported that protamine (>10 microg/ml blocks single skeletal RyR1 channels and inhibits RyR1-mediated Ca2+ release from sarcoplasmic reticulum microsomes. We extended these studies to cardiac RyR2 reconstituted into planar lipid bilayers. We found that protamine (0.02-20 microg/ml added to the cytosolic surface of fully activated RyR2 affected channel activity in a voltage-dependent manner. At membrane voltage (V(m; SR lumen-cytosol = 0 mV, protamine induced conductance transitions to several intermediate states (substates as well as full block of RyR2. At V(m>10 mV, the substate with the highest level of conductance was predominant. Increasing V(m from 0 to +80 mV, decreased the number of transitions and residence of the channel in this substate. The drop in current amplitude (full opening to substate had the same magnitude at 0 and +80 mV despite the approximately 3-fold increase in amplitude of the full opening. This is more similar to rectification of channel conductance induced by other polycations than to the action of selective conductance modifiers (ryanoids, imperatoxin. A distinctive effect of protamine (which might be shared with polylysines and histones but not with non-peptidic polycations is the activation of RyR2 in the presence of nanomolar cytosolic Ca2+ and millimolar Mg2+ levels. Our results suggest that RyRs would be subject to dual modulation (activation and block by polycationic domains of neighboring proteins via electrostatic interactions. Understanding these interactions could be important as such anomalies may be associated with the increased RyR2-mediated Ca2+ leak observed in cardiac diseases.

  2. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Chacko, Alex D; Liberante, Fabio; Paul, Ian; Longley, Daniel B; Fennell, Dean A

    2010-01-01

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  3. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid

    Directory of Open Access Journals (Sweden)

    Galyna Maleeva

    2017-05-01

    Full Text Available Niflumic acid (NFA is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2′ increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.

  4. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  5. Fully superconducting rectifiers and fluxpumps

    International Nuclear Information System (INIS)

    Klundert, L.J.M. van de; Kate, H.H.J. ten

    1981-01-01

    Reviewing the basic principles of operation of fluxpumps, mechanical devices such as flux compressors and dynamos are discussed and electrically driven rectifier fluxpumps, with which current levels of over 10 KA can be obtained with high performance, are considered. 132 references. (U.K.)

  6. Feedback loop compensates for rectifier nonlinearity

    Science.gov (United States)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  7. RTD application in low power UHF rectifiers

    International Nuclear Information System (INIS)

    Sinyakin, V Yu; Makeev, M O; Meshkov, S A

    2016-01-01

    In the current work, the problem of UHF RFID passive tag sensitivity increase is considered. Tag sensitivity depends on HF signal rectifier efficiency and antenna-rectifier impedance matching. Possibility of RFID passive tag sensitivity increase up to 10 times by means of RTD use in HF signal rectifier in comparison with tags based on Schottky barrier diode is shown. (paper)

  8. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    Science.gov (United States)

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  9. Voltage dependence of a stochastic model of activation of an alpha helical S4 sensor in a K channel membrane

    Science.gov (United States)

    Vaccaro, S. R.

    2011-09-01

    The voltage dependence of the ionic and gating currents of a K channel is dependent on the activation barriers of a voltage sensor with a potential function which may be derived from the principal electrostatic forces on an S4 segment in an inhomogeneous dielectric medium. By variation of the parameters of a voltage-sensing domain model, consistent with x-ray structures and biophysical data, the lowest frequency of the survival probability of each stationary state derived from a solution of the Smoluchowski equation provides a good fit to the voltage dependence of the slowest time constant of the ionic current in a depolarized membrane, and the gating current exhibits a rising phase that precedes an exponential relaxation. For each depolarizing potential, the calculated time dependence of the survival probabilities of the closed states of an alpha helical S4 sensor are in accord with an empirical model of the ionic and gating currents recorded during the activation process.

  10. Regional Characteristics and Effects of Inward FDI

    DEFF Research Database (Denmark)

    Kokko, Ari; Kravtsova, Victoria

    2012-01-01

    mainly driven by the development in western Ukraine, whereas inward FDI in eastern Ukraine did not seem to have any impact on local productivity growth and technical change. !ese results arguably reflect deep economic and institutional differences between the two parts of Ukraine, which have led...... to differences in the character of incoming FDI and differences in the ability of local firms to benefit from FDI. The conclusion is that the impact of FDI on the host economy may vary even at the sub-national level, depending on the specific local environment....

  11. Business Networks and Inward FDI Policy

    OpenAIRE

    Fergal McCann

    2008-01-01

    I outline the effect of business networks on trade, FDI and welfare in a two-country, two-firm duopoly. The network effect, following Greaney (2002), is modelled as a marginal cost disadvantage facing a firm from Foreign in selling to Home. Unlike traditional trade costs, this cost cannot be avoided by investing in Home. My main addition is a Nash game between governments in which they subsidise the fixed costs of inward FDI. While the network effect is shown to lead to favourable outcomes fo...

  12. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Directory of Open Access Journals (Sweden)

    Sameera Dharia

    2011-02-01

    Full Text Available Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR K(+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+ addition to the external bath. Cu(2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K(+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  13. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2011-02-28

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+) addition to the external bath. Cu(2+) is known to bind to the ShB-IR ion channel and inhibit Shaker K(+) conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+)-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  14. Pertussis toxin-sensitive alpha-adrenergic modulation of voltage - dependent calcium channels in spontaneously hypertensive rats (SHR)

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Pintérová, Mária; Dobešová, Zdenka; Líšková, Silvia; Kuneš, Jaroslav

    2006-01-01

    Roč. 24, č. S6 (2006), s. 34-34 ISSN 0263-6352. [Scientific Meeting of the International Society of Hypertension /21./. 15.10.2006-19.10.2006, Fukuoka] R&D Projects: GA MZd(CZ) NR7786 Institutional research plan: CEZ:AV0Z50110509 Keywords : pertussis toxin * alpha adrenergic vasoconstriction * voltage-dependent calcium channels * SHR rat Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  15. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    Science.gov (United States)

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 5-HT modulation of hyperpolarization-activated inward current and calcium- dependent outward current in a crustacean motor neuron

    DEFF Research Database (Denmark)

    Kiehn, O.; Harris-Warrick, R. M.

    1992-01-01

    1. Serotonergic modulation of a hyperpolarization-activated inward current, I(h), and a calcium-dependent outward current, I(o(Ca)), was examined in the dorsal gastric (DG) motor neuron, with the use of intracellular recording techniques in an isolated preparation of the crab stomatogastric....... The time course of activation of I(h) was well fitted by a single exponential function and strongly voltage dependent. 5-HT increased the rate of activation of I(h). 5- HT also slowed the rate of deactivation of the I(h) tail on repolarization to -50 mV. 6. The activation curve for the conductance (G...... reduced or eliminated the 5-HT response in the depolarizing range, suggesting that 5-HT specifically reduces I(o(Ca)). 11. These results demonstrate that 5-HT has dual effects on the DG motor neuron, in the crab stomatogastric ganglion. We suggest that changes in the two conductances are responsible...

  17. Voltage-dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons.

    Science.gov (United States)

    Cantrell, A R; Scheuer, T; Catterall, W A

    1999-07-01

    Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.

  18. Effect of angiotensin II-induced arterial hypertension on the voltage-dependent contractions of mouse arteries.

    Science.gov (United States)

    Fransen, Paul; Van Hove, Cor E; Leloup, Arthur J A; Schrijvers, Dorien M; De Meyer, Guido R Y; De Keulenaer, Gilles W

    2016-02-01

    Arterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks). Normotensive mice treated with saline-filled osmotic mini-pumps were used for comparison. Voltage-dependent contractions mediated by L-type Ca(2+) channels were studied in vaso-reactive studies in vitro in isolated aortic and femoral arteries by using extracellular K(+) concentration-response (KDR) experiments. In aortic segments, AngII-induced AHT significantly sensitized isometric contractions induced by elevated extracellular K(+) and depolarization. This sensitization was partly prevented by normalizing blood pressure with hydralazine, suggesting that it was caused by AHT rather than by direct AngII effects on aortic smooth muscle cells. The EC50 for extracellular K(+) obtained in vitro correlated significantly with the rise in arterial blood pressure induced by AngII in vivo. The AHT-induced sensitization persisted when aortic segments were exposed to levcromakalim or to inhibitors of basal nitric oxide release. Consistent with these observations, AngII-treatment also sensitized the vaso-relaxing effects of the L-type Ca(2+) channel blocker diltiazem during K(+)-induced contractions. Unlike aorta, AngII-treatment desensitized the isometric contractions to depolarization in femoral arteries pointing to vascular bed specific responses of arteries to hypertension. AHT affects the voltage-dependent L-type Ca(2+) channel-mediated contraction of conduit arteries. This effect may contribute to the decreased vascular compliance in AHT and explain the efficacy of Ca(2+) channel blockers to reduce vascular stiffness and central blood pressure in AHT.

  19. Thermally and magnetically controlled superconducting rectifiers

    International Nuclear Information System (INIS)

    Mulder, G.B.J.; TenKate, H.H.J.; Krooshoop, H.J.G.; Van de Klundert, L.J.M.

    1989-01-01

    The switches of a superconducting rectifier can be controlled either magnetically or thermally. The main purpose of this paper is to point out the differences between both methods of switching and discuss the consequences for the operation of the rectifier. The discussion is illustrated by the experimental results of a rectifier which was tested with magnetically as well as thermally controlled switches. It has an input current of 30 A, an output current of more than 1 kA and an operating frequency of a few Hertz. A superconducting magnet connected to this rectifier can be energized at a rate exceeding 1 MJ/hour and an efficiency of about 97%

  20. Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    OpenAIRE

    Dharia, Sameera; Rabbitt, Richard D.

    2011-01-01

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential a...

  1. Breakdown voltage mapping through voltage dependent ReBEL intensity imaging of multi-crystalline Si solar cells

    Science.gov (United States)

    Dix-Peek, RM.; van Dyk, EE.; Vorster, FJ.; Pretorius, CJ.

    2018-04-01

    Device material quality affects both the efficiency and the longevity of photovoltaic (PV) cells. Therefore, identifying these defects can be beneficial in the development of more efficient and longer lasting PV cells. In this study, a combination of spatially-resolved, electroluminescence (EL), and light beam induced current (LBIC) measurements, were used to identify specific defects and features of a multi-crystalline Si PV cells. In this study, a novel approach is used to map the breakdown voltage of a PV cell through voltage dependent Reverse Bias EL (ReBEL) intensity imaging.

  2. 19 CFR 4.62 - Accounting for inward cargo.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Accounting for inward cargo. 4.62 Section 4.62 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.62 Accounting for inward cargo...

  3. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar

    2017-01-01

    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  4. Bias voltage dependence of magnetic tunnel junctions comprising amorphous ferromagnetic CoFeSiB layer with double barriers

    International Nuclear Information System (INIS)

    Yim, H.I.; Lee, S.Y.; Hwang, J.Y.; Rhee, J.R.; Chun, B.S.; Wang, K.L.; Kim, Y.K.; Kim, T.W.; Lee, S.S.; Hwang, D.G.

    2008-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) with and without an amorphous ferromagnetic material such as CoFeSiB 10, CoFe 5/CoFeSiB 5, and CoFe 10 (nm) were prepared and compared to investigate the bias voltage dependence of the tunneling magnetoresistance (TMR) ratio. Typical DMTJ structures were Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer 10/AlO x /CoFe 7/IrMn 10/Ru 60 (in nanometers). The interlayer coupling field and the normalized TMR ratios at the applied voltages of +0.4 and -0.4 V of the amorphous CoFeSiB free-layer DMTJ offer lower and higher values than that of the polycrystalline CoFe free-layer DMTJ, respectively. An amorphous ferromagnetic CoFeSiB layer improves the interface roughness of the free layer/tunnel barrier and, as a result, the interlayer coupling field and bias voltage dependence of the TMR ratio are suppressed at a given voltage. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Inhibition of the voltage-dependent chloride channel of Torpedo electric organ by diisopropylfluorophosphate and its reversal by oximes

    International Nuclear Information System (INIS)

    Abalis, I.M.; Chiang, P.K.; Wirtz, R.A.; Andre, R.G.

    1986-01-01

    Diisopropylfluorophosphate (DFP), a potent organophosphate inhibitor of cholinesterases, was found to inhibit the specific binding of [ 35 S]t-butylbicyclophosphorothionate (TBPS), specific chloride channels ligand, to the electric organ membranes of Torpedo, with a Ki of 21 +/- 3 μM. The binding sites of [ 35 S]TBPS in the Torpedo membranes were found not to be GABA receptors or nicotinic acetylcholine receptors as previously described. Interestingly, a stimulation of the binding of [ 35 S]TBPS was observed in the presence of atropine and three oximes, monopyridinium oxime 2-PAM, bispyridinium bis-oxime TMB-4 and H-oxime HI-6. The maximal stimulation was 300-500% of control, after which, the stimulation was reversed at higher concentrations. The three oximes protected by more than 95% the inhibition by 1 mM DFP of the binding of [ 35 S]TBPS to the voltage-dependent chloride channel. However, atropine protected only 20% of the inhibited channel. These results, thus, suggest that the protection against the toxic effects of DFP or other anticholinesterase agents by the tested oximes may not be solely a result of the reactivation of cholinesterases but also the protection of the voltage-dependent chloride channel

  6. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    Science.gov (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  7. Laserlike Vibrational Instability in Rectifying Molecular Conductors

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Hedegård, Per; Brandbyge, Mads

    2011-01-01

    We study the damping of molecular vibrations due to electron-hole pair excitations in donor-acceptor (D-A) type molecular rectifiers. At finite voltage additional nonequilibrium electron-hole pair excitations involving both electrodes become possible, and contribute to the stimulated emission....... We investigate the effect in realistic molecular rectifier structures using first-principles calculations....

  8. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  9. Extremal vectors and rectifiability | Enflo | Quaestiones Mathematicae

    African Journals Online (AJOL)

    Extremal vectors and rectifiability. ... The concept of extremal vectors of a linear operator with a dense range but not onto on a Hilbert space was introduced by P. Enflo in 1996 as a new approach to study invariant subspaces ... We show that in general curves that map numbers to backward minimal vectors are not rectifiable.

  10. Chapter 13 - Active Rectifiers and Their Control

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Abdelhakim, Ahmed

    2018-01-01

    This chapter investigates the control design of active rectifiers and their applications in power electronics-based power system. The harmonic emission and measures are firstly addressed as a basis of evaluating the active rectifier's effectiveness. Furthermore, the importance of new coming...... standards is highlighted. Application-oriented design of active rectifiers as a main reason behind evolvement of different topologies is discussed. Then, the main principle in designing different control schemes in single-phase and three-phase rectifiers is investigated, analyzed, and experimentally...... verified. The influence of nonideal operating conditions with possible solutions is addressed. Finally, future prospective of active rectifiers as a one of the key enabler of carbon-free power system is summarized....

  11. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    Science.gov (United States)

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  12. The human red cell voltage-dependent cation channel. Part III: Distribution homogeneity and pH dependence

    DEFF Research Database (Denmark)

    Bennekou, P.; Barksmann, T. L.; Christophersen, P.

    2006-01-01

    The homogeneity of the distribution of the non-selective voltage-dependent cation channel (the NSVDC channel) in the human erythrocyte, and the pH dependence was investigated. Activation of this channel caused a uniform cellular dehydration, which was characterized by the changes in the erythrocyte...... osmotic resistance profiles: After 1/2 h of activation, the osmolarity at 50% hemolysis changed from 73 mM (control) to 34 mM NaCl, corresponding to 0.48% and 0.21% NaCl respectively. Unchanging standard deviations show participation of the entire erythrocyte population, which implies an even distribution...... of the NSVDC channel among the cells. Inactivation of the NSVDC channel with N-ethyl-maleimide (NEM) or blocking of the Cl- conductance with NS1652 retarded the migration of the resistance profiles towards lower osmolarities. The NSVDC channel activation was blocked by a decrease of the intracellular...

  13. Rectifier transformer saturation on commutation failure

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1989-01-01

    The rectifier transformer's service differs from the power transformer's service because of the rectifier load. Under certain fault conditions, such as a commutation failure, d.c. magnetization may be introduced into the rectifier transformer cores, resulting in possible saturation of the magnetic circuit, thus in degradation of the performance of the transformer. It is the purpose of this paper to present an approach for evaluating the electromagnetic transient process under such a fault condition. The studies were made on the operating 1000MVA converter system at the Princeton Plasma Physics Laboratory

  14. Does Inward FDI Promote or Hinder Outward FDI?

    DEFF Research Database (Denmark)

    Liu, Ying; Li, Ming Hua; Lu, Jiangyong

    In this paper we evaluate the mechanisms underlying dynamic linkages between inward FDI and outward internationalization in the Chinese automobile industry. While several studies have examined the relationship between outward and inward investment using empirical data, this is among the first to ...... may be more driven to expand internationally while firms with IJVs may face constraints from venturing abroad. Our study further delineates strategies for how automakers without IJVs may rely on external growth to springboard back into the domestic car market....

  15. A boron nitride nanotube peapod thermal rectifier

    International Nuclear Information System (INIS)

    Loh, G. C.; Baillargeat, D.

    2014-01-01

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  16. A boron nitride nanotube peapod thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  17. A 62GHz inductor-peaked rectifier with 7% efficiency

    NARCIS (Netherlands)

    Gao, H.; Matters - Kammerer, M.; Milosevic, D.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the first 62 GHz fully onchip RF-DC rectifier in 65nm CMOS technology. The rectifier is the bottleneck in realizing on-chip wireless power receivers. In this paper, efficiency problems of the mm-wave rectifier are discussed and the inductor-peaked rectifier structure is proposed

  18. InGaAs-based planar barrier diode as microwave rectifier

    Science.gov (United States)

    Farhani Zakaria, Nor; Rizal Kasjoo, Shahrir; Zailan, Zarimawaty; Mohamad Isa, Muammar; Arshad, Mohd Khairuddin Md; Taking, Sanna

    2018-06-01

    In this report, we proposed and simulated a new planar nonlinear rectifying device fabricated using InGaAs substrate and referred to as a planar barrier diode (PBD). Using an asymmetrical inverse-arrowhead-shaped structure between the electrodes, a nonuniform depletion region is developed, which creates a triangular energy barrier in the conducting channel. This barrier is voltage dependent and can be controlled by the applied voltage across the PBD, thus resulting in nonlinear diode-like current–voltage characteristics; thus it can be used as a rectifying device. The PBD’s working principle is explained using thermionic emission theory. Furthermore, by varying the PBD’s geometric design, the asymmetry of the current–voltage characteristics can be optimized to realize superior rectification performance. By employing the optimized structural parameters, the obtained cut-off frequency of the device was approximately 270 GHz with a curvature coefficient peak of 14 V‑1 at a low DC bias voltage of 50 mV.

  19. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    Science.gov (United States)

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  20. Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+ channels.

    Directory of Open Access Journals (Sweden)

    Seok-Yong Lee

    2009-03-01

    Full Text Available Voltage-dependent K(+ (Kv channels gate open in response to the membrane voltage. To further our understanding of how cell membrane voltage regulates the opening of a Kv channel, we have studied the protein interfaces that attach the voltage-sensor domains to the pore. In the crystal structure, three physical interfaces exist. Only two of these consist of amino acids that are co-evolved across the interface between voltage sensor and pore according to statistical coupling analysis of 360 Kv channel sequences. A first co-evolved interface is formed by the S4-S5 linkers (one from each of four voltage sensors, which form a cuff surrounding the S6-lined pore opening at the intracellular surface. The crystal structure and published mutational studies support the hypothesis that the S4-S5 linkers convert voltage-sensor motions directly into gate opening and closing. A second co-evolved interface forms a small contact surface between S1 of the voltage sensor and the pore helix near the extracellular surface. We demonstrate through mutagenesis that this interface is necessary for the function and/or structure of two different Kv channels. This second interface is well positioned to act as a second anchor point between the voltage sensor and the pore, thus allowing efficient transmission of conformational changes to the pore's gate.

  1. Evolution of Voltage-Dependent Anion Channel Function: From Molecular Sieve to Governator to Actuator of Ferroptosis

    Directory of Open Access Journals (Sweden)

    John J. Lemasters

    2017-12-01

    Full Text Available The voltage-dependent anion channel (VDAC is well known as the pathway for passive diffusion of anionic hydrophilic mitochondrial metabolites across the outer membrane, but a more complex functionality of the three isoforms of VDAC has emerged, as addressed in the Frontiers in Oncology Research Topic on “Uncovering the Function of the Mitochondrial Protein VDAC in Health and Disease: from Structure-Function to Novel Therapeutic Strategies.” VDAC as the single most abundant protein in mitochondrial outer membranes is typically involved in isoform-specific interactions of the mitochondrion with its surroundings as, for example, during mitochondria-dependent pathways of cell death. VDAC closure can also act as an adjustable limiter (governator of global mitochondrial metabolism, as during hepatic ethanol metabolism to promote selective oxidation of membrane-permeant acetaldehyde. In cancer cells, high free tubulin inhibits VDAC1 and VDAC2, contributing to suppression of mitochondrial function in the Warburg phenomenon. Erastin, the canonical inducer of ferroptosis, opens VDAC in the presence of tubulin and hyperpolarizes mitochondria, leading to mitochondrial production of reactive oxygen species, mitochondrial dysfunction, and cell death. Our understanding of VDAC function continues to evolve.

  2. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  3. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  4. Quantitative analysis of the Ca2+ -dependent regulation of delayed rectifier K+ current IKs in rabbit ventricular myocytes.

    Science.gov (United States)

    Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M

    2017-04-01

    [Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or

  5. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from

  6. Bias voltage dependence of tunneling magnetoresistance in granular C60–Co films with current-perpendicular-to-plane geometry

    International Nuclear Information System (INIS)

    Sakai, Seiji; Mitani, Seiji; Matsumoto, Yoshihiro; Entani, Shiro; Avramov, Pavel; Ohtomo, Manabu; Naramoto, Hiroshi; Takanashi, Koki

    2012-01-01

    Voltage-dependence of the tunneling magnetoresistance effect in the granular C 60 –Co films has been investigated for the samples with the current-perpendicular-to-plane geometry. The transport measurements under this geometry demonstrate that the granular C 60 –Co films show an unusual exponential bias voltage dependence of the magnetoresistance ratio down to zero voltage. Small characteristic energies of less than 10's meV are derived from the temperature dependences of the characteristic voltage in the exponential relationship. Considering the magnitudes of the voltage drop between Co nanoparticles and also the effect of cotunneling on the energy values, the characteristic energies for the voltage-induced degradation of the spin polarization are found to show a satisfactory agreement with that for the thermally-induced one. It can be reasonably expected that the onset of magnetic disorder to the localized d-electron spins at the interface region of the C 60 -based matrix (C 60 –Co compound) with Co nanoparticles leading to the unusual voltage and temperature dependence of the magnetoresistance ratio and the spin polarization at low temperatures. - Highlights: ► Unusual voltage dependence of the TMR effect in granular C 60 –Co films is studied. ► Linear temperature-characteristic voltage dependence in the MR–V relationship. ► Spin-flip scattering by the exchange-coupled d-electron spins at the interface.

  7. Full-wave current conveyor precision rectifier

    Directory of Open Access Journals (Sweden)

    Đukić Slobodan R.

    2008-01-01

    Full Text Available A circuit that provides precision rectification of small signal with low temperature sensitivity for frequencies up to 100 kHz without waveform distortion is presented. It utilizes an improved second type current conveyor based on current-steering output stage and biased silicon diodes. The use of a DC current source to bias the rectifying diodes provides higher temperature stability and lower DC offset level at the output. Proposed design of the precision rectifier ensures good current transfer linearity in the range that satisfy class A of the amplifier and good voltage transfer characteristic for low level signals. Distortion during the zero crossing of the input signal is practically eliminated. Design of the proposed rectifier is realized with standard components.

