WorldWideScience

Sample records for voltage-activated potassium channel

  1. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  2. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  3. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  4. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  5. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    Science.gov (United States)

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  6. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation.

    Science.gov (United States)

    Lin, C S; Boltz, R C; Blake, J T; Nguyen, M; Talento, A; Fischer, P A; Springer, M S; Sigal, N H; Slaughter, R S; Garcia, M L

    1993-03-01

    The role that potassium channels play in human T lymphocyte activation has been investigated by using specific potassium channel probes. Charybdotoxin (ChTX), a blocker of small conductance Ca(2+)-activated potassium channels (PK,Ca) and voltage-gated potassium channels (PK,V) that are present in human T cells, inhibits the activation of these cells. ChTX blocks T cell activation induced by signals (e.g., anti-CD2, anti-CD3, ionomycin) that elicit a rise in intracellular calcium ([Ca2+]i) by preventing the elevation of [Ca2+]i in a dose-dependent manner. However, ChTX has no effect on the activation pathways (e.g., anti-CD28, interleukin 2 [IL-2]) that are independent of a rise in [Ca2+]i. In the former case, both proliferative response and lymphokine production (IL-2 and interferon gamma) are inhibited by ChTX. The inhibitory effect of ChTX can be demonstrated when added simultaneously, or up to 4 h after the addition of the stimulants. Since ChTX inhibits both PK,Ca and PK,V, we investigated which channel is responsible for these immunosuppressive effects with the use of two other peptides, noxiustoxin (NxTX) and margatoxin (MgTX), which are specific for PK,V. These studies demonstrate that, similar to ChTX, both NxTX and MgTX inhibit lymphokine production and the rise in [Ca2+]i. Taken together, these data provide evidence that blockade of PK,V affects the Ca(2+)-dependent pathways involved in T lymphocyte proliferation and lymphokine production by diminishing the rise in [Ca2+]i that occurs upon T cell activation.

  7. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  8. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  9. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    Science.gov (United States)

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  10. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  11. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  12. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2013-01-01

    Voltage-gated potassium (Kv) channels enable potassium efflux and membrane repolarization in excitable tissues. Many Kv channels undergo a progressive loss of ion conductance in the presence of a prolonged voltage stimulus, termed slow inactivation, but the atomic determinants that regulate the k...... subunit(s). DOI: http://dx.doi.org/10.7554/eLife.01289.001....

  13. Grafting voltage and pharmacological sensitivity in potassium channels.

    Science.gov (United States)

    Lan, Xi; Fan, Chunyan; Ji, Wei; Tian, Fuyun; Xu, Tao; Gao, Zhaobing

    2016-08-01

    A classical voltage-gated ion channel consists of four voltage-sensing domains (VSDs). However, the roles of each VSD in the channels remain elusive. We developed a GVTDT (Graft VSD To Dimeric TASK3 channels that lack endogenous VSDs) strategy to produce voltage-gated channels with a reduced number of VSDs. TASK3 channels exhibit a high host tolerance to VSDs of various voltage-gated ion channels without interfering with the intrinsic properties of the TASK3 selectivity filter. The constructed channels, exemplified by the channels grafted with one or two VSDs from Kv7.1 channels, exhibit classical voltage sensitivity, including voltage-dependent opening and closing. Furthermore, the grafted Kv7.1 VSD transfers the potentiation activity of benzbromarone, an activator that acts on the VSDs of the donor channels, to the constructed channels. Our study indicates that one VSD is sufficient to voltage-dependently gate the pore and provides new insight into the roles of VSDs.

  14. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel.

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na + /K + -ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K + -battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  15. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  16. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    Science.gov (United States)

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  17. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    Science.gov (United States)

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  18. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel.

    Science.gov (United States)

    Sesti, Federico; Rajan, Sindhu; Gonzalez-Colaso, Rosana; Nikolaeva, Natalia; Goldstein, Steve A N

    2003-04-01

    MVP, a Methanococcus jannaschii voltage-gated potassium channel, was cloned and shown to operate in eukaryotic and prokaryotic cells. Like pacemaker channels, MVP opens on hyperpolarization using S4 voltage sensors like those in classical channels activated by depolarization. The MVP S4 span resembles classical sensors in sequence, charge, topology and movement, traveling inward on hyperpolarization and outward on depolarization (via canaliculi in the protein that bring the extracellular and internal solutions into proximity across a short barrier). Thus, MVP opens with sensors inward indicating a reversal of S4 position and pore state compared to classical channels. Homologous channels in mammals and plants are expected to function similarly.

  19. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    Science.gov (United States)

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de La Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-03-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  20. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  2. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    Science.gov (United States)

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  3. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  4. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  5. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  6. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels

    Science.gov (United States)

    Cui, Jianmin

    2016-01-01

    Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405

  7. Slack, Slick, and Sodium-Activated Potassium Channels

    Science.gov (United States)

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  8. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez

    2016-05-01

    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  9. The role of entropic potential in voltage activation and K+ transport through Kv 1.2 channels

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Grzywna, Zbigniew J.

    2018-03-01

    We analyze the entropic effects of inner pore geometry changes of Kv 1.2 channel during membrane depolarization and their implications for the rate of transmembrane transport of potassium ions. We base this on the idea that spatial confinements within the channel pore give rise to entropic barriers which can both effectively affect the stability of open macroconformation and influence channel's ability to conduct the potassium ions through the membrane. First, we calculate the differences in entropy between voltage-activated and resting states of the channel. As a template, we take a set of structures of channel pore in an open state at different membrane potentials generated in our previous research. The obtained results indicate that tendency to occupy open states at membrane depolarization is entropy facilitated. Second, we describe the differences in rates of K+ transport through the channel pore at different voltages based on the results of appropriate random walk simulations in entropic and electric potentials. The simulated single channel currents (I) suggest that the geometry changes during membrane depolarization are an important factor contributing to the observed flow of potassium ions through the channel. Nevertheless, the charge distribution within the channel pore (especially at the extracellular entrance) seems most prominent for the observed I/Imax relation at a qualitative level at analyzed voltages.

  10. Reversible Dementia: Two Nursing Home Patients With Voltage-Gated Potassium Channel Antibody-Associated Limbic Encephalitis

    NARCIS (Netherlands)

    Reintjes, W.; Romijn, M.D.M.; den Hollander, D.; ter Bruggen, J.P.; van Marum, R.J.

    2015-01-01

    Voltage-gated potassium channel antibody-associated limbic encephalitis (VGKC-LE) is a rare disease that is a diagnostic and therapeutic challenge for medical practitioners. Two patients with VGKC-LE, both developing dementia are presented. Following treatment, both patients showed remarkable

  11. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies

    OpenAIRE

    Lang, Bethan; Makuch, Mateusz; Moloney, Teresa; Dettmann, Inga; Mindorf, Swantje; Probst, Christian; Stoecker, Winfried; Buckley, Camilla; Newton, Charles R; Leite, M Isabel; Maddison, Paul; Komorowski, Lars; Adcock, Jane; Vincent, Angela; Waters, Patrick

    2017-01-01

    Objectives Autoantibodies against the extracellular domains of the voltage-gated potassium channel (VGKC) complex proteins, leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-2 (CASPR2), are found in patients with limbic encephalitis, faciobrachial dystonic seizures, Morvan's syndrome and neuromyotonia. However, in routine testing, VGKC complex antibodies without LGI1 or CASPR2 reactivities (double-negative) are more common than LGI1 or CASPR2 specificities. Therefore, ...

  12. Voltage-Gated Potassium Channels Kv1.3--Potentially New Molecular Target in Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Teisseyre, Andrzej; Gąsiorowska, Justyna; Michalak, Krystyna

    2015-01-01

    Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced.

  13. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  14. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  15. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  16. Slick (Kcnt2 Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Directory of Open Access Journals (Sweden)

    Danielle L Tomasello

    2017-09-01

    Full Text Available The Slick (Kcnt2 sodium-activated potassium (K Na channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs, we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs, and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  17. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    Directory of Open Access Journals (Sweden)

    Abel Peter W

    2007-11-01

    Full Text Available Abstract Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv channels and large-conductance, calcium-activated potassium (BK channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were

  18. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.

    Science.gov (United States)

    Peigneur, Steve; Yamaguchi, Yoko; Kawano, Chihiro; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-05-31

    Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency.

  19. 4-Aminopyridine: a pan voltage-gated potassium channel inhibitor that enhances K7.4 currents and inhibits noradrenaline-mediated contraction of rat mesenteric small arteries

    DEFF Research Database (Denmark)

    Khammy, Makhala M; Kim, Sukhan; Bentzen, Bo H

    2018-01-01

    has not been systematically studied. The aim of this study was to investigate the pharmacological activity of 4-AP on Kv7.4 and Kv7.5 channels and characterize the effect of 4-AP on rat resistance arteries. EXPERIMENTAL APPROACH: Voltage clamp experiments were performed on Xenopus laevis oocytes......BACKGROUND AND PURPOSE: Kv7.4 and Kv7.5 channels are regulators of vascular tone. 4-Aminopyridine (4-AP) is considered a broad inhibitor of voltage-gated potassium (KV) channels, with little inhibitory effect on Kv7 family members at mmol concentrations. However, the effect of 4-AP on Kv7 channels...

  20. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    International Nuclear Information System (INIS)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.; Nicholson, Graham M.

    2005-01-01

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na v ) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na v channel gating, observed clinically in response to ciguatera poisoning

  1. Delayed LGI1 seropositivity in voltage-gated potassium channel (VGKC)-complex antibody limbic encephalitis

    OpenAIRE

    Sweeney, Michael; Galli, Jonathan; McNally, Scott; Tebo, Anne; Haven, Thomas; Thulin, Perla; Clardy, Stacey L

    2017-01-01

    We utilise a clinical case to highlight why exclusion of voltage-gated potassium channel (VGKC)-complex autoantibody testing in serological evaluation of patients may delay or miss the diagnosis. A 68-year-old man presented with increasing involuntary movements consistent with faciobrachial dystonic seizures (FBDS). Initial evaluation demonstrated VGKC antibody seropositivity with leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) seronegativity. Aggress...

  2. Differential Activity of Voltage- and Ca2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case

    Directory of Open Access Journals (Sweden)

    Salvador Valle-Reyes

    2018-05-01

    Full Text Available Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.

  3. Sleep disturbances in voltage-gated potassium channel antibody syndrome.

    Science.gov (United States)

    Barone, Daniel A; Krieger, Ana C

    2016-05-01

    Voltage-gated potassium channels (VGKCs) are a family of membrane proteins responsible for controlling cell membrane potential. The presence of antibodies (Ab) against neuronal VGKC complexes aids in the diagnosis of idiopathic and paraneoplastic autoimmune neurologic disorders. The diagnosis of VGKC Ab-associated encephalopathy (VCKC Ab syndrome) should be suspected in patients with subacute onset of disorientation, confusion, and memory loss in the presence of seizures or a movement disorder. VGKC Ab syndrome may present with sleep-related symptoms, and the purpose of this communication is to alert sleep and neurology clinicians of this still-under-recognized condition. In this case, we are presenting the VGKC Ab syndrome which improved after treatment with solumedrol. The prompt recognition and treatment of this condition may prevent the morbidity associated with cerebral atrophy and the mortality associated with intractable seizures and electrolyte disturbances. Copyright © 2016. Published by Elsevier B.V.

  4. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  5. The orientation and molecular movement of a k(+) channel voltage-sensing domain.

    Science.gov (United States)

    Gandhi, Chris S; Clark, Eliana; Loots, Eli; Pralle, Arnd; Isacoff, Ehud Y

    2003-10-30

    Voltage-gated channels operate through the action of a voltage-sensing domain (membrane segments S1-S4) that controls the conformation of gates located in the pore domain (membrane segments S5-S6). Recent structural studies on the bacterial K(v)AP potassium channel have led to a new model of voltage sensing in which S4 lies in the lipid at the channel periphery and moves through the membrane as a unit with a portion of S3. Here we describe accessibility probing and disulfide scanning experiments aimed at determining how well the K(v)AP model describes the Drosophila Shaker potassium channel. We find that the S1-S3 helices have one end that is externally exposed, S3 does not undergo a transmembrane motion, and S4 lies in close apposition to the pore domain in the resting and activated state.

  6. Voltage-Gated Potassium Channel Antibodies in Slow-Progression Motor Neuron Disease.

    Science.gov (United States)

    Godani, Massimiliano; Zoccarato, Marco; Beronio, Alessandro; Zuliani, Luigi; Benedetti, Luana; Giometto, Bruno; Del Sette, Massimo; Raggio, Elisa; Baldi, Roberta; Vincent, Angela

    2017-01-01

    The spectrum of autoimmune neurological diseases associated with voltage-gated potassium channel (VGKC)-complex antibodies (Abs) ranges from peripheral nerve disorders to limbic encephalitis. Recently, low titers of VGKC-complex Abs have also been reported in neurodegenerative disorders, but their clinical relevance is unknown. The aim of the study was to explore the prevalence of VGKC-complex Abs in slow-progression motor neuron disease (MND). We compared 11 patients affected by slow-progression MND with 9 patients presenting typical progression illness. Sera were tested for VGKC-complex Abs by radioimmunoassay. The distribution of VGKC-complex Abs was analyzed with the Mann-Whitney U test. The statistical analysis showed a significant difference between the mean values in the study and control groups. A case with long-survival MND harboring VGKC-complex Abs and treated with intravenous immunoglobulins is described. Although VGKC-complex Abs are not likely to be pathogenic, these results could reflect the coexistence of an immunological activation in patients with slow disease progression. © 2016 S. Karger AG, Basel.

  7. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles

    DEFF Research Database (Denmark)

    Poulsen, Christian B; Al-Mashhadi, Rozh H; Cribbs, Leanne L

    2011-01-01

    Voltage-gated calcium channels are important for the regulation of renal blood flow and the glomerular filtration rate. Excitation-contraction coupling in afferent arterioles is known to require activation of these channels and we studied their role in the regulation of cortical efferent arteriolar...... tone. We used microdissected perfused mouse efferent arterioles and found a transient vasoconstriction in response to depolarization with potassium; an effect abolished by removal of extracellular calcium. The T-type voltage-gated calcium channel antagonists mibefradil and nickel blocked this potassium...... by immunocytochemistry to be located in mouse efferent arterioles, human pre- and postglomerular vasculature, and Ca(v)3.2 in rat glomerular arterioles. Inhibition of endothelial nitric oxide synthase by L-NAME or its deletion by gene knockout changed the potassium-elicited transient constriction to a sustained response...

  8. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel.

    Directory of Open Access Journals (Sweden)

    Samira Yazdi

    2016-01-01

    Full Text Available Voltage-gated potassium (KV channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD, the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

  9. Excessive blinking and ataxia in a child with occult neuroblastoma and voltage-gated potassium channel antibodies.

    LENUS (Irish Health Repository)

    Allen, Nicholas M

    2012-05-01

    A previously healthy 9-year-old girl presented with a 10-day history of slowly progressive unsteadiness, slurred speech, and behavior change. On examination there was cerebellar ataxia and dysarthria, excessive blinking, subtle perioral myoclonus, and labile mood. The finding of oligoclonal bands in the cerebrospinal fluid prompted paraneoplastic serological evaluation and search for an occult neural crest tumor. Antineuronal nuclear autoantibody type 1 (anti-Hu) and voltage-gated potassium channel complex antibodies were detected in serum. Metaiodobenzylguanidine scan and computed tomography scan of the abdomen showed a localized abdominal mass in the region of the porta hepatis. A diagnosis of occult neuroblastoma was made. Resection of the stage 1 neuroblastoma and treatment with pulsed corticosteroids resulted in resolution of all symptoms and signs. Excessive blinking has rarely been described with neuroblastoma, and, when it is not an isolated finding, it may be a useful clue to this paraneoplastic syndrome. Although voltage-gated potassium channel complex autoimmunity has not been described previously in the setting of neuroblastoma, it is associated with a spectrum of paraneoplastic neurologic manifestations in adults, including peripheral nerve hyperexcitability disorders.