  8. Structural Optimization of Non-Newtonian Rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin

    When the size of fluidic devices is scaled down, inertial effects start to vanish such that the governing equation becomes linear. Some microfluidic devices rely on the non-linear term related to the inertia of the fluid, and one example is fluid rectifiers (diodes) e.g. related to some micropumps....... These rectifiers rely on the device geometry for their working mechanism, but on further downscaling the inertial effect vanishes and the governing equation starts to show symmetry properties. These symmetry properties reduce the geometry influence to the point where fluid rectifiers cease to function....... In this context it is natural to look for other sources of non-linearity and one possibility is to introduce a non-Newtonian working fluid. Non-Newtonian properties are due to stretching of large particles/molecules in the fluid and this is commonly seen for biological samples in “lab-on-a-chip” systems...

  9. Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels.

    Science.gov (United States)

    Villalonga, Núria; David, Miren; Bielańska, Joanna; González, Teresa; Parra, David; Soler, Concepció; Comes, Núria; Valenzuela, Carmen; Felipe, Antonio

    2010-09-15

    Kv1.3 plays a crucial role in the activation and proliferation of T-lymphocytes and macrophages. While Kv1.3 is responsible for the voltage-dependent potassium current in T-cells, in macrophages this K(+) current is generated by the association of Kv1.3 and Kv1.5. Patients with autoimmune diseases show a high number of effector memory T cells that are characterized by a high expression of Kv1.3 and Kv1.3 antagonists ameliorate autoimmune disorders in vivo. Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) used in patients who suffer from painful autoimmune diseases such as rheumatoid arthritis. In this study, we show that diclofenac impairs immune response via a mechanism that involves Kv1.3. While diclofenac inhibited Kv1.3 expression in activated macrophages and T-lymphocytes, Kv1.5 remained unaffected. Diclofenac also decreased iNOS levels in Raw 264.7 cells, impairing their activation in response to lipopolysaccharide (LPS). LPS-induced macrophage migration and IL-2 production in stimulated Jurkat T-cells were also blocked by pharmacological doses of diclofenac. These effects were mimicked by Margatoxin, a specific Kv1.3 inhibitor, and Charybdotoxin, which blocks both Kv1.3 and Ca(2+)-activated K(+) channels (K(Ca)3.1). Because Kv1.3 is a very good target for autoimmune therapies, the effects of diclofenac on Kv1.3 are of high pharmacological relevance. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    Science.gov (United States)

    Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-06-02

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI -tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr 83 and Glu 73 , respectively. When Glu 73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr 62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu 73 residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    Science.gov (United States)

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  12. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    Science.gov (United States)

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. DC Motor Drive with PFC Rectifier

    Directory of Open Access Journals (Sweden)

    Lascu Mihaela

    2008-05-01

    Full Text Available The goal of this work is to study theperformances of a hybrid controller used to controlDC Motor drive with a single-phase power factorcorrection rectifier. This study is made usingcomputer simulation (Simulink. The first part isdevoted to the control system of the DC Motors. Inthe second part, the design of the hybrid controllerwill be presented. The third part is the design ofthe fast response single-phase boost power factorcorrection rectifier. The last parts are devoted tosimulation and experimental results.

  14. Harmonic Distortion of Rectifier Topologies for Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Hansen, Steffan

    This thesis deals with the harmonic distortion of the diode rectifier and a number of alternative rectifier topologies for adjustable speed drives. The main intention of this thesis is to provide models and tools that allow easy prediction of the harmonic distortion of ASD’s in a given system...... rectifier are presented. The first level is an ideal model where the diode rectifier basically is treated as an independent (harmonic) current source. The second level is an empirical model, where simulated (or measured) values of the harmonic currents of the diode rectifier for different parameters......-angle of the individual harmonic currents of different diode rectifier types is analyzed. Four selected rectifier topologies with a high input power factor are presented. It is shown that using ac- or dc-coils is a very simple and efficient method to reduce the harmonic currents compared to the basic diode rectifier...

  15. 75 FR 29699 - Total Inward Leakage Requirements for Respirators

    Science.gov (United States)

    2010-05-27

    ... or other half-mask respirator inward leakage measurement, and offer any additional comments on the..., facsimile (412) 386-4089, e-mail [email protected] . SUPPLEMENTARY INFORMATION: I. Background The Department of... order to conduct tests and prepare responses. On April 20, 2010, NIOSH responded by reopening the docket...

  16. A comparative study of the effect of ciguatoxins on voltage-dependent Na+ and K+ channels in cerebellar neurons.

    Science.gov (United States)

    Pérez, Sheila; Vale, Carmen; Alonso, Eva; Alfonso, Carmen; Rodríguez, Paula; Otero, Paz; Alfonso, Amparo; Vale, Paulo; Hirama, Masahiro; Vieytes, Mercedes R; Botana, Luis M

    2011-04-18

    Ciguatera is a global disease caused by the consumption of certain warm-water fish (ciguateric fish) that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. The effect of ciguatoxin standards and contaminated ciguatoxin samples was evaluated by electrophysiological recordings in cultured cerebellar neurons. The toxins affected both voltage-gated sodium (Nav) and potassium channels (Kv) although with different potencies. CTX 3C was the most active toxin blocking the peak inward sodium currents, followed by P-CTX 1B and 51-OH CTX 3C. In contrast, P-CTX 1B was more effective in blocking potassium currents. The analysis of six different samples of contaminated fish, in which a ciguatoxin analogue of mass 1040.6, not identical with the standard 51-OH CTX 3C, was the most prevalent compound, indicated an additive effect of the different ciguatoxins present in the samples. The results presented here constitute the first comparison of the potencies of three different purified ciguatoxins on sodium and potassium channels in the same neuronal preparation and indicate that electrophysiological recordings from cultured cerebellar neurons may provide a valuable tool to detect and quantify ciguatoxins in the very low nanomolar range.

  17. Minimum component high frequency current mode rectifier | Sampe ...

    African Journals Online (AJOL)

    In this paper a current mode full wave rectifier circuit is proposed. The current mode rectifier circuit is implemented utilizing a floating current source (FCS) as an active element. The minimum component full wave rectifier utilizes only a single floating current source, two diodes and two grounded resistors. The extremely ...

  18. 46 CFR 183.360 - Semiconductor rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  19. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  20. 46 CFR 120.360 - Semiconductor rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  1. High Power Factor Hybrid Rectifier | Odeh | Nigerian Journal of ...

    African Journals Online (AJOL)

    This paper presents the analysis of a new single-phase hybrid rectifier with high power factor (PF) and low harmonic distortion current. The proposed rectifier structure is composed of an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of ...

  2. Heparin/heparan sulfates bind to and modulate neuronal L-type (Cav1.2) voltage-dependent Ca2+ channels

    DEFF Research Database (Denmark)

    Garau, Gianpiero; Magotti, Paola; Heine, Martin

    2015-01-01

    Our previous studies revealed that L-type voltage-dependent Ca2+ channels (Cav1.2 L-VDCCs) are modulated by the neural extracellular matrix backbone, polyanionic glycan hyaluronic acid. Here we used isothermal titration calorimetry and screened a set of peptides derived from the extracellular......M), integrating their enthalpic and entropic binding contributions. Interaction between heparin and recombinant as well as native full-length neuronal Cav1.2α1 channels was confirmed using the heparin–agarose pull down assay. Whole cell patch clamp recordings in HEK293 cells transfected with neuronal Cav1.......2 channels revealed that enzymatic digestion of highly sulfated heparan sulfates with heparinase 1 affects neither voltage-dependence of channel activation nor the level of steady state inactivation, but did speed up channel inactivation. Treatment of hippocampal cultures with heparinase 1 reduced the firing...

  3. Noradrenergic mechanisms and high blood pressure maintenance in genetic hypertension: The role of Gi proteins and voltage-dependent calcium channels

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Pintérová, Mária; Líšková, Silvia; Dobešová, Zdenka; Kuneš, Jaroslav

    2007-01-01

    Roč. 29, č. 4 (2007), s. 229-229 ISSN 1064-1963. [International symposium on SHR /12./. 20.10.2006-21.10.2006, Kyoto] R&D Projects: GA MZd(CZ) NR7786 Institutional research plan: CEZ:AV0Z50110509 Keywords : genetic hypertension * noradrenergic mechanisms * Gi proteins * voltage-dependent calcium channels Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  4. Possible influence of the voltage dependence of the Josephson tunneling current I(V,psi) on the corresponding current-voltage characteristic

    International Nuclear Information System (INIS)

    Hahlbohm, H.D.; Luebbig, H.; Luther, H.

    1975-01-01

    Analog computer calculations of the current-voltage characteristic involving the voltage dependence of the amplitudes of the tunneling current equation explicitly, for the case of a current driven tunneling junction at different temperatures are reported on. These studies are based upon the adiabatic representation of the current-phase relation. The influence of retarding effects is not included. Therefore the computational results can lead to practical consequences at best in the range near the transition temperature. (Auth.)

  5. Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes

    DEFF Research Database (Denmark)

    Andreasen, Ditte; Friis, Ulla G; Uhrenholt, Torben R

    2006-01-01

    Voltage-dependent Ca2+ channels Cav1.2 (L type) and Cav2.1 (P/Q type) are expressed in vascular smooth muscle cells (VSMCs) and are important for the contraction of renal resistance vessels. In the present study we examined whether native renal VSMCs coexpress L-, P-, and Q-type Ca2+ currents...... microscopy revealed expression of both channels in all of the smooth muscle cells. Whole-cell patch clamp on single preglomerular VSMCs from mice showed L-, P-, and Q-type currents. Blockade of the L-type currents by calciseptine (20 nmol/L) inhibited 35.6+/-3.9% of the voltage-dependent Ca2+ current......-type and P-type channels inhibited 58.0+/-11.8%, and simultaneous inhibition of L-, P-, and Q-type channels led to blockade (88.7+/-5.6%) of the Ca2+ current. We conclude that aortic and renal preglomerular smooth muscle cells express L-, P-, and Q-type voltage-dependent Ca2+ channels in the rat and mouse....

  6. Reduction of Harmonics by 18-Pulse Rectifier

    Directory of Open Access Journals (Sweden)

    Stanislav Kocman

    2008-01-01

    Full Text Available Operation of such electrical devices as data processing and electronics devices, adjustable speed drives or uninterruptible power supply can cause problems by generating harmonic currents into the network, from which they are supplied. Effects of these harmonic currents are various, they can get worse the quality of supply voltage in the network or to have negative influences on devices connected to this network. There are various technical solutions for reduction of harmonics. One of them is using of multi-pulse rectifiers, whereas the 18-pulse rectifier in the structure of adjustable speed drive is briefly presented in this paper including some results of its behaviour. The examined experimental measurements confirmed its very good efficiency in the harmonic mitigation.

  7. On the concepts of inwardness and subjectivity in Shakespeare's work

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Ludwig

    2016-12-01

    Full Text Available This essay aims at discussing the concepts of subjectivity and inwardness in Early Renaissance. The issue discussed in this research is to take into account that both concepts are interchangeable, since they represent distinct notions of the similar phenomenon: the inner space of sensations, emotions, feelings, and identity. The concept of identity was associated to the perception of an inner space of the subject in the 16th and 17th centuries. It was always compared and defined parting from the notion of physical and gestural appearances, whose discursive forms were always based on the perceptive movement from the outward to the inward space of the subject. On the other hand, subjectivity is a modern concept which emerges from the 19th onward whose discursive forms part form the inner space of the subject, without taking into consideration the physical and gestural appearances. This research is bibliographic and uses some examples from the dramaturg William Shakespeare. As it was observed, the concepts of subjectivity and inwardness are not synonyms, once they part from distinct philosophic and psychologic perspectives, besides that they are still perceive until our times.

  8. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Time-division-multiplex control scheme for voltage multiplier rectifiers

    Directory of Open Access Journals (Sweden)

    Bin-Han Liu

    2017-03-01

    Full Text Available A voltage multiplier rectifier with a novel time-division-multiplexing (TDM control scheme for high step-up converters is proposed in this study. In the proposed TDM control scheme, two full-wave voltage doubler rectifiers can be combined to realise a voltage quadrupler rectifier. The proposed voltage quadrupler rectifier can reduce transformer turn ratio and transformer size for high step-up converters and also reduce voltage stress for the output capacitors and rectifier diodes. An N-times voltage rectifier can be straightforwardly produced by extending the concepts from the proposed TDM control scheme. A phase-shift full-bridge (PSFB converter is adopted in the primary side of the proposed voltage quadrupler rectifier to construct a PSFB quadrupler converter. Experimental results for the PSFB quadrupler converter demonstrate the performance of the proposed TDM control scheme for voltage quadrupler rectifiers. An 8-times voltage rectifier is simulated to determine the validity of extending the proposed TDM control scheme to realise an N-times voltage rectifier. Experimental and simulation results show that the proposed TDM control scheme has great potential to be used in high step-up converters.

  10. [Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].

    Science.gov (United States)

    Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang

    2015-08-01

    To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.

  11. Quantitative analysis of the Ca2+‐dependent regulation of delayed rectifier K+ current I Ks in rabbit ventricular myocytes

    Science.gov (United States)

    Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora

    2017-01-01

    Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft

  12. Manufacture of the rectifier of the HT-7U PFPS

    International Nuclear Information System (INIS)

    Gao Ge; Fu Peng; Tang Lunjun; Wang Linsen

    2005-01-01

    The rectifiers of the HT-7U poloidal field power supply (PFPS) are introduced. A new control method, four quadrants converter, is brought forward, which overcomes the short-coming of both the circulating current mode and the non-circulating current mode. This control mode also resolves the problem of DC circulating current in the identical phase anti-parallel connection rectifiers when these rectifiers run in the circulating current mode. (authors)

  13. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude...... and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A significant inward momentum pinch, up to 20 m/s, has been found. Both results are consistent with gyrokinetic simulations. This evidence is complemented in plasmas with internal transport barriers....

  14. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting.

    Science.gov (United States)

    Lu, Shaohua; Boussaid, Farid

    2015-11-19

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier.

  15. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Shaohua Lu

    2015-11-01

    Full Text Available This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier.

  16. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  17. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  18. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    Full Text Available The discovery that nitric oxide (NO functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated.The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated.Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  19. Reduction of inward momentum flux by damped eigenmodes

    International Nuclear Information System (INIS)

    Terry, P. W.; Baver, D. A.; Hatch, D. R.

    2009-01-01

    The inward momentum flux driven by the off-diagonal pressure gradient in a fluid model for ion temperature gradient turbulence with large Richardson number is significantly reduced by the excitation of stable eigenmodes. This is accomplished primarily through the amplitude autocorrelation of the damped eigenmode, which, in the flux, directly counteracts the quasilinear contribution of the unstable eigenmode. Stable eigenmode cross correlations also contribute to the flux, but the symmetry of conjugate pairing of growing and damped eigenmodes leads to significant cancellations between cross correlation terms. Conjugate symmetry is a property of unstable wavenumbers but applies to the whole of the saturated state because damped eigenmodes in the unstable range prevent the spread of energy outside that range. The heat and momentum fluxes are nearly isomorphous when expressed in terms of the eigenmode correlations. Due to this similarity of form, the thermodynamic constraint, which keeps the heat flux outward even when significantly reduced by the damped eigenmode, results in a momentum flux that remains inward, even though it is also reduced by the damped eigenmode. The isomorphism is not perfect. When the contribution of stable eigenmode cross correlations to the flux do not cancel, the momentum flux can reverse sign and become outward.

  20. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  1. Application data for the PLT stabilizing field rectifier

    International Nuclear Information System (INIS)

    Bronner, G.; Murray, J.G.; Oliaro, G.E.

    1975-11-01

    This paper describes the 12-pulse stabilizing field rectifier used for vertical field production in the Princeton Large Torus (PLT). It is essential that the rectifier be reliable, and protect itself from all faults including induced transient overvoltage produced by switching and plasma instabilities. To this end, computer simulations were run to insure protection under various fault conditions

  2. Nanofibrous p-n Junction and Its Rectifying Characteristics

    Directory of Open Access Journals (Sweden)

    Jian Fang

    2013-01-01

    Full Text Available Randomly oriented tin oxide (SnO2 nanofibers and poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate/polyvinylpyrrolidone (PEDOT:PSS/PVP nanofibers were prepared by a two-step electrospinning technique to form a layered fibrous mat. The current-voltage measurement revealed that the fibrous mat had an obvious diode-rectifying characteristic. The thickness of the nanofiber layers was found to have a considerable influence on the device resistance and rectifying performance. Such an interesting rectifying property was attributed to the formation of a p-n junction between the fibrous SnO2 and PEDOT:PSS/PVP layers. This is the first report that a rectifying junction can be formed between two layers of electrospun nanofiber mats, and the resulting nanofibrous diode rectifier may find applications in sensors, energy harvest, and electronic textiles.

  3. Octopamine increases the excitability of neurons in the snail feeding system by modulation of inward sodium current but not outward potassium currents

    Directory of Open Access Journals (Sweden)

    Szabó Henriette

    2005-12-01

    Full Text Available Abstract Background Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. Results The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P IA current and a sustained IK delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium – free saline and so is likely to be carried by sodium ions. 10 μM octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P Conclusion We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense.

  4. Superconducting transformers, rectifiers, and switches. (Review paper)

    International Nuclear Information System (INIS)

    Ignatov, V.E.; Koval'kov, G.A.; Moskvitin, A.I.

    Cryogenic rectifiers using power cryotrons have been fabricated by many foreign firms since 1960. Present-day flux pumps require a low voltage power supply (several tens of millivolts) and a high current (kiloamperes). Increasing the power supply voltage will quadratically increase the flux pump losses and, given the limitations of existing materials, are not economically profitable. Present-day, cryotron-type flux pumps can best be used in power systems as a power supply for superconducting magnets, solenoids, storage devices, and superconducting exciting coils for turbogenerators. To increase the voltage of the next generation of transformers for superconducting dc power transmission, a research program must be set up to improve the cryotrons and to develop systems based on a different principle of operation, for example, semiconductor devices based on the principle of the volume effect in the intermediate environment

  5. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  6. The voltage-dependent anion selective channel 1 (VDAC1 topography in the mitochondrial outer membrane as detected in intact cell.

    Directory of Open Access Journals (Sweden)

    Marianna F Tomasello

    Full Text Available Voltage-Dependent Anion selective Channel maintains the permeability of the outer mitochondrial membrane and is relevant in bioenergetic metabolism and apoptosis. The structure of the protein was shown to be a β-barrel formed by 19 strands. The topology or sideness of the pore has been predicted with various approaches but a general consensus was never reached. This is an important issue since VDAC is considered receptor of Hexokinase and Bcl-2. We fused at VDAC1 C-terminus two tags separated by a caspase cleavage site. Activation in cellulo of caspases was used to eventually separate the two reporters. This experiment did not require the isolation of mitochondria and limited the possibility of outer membrane rupture due to similar procedures. Our results show that the C-terminus end of VDAC faces the mitochondrial inter-membrane space.

  7. Voltage-Dependent Rhythmogenic Property of Respiratory Pre-Bötzinger Complex Glutamatergic, Dbx1-Derived, and Somatostatin-Expressing Neuron Populations Revealed by Graded Optogenetic Inhibition.

    Science.gov (United States)

    Koizumi, Hidehiko; Mosher, Bryan; Tariq, Mohammad F; Zhang, Ruli; Koshiya, Naohiro; Smith, Jeffrey C

    2016-01-01

    The rhythm of breathing in mammals, originating within the brainstem pre-Bötzinger complex (pre-BötC), is presumed to be generated by glutamatergic neurons, but this has not been directly demonstrated. Additionally, developmental expression of the transcription factor Dbx1 or expression of the neuropeptide somatostatin (Sst), has been proposed as a marker for the rhythmogenic pre-BötC glutamatergic neurons, but it is unknown whether these other two phenotypically defined neuronal populations are functionally equivalent to glutamatergic neurons with regard to rhythm generation. To address these problems, we comparatively investigated, by optogenetic approaches, the roles of pre-BötC glutamatergic, Dbx1-derived, and Sst-expressing neurons in respiratory rhythm generation in neonatal transgenic mouse medullary slices in vitro and also more intact adult perfused brainstem-spinal cord preparations in situ. We established three different triple-transgenic mouse lines with Cre-driven Archaerhodopsin-3 (Arch) expression selectively in glutamatergic, Dbx1-derived, or Sst-expressing neurons for targeted photoinhibition. In each line, we identified subpopulations of rhythmically active, Arch-expressing pre-BötC inspiratory neurons by whole-cell recordings in medullary slice preparations in vitro, and established that Arch-mediated hyperpolarization of these inspiratory neurons was laser power dependent with equal efficacy. By site- and population-specific graded photoinhibition, we then demonstrated that inspiratory frequency was reduced by each population with the same neuronal voltage-dependent frequency control mechanism in each state of the respiratory network examined. We infer that enough of the rhythmogenic pre-BötC glutamatergic neurons also have the Dbx1 and Sst expression phenotypes, and thus all three phenotypes share the same voltage-dependent frequency control property.

  8. Voltage-Dependent Rhythmogenic Property of Respiratory Pre-Bötzinger Complex Glutamatergic, Dbx1-Derived, and Somatostatin-Expressing Neuron Populations Revealed by Graded Optogenetic Inhibition123

    Science.gov (United States)

    Koizumi, Hidehiko; Mosher, Bryan; Tariq, Mohammad F.; Zhang, Ruli

    2016-01-01

    Abstract The rhythm of breathing in mammals, originating within the brainstem pre-Bötzinger complex (pre-BötC), is presumed to be generated by glutamatergic neurons, but this has not been directly demonstrated. Additionally, developmental expression of the transcription factor Dbx1 or expression of the neuropeptide somatostatin (Sst), has been proposed as a marker for the rhythmogenic pre-BötC glutamatergic neurons, but it is unknown whether these other two phenotypically defined neuronal populations are functionally equivalent to glutamatergic neurons with regard to rhythm generation. To address these problems, we comparatively investigated, by optogenetic approaches, the roles of pre-BötC glutamatergic, Dbx1-derived, and Sst-expressing neurons in respiratory rhythm generation in neonatal transgenic mouse medullary slices in vitro and also more intact adult perfused brainstem-spinal cord preparations in situ. We established three different triple-transgenic mouse lines with Cre-driven Archaerhodopsin-3 (Arch) expression selectively in glutamatergic, Dbx1-derived, or Sst-expressing neurons for targeted photoinhibition. In each line, we identified subpopulations of rhythmically active, Arch-expressing pre-BötC inspiratory neurons by whole-cell recordings in medullary slice preparations in vitro, and established that Arch-mediated hyperpolarization of these inspiratory neurons was laser power dependent with equal efficacy. By site- and population-specific graded photoinhibition, we then demonstrated that inspiratory frequency was reduced by each population with the same neuronal voltage-dependent frequency control mechanism in each state of the respiratory network examined. We infer that enough of the rhythmogenic pre-BötC glutamatergic neurons also have the Dbx1 and Sst expression phenotypes, and thus all three phenotypes share the same voltage-dependent frequency control property. PMID:27275007

  9. "Slow" Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA.

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    Full Text Available CaV2.2 (N-type voltage-gated calcium channels (Ca2+ channels play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. "Fast" voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of "slow" voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate "slow" inactivation of sodium channels, but little is known about if/how second messengers control "slow" inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA dramatically prolonged recovery from "slow" inactivation, but an inactive control (4α-PMA had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating "slow" inactivation. We postulate that the kinetics of recovery from "slow" inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe.

  10. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  11. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. When does inward technology licensing facilitate firms’ NPD performance? Evidence from China

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Salomo, Søren

    2013-01-01

    Increasingly, many firms have found inward technology licensing a relatively quick and inexpensive way for new product development (NPD) as compared to internal R&D started. Although the literature on NPD has suggested some advantages and disadvantages regarding NPD by means of inward technology ...

  13. Inward Cationic Diffusion and Formation of Silica-Rich Surface Nanolayer of Glass

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    2009-01-01

    form and are incorporated into the glass structure. Both the V4+ and the hydroxyl contents increase with increasing ta and hydrogen partial pressure. The inward diffusion enhances the hardness of the glass surface. The mechanism of the inward diffusion is suggested on the basis of a model describing...

  14. Measuring the inward FDI potential of South African regions

    Directory of Open Access Journals (Sweden)

    W. Krugell

    2008-12-01

    Full Text Available Purpose: The purpose of this paper is to construct an index that captures the factors expected to affect a local economy's attractiveness to foreign investors. Problem statement: Following South Africa's reintegration into the world economy in 1994, foreign direct investment has been seen as a potential driver of growth and development. Concerns about the low investment rate in South Africa raise the possibility of augmenting domestic with foreign investment expenditure. The potential of technology spillovers and skills transfer from foreign direct investment have also been emphasised. As a result, Trade and Investment South Africa is involved in identifying, packaging and promoting investment opportunities. However, investments tend to be place-specific and this has lead to the decentralisation of foreign direct investment promotion. Currently the nine provincial development agencies are competing to attract investors and the larger local governments are also getting involved in the fray. This paper argues that some places have better potential to attract foreign investment than others. A first step to use scarce investment promotion resources more efficiently would be to measure the inward FDI potential of South African regions. Approach: This paper uses principal components analysis to construct an index that captures the factors expected to affect a local economy's attractiveness to foreign investors. This approach draws on UNCTAD's Inward FDI Potential Index and applies it to 354 magisterial districts in South Africa for the periods 1996, 2001 and 2006. The index creates a summary measure of FDI potential. Findings: The results show that different places present differential potential in urbanization and localization economies and market size. The high-potential locations are typically found in or around the major agglomerations, but there are a few smaller places on the periphery that offer FDI potential. Contribution: The index should aid

  15. Arylbenzazepines Are Potent Modulators for the Delayed Rectifier K+ Channel: A Potential Mechanism for Their Neuroprotective Effects

    Science.gov (United States)

    Chen, Xue-Qin; Zhang, Jing; Neumeyer, John L.; Jin, Guo-Zhang; Hu, Guo-Yuan; Zhang, Ao; Zhen, Xuechu

    2009-01-01

    (±) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D1-like dopamine receptor agonistic activity. The precise mechanism for the (±) SKF83959-mediated neuroprotection remains elusive. We report here that (±) SKF83959 is a potent blocker for delayed rectifier K+ channel. (±) SKF83959 inhibited the delayed rectifier K+ current (I K) dose-dependently in rat hippocampal neurons. The IC 50 value for inhibition of I K was 41.9±2.3 µM (Hill coefficient = 1.81±0.13, n = 6), whereas that for inhibition of I A was 307.9±38.5 µM (Hill coefficient = 1.37±0.08, n = 6). Thus, (±) SKF83959 is 7.3-fold more potent in suppressing I K than I A. Moreover, the inhibition of I K by (±) SKF83959 was voltage-dependent and not related to dopamine receptors. The rapidly onset of inhibition and recovery suggests that the inhibition resulted from a direct interaction of (±) SKF83959 with the K+ channel. The intracellular application of (±) SKF83959 had no effects of on I K, indicating that the compound most likely acts at the outer mouth of the pore of K+ channel. We also tested the enantiomers of (±) SKF83959, R-(+) SKF83959 (MCL-201), and S-(−) SKF83959 (MCL-202), as well as SKF38393; all these compounds inhibited I K. However, (±) SKF83959, at either 0.1 or 1 mM, exhibited the strongest inhibition on the currents among all tested drug. The present findings not only revealed a new potent blocker of I K , but also provided a novel mechanism for the neuroprotective action of arylbenzazepines such as (±) SKF83959. PMID:19503734

  16. Towards Rectifying Performance at the Molecular Scale.

    Science.gov (United States)

    Zhang, Guang-Ping; Xie, Zhen; Song, Yang; Hu, Gui-Chao; Wang, Chuan-Kui

    2017-10-24

    Molecular diode, proposed by Mark Ratner and Arieh Aviram in 1974, is the first single-molecule device investigated in molecular electronics. As a fundamental device in an electric circuit, molecular diode has attracted an enduring and extensive focus during the past decades. In this review, the theoretical and experimental progresses of both charge-based and spin-based molecular diodes are summarized. For the charge-based molecular diodes, the rectifying properties originated from asymmetric molecules including D-σ-A, D-π-A, D-A, and σ-π type compounds, asymmetric electrodes, asymmetric nanoribbons, and their combination are analyzed. Correspondingly, the rectification mechanisms are discussed in detail. Furthermore, a series of strategies for modulating rectification performance is figured out. Discussion on concept of molecular spin diode is also involved based on a magnetic co-oligomer. At the same time, the intrinsic mechanism as well as the modulation of the spin-current rectification performance is introduced. Finally, several crucial issues that need to be addressed in the future are given.

  17. 2010 NOAA Ortho-rectified Mosaic of Lake Champlain, Vermont

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  18. 2012 NOAA Ortho-rectified Color Mosaic of Astoria, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  19. 2011 NOAA Ortho-rectified Mosaic of Intracoastal Waterway, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  20. 2011 NOAA Ortho-rectified Mosaic of Galveston, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  1. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    Science.gov (United States)

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  2. A CACNA1C variant associated with reduced voltage-dependent inactivation, increased CaV1.2 channel window current, and arrhythmogenesis.

    Directory of Open Access Journals (Sweden)

    Jessica A Hennessey

    Full Text Available Mutations in CACNA1C that increase current through the CaV1.2 L-type Ca2+ channel underlie rare forms of long QT syndrome (LQTS, and Timothy syndrome (TS. We identified a variant in CACNA1C in a male child of Filipino descent with arrhythmias and extracardiac features by candidate gene sequencing and performed functional expression studies to electrophysiologically characterize the effects of the variant on CaV1.2 channels. As a baby, the subject developed seizures and displayed developmental delays at 30 months of age. At age 5 years, he displayed a QTc of 520 ms and experienced recurrent VT. Physical exam at 17 years of age was notable for microcephaly, short stature, lower extremity weakness and atrophy with hyperreflexia, spastic diplegia, multiple dental caries and episodes of rhabdomyolysis. Candidate gene sequencing identified a G>C transversion at position 5731 of CACNA1C (rs374528680 predicting a glycine>arginine substitution at residue 1911 (p.G1911R of CaV1.2. The allele frequency of this variant is 0.01 in Malays, but absent in 984 Caucasian alleles and in the 1000 genomes project. In electrophysiological analyses, the variant decreased voltage-dependent inactivation, thus causing a gain of function of CaV1.2. We also observed a negative shift of V1/2 of activation and positive shift of V1/2 of channel inactivation, resulting in an increase of the window current. Together, these suggest a gain-of-function effect on CaV1.2 and suggest increased susceptibility for arrhythmias in certain clinical settings. The p.G1911R variant was also identified in a case of sudden unexplained infant death (SUID, for which an increasing number of clinical observations have demonstrated can be associated with arrhythmogenic mutations in cardiac ion channels. In summary, the combined effects of the CACNA1C variant to diminish voltage-dependent inactivation of CaV1.2 and increase window current expand our appreciation of mechanisms by which a gain of

  3. Comparison of thyristor rectifier characteristics with different gate control systems

    International Nuclear Information System (INIS)

    Gula, V.; Cherepakhin, A.A.

    1982-01-01

    Some thyristor gate control systems both synchronous and nonsynchronous ones are described. The experimental results of supply voltage asymmetry influence on spectral contents of rectified. output voltage are quoted. Dynamic and frequency responses of these systems are investigated too. Results of comparison of the spectral content of 100 Hz subharmonic of rectified voltage on loading current showed the advantage of the systems with feedback [ru

  4. 19 rectifiers to supply the coils of the TCV tokamak

    International Nuclear Information System (INIS)

    Fasel, D.; Perez, A.; Depreville, G.; Puchar, F.; Pahud, J.D.

    1990-01-01

    This paper describes the electrical network designed to supply the 19 coils of the TCV (Tokamak a Configuration Variable) tokamak. After a brief description of the main purpose of TCV, the general characteristics of the TCV network are given. Then the technical choices made for the rectifier power stage are detailed. There follows a description of the rectifier digital control electronics. Comments on simulations carried out and the actual status conclude the paper. (author) 3 refs., 5 figs., 2 tabs

  5. Noise rectifier based on the two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Cheremisin, M. V., E-mail: tcher_max@yahoo.com [Ioffe Physical-Technical Institute (Russian Federation)

    2012-09-15

    The dc voltage observed at low temperatures in a 2D electron sample in the absence of noticeable external excitations [1] is accounted by the Schottky contact rectification of the noise generated in the measuring circuit. The rectified voltage is shown to depend on the asymmetry of the contact pair. The dependence of the rectified voltage on the noise amplitude first follows the trivial quadratic law, then exhibits a nearly linear behavior, and finally, levels off.

  6. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.

    Science.gov (United States)

    Mohammadi, Ali; Redoute, Jean-Michel; Yuce, Mehmet R

    2015-01-01

    Biomedical implants require an electronic power conditioning circuitry to provide a stable electrical power supply. The efficiency of wireless power transmission is strongly dependent on the power conditioning circuitry specifically the rectifier. A cross-connected CMOS bridge rectifier is implemented to demonstrate the impact of thresholds of rectifiers on wireless power transfer. The performance of the proposed rectifier is experimentally compared with a conventional Schottky diode full wave rectifier over 9 cm distance of air and tissue medium between the transmitter and receiver. The output voltage generated by the CMOS rectifier across a 1 KΩ resistive load is around twice as much as the Schottky rectifier.

  7. Genetic variation in the inwardly rectifying K channel subunits KCNJ3 (GIRK1) and KCNJ5 (GIRK4) in patients with sinus node dysfunction

    DEFF Research Database (Denmark)

    Holmegard, Haya N; Theilade, Juliane; Benn, Marianne

    2010-01-01

    BACKGROUND: Sinus node dysfunction (SND) is a heterogeneous disorder of unknown etiology characterized by a variety of supraventricular arrhythmias with symptoms of syncope, palpitations, and dizziness. The mechanism underlying the abnormal rhythm is incompletely understood. OBJECTIVE: Because va...

  8. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise.

    Science.gov (United States)

    Gupta, Rajeev

    2017-09-02

    The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Voltage-Dependent Charge Storage in Cladded Zn0.56Cd0.44Se Quantum Dot MOS Capacitors for Multibit Memory Applications

    Science.gov (United States)

    Khan, J.; Lingalugari, M.; Al-Amoody, F.; Jain, F.

    2013-11-01

    As conventional memories approach scaling limitations, new storage methods must be utilized to increase Si yield and produce higher on-chip memory density. Use of II-VI Zn0.56Cd0.44Se quantum dots (QDs) is compatible with epitaxial gate insulators such as ZnS-ZnMgS. Voltage-dependent charging effects in cladded Zn0.56Cd0.44Se QDs are presented in a conventional metal-oxide-semiconductor capacitor structure. Charge storage capabilities in Si and ZnMgS QDs have been reported by various researchers; this work is focused on II-VI material Zn0.56Cd0.44Se QDs nucleated using photoassisted microwave plasma metalorganic chemical vapor deposition. Using capacitance-voltage hysteresis characterization, the multistep charging and discharging capabilities of the QDs at room temperature are presented. Three charging states are presented within a 10 V charging voltage range. These characteristics exemplify discrete charge states in the QD layer, perfect for multibit, QD-functionalized high-density memory applications. Multiple charge states with low operating voltage provide device characteristics that can be used for multibit storage by allowing varying charges to be stored in a QD layer based on the applied "write" voltage.

  10. Identification of mud crab reovirus VP12 and its interaction with the voltage-dependent anion-selective channel protein of mud crab Scylla paramamosain.

    Science.gov (United States)

    Xu, Hai-Dong; Su, Hong-Jun; Zou, Wei-Bin; Liu, Shan-Shan; Yan, Wen-Rui; Wang, Qian-Qian; Yuan, Li-Li; Chan, Siuming Francis; Yu, Xiao-Qiang; He, Jian-Guo; Weng, Shao-Ping

    2015-05-01

    Mud crab reovirus (MCRV) is the causative agent of a severe disease in cultured mud crab (Scylla paramamosain), which has caused huge economic losses in China. MCRV is a double-stranded RNA virus with 12 genomic segments. In this paper, SDS-PAGE, mass spectrometry and Western blot analyses revealed that the VP12 protein encoded by S12 gene is a structural protein of MCRV. Immune electron microscopy assay indicated that MCRV VP12 is a component of MCRV outer shell capsid. Yeast two hybrid cDNA library of mud crab was constructed and mud crab voltage-dependent anion-selective channel (mcVDAC) was obtained by MCRV VP12 screening. The full length of mcVDAC was 1180 bp with an open reading frame (ORF) of 849 bp encoding a 282 amino acid protein. The mcVDAC had a constitutive expression pattern in different tissues of mud crab. The interaction between MCRV VP12 and mcVDAC was determined by co-immunoprecipitation assay. The results of this study have provided an insight on the mechanisms of MCRV infection and the interactions between the virus and mud crab. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Dual action of a dinoflagellate-derived precursor of Pacific ciguatoxins (P-CTX-4B) on voltage-dependent K(+) and Na(+) channels of single myelinated axons.

    Science.gov (United States)

    Schlumberger, Sébastien; Mattei, César; Molgó, Jordi; Benoit, Evelyne

    2010-10-01

    The effects of Pacific ciguatoxin-4B (P-CTX-4B, also named gambiertoxin), extracted from toxic Gambierdiscus dinoflagellates, were assessed on nodal K(+) and Na(+) currents of frog myelinated axons, using a conventional voltage-clamp technique. P-CTX-4B decreased, within a few minutes, both K(+) and Na(+) currents in a dose-dependent manner, without inducing any marked change in current kinetics. The toxin was more effective in blocking K(+) than Na(+) channels. P-CTX-4B shifted the voltage-dependence of Na(+) conductance by about 14 mV towards more negative membrane potentials. This effect was reversed by increasing Ca(2+) in the external solution. A negative shift of about 16 mV in the steady-state Na(+) inactivation-voltage curve was also observed in the presence of the toxin. Unmodified and P-CTX-4B-modified Na(+) currents were similarly affected by the local anaesthetic lidocaine. The decrease of the two currents by lidocaine was dependent on both the concentration and the membrane potential during pre-pulses. In conclusion, P-CTX-4B appears about four times more effective than P-CTX-1B to affect K(+) channels, whereas it is about 50 times less efficient to affect Na(+) channels of axonal membranes. These actions may be related to subtle differences between the two chemical structures of molecules. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents.

    Science.gov (United States)

    Revill, Ann L; Fuglevand, Andrew J

    2017-01-01

    Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing

  13. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  14. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  15. A two-phase full-wave superconducting rectifier

    International Nuclear Information System (INIS)

    Ariga, T.; Ishiyama, A.

    1989-01-01

    A two-phase full-wave superconducting rectifier has been developed as a small cryogenic power supply of superconducting magnets for magnetically levitation trains. Those magnets are operated in the persistent current mode. However, small ohmic loss caused at resistive joints and ac loss induced by the vibration of the train cannot be avoided. Therefore, the low-power cryogenic power supply is required to compensate for the reduction in magnet current. The presented superconducting rectifier consists of two identical full-wave rectifiers connected in series. Main components of each rectifier are a troidal shape superconducting set-up transformer and two thermally controlled switches. The test results using a 47.5 mH load magnet at 0.2 Hz and 0.5 Hz operations are described. To estimate the characteristics of the superconducting rectifier, the authors have developed a simulation code. From the experiments and the simulations, the transfer efficiency is examined. Furthermore, the optimal design of thermally controlled switches based on the finite element analysis is also discussed

  16. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  17. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel α2δ1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer.

    Science.gov (United States)

    Yu, Jiangyong; Wang, Shuhang; Zhao, Wei; Duan, Jianchun; Wang, Zhijie; Chen, Hanxiao; Tian, Yanhua; Wang, Di; Zhao, Jun; An, Tongtong; Bai, Hua; Wu, Meina; Wang, Jie

    2018-05-01

    Purpose: Chemoresistance in small-cell lung cancer (SCLC) is reportedly attributed to the existence of resistant cancer stem cells (CSC). Studies involving CSC-specific markers and related mechanisms in SCLC remain limited. This study explored the role of the voltage-dependent calcium channel α2δ1 subunit as a CSC marker in chemoresistance of SCLC, and explored the potential mechanisms of α2δ1-mediated chemoresistance and strategies of overcoming the resistance. Experimental Design: α2δ1-positive cells were identified and isolated from SCLC cell lines and patient-derived xenograft (PDX) models, and CSC-like properties were subsequently verified. Transcriptome sequencing and Western blotting were carried out to identify pathways involved in α2δ1-mediated chemoresistance in SCLC. In addition, possible interventions to overcome α2δ1-mediated chemoresistance were examined. Results: Different proportions of α2δ1 + cells were identified in SCLC cell lines and PDX models. α2δ1 + cells exhibited CSC-like properties (self-renewal, tumorigenic, differentiation potential, and high expression of genes related to CSCs and drug resistance). Chemotherapy induced the enrichment of α2δ1 + cells instead of CD133 + cells in PDXs, and an increased proportion of α2δ1 + cells corresponded to increased chemoresistance. Activation and overexpression of ERK in the α2δ1-positive H1048 cell line was identified at the protein level. mAb 1B50-1 was observed to improve the efficacy of chemotherapy and delay relapse as maintenance therapy in PDX models. Conclusions: SCLC cells expressing α2δ1 demonstrated CSC-like properties, and may contribute to chemoresistance. ERK may play a key role in α2δ1-mediated chemoresistance. mAb 1B50-1 may serve as a potential anti-SCLC drug. Clin Cancer Res; 24(9); 2148-58. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  19. Leftward shift in the voltage-dependence for Ca2+ currents activation induced by a new toxin from Phoneutria reidyi (Aranae, Ctenidae) venom.

    Science.gov (United States)

    Vieira, L B; Pimenta, A M C; Richardson, M; Bemquerer, M P; Reis, H J; Cruz, J S; Gomez, M V; Santoro, M M; Ferreira-de-Oliveira, R; Figueiredo, S G; Snutch, T P; Cordeiro, M N

    2007-02-01

    Various neurotoxins have been described from the venom of the Brazilian spider Phoneutria nigriventer, but little is known about the venoms of the other species of this genus. In the present work, we describe the purification and some structural and pharmacological features of a new toxin (PRTx3-7) from Phoneutria reidyi that causes flaccid paralysis in mice. The observed molecular mass (4627.26 Da) was in accordance with the calculated mass for the amidated form of the amino acid sequence (4627.08 Da). The presence of an alpha-amidated C-terminus was confirmed by MS/MS analysis of the C-terminal peptide, isolated after enzymatic digestion of the native protein with Glu-C endoproteinase. The purified protein was injected (intracerebro-ventricular) into mice at dose levels of 5 microg/mouse causing immediate agitation and clockwise gyration, followed by the gradual development of general flaccid paralysis. PRTx3-7 at 1 microM inhibited by 20% the KCl-induced increase on [Ca2+]i in rat brain synaptosomes. The HEK cells permanently expressing L, N, P/Q and R HVA Ca2+ channels were also used to better characterize the pharmacological features of PRTx3-7. To our surprise, PRTx3-7 shifted the voltage-dependence for activation towards hyperpolarized membrane potentials for L (-4 mV), P/Q (-8 mV) and R (-5 mV) type Ca2+ currents. In addition, the new toxin also affected the steady state of inactivation of L-, N- and P/Q-type Ca2+ currents.

  20. Localized accumulation of cytosolic calcium near the fused sperm is associated with the calcium- and voltage-dependent block of sperm entry in the sea urchin egg.

    Science.gov (United States)

    Ivonnet, Pedro I; Mohri, Tatsuma; McCulloh, David H

    2017-10-01

    Interaction of the sperm and egg depolarizes the egg membrane, allowing the sperm to enter; however, if the egg membrane is not allowed to depolarize from its resting potential (e.g., by voltage-clamp), the sperm will not enter. Previous studies demonstrated that sperm entry into sea urchin eggs that are voltage-clamped at negative membrane potentials is regulated both by the egg's membrane potential and a voltage-dependent influx of calcium into the egg. In these cases, electrical or cytoplasmic continuity (sperm-egg membrane fusion) occurs at negative membrane potentials, but subsequent loss of cytoplasmic continuity results in failure of sperm entry (unfusion). The work presented herein examined where, in relation to the sperm, and when, in relation to the sperm-induced electrophysiological events, the egg's calcium influx occurs, and how these events relate to successful or failed sperm entry. When sperm entered the egg, elevation of intracellular calcium concentration ([Ca 2+ ] i ) began near the fused sperm on average 5.9 s after sperm-egg membrane fusion. Conversely, when sperm failed to enter the egg, [Ca 2+ ] i elevated near the site of sperm-egg fusion on average 0.7 s after sperm-egg membrane fusion, which is significantly earlier than in eggs for which sperm entered. Therefore, the accumulation of calcium near the site of sperm-egg fusion is spatially and temporally consistent with the mechanism that may be responsible for loss of cytoplasmic continuity and failure of sperm entry. © 2017 Wiley Periodicals, Inc.

  1. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of); Jung, Won-Kyo [Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737 (Korea, Republic of); Na, Sung Hun [Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 200-701 (Korea, Republic of); Jung, In Duk; Park, Yeong-Min [Department of Immunology, Lab of Dendritic Cell Differentiation and Regulation, College of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Choi, Il-Whan, E-mail: cihima@inje.ac.kr [Department of Microbiology, Inje University College of Medicine, Busan, 614-735 (Korea, Republic of); Park, Won Sun, E-mail: parkws@kangwon.ac.kr [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of)

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  2. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    Directory of Open Access Journals (Sweden)

    S. Demirezen

    Full Text Available In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε′, ε′, tanδ, electric modulus (M′ and M″ and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε′, ε′, tanδ, M′, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε′, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε′ and ε″ values at low frequencies may be attributed to the Maxwell–Wagner and space charge polarization. The high values of ε′ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M′ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M′ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε′, ε″, tanδ, M′, M″ and ac electric conductivity (σac is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization. Keywords: Thin films, Electrical properties, Interface/interphase

  3. Stimulation of Na+-alanine cotransport activates a voltage-dependent conductance in single proximal tubule cells isolated from frog kidney

    Science.gov (United States)

    Robson, L; Hunter, M

    1999-01-01

    The swelling induced by Na+-alanine cotransport in proximal tubule cells of the frog kidney is followed by regulatory volume decrease (RVD). This RVD is inhibited by gadolinium (Gd3+), an inhibitor of stretch-activated channels, but is independent of extracellular Ca2+. In this study, the whole cell patch clamp technique was utilized to examine the effect of Na+-alanine cotransport on two previously identified volume- and Gd3+-sensitive conductances. One conductance is voltage dependent and anion selective (GVD) whilst the other is voltage independent and cation selective (GVI). Addition of 5 mM L-alanine to the bathing solution increased the whole cell conductance and gave a positive (depolarizing) shift in the reversal potential (Vrev, equivalent to the membrane potential in current-clamped cells) consistent with activation of Na+-alanine cotransport. Vrev shifted from -36 ± 4·9 to +12·9 ± 4·2 mV (n= 15). In the presence of alanine, the total whole cell conductance had several components including the cotransporter conductance and GVD and GVI. These conductances were separated using Gd3+, which inhibits both GVD and GVI, and the time dependency of GVD. Of these two volume-sensitive conductances, L-alanine elicited a specific increase in GVD, whereas GVI was unaffected. The L-alanine-induced activation of GVD was significantly reduced when cells were incubated in a hypertonic bathing solution. In summary, in single proximal tubule cells isolated from frog kidney, on stimulation of Na+-alanine cotransport GVD is activated, while GVI is unaffected. Taken with other evidence, this suggests that GVD is activated by cell swelling, consequent upon alanine entry, and may play a role as an anion efflux pathway during alanine-induced volume regulation. PMID:10226159

  4. Illumination and Voltage Dependence of Electrical Characteristics of Au/0.03 Graphene-Doped PVA/n-Si Structures via Capacitance/Conductance-Voltage Measurements

    International Nuclear Information System (INIS)

    Sahar, Alialy; Şlemsettin, Altındal; Ahmet, Kaya; İ, Uslu

    2015-01-01

    Au/n-Si (MS) structures with a high dielectric interlayer (0.03 graphene-doped PVA) are fabricated to investigate the illumination and voltage effects on electrical and dielectric properties by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and at 1 MHz. Some of the main electrical parameters such as concentration of doping atoms (N D ), barrier height (ϕ B (C - V)), depletion layer width (W D ) and series resistance (R s ) show fairly large illumination dispersion. The voltage-dependent profile of surface states (N ss ) and resistance of the structure (R i ) are also obtained by using the dark-illumination capacitance (C dark -C ill ) and Nicollian-Brews methods, respectively. For a clear observation of changes in electrical parameters with illumination, the values of N D , W D , ϕ B (C - V) and R s are drawn as a function of illumination intensity. The values of N D and W D change almost linearly with illumination intensity. On the other hand, R s decreases almost exponentially with increasing illumination intensity whereas ϕ B (C - V) increases. The experimental results suggest that the use of a high dielectric interlayer (0.03 graphene-doped PVA) considerably passivates or reduces the magnitude of the surface states. The large change or dispersion in main electrical parameters can be attributed to generation of electron-hole pairs in the junction under illumination and to a good light absorption. All of these experimental results confirm that the fabricated Au/0.03 graphene-doped PVA/n-Si structure can be used as a photodiode or a capacitor in optoelectronic applications. (paper)

  5. The Determinants of Inward Foreign Direct Investment: the Case of Malaysia

    OpenAIRE

    Yong Ting Aw; Tuck Cheong Tang

    2009-01-01

    This study empirically explores the role of corruption, and the impact of China joining the WTO in 2001 on inward foreign direct investment (FDI) in Malaysia. From the empirical tests, this study suggests:- (1) FDI and its determinants are cointegrated; (2) Openness, interest rate, inflation rate, the joining of China into the WTO, and the level of corruption are the major determinants explaining inward FDI in Malaysia, both in the long-run as well as short- run. In general, these findings do...