  10. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.

    Science.gov (United States)

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-23

    Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.

  11. Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels☆

    Science.gov (United States)

    Cuypers, Eva; Abdel-Mottaleb, Yousra; Kopljar, Ivan; Rainier, Jon D.; Raes, Adam L.; Snyders, Dirk J.; Tytgat, Jan

    2008-01-01

    In this study, we pharmacologically characterized gambierol, a marine polycyclic ether toxin which is produced by the dinoflagellate Gambierdiscus toxicus. Besides several other polycyclic ether toxins like ciguatoxins, this scarcely studied toxin is one of the compounds that may be responsible for ciguatera fish poisoning (CFP). Unfortunately, the biological target(s) that underlies CFP is still partly unknown. Today, ciguatoxins are described to specifically activate voltage-gated sodium channels by interacting with their receptor site 5. But some dispute about the role of gambierol in the CFP story shows up: some describe voltage-gated sodium channels as the target, while others pinpoint voltage-gated potassium channels as targets. Since gambierol was never tested on isolated ion channels before, it was subjected in this work to extensive screening on a panel of 17 ion channels: nine cloned voltage-gated ion channels (mammalian Nav1.1–Nav1.8 and insect Para) and eight cloned voltage-gated potassium channels (mammalian Kv1.1–Kv1.6, hERG and insect ShakerIR) expressed in Xenopus laevis oocytes using two-electrode voltage-clamp technique. All tested sodium channel subtypes are insensitive to gambierol concentrations up to 10 μM. In contrast, Kv1.2 is the most sensitive voltage-gated potassium channel subtype with almost full block (>97%) and an half maximal inhibitory concentration (IC50) of 34.5 nM. To the best of our knowledge, this is the first study where the selectivity of gambierol is tested on isolated voltage-gated ion channels. Therefore, these results lead to a better understanding of gambierol and its possible role in CFP and they may also be useful in the development of more effective treatments. PMID:18313714

  12. Antibodies to voltage-gated potassium and calcium channels in epilepsy.

    Science.gov (United States)

    Majoie, H J Marian; de Baets, Mark; Renier, Willy; Lang, Bethan; Vincent, Angela

    2006-10-01

    To determine the prevalence of antibodies to ion channels in patients with long standing epilepsy. Although the CNS is thought to be protected from circulating antibodies by the blood brain barrier, glutamate receptor antibodies have been reported in Rasmussen's encephalitis, glutamic acid decarboxylase (GAD) antibodies have been found in a few patients with epilepsy, and antibodies to voltage-gated potassium channels (VGKC) have been found in a non-paraneoplastic form of limbic encephalitis (with amnesia and seizures) that responds to immunosuppressive therapy. We retrospectively screened sera from female epilepsy patients (n=106) for autoantibodies to VGKC (Kv 1.1, 1.2 or 1.6), voltage-gated calcium channels (VGCC) (P/Q-type), and GAD. All positive results, based on the values of control data [McKnight, K., Jiang, Y., et al. (2005). Serum antibodies in epilepsy and seizure-associated disorders. Neurology 65, 1730-1735], were retested at lower serum concentrations, and results compared with previously published control data. Demographics, medical history, and epilepsy related information was gathered. The studied group consisted predominantly of patients with long standing drug resistant epilepsy. VGKC antibodies were raised (>100 pM) in six patients. VGCC antibodies (>45 pM) were slightly raised in only one patient. GAD antibodies were VGKC antibodies differed from previously described patients with limbic encephalitis-like syndrome, and were not different with respect to seizure type, age at first seizure, duration of epilepsy, or use of anti-epileptic drugs from the VGKC antibody negative patients. The results demonstrate that antibodies to VGKC are present in 6% of patients with typical long-standing epilepsy, but whether these antibodies are pathogenic or secondary to the primary disease process needs to be determined.

  13. Mutagenesis in mammalian cells can be modulated by radiation-induced voltage-dependent potassium channels

    International Nuclear Information System (INIS)

    Saad, A.H.; Zhou, L.Y.; Lambe, E.K.; Hahn, G.M.

    1994-01-01

    In mammalian cells, little is known about the initial events whose ultimate consequence is mutagenesis or DNA repair. The role the plasma membrane may play as an initiator of such a pathway is not understood. We show, for the first time, that membrane voltage-dependent potassium (K + ) currents, activated by ionizing radiation play a significant role in radiation mutagenesis. Specifically, we show that the frequency of mutation at the HGPRT locus is increased as expected to 37.6±4.0 mutations per 100,000 survivors by 800 cGy of ionizing radiation from a spontaneous frequency of 1.5±1.5. This increase, however, is abolished if either K + channel blocker, CsCl or BaCl 2 , is present for 2h following irradiation of the cells. RbCl, chemically similar to CsCl but known not to block K + channels, is ineffective in reducing the mutation frequency. Treatment of cells with CsCl or BaCl 2 had no effect on radiation-induced cell killing

  14. Voltage-gated potassium channel-complex autoimmunity and associated clinical syndromes.

    Science.gov (United States)

    Irani, Sarosh R; Vincent, Angela

    2016-01-01

    Voltage-gated potassium channel (VGKC)-complex antibodies are defined by the radioimmunoprecipitation of Kv1 potassium channel subunits from brain tissue extracts and were initially discovered in patients with peripheral nerve hyperexcitability (PNH). Subsequently, they were found in patients with PNH plus psychosis, insomnia, and dysautonomia, collectively termed Morvan's syndrome (MoS), and in a limbic encephalopathy (LE) with prominent amnesia and frequent seizures. Most recently, they have been described in patients with pure epilepsies, especially in patients with the novel and distinctive semiology termed faciobrachial dystonic seizures (FBDS). In each of these conditions, there is a close correlation between clinical measures and antibody levels. The VGKC-complex is a group of proteins that are strongly associated in situ and after extraction in mild detergent. Two major targets of the autoantibodies are leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein 2 (CASPR2). The patients with PNH or MoS are most likely to have CASPR2 antibodies, whereas LGI1 antibodies are found characteristically in patients with FBDS and LE. Crucially, each of these conditions has a good response to immunotherapies, often corticosteroids and plasma exchange, although optimal regimes require further study. VGKC-complex antibodies have also been described in neuropathic pain syndromes, chronic epilepsies, a polyradiculopathy in porcine abattoir workers, and some children with status epilepticus. Increasingly, however, the antigenic targets in these patients are not defined and in some cases the antibodies may be secondary rather than the primary cause. Future serologic studies should define all the antigenic components of the VGKC-complex, and further inform mechanisms of antibody pathogenicity and related inflammation. © 2016 Elsevier B.V. All rights reserved.

  15. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder

    OpenAIRE

    Cyrus S.H. Ho; Roger C.M. Ho; Amy M.L. Quek

    2018-01-01

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic ence...

  16. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager

    OpenAIRE

    Langille, Megan M.; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum ...

  17. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures.

    Science.gov (United States)

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2016-01-01

    There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes.

  18. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains.

    Science.gov (United States)

    Hong, Liang; Pathak, Medha M; Kim, Iris H; Ta, Dennis; Tombola, Francesco

    2013-01-23

    Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here, we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically coupled gates. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Bickerstaff's encephalitis and Miller Fisher syndrome associated with voltage-gated potassium channel and novel anti-neuronal antibodies.

    Science.gov (United States)

    Tüzün, E; Kürtüncü, M; Lang, B; Içöz, S; Akman-Demir, G; Eraksoy, M; Vincent, A

    2010-10-01

    GQ1b antibody (GQ1b-Ab) is detected in approximately two-thirds of sera of patients with Bickerstaffs encephalitis (BE). Whilst some of the remaining patients have antibodies to other gangliosides, many patients with BE are reported to be seronegative. Voltage-gated potassium channel antibody (VGKC-Ab) at high titer was detected during the diagnostic work-up of one patient with BE. Sera of an additional patient with BE and nine patients with Miller Fisher syndrome (MF) (all GQ1b-Ab positive) were investigated for VGKC-Ab and other anti-neuronal antibodies by radioimmunoprecipitation using 125I-dendrotoxin-VGKC and immunohistochemistry, respectively. Two patients with MF exhibited moderate titer VGKC-Abs. Regardless of positivity for VGKC or GQ1b antibodies, serum IgG of all patients with BE and MF reacted with the molecular layer and Purkinje cells of the cerebellum in a distinctive pattern. Voltage-gated potassium channel antibodies might be involved in some cases of BE or MF. The common staining pattern despite different antibody results suggests that there might be other, as yet unidentified, antibodies associated with BE and MF.

  20. Protective roles for potassium SK/KCa2 channels in microglia and neurons

    Directory of Open Access Journals (Sweden)

    Amalia M Dolga

    2012-11-01

    Full Text Available New concepts on potassium channel function in neuroinflammation suggest that they regulate mechanisms of microglial activation, including intracellular calcium homeostasis, morphological alterations, pro-inflammatory cytokine release, antigen presentation, and phagocytosis. Although little is known about voltage independent potassium channels in microglia, special attention emerges on small (SK/KCNN1-3/KCa2 and intermediate (IK/KCNN4/KCa3.1-conductance calcium-activated potassium channels as regulators of microglial activation in the field of research on neuroinflammation and neurodegeneration. In particular, recent findings suggested that SK/KCa2 channels, by regulating calcium homeostasis, may elicit a dual mechanism of action with protective properties in neurons and inhibition of inflammatory responses in microglia. Thus, modulating SK/KCa2 channels and calcium signaling may provide novel therapeutic strategies in neurological disorders, where neuronal cell death and inflammatory responses concomitantly contribute to disease progression. Here, we review the particular role of SK/KCa2 channels for [Ca2+]i regulation in microglia and neurons, and we discuss the potential impact for further experimental approaches addressing novel therapeutic strategies in neurological diseases, where neuronal cell death and neuroinflammatory processes are prominent.

  1. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager.

    Science.gov (United States)

    Langille, Megan M; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  2. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder

    Directory of Open Access Journals (Sweden)

    Cyrus S.H. Ho

    2018-04-01

    Full Text Available Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS.

  3. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder.

    Science.gov (United States)

    Ho, Cyrus S H; Ho, Roger C M; Quek, Amy M L

    2018-04-18

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS).

  4. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder

    Science.gov (United States)

    Ho, Cyrus S.H.; Quek, Amy M.L.

    2018-01-01

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS). PMID:29669989

  5. The cooperative voltage sensor motion that gates a potassium channel.

    Science.gov (United States)

    Pathak, Medha; Kurtz, Lisa; Tombola, Francesco; Isacoff, Ehud

    2005-01-01

    The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close.

  6. Voltage-Gated Potassium Channel Autoimmunity Mimicking Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Geschwind, Michael D.; Tan, K. Meng; Lennon, Vanda A.; Barajas, Ramon F.; Haman, Aissa; Klein, Christopher J.; Josephson, S. Andrew; Pittock, Sean J.

    2009-01-01

    Background Rapidly progressive dementia has a variety of causes, including Creutzfeldt-Jakob disease (CJD) and neuronal voltage-gated potassium channel (VGKC) autoantibody–associated encephalopathy. Objective To describe patients thought initially to have CJD but found subsequently to have immunotherapy-responsive VGKC autoimmunity. Design Observational, prospective case series. Setting Department of Neurology, Mayo Clinic, and the Memory and Aging Center, University of California, San Francisco. Patients A clinical serologic cohort of 15 patients referred for paraneoplastic autoantibody evaluation. Seven patients were evaluated clinically by at least one of us. Clinical information for the remaining patients was obtained by physician interview or medical record review. Main Outcome Measures Clinical features, magnetic resonance imaging abnormalities, electroencephalographic patterns, cerebrospinal fluid analyses, and responses to immunomodulatory therapy. Results All the patients presented subacutely with neurologic manifestations, including rapidly progressive dementia, myoclonus, extrapyramidal dysfunction, visual hallucinations, psychiatric disturbance, and seizures; most (60%) satisfied World Health Organization diagnostic criteria for CJD. Magnetic resonance imaging abnormalities included cerebral cortical diffusion-weighted imaging hyperintensities. Electroencephalographic abnormalities included diffuse slowing, frontal intermittent rhythmic delta activity, and focal epileptogenic activity but not periodic sharp wave complexes. Cerebrospinal fluid 14-3-3 protein or neuron-specific enolase levels were elevated in 5 of 8 patients. Hyponatremia was common (60%). Neoplasia was confirmed histologically in 5 patients (33%) and was suspected in another 5. Most patients’ conditions (92%) improved after immunomodulatory therapy. Conclusions Clinical, radiologic, electrophysiologic, and laboratory findings in VGKC autoantibody–associated encephalopathy may be

  7. Encephalitis due to antibodies to voltage gated potassium channel (VGKC with cerebellar involvement in a teenager

    Directory of Open Access Journals (Sweden)

    Megan M Langille

    2015-01-01

    Full Text Available Encephalitis due to antibodies to voltage gated potassium channel (VGKC typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  8. Contributions of counter-charge in a potassium channel voltage-sensor domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2011-01-01

    Voltage-sensor domains couple membrane potential to conformational changes in voltage-gated ion channels and phosphatases. Highly coevolved acidic and aromatic side chains assist the transfer of cationic side chains across the transmembrane electric field during voltage sensing. We investigated...... the functional contribution of negative electrostatic potentials from these residues to channel gating and voltage sensing with unnatural amino acid mutagenesis, electrophysiology, voltage-clamp fluorometry and ab initio calculations. The data show that neutralization of two conserved acidic side chains...

  9. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    Science.gov (United States)

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Clinical utility of seropositive voltage-gated potassium channel-complex antibody.

    Science.gov (United States)

    Jammoul, Adham; Shayya, Luay; Mente, Karin; Li, Jianbo; Rae-Grant, Alexander; Li, Yuebing

    2016-10-01

    Antibodies against voltage-gated potassium channel (VGKC)-complex are implicated in the pathogenesis of acquired neuromyotonia, limbic encephalitis, faciobrachial dystonic seizure, and Morvan syndrome. Outside these entities, the clinical value of VGKC-complex antibodies remains unclear. We conducted a single-center review of patients positive for VGKC-complex antibodies over an 8-year period. Among 114 patients positive for VGKC-complex antibody, 11 (9.6%) carrying the diagnosis of limbic encephalitis (n = 9) or neuromyotonia (n = 2) constituted the classic group, and the remaining 103 cases of various neurologic and non-neurologic disorders comprised the nonclassic group. The median titer for the classic group was higher than the nonclassic group ( p 0.25 nM) VGKC-complex antibody levels ( p VGKC-complex antibody titers are more likely found in patients with classically associated syndromes and other autoimmune conditions. Low-level VGKC-complex antibodies can be detected in nonspecific and mostly nonautoimmune disorders. The presence of VGKC-complex antibody, rather than its level, may serve as a marker of malignancy.

  11. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.

    Directory of Open Access Journals (Sweden)

    Janin Riedelsberger

    Full Text Available Voltage-gated potassium (K+ channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD, this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin and depolarization-activated, outward-rectifying (Kout channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

  12. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  13. Large conductance Ca2+-activated K+ (BK channel: Activation by Ca2+ and voltage

    Directory of Open Access Journals (Sweden)

    RAMÓN LATORRE

    2006-01-01

    Full Text Available Large conductance Ca2+-activated K+ (BK channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv channels characterized by having six (S1-S6 transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0 transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 μM-100 μM in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.

  14. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  15. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  16. Ciguatoxins: Cyclic Polyether Modulators of Voltage-gated Iion Channel Function

    Science.gov (United States)

    Nicholson, Graham M.; Lewis, Richard J.