  6. Looking into the future: An inward bias in aesthetic experience driven only by gaze cues.

    Science.gov (United States)

    Chen, Yi-Chia; Colombatto, Clara; Scholl, Brian J

    2018-07-01

    The inward bias is an especially powerful principle of aesthetic experience: In framed images (e.g. photographs), we prefer peripheral figures that face inward (vs. outward). Why does this bias exist? Since agents tend to act in the direction in which they are facing, one intriguing possibility is that the inward bias reflects a preference to view scenes from a perspective that will allow us to witness those predicted future actions. This account has been difficult to test with previous displays, in which facing direction is often confounded with either global shape profiles or the relative locations of salient features (since e.g. someone's face is generally more visually interesting than the back of their head). But here we demonstrate a robust inward bias in aesthetic judgment driven by a cue that is socially powerful but visually subtle: averted gaze. Subjects adjusted the positions of people in images to maximize the images' aesthetic appeal. People with direct gaze were not placed preferentially in particular regions, but people with averted gaze were reliably placed so that they appeared to be looking inward. This demonstrates that the inward bias can arise from visually subtle features, when those features signal how future events may unfold. Copyright © 2018. Published by Elsevier B.V.

  7. Temperature-gated thermal rectifier for active heat flow control.

    Science.gov (United States)

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  8. A perturbation-based model for rectifier circuits

    Directory of Open Access Journals (Sweden)

    Vipin B. Vats

    2006-01-01

    Full Text Available A perturbation-theoretic analysis of rectifier circuits is presented. The governing differential equation of the half-wave rectifier with capacitor filter is analyzed by expanding the output voltage as a Taylor series with respect to an artificially introduced parameter in the nonlinearity of the diode characteristic as is done in quantum theory. The perturbation parameter introduced in the analysis is independent of the circuit components as compared to the method presented by multiple scales. The various terms appearing in the perturbation series are then modeled in the form of an equivalent circuit. This model is subsequently used in the analysis of full-wave rectifier. Matlab simulation results are included which confirm the validity of the theoretical formulations. Perturbation analysis acts a helpful tool in analyzing time-varying systems and chaotic systems.

  9. Control system for a superconducting rectifier using a microcomputer

    International Nuclear Information System (INIS)

    ten Kate, H.H.J.; Kamphuis, D.A.; Caspari, M.; van de Klundert, L.J.M.; Houkes, Z.

    1981-01-01

    Within the scope of a research program of superconducting rectifiers software is being developed to take care of the control of such systems. The hardware architecture which interferes with the in and output signals is based on a LSI-11/2 microprocessor with sufficient mass storage for data logging, console and printer. The flexibility inherent to this hardware configuration is desired for optimization of the rectifier concerning maximum current, power, efficiency and quench stability. The paper describes the structure of the program and the interaction between both computer hardware and software and the superconducting rectifier. However, because the reliability of computer systems is unsatisfactory, an additional hardware protection system still handles the most important alarms. 2 refs

  10. Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures

    Science.gov (United States)

    Altındal Yerişkin, S.; Balbaşı, M.; Demirezen, S.

    2017-04-01

    In this study, Au/0.07 graphene-doped PVA/n-Si structures were fabricated and current conduction mechanism in these structures were investigated in the temperature range of 80-380 K through forward bias current-voltage ( I- V) measurements. Main electrical parameters were extracted from I-V data. Zero-bias barrier height (\\overline{Φ}_{B0}) and ideality factor (n) were found strong functions of temperature and their values ranged from 0.234 eV and 4.98 (at 80 K) to 0.882 eV and 1.15 (at 380 K), respectively. Φ ap versus q/2k T plot was drawn to obtain an evidence of a Gaussian distribution of the barrier heights (BHs) and it revealed two distinct linear regions with different slopes and intercepts. The mean values of BH ( Φ Bo) and zero-bias standard deviation (σ s ) were obtained from the intercept and slope of the linear regions of this plot as 1.30 eV and 0.16 V for the first region (280-380 K) and 0.74 eV and 0.085 V for the second region (80-240 K), respectively. Thus, the values of \\overline{Φ}_{B0} and effective Richardson constant ( A*) were also found from the intercept and slope of the modified Richardson plot [ln( I s /T 2) - q 2 σ o 2 /2k 2 T 2 vs q/ kT] as 1.31 eV and 130 A/cm2 K2 for the first region and 0.76 eV and 922 A/cm2 K2 for the second region, respectively. The value of A* for the first region was very close to the theoretical value for n-Si (112 A/cm2 K2). The energy density distribution profile of surface states (Nss) was also extracted from the forward bias I-V data by taking into account voltage dependent effective BH (Φe) and n.

  11. Transcriptional upregulation of α2δ-1 elevates arterial smooth muscle cell voltage-dependent Ca2+ channel surface expression and cerebrovascular constriction in genetic hypertension.

    Science.gov (United States)

    Bannister, John P; Bulley, Simon; Narayanan, Damodaran; Thomas-Gatewood, Candice; Luzny, Patrik; Pachuau, Judith; Jaggar, Jonathan H

    2012-10-01

    A hallmark of hypertension is an increase in arterial myocyte voltage-dependent Ca2+ (CaV1.2) currents that induces pathological vasoconstriction. CaV1.2 channels are heteromeric complexes composed of a pore-forming CaV1.2α1 with auxiliary α2δ and β subunits. Molecular mechanisms that elevate CaV1.2 currents during hypertension and the potential contribution of CaV1.2 auxiliary subunits are unclear. Here, we investigated the pathological significance of α2δ subunits in vasoconstriction associated with hypertension. Age-dependent development of hypertension in spontaneously hypertensive rats was associated with an unequal elevation in α2δ-1 and CaV1.2α1 mRNA and protein in cerebral artery myocytes, with α2δ-1 increasing more than CaV1.2α1. Other α2δ isoforms did not emerge in hypertension. Myocytes and arteries of hypertensive spontaneously hypertensive rats displayed higher surface-localized α2δ-1 and CaV1.2α1 proteins, surface α2δ-1:CaV1.2α1 ratio, CaV1.2 current density and noninactivating current, and pressure- and depolarization-induced vasoconstriction than those of Wistar-Kyoto controls. Pregabalin, an α2δ-1 ligand, did not alter α2δ-1 or CaV1.2α1 total protein but normalized α2δ-1 and CaV1.2α1 surface expression, surface α2δ-1:CaV1.2α1, CaV1.2 current density and inactivation, and vasoconstriction in myocytes and arteries of hypertensive rats to control levels. Genetic hypertension is associated with an elevation in α2δ-1 expression that promotes surface trafficking of CaV1.2 channels in cerebral artery myocytes. This leads to an increase in CaV1.2 current-density and a reduction in current inactivation that induces vasoconstriction. Data also suggest that α2δ-1 targeting is a novel strategy that may be used to reverse pathological CaV1.2 channel trafficking to induce cerebrovascular dilation in hypertension.

  12. Inward open characterization of EmrD transporter with molecular dynamics simulation

    International Nuclear Information System (INIS)

    Tan, Xianwei; Wang, Boxiong

    2016-01-01

    EmrD is a member of the multidrug resistance exporter family. Up to now, little is known about the structural dynamics that underline the function of the EmrD protein in inward-facing open state and how the EmrD transits from an occluded state to an inward open state. For the first time the article applied the AT simulation to investigate the membrane transporter protein EmrD, and described the dynamic features of the whole protein, the domain, the helices, and the amino acid residues during an inward-open process from its occluded state. The gradual inward-open process is different from the current model of rigid-body domain motion in alternating-access mechanism. Simulation results show that the EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. In addition, it is observed that the helices exposed to the surrounding membrane show a higher level of flexibility than the other regions, and the protonated E227 plays a key role in the transition from the occluded to the open state. -- Highlights: •This study described the dynamic features of the whole EmrD protein, during an inward-open process from its occluded state. •The EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. •The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. •The protonated E227 plays a key role in the transition from the occluded to the open state.

  13. Inward open characterization of EmrD transporter with molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xianwei [School of Life Sciences, Tsinghua University, Beijing 100084 (China); Wang, Boxiong, E-mail: boxiong_wang@yahoo.com [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China)

    2016-06-10

    EmrD is a member of the multidrug resistance exporter family. Up to now, little is known about the structural dynamics that underline the function of the EmrD protein in inward-facing open state and how the EmrD transits from an occluded state to an inward open state. For the first time the article applied the AT simulation to investigate the membrane transporter protein EmrD, and described the dynamic features of the whole protein, the domain, the helices, and the amino acid residues during an inward-open process from its occluded state. The gradual inward-open process is different from the current model of rigid-body domain motion in alternating-access mechanism. Simulation results show that the EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. In addition, it is observed that the helices exposed to the surrounding membrane show a higher level of flexibility than the other regions, and the protonated E227 plays a key role in the transition from the occluded to the open state. -- Highlights: •This study described the dynamic features of the whole EmrD protein, during an inward-open process from its occluded state. •The EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. •The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. •The protonated E227 plays a key role in the transition from the occluded to the open state.

  14. Hyperpolarization-activated inward leakage currents caused by deletion or mutation of carboxy-terminal tyrosines of the Na+/K+-ATPase {alpha} subunit.

    Science.gov (United States)

    Meier, Susan; Tavraz, Neslihan N; Dürr, Katharina L; Friedrich, Thomas

    2010-02-01

    The Na(+)/K(+)-ATPase mediates electrogenic transport by exporting three Na(+) ions in exchange for two K(+) ions across the cell membrane per adenosine triphosphate molecule. The location of two Rb(+) ions in the crystal structures of the Na(+)/K(+)-ATPase has defined two "common" cation binding sites, I and II, which accommodate Na(+) or K(+) ions during transport. The configuration of site III is still unknown, but the crystal structure has suggested a critical role of the carboxy-terminal KETYY motif for the formation of this "unique" Na(+) binding site. Our two-electrode voltage clamp experiments on Xenopus oocytes show that deletion of two tyrosines at the carboxy terminus of the human Na(+)/K(+)-ATPase alpha(2) subunit decreases the affinity for extracellular and intracellular Na(+), in agreement with previous biochemical studies. Apparently, the DeltaYY deletion changes Na(+) affinity at site III but leaves the common sites unaffected, whereas the more extensive DeltaKETYY deletion affects the unique site and the common sites as well. In the absence of extracellular K(+), the DeltaYY construct mediated ouabain-sensitive, hyperpolarization-activated inward currents, which were Na(+) dependent and increased with acidification. Furthermore, the voltage dependence of rate constants from transient currents under Na(+)/Na(+) exchange conditions was reversed, and the amounts of charge transported upon voltage pulses from a certain holding potential to hyperpolarizing potentials and back were unequal. These findings are incompatible with a reversible and exclusively extracellular Na(+) release/binding mechanism. In analogy to the mechanism proposed for the H(+) leak currents of the wild-type Na(+)/K(+)-ATPase, we suggest that the DeltaYY deletion lowers the energy barrier for the intracellular Na(+) occlusion reaction, thus destabilizing the Na(+)-occluded state and enabling inward leak currents. The leakage currents are prevented by aromatic amino acids at the

  15. An experimental study on the effects of rectifiers on fluid flow

    International Nuclear Information System (INIS)

    Kawashima, G.

    1985-01-01

    This paper reports studies of various combinations of rectifiers and rectifying nets to measure fluid flow and in particular, the measurement of the flow through an orifice or nozzle, since they help to shorten the inlet length

  16. Fully controlled 5-phase, 10-pulse, line commutated rectifier

    Directory of Open Access Journals (Sweden)

    Mahmoud I. Masoud

    2015-12-01

    Full Text Available The development and production of multiphase machines either generators or motors, specially five-phase, offers improved performance compared to three-phase counterpart. Five phase generators could generate power in applications such as, but not limited to, wind power generation, electric vehicles, aerospace, and oil and gas. The five-phase generator output requires converter system such as ac–dc converters. In this paper, a fully controlled 10-pulse line commutated rectifier, suitable to be engaged with wind energy applications, fed from five-phase source is introduced. A shunt active power filter (APF is used to improve power factor and supply current total harmonic distortion (THD. Compared to three-phase converters, 6-pulse or 12-pulse rectifiers, the 10-pulse rectifier engaged with 5-phase source alleviate their drawbacks such as high dc ripples and no need for electric gear or phase shifting transformer. MATLAB/SIMULINK platform is used as a simulation tool to investigate the performance of the proposed rectifier.

  17. Rectifier analysis for radio frequency energy harvesting and power transport

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.; Tijhuis, A.G.

    2012-01-01

    Wireless Power Transmission (WPT) is an attractive powering method for wireless sensor nodes, battery-less sensors, and Radio-Frequency Identification (RFID) tags. The key element on the receiving side of a WPT system is the rectifying antenna (rectenna) which captures the electromagnetic power and

  18. Analysis and control of high power synchronous rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Singh Tejinder.

    1993-01-01

    The description, steady state/dynamic analysis and control design of a high power synchronous rectifier is presented. The proposed rectifier system exploits selective harmonic elimination modulation techniques to minimize filtering requirements, and overcomes the dc voltage limitations of prior art equipment. A detailed derivation of the optimum pulse width modulation switching patterns, in the low frequency range for high power applications is presented. A general mathematical model of the rectifier is established which is non-linear and time-invariant. The transformation of reference frame and small signal linearization techniques are used to obtain closed form solutions from the mathematical model. The modelling procedure is verified by computer simulation. The closed loop design of the synchronous rectifier based on a phase and amplitude control strategy is investigated. The transfer functions derived from this analysis are used for the design of the regulators. The steady-state and dynamic results predicted by computer simulation are verified by PECAN. A systematic design procedure is developed and a detailed design example of a 1 MV-amp rectifer system is presented. 23 refs., 33 figs.

  19. Control Strategy of PWM Rectifiers Connected to Unbalanced Grids

    Czech Academy of Sciences Publication Activity Database

    Bejvl, Martin; Švec, J.; Tlustý, J.; Valouch, V.

    -, č. 11 (2013) ISSN 2172-038X. [International Conference on Renewable Energies and Power Quality (ICREPQ´13). Bilbao, 20.03.2013-22.03.2013] Institutional support: RVO:61388998 Keywords : electric power system * PWM rectifier * dc voltage ripple Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Measurement of Phase Dependent Impedance for 3-phase Diode Rectifier

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2016-01-01

    This paper presents a new method to measure the phase dependent impedance from an experimental set up. Though most of power electronics based system is gradually migrating to IGBT based voltage source converter due to their controllability, the rectifier composed of diode or thyristor components...

  1. A thermally switched 9 kA superconducting rectifier fluxpump

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Bunk, Paul B.; Steffens, Harry A.; van de Klundert, Louis J.M.

    1981-01-01

    The feasibility of superconducting rectifier-fluxpumps has to be demonstrated at current levels of 10 - 100 kA, where is asked for in the superconducting devices now being planned. An intensive program has been started at the low temperature division of the University of Twente to construct such

  2. Frequency Support from OWPPs connected to HVDC via Diode Rectifiers

    DEFF Research Database (Denmark)

    Saborío-Romano, Oscar; Bidadfar, Ali; Göksu, Ömer

    This paper presents a study assessing the actual capability of an offshore wind power plant (offshore WPP, OWPP) to provide frequency support (FS) to an onshore network, when connected through a high-voltage direct-current (HVDC) link having a diode rectifier (DR) offshore terminal and a voltage...

  3. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...

  4. Rectified heat transfer into translating and pulsating vapor bubbles

    NARCIS (Netherlands)

    Hao, Y.; Prosperetti, Andrea

    2002-01-01

    It is well known that, when a stationary vapor bubble is subject to a sufficiently intense acoustic field, it will grow by rectified heat transfer even in a subcooled liquid. The object of this paper is to study how translation, and the ensuing convective effects, influence this process. It is shown

  5. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    OpenAIRE

    Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu

    2018-01-01

    In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed...

  6. Junction barrier Schottky rectifier with an improved P-well region

    International Nuclear Information System (INIS)

    Wang Ying; Li Ting; Cao Fei; Shao Lei; Chen Yu-Xian

    2012-01-01

    A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H—SiC is proposed to improve the V F —I R trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10 −8 times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P + grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier. (interdisciplinary physics and related areas of science and technology)

  7. A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore.

    Science.gov (United States)

    Tomczak, Adam P; Fernández-Trillo, Jorge; Bharill, Shashank; Papp, Ferenc; Panyi, Gyorgy; Stühmer, Walter; Isacoff, Ehud Y; Pardo, Luis A

    2017-05-01

    Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4-S5 linker). However, our recent work on channels disrupted in the S4-S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of K V 10.1 revealed that the S4-S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use "split" channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in K V 10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4-S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4-S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism. © 2017 Tomczak et al.

  8. Cardiovascular action of insulin in health and disease: focus in endothelial L-arginine transport and cardiac voltage-dependent potassium channels.

    Directory of Open Access Journals (Sweden)

    Sebastián eDubó

    2016-03-01

    Full Text Available The impairment of insulin signaling on diabetes mellitus has been related to cardiovascular dysfunction, heart failure and sudden death. In human endothelium, cationic amino acid transporter 1 (hCAT-1 is related to the synthesis of nitric oxide (NO. Insulin has a vascular effect in endothelial cells through a signaling pathway that involved increases of hCAT-1 expression and L-arginine transport. This mechanism is disrupted in diabetes, a phenomenon potentiated by excessive accumulation of reactive oxygen species (ROS, which contributes to lower availability of NO and endothelial dysfunction. On the other hand, the electrical remodeling in cardiomyocytes is considered a key factor in heart failure progression associated to diabetes mellitus, generating a challenge to understand the specific role of insulin and the pathways involved in cardiac function. Studies on isolated mammalian cardiomyocytes have shown a prolongated action potential in ventricular repolarization phase that produces a long QT interval. The long QT generated is well explained by attenuation in the repolarizing potassium currents in cardiac ventricles. The impaired insulin signaling causes specific changes in these currents, such a decrease amplitude of the transient outward K+ (Ito and the ultra-rapid delayed rectifier (IKur currents where, together, a reduction of mRNA and protein expression levels of α-subunits (Ito, fast; Kv 4.2 and IKs; Kv 1.5 or β-subunits (KChIP2 and MiRP of K+ channels involved in these currents in a MAPK mediated pathway process have been described. These results support the hypothesis that the lack of insulin signaling can produce an abnormal repolarization in cardiomyocytes. Furthermore, the arrhythmogenic potential due to reduced Ito current can contribute to an increase in the incidence of sudden death in heart failure. This review aims to show, based on pathophysiological models, the regulatory function that would have insulin in vascular

  9. RELATIONSHIP BETWEEN INWARD FOREIGN DIRECT INVESTMENT, DOMESTIC INVESTMENT, FORMAL AND INFORMAL INSTITUTIONS: EVIDENCE FROM CHINA

    Directory of Open Access Journals (Sweden)

    Waqar Ameer

    2017-07-01

    Full Text Available This study examines relationship between Inward FDI and domestic investment in China, using co-integration and Granger causality analysis (Including bivariate and multivariate Granger causality models. We have used auto-regressive distributed lags(ARDL econometric methodology technique to define relationship between inward FDI and domestic investment using time series data for China. Our study examines long run effects of FDI inflows on domestic investment over time span 1990-2014 for China using informal, formal institutions and key macroeconomic variables as control variables in the model. The results suggest that conclusions drawn from bivariate model may not be valid because of omission of important control variables. Our results of multivariate model show that there is positive unidirectional causality running from IFDI to DI in the long run. In the short run, both inward FDI and domestic investment do not allow Granger causality.

  10. A quantitative and comparative study of the effects of a synthetic ciguatoxin CTX3C on the kinetic properties of voltage-dependent sodium channels

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyahara, Hidemichi; Miyazaki, Keisuke; Hirama, Masahiro

    2004-01-01

    Ciguatoxins (CTXs) are known to bind to receptor site 5 of the voltage-dependent Na channel, but the toxin's physiological effects are poorly understood. In this study, we investigated the effects of a ciguatoxin congener (CTX3C) on three different Na-channel isoforms, rNav1.2, rNav1.4, and rNav1.5, which were transiently expressed in HEK293 cells. The toxin (1.0 μmol l−1) shifted the activation potential (V1/2 of activation curve) in the negative direction by 4–9 mV and increased the slope factor (k) from 8 mV to between 9 and 12 mV (indicative of decreased steepness of the activation curve), thereby resulting in a hyperpolarizing shift of the threshold potential by 30 mV for all Na channel isoforms. The toxin (1.0 μmol l−1) significantly accelerated the time-to-peak current from 0.62 to 0.52 ms in isoform rNav1.2. Higher doses of the toxin (3–10 μmol l−1) additionally decreased time-to-peak current in rNav1.4 and rNav1.5. A toxin effect on decay of INa at −20 mV was either absent or marginal even at relatively high doses of CTX3C. The toxin (1 μmol l−1) shifted the inactivation potential (V1/2 of inactivation curve) in the negative direction by 15–18 mV in all isoforms. INa maxima of the I–V curve (at −20 mV) were suppressed by application of 1.0 μmol l−1 CTX3C to a similar extent (80–85% of the control) in all the three isoforms. Higher doses of CTX3C up to 10 μmol l−1 further suppressed INa to 61–72% of the control. Recovery from slow inactivation induced by a depolarizing prepulse of intermediate duration (500 ms) was dramatically delayed in the presence of 1.0 μmol l−1 CTX3C, as time constants describing the monoexponential recovery were increased from 38±8 to 588±151 ms (n=5), 53±6 to 338±85 ms (n=4), and 23±3 to 232±117 ms (n=3) in rNav1.2, rNav1.4, and rNav1.5, respectively. CTX3C exerted multimodal effects on sodium channels, with simultaneous stimulatory and inhibitory aspects, probably due to the large

  11. Effects of itopride hydrochloride on the delayed rectifier K+ and L-type CA2+ currents in guinea-pig ventricular myocytes.

    Science.gov (United States)

    Morisawa, T; Hasegawa, J; Hama, R; Kitano, M; Kishimoto, Y; Kawasaki, H

    1999-01-01

    The effects of itopride hydrochloride, a new drug used to regulate motility in the gastrointestinal tract, on the delayed rectifier K+ current (I(K)) and the L-type Ca2+ current (I(Ca)) were evaluated in guinea-pig ventricular myocytes at concentrations of 1, 10 and 100 microM to determine whether the drug has a proarrhythmic effect through blockade of I(K). Itopride did not affect I(K) at concentrations of 100 microM or less, and no significant effects of 1, 10 or 100 microM itopride were observed on the inward rectifier K+ current (I(K1)) responsible for the resting potential and final repolarization phase of the action potential. We next investigated the effects of itopride on L-type Ca2+ current (I(Ca)). Significant inhibition of I(Ca) was observed at itopride concentrations greater than 10 microM. These results suggested that itopride hydrochloride has an inhibitory effect on I(Ca) at concentrations much higher than those in clinical use.

  12. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel.

    Science.gov (United States)

    Sesti, Federico; Rajan, Sindhu; Gonzalez-Colaso, Rosana; Nikolaeva, Natalia; Goldstein, Steve A N

    2003-04-01

    MVP, a Methanococcus jannaschii voltage-gated potassium channel, was cloned and shown to operate in eukaryotic and prokaryotic cells. Like pacemaker channels, MVP opens on hyperpolarization using S4 voltage sensors like those in classical channels activated by depolarization. The MVP S4 span resembles classical sensors in sequence, charge, topology and movement, traveling inward on hyperpolarization and outward on depolarization (via canaliculi in the protein that bring the extracellular and internal solutions into proximity across a short barrier). Thus, MVP opens with sensors inward indicating a reversal of S4 position and pore state compared to classical channels. Homologous channels in mammals and plants are expected to function similarly.

  13. MPC-SVM method for Vienna rectifier with PMSG used in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Lee, June-Seok; Bak, Yeongsu; Lee, Kyo-Beum

    2016-01-01

    Using a Vienna rectifier as the machine-side rectifier of back-to-back converter is advantageous in terms of size and cost compared to three-level topologies and for this reason, the Vienna rectifier has been used in Wind Turbine Systems (WTS). This paper proposes a Model Predictive Control (MPC......) method for the Vienna rectifier used in WTS with a Permanent Magnet Synchronous Generator (PMSG). The proposed MPC method considers the feasible eight-voltage vectors of the Vienna rectifier. In addition, the voltage vectors, which are the center voltage vectors of two feasible adjacent voltage vectors...

  14. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    Science.gov (United States)

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    Science.gov (United States)

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  16. Development of Op-Amp Based Piezoelectric Rectifier for Low Power Energy Harvesting Applications

    Directory of Open Access Journals (Sweden)

    Syazmie Bin Sepeeh Muhamad

    2018-01-01

    Full Text Available In this study, the development of operational amplifier (op-amp based rectifier for piezoelectric energy harvesting applications was studied. The two stage op-amp full wave rectifier was used to convert the AC signal to DC signal voltage received by piezoelectric devices. The inverted half wave rectifier integrated with full wave rectifier were designed and simulated using MultiSIM software. The circuit was then fabricated onto a printed circuit board (PCB, using standard fabrication process. The achievement of this rectifier was able to boost up the maximum voltage of 5 V for input voltage of 800 mV. The output of the rectifier was in DC signal after the rectification by the op-amp. In term of power, the power dissipation was reduced consequently the waste power decreases. Future work includes optimization of the rectifying circuit to operate more efficiently can be made to increase the efficiency of the devices.

  17. Experimental investigation of radiative thermal rectifier using vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Nishikawa, Kazutaka; Iizuka, Hideo [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-12-22

    Vanadium dioxide (VO{sub 2}) exhibits a phase-change behavior from the insulating state to the metallic state around 340 K. By using this effect, we experimentally demonstrate a radiative thermal rectifier in the far-field regime with a thin film VO{sub 2} deposited on the silicon wafer. A rectification contrast ratio as large as two is accurately obtained by utilizing a one-dimensional steady-state heat flux measurement system. We develop a theoretical model of the thermal rectifier with optical responses of the materials retrieved from the measured mid-infrared reflection spectra, which is cross-checked with experimentally measured heat flux. Furthermore, we tune the operating temperatures by doping the VO{sub 2} film with tungsten (W). These results open up prospects in the fields of thermal management and thermal information processing.

  18. Common rectifier diodes in temperature measurement applications below 50 K

    International Nuclear Information System (INIS)

    Jaervelae, J; Stenvall, A; Mikkonen, R

    2010-01-01

    In this paper we studied the use of common electronic semiconductor diodes in temperature measurements at cryogenic atmosphere. The motivation for this is the high price of calibrated cryogenic temperature sensors since there are some applications, like quench detection, in which a cheaper and a less accurate sensor would suffice. We measured the forward voltage as a function of temperature, V f (T), of several silicon rectifier diodes to determine the accuracy and interchangeability of the diodes. The experimental results confirmed that V f (T) of common rectifier diodes are similar to cryogenic sensor diodes, but the variability between two samples is much larger. The interchangeability of the diodes proved to be poor if absolute temperatures are to be measured. However for sensing changes in temperature they proved to be adequate and thus can be used to measure e.g. quench propagation or sense quench ignition at multiple locations with cheap price.

  19. Performance evaluation of a rectifier column using gamma column scanning

    Directory of Open Access Journals (Sweden)

    Aquino Denis D.

    2017-12-01

    Full Text Available Rectifier columns are considered to be a critical component in petroleum refineries and petrochemical processing installations as they are able to affect the overall performance of these facilities. It is deemed necessary to monitor the operational conditions of such vessels to optimize processes and prevent anomalies which could pose undesired consequences on product quality that might lead to huge financial losses. A rectifier column was subjected to gamma scanning using a 10-mCi Co-60 source and a 2-inch-long detector in tandem. Several scans were performed to gather information on the operating conditions of the column under different sets of operating parameters. The scan profiles revealed unexpected decreases in the radiation intensity at vapour levels between trays 2 and 3, and between trays 4 and 5. Flooding also occurred during several scans which could be attributed to parametric settings.

  20. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    OpenAIRE

    Anup M. Gakare; Subhash Kamdi

    2014-01-01

    This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of...

  1. When does inward technology licensing facilitate firms' NPD performance? A contingency perspective

    DEFF Research Database (Denmark)

    Wang, Yuandi; Li-Ying, Jason

    2014-01-01

    Many firms find inward technology licensing (ITL), as a means to access external technological knowledge, an effective and relatively inexpensive way for new product development (NPD). However, although the literature has suggested some advantages and disadvantages of ITL with respect to NPD...

  2. Inward Internationalization of African-Ethnic Restaurants: The Role of Managerial Dynamic Capabilities

    Directory of Open Access Journals (Sweden)

    Samson Omuudu OTENGEI

    2016-12-01

    Full Text Available This paper empirically tests the link between cultural orientation, market orientation, service innovation capabilities of owner-managers and the level of inward internationalisation of African-ethnic restaurants. Data were obtained from 201 African-ethnic restaurants. A twostep approach was used, i.e. (i a confirmatory factor analysis (CFA to generate a measurement model; and (ii a structural equation model (SEM to test the hypotheses. All the predictor variables are positively and significantly related to the degree of inward internationalisation and the relationship is strong enough to cause a 41 per cent variance. Since it is cross-sectional in design, the study cannot be fully relied upon to draw inferences regarding causality among the variables. The results suggest that owner-managers who develop the three capabilities succeed in enhancing inward internationalisation. The current study could be among the very few to propose a framework that brings together major managerial (dynamic capabilities that are presumed to be vital in enhancing inward internationalisation.

  3. Fast switching wideband rectifying circuit for future RF energy harvesting

    Science.gov (United States)

    Asmeida, Akrem; Mustam, Saizalmursidi Md; Abidin, Z. Z.; Ashyap, A. Y. I.

    2017-09-01

    This paper presents the design and simulation of fast switching microwave rectifying circuit for ultra wideband patch antenna over a dual-frequency band (1.8 GHz for GSM and 2.4 GHz for ISM band). This band was chosen due to its high signal availability in the surrounding environment. New rectifying circuit topology with pair-matching trunks is designed using Advanced Design System (ADS) software. These trunks are interfaced with power divider to achieve good bandwidth, fast switching and high efficiency. The power divider acts as a good isolator between the trunks and its straightforward design structure makes it a good choice for a single feed UWB antenna. The simulated results demonstrate that the maximum output voltage is 2.13 V with an input power of -5 dBm. Moreover, the rectifier offers maximum efficiency of 86% for the input power of -5 dBm at given band, which could easily power up wireless sensor networks (WSN) and other small devices sufficiently.

  4. Modelling a single phase voltage controlled rectifier using Laplace transforms

    Science.gov (United States)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  5. Radial Variations of Outward and Inward Alfvénic Fluctuations Based on Ulysses Observations

    Science.gov (United States)

    Yang, L.; Lee, L. C.; Li, J. P.; Luo, Q. Y.; Kuo, C. L.; Shi, J. K.; Wu, D. J.

    2017-12-01

    Ulysses magnetic and plasma data are used to study hourly scale Alfvénic fluctuations in the solar polar wind. The calculated energy ratio {R}{vA}2(cal) of inward to outward Alfvén waves is obtained from the observed Walén slope through an analytical expression, and the observed {R}{vA}2(obs) is based on a direct decomposition of original Alfvénic fluctuations into outward- and inward-propagating Alfvén waves. The radial variation of {R}{vA}2(cal) shows a monotonically increasing trend with heliocentric distance r, implying the increasing local generation or contribution of inward Alfvén waves. The contribution is also shown by the radial increase in the occurrence of dominant inward fluctuations. We further pointed out a higher occurrence (˜ 83 % of a day in average) of dominant outward Alfvénic fluctuations in the solar wind than previously estimated. Since {R}{vA}2(cal) is more accurate than {R}{vA}2(obs) in the measurement of the energy ratio for dominant outward fluctuations, the values of {R}{vA}2(cal) in our results are likely more realistic in the solar wind than those previously estimated as well as {R}{vA}2(obs) in our results. The duration ratio R T of dominant inward to all Alfvénic fluctuations increases monotonically with r, and is about two or more times that from Voyager 2 observations at r≥slant 4 {au}. These results reveal new qualitative and quantitative features of Alfvénic fluctuations therein compared with previous studies and put constraints on modeling the variation of solar wind fluctuations.

  6. 78 FR 69361 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES 42 CFR Part 84 [Docket No. CDC-2013-0017; NIOSH-250] Development of Inward Leakage Standards for Half-Mask Air- Purifying Particulate Respirators AGENCY: Centers... regarding the development of inward leakage performance standards for half-mask air- purifying particulate...

  7. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.

    Science.gov (United States)

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael

    2015-03-01

    A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

  8. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2000-01-01

    In the present study, we tested whether the alpha(1A) subunit, which encodes a neuronal isoform of voltage-dependent Ca(2+) channels (VDCCs) (P-/Q-type), was present and functional in vascular smooth muscle and renal resistance vessels. By reverse transcription-polymerase chain reaction...... preglomerular resistance vessels and aorta, as well as mesangial cells, and that P-type VDCCs contribute to Ca(2+) influx in aortic and renal VSMCs and are involved in depolarization-mediated contraction in renal afferent arterioles....

  9. Zero sequence blocking transformers for multi-pulse rectifier in aerospace applications

    DEFF Research Database (Denmark)

    Yao, Wenli; Blaabjerg, Frede; Zhang, Xiaobin

    2014-01-01

    The power electronics technology plays an even more important role in the aerospace applications of More Electric Aircrafts (MEA). AutoTransformer Rectifier Units (ATRU) have been widely adopted in aircrafts due to its simplicity and reliability. In this paper, Zero Sequence Blocking Transformers...... (ZSBT) are employed in the DC link to realize parallel rectifier bridges for ATRU, being the proposed 24-pulse rectifier. A star-connected autotransformer is used in this topology to divide the primary side voltage into four three-phase voltage groups, among which there is a phase shift of 15......°. The autotransformer then feeds the load through rectifier bridges, which are in parallel with ZSBTs. Compared to the traditional method that is using six interphase transformers to parallel the rectifier bridges; the proposed 24-pulse rectifier only requires four ZSBTs. This will contribute to a reduction of weight...

  10. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Wörtwein, Gitta

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... hybridization. Repeated, but not acute, electroconvulsive stimulation increased Kv7.2 and Kv11.1 mRNA levels in the piriform cortex. In contrast, restraint stress had no significant effect on mRNA expression of Kv7.2, Kv11.1, or Kv11.3 in any of the brain regions examined. Thus, it appears that the investigated...

  11. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner.

    Science.gov (United States)

    Salceda, Emilio; López, Omar; Zaharenko, André J; Garateix, Anoland; Soto, Enrique

    2010-03-01

    Sea anemone toxins bind to site 3 of the sodium channels, which is partially formed by the extracellular linker connecting S3 and S4 segments of domain IV, slowing down the inactivation process. In this work we have characterized the actions of BcIII, a sea anemone polypeptide toxin isolated from Bunodosoma caissarum, on neuronal sodium currents using the patch clamp technique. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study (n=65). The main effects of BcIII were a concentration-dependent increase in the sodium current inactivation time course (IC(50)=2.8 microM) as well as an increase in the current peak amplitude. BcIII did not modify the voltage at which 50% of the channels are activated or inactivated, nor the reversal potential of sodium current. BcIII shows a voltage-dependent action. A progressive acceleration of sodium current fast inactivation with longer conditioning pulses was observed, which was steeper as more depolarizing were the prepulses. The same was observed for other two anemone toxins (CgNa, from Condylactis gigantea and ATX-II, from Anemonia viridis). These results suggest that the binding affinity of sea anemone toxins may be reduced in a voltage-dependent manner, as has been described for alpha-scorpion toxins. (c) 2009 Elsevier Inc. All rights reserved.

  12. Rectifying calibration error of Goldmann applanation tonometer is easy!

    Directory of Open Access Journals (Sweden)

    Nikhil S Choudhari

    2014-01-01

    Full Text Available Purpose: Goldmann applanation tonometer (GAT is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn′t suffice. We followed the South East Asia Glaucoma Interest Group′s definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively. Results: Twelve out of 29 (41.3% GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6% faulty instruments. Only one (8.3% faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  13. Optical force rectifiers based on PT-symmetric metasurfaces

    Science.gov (United States)

    Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer

    2018-05-01

    We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.

  14. Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents.

    Science.gov (United States)

    Din, Amad Ud; Chandrathna, Seneke Chamith; Lee, Jong-Wook

    2017-04-19

    Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power P OUT of 564 μW and a rectifier output voltage V RECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a P OUT of 288 μW and a V RECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier.

  15. Torsion angle dependence of the rectifying performance in molecular device with asymmetrical anchoring groups

    International Nuclear Information System (INIS)

    Wang, L.H.; Guo, Y.; Tian, C.F.; Song, X.P.; Ding, B.J.

    2010-01-01

    Using first-principles density functional theory and nonequilibrium Green's function formalism, we investigate the effect of torsion angle on the rectifying characteristics of 4'-thiolate-biphenyl-4-dithiocarboxylate sandwiched between two Au(111) electrodes. The results show that the torsion angle has an evident influence on rectifying performance of such devices. By increasing the dihedral angle between two phenyl rings, namely changing the magnitude of the intermolecular coupling effect, a different rectifying behavior can be observed in these systems. Our findings highlight that the rectifying characteristics are intimately related to dihedral angles and can provide fundamental guidelines for the design of functional molecular devices.

  16. Study of 18-Pulse Rectifier Utilizing Hexagon Connected 3-Phase to 9-Phase Transformer

    Directory of Open Access Journals (Sweden)

    Ahmad Saudi Samosir

    2008-04-01

    Full Text Available The 18-pulse converter, using Y or -connected differential autotransformer, is very interesting since it allows natural high power factor correction. The lowest input current harmonic components are the 17th and 19th. The Transformer is designed to feed three six-pulse bridge rectifiers displaced in phase by 200. This paper present a high power factor three-phase rectifier bases on 3-phase to 9-phase transformer and 18-pulse rectifier. The 9-phase polygon-connected transformer followed by 18-pulse diode rectifiers ensures the fundamental concept of natural power factor correction. Simulation results to verify the proposed concept are shown in this paper.

  17. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-01-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics

  18. Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents

    Science.gov (United States)

    Din, Amad Ud; Chandrathna, Seneke Chamith; Lee, Jong-Wook

    2017-01-01

    Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power POUT of 564 μW and a rectifier output voltage VRECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a POUT of 288 μW and a VRECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier. PMID:28422085

  19. A visual study of radial inward choked flow of liquid nitrogen.

    Science.gov (United States)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  20. Looking inward

    Directory of Open Access Journals (Sweden)

    Arne Melberg

    2011-01-01

    Full Text Available This article presents an analysis of the transformations in the poetics of Rainer M. Rilke. According to the author, the essential impulse for the inception of this evolution had been provided by the encounter of the poet with a series of paintings by French artist Paul Cézanne. The author outlines particular traits in Rilkean poetic variants of modernism: the poet, drawing inspiration from the very same sources as many of his contemporaries (such as, for example, cubists, proposed his own conception of a poetic language. The most important element that constitutes a poem and a poetic image is the rhythm, the fundamental component in the organization of the text. Painterly “overlapping” of planes in a poem becomes thus a kind of a “breath” to take, that opens up a poem to the infinity underlined in the subject. From the experience gained in the visual arts concerning the “attitude and insight”, in turn, a poem attempts to organize a new arrangement for the presented space — ambiguous and in a constant movement.

  1. The Inward Dispersion of the Neutron Scattering Experiments in HTSC Cuprates

    OpenAIRE

    Dayan, Moshe

    2016-01-01

    The theory of the high temperature superconducting cuprates, which is based on the condensation of holes into strings in checker-board geometry, was successful to explain the elastically scattered Neutrons by spin waves. Here it is extended to analyze the inward dispersion curve of its inelastic counterpart, up to the resonance energy- . This extension is done by applying the perturbation theory of the linear response to the condensed strings. The approximated susceptibility is derived by mea...

  2. Can turned inward patella predict an excess of femoral anteversion during gait in spastic diplegic children?

    Science.gov (United States)

    Simon, Anne-Laure; Presedo, Ana; Ilharreborde, Brice; Mallet, Cindy; Mazda, Keyvan; Penneçot, Georges-François

    2014-06-01

    Determining patellar orientation in the transverse plane during observational gait analysis is a fundamental aspect of physical examinations. Many physicians consider that an abnormal position of the patella in the transverse planes is only explained by a rotational abnormality of the proximal femur. A total of 188 spastic diplegic children with cerebral palsy were reviewed (376 lower limbs). The physical examination included observation of patellar orientation at midstride and measuring femoral anteversion (FA). All patients also underwent 3-dimensional (3D) computerized gait analysis of pelvic and hip rotation kinematics. Observational gait analysis and videotapes found 103 children (206 lower limbs) with inturned patella at midstance. Kinematic data from 3D gait analysis showed that the visual impression of turned inward patella was erroneous in 48 limbs. Of the remaining 158 lower limbs, 117 (74%) exhibited excessive FA and 41 (26%) did not. Of the 117 with excessive FA, kinematics showed only 66 (56%) with excessive internal hip rotation (with or without excessive internal pelvic rotation). Of the 41 lower limbs without excessive FA, 25 were explained by excessive internal pelvic rotation and 16 were explained by excessive internal hip rotation (isolated spasticity and/or contracture of internal rotator muscles). Turned inward patella was caused by isolated excessive internal pelvic rotation in 48%, excessive internal hip rotation in 35% (including 44 cases with excessive FA and 12 cases with isolated spasticity and/or contracture of internal hip rotators), and excessive internal hip rotation combined with excessive internal pelvic rotation in 17%. Excessive FA was not the only cause of turned inward patella gait and could not explain this gait anomaly by itself. Excessive internal pelvic rotation was the most frequent cause of turned inward patella gait. Level IV.

  3. On the inward drift of runaway electrons during the plateau phase of runaway current

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Di, E-mail: hudi-2@pku.edu.cn [School of Physics, Peking University, Beijing 100871 (China); Qin, Hong [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 (United States); School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-03-15

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrange equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.

  4. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  5. Energy-harvesting shock absorber with a mechanical motion rectifier

    International Nuclear Information System (INIS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-01-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges. (paper)

  6. A Voltage Modulated DPC Approach for Three-Phase PWM Rectifier

    DEFF Research Database (Denmark)

    Gui, Yonghao; Li, Mingshen; Lu, Jinghang

    2018-01-01

    In this paper, a voltage modulated direct power control for three-phase pulse-width modulated rectifier is proposed. With the suggested method, the differential equations describing the rectifier dynamics are changing from a linear time-varying system into a linear time-invariant one. In this way...

  7. Three Phase Six-Switch PWM Buck Rectifier with Power Factor Improvement

    DEFF Research Database (Denmark)

    Zafar Ullah Khan, M; Mohsin Naveed, M.; Hussain, Dil Muhammad Akbar

    2013-01-01

    Conventional Phase Controlled Rectifier injects low order current harmonics into the AC mains. Large size filtering components are required to attenuate these harmonics. In this paper, Three Phase Six-Switch PWM Buck Rectifier[1] is presented which operates at nearly unity power factor and provides...

  8. A low cost rapid prototype platform for a three phase PFC rectifier application

    DEFF Research Database (Denmark)

    Haase, Frerk; Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    In this paper the design and development of a low cost rapid prototype platform for a Three Phase PFC rectifier application is presented. The active rectifier consists of a SiC-MOSFET based PWM converter and a low cost rapid prototype platform for simulating and implementing the digital control...

  9. A high-power magnetically switched superconducting rectifier operating at 5 Hz

    NARCIS (Netherlands)

    Mulder, G.B.J.; Krooshoop, Hendrikus J.G.; Nijhuis, Arend; ten Kate, Herman H.J.; van de Klundert, L.J.M.

    1987-01-01

    Above a certain current level, the use of a superconducting rectifier as a cryogenic current source offers advantages compared to the use of a power supply at room temperature which requires large current feed-throughs into the cryostat. In some cases, the power of such a rectifier is immaterial,

  10. A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2010-09-01

    Full Text Available Precision rectifiers are important building blocks for analog signal processing. The traditional approach based on diodes and operational amplifiers (OpAmps exhibits undesirable effects caused by limited OpAmp slew rate and diode commutations. In the paper, a full-wave rectifier based on one CDTA and two Schottky diodes is presented. The PSpice simulation results are included.

  11. Biphasic voltage-dependent inactivation of human NaV 1.3, 1.6 and 1.7 Na+ channels expressed in rodent insulin-secreting cells.

    Science.gov (United States)

    Godazgar, Mahdieh; Zhang, Quan; Chibalina, Margarita V; Rorsman, Patrik

    2018-05-01

    Na + current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na + (Na V ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary β-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-β-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β-cells, but not in HEK cells, inactivation of a single Na V subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that Na V channels adopt different inactivation behaviours depending on the local membrane environment. Pancreatic β-cells are equipped with voltage-gated Na + channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na + current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na + channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the β-cell. It has been proposed that the biphasic inactivation reflects the contribution of different Na V α-subunits. We tested this possibility by expression of TTX-resistant variants of the Na V subunits found in β-cells (Na V 1.3, Na V 1.6 and Na V 1.7) in insulin-secreting Ins1 cells and in non-β-cells (including HEK and CHO cells). We found that all Na V subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. Na V 1.7 inactivated at 15--20 mV more negative membrane potentials than Na V 1.3 and Na V 1.6 in Ins1 cells but this small difference is insufficient to solely

  12. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.

    2016-08-29

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm CMOS technology. The proposed rectifier architecture is compared to the conventional cross-coupled rectifier. It demonstrates an improvement of more than 40% in the rectifier power conversion efficiency (PCE) and an input power range extension of more than 50% relative to the conventional crosscoupled rectifier. A sensitivity of -15.2dBm (30μW) input power for 1V output voltage and a peak power-conversion efficiency of 65% are achieved for a 50kω load. © 2004-2012 IEEE.

  13. A passive UHF RFID tag with a dynamic-Vth-cancellation rectifier

    International Nuclear Information System (INIS)

    Shen Jinpeng; Wang Bo; Liu Shan; Wang Xin'an; Ruan Zhengkun; Li Shoucheng

    2013-01-01

    This paper presents a passive UHF RFID tag with a dynamic-V th -cancellation (DVC) rectifier. In the rectifier, the threshold voltages of MOSFETs are cancelled by applying gate bias voltages, which are dynamically changed according to the states of the MOSFETs. The DVC rectifier enables both low ON-resistance and small reverse leakage of the MOSFETs, resulting in high power conversion efficiency (PCE). An area-efficient demodulator with a novel average detector is also designed, which takes advantage of the rectifier's first stage as the envelope detector. The whole tag chip is implemented in a 0.18 μm CMOS process with a die size of 880 × 950 μm 2 . Measurement results show that the rectifier achieves a maximum PCE of 53.7% with 80 kΩ resistor load. (semiconductor integrated circuits)

  14. Slope stability of rectify coal waste embankments on mining areas

    International Nuclear Information System (INIS)

    Klossek, C.