    2006-01-01

    Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

  17. Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

    Science.gov (United States)

    Kasimova, M A; Granata, D; Carnevale, V

    2016-01-01

    Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Leucine-rich glioma inactivated-1 and voltage gated potassium channel autoimmune encephalitis associated with ischemic stroke; A Case Report

    Directory of Open Access Journals (Sweden)

    Marisa Patryce McGinley

    2016-05-01

    Full Text Available Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage gated potassium channel (VGKC antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypothesizes linking these two disease processes are proposed.

  19. Leucine-Rich Glioma Inactivated-1 and Voltage-Gated Potassium Channel Autoimmune Encephalitis Associated with Ischemic Stroke: A Case Report

    Science.gov (United States)

    McGinley, Marisa; Morales-Vidal, Sarkis; Ruland, Sean

    2016-01-01

    Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage-gated potassium channel (VGKC) antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypotheses linking these two disease processes are proposed. PMID:27242653

  20. Ciguatoxins: Cyclic Polyether Modulators of Voltage-gated Iion Channel Function

    Directory of Open Access Journals (Sweden)

    Richard J. Lewis

    2006-04-01

    Full Text Available Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

  1. High Grade Glioma Mimicking Voltage Gated Potassium Channel Complex Associated Antibody Limbic Encephalitis

    Directory of Open Access Journals (Sweden)

    Dilan Athauda

    2014-01-01

    Full Text Available Though raised titres of voltage gated potassium channel (VGKC complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE. This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  2. High grade glioma mimicking voltage gated potassium channel complex associated antibody limbic encephalitis.

    Science.gov (United States)

    Athauda, Dilan; Delamont, R S; Pablo-Fernandez, E De

    2014-01-01

    Though raised titres of voltage gated potassium channel (VGKC) complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE). This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  3. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Wörtwein, Gitta

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... hybridization. Repeated, but not acute, electroconvulsive stimulation increased Kv7.2 and Kv11.1 mRNA levels in the piriform cortex. In contrast, restraint stress had no significant effect on mRNA expression of Kv7.2, Kv11.1, or Kv11.3 in any of the brain regions examined. Thus, it appears that the investigated...

  4. Voltage-gated potassium channel (K(v) 1) autoantibodies in patients with chagasic gut dysmotility and distribution of K(v) 1 channels in human enteric neuromusculature (autoantibodies in GI dysmotility).

    Science.gov (United States)

    Hubball, A W; Lang, B; Souza, M A N; Curran, O D; Martin, J E; Knowles, C H

    2012-08-01

    Autoantibodies directed against specific neuronal antigens are found in a significant number of patients with gastrointestinal neuromuscular diseases (GINMDs) secondary to neoplasia. This study examined the presence of antineuronal antibodies in idiopathic GINMD and GINMD secondary to South American Trypanosomiasis. The GI distribution of voltage-gated potassium channels (VGKCs) was also investigated. Seventy-three patients were included in the study with diagnoses of primary achalasia, enteric dysmotility, chronic intestinal pseudo-obstruction, esophageal or colonic dysmotility secondary to Chagas' disease. Sera were screened for specific antibodies to glutamic acid decarboxylase, voltage-gated calcium channels (VGCCs; P/Q subtype), nicotinic acetylcholine receptors (nAChRs; α3 subtype), and voltage-gated potassium channels (VGKCs, K(V) 1 subtype) using validated immunoprecipitation assays. The distribution of six VGKC subunits (K(V) 1.1-1.6), including those known to be antigenic targets of anti-VGKC antibodies was immunohistochemically investigated in all main human GI tract regions. Three patients (14%) with chagasic GI dysmotility were found to have positive anti-VGKC antibody titers. No antibodies were detected in patients with idiopathic GINMD. The VGKCs were found in enteric neurons at every level of the gut in unique yet overlapping distributions. The VGKC expression in GI smooth muscle was found to be limited to the esophagus. A small proportion of patients with GI dysfunction secondary to Chagas' disease have antibodies against VGKCs. The presence of these channels in the human enteric nervous system may have pathological relevance to the growing number of GINMDs with which anti-VGKC antibodies have been associated. © 2012 Blackwell Publishing Ltd.

  5. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  6. Autoantibodies against voltage-gated potassium channel and glutamic acid decarboxylase in psychosis: A systematic review, meta-analysis, and case series.

    OpenAIRE

    Grain, Rosemary; Lally, John; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy R; Murray, Robin M; Gaughran, Fiona

    2017-01-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevale...

  7. Downregulation of Kv7.4 channel activity in primary and secondary hypertension

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Chadha, Preet S; Davis, Alison J

    2011-01-01

    Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of...... structurally different activators of Kv7.2 through Kv7.5 channels (BMS-204352, S-1, and retigabine) on blood vessels from normotensive and hypertensive animals.......Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of 3...

  8. Reversible dementia: two nursing home patients with voltage-gated potassium channel antibody-associated limbic encephalitis.

    Science.gov (United States)

    Reintjes, Wesley; Romijn, Marloes D M; Hollander, Daan; Ter Bruggen, Jan P; van Marum, Rob J

    2015-09-01

    Voltage-gated potassium channel antibody-associated limbic encephalitis (VGKC-LE) is a rare disease that is a diagnostic and therapeutic challenge for medical practitioners. Two patients with VGKC-LE, both developing dementia are presented. Following treatment, both patients showed remarkable cognitive and functional improvement enabling them to leave the psychogeriatric nursing homes they both were admitted to. Patients with VGKC-LE can have a major cognitive and functional improvement even after a diagnostic delay of more than 1 year. Medical practitioners who treat patients with unexplained cognitive decline, epileptic seizures, or psychiatric symptoms should be aware of LE as an underlying rare cause. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  9. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    Science.gov (United States)

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  10. NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating.

    Science.gov (United States)

    Shenkarev, Zakhar O; Paramonov, Alexander S; Lyukmanova, Ekaterina N; Shingarova, Lyudmila N; Yakimov, Sergei A; Dubinnyi, Maxim A; Chupin, Vladimir V; Kirpichnikov, Mikhail P; Blommers, Marcel J J; Arseniev, Alexander S

    2010-04-28

    The structure and dynamics of the isolated voltage-sensing domain (VSD) of the archaeal potassium channel KvAP was studied by high-resolution NMR. The almost complete backbone resonance assignment and partial side-chain assignment of the (2)H,(13)C,(15)N-labeled VSD were obtained for the protein domain solubilized in DPC/LDAO (2:1) mixed micelles. Secondary and tertiary structures of the VSD were characterized using secondary chemical shifts and NOE contacts. These data indicate that the spatial structure of the VSD solubilized in micelles corresponds to the structure of the domain in an open state of the channel. NOE contacts and secondary chemical shifts of amide protons indicate the presence of tightly bound water molecule as well as hydrogen bond formation involving an interhelical salt bridge (Asp62-R133) that stabilizes the overall structure of the domain. The backbone dynamics of the VSD was studied using (15)N relaxation measurements. The loop regions S1-S2 and S2-S3 were found mobile, while the S3-S4 loop (voltage-sensor paddle) was found stable at the ps-ns time scale. The moieties of S1, S2, S3, and S4 helices sharing interhelical contacts (at the level of the Asp62-R133 salt bridge) were observed in conformational exchange on the micros-ms time scale. Similar exchange-induced broadening of characteristic resonances was observed for the VSD solubilized in the membrane of lipid-protein nanodiscs composed of DMPC, DMPG, and POPC/DOPG lipids. Apparently, the observed interhelical motions represent an inherent property of the VSD of the KvAP channel and can play an important role in the voltage gating.

  11. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    Science.gov (United States)

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. The temperature dependence of the BK channel activity - kinetics, thermodynamics, and long-range correlations.

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J

    2017-10-01

    Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.

    Science.gov (United States)

    Soler-Llavina, Gilberto J; Chang, Tsg-Hui; Swartz, Kenton J

    2006-11-22

    Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.

  14. Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Bo Hyung Lee

    2014-01-01

    Full Text Available The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.

  15. Activation of ERG2 potassium channels by the diphenylurea NS1643

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear....... The lack of functional information is at least partly due to the lack of specific pharmacological tools. The compound NS1643 has earlier been reported as an ERG1 channel activator. We found that NS1643 also activates the ERG2 channel; however, the molecular mechanism of the activation differs between...... the ERG1 and ERG2 channels. This is surprising since ERG1 and ERG2 channels have very similar biophysical and structural characteristics. For ERG2, NS1643 causes a left-ward shift of the activation curve, a faster time-constant of activation and a slower time-constant of inactivation as well...

  16. Clofilium inhibits Slick and Slack potassium channels.

    Science.gov (United States)

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  17. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  18. Milrinone-Induced Postconditioning Requires Activation of Mitochondrial Ca2+-sensitive Potassium (mBKCa) Channels

    NARCIS (Netherlands)

    Behmenburg, Friederike; Trefz, Lara; Dorsch, Marianne; Ströthoff, Martin; Mathes, Alexander; Raupach, Annika; Heinen, André; Hollmann, Markus W.; Berger, Marc M.; Huhn, Ragnar

    2017-01-01

    Cardioprotection by postconditioning requires activation of mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa) channels. The involvement of these channels in milrinone-induced postconditioning is unknown. The authors determined whether cardioprotection by milrinone-induced

  19. PKC and AMPK regulation of Kv1.5 potassium channels

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells....

  20. Voltage gated potassium channels expressed in Xenopus laevis(AMPHIBIA oocytes

    Directory of Open Access Journals (Sweden)

    Hedna Chaves

    2003-01-01

    Full Text Available Heterologous expression has been an important tool for structural and functionalcharacterization of proteins. The study of biophysical properties of ion channels,pumps and transporters has been possible thanks to their expression in Xenopuslaevisoocytes. Here we report the expression of two voltage gated channels, Kv1.1and Shaker, in X. laevisoocytes using a method for oocyte extraction, isolation, cul-ture, and microinjection adapted to the latitude and altitude conditions of Bogotá,Colombia.

  1. Presence of voltage-gated potassium channel complex antibody in a case of genetic prion disease.

    Science.gov (United States)

    Jammoul, Adham; Lederman, Richard J; Tavee, Jinny; Li, Yuebing

    2014-06-05

    Voltage-gated potassium channel (VGKC) complex antibody-mediated encephalitis is a recently recognised entity which has been reported to mimic the clinical presentation of Creutzfeldt-Jakob disease (CJD). Testing for the presence of this neuronal surface autoantibody in patients presenting with subacute encephalopathy is therefore crucial as it may both revoke the bleak diagnosis of prion disease and allow institution of potentially life-saving immunotherapy. Tempering this optimistic view is the rare instance when a positive VGKC complex antibody titre occurs in a definite case of prion disease. We present a pathologically and genetically confirmed case of CJD with elevated serum VGKC complex antibody titres. This case highlights the importance of interpreting the result of a positive VGKC complex antibody with caution and in the context of the overall clinical manifestation. 2014 BMJ Publishing Group Ltd.

  2. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    Science.gov (United States)

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  3. The voltage-sensing domain of a phosphatase gates the pore of a potassium channel.

    Science.gov (United States)

    Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L; Thiel, Gerhard; Moroni, Anna

    2013-03-01

    The modular architecture of voltage-gated K(+) (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates Kv(Synth1), a functional voltage-gated, outwardly rectifying K(+) channel. Kv(Synth1) displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V(1/2) = +56 mV; z of ~1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.

  4. Autoantibodies against voltage-gated potassium channel (VGKC) and glutamic acid decarboxylase (GAD) in psychosis: A systematic review, meta-analysis and case series.

    OpenAIRE

    Lally*, John; Grain*, Rosemary; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy RJ; Murray, Robin MacGregor; Gaughran, Fiona Patricia

    2017-01-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevale...

  5. Voltage-Gated Potassium Channel Antibody Paraneoplastic Limbic Encephalitis Associated with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Marion Alcantara

    2013-05-01

    Full Text Available Among paraneoplastic syndromes (PNS associated with malignant hemopathies, there are few reports of PNS of the central nervous system and most of them are associated with lymphomas. Limbic encephalitis is a rare neurological syndrome classically diagnosed in the context of PNS. We report the case of a 81-year-old man who presented with a relapsed acute myeloid leukemia (AML with minimal maturation. He was admitted for confusion with unfavorable evolution as he presented a rapidly progressive dementia resulting in death. A brain magnetic resonance imaging, performed 2 months after the onset, was considered normal. An electroencephalogram showed non-specific bilateral slow waves. We received the results of the blood screening of neuronal autoantibodies after the patient's death and detected the presence of anti-voltage-gated potassium channel (VGKC antibodies at 102 pmol/l (normal at <30 pmol/l. Other etiologic studies, including the screening for another cause of rapidly progressive dementia, were negative. To our knowledge, this is the first case of anti-VGKC paraneoplastic limbic encephalitis related to AML.

  6. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 m....... This is the first report to provide evidence for a possible role of SK3 channels in human uterine telocytes....

  7. Molecular mechanism of voltage sensing in voltage-gated proton channels

    Science.gov (United States)

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  8. The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    Science.gov (United States)

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  9. Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies

    DEFF Research Database (Denmark)

    Celicanin, Marko; Blaabjerg, M; Maersk-Moller, C

    2017-01-01

    BACKGROUND AND PURPOSE: The aim of this study was to describe clinical and paraclinical characteristics of all Danish patients who tested positive for anti-voltage-gated potassium channels (VGKC)-complex, anti-leucine-rich glioma-inactivated 1 (LGI1) and anti-contactin-associated protein-2......, electroencephalography and (18) F-fluorodeoxyglucose positron emission tomography scans were re-evaluated by experts in the field. RESULTS: A total of 28/192 patients tested positive for VGKC-complex antibodies by radioimmunoassay and indirect immunofluorescence; 17 had antibodies to LGI1 and 6/7 of the available....... CONCLUSIONS: Patients diagnosed with anti-LGI1 autoimmune encephalitis increased significantly from 2009 to 2014, probably due to increased awareness. In contrast to seropositive anti-VGKC-complex patients, all anti-LGI1-positive patients presented with a classical limbic encephalitis. The majority...

  10. Potassium Chloride Versus Voltage Clamp Contractures in Ventricular Muscle

    Science.gov (United States)

    Morad, M.; Reeck, S.; Rao, M.

    1981-01-01

    In frog ventricle, developed tension was markedly larger in response to depolarization caused by a voltage clamp step than to depolarization induced by high concentrations of potassium chloride. Measurement of extracellular potassium activity at the surface and at the depth of muscle during the development of contractures showed that the diffusion of potassium is much slower than the spread of depolarization through the cross section of muscle. These two observations suggest that competition between the depolarizing and the negative inotropic effects of an increase in the extracellular potassium ion concentration may determine the time course and magnitude of contractile tension in heart muscle.

  11. [Voltage-Gated Potassium Channel-Complex Antibodies Associated Encephalopathy and Related Diseases].

    Science.gov (United States)

    Watanabe, Osamu

    2016-09-01

    Voltage-gated potassium channel (VGKC) complex antibodies are auto-antibodies, initially identified in acquired neuromyotonia (aNMT; Isaacs' syndrome), which cause muscle cramps and difficulty in opening the palm of the hands. Subsequently, these antibodies were found in patients presenting with aNMT along with psychosis, insomnia, and dysautonomia, collectively termed Morvan's syndrome (MoS), and in a limbic encephalopathy (LE) patient with prominent amnesia and frequent seizures. Typical LE cases have a distinctive adult-onset, frequent, brief dystonic seizure semiology that predominantly affects the arms and ipsilateral face. It has now been termed faciobrachial dystonic seizures (FBDS). The VGKC complex is a group of proteins that are strongly associated in situ and after extraction in the mild detergent digitonin. Recent studies indicated that the VGKC complex antibodies are mainly directed toward associated proteins (for example LGI1, Caspr2) that complex with VGKCs themselves. Patients with aNMT or MoS are most likely to have Caspr2 antibodies, whereas LGI1 antibodies are found characteristically in patients with FBDS and LE. We systematically identified and quantified autoantibodies in patient sera with VGKC-complex antibody associated encephalopathy and showed the relationship between individual antibodies and patient's symptoms. Furthermore, we revealed how autoantibodies disrupt the physiological functions of target proteins. LGI1 antibodies neutralize the interaction between LGI1 and ADAM22, reducing the synaptic AMPA receptors.

  12. Afterdischarges following M waves in patients with voltage-gated potassium channels antibodies

    Directory of Open Access Journals (Sweden)

    Jingwen Niu

    Full Text Available Objective: To explore the correlation between afterdischarges in motor nerve conduction studies and clinical motor hyperexcitability in patients with voltage-gated potassium channels (VGKC antibodies. Methods: Six patients with positive serum antibodies to contactin-associated protein-like 2 (CASPR2 or/and leucine-rich glioma-inactivated protein 1 (LGI1 were recruited, including 5 with autoimmune encephalitis, and 1 with cramp-fasciculation syndrome. Electromyography (EMG, nerve conduction studies (NCS and F waves were performed, and afterdischarges were assessed. One patient was followed up. Results: Five patients had clinical evidence of peripheral motor nerve hyperexcitability (myokymia or cramp, and four of them had abnormal spontaneous firing in concentric needle electromyography (EMG. Prolonged afterdischarges following normal M waves were present in all six patients, including the two patients who had no EMG evidence of peripheral nerve hyperexcitability (PNH. Afterdischarges disappeared after treatment with intravenous immunoglobulin (IVIG. Conclusion: The afterdischarges in motor nerve conduction study might be a sensitive indicator of peripheral motor nerve hyperexcitability in patients with VGKC antibodies. Significance: Afterdischarges in motor nerve conduction study might be more sensitive than needle electromyography for detecting peripheral motor nerve hyperexcitability, and could disappear gradually in accordance with clinical improvement and reduction of antibodies. Keywords: Afterdischarges, VGKC, Autoimmune encephalitis, Peripheral nerve hyperexcitability, F wave, M wave

  13. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.

    Science.gov (United States)

    Neale, Edward J; Rong, Honglin; Cockcroft, Christopher J; Sivaprasadarao, Asipu

    2007-12-28

    Voltage-sensing domains (VSDs) play diverse roles in biology. As integral components, they can detect changes in the membrane potential of a cell and couple these changes to activity of ion channels and enzymes. As independent proteins, homologues of the VSD can function as voltage-dependent proton channels. To sense voltage changes, the positively charged fourth transmembrane segment, S4, must move across the energetically unfavorable hydrophobic core of the bilayer, which presents a barrier to movement of both charged species and protons. To reduce the barrier to S4 movement, it has been suggested that aqueous crevices may penetrate the protein, reducing the extent of total movement. To investigate this hypothesis in a system containing fully functional channels in a native environment with an intact membrane potential, we have determined the contour of the membrane-aqueous border of the VSD of KvAP in Escherichia coli by examining the chemical accessibility of introduced cysteines. The results revealed the contour of the membrane-aqueous border of the VSD in its activated conformation. The water-inaccessible regions of S1 and S2 correspond to the standard width of the membrane bilayer (~28 A), but those of S3 and S4 are considerably shorter (> or = 40%), consistent with aqueous crevices pervading both the extracellular and intracellular ends. One face of S3b and the entire S3a were water-accessible, reducing the water-inaccessible region of S3 to just 10 residues, significantly shorter than for S4. The results suggest a key role for S3 in reducing the distance S4 needs to move to elicit gating.

  14. Fragile X mental retardation protein controls ion channel expression and activity.

    Science.gov (United States)

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f.

    Science.gov (United States)

    Li, Junlin; Zhang, Huanchao; Lei, Han; Jin, Man; Yue, Guangzhen; Su, Yanhua

    2016-04-01

    A GORK homologue K(+) channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. shows the functional conservation of the GORK channels among plant species. Guard cell K(+) release through the outward potassium channels eventually enables the closure of stomata which consequently prevents plant water loss from severe transpiration. Early patch-clamp studies with the guard cells have revealed many details of such outward potassium currents. However, genes coding for these potassium-release channels have not been sufficiently characterized from species other than the model plant Arabidopsis thaliana. We report here the functional identification of a GORK (for Gated or Guard cell Outward Rectifying K(+) channels) homologue from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. AmGORK was primary expressed in shoots, where the transcripts were regulated by stress factors simulated by PEG, NaCl or ABA treatments. Patch-clamp measurements on isolated guard cell protoplasts revealed typical depolarization voltage gated outward K(+) currents sensitive to the extracelluar K(+) concentration and pH, resembling the fundamental properties previously described in other species. Two-electrode voltage-clamp analysis in Xenopus lavies oocytes with AmGORK reconstituted highly similar characteristics as assessed in the guard cells, supporting that the function of AmGORK is consistent with a crucial role in mediating stomatal closure in Ammopiptanthus mongolicus. Furthermore, a single amino acid mutation D297N of AmGORK eventually abolishes both the voltage-gating and its outward rectification and converts the channel into a leak-like channel, indicating strong involvement of this residue in the gating and voltage dependence of AmGORK. Our results obtained from this anciently originated plant support a strong functional conservation of the GORK channels among plant species and maybe also along the progress of revolution.

  16. Delayed LGI1 seropositivity in voltage-gated potassium channel (VGKC)-complex antibody limbic encephalitis.

    Science.gov (United States)

    Sweeney, Michael; Galli, Jonathan; McNally, Scott; Tebo, Anne; Haven, Thomas; Thulin, Perla; Clardy, Stacey L

    2017-04-20

    We utilise a clinical case to highlight why exclusion of voltage-gated potassium channel (VGKC)-complex autoantibody testing in serological evaluation of patients may delay or miss the diagnosis. A 68-year-old man presented with increasing involuntary movements consistent with faciobrachial dystonic seizures (FBDS). Initial evaluation demonstrated VGKC antibody seropositivity with leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) seronegativity. Aggressive immunotherapy with methylprednisolone and plasmapheresis was started early in the course of his presentation. Following treatment with immunotherapy, the patient demonstrated clinical improvement. Repeat serum evaluation 4 months posthospitalisation remained seropositive for VGKC-complex antibodies, with development of LGI1 autoantibody seropositivity. VGKC-complex and LGI1 antibodies remained positive 12 months posthospitalisation. Our findings suggest that clinical symptoms can predate the detection of the antibody. We conclude that when suspicion for autoimmune encephalitis is high in the setting of VGKC autoantibody positivity, regardless of LGI1 or CASPR2 seropositivity, early immunotherapy and repeat testing should be considered. 2017 BMJ Publishing Group Ltd.

  17. Voltage-gated proton channel is expressed on phagosomes

    International Nuclear Information System (INIS)

    Okochi, Yoshifumi; Sasaki, Mari; Iwasaki, Hirohide; Okamura, Yasushi

    2009-01-01

    Voltage-gated proton channel has been suggested to help NADPH oxidase activity during respiratory burst of phagocytes through its activities of compensating charge imbalance and regulation of pH. In phagocytes, robust production of reactive oxygen species occurs in closed membrane compartments, which are called phagosomes. However, direct evidence for the presence of voltage-gated proton channels in phagosome has been lacking. In this study, the expression of voltage-gated proton channels was studied by Western blot with the antibody specific to the voltage-sensor domain protein, VSOP/Hv1, that has recently been identified as the molecular correlate for the voltage-gated proton channel. Phagosomal membranes of neutrophils contain VSOP/Hv1 in accordance with subunits of NADPH oxidases, gp91, p22, p47 and p67. Superoxide anion production upon PMA activation was significantly reduced in neutrophils from VSOP/Hv1 knockout mice. These are consistent with the idea that voltage-gated proton channels help NADPH oxidase in phagocytes to produce reactive oxygen species.

  18. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    Science.gov (United States)

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. [Current Perspective on Voltage-gated Potassium Channel Complex Antibody Associated Diseases].

    Science.gov (United States)

    Watanabe, Osamu

    2018-04-01

    Voltage-gated potassium channel (VGKC) complex auto-antibodies were initially identified in Isaacs' syndrome (IS), which is characterized by muscle cramps and neuromyotonia. These antibodies were subsequently identified in patients with Morvan's syndrome (MoS), which includes IS in conjunction with psychosis, insomnia, and dysautonomia. The antibodies have also been detected in a patient with limbic encephalopathy (LE) presenting with prominent amnesia and frequent seizures. Typical cases of LE have adult-onset, with frequent, brief dystonic seizures that predominantly affect the arms and ipsilateral face, and has recently been termed faciobrachial dystonic seizures. Autoantibodies against the extracellular domains of VGKC complex proteins, leucine-rich glioma-inactivated 1 (LGI1), and contactin-associated protein-2 (Caspr2), occur in patients with IS, MoS, and LE. However, routine testing has detected VGKC complex antibodies without LGI1 or Caspr2 reactivities (double-negative) in patients with other diseases, such as Creutzfeldt-Jakob disease and amyotrophic lateral sclerosis. Furthermore, double-negative VGKC complex antibodies are often directed against cytosolic epitopes of Kv1 subunits. Therefore, these antibodies should no longer be classified as neuronal-surface antibodies and lacking pathogenic potential. Novel information has been generated regarding autoantibody disruption of the physiological functions of target proteins. LGI1 antibodies neutralize the interaction between LGI1 and ADAM22, thereby reducing the synaptic AMPA receptors. It may be that the main action is on inhibitory neurons, explaining why the loss of AMPA receptors causes amnesia, neuronal excitability and seizures.

  20. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Directory of Open Access Journals (Sweden)

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  1. Membrane potential and cation channels in rat juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jørgensen, F; Andreasen, D

    2004-01-01

    The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK(Ca)) of the Z......The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK...

  2. Lack of direct evidence for a functional role of voltage-operated calcium channels in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Kurtz, A; Skott, O; Chegini, S

    1990-01-01

    in patch-clamped nor in intact Furaester-loaded cells. Moreover, basal renin secretion from a preparation enriched in mouse juxtaglomerular cells and from rat glomeruli with attached juxtaglomerular cells was not inhibited when extracellular potassium was isoosmotically increased to 56 mmol/l. In mouse...... kidney slices, however, depolarizing potassium concentrations caused a delayed inhibition at 56 mmol/l and a delayed stimulation of renin secretion at 110 mmol/l. Taken together, our study does not provide direct evidence for a role of voltage-activated calcium channels in the regulation of calcium...

  3. Voltage gating of mechanosensitive PIEZO channels.

    Science.gov (United States)

    Moroni, Mirko; Servin-Vences, M Rocio; Fleischer, Raluca; Sánchez-Carranza, Oscar; Lewin, Gary R

    2018-03-15

    Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.

  4. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1

    Directory of Open Access Journals (Sweden)

    Lien Moreels

    2017-09-01

    Full Text Available The human ether-à-go-go channel (hEag1 or KV10.1 is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1. The toxin inhibits KV10.1 with an IC50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a

  5. Persistent anterograde amnesia following limbic encephalitis associated with antibodies to the voltage-gated potassium channel complex.

    Science.gov (United States)

    Butler, Christopher R; Miller, Thomas D; Kaur, Manveer S; Baker, Ian W; Boothroyd, Georgie D; Illman, Nathan A; Rosenthal, Clive R; Vincent, Angela; Buckley, Camilla J

    2014-04-01

    Limbic encephalitis (LE) associated with antibodies to the voltage-gated potassium channel complex (VGKC) is a potentially reversible cause of cognitive impairment. Despite the prominence of cognitive dysfunction in this syndrome, little is known about patients' neuropsychological profile at presentation or their long-term cognitive outcome. We used a comprehensive neuropsychological test battery to evaluate cognitive function longitudinally in 19 patients with VGKC-LE. Before immunotherapy, the group had significant impairment of memory, processing speed and executive function, whereas language and perceptual organisation were intact. At follow-up, cognitive impairment was restricted to the memory domain, with processing speed and executive function having returned to the normal range. Residual memory function was predicted by the antibody titre at presentation. The results show that, despite broad cognitive dysfunction in the acute phase, patients with VGKC-LE often make a substantial recovery with immunotherapy but may be left with permanent anterograde amnesia.

  6. Modulation of voltage-gated channel currents by harmaline and harmane.

    Science.gov (United States)

    Splettstoesser, Frank; Bonnet, Udo; Wiemann, Martin; Bingmann, Dieter; Büsselberg, Dietrich

    2005-01-01

    Harmala alkaloids are endogenous substances, which are involved in neurodegenerative disorders such as M. Parkinson, but some of them also have neuroprotective effects in the nervous system. While several sites of action at the cellular level (e.g. benzodiazepine receptors, 5-HT and GABA(A) receptors) have been identified, there is no report on how harmala alkaloids interact with voltage-gated membrane channels. The aim of this study was to investigate the effects of harmaline and harmane on voltage-activated calcium- (I(Ca(V))), sodium- (I(Na(V))) and potassium (I(K(V)))-channel currents, using the whole-cell patch-clamp method with cultured dorsal root ganglion neurones of 3-week-old rats. Currents were elicited by voltage steps from the holding potential to different command potentials. Harmaline and harmane reduced I(Ca(V)), I(Na(V)) and I(K(V)) concentration-dependent (10-500 microM) over the voltage range tested. I(Ca(V)) was reduced with an IC(50) of 100.6 microM for harmaline and by a significantly lower concentration of 75.8 microM (P<0.001, t-test) for harmane. The Hill coefficient was close to 1. Threshold concentration was around 10 microM for both substances. The steady state of inhibition of I(Ca(V)) by harmaline or harmane was reached within several minutes. The action was not use-dependent and at least partly reversible. It was mainly due to a reduction in the sustained calcium channel current (I(Ca(L+N))), while the transient voltage-gated calcium channel current (I(Ca(T))) was only partially affected. We conclude that harmaline and harmane are modulators of I(Ca(V)) in vitro. This might be related to their neuroprotective effects.

  7. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  8. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3.

    Science.gov (United States)

    Wright, Paul D; Veale, Emma L; McCoull, David; Tickle, David C; Large, Jonathan M; Ococks, Emma; Gothard, Gemma; Kettleborough, Catherine; Mathie, Alistair; Jerman, Jeffrey

    2017-11-04

    Two-pore domain potassium channels (K2Ps) are characterized by their four transmembrane domain and two-pore topology. They carry background (or leak) potassium current in a variety of cell types. Despite a number of important roles there is currently a lack of pharmacological tools with which to further probe K2P function. We have developed a cell-based thallium flux assay, using baculovirus delivered TASK3 (TWIK-related acid-sensitive K + channel 3, KCNK9, K2P9.1) with the aim of identifying novel, selective TASK3 activators. After screening a library of 1000 compounds, including drug-like and FDA approved molecules, we identified Terbinafine as an activator of TASK3. In a thallium flux assay a pEC50 of 6.2 ( ±0.12) was observed. When Terbinafine was screened against TASK2, TREK2, THIK1, TWIK1 and TRESK no activation was observed in thallium flux assays. Several analogues of Terbinafine were also purchased and structure activity relationships examined. To confirm Terbinafine's activation of TASK3 whole cell patch clamp electrophysiology was carried out and clear potentiation observed in both the wild type channel and the pathophysiological, Birk-Barel syndrome associated, G236R TASK3 mutant. No activity at TASK1 was observed in electrophysiology studies. In conclusion, we have identified the first selective activator of the two-pore domain potassium channel TASK3. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Gating mechanism of Kv11.1 (hERG) K+ channels without covalent connection between voltage sensor and pore domains.