    1999-01-01

    The paper is of a theoretical and experimental character, focusing on the results of field tests on the load-bearing capacity and stability of high (> 20m.) transportation embankments rectified with coal waste. The embankments are located in industrial areas subjected to the intense impact of underground mining. Such phenomena are also accompanied by essential changes in the water conditions of the subsoil. The results of model tests by SIR geo-radar used to non-damaging estimation of the suffusion occurring in the embankment constructed on non-waste materials are discussed. The numerical assessment of the filtration process has been based on the MFE and MBE programs, which are extended calculation procedures enabling the overall estimation of the redistribution of all the stress-strain components in the structure, in consideration of any hypothesis of the boundary state

  15. The harmonic composition of the output voltage of a rectifier unit with a PWM voltage booster converter.

    OpenAIRE

    ПАНЧЕНКО, В В

    2015-01-01

    The author investigates a rectifier unit constructed on the basis of cascade connection of the main non-controlled m-pulse rectifier and PWM voltage booster converter. The research presents the analysis of the harmonic composition of the output voltage of a rectifier unit with a PWM voltage booster converter on completely controlled keys. The dependence of the relative harmonic amplitude on the commutation corner is defined. The estimation of a rectifier unit electromagnetic compatibility wit...

  16. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

    Directory of Open Access Journals (Sweden)

    Siu-Lung eChan

    2013-06-01

    Full Text Available Angiotensin II is an important determinant of inward remodeling in cerebral arterioles. Many of the vascular effects of angiotensin II are mediated by reactive oxygen species generated from homologues of NADPH oxidase with Nox2 predominating in small arteries and arterioles. Therefore, we tested the hypothesis that superoxide generated by Nox2 plays a role in angiotensin II-induced cerebral arteriolar remodeling. We examined Nox2-deficient and wild-type mice in which a pressor or a non-pressor dose of angiotensin II (1000 or 200 ng/kg/day or saline was infused for 4 weeks via osmotic minipumps. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area (by histology and superoxide level (by hydroethidine staining of cerebral arterioles were determined ex vivo. The pressor, but not the non-pressor, dose of angiotensin II significantly increased systolic arterial pressure in both wild-type and Nox2-deficient mice. Both doses of angiotensin II increased superoxide levels and significantly reduced external diameter in maximally dilated cerebral arterioles in wild-type mice. Increased superoxide and inward remodeling were prevented in Nox2-deficient mice. Moreover, only the pressor dose of AngII increased cross-sectional area of arteriolar wall in wild-type mice and was prevented in Nox2-deficient mice. In conclusion, superoxide derived from Nox2-containing NADPH oxidase plays an important role in angiotensin II-mediated inward remodeling in cerebral arterioles. This effect appears to be independent of pressure and different from that of hypertrophy.

  17. Creation of anticorrosion coatings for contact devices of rectifying columns

    Directory of Open Access Journals (Sweden)

    KATAMANOV Vladimir Leonidovich

    2018-02-01

    Full Text Available Today the main corrosion protection methods applied in contact devices of rectifying oil processing equipment, in particular, in mesh nozzles made of stainless steel, under relatively high temperatures (150–250оC and in the presence of aggressive components in oil raw materials (hydrogen sulfide, sulfides, mercaptans, other sulphurous compounds, chloride ions, organochlorine connections, water are to use special alloys as protecting covers as well as corrosion inhibitors that reduce corrosion action of hostile environment. At the same time, the disadvantages of the majority of these methods concern high operational costs, insufficient efficiency or protection ability designed only for a certain factor, but not for combination of them. In this regard corrosion resistance of mesh contact devices made of stainless steel (brand SUS 321 has been studied on three types of samples: alloy wire, welded grid, thin leaf. Titanium nitride (TiN and metallic coatings from nickel (Ni, titanium (Ti and chrome (Cr were used as anticorrosion coatings for the mentioned samples. These coverings were applied on samples in two ways: by means of electrolytic method and vacuum ion-plasma dusting. It was determined that optimal coating thickness is 10–15 microns as it is the thickness at which the produced films possess sufficient plasticity and do not exfoliate from the surface of the corresponding corrosion-proof alloy. The research of corrosion of samples of stainless steel SUS 321 with applied coverings and without them was performed by immersing the samples into compositions that contain oil as well as into the modeling hostile oil-containing environment. As a result of the conducted researches it was determined that the protecting covers of chrome and titanium nitride applied with vacuum ion-plasma dusting method are the most effective coatings from the point of view of anticorrosive protection for mesh contact devices of stainless steel used in rectifying

  18. [Effects of dauricine on action potentials and slow inward currents of guinea pig ventricular papillary muscles].

    Science.gov (United States)

    Li, S N; Zhang, K Y

    1992-11-01

    Effects of dauricine (Dau) on the action potentials (AP), the slow action potentials (SAP), and the slow inward currents (Isi) of guinea pig ventricular papillary muscles were observed by means of intracellular microelectrode and single sucrose gap voltage clamp technique. In the early stage, Dau shortened action potential duration 100 (APD100) and effective refractory period (ERP) (ERP/APD ERP, and APD20, significantly decreased action potential amplitude (APA), maximum velocity (Vmax), and overshot (OS) (ERP/APD > 1; P SAP induced by isoprenaline (P < 0.01), and remarkably inhibited Isi (P < 0.01). The results suggested that Dau exerted an inhibitory effect on Na+, Ca2+, and K+ channels.

  19. Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid

    Science.gov (United States)

    Bryson, James F. J.; Weiss, Benjamin P.; Harrison, Richard J.; Herrero-Albillos, Julia; Kronast, Florian

    2017-08-01

    The direction in which a planetary core solidifies has fundamental implications for the feasibility and nature of dynamo generation. Although Earth's core is outwardly solidifying, the cores of certain smaller planetary bodies have been proposed to inwardly solidify due to their lower central pressures. However, there have been no unambiguous observations of inwardly solidified cores or the relationship between this solidification regime and planetary magnetic activity. To address this gap, we present the results of complimentary paleomagnetic techniques applied to the matrix metal and silicate inclusions within the IVA iron meteorites. This family of meteorites has been suggested to originate from a planetary core that had its overlaying silicate mantle removed by collisions during the early solar system. This process is thought to have produced a molten ball of metal that cooled rapidly and has been proposed to have inwardly solidified. Recent thermal evolution models of such a body predict that it should have generated an intense, multipolar and time-varying dynamo field. This field could have been recorded as a remanent magnetisation in the outer, cool layers of a solid crust on the IVA parent core. We find that the different components in the IVA iron meteorites display a range of paleomagnetic fidelities, depending crucially on the cooling rate of the meteorite. In particular, silicate inclusions in the quickly cooled São João Nepomuceno meteorite are poor paleomagnetic recorders. On the other hand, the matrix metal and some silicate subsamples from the relatively slowly cooled Steinbach meteorite are far better paleomagnetic recorders and provide evidence of an intense (≳100 μT) and directionally varying (exhibiting significant changes on a timescale ≲200 kyr) magnetic field. This is the first demonstration that some iron meteorites record ancient planetary magnetic fields. Furthermore, the observed field intensity, temporal variability and dynamo

  20. A 50–60 GHz mm-wave rectifier with bulk voltage bias in 65-nm CMOS

    NARCIS (Netherlands)

    Gao, H.; Matters-Kammerer, M.; Harpe, P.; Baltus, P.

    2016-01-01

    This letter presents a 50∼60 GHz fully integrated 3-stage rectifier with bulk voltage bias for threshold voltage modulation in a 65-nm CMOS technology, which can be integrated in a mm-wave hybrid rectifier structure as the main rectifier. In this letter, the new technique of bulk voltage bias is

  1. 75 FR 24747 - SCI, LLC/Zener-Rectifier Operations Division A Wholly Owned Subsidiary of SCI, LLC/ON...

    Science.gov (United States)

    2010-05-05

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,235] SCI, LLC/Zener-Rectifier... Adjustment Assistance on October 19, 2009, applicable to workers of SCI LLC/Zener-Rectifier, Operations... Technical Resources were employed on-site at the Phoenix Arizona location of SCI LLC/Zener-Rectifier...

  2. Inward foreign direct investment and industrial restructuring: micro evidence – the Slovenian firms’ growth model

    Directory of Open Access Journals (Sweden)

    Katja Zajc Kejžar

    2006-12-01

    Full Text Available We examine the impact of inward foreign direct investment (FDI on the growth of local firms in terms of employment and total factor productivity (TFP for the Slovenian manufacturing sector in the 1994-2003 period. The theoretically predicted channels through which inward FDI affects the firm dynamics in a host country prove to be in general significant. First, there is evidence of the direct impact offoreign firms through so-called direct technology transfer as foreign-owned firms have higher growth of TFP compared to domestically-owned firms after controlling for other determinants. Secondly, the entry of foreign firms stimulates the reshuffling of the resources from less to more efficient local firms. The firm selection process is, namely, characterised by the least efficient firms experiencing a drop in their employment growth upon a foreign firm’s entry. Thirdly, regarding the productivity spillover effects from foreign to local firms we provide indirect evidence that they mostly operate through vertical linkages rather than within the same industry.In general, it seems that not all firms are equally able to benefit from foreign firms’ presence and that absorptive capacity plays an important role.

  3. A New Class III Antiarrhythmic Drug Niferidil Prolongs Action Potentials in Guinea Pig Atrial Myocardium via Inhibition of Rapid Delayed Rectifier.

    Science.gov (United States)

    Abramochkin, Denis V; Kuzmin, Vladislav S; Rosenshtraukh, Leonid V

    2017-12-01

    A new class III antiarrhythmic drug niferidil (RG-2) has been introduced as a highly effective therapy for cases of persistent atrial fibrillation, but ionic mechanisms of its action are poorly understood. In the present study, the effects of niferidil on action potential (AP) waveform and potassium currents responsible for AP repolarization were investigated in guinea pig atrial myocardium. APs were recorded with sharp glass microelectrodes in multicellular atrial preparations. Whole-cell patch-clamp technique was used to measure K + currents in isolated myocytes. In multicellular atrial preparations, 10 -8  M niferidil effectively prolonged APs by 15.2 ± 2.8% at 90% repolarization level. However, even the highest tested concentrations, 10 -6  M and 10 -5  M failed to prolong APs more than 32.5% of control duration. The estimated concentration of niferedil for half-maximal AP prolongation was 1.13 × 10 -8  M. Among the potassium currents responsible for AP repolarization phase, I K1 was found to be almost insensitive to niferidil. However, another inward rectifier, I KACh , was effectively suppressed by micromolar concentrations of niferidil with IC 50  = 9.2 × 10 -6  M. I KATP was much less sensitive to the drug with IC 50  = 2.26 × 10 -4  M. The slow component of delayed rectifier, I Ks , also demonstrated low sensitivity to niferidil-the highest used concentration, 10 -4  M, decreased peak I Ks density to 46.2 ± 5.5% of control. Unlike I Ks , the rapid component of delayed rectifier, I Kr , appeared to be extremely sensitive to niferidil. The IC 50 was 1.26 × 10 -9  M. I Kr measured in ventricular myocytes was found to be less sensitive to niferidil with IC 50  = 3.82 × 10 -8  M. Niferidil prolongs APs in guinea pig atrial myocardium via inhibition of I Kr .

  4. 3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications

    Science.gov (United States)

    Skinner, Matthew

    In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.

  5. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  6. Detection of vortex-core dynamics using current-induced self-bistable rectifying effect

    International Nuclear Information System (INIS)

    Goto, M; Hata, H; Yamaguchi, A; Miyajima, H; Nozaki, Y; Nakatani, Y; Yamaoka, T

    2011-01-01

    A magnetic vortex core confined in a micron-scale magnetic disk is resonantly excited by spin-polarized radio-frequency (rf) current and rf field. We show that rectifying voltage spectra caused by the vortex core resonance is dependent on the core polarity. Rectifying voltage spectra are given by the superposition of the polarity-dependent term and the polarity-independent term. The sign of the polarity-dependent rectifying voltage reverses when the sign of polarity P or external field H is reversed. This experimental result can be explained by the anisotropic magnetoresistance effect caused by the vortex core motion.

  7. A Theoretical Investigation on Rectifying Performance of a Single Motor Molecular Device

    International Nuclear Information System (INIS)

    Lei Hui; Tan Xun-Qiong

    2015-01-01

    We report ab initio calculations of the transport behavior of a phenyl substituted molecular motor. The calculated results show that the transport behavior of the device is sensitive to the rotation degree of the rotor part. When the rotor part is parallel with the stator part, a better rectifying performance can be found in the current-voltage curve. However, when the rotor part revolves to vertical with the stator part, the currents in the positive bias region decrease slightly. More importantly, the rectifying performance disappears. Thus this offers us a new method to modulate the rectifying behavior in molecular devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    International Nuclear Information System (INIS)

    Zhao Peng; Zhang Ying; Wang Pei-Ji; Zhang Zhong; Liu De-Sheng

    2011-01-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C 60 nanotube caps. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    Science.gov (United States)

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  10. Current and Voltage Conveyors in Current- and Voltage-Mode Precision Full-Wave Rectifiers

    Directory of Open Access Journals (Sweden)

    J. Koton

    2011-04-01

    Full Text Available In this paper new versatile precision full-wave rectifiers using current and/or voltage conveyors as active elements and two diodes are presented. The performance of these circuit solutions is analysed and compared to the opamp based precision rectifier. To analyze the behavior of the functional blocks, the frequency dependent RMS error and DC transient value are evaluated for different values of input voltage amplitudes. Furthermore, experimental results are given that show the feasibilities of the conveyor based rectifiers superior to the corresponding operational amplifier based topology.

  11. Selected Factors Determining Inward of Foreign Direct Investment in the Czech Regions in Years 2002 to 2012

    Directory of Open Access Journals (Sweden)

    Ondřej Babuněk

    2017-09-01

    Full Text Available This study aims at the research of the influence of unemployment rate (Un, exchange rate of CZK/USD (Ex, inflation rate (Inf, expenditures on research and development (RaD, size of wages and environmental pollution on inward foreign direct investment (FDI into regions in the Czech Republic in the period 2002–2012. The study dealt with the whole period, then the pre-crisis and crisis period, altogether with the inclusion or elimination of Prague in or out of the group of Czech regions. Models without and with dynamic parameter were checked. For estimation of influence of the above mentioned parameters the fixed effects model, random effects model and pooled ordinary least squares (POLS were used. For dynamic model the generalized method of moments and POLS were applied. The results showed that Wage, appreciation of Ex and RaD positively determined the inflow of FDI to Czech regions and no negative determinant of inward FDI has been found. On the other hand, results of dynamic model imply that inward FDI in preceding year, appreciation of Ex, RaD have positive impact on inward FDI in current year. However, negative impact of Un and Inf on inward FDI were detected. Results of this research enable the policy makers or decision makers try to focus their attention on specific factors and eliminate to consume scarce funding.

  12. ANALISA SISTEM KENDALI PUTARAN MOTOR DC MENGGUNAKAN SILICON CONTROLLED RECTIFIERS

    Directory of Open Access Journals (Sweden)

    M. Khairudin, Efendi, N Purwantiningsih,

    2016-01-01

    Full Text Available ABSTRAK Paper ini bertujuan untuk menganalisa rangkaian sistem kendali putaran motor menggunakan Silicon Controlled Rectifier (SCR atau Thyristor. Eksperimen sistem kendali putaran motor ini menggunakan dua rangkaian yang berbeda. Rangkaian pertama menggunakan dua sumber, yaitu sumber tegangan DC 12 v terhubung dengan motor universal secara seri dengan resistor dan SCR, sedangkan sumber tegangan DC variabel 0 sampai 1.5 v dihubung paralel dengan kapasitor dan resistor. Rangkaian kedua menggunakan satu sumber tegangan AC 5 v yang dihubungkan dengan saklar dan motor. Pada rangkaian kedua ini motor dihubungkan dengan potensio, SCR, dioda serta kapasitor yang dipasang paralel dengan sumber tegangan AC. Hasil eksperimen menunjukkan dalam rangkaian menggunakan sumber tegangan DC, motor DC akan berputar saat saklar S1 tertutup. Kondisi motor akan berputar lebih cepat ketika sumber tegangan variabel diatur lebih besar dari 0 v sehingga arus gate Ig lebih bear dari 400 mA. Adapun Eksperimen dengan sumber tegangan AC, motor akan berputar dengan menambahkan dioda D3 dan pengaturan kecepatan melalui potensio meter Rv sampai posisi maksimum. Kata kunci: analisa, motor DC, SCR, sistem kendali ABSTRACT The objective of this study is to analyse the circuit of DC motor control system using Silicon Controlled Rectifier (SCR or Thyristor. In this experiment the circuit of control system for the motor using two different circuits. The first circuit using two sources, the 12 v DC voltage is connected to universal motor and series with a resistor and SCR, while the DC variable voltage source of 0 to 1.5 v connected in parallel to the capacitor and resistor. The second circuit uses a single source of 5 V AC voltage connected to the switch and the motor. In the second circuit, the motor is connected to the potentio meter, SCR, diode and capacitor in parallel with the AC voltage source. The experimental results showed the circuit using a DC voltage source impacted the

  13. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    Science.gov (United States)

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.

  14. Trans-Channel Interactions in Batrachotoxin-Modified Skeletal Muscle Sodium Channels: Voltage-Dependent Block by Cytoplasmic Amines, and the Influence of μ-Conotoxin GIIIA Derivatives and Permeant Ions

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R.; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W.; French, Robert J.

    2008-01-01

    External μ-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two μ-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the μ-conotoxin and the DEA-binding site of ∼15 Å. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by ∼4-fold; and 2), increasing external [Na+] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions. PMID:18658222

  15. Trans-channel interactions in batrachotoxin-modified skeletal muscle sodium channels: voltage-dependent block by cytoplasmic amines, and the influence of mu-conotoxin GIIIA derivatives and permeant ions.

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W; French, Robert J

    2008-11-01

    External mu-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two mu-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the mu-conotoxin and the DEA-binding site of approximately 15 A. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by approximately 4-fold; and 2), increasing external [Na(+)] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions.

  16. Cell cycle-dependent regulation of kainate-induced inward currents in microglia

    International Nuclear Information System (INIS)

    Yamada, Jun; Sawada, Makoto; Nakanishi, Hiroshi

    2006-01-01

    Microglia are reported to have α-amino-hydroxy-5-methyl-isoxazole-4-propionate/kainate (KA) types. However, only small population of primary cultured rat microglia (approximately 20%) responded to KA. In the present study, we have attempted to elucidate the regulatory mechanism of responsiveness to KA in GMIR1 rat microglial cell line. When the GMIR1 cells were plated at a low density in the presence of granulocyte macrophage colony-stimulating factor, the proliferation rate increased and reached the peak after 2 days in culture and then gradually decreased because of density-dependent inhibition. At cell proliferation stage, approximately 80% of the GMIR1 cells exhibited glutamate (Glu)- and KA-induced inward currents at cell proliferation stage, whereas only 22.5% of the cells showed responsiveness to Glu and KA at cell quiescent stage. Furthermore, the mean amplitudes of inward currents induced by Glu and KA at cell proliferation stage (13.8 ± 3.0 and 8.4 ± 0.6 pA) were significantly larger than those obtained at cell quiescent stage (4.7 ± 0.8 and 6.2 ± 1.2 pA). In the GMIR1 cells, KA-induced inward currents were markedly inhibited by (RS)-3-(2-carboxybenzyl) willardiine (UBP296), a selective antagonist for KA receptors. The KA-responsive cells also responded to (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a selective agonist for GluR5, in both GMIR1 cells and primary cultured rat microglia. Furthermore, mRNA levels of the KA receptor subunits, GluR5 and GluR6, at the cell proliferation stage were significantly higher than those at the cell quiescent stage. Furthermore, the immunoreactivity for GluR6/7 was found to increase in activated microglia in the post-ischemic hippocampus. These results strongly suggest that microglia have functional KA receptors mainly consisting of GluR5 and GluR6, and the expression levels of these subunits are closely regulated by the cell cycle mechanism

  17. Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers.

    Science.gov (United States)

    Auton, Gregory; But, Dmytro B; Zhang, Jiawei; Hill, Ernie; Coquillat, Dominique; Consejo, Christophe; Nouvel, Philippe; Knap, Wojciech; Varani, Luca; Teppe, Frederic; Torres, Jeremie; Song, Aimin

    2017-11-08

    A graphene ballistic rectifier is used in conjunction with an antenna to demonstrate a rectenna as a terahertz (THz) detector. A small-area (<1 μm 2 ) local gate is used to adjust the Fermi level in the device to optimize the output while minimizing the impact on the cutoff frequency. The device operates in both n- and p-type transport regimes and shows a peak extrinsic responsivity of 764 V/W and a corresponding noise equivalent power of 34 pW Hz -1/2 at room temperature with no indications of a cutoff frequency up to 0.45 THz. The device also demonstrates a linear response for more than 3 orders of magnitude of input power due to its zero threshold voltage, quadratic current-voltage characteristics and high saturation current. Finally, the device is used to take an image of an optically opaque object at 0.685 THz, demonstrating potential in both medical and security imaging applications.

  18. Graphene ballistic nano-rectifier with very high responsivity

    Science.gov (United States)

    Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin

    2016-01-01

    Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162

  19. Finite element modeling of electrically rectified piezoelectric energy harvesters

    International Nuclear Information System (INIS)

    Wu, P H; Shu, Y C

    2015-01-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique. (paper)

  20. Finite element modeling of electrically rectified piezoelectric energy harvesters

    Science.gov (United States)

    Wu, P. H.; Shu, Y. C.

    2015-09-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique.

  1. Generalized space vector control for current source inverters and rectifiers

    Directory of Open Access Journals (Sweden)

    Roseline J. Anitha

    2016-06-01

    Full Text Available Current source inverters (CSI is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI are dealt in this paper. As space vector pulse width modulation (SVPWM features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.

  2. 2012 NOAA Color Ortho-rectified Mosaic of Corpus Christi to Saint Charles Bay, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of LAKE CHARLES

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of LAKE CHARLES. The...

  4. 2016 NOAA NGS Ortho-rectified Color Mosaic of Anchorage, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2010 NOAA Ortho-rectified Near-infrared Mosaic of Port Arthur - Beaumont, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of BEAUMONT, ORANGE, PORT AUTHUR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of BEAUMONT, ORANGE,...

  7. 2016 NOAA NGS Ortho-rectified Near-Infrared Mosaic of Cleveland, Ohio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of CHOCTAWHATCHEE BAY

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of CHOCTAWHATCHEE BAY....

  9. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of LAKE CHARLES (NODC Accession 0075827)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of LAKE CHARLES. The...

  10. 2014 NOAA Ortho-rectified Mosaic of Delaware Coastline: Hurricane Sandy Impact Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles at 0.10m GSD. This data set was created for NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative in the...

  11. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of MISSISSIPPI RIVER - LAPLACE TO VENICE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of MISSISSIPPI RIVER -...

  12. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Alabama: Eastern Mississippi Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. 2015 NOAA Ortho-rectified Near-Infrared Mosaic of the port of Silver Bay, Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. 2015 NOAA Ortho-rectified Color Mosaic of the port of Silver Bay, Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  15. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Pescadero Point to Bodega Bay, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  16. 2012 NOAA Ortho-rectified Near-Infrared Mosaic of Oregon: Lake Umatilla to Clarkson

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  17. 2011 NOAA Ortho-rectified Mosaic of Intracoastal City, Louisiana (NODC Accession 0075831)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  18. 2010 NOAA Ortho-rectified Mosaic of Savannah River, Georgia (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  19. 2011 NOAA Ortho-rectified Mosaic of Tallaboa, Puerto Rico (NODC Accession 0074381)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  20. Positive Temperature Coefficient of Breakdown Voltage in 4H-SiC PN Junction Rectifiers

    National Research Council Canada - National Science Library

    Neudeck, Philip

    1998-01-01

    ...-suited SiC polytype for power device implementation. This paper reports the first experimental measurements of stable positive temperature coefficient behavior observed in 4H-SiC pn junction rectifiers...