    Science.gov (United States)

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-01

    Kv11.1 (hERG, KCNH2) is a voltage-gated potassium channel crucial in setting the cardiac rhythm and the electrical behaviour of several non-cardiac cell types. Voltage-dependent gating of Kv11.1 can be reconstructed from non-covalently linked voltage sensing and pore modules (split channels), challenging classical views of voltage-dependent channel activation based on a S4-S5 linker acting as a rigid mechanical lever to open the gate. Progressive displacement of the split position from the end to the beginning of the S4-S5 linker induces an increasing negative shift in activation voltage dependence, a reduced z g value and a more negative ΔG 0 for current activation, an almost complete abolition of the activation time course sigmoid shape and a slowing of the voltage-dependent deactivation. Channels disconnected at the S4-S5 linker near the S4 helix show a destabilization of the closed state(s). Furthermore, the isochronal ion current mode shift magnitude is clearly reduced in the different splits. Interestingly, the progressive modifications of voltage dependence activation gating by changing the split position are accompanied by a shift in the voltage-dependent availability to a methanethiosulfonate reagent of a Cys introduced at the upper S4 helix. Our data demonstrate for the first time that alterations in the covalent connection between the voltage sensor and the pore domains impact on the structural reorganizations of the voltage sensor domain. Also, they support the hypothesis that the S4-S5 linker integrates signals coming from other cytoplasmic domains that constitute either an important component or a crucial regulator of the gating machinery in Kv11.1 and other KCNH channels.

  10. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.

    Science.gov (United States)

    Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D

    2015-09-01

    The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  11. Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels.

    Science.gov (United States)

    Villalonga, Núria; David, Miren; Bielańska, Joanna; González, Teresa; Parra, David; Soler, Concepció; Comes, Núria; Valenzuela, Carmen; Felipe, Antonio

    2010-09-15

    Kv1.3 plays a crucial role in the activation and proliferation of T-lymphocytes and macrophages. While Kv1.3 is responsible for the voltage-dependent potassium current in T-cells, in macrophages this K(+) current is generated by the association of Kv1.3 and Kv1.5. Patients with autoimmune diseases show a high number of effector memory T cells that are characterized by a high expression of Kv1.3 and Kv1.3 antagonists ameliorate autoimmune disorders in vivo. Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) used in patients who suffer from painful autoimmune diseases such as rheumatoid arthritis. In this study, we show that diclofenac impairs immune response via a mechanism that involves Kv1.3. While diclofenac inhibited Kv1.3 expression in activated macrophages and T-lymphocytes, Kv1.5 remained unaffected. Diclofenac also decreased iNOS levels in Raw 264.7 cells, impairing their activation in response to lipopolysaccharide (LPS). LPS-induced macrophage migration and IL-2 production in stimulated Jurkat T-cells were also blocked by pharmacological doses of diclofenac. These effects were mimicked by Margatoxin, a specific Kv1.3 inhibitor, and Charybdotoxin, which blocks both Kv1.3 and Ca(2+)-activated K(+) channels (K(Ca)3.1). Because Kv1.3 is a very good target for autoimmune therapies, the effects of diclofenac on Kv1.3 are of high pharmacological relevance. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    Science.gov (United States)

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    Science.gov (United States)

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  14. Potassium channels as drugs targets in therapy of cardiovascular diseases: 25 years later

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-03-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  15. POTASSIUM CHANNELS AS DRUGS TARGETS IN THERAPY OF CARDIOVASCULAR DESEASES: 25 YEARS LATER

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-01-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/ openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  16. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, H.; Mader, I. [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Rauer, S.; Baumgartner, A. [University Medical Center Freiburg, Department of Neurology, Freiburg (Germany); Paus, S. [University Medical Center, Department of Neurology, Bonn (Germany); Wagner, J. [University Medical Center, Department of Epileptology, Bonn (Germany); Malter, M.P. [University of Cologne, Department of Neurology, Cologne (Germany); Pruess, H. [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Lewerenz, J.; Kassubek, J. [Ulm University, Department of Neurology, Ulm (Germany); Hegen, H.; Auer, M.; Deisenhammer, F. [University Innsbruck, Department of Neurology, Innsbruck (Austria); Ufer, F. [University Medical Center, Department of Neurology, Hamburg (Germany); Bien, C.G. [Epilepsy Centre Bethel, Bielefeld-Bethel (Germany)

    2015-12-15

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  17. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    International Nuclear Information System (INIS)

    Urbach, H.; Mader, I.; Rauer, S.; Baumgartner, A.; Paus, S.; Wagner, J.; Malter, M.P.; Pruess, H.; Lewerenz, J.; Kassubek, J.; Hegen, H.; Auer, M.; Deisenhammer, F.; Ufer, F.; Bien, C.G.

    2015-01-01

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  18. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis.

    Science.gov (United States)

    Urbach, H; Rauer, S; Mader, I; Paus, S; Wagner, J; Malter, M P; Prüss, H; Lewerenz, J; Kassubek, J; Hegen, H; Auer, M; Deisenhammer, F; Ufer, F; Bien, C G; Baumgartner, A

    2015-12-01

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE.

  19. Development of Isaacs' syndrome following complete recovery of voltage-gated potassium channel antibody-associated limbic encephalitis.

    Science.gov (United States)

    Takahashi, Hirokatsu; Mori, Masahiro; Sekiguchi, Yukari; Misawa, Sonoko; Sawai, Setsu; Hattori, Takamichi; Kuwabara, Satoshi

    2008-12-15

    Autoantibodies against voltage-gated potassium channels (VGKC-Abs) are associated with acquired neuromyotonia (Isaacs' syndrome) and related disorders such as Morvan's syndrome and some cases of limbic encephalitis. The mechanisms underlying the various phenotypes induced by VGKC-Abs are not fully understood. Recently, we reported a case of LE with VGKC-Abs accompanied by severe intestinal pseudo-obstruction and thymoma. Thymectomy and immunosuppressive therapy induced dramatic clinical improvement of LE symptoms, and VGKC-Abs titers decreased from 1254 pM to 549 pM (normal>100 pM). Seventeen months later, the patient developed progressive generalized muscle cramping, paresthesias in his lower extremities, excessive sweating, and severe constipation. There was no recurrence of the LE. Electromyography showed fasciculation potentials and myokymic discharges, and the plasma VGKC-Abs titer was again elevated to 879 pM. Here we report a case of Isaacs' syndrome after complete remission of LE with VGKC-Abs that may provide an insight into a possible link among VGKC-Abs associated syndromes.

  20. PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Pless, Stephan A; Kurata, Harley T

    2017-01-01

    Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucid......Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation....... These findings reveal an important role for PIP2 in coupling retigabine binding to altered VSD function. We identify a polybasic motif in the proximal C terminus of retigabine-sensitive KCNQ channels that contributes to VSD-pore coupling via PIP2, and thereby influences the unique gating effects of retigabine....

  1. Coassembly of big conductance Ca2+-activated K+ channels and L-type voltage-gated Ca2+ channels in rat brain

    DEFF Research Database (Denmark)

    Grunnet, Morten; Kaufmann, Walter A

    2004-01-01

    Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration...

  2. Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.

    Science.gov (United States)

    Yeheskel, Adva; Haliloglu, Turkan; Ben-Tal, Nir

    2010-05-19

    Voltage-gated potassium (Kv) channels, such as Kv1.2, are involved in the generation and propagation of action potentials. The Kv channel is a homotetramer, and each monomer is composed of a voltage-sensing domain (VSD) and a pore domain (PD). We analyzed the fluctuations of a model structure of Kv1.2 using elastic network models. The analysis suggested a network of coupled fluctuations of eight rigid structural units and seven hinges that may control the transition between the active and inactive states of the channel. For the most part, the network is composed of amino acids that are known to affect channel activity. The results suggested allosteric interactions and cooperativity between the subunits in the coupling between the motion of the VSD and the selectivity filter of the PD, in accordance with recent empirical data. There are no direct contacts between the VSDs of the four subunits, and the contacts between these and the PDs are loose, suggesting that the VSDs are capable of functioning independently. Indeed, they manifest many inherent fluctuations that are decoupled from the rest of the structure. In general, the analysis suggests that the two domains contribute to the channel function both individually and cooperatively. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  4. Voltage gated potassium channel antibodies positive autoimmune encephalopathy in a child: A case report and literature review of an under-recognized condition

    Directory of Open Access Journals (Sweden)

    Subramanian Ganesan

    2013-01-01

    Full Text Available Autoimmune limbic encephalitis (LE associated with voltage gated potassium channel antibodies (VGKC-Abs in children is more common than previously thought and is not always paraneoplastic. Non-neoplastic, autoimmune LE associated with VGKC-Abs has been described recently. However, only few case reports in children as the disease is predominantly described in the adult population. It is likely that this type of autoimmune encephalitis is currently under-diagnosed and hence, under-treated, especially in children. We present a 13-year-old previously fit and healthy African girl diagnosed with LE and we reviewed the literature for its current management.

  5. Voltage gated potassium channel antibodies positive autoimmune encephalopathy in a child: A case report and literature review of an under-recognized condition

    Science.gov (United States)

    Ganesan, Subramanian; Beri, Sushil; Khan, Beri; Hussain, Nahin

    2013-01-01

    Autoimmune limbic encephalitis (LE) associated with voltage gated potassium channel antibodies (VGKC-Abs) in children is more common than previously thought and is not always paraneoplastic. Non-neoplastic, autoimmune LE associated with VGKC-Abs has been described recently. However, only few case reports in children as the disease is predominantly described in the adult population. It is likely that this type of autoimmune encephalitis is currently under-diagnosed and hence, under-treated, especially in children. We present a 13-year-old previously fit and healthy African girl diagnosed with LE and we reviewed the literature for its current management. PMID:24339586

  6. Escitalopram block of hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Jeon, Ji Hyun; Lee, Hong Joon; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2014-01-01

    Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

  7. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

    Science.gov (United States)

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-06-15

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33.

    Science.gov (United States)

    Corratgé-Faillie, Claire; Ronzier, Elsa; Sanchez, Frédéric; Prado, Karine; Kim, Jeong-Hyeon; Lanciano, Sophie; Leonhardt, Nathalie; Lacombe, Benoît; Xiong, Tou Cheu

    2017-07-01

    A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca 2+ -dependent regulation of Shaker channels by Ca 2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca 2+ -induced stomatal closure is impaired in two cpk33 mutant plants. © 2017 Federation of European Biochemical Societies.

  9. In Vitro Contractile Response of Rabbit Myometrium to BKCa and KATP Potassium Channel Openers

    Directory of Open Access Journals (Sweden)

    Soňa Fraňová

    2009-01-01

    Full Text Available The aim of the study was to evaluate the participation of ligand-sensitive potassium large conductance calcium-activated channels (BKCa and ATP-sensitive potassium channels in uterine smooth muscle reactivity during different stages of the experimentally induced proliferatory and secretory phase in the sexual cycle in ovariectomised rabbits in vitro. The myometrial reactivity to oxytocin (10-6 mol l-1 was investigated by an in vitro method in female rabbits 14 days after ovariectomy treated with 17β-estradiol - 1 mg/kg/day i.m. for 7 days, or with a combination of progesterone 2 mg/kg/day s.c. for 7 days and 17β-estradiol - 0.2 mg/ kg/day (day 3–7. The strips of myometrial smooth muscle were incubated with a specific opener (NS 1619 and an antagonist (TEA of potassium large conductance calcium-activated channel, or with a specific opener (pinacidil and an antagonist (glybenclamide of ATP-sensitive potassium channels before the administration of oxytocin. NS1619 produced more potent inhibition of the oxytocin-induced contraction during the gestagen dominance (experimental secretory phase than the one observed during the oestrogen dominance (experimental proliferatory phase. TEA antagonized the NS1619 induced inhibition of the myometrial contraction. In the matter of KATP potassium channels, after the administration of pinacidil we observed a similar situation in the changes of myometrial contractility. Pinacidil produced more pronounced inhibition of oxytocin-induced contraction during the secretory phase, and its effect was abolished by the selective inhibitor glybenclamide. Our experimental results indicate that both potassium large conductance calcium-activated channels and ATP-sensitive potassium channels significantly participate in the regulation of myometrial oxytocin-induced contractions and the activity of these channels is probably influenced by the levels of oestrogens and gestagens.

  10. Morvan's syndrome with anti contactin associated protein like 2 – voltage gated potassium channel antibody presenting with syndrome of inappropriate antidiuretic hormone secretion

    Directory of Open Access Journals (Sweden)

    Anjani Kumar Sharma

    2016-01-01

    Full Text Available Morvan's syndrome is a rare autoimmune disorder characterized by triad of peripheral nerve hyperexcitability, autonomic dysfunction, and central nervous system symptoms. Antibodies against contactin-associated protein-like 2 (CASPR2, a subtype of voltage-gated potassium channel (VGKC complex, are found in a significant proportion of patients with Morvan's syndrome and are thought to play a key role in peripheral as well as central clinical manifestations. We report a patient of Morvan's syndrome with positive CASPR2–anti-VGKC antibody having syndrome of inappropriate antidiuretic hormone as a cause of persistent hyponatremia.

  11. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  12. Cnidarian Toxins Acting on Voltage-Gated Ion Channels

    Directory of Open Access Journals (Sweden)

    Robert M. Greenberg

    2006-04-01

    Full Text Available Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels.

  13. Studies of alpha-helicity and intersegmental interactions in voltage-gated Na+ channels: S2D4.

    Directory of Open Access Journals (Sweden)

    Zhongming Ma

    2009-11-01

    Full Text Available Much data, including crystallographic, support structural models of sodium and potassium channels consisting of S1-S4 transmembrane segments (the "voltage-sensing domain" clustered around a central pore-forming region (S5-S6 segments and the intervening loop. Voltage gated sodium channels have four non-identical domains which differentiates them from the homotetrameric potassium channels that form the basis for current structural models. Since potassium and sodium channels also exhibit many different functional characteristics and the fourth domain (D4 of sodium channels differs in function from other domains (D1-D3, we have explored its structure in order to determine whether segments in D4 of sodium channels differ significantly from that determined for potassium channels. We have probed the secondary and tertiary structure and the role of the individual amino acid residues of the S2D4 of Na(v1.4 by employing cysteine-scanning mutagenesis (with tryptophan and glutamine substituted for native cysteine. A Fourier transform power spectrum of perturbations in free energy of steady-state inactivation gating (using midpoint potentials and slopes of Boltzmann equation fits of channel availability, h(infinity-V plots indicates a substantial amount of alpha-helical structure in S2D4 (peak at 106 degrees, alpha-Periodicity Index (alpha-PI of 3.10, This conclusion is supported by alpha-PI values of 3.28 and 2.84 for the perturbations in rate constants of entry into (beta and exit from (alpha fast inactivation at 0 mV for mutant channels relative to WT channels assuming a simple two-state model for transition from the open to inactivated state. The results of cysteine substitution at the two most sensitive sites of the S2D4 alpha-helix (N1382 and E1392C support the existence of electrostatic network interactions between S2 and other transmembrane segments within Na(v1.4D4 similar to but not identical to those proposed for K+ channels.

  14. Microscopic origin of gating current fluctuations in a potassium channel voltage sensor.

    Science.gov (United States)

    Freites, J Alfredo; Schow, Eric V; White, Stephen H; Tobias, Douglas J

    2012-06-06

    Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Regulation of voltage-gated potassium channels attenuates resistance of side-population cells to gefitinib in the human lung cancer cell line NCI-H460.

    Science.gov (United States)

    Choi, Seon Young; Kim, Hang-Rae; Ryu, Pan Dong; Lee, So Yeong

    2017-02-21

    Side-population (SP) cells that exclude anti-cancer drugs have been found in various tumor cell lines. Moreover, SP cells have a higher proliferative potential and drug resistance than main population cells (Non-SP cells). Also, several ion channels are responsible for the drug resistance and proliferation of SP cells in cancer. To confirm the expression and function of voltage-gated potassium (Kv) channels of SP cells, these cells, as well as highly expressed ATP-binding cassette (ABC) transporters and stemness genes, were isolated from a gefitinib-resistant human lung adenocarcinoma cell line (NCI-H460), using Hoechst 33342 efflux. In the present study, we found that mRNA expression of Kv channels in SP cells was different compared to Non-SP cells, and the resistance of SP cells to gefitinib was weakened with a combination treatment of gefitinib and Kv channel blockers or a Kv7 opener, compared to single-treatment gefitinib, through inhibition of the Ras-Raf signaling pathway. The findings indicate that Kv channels in SP cells could be new targets for reducing the resistance to gefitinib.