  1. Influence of load type on power factor and harmonic composition of three-phase rectifier current

    Science.gov (United States)

    Nikolayzin, N. V.; Vstavskaya, E. V.; Konstantinov, V. I.; Konstantinova, O. V.

    2018-05-01

    This article is devoted to research of the harmonic composition of the three-phase rectifier current consumed when it operates with different types of load. The results are compared with Standard requirements.

  2. Design and control of an LCL-filter-based three-phase active rectifier

    DEFF Research Database (Denmark)

    Liserre, Marco; Blaabjerg, Frede; Hansen, Steffan

    2005-01-01

    This paper proposes a step-by-step procedure for designing the LCL filter of a front-end three-phase active rectifier. The primary goal is to reduce the switching frequency ripple at a reasonable cost, while at the same time achieving a high-performance front-end rectifier (as characterized...... by a rapid dynamic response and good stability margin). An example LCL filter design is reported and a filter has been built and tested using the values obtained from this design. The experimental results demonstrate the performance of the design procedure both for the LCL filter and for the rectifier...... a powerful tool to design an LCL-filter-based active rectifier while avoiding trial-and-error procedures that can result in having to build several filter prototypes....

  3. 2016 NOAA NGS Ortho-rectified Color Mosaic of Whittier, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2012 NOAA Ortho-rectified Near-Infrared MLLW Mosaic of Alabama: Eastern Mississippi Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. A novel approach to determine the interphase transformer inductance of 18 pulse rectifiers

    International Nuclear Information System (INIS)

    Sefa, Ibrahim; Altin, Necmi

    2009-01-01

    The interphase transformer inductance seriously affects the performance of 18 pulse rectifiers. Low inductance values cause non-characteristic harmonics whereas high inductance values increase the rectifier cost and size. Hence, determination of the interphase transformer inductance value is an important problem in the design of 18 pulse rectifiers. In this paper, an approach to determine the optimum inductance value of an interphase transformer is proposed and a practical formula is introduced. The proposed approach has been validated with simulation and experimental studies carried out with designed capacitive loaded autotransformer based 18 pulse rectifier for different IPT inductance values at different load levels. Experimental and simulation results show that cost effective interphase transformer inductance value can be determined with the proposed approach and this value reduces the line current harmonics and improves power factor drastically.

  6. The energizing of a NMR superconducting coil by a superconducting rectifier

    International Nuclear Information System (INIS)

    Sikkenga, J.; ten Kate, H.H.J.; van der Klundert, L.J.M.; Knoben, J.; Kraaij, G.J.; Spuorenberg, C.J.G.

    1985-01-01

    NMR magnets require a good homogeneity within a certain volume and an excellent field stability. The homogeneity can be met using a superconducting shim coil system. The field stability requires a constant current, although in many cases the current decay time constant is too low, due to imperfections in the superconducting wire and joints. This can be overcome using a rectifier. The rectifier can also be used to load the coil. The combination and interaction of the superconducting NMR coil (2.0 Tesla and 0.35 m cold bore) and the rectifier (20 W / 1 kA) is tested. The safety of the system is discussed. The shim coil system can compensate the strayfield of the rectifier. The field decay compensation will be discussed

  7. 2013 NOAA Ortho-rectified Color Mosaic of California: Port of San Diego

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2013 NOAA Ortho-rectified Color Mosaic of Intercoastal Waterway - Calcasieu Lake to Vermillion Bay, Louisiana

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Bodega Bay to Shelter Cove, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. 2017 NOAA NGS Ortho-rectified Color Mosaic of Houston Ship Channel, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  11. 2016 NOAA NGS Ortho-rectified Mean High Water Color Mosaic of Venice Inlet ICW, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Seal Rock to Lopez Rock, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. 2011 NOAA Ortho-rectified Mosaic of Intracoastal Waterway, Texas (NODC Accession 0105604)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. 2012 NOAA Ortho-rectified Color Mosaic of Sacramento Deep Water Ship Channel, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  15. 2009 NOAA Near-Infrared Ortho-rectified Mosaic of Brunswick, Georgia (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  16. 2012 NOAA Ortho-rectified Color MHW Mosaic of Washington: Seattle and Lake Washington Ship Canal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  17. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Lopez Rock to Pescadero Point, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  18. 2012 NOAA Ortho-rectified Color Mosaic of Del Mar Boat Basin and Oceanside Harbor, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  19. 2013 NOAA Ortho-rectified Near-Infrared Mosaic of the Port of Panama City, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  20. 2016 NOAA NGS Ortho-rectified Color Mosaic of Baton Rouge, Louisiana

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  1. 2009 NOAA Ortho-rectified RGB Mosaic of Savannah, Georgia (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 2011 NOAA Ortho-rectified Mosaic of Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2012 NOAA Color MLLW Ortho-rectified Mosaic of Amelia Island and Nassau River, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2011 NOAA Color MHW Ortho-rectified Mosaic of Amelia Island and Nassau River, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. An overview of self-switching diode rectifiers using green materials

    Science.gov (United States)

    Kasjoo, Shahrir Rizal; Zailan, Zarimawaty; Zakaria, Nor Farhani; Isa, Muammar Mohamad; Arshad, Mohd Khairuddin Md; Taking, Sanna

    2017-09-01

    A unipolar two-terminal nanodevice, known as the self-switching diode (SSD), has recently been demonstrated as a room-temperature rectifier at microwave and terahertz frequencies due to its nonlinear current-voltage characteristic. The planar architecture of SSD not only makes the fabrication process of the device faster, simpler and at a lower cost when compared with other rectifying diodes, but also allows the use of various materials to realize and fabricate SSDs. This includes the utilization of `green' materials such as organic and graphene thin films for environmental sustainability. This paper reviews the properties of current `green' SSD rectifiers with respect to their operating frequencies and rectifying performances, including responsivity and noise-equivalent power of the devices, along with the applications.

  6. 2011 NOAA Ortho-rectified Near-Infrared Mosaic of Isle of Shoals, New Hampshire (MHW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2016 NOAA NGS Ortho-rectified Color Mosaic of Kenai and Nikiski, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2014 NOAA Ortho-rectified Mosaic of Hurricane Sandy Coastal Impact Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles at 0.35m GSD created for NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative in Hurricane Sandy coastal...

  9. 2010 NOAA Ortho-rectified Mosaic of Louisiana: Mississippi River - Baton Rouge to Southwest Pass

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. 2013 NOAA Ortho-rectified Color Mosaic of California: Port of Los Angeles and Long Beach

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  11. 2016 NOAA NGS Ortho-rectified Color Mosaic of Cleveland, Ohio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. 2015 NOAA NGS Ortho-rectified Near-Infrared Mosaic of Port Canaveral, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. 2010 NOAA Ortho-rectified Mosaic of Lake Michigan - West Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of PORT OF GEORGETOWN - CSCAP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of PORT OF GEORGETOWN...

  15. 2012 NOAA Ortho-rectified Color Mosaic of Bremerton and Manchester, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  16. Performance improvement of three phase rectifier by employing electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben O.

    2014-01-01

    density of the rectifier. In case of an inverter connected to the output of the rectifier, peak to peak voltage ripples to the front end of the inverter reduces significantly by the ESI, and it increases lifetime of the capacitor connected to the dc link and reduces the voltage stress of the active power...... semiconductors of the inverter. In this paper, an average model of the ESI and its control schemes are presented....

  17. Dynamic and Control Analysis of Modular Multi-Parallel Rectifiers (MMR)

    DEFF Research Database (Denmark)

    Zare, Firuz; Ghosh, Arindam; Davari, Pooya

    2017-01-01

    This paper presents dynamic analysis of a Modular Multi-Parallel Rectifier (MMR) based on state-space modelling and analysis. The proposed topology is suitable for high power application which can reduce line current harmonics emissions significantly. However, a proper controller is required...... to share and control current through each rectifier. Mathematical analysis and preliminary simulations have been carried out to verify the proposed controller under different operating conditions....

  18. Design and test of a 2.25-MW transformer rectifier assembly

    Science.gov (United States)

    Cormier, R.; Daeges, J.

    1989-01-01

    A new 2.25-MW transformer rectifier assembly was fabricated for DSS-13 at Goldstone, California. The transformer rectifier will provide constant output power of 2.25 MW at any voltage from 31 kV to 125 kV. This will give a new capability of 1 MW of RF power at X-band, provided appropriate microwave tubes are in the power amplifier. A description of the design and test results is presented.

  19. Wideband Small-Signal Input dq Admittance Modeling of Six-Pulse Diode Rectifiers

    DEFF Research Database (Denmark)

    Yue, Xiaolong; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper studies the wideband small-signal input dq admittance of six-pulse diode rectifiers. Considering the frequency coupling introduced by ripple frequency harmonics of d-and q-channel switching function, the proposed model successfully predicts the small-signal input dq admittance of six......-pulse diode rectifiers in high frequency regions that existing models fail to explain. Simulation and experimental results verify the accuracy of the proposed model....

  20. Superhigh-frequency circuit for the EPR spectrometer with rectifier screening

    International Nuclear Information System (INIS)

    Zhizhchenko, G.A.; Tsvirko, L.V.

    1983-01-01

    The hamodyne SHF circuit of a 3-cm EPR spectrometer with a reflecting resonator is described. The optimum operating mode of SHF-rectifier at a constant phase difference is automatically assured in the circuit. The circuit employs a reflecting p-i-n- attenuator and a SHF-rectifier sereen which simplify the spectrometer tuming. The circuit is used in a miniature EPR radiospectrometer Minsk EPR-6-type

  1. Inward Processing Regime Promotion System in Vegetable Oil Industry: A Case Study of Turkey

    Directory of Open Access Journals (Sweden)

    Sinan Duru

    2017-04-01

    Full Text Available This study was conducted to determine applicability of the Inward Processing Regime (IPR in enterprises which are vegetable oil producers and exporters. The data was obtained from 26 vegetable oil producer and exporter enterprises by using survey method. Frequency tables, indices, and percentage calculating were used to analyse Data. Also, SWOT analysis was used to determine the strengths, weaknesses, opportunities and threats in the sector, and relationship among some variables were examined with correlation coefficient. According to research findings, 25 of the enterprises (96% utilised the IPR. Since the enterprises started to use that system; availability of cheap raw material, rate of capacity utilisation, market share, and export value all have increased. In addition, raw material was found as an important expense item, and the most important problems were qualified as raw material inadequacy and high input prices.

  2. Inward FDI and demand for skills in manufacturing firms in Sweden

    DEFF Research Database (Denmark)

    Bandick, Roger; Hansson, Pär

    2009-01-01

    We observe a substantial increase in foreign ownership in Sweden in the 1990s. Did that have any effect on relative demand for skilled labor? Has technology transfers-often associated with inward FDI-led to an increased demand for skills due to skilled-biased technical change? Are there any grounds...... for the concerns in the public Swedish debate that more skilled activities have been moved to other countries where the headquarters are located? Estimating relative labor demand at the firm level and using propensity score matching with difference-in-difference estimation, we obtain support for that relative...... demand for skilled labor tend to rise in non-multinationals (non-MNEs)-but not in multinationals (MNEs)-that become foreign-owned. Other interesting findings are that larger presence of foreign MNEs in an industry appears to have a positive impact on the relative demand for skills in Swedish MNEs within...

  3. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-01-01

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport

  4. Foreign vs. domestic: What determines the origin of Chinese firms’ inward technology licensing?

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi

    2012-01-01

    categories of factors that are relevant in this respect: (1) technology supplier’s characteristics; (2) technology seeker’s characteristics; (3) features of technology itself; and (4) external contextual factors. We test our hypotheses based on Chinese firms’ inward technology licensing. We found well......The increasing prominence of cross-border technology sourcing urges us to ask a question: what factors and conditions may influence firms' decisions of sourcing technology domestically or internationally? Research on this topic is scattered in the literature but a comprehensive understanding...... of these factors and conditions on this issue is still lacking. The aim of this paper thus is to establish a comprehensive framework that integrates factors affecting a firm’s propensity to make technology sourcing decisions regarding foreign or domestic origins of technologies. We identify four distinct...

  5. A COMPARATIVE STUDY UPON CHINESE AND TURKISH INWARD FOREIGN DIRECT INVESTMENT

    Directory of Open Access Journals (Sweden)

    Farrukh Nawaz Kayani

    2017-02-01

    Full Text Available Over the last 30 years, the economic and political power of China has grown globally particularly in Asia. China has become the largest recipient of FDI among the developing countries by adopting East Asian Flying Geese Model. China switched over from Import-substitution strategy to Export promotion strategy. In 2015, China attracted USD of 135 Billion as inward FDI whereas Turkey attracted only USD of 16.5 Billion. We ran the Granger Causality tests between the FDI and Economic Growth for both China and Turkey upon the data from 1980 to 2013. We took the data from World Development Indicator of World Bank. We found that growth in China has been caused by due to inflow of FDI whereas in the case of Turkey the GDP does granger caused the FDI.

  6. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax =3.6 m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  7. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax = 3.6m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  8. Genotypic to expression profiling of bovine calcium channel, voltage-dependent, alpha-2/delta subunit 1 gene, and their association with bovine mastitis among Frieswal (HFX Sahiwal) crossbred cattle of Indian origin.

    Science.gov (United States)

    Deb, Rajib; Singh, Umesh; Kumar, Sushil; Kumar, Arun; Singh, Rani; Sengar, Gyanendra; Mann, Sandeep; Sharma, Arjava

    2014-04-03

    Calcium channel, voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene is considered to be an important noncytokine candidate gene influencing mastitis. Scanty of reports are available until today regarding the role play of CACNA2D1 gene on the susceptibility of bovine mastitis. We interrogated the CACNA2D1 G519663A [A>G] SNP by PCR-RFLP among two hundreds Frieswal (HF X Sahiwal) crossbred cattle of Indian origin. Genotypic frequency of AA (51.5, n=101) was comparatively higher than AG (35, n=70) and GG (14.5, n=29). Association of Somatic cell score (SCS) with genotypes revealed that, GG genotypes showing lesser count (less susceptible to mastitis) compare to AA and AG. Relative expression of CACNA2D1 transcript (in milk samples) was significantly higher among GG than AG and AA. Further we have also isolated blood sample from the all groups and PBMCs were cultured from each blood sample as per the standard protocol. They were treated with Calcium channel blocker and the expression level of the CACNA2D1 gene was evaluated by Real Time PCR. Results show that expression level decline in each genotypic group after treatment and expression level of GG are again significantly higher than AA and AG. Thus, it may be concluded that GG genotypic animals are favorable for selecting disease resistant breeds.

  9. The Voltage-Dependent Anion Channel 1 (AtVDAC1 Negatively Regulates Plant Cold Responses during Germination and Seedling Development in Arabidopsis and Interacts with Calcium Sensor CBL1

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Li

    2013-01-01

    Full Text Available The voltage-dependent anion channel (VDAC, a highly conserved major mitochondrial outer membrane protein, plays crucial roles in energy metabolism and metabolite transport. However, knowledge about the roles of the VDAC family in plants is limited. In this study, we investigated the expression pattern of VDAC1 in Arabidopsis and found that cold stress promoted the accumulation of VDAC1 transcripts in imbibed seeds and mature plants. Overexpression of VDAC1 reduced tolerance to cold stress in Arabidopsis. Phenotype analysis of VDAC1 T-DNA insertion mutant plants indicated that a vdac1 mutant line had faster germination kinetics under cold treatment and showed enhanced tolerance to freezing. The yeast two-hybrid system revealed that VDAC1 interacts with CBL1, a calcium sensor in plants. Like the vdac1, a cbl1 mutant also exhibited a higher seed germination rate. We conclude that both VDAC1 and CBL1 regulate cold stress responses during seed germination and plant development.

  10. Inward flux of lactate⁻ through monocarboxylate transporters contributes to regulatory volume increase in mouse muscle fibres.

    Directory of Open Access Journals (Sweden)

    Michael I Lindinger

    Full Text Available Mouse and rat skeletal muscles are capable of a regulatory volume increase (RVI after they shrink (volume loss resultant from exposure to solutions of increased osmolarity and that this RVI occurs mainly by a Na-K-Cl-Cotransporter (NKCC-dependent mechanism. With high-intensity exercise, increased extracellular osmolarity is accompanied by large increases in extracellular [lactate⁻]. We hypothesized that large increases in [lactate⁻] and osmolarity augment the NKCC-dependent RVI response observed with a NaCl (or sucrose-induced increase in osmolarity alone; a response that is dependent on lactate⁻ influx through monocarboxylate transporters (MCTs. Single mouse muscle fibres were isolated and visualized under light microscopy under varying osmolar conditions. When solution osmolarity was increased by adding NaLac by 30 or 60 mM, fibres lost significantly less volume and regained volume sooner compared to when NaCl was used. Phloretin (MCT1 inhibitor accentuated the volume loss compared to both NaLac controls, supporting a role for MCT1 in the RVI response in the presence of elevated [lactate⁻]. Inhibition of MCT4 (with pCMBS resulted in a volume loss, intermediate to that seen with phloretin and NaLac controls. Bumetanide (NKCC inhibitor, in combination with pCMBS, reduced the magnitude of volume loss, but volume recovery was complete. While combined phloretin-bumetanide also reduced the magnitude of the volume loss, it also largely abolished the cell volume recovery. In conclusion, RVI in skeletal muscle exposed to raised tonicity and [lactate⁻] is facilitated by inward flux of solute by NKCC- and MCT1-dependent mechanisms. This work demonstrates evidence of a RVI response in skeletal muscle that is facilitated by inward flux of solute by MCT-dependent mechanisms. These findings further expand our understanding of the capacities for skeletal muscle to volume regulate, particularly in instances of raised tonicity and lactate

  11. Small flow rate can supply inwardly migrating shortest-period planets

    Directory of Open Access Journals (Sweden)

    Taylor S.F.

    2013-04-01

    Full Text Available The number of exoplanets found with periods as short as one day and less was surprising given how fast these planets had been expected to migrate into the star due to the tides raised on the star by planets at such close distances. It has been seen as improbable that we would find planets in such a small final fraction of their lives [1]. The favored solution has been that the tidal dissipation is much weaker than expected, which would mean that the final infall would be a larger fraction of the planets’ life. We find no reason, however, to exclude the explanation that a small number of planets are continuously sent migrating inwards such that these planets indeed are in the last fraction of their lives. Following the observation that the distribution of medium planets disfavors tidal dissipation being significantly weaker than has been found from observations of binary stars [2], we now show that the numbers of planets in such a “flow” of excess planets migrating inwards is low enough that even depletion of the three-day pileup is a plausible source. Then the shortest period occurrence distribution would be shaped by planets continuously being sent into the star, which may explain the depletion of the pileup in the Kepler field relative to the solar neighborhood [3]. Because Kepler observes above the galactic plan, [3] suggested the Kepler field may include an older population of stars. The tidal dissipation strength in stars due to giant planets may be not greatly weaker than it is in binary stars.

  12. DEVELOPMENT OF CONTROLLED RECTIFIERS BASED ON THE BIPOLAR WITH STATIC INDUCTION TRANSISTORS (BSIT

    Directory of Open Access Journals (Sweden)

    F. I. Bukashev

    2016-01-01

    Full Text Available Aim. The aim of this study is to develop one of the most perspective semiconductor device suitable for creation and improvement of controlled rectifiers, bipolar static induction transistor.Methods. Considered are the structural and schematic circuit controlled rectifier based on bipolar static induction transistor (BSIT, and the criterion of effectiveness controlled rectifiers - equivalent to the voltage drop.Results. Presented are the study results of controlled rectifier layout on BSIT KT698I. It sets the layout operation at an input voltage of 2.0 V at a frequency up to 750 kHz. The efficiency of the studied layouts at moderate current densities as high as 90 % .Offered is optimization of technological route microelectronic controlled rectifier manufacturing including BSIT and integrated bipolar elements of the scheme management.Conclusion. It is proved that the most efficient use of the bipolar static induction transistor occurs at the low voltage controlled rectifiers 350-400 kHz, at frequencies in conjunction with a low-voltage control circuit.It is proved that the increase of the functional characteristics of the converters is connected to the expansion of the input voltage and output current ranges

  13. New analysis and design of a RF rectifier for RFID and implantable devices.

    Science.gov (United States)

    Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei

    2011-01-01

    New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices.

  14. Rectified factor networks for biclustering of omics data.

    Science.gov (United States)

    Clevert, Djork-Arné; Unterthiner, Thomas; Povysil, Gundula; Hochreiter, Sepp

    2017-07-15

    Biclustering has become a major tool for analyzing large datasets given as matrix of samples times features and has been successfully applied in life sciences and e-commerce for drug design and recommender systems, respectively. actor nalysis for cluster cquisition (FABIA), one of the most successful biclustering methods, is a generative model that represents each bicluster by two sparse membership vectors: one for the samples and one for the features. However, FABIA is restricted to about 20 code units because of the high computational complexity of computing the posterior. Furthermore, code units are sometimes insufficiently decorrelated and sample membership is difficult to determine. We propose to use the recently introduced unsupervised Deep Learning approach Rectified Factor Networks (RFNs) to overcome the drawbacks of existing biclustering methods. RFNs efficiently construct very sparse, non-linear, high-dimensional representations of the input via their posterior means. RFN learning is a generalized alternating minimization algorithm based on the posterior regularization method which enforces non-negative and normalized posterior means. Each code unit represents a bicluster, where samples for which the code unit is active belong to the bicluster and features that have activating weights to the code unit belong to the bicluster. On 400 benchmark datasets and on three gene expression datasets with known clusters, RFN outperformed 13 other biclustering methods including FABIA. On data of the 1000 Genomes Project, RFN could identify DNA segments which indicate, that interbreeding with other hominins starting already before ancestors of modern humans left Africa. https://github.com/bioinf-jku/librfn. djork-arne.clevert@bayer.com or hochreit@bioinf.jku.at. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    Science.gov (United States)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  16. Cloning and expression of the translocator protein (18 kDa), voltage-dependent anion channel, and diazepam binding inhibitor in the gonad of largemouth bass (Micropterus salmoides) across the reproductive cycle.

    Science.gov (United States)

    Doperalski, Nicholas J; Martyniuk, Christopher J; Prucha, Melinda S; Kroll, Kevin J; Denslow, Nancy D; Barber, David S

    2011-08-01

    Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not in ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Economic modelling of energy services: Rectifying misspecified energy demand functions

    International Nuclear Information System (INIS)

    Hunt, Lester C.; Ryan, David L.

    2015-01-01

    Although it is well known that energy demand is derived, since energy is required not for its own sake but for the energy services it produces – such as heating, lighting, and motive power – energy demand models, both theoretical and empirical, often fail to take account of this feature. In this paper, we highlight the misspecification that results from ignoring this aspect, and its empirical implications – biased estimates of price elasticities and other measures – and provide a relatively simple and empirically practicable way to rectify it, which has a strong theoretical grounding. To do so, we develop an explicit model of consumer behaviour in which utility derives from consumption of energy services rather than from the energy sources that are used to produce them. As we discuss, this approach opens up the possibility of examining many aspects of energy demand in a theoretically sound way that have not previously been considered on a widespread basis, although some existing empirical work could be interpreted as being consistent with this type of specification. While this formulation yields demand equations for energy services rather than for energy or particular energy sources, these are shown to be readily converted, without added complexity, into the standard type of energy demand equation(s) that is (are) typically estimated. The additional terms that the resulting energy demand equations include, compared to those that are typically estimated, highlight the misspecification that is implicit when typical energy demand equations are estimated. A simple solution for dealing with an apparent drawback of this formulation for empirical purposes, namely that information is required on typically unobserved energy efficiency, indicates how energy efficiency can be captured in the model, such as by including exogenous trends and/or including its possible dependence on past energy prices. The approach is illustrated using an empirical example that involves

  18. Cardiorespiratory phase synchronization during normal rest and inward-attention meditation.

    Science.gov (United States)

    Wu, Shr-Da; Lo, Pei-Chen

    2010-06-11

    The cardiac and respiratory systems can be viewed as two self-sustained oscillators with various interactions between them. In this study, the cardiorespiratory phase synchronization (CRPS) quantified by synchrogram was investigated to explore the phase synchronization between these two systems. The synchrogram scheme was applied to electrocardiogram (ECG) and respiration signals. Particular focus was the distinct cardiac-respiratory regulation phenomena intervened by inward-attention meditation and normal relaxation. Four synchronization parameters were measured: frequency ratio, lasting length, number of epochs, and total length. The results showed that normal rest resulted in much weaker CRPS. Statistical analysis reveals that the number of synchronous epochs and the total synchronization length significantly increase (p=0.024 and 0.034 respectively) during meditation. Furthermore, a predominance of 4:1 and 5:1 rhythm-ratio synchronizations was observed during meditation. Consequently, this study concludes that CRPS can be enhanced during meditation, compared with normal relaxation, and reveals a predominance of specific frequency ratios. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  19. Facing death, gazing inward: end-of-life and the transformation of clinical subjectivity in Thailand.