  16. A comparative study of the effect of ciguatoxins on voltage-dependent Na+ and K+ channels in cerebellar neurons.

    Science.gov (United States)

    Pérez, Sheila; Vale, Carmen; Alonso, Eva; Alfonso, Carmen; Rodríguez, Paula; Otero, Paz; Alfonso, Amparo; Vale, Paulo; Hirama, Masahiro; Vieytes, Mercedes R; Botana, Luis M

    2011-04-18

    Ciguatera is a global disease caused by the consumption of certain warm-water fish (ciguateric fish) that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. The effect of ciguatoxin standards and contaminated ciguatoxin samples was evaluated by electrophysiological recordings in cultured cerebellar neurons. The toxins affected both voltage-gated sodium (Nav) and potassium channels (Kv) although with different potencies. CTX 3C was the most active toxin blocking the peak inward sodium currents, followed by P-CTX 1B and 51-OH CTX 3C. In contrast, P-CTX 1B was more effective in blocking potassium currents. The analysis of six different samples of contaminated fish, in which a ciguatoxin analogue of mass 1040.6, not identical with the standard 51-OH CTX 3C, was the most prevalent compound, indicated an additive effect of the different ciguatoxins present in the samples. The results presented here constitute the first comparison of the potencies of three different purified ciguatoxins on sodium and potassium channels in the same neuronal preparation and indicate that electrophysiological recordings from cultured cerebellar neurons may provide a valuable tool to detect and quantify ciguatoxins in the very low nanomolar range.

  17. Free-energy relationships in ion channels activated by voltage and ligand

    Science.gov (United States)

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  18. Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies - a national cohort study

    DEFF Research Database (Denmark)

    Celicanin, M; Blaabjerg, Morten; Maersk-Moller, C

    2017-01-01

    BACKGROUND AND PURPOSE: The aim of this study was to describe clinical and paraclinical characteristics of all Danish patients who tested positive for anti-voltage-gated potassium channels (VGKC)-complex, anti-leucine-rich glioma-inactivated 1 (LGI1) and anti-contactin-associated protein-2...... antibodies in the serum/cerebrospinal fluid between 2009 and 2013 with follow-up interviews in 2015 and 2016. METHODS: We evaluated antibody status, symptoms leading to testing, course of disease, suspected diagnosis and time of admission as well as diagnosis and treatment. All magnetic resonance imaging......-Barré syndrome, Creutzfeldt-Jakob disease, neuromyotonia and anti-N-methyl-D-aspartate receptor encephalitis. Magnetic resonance imaging abnormalities were demonstrated in 69% of the LGI1-positive patients. Two patients with normal magnetic resonance imaging demonstrated temporal lobe hypermetabolism using (18...

  19. [An autopsy case of amyotrophic lateral sclerosis with prominent muscle cramps, fasciculation, and high titer of anti-voltage gated potassium channel (VGKC) complex antibody].

    Science.gov (United States)

    Sato, Aki; Sakai, Naoko; Shinbo, Junsuke; Hashidate, Hideki; Igarashi, Shuichi; Kakita, Akiyoshi; Yamazaki, Motoyoshi

    2014-01-01

    The patient was a 55-year-old male who had prominent fasciculation and muscle cramps. Muscle weakness and atrophy of the trunk, respiratory system, and extremities gradually progressed. On the basis of these features, we diagnosed this patient as having amyotrophic lateral sclerosis (ALS), however, the upper motor neuron signs were not significant. Following the detection of the anti-voltage gated potassium channel (VGKC) complex antibody at 907.5 pM (normal VGKC complex antibody in the development of cramp-fasciculation syndrome has been speculated. In this ALS patient, the antibodies might be associated with pathomechanisms underlying the characteristic symptoms.

  20. KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel

    DEFF Research Database (Denmark)

    Lundby, Alicia; Olesen, Søren-Peter

    2006-01-01

    The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance in the ...

  1. High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers.

    Science.gov (United States)

    Doherty, Tim; Su, Yongchao; Hong, Mei

    2010-08-27

    The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional (15)N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40 degrees and two possible rotation angles differing by 180 degrees around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. (13)C-(31)P distances between the S4 backbone and the lipid (31)P indicate a approximately 9 A local thinning and 2 A average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 A from the guanidinium C(zeta) of the second Arg to (31)P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/rep...

  3. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    Science.gov (United States)

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  4. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  5. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  6. Mutation in the kv3.3 voltage-gated potassium channel causing spinocerebellar ataxia 13 disrupts sound-localization mechanisms.

    Directory of Open Access Journals (Sweden)

    John C Middlebrooks

    Full Text Available Normal sound localization requires precise comparisons of sound timing and pressure levels between the two ears. The primary localization cues are interaural time differences, ITD, and interaural level differences, ILD. Voltage-gated potassium channels, including Kv3.3, are highly expressed in the auditory brainstem and are thought to underlie the exquisite temporal precision and rapid spike rates that characterize brainstem binaural pathways. An autosomal dominant mutation in the gene encoding Kv3.3 has been demonstrated in a large Filipino kindred manifesting as spinocerebellar ataxia type 13 (SCA13. This kindred provides a rare opportunity to test in vivo the importance of a specific channel subunit for human hearing. Here, we demonstrate psychophysically that individuals with the mutant allele exhibit profound deficits in both ITD and ILD sensitivity, despite showing no obvious impairment in pure-tone sensitivity with either ear. Surprisingly, several individuals exhibited the auditory deficits even though they were pre-symptomatic for SCA13. We would expect that impairments of binaural processing as great as those observed in this family would result in prominent deficits in localization of sound sources and in loss of the "spatial release from masking" that aids in understanding speech in the presence of competing sounds.

  7. [Mechanism of potassium channel in hypoxia-ischemic brain edema: experiment with neonatal rat astrocyte].

    Science.gov (United States)

    Fu, Xue-mei; Xiang, Long; Liao, Da-qing; Feng, Zhi-chun; Mu, De-zhi

    2008-11-04

    To investigate the mechanism of potassium channel in brain edema caused by hypoxia-ischemia (HI). Astrocytes were obtained from 3-day-old SD rats, cultured, and randomly divided into 2 groups: normoxia group, cultured under normoxic condition, and hypoxic-ischemic group, cultured under hypoxic-ischemic condition. The cell volume was measured by radiologic method. Patch-clamp technique was used to observe the electric physiological properties of the voltage-gated potassium channels (Kv) in a whole cell configuration, and the change of voltage-gated potassium channel current (IKv) was recorded in cultured neonatal rat astrocyte during HI. Aquaporin 4 (AQP4) expression vector was constructed from pSUPER vector and transfected into the astrocytes (AQP4 RNAi) to construct AQP4 knockdown (AQP4-/-) cells. cellular volume was determined using [3H]-3-O-methyl-D-glucose uptake in both AQP4-/- and AQP4+/+ cells under the condition of HI. Real time PCR and Western blotting were used to detect the mRNA and protein expression of AQP4. The percentages of the AQP4+/+ and AQP4-/- astrocyte volumes in the condition of HI for 0.5, 1, 2, and 4 h were 104+/-7, 109+/-6, 126+/-12, and 152+/-9 times, and 97+/-7, 105+/-9, 109+/-7, and 132+/-6 times as those of their corresponding control groups (all Pastrocytes significantly increased during HI and the degrees of edema mediated by AQP4 knockdown at different time points were all significantly milder (all Pastrocytes via aquaporin-4 and then cell swelling.

  8. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Elstone, Fisal D; Niciforovic, Ana P

    2014-01-01

    largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1......Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain.......4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce...

  9. Clinical-pathologic correlations in voltage-gated Kv1 potassium channel complex-subtyped autoimmune painful polyneuropathy.

    Science.gov (United States)

    Lahoria, Rajat; Pittock, Sean J; Gadoth, Avi; Engelstad, Janean K; Lennon, Vanda A; Klein, Christopher J

    2017-04-01

    Voltage-gated Kv1 potassium channel complex (VGKC) autoantibodies subtyped for leucine-rich glioma-inactivated 1 (LGI1), contactin-associated-proteinlike 2 (CASPR2), and Kv IgGs have a spectrum of neurological presentations. Painful polyneuropathy is seen in some patients, but nerve pathology descriptions are lacking. Clinicopathologic features were studied in subtyped VGKC-autoantibody-seropositive patients who had undergone nerve biopsies. Five patients were identified, 1 LGI1 IgG positive and 1 CASPR2 IgG positive, but all negative for Kv1.1-, 1.2-, 1.6-subtyped IgG autoantibodies. Median symptom duration was 17 months. Pain was the predominant symptom; 3 had mild sensory loss and/or weakness. Histopathological abnormalities were limited to axonal loss in 3. None had mononuclear cellular infiltrates. Electron micrographs revealed no interstitial abnormalities. Three patients reported marked improvement in pain with immunotherapy. The nerve biopsy histopathology of patients subtyped for LGI1 and CASPR2 IgGs within the VGKC-complex spectrum disorders shows either normal density or axonal fiber loss without inflammatory infiltrates. A reversible neural hyperexcitable mechanism is considered to be the cause of this painful polyneuropathy. Muscle Nerve 55: 520-525, 2017. © 2016 Wiley Periodicals, Inc.

  10. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis.

    Science.gov (United States)

    van Sonderen, Agnes; Petit-Pedrol, Mar; Dalmau, Josep; Titulaer, Maarten J

    2017-05-01

    The discovery, in 2010, of autoantibodies against the extracellular proteins LGI1 and Caspr2 facilitated a change of view regarding the clinical importance of voltage-gated potassium channel (VGKC) antibodies. Currently, these antibodies are all classified as VGKC-complex antibodies, and are commonly considered to have a similar clinical value. However, studies from the past few years show that the immune responses mediated by these antibodies have differing clinical relevance. Here, we review the clinical importance of these immune responses in three settings: patients with anti-LGI1 antibodies, patients with anti-Caspr2 antibodies, and patients with antibodies against the VGKC complex that lack LGI1 and Caspr2 specificity. Antibodies against LGI1 and Caspr2 are associated with different but well-defined syndromes, whereas the clinical importance of VGKC-complex antibodies without LGI1 and Caspr2 specificity is questionable. We describe each of these syndromes, discuss the function of the target antigens and review the limited paediatric literature on the topic. The findings emphasize the importance of defining these disorders according to the molecular identity of the targets (LGI1 or Caspr2), and caution against the use of VGKC-complex antibodies for the diagnosis and treatment of patients without further definition of the antigen.

  11. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo.

    Science.gov (United States)

    Koo, G C; Blake, J T; Talento, A; Nguyen, M; Lin, S; Sirotina, A; Shah, K; Mulvany, K; Hora, D; Cunningham, P; Wunderler, D L; McManus, O B; Slaughter, R; Bugianesi, R; Felix, J; Garcia, M; Williamson, J; Kaczorowski, G; Sigal, N H; Springer, M S; Feeney, W

    1997-06-01

    The voltage activated K+ channel (Kv1.3) has recently been identified as the molecule that sets the resting membrane potential of peripheral human T lymphoid cells. In vitro studies indicate that blockage of Kv1.3 inhibits T cell activation, suggesting that Kv1.3 may be a target for immunosuppression. However, despite the in vitro evidence, there has been no in vivo demonstration that blockade of Kv1.3 will attenuate an immune response. The difficulty is due to species differences, as the channel does not set the membrane potential in rodent peripheral T cells. In this study, we show that the channel is present on peripheral T cells of miniswine. Using the peptidyl Kv1.3 inhibitor, margatoxin, we demonstrate that Kv1.3 also regulates the resting membrane potential, and that blockade of Kv1.3 inhibits, in vivo, both a delayed-type hypersensitivity reaction and an Ab response to an allogeneic challenge. In addition, prolonged Kv1.3 blockade causes reduced thymic cellularity and inhibits the thymic development of T cell subsets. These results provide in vivo evidence that Kv1.3 is a novel target for immunomodulation.

  12. A novel mechanism for fine-tuning open-state stability in a voltage-gated potassium channel

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Niciforovic, Ana P; Galpin, Jason D

    2013-01-01

    stabilization is the consequence of the amelioration of an inherently repulsive open-state interaction between the partial negative charge on the face of Phe481 and a highly co-evolved acidic side chain, Glu395, and this interaction is potentially modulated through the Tyr485 hydroxyl. We propose...... fluorinated derivatives of aromatic residues previously implicated in the gating of Shaker potassium channels. Here we show that stepwise dispersion of the negative electrostatic surface potential of only one site, Phe481, stabilizes the channel open state. Furthermore, these data suggest that this apparent...

  13. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  14. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    Science.gov (United States)

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  15. Biochemical and structural analysis of the hyperpolarization-activated K(+) channel MVP.

    Science.gov (United States)

    Randich, Amelia M; Cuello, Luis G; Wanderling, Sherry S; Perozo, Eduardo

    2014-03-18

    In contrast to the majority of voltage-gated ion channels, hyperpolarization-activated channels remain closed at depolarizing potentials and are activated at hyperpolarizing potentials. The basis for this reverse polarity is thought to be a result of differences in the way the voltage-sensing domain (VSD) couples to the pore domain. In the absence of structural data, the molecular mechanism of this reverse polarity coupling remains poorly characterized. Here we report the characterization of the structure and local dynamics of the closed activation gate (lower S6 region) of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance (EPR) spectroscopy. We show that a codon-optimized version of MVP has high expression levels in Escherichia coli, is purified as a stable tetramer, and exhibits expected voltage-dependent activity when reconstituted in liposomes. EPR analysis of the mid to lower S6 region revealed positions exhibiting strong spin-spin coupling, indicating that the activation gate of MVP is closed at 0 mV. A comparison of local environmental parameters along the activation gate for MVP and KcsA indicates that MVP adopts a different closed conformation. These structural details set the stage for future evaluations of reverse electromechanical coupling in MVP.

  16. Biochemical and Structural Analysis of the Hyperpolarization-Activated K+ Channel MVP

    Science.gov (United States)

    2015-01-01

    In contrast to the majority of voltage-gated ion channels, hyperpolarization-activated channels remain closed at depolarizing potentials and are activated at hyperpolarizing potentials. The basis for this reverse polarity is thought to be a result of differences in the way the voltage-sensing domain (VSD) couples to the pore domain. In the absence of structural data, the molecular mechanism of this reverse polarity coupling remains poorly characterized. Here we report the characterization of the structure and local dynamics of the closed activation gate (lower S6 region) of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance (EPR) spectroscopy. We show that a codon-optimized version of MVP has high expression levels in Escherichia coli, is purified as a stable tetramer, and exhibits expected voltage-dependent activity when reconstituted in liposomes. EPR analysis of the mid to lower S6 region revealed positions exhibiting strong spin–spin coupling, indicating that the activation gate of MVP is closed at 0 mV. A comparison of local environmental parameters along the activation gate for MVP and KcsA indicates that MVP adopts a different closed conformation. These structural details set the stage for future evaluations of reverse electromechanical coupling in MVP. PMID:24490868

  17. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...... probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  18. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  19. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes.

    Science.gov (United States)

    Nagel, Rebecca; Kirschbaum, Frank; Tiedemann, Ralph

    2017-03-01

    In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish.

  20. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  1. Diclofenac distinguishes among homomeric and heteromeric potassium channels composed of KCNQ4 and KCNQ5 subunits.

    Science.gov (United States)

    Brueggemann, Lioubov I; Mackie, Alexander R; Martin, Jody L; Cribbs, Leanne L; Byron, Kenneth L

    2011-01-01

    KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V(0.5) values: -31, -44, and -38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels.

  2. Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.

    Science.gov (United States)

    Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A

    2018-02-21

    Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.

  3. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.

    Science.gov (United States)

    Liu, Chiung-Hui; Chang, Hung-Ming; Wu, Tsung-Huan; Chen, Li-You; Yang, Yin-Shuo; Tseng, To-Jung; Liao, Wen-Chieh

    2017-10-01

    The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K + , which results in an axonal conduction blockade. The recovery of K + -dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K + at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K + distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K + distribution. This study provided direct evidence of K + distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K + distribution in axons for maintaining membrane potential stability after EEN.

  4. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2015-11-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy...NUMBER The Ketogenic Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy...The overall objective of this Discovery Award was to explore the hypothesis the ketogenic diet (KD) regulates neuronal excitability by influencing

  5. Bupivacaine inhibits large conductance, voltage- and Ca2+- activated K+ channels in human umbilical artery smooth muscle cells

    Science.gov (United States)

    Martín, Pedro; Enrique, Nicolás; Palomo, Ana R. Roldán; Rebolledo, Alejandro; Milesi, Veronica

    2012-01-01

    Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account. PMID:22688134

  6. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (IK...

  7. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  8. Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse.

    Science.gov (United States)

    Rozanski, Gabriela M; Nath, Arup R; Adams, Michael E; Stanley, Elise F

    2013-11-15

    A subpopulation of dorsal root ganglion (DRG) neurons are intimately attached in pairs and separated solely by thin satellite glial cell membrane septa. Stimulation of one neuron leads to transglial activation of its pair by a bi-, purinergic/glutamatergic synaptic pathway, a transmission mechanism that we term sandwich synapse (SS) transmission. Release of ATP from the stimulated neuron can be attributed to a classical mechanism involving Ca(2+) entry via voltage-gated calcium channels (CaV) but via an unknown channel type. Specific blockers and toxins ruled out CaV1, 2.1 and 2.2. Transmission was, however, blocked by a moderate depolarization (-50 mV) or low-concentration Ni(2+) (0.1 mM). Transmission persisted using a voltage pulse to -40 mV from a holding potential of -80 mV, confirming the involvement of a low voltage-activated channel type and limiting the candidate channel type to either CaV3.2 or a subpopulation of inactivation- and Ni(2+)-sensitive CaV2.3 channels. Resistance of the neuron calcium current and SS transmission to SNX482 argue against the latter. Hence, we conclude that inter-somatic transmission at the DRG SS is gated by CaV3.2 type calcium channels. The use of CaV3 family channels to gate transmission has important implications for the biological function of the DRG SS as information transfer would be predicted to occur not only in response to action potentials but also to sub-threshold membrane voltage oscillations. Thus, the SS synapse may serve as a homeostatic signalling mechanism between select neurons in the DRG and could play a role in abnormal sensation such as neuropathic pain.

  9. The inhibitor of volume-regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes

    Czech Academy of Sciences Publication Activity Database

    Minieri, L.; Pivoňková, Helena; Caprini, M.; Harantová, Lenka; Anděrová, Miroslava; Ferroni, S.

    2013-01-01

    Roč. 168, č. 5 (2013), s. 1240-1254 ISSN 0007-1188 R&D Projects: GA ČR GAP303/10/1338 Institutional support: RVO:68378041 Keywords : two-pore-domain potassium channels * patch clamp * neuroprotection Subject RIV: FH - Neurology Impact factor: 4.990, year: 2013

  10. Diclofenac Distinguishes among Homomeric and Heteromeric Potassium Channels Composed of KCNQ4 and KCNQ5 SubunitsS⃞

    Science.gov (United States)

    Brueggemann, Lioubov I.; Mackie, Alexander R.; Martin, Jody L.; Cribbs, Leanne L.

    2011-01-01

    KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V0.5 values: −31, −44, and −38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels. PMID:20876743

  11. Complex N-Glycans Influence the Spatial Arrangement of Voltage Gated Potassium Channels in Membranes of Neuronal-Derived Cells.

    Directory of Open Access Journals (Sweden)

    M Kristen Hall

    Full Text Available The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these

  12. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  13. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    Science.gov (United States)

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  14. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  15. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  16. Fatty acids and related Kv2 channel blockers: electrophysiology and toxicity on mosquitoes

    Science.gov (United States)

    Ligand-gated ion channels form an important superfamily of proteins involved in many biological processes. Among them, the potassium channels constitute a very diverse group involved in neural signaling, neuronal activity and action potential. Among the different types of channel activation, voltage...

  17. Surface dynamics of voltage-gated ion channels

    Science.gov (United States)

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-01-01

    ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  18. Crystallization and preliminary X-ray crystallographic characterization of a cyclic nucleotide-binding homology domain from the mouse EAG potassium channel

    International Nuclear Information System (INIS)

    Marques-Carvalho, Maria João; Morais-Cabral, João Henrique

    2012-01-01

    The crystallization conditions and preliminary crystal characterization of the cytoplasmic cyclic nucleotide-binding homology domain from the mouse EAG potassium channel are reported. The members of the family of voltage-gated KCNH potassium channels play important roles in cardiac and neuronal repolarization, tumour proliferation and hormone secretion. These channels have a C-terminal cytoplasmic domain which is homologous to cyclic nucleotide-binding domains (CNB-homology domains), but it has been demonstrated that channel function is not affected by cyclic nucleotides and that the domain does not bind nucleotides in vitro. Here, the crystallization and preliminary crystallographic analysis of a CNB-homology domain from a member of the KCNH family, the mouse EAG channel, is reported. X-ray diffraction data were collected to 2.2 Å resolution and the crystal belonged to the hexagonal space group P3 1 21

  19. Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1

    Science.gov (United States)

    Schauf, Charles L.; Wilson, Kathryn J.

    1987-01-01

    Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712

  20. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  1. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels

    Science.gov (United States)

    Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang

    2012-01-01

    Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778

  2. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1.

    Science.gov (United States)

    Mumm, Patrick; Imes, Dennis; Martinoia, Enrico; Al-Rasheid, Khaled A S; Geiger, Dietmar; Marten, Irene; Hedrich, Rainer

    2013-09-01

    Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families—SLAC/SLAH and ALMT—are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation–deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.

  3. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions.

    Science.gov (United States)

    Kang, Bok Eum; Baker, Bradley J

    2016-04-04

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.

  4. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements

    DEFF Research Database (Denmark)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar

    2008-01-01

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development...

  5. Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2005-02-01

    Voltage-gated conductances on dendrites of layer 5 pyramidal neurons participate in synaptic integration and output generation. We investigated the properties and the distribution of large-conductance calcium-activated potassium channels (BK channels) in this cell type using excised patches in acute slice preparations of rat somatosensory cortex. BK channels were characterized by their large conductance and sensitivity to the specific blockers paxilline and iberiotoxin. BK channels showed a pronounced calcium-dependence with a maximal opening probability of 0.69 at 10 microm and 0.42 at 3 microm free calcium. Their opening probability and transition time constants between open and closed states are voltage-dependent. At depolarized potentials, BK channel gating is described by two open and one closed states. Depolarization increases the opening probability due to a prolongation of the open time constant and a shortening of the closed time constant. Calcium-dependence and biophysical properties of somatic and dendritic BK channels were identical. The presence of BK channels on the apical dendrite of layer 5 pyramidal neurons was shown by immunofluorescence. Patch-clamp recordings revealed a homogeneous density of BK channels on the soma and along the apical dendrite up to 850 microm with a mean density of 1.9 channels per microm(2). BK channels are expressed either isolated or in clusters containing up to four channels. This study shows the presence of BK channels on dendrites. Their activation might modulate the shape of sodium and calcium action potentials, their propagation along the dendrite, and thereby the electrotonic distance between the somatic and dendritic action potential initiation zones.

  6. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.

    Science.gov (United States)

    Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R

    2018-03-24

    Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to

  7. Voltage-gated potassium channel-associated limbic encephalitis in the West of Scotland: case reports and literature review.

    Science.gov (United States)

    Reid, J M; Foley, P; Willison, H J

    2009-11-01

    The syndrome of limbic encephalitis (LE) associated with antibodies against voltage-gated potassium channels (VGKC-LE) has recently been described. The number of published cases is however small. We therefore aimed to review all cases seen at our centre and compare with published cases. Retrospective cases of VGKC-LE were identified using a questionnaire to Neurologists at the Southern General hospital, Glasgow, and by reviewing patients with a positive VGKC antibody test (2002-2007). Case-note review of identified cases and a literature review of all published cases of VGKC-LE were performed. Seven cases were identified (four female, age range 51-81). Patients presented sub-acutely with seizures and anterograde memory loss. Five patients had medial temporal lobe change on cranial imaging. No paraneoplastic cases were identified. 5/7 patients made some improvement with immunotherapy. In 2006, 3/18 (17%) patients with a coded discharge of encephalitis were diagnosed with VGKC-LE. The literature review revealed 40 patients with VGKC-LE. Age, gender or VGKC level did not predict likelihood for a significant recovery. Patients treated VGKC-LE is being increasingly diagnosed and is best identified early and treated with immunotherapy to offer the greatest chance of recovery. This series and literature review expands the current published evidence in VGKC-LE.

  8. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Directory of Open Access Journals (Sweden)

    Ana Laura Sanchez-Sandoval

    Full Text Available Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA and low-voltage (LVA activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  9. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels

    Science.gov (United States)

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447

  10. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Science.gov (United States)

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  11. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Science.gov (United States)

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. Copyright © 2016 the American Physiological Society.

  12. Gabapentin Modulates HCN4 Channel Voltage-Dependence

    Directory of Open Access Journals (Sweden)

    Han-Shen Tae

    2017-08-01

    Full Text Available Gabapentin (GBP is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+ or calretinin positive (CR+ inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM caused a hyperpolarizing shift in the voltage of half activation (V1/2 thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.

  13. A Disease Mutation Causing Episodic Ataxia Type I in the S1 Links Directly to the Voltage Sensor and the Selectivity Filter in Kv Channels.

    Science.gov (United States)

    Petitjean, Dimitri; Kalstrup, Tanja; Zhao, Juan; Blunck, Rikard

    2015-09-02

    The mutation F184C in Kv1.1 leads to development of episodic ataxia type I (EA1). Although the mutation has been said to alter activation kinetics and to lower expression, we show here that the underlying molecular mechanisms may be more complex. Although F184 is positioned in the "peripheral" S1 helix, it occupies a central position in the 3D fold. We show in cut-open oocyte voltage-clamp recordings of gating and ionic currents of the Shaker Kv channel expressed in Xenopus oocytes that F184 not only interacts directly with the gating charges of the S4, but also creates a functional link to the selectivity filter of the neighboring subunit. This link leads to impaired fast and slow inactivation. The effect on fast inactivation is of an allosteric nature considering that fast inactivation is caused by a linked cytosolic ball peptide. The extensive effects of F184C provide a new mechanism underlying EA. Episodic ataxia (EA) is an inherited disease that leads to occasional loss of motor control in combination with variable other symptoms such as vertigo or migraine. EA type I (EA1), studied here, is caused by mutations in a voltage-gated potassium channel that contributes to the generation of electrical signals in the brain. The mechanism by which mutations in voltage-gated potassium channels lead to EA is still unknown and there is no consistent pharmacological treatment. By studying in detail one disease-causing mutation in Kv1.1, we describe a novel molecular mechanism distinct from mechanisms described previously. This mechanism contributes to the understanding of potassium channel function in general and might lead to a better understanding of how EA develops. Copyright © 2015 the authors 0270-6474/15/3512198-09$15.00/0.

  14. KCNE1 constrains the voltage sensor of Kv7.1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Liora Shamgar

    Full Text Available Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K(+ channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K(+ channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions.

  15. Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels.

    Science.gov (United States)

    Mckeown, Lynn; Burnham, Matthew P; Hodson, Charlotte; Jones, Owen T

    2008-10-31

    The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.

  16. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  17. CONTRIBUTIONS OF INTRACELLULAR IONS TO Kv CHANNEL VOLTAGE SENSOR DYNAMICS.

    Directory of Open Access Journals (Sweden)

    Samuel eGoodchild

    2012-06-01

    Full Text Available Voltage sensing domains of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the voltage sensing domain caused by changes in the applied voltage across the membrane field are coupled to the conducting pore region and the gating of ionic conductance. However, several other factors not directly linked to the voltage dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  18. Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.

    Science.gov (United States)

    Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C

    2010-10-01

    Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.

  19. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice.

    Science.gov (United States)

    Bausch, Anne E; Ehinger, Rebekka; Straubinger, Julia; Zerfass, Patrick; Nann, Yvette; Lukowski, Robert

    2018-05-31

    The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  1. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  2. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  3. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    Science.gov (United States)

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  4. Dioxin-induced acute cardiac mitochondrial oxidative damage and increased activity of ATP-sensitive potassium channels in Wistar rats

    International Nuclear Information System (INIS)

    Pereira, Susana P.; Pereira, Gonçalo C.; Pereira, Cláudia V.; Carvalho, Filipa S.; Cordeiro, Marília H.; Mota, Paula C.; Ramalho-Santos, João; Moreno, António J.; Oliveira, Paulo J.

    2013-01-01

    The environmental dioxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a Group 1 human carcinogen and teratogenic agent. We hypothesize that TCDD-induced oxidative stress may also interfere with mitochondrial ATP-sensitive potassium channels (mitoKATP), which are known to regulate and to be regulated by mitochondrial redox state. We investigated the effects of an acute treatment of male Wistar rats with TCDD (50 μg/kg i.p.) and measured the regulation of cardiac mitoKATP. While the function of cardiac mitochondria was slightly depressed, mitoKATP activity was 52% higher in animals treated with TCDD. The same effects were not observed in liver mitochondria isolated from the same animals. Our data also shows that regulation of mitochondrial ROS production by mitoKATP activity is different in both groups. To our knowledge, this is the first report to show that TCDD increases mitoKATP activity in the heart, which may counteract the increased oxidative stress caused by the dioxin during acute exposure. -- Highlights: •Acute TCDD treatment of Wistar rats causes cardiac oxidative stress. •Acute TCDD treatment causes cardiac mitochondrial alterations. •Mitochondrial liver vs. heart alterations are distinct. •TCDD treatment resulted in altered activity of cardiac mitochondrial K-ATP channels. -- Dioxin alters the regulation of cardiac mitochondrial ATP-sensitive potassium channels and disturbs mitochondrial physiology

  5. EEG Differences in Two Clinically Similar Rapid Dementias: Voltage-Gated Potassium Channel Complex-Associated Autoimmune Encephalitis and Creutzfeldt-Jakob Disease.

    Science.gov (United States)

    Freund, Brin; Probasco, John C; Cervenka, Mackenzie C; Sutter, Raoul; Kaplan, Peter W

    2018-05-01

    Distinguishing treatable causes for rapidly progressive dementia from those that are incurable is vital. Creutzfeldt-Jakob disease (CJD) and voltage-gated potassium channel complex-associated autoimmune encephalitis (VGKC AE) are 2 such conditions with disparate outcomes and response to treatment. To determine the differences in electroencephalography between CJD and VGKC AE, we performed a retrospective review of medical records and examined clinical data, neuroimaging, and electroencephalographs performed in patients admitted for evaluation for rapidly progressive dementia diagnosed with CJD and VGKC AE at the Johns Hopkins Hospital and Bayview Medical Center between January 1, 2007 and December 31, 2015. More patients in the VGKC AE group had seizures (12/17) than those with CJD (3/14; P = .008). Serum sodium levels were lower in those with VGKC AE ( P = .001). Cerebrospinal fluid (CSF) white blood cell count was higher in VGKC AE ( P = .008). CSF protein 14-3-3 ( P = .018) was more commonly detected in CJD, and tau levels were higher in those with CJD ( P VGKC AE, and electroencephalography can aid in their diagnoses. Performing serial EEGs better delineates these conditions.

  6. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  7. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migrai...