    Science.gov (United States)

    Stonington, Scott

    2011-06-01

    In this article, I describe a new form of clinical subjectivity in Thailand, emerging out of public debate over medical care at the end of life. Following the controversial high-tech death of the famous Buddhist monk Buddhadasa, many began to denounce modern death as falling prey to social ills in Thai society, such as consumerism, technology-worship, and the desire to escape the realities of existence. As a result, governmental and non-governmental organizations have begun to focus on the end-of-life as a locus for transforming Thai society. Moving beyond the classic outward focus of the medical gaze, they have begun teaching clinicians and patients to gaze inward instead, to use the suffering inherent in medicine and illness to face the nature of existence and attain inner wisdom. In this article, I describe the emergence of this new gaze and its major conceptual components, including a novel idea of what it means to be 'human,' as well as a series of technologies used to craft this humanity: confession, "facing suffering," and untying "knots" in the heart. I also describe how this new subjectivity has begun to change the long-stable Buddhist concept of death as taking place at a moment in time, giving way for a new concept of "end-of-life," an elongated interval to be experienced, studied, and used for inner wisdom.

  20. PLANET FORMATION IN HIGHLY INCLINED BINARY SYSTEMS. I. PLANETESIMALS JUMP INWARD AND PILE UP

    International Nuclear Information System (INIS)

    Xie Jiwei; Zhou Jilin; Payne, Matthew J.; Ge Jian; Thebault, Philippe

    2011-01-01

    Most detected planet-bearing binaries are in wide orbits, for which a high inclination, i B , between the binary orbital plane and the plane of the planetary disk around the primary is likely to be common. In this paper, we investigate the intermediate stages-from planetesimals to planetary embryos/cores-of planet formation in such highly inclined cases. Our focus is on the effects of gas drag on the planetesimals' orbital evolution, in particular on the evolution of the planetesimals' semimajor axis distribution and their mutual relative velocities. We first demonstrate that a non-evolving axisymmetric disk model is a good approximation for studying the effects of gas drag on a planetesimal in the highly inclined case (30 deg. B B . For both regimes, a robust outcome over a wide range of parameters is that planetesimals migrate/jump inward and pile up, leading to a severely truncated and dense planetesimal disk around the primary. In this compact and dense disk, collision rates are high but relative velocities are low, providing conditions that are favorable for planetesimal growth and potentially allow for the subsequent formation of planets.

  1. Examining the Determinants of China’s Inward FDI Using Grey Matrix Relational Analysis Model

    Directory of Open Access Journals (Sweden)

    Hang JIANG

    2017-12-01

    Full Text Available Grey relational analysis (GRA model is an important part of grey system theory, which is used to ascertain the relational grade between an influential factor and the major behavior factor. Most of GRA models are mainly applied to the field in which the behavior factor and influential factor are the cross-sectional or time series data in a given system. However, owing to the panel data contains plenty information including individual and time characteristics, the traditional GRA model cannot be applied to panel data analysis. To overcome this drawback, the grey matrix relational analysis model is applied to measure the similarity of panel data from two dimensions of individual and time on the basis of the definition of the matrix sequence of a discrete data sequence. This paper examines the determinants of inward foreign direct investment (IFDI in China using grey matrix relational analysis model. The study finds that the GDP per capita, enrollment of regular institutions of higher education, and internal expenditure on R&D are the key factors of IFDI.

  2. Theoretical study on the rectifying performance of organoimido derivatives of hexamolybdates.

    Science.gov (United States)

    Wen, Shizheng; Yang, Guochun; Yan, Likai; Li, Haibin; Su, Zhongmin

    2013-02-25

    We design a new type of molecular diode, based on the organoimido derivatives of hexamolybdates, by exploring the rectifying performances using density functional theory combined with the non-equilibrium Green's function. Asymmetric current-voltage characteristics were obtained for the models with an unexpected large rectification ratio. The rectifying behavior can be understood by the asymmetrical shift of the transmission peak observed under different polarities. It is interesting to find that the preferred electron-transport direction in our studied system is different from that of the organic D-bridge-A system. The results show that the studied organic-inorganic hybrid systems have an intrinsically robust rectifying ratio, which should be taken into consideration in the design of the molecular diodes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thirty-six pulse rectifier scheme based on zigzag auto-connected transformer

    Directory of Open Access Journals (Sweden)

    Xiao-Qiang Chen

    2016-03-01

    Full Text Available In this paper, a low kilo-volt-ampere rating zigzag connected autotransformer based 36-pulse rectifier system supplying vector controlled induction motor drives (VCIMD is designed, modeled and simulated. Detailed design procedure and magnetic rating calculation of the proposed autotransformer and interphase reactor is studied. Moreover, the design process of the autotransformer is modified to make it suitable for retrofit applications. Simulation results confirm that the proposed 36-pulse rectifier system is able to suppress less than 35th harmonics in the utility line current. The influence of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 36-pulse rectifiers. A set of power quality indices at AC mains and DC link are presented to compare the performance of 6-, 24- and 36-pulse AC-DC converters.

  4. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    Science.gov (United States)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  5. Electron transport in InAs/AlGaSb ballistic rectifiers

    International Nuclear Information System (INIS)

    Maemoto, Toshihiko; Koyama, Masatoshi; Furukawa, Masashi; Takahashi, Hiroshi; Sasa, Shigehiko; Inoue, Masataka

    2006-01-01

    Nonlinear transport properties of a ballistic rectifier fabricated from InAs/AlGaSb heterostructures are reported. The operation of the ballistic rectifier is based on the guidance of carriers by a square anti-dot structure. The structure was defined by electron beam lithography and wet chemical etching. The DC characteristics and magneto-transport properties of the ballistic rectifier have been measured at 77 K and 4.2 K. Rectification effects relying on the ballistic transport were observed. From the four-terminal resistance measured at low magnetic fields, we also observed magneto-resistance fluctuations corresponding to the electron trajectories and symmetry-breaking electron scattering, which are influenced by the magnetic field strength

  6. Competitive inhibition can linearize dose-response and generate a linear rectifier.

    Science.gov (United States)

    Savir, Yonatan; Tu, Benjamin P; Springer, Michael

    2015-09-23

    Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier-that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated.

  7. Analysis of Three-Phase Rectifier Systems with Controlled DC-Link Current Under Unbalanced Grids

    DEFF Research Database (Denmark)

    Kumar, Dinesh; Davari, Pooya; Zare, Firuz

    2017-01-01

    Voltage unbalance is the most common disturbance in distribution networks, which give undesirable effects on many grid connected power electronics systems including Adjustable Speed Drive (ASD). Severe voltage unbalance can force three-phase rectifiers into almost single-phase operation, which...... degrades the grid power quality and also imposes a significant negative impact on the ASD system. This major power quality issue affecting the conventional rectifiers can be attenuated by controlling the DC-link current based on an Electronic Inductor (EI) technique. The purpose of this digest...... is to analyze and compare the performance of an EI with a conventional three-phase rectifier under unbalanced grid conditions. Experimental and simulation results validate the proposed mathematical modelling. Further analysis and benchmarking will be provided in the final paper....

  8. Countermeasures for electrolytic corrosion - Part II: Implementation of a rapid potential-controlled rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae-Hyun; Kim, Dae-Kyeong; Lee, Hyun-Goo; Ha, Yoon-Cheol; Bae, Jeong-Hyo [Underground Systems Group, Korea Electrotechnology Research Institute, 28-1 Sungju-dong, Changwon, 641-120 (Korea)

    2004-07-01

    In electrolytic interference circumstances such as underground pipelines in the vicinity of DC electrified railroads, drainage method or impressed current cathodic protection method has been widely used as a countermeasure for the electrolytic corrosion. In the former method, forced or polarized drainage is commonly adopted and in the latter, the phase-controlled rectifier with thyristor is in common use. Both methods, however, does not show as the optimal measure for the integrity of the pipeline, since the pipe-to-soil potential fluctuates highly positive to the cathodic protection criterion. In particular, as the potential of the pipeline near the railroad varies rapidly, a new rapidly responding countermeasure is necessary. In this paper, we introduce a new rapid potential controlled rectifier and report the result in field tests. Comparison with the existing forced drainage method is also made. The pipe-to-soil potential data show the effectiveness of the rapid potential-controlled rectifier. (authors)

  9. Microrectenna: A Terahertz Antenna and Rectifier on a Chip

    Science.gov (United States)

    Siegel, Peter

    2007-01-01

    A microrectenna that would operate at a frequency of 2.5 THz has been designed and partially fabricated. The circuit is intended to be a prototype of an extremely compact device that could be used to convert radio-beamed power to DC to drive microdevices (see Figure 1). The microrectenna (see Figure 2) circuit consists of an antenna, a diode rectifier and a DC output port. The antenna consists of a twin slot array in a conducting ground plane (denoted the antenna ground plane) over an enclosed quarter-wavelength-thick resonant cavity (denoted the reflecting ground plane). The circuit also contains a planar high-frequency low-parasitic Schottky-barrier diode, a low-impedance microstrip transmission line, capacitors, and contact beam leads. The entire 3-D circuit is fabricated monolithically from a single GaAs wafer. The resonant cavity renders the slot radiation pattern unidirectional with a half-power beam width of about 65. A unique metal mesh on the rear of the wafer forms the backplate for the cavity but allows the GaAs to be wet etched from the rear surface of the twin slot antennas and ground plane. The beam leads protrude past the edge of the chip and are used both to mount the microrectenna and to make the DC electrical connection with external circuitry. The antenna ground plane and the components on top of it are formed on a 2- m thick GaAs membrane that is grown in the initial wafer MBE (molecular beam epitaxy) process. The side walls of the antenna cavity are not metal coated and, hence, would cause some loss of power; however, the relatively high permittivity (epsilon=13) of the GaAs keeps the cavity modes well confined, without the usual surface-wave losses associated with thick dielectric substrates. The Schottky-barrier diode has the usual submicron dimensions associated with THz operation and is formed in a mesa process above the antenna ground plane. The diode is connected at the midpoint of a microstrip transmission line, which is formed on 1- m

  10. Robust and reliable rectifier based on electronic inductor with improved performance

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben Ole

    2014-01-01

    of the rectifier, peak to peak voltage ripples to the front end of the inverter reduces significantly by the ESI, and it increases lifetime of the capacitor connected at the output and also reduces the voltage stress of the active power semiconductors of the inverter if any connected to the output. In this paper...... harmonic distortions (THDs) of the ac mains current in a three phase diode bridge rectifier. The ESI reduces the low frequency ripples and controls the intermediate dc-link voltage to a dc value and peak value of the mains current also reduces. In case of an inverter connected to the output...

  11. Rectifier Design Challenges for RF Wireless Power Transfer and Energy Harvesting Systems

    Directory of Open Access Journals (Sweden)

    A. Collado

    2017-06-01

    Full Text Available The design of wireless power transfer (WPT and energy harvesting (EH solutions poses different challenges towards achieving maximum RF-DC conversion efficiency in these systems. This paper covers several selected challenges when developing WPT and electromagnetic EH solutions, such as the design of multiband and broadband rectifiers, the minimization of the effect that load and input power variations may have on the system performance and finally the most optimum power combining mechanisms that can be used when dealing with multi-element rectifiers.

  12. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more....... Therefore, current controllers are also important to be investigated in this project. In this PhD research work, a comprehensive design of a two-level three-phase PFC rectifier using silicon-carbide (SiC) switches to achieve high efficiency is presented. The work is divided into two main parts: 1) Optimum...

  13. Modeling and control of three phase rectifier with electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben Ole

    2011-01-01

    This paper presents a simple, direct method for deriving the approximate, small-signal, average model and control strategy for three-phase diode bridge rectifier operating with electronic smoothing technique. Electronic smoothing inductor (ESI) performs the function of an inductor that has...... controlled variable impedance. This increases power factor (PF) and reduces total harmonic distortions (THDs) in mains current. The ESI based rectifier enables compact and cost effective design of three phase electric drive as size of passive components is reduced significantly. In order to carry out...

  14. Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Tao, H.Z.; Zhang, Y.F.

    2015-01-01

    We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel lay......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....

  15. Structure of the cystic fibrosis transmembrane conductance regulator in the inward-facing conformation revealed by single particle electron microscopy

    Directory of Open Access Journals (Sweden)

    Ateeq Al-Zahrani

    2015-05-01

    Full Text Available The most common inherited disease in European populations is cystic fibrosis. Mutations in the gene lead to loss of function of the cystic fibrosis transmembrane conductance regulator protein (CFTR. CFTR is a member of the ATP-binding cassette family of membrane proteins that mostly act as active transporters using ATP to move substances across membranes. These proteins undergo large conformational changes during the transport cycle, consistent with an inward-facing to outward-facing translocation mechanism that was originally proposed by Jardetzky. CFTR is the only member of this family of proteins that functions as an ion channel, and in this case ATP and phosphorylation of a regulatory domain controls the opening of the channel. In this article we describe the inward-facing conformation of the protein and show it can be modulated by the presence of a purified recombinant NHERF1-PDZ1 domain that binds with high affinity to the CFTR C-terminal PDZ motif (-QDTRL. ATP hydrolysis activity of CFTR can also be modulated by glutathione, which we postulate may bind to the inward-facing conformation of the protein. A homology model for CFTR, based on a mitochondrial ABC transporter of glutathione in the inward-facing configuration has been generated. The map and the model are discussed with respect to the biology of the channel and the specific relationship between glutathione levels in the cell and CFTR. Finally, disease-causing mutations are mapped within the model and discussed in terms of their likely physiological effects.

  16. Subcellular localization of the delayed rectifier K(+) channels KCNQ1 and ERG1 in the rat heart

    DEFF Research Database (Denmark)

    Rasmussen, Hanne Borger; Møller, Morten; Knaus, Hans-Günther

    2003-01-01

    In the heart, several K(+) channels are responsible for the repolarization of the cardiac action potential, including transient outward and delayed rectifier K(+) currents. In the present study, the cellular and subcellular localization of the two delayed rectifier K(+) channels, KCNQ1 and ether...

  17. UniProt search blastx result: AK288448 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288448 J090034N14 P48545|IRK5_MOUSE G protein-activated inward rectifier potassiu...m channel 4 (GIRK4) (Potassium channel, inwardly rectifying subfamily J member 5) (Inward rectifier K(+) cha...nnel Kir3.4) (Heart KATP channel) (KATP-1) (Cardiac inward rectifier) (CIR) - Mus musculus (Mouse) 0 ...

  18. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  19. Comparative Evaluation of Three-Phase Isolated Matrix-Type PFC Rectifier Concepts for High Efficiency 380VDC Supplies of Future Telco and Data Centers

    DEFF Research Database (Denmark)

    Cortes, Patricio; Bortis, Dominik; Pittini, Riccardo

    2014-01-01

    rectifier and in many cases a mains transformer is used to provide galvanic isolation. In order to achieve a high efficiency in the DC voltage generation and to implement the required isolation, a single-stage concept, such as a matrix-type rectifier that enables PFC functionality and galvanic isolation...... in a single conversion, can be beneficial. In addition, due to the fact that with the matrix-type rectifier the galvanic isolation is performed with a high-frequency transformer, this results in a more compact rectifier system compared to conventional systems where the mains-frequency isolation transformer...... is located at the input of the PFC rectifier. In this paper, an overview of isolated matrix-type PFC rectifier topologies is given and a new converter circuit is proposed, analyzed and comparatively evaluated against another promising PFC rectifier concept, the phase-modular IMY-rectifier....

  20. Power converter for raindrop energy harvesting application: Half-wave rectifier

    Science.gov (United States)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  1. Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    International Nuclear Information System (INIS)

    Long Yunze; Yin Zhihua; Hui Wen; Chen Zhaojia; Wan Meixiang

    2008-01-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I – V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Connection of OWPPs to HVDC networks using VSCs and Diode Rectifiers: an Overview

    DEFF Research Database (Denmark)

    Saborío-Romano, Oscar; Bidadfar, Ali; Göksu, Ömer

    This paper provides an overview of two technologies for connecting offshore wind power plants (offshore WPPs, OWPPs) to high-voltage direct current (HVDC) networks: voltage source converters (VSCs) and diode rectifiers (DRs). Current grid code requirements for the connection of such power plants...

  3. Active and reactive power control of a current-source PWM-rectifier using space vectors

    Energy Technology Data Exchange (ETDEWEB)

    Salo, M.; Tuusa, H. [Tampere University of Technology (Finland). Department of Electrical Engineering, Power Electronics

    1997-12-31

    In this paper the current-source PWM-rectifier with active and reactive power control is presented. The control system is realized using space vector methods. Also, compensation of the reactive power drawn by the line filter is discussed. Some simulation results are shown. (orig.) 8 refs.

  4. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.; Khalil, Waleed; Salama, Khaled N.

    2016-01-01

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm

  5. Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier

    DEFF Research Database (Denmark)

    Zaja, Mario; Oprea, Matei-lon; Suárez, Carlos Gómez

    2014-01-01

    for battery charging. Alternatively, charging could be done using the motor windings as grid side inductors and controlling the inverter to operate as an active boost rectifier. The challenge in this approach is the unequal phase inductances which depend on the rotor position. Another problem appears when...... an integrated charger control algorithm to charge the battery through a permanent magnet synchronous machine (PMSM) windings....

  6. 28.3THz bowtie antenna integrated rectifier for infrared energy harvesting

    KAUST Repository

    Gadalla, Mena N.; Shamim, Atif

    2014-01-01

    The design, fabrication and characterization of an asymmetric 28.3 THz antenna integrated rectifier (rectenna) using Au/Al2O3/Pt is presented. The rectenna design comprises a sharp tip bowtie antenna and a tunneling Metal-insulator-Metal (MIM) diode

  7. Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2013-01-01

    Full Text Available This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.

  8. US Mains Stacked Very High Frequency Self-oscillating Resonant Power Converter with Unified Rectifier

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Mønster, Jakob Døllner

    2016-01-01

    This paper describes a Very High Frequency (VHF) converter made with three Class-E inverters and a single ClassDE rectifier. The converter is designed for the US mains (120 V, 60 Hz) and can deliver 9 W to a 60 V LED. The converter has a switching frequency of 37 MHz and achieves an efficiency...

  9. Predictive Duty Cycle Control of Three-Phase Active-Front-End Rectifiers

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Chen, Wei

    2016-01-01

    This paper proposed an on-line optimizing duty cycle control approach for three-phase active-front-end rectifiers, aiming to obtain the optimal control actions under different operating conditions. Similar to finite control set model predictive control strategy, a cost function previously...

  10. Design of the LC+trap filter for a current source rectifier

    DEFF Research Database (Denmark)

    Min, Huang; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    This paper investigates an LC + trap filter for current source converters to improve the switching harmonic attenuation. The resonant frequency characteristics of the filter of current source rectifier are analyzed. A filter design procedure is proposed based on the input power factor, filter...

  11. Ac loss measurements on a superconducting transformer for a 25 kA superconducting rectifier

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Mulders, J.M.; de Reuver, J.L.; van de Klundert, L.J.M.

    1984-01-01

    Ac loss measurements have been performed on a superconducting transformer. The transformer is a part of a 25 kA thermally switched superconducting rectifier operating at a frequency of 0.1 Hz. The loss measurements have been automatized by means of a microcomputer sampling four relevant signals and

  12. Development of a thermally switched superconducting rectifier for 100 kA

    NARCIS (Netherlands)

    Mulder, G.B.J.; Mulder, G.B.J.; ten Kate, Herman H.J.; Krooshoop, Hendrikus J.G.; van de Klundert, L.J.M.; van de Klundert, L.J.M.

    1991-01-01

    A full-wave superconducting rectifier for 100 kA has been developed. Typical design values of this device are: a secondary current of 100 kA, a primary amplitude of 20 A, an operating frequency of 0.5 Hz, and an average power on the order of 100 W. The rectification is achieved by means of thermally

  13. Development of a 50-60 Hz thermally switched superconducting rectifier

    NARCIS (Netherlands)

    Chevtchenko, O.A.; ten Kate, Herman H.J.; Krooshoop, Hendrikus J.G.; Markovsky, N.V.; Mulder, G.B.J.; Mulder, G.B.J.

    1993-01-01

    A full-wave thermally switched superconducting rectifier, able to operate directly from the mains at the 50-60-Hz frequency, has been developed. Typical design output values of this device are a current of 300 A, a voltage of up to 1 V, an average power of up to 100 VA, and an efficiency better than

  14. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.

    Science.gov (United States)

    Hashemi, S Saeid; Sawan, Mohamad; Savaria, Yvon

    2012-08-01

    We present, in this paper, a new full-wave CMOS rectifier dedicated for wirelessly-powered low-voltage biomedical implants. It uses bootstrapped capacitors to reduce the effective threshold voltage of selected MOS switches. It achieves a significant increase in its overall power efficiency and low voltage-drop. Therefore, the rectifier is good for applications with low-voltage power supplies and large load current. The rectifier topology does not require complex circuit design. The highest voltages available in the circuit are used to drive the gates of selected transistors in order to reduce leakage current and to lower their channel on-resistance, while having high transconductance. The proposed rectifier was fabricated using the standard TSMC 0.18 μm CMOS process. When connected to a sinusoidal source of 3.3 V peak amplitude, it allows improving the overall power efficiency by 11% compared to the best recently published results given by a gate cross-coupled-based structure.

  15. Self-Oscillating Resonant Gate Drive for Resonant Inverters and Rectifiers Composed Solely of Passive Components

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Pedersen, Jeppe Arnsdorf; Knott, Arnold

    2014-01-01

    to improve the performance of the gate drive and how the gate drive can be implemented in a class E inverter, a class DE inverter and in class E inverter with a synchronous class E rectifier. The paper shows practical implementations of all the proposed inverters and converters operating in the Very High...

  16. Impedance-based Analysis of DC Link Control in Voltage Source Rectifiers

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper analyzes the dynamics influences of the outer dc link control in the voltage source rectifiers based on the impedance model. The ac-dc interactions are firstly presented by means of full order small signal model in dq frame, which shows the input voltage and load condition are the two...

  17. Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes

    DEFF Research Database (Denmark)

    Stengl, Milan; Volders, Paul G A; Thomsen, Morten Bækgaard

    2003-01-01

    In guinea-pig ventricular myocytes, in which the deactivation of slowly activating delayed rectifier potassium current (IKs) is slow, IKs can be increased by rapid pacing as a result of incomplete deactivation and subsequent current accumulation. Whether accumulation of IKs occurs in dogs, in which...

  18. Diode rectifier bridge-based structure for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes a new structure for the doubly-fed induction generator (DFIG)-based wind turbine. The proposed structure consists of a DFIG controlled by a partial rated power converter in the rotor side, a three-phase diode rectifier bridge (DRB) connected to the stator, and a DC/AC full rated...

  19. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  20. Stability Improvements of an LCL-filter based Three-phase Active Rectifier

    DEFF Research Database (Denmark)

    Liserre, Marco; Dell'Aquila, Antonio; Blaabjerg, Frede

    2002-01-01

    Three-phase active rectifiers guarantee sinusoidal input currents and controllable dc voltage at the price of a high switching frequency ripple that can disturb and reduce efficiency of other EMI sensitive equipment connected to the grid. This problem could be solved choosing a high value...