  8. MiRNA-135a regulates the expression of small conductance calcium-activated potassium (SK3) channels in epilepsy-like conditions

    NARCIS (Netherlands)

    Honrath, Birgit; Norwood, Braxton; Tanrioever, Gaye; Kuter, Katarzyna; Henshall, David C; Aksel-Aksoy, Ayla; Schratt, Gerhard; Pasterkamp, Jeroen; Dencher, Norbert A.; Nieweg, Katja; Culmsee, Carsten; Dolga, Amalia Mihalea

    2017-01-01

    Background Excessive and hypersynchronous neuronal discharges are key characteristics in the pathophysiology of neurological disorders such as epilepsy. Owing to their ability of regulating neuronal excitability, small conductance calcium-activated potassium (SK) channels have been implicated in

  9. Suspected limbic encephalitis and seizure in cats associated with voltage-gated potassium channel (VGKC) complex antibody.

    Science.gov (United States)

    Pakozdy, A; Halasz, P; Klang, A; Bauer, J; Leschnik, M; Tichy, A; Thalhammer, J G; Lang, B; Vincent, A

    2013-01-01

    Treatment-resistant complex partial seizures (CPS) with orofacial involvement recently were reported in cats in association with hippocampal pathology. The features had some similarity to those described in humans with limbic encephalitis and voltage-gated potassium channel (VGKC) complex antibody. The purpose of this pilot study was to evaluate cats with CPS and orofacial involvement for the presence of VGKC-complex antibody. Client-owned cats with acute orofacial CPS and control cats were investigated. Prospective study. Serum was collected from 14 cats in the acute stage of the disease and compared with 19 controls. VGKC-complex antibodies were determined by routine immunoprecipitation and by binding to leucine-rich glioma inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2), the 2 main targets of VGKC-complex antibodies in humans. Five of the 14 affected cats, but none of the 19 controls, had VGKC-complex antibody concentrations above the cut-off concentration (>100 pmol/L) based on control samples and similar to those found in humans. Antibodies in 4 cats were directed against LGI1, and none were directed against CASPR2. Follow-up sera were available for 5 cats in remission and all antibody concentrations were within the reference range. Our study suggests that an autoimmune limbic encephalitis exists in cats and that VGKC-complex/LGI1 antibodies may play a role in this disorder, as they are thought to in humans. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  10. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  11. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    Science.gov (United States)

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  12. Activation of voltage-gated KCNQ/Kv7 channels by anticonvulsant retigabine attenuates mechanical allodynia of inflammatory temporomandibular joint in rats

    Directory of Open Access Journals (Sweden)

    Xu Wen

    2010-08-01

    Full Text Available Abstract Background Temporomandibular disorders (TMDs are characterized by persistent orofacial pain and have diverse etiologic factors that are not well understood. It is thought that central sensitization leads to neuronal hyperexcitability and contributes to hyperalgesia and spontaneous pain. Nonsteroidal anti-inflammatory drugs (NSAIDs are currently the first choice of drug to relieve TMD pain. NSAIDS were shown to exhibit anticonvulsant properties and suppress cortical neuron activities by enhancing neuronal voltage-gated potassium KCNQ/Kv7 channels (M-current, suggesting that specific activation of M-current might be beneficial for TMD pain. Results In this study, we selected a new anticonvulsant drug retigabine that specifically activates M-current, and investigated the effect of retigabine on inflammation of the temporomandibular joint (TMJ induced by complete Freund's adjuvant (CFA in rats. The results show that the head withdrawal threshold for escape from mechanical stimulation applied to facial skin over the TMJ in inflamed rats was significantly lower than that in control rats. Administration of centrally acting M-channel opener retigabine (2.5 and 7.5 mg/kg can dose-dependently raise the head withdrawal threshold of mechanical allodynia, and this analgesic effect can be reversed by the specific KCNQ channel blocker XE991 (3 mg/kg. Food intake is known to be negatively associated with TMJ inflammation. Food intake was increased significantly by the administration of retigabine (2.5 and 7.5 mg/kg, and this effect was reversed by XE991 (3 mg/kg. Furthermore, intracerebralventricular injection of retigabine further confirmed the analgesic effect of central retigabine on inflammatory TMJ. Conclusions Our findings indicate that central sensitization is involved in inflammatory TMJ pain and pharmacological intervention for controlling central hyperexcitability by activation of neuronal KCNQ/M-channels may have therapeutic potential for

  13. The NH2 terminus regulates voltage-dependent gating of CALHM ion channels.

    Science.gov (United States)

    Tanis, Jessica E; Ma, Zhongming; Foskett, J Kevin

    2017-08-01

    Calcium homeostasis modulator protein-1 (CALHM1) and its Caenorhabditis elegans (ce) homolog, CLHM-1, belong to a new family of physiologically important ion channels that are regulated by voltage and extracellular Ca 2+ (Ca 2+ o ) but lack a canonical voltage-sensing domain. Consequently, the intrinsic voltage-dependent gating mechanisms for CALHM channels are unknown. Here, we performed voltage-clamp experiments on ceCLHM-1 chimeric, deletion, insertion, and point mutants to assess the role of the NH 2 terminus (NT) in CALHM channel gating. Analyses of chimeric channels in which the ceCLHM-1 and human (h)CALHM1 NH 2 termini were interchanged showed that the hCALHM1 NT destabilized channel-closed states, whereas the ceCLHM-1 NT had a stabilizing effect. In the absence of Ca 2+ o , deletion of up to eight amino acids from the ceCLHM-1 NT caused a hyperpolarizing shift in the conductance-voltage relationship with little effect on voltage-dependent slope. However, deletion of nine or more amino acids decreased voltage dependence and induced a residual conductance at hyperpolarized voltages. Insertion of amino acids into the NH 2 -terminal helix also decreased voltage dependence but did not prevent channel closure. Mutation of ceCLHM-1 valine 9 and glutamine 13 altered half-maximal activation and voltage dependence, respectively, in 0 Ca 2+ In 2 mM Ca 2+ o , ceCLHM-1 NH 2 -terminal deletion and point mutant channels closed completely at hyperpolarized voltages with apparent affinity for Ca 2+ o indistinguishable from wild-type ceCLHM-1, although the ceCLHM-1 valine 9 mutant exhibited an altered conductance-voltage relationship and kinetics. We conclude that the NT plays critical roles modulating voltage dependence and stabilizing the closed states of CALHM channels. Copyright © 2017 the American Physiological Society.

  14. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels.

    Science.gov (United States)

    Chen, Haijun; Kronengold, Jack; Yan, Yangyang; Gazula, Valeswara-Rao; Brown, Maile R; Ma, Liqun; Ferreira, Gonzalo; Yang, Youshan; Bhattacharjee, Arin; Sigworth, Fred J; Salkoff, Larry; Kaczmarek, Leonard K

    2009-04-29

    Potassium channels activated by intracellular Na(+) ions (K(Na)) play several distinct roles in regulating the firing patterns of neurons, and, at the single channel level, their properties are quite diverse. Two known genes, Slick and Slack, encode K(Na) channels. We have now found that Slick and Slack subunits coassemble to form heteromeric channels that differ from the homomers in their unitary conductance, kinetic behavior, subcellular localization, and response to activation of protein kinase C. Heteromer formation requires the N-terminal domain of Slack-B, one of the alternative splice variants of the Slack channel. This cytoplasmic N-terminal domain of Slack-B also facilitates the localization of heteromeric K(Na) channels to the plasma membrane. Immunocytochemical studies indicate that Slick and Slack-B subunits are coexpressed in many central neurons. Our findings provide a molecular explanation for some of the diversity in reported properties of neuronal K(Na) channels.

  15. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    Science.gov (United States)

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  16. Neuronal trafficking of voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Jensen, Camilla S; Rasmussen, Hanne Borger; Misonou, Hiroaki

    2011-01-01

    The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regul......The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials...

  17. Kv10.1 potassium channel: from the brain to the tumors.

    Science.gov (United States)

    Cázares-Ordoñez, V; Pardo, L A

    2017-10-01

    The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.

  18. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    Science.gov (United States)

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  19. LRRK2 regulates voltage-gated calcium channel function.

    Directory of Open Access Journals (Sweden)

    Cade eBedford

    2016-05-01

    Full Text Available Voltage-gated Ca2+ (CaV channels enable Ca2+ influx in response to membrane depolarization. CaV2.1 channels are localized to the presynaptic membrane of many types of neurons where they are involved in triggering neurotransmitter release. Several signaling proteins have been identified as important CaV2.1 regulators including protein kinases, G-proteins and Ca2+ binding proteins. Recently, we discovered that leucine rich repeat kinase 2 (LRRK2, a protein associated with inherited Parkinson’s disease, interacts with specific synaptic proteins and influences synaptic transmission. Since synaptic proteins functionally interact with CaV2.1 channels and synaptic transmission is triggered by Ca2+ entry via CaV2.1, we investigated whether LRRK2 could impact CaV2.1 channel function. CaV2.1 channel properties were measured using whole cell patch clamp electrophysiology in HEK293 cells transfected with CaV2.1 subunits and various LRRK2 constructs. Our results demonstrate that both wild type LRRK2 and the G2019S LRRK2 mutant caused a significant increase in whole cell Ca2+ current density compared to cells expressing only the CaV2.1 channel complex. In addition, LRRK2 expression caused a significant hyperpolarizing shift in voltage-dependent activation while having no significant effect on inactivation properties. These functional changes in CaV2.1 activity are likely due to a direct action of LRRK2 as we detected a physical interaction between LRRK2 and the β3 CaV channel subunit via coimmunoprecipitation. Furthermore, effects on CaV2.1 channel function are dependent on LRRK2 kinase activity as these could be reversed via treatment with a LRRK2 inhibitor. Interestingly, LRRK2 also augmented endogenous voltage-gated Ca2+ channel function in PC12 cells suggesting other CaV channels could also be regulated by LRRK2. Overall, our findings support a novel physiological role for LRRK2 in regulating CaV2.1 function that could have implications for how

  20. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Science.gov (United States)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar; Akemann, Walther; Knöpfel, Thomas

    2008-06-25

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  2. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence

    Directory of Open Access Journals (Sweden)

    Rajeev Gupta

    2017-06-01

    Full Text Available Voltage-Dependent Anion Channel (VDAC phosphorylated by c-Jun N-terminal Kinase-3 (JNK3 was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  3. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    Science.gov (United States)

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  4. Importance of glycosylation on function of a potassium channel in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    M K Hall

    Full Text Available The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type, partially glycosylated (N220Q and N229Q, and unglycosylated (N220Q/N229Q Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.

  5. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.

    Science.gov (United States)

    Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang

    2012-01-01

    Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.

  6. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  7. KCNQ4 channel activation by BMS-204352 and retigabine

    DEFF Research Database (Denmark)

    Schrøder, Rikke Louise K.; Jespersen, Thomas; Christophersen, P

    2001-01-01

    Activation of potassium channels generally reduces cellular excitability, making potassium channel openers potential drug candidates for the treatment of diseases related to hyperexcitabilty such as epilepsy, neuropathic pain, and neurodegeneration. Two compounds, BMS-204352 and retigabine, prese...

  8. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

    Science.gov (United States)

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin

    2013-08-06

    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  9. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    conductance, calcium and voltage- dependent potassium (BKCa) channels thereby promoting vasoconstriction. Our results show that the Rho-kinase inhibitor, Y-27632, induced concentration-dependent relaxation in rat mesenteric artery.

  11. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2008-06-01

    Full Text Available Ci-VSP contains a voltage-sensing domain (VSD homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  12. High potency inhibition of hERG potassium channels by the sodium–calcium exchange inhibitor KB-R7943

    Science.gov (United States)

    Cheng, Hongwei; Zhang, Yihong; Du, Chunyun; Dempsey, Christopher E; Hancox, Jules C

    2012-01-01

    BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium–calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K+ channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (IhERG) carried by wild-type or mutant hERG channels and of native rabbit ventricular IKr. Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both IhERG and native IKr rapidly on membrane depolarization with IC50 values of ∼89 and ∼120 nM, respectively, for current tails at −40 mV following depolarizing voltage commands to +20 mV. Marked IhERG inhibition also occurred under ventricular action potential voltage clamp. IhERG inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited IhERG, but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits IhERG/IKr with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG. PMID:21950687

  13. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  14. Activation of endothelial and epithelial K(Ca) 2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm

    2012-01-01

    BACKGROUND AND PURPOSE: Small (K(Ca) 2) and intermediate (K(Ca) 3.1) conductance calcium-activated potassium channels (K(Ca) ) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we inv...... targets for treatment of pulmonary hypertension and chronic obstructive pulmonary disease....

  15. Down-regulation of A-type potassium channel in gastric-specific DRG neurons in a rat model of functional dyspepsia.

    Science.gov (United States)

    Li, S; Chen, J D Z

    2014-07-01

    Although without evidence of organic structural abnormalities, pain or discomfort is a prominent symptom of functional dyspepsia and considered to reflect visceral hypersensitivity whose underlying mechanism is poorly understood. Here, we studied electrophysiological properties and expression of voltage-gated potassium channels in dorsal root ganglion (DRG) neurons in a rat model of functional dyspepsia induced by neonatal gastric irritation. Male Sprague-Dawley rat pups at 10-day old received 0.1% iodoacetamide (IA) or vehicle by oral gavage for 6 days and studied at adulthood. Retrograde tracer-labeled gastric-specific T8 -T12 DRG neurons were harvested for the patch-clamp study in voltage and current-clamp modes and protein expression of K(+) channel in T8 -T12 DRGs was examined by western blotting. (1) Gastric specific but not non-gastric DRG neurons showed an enhanced excitability in neonatal IA-treated rats compared to the control: depolarized resting membrane potentials, a lower current threshold for action potential (AP) activation, and an increase in the number of APs in response to current stimulation. (2) The current density of tetraethylammonium insensitive (transiently inactivating A-type current), but not the tetraethylammonium sensitive (slow-inactivating delayed rectifier K(+) currents), was significantly smaller in IA-treated rats (65.4 ± 6.9 pA/pF), compared to that of control (93.1 ± 8.3 pA/pF). (3) Protein expression of KV 4.3 was down-regulated in IA-treated rats. A-type potassium channels are significantly down-regulated in the gastric-specific DRG neurons in adult rats with mild neonatal gastric irritation, which in part contribute to the enhanced DRG neuron excitabilities that leads to the development of gastric hypersensitivity. © 2014 John Wiley & Sons Ltd.

  16. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Matthew T Dickerson

    Full Text Available Glucose-stimulated insulin secretion (GSIS relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN. Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased

  17. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies.

    Science.gov (United States)

    Lang, Bethan; Makuch, Mateusz; Moloney, Teresa; Dettmann, Inga; Mindorf, Swantje; Probst, Christian; Stoecker, Winfried; Buckley, Camilla; Newton, Charles R; Leite, M Isabel; Maddison, Paul; Komorowski, Lars; Adcock, Jane; Vincent, Angela; Waters, Patrick; Irani, Sarosh R

    2017-04-01

    Autoantibodies against the extracellular domains of the voltage-gated potassium channel (VGKC) complex proteins, leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-2 (CASPR2), are found in patients with limbic encephalitis, faciobrachial dystonic seizures, Morvan's syndrome and neuromyotonia. However, in routine testing, VGKC complex antibodies without LGI1 or CASPR2 reactivities (double-negative) are more common than LGI1 or CASPR2 specificities. Therefore, the target(s) and clinical associations of double-negative antibodies need to be determined. Sera (n=1131) from several clinically defined cohorts were tested for IgG radioimmunoprecipitation of radioiodinated α-dendrotoxin ( 125 I-αDTX)-labelled VGKC complexes from mammalian brain extracts. Positive samples were systematically tested for live hippocampal neuron reactivity, IgG precipitation of 125 I-αDTX and 125 I-αDTX-labelled Kv1 subunits, and by cell-based assays which expressed Kv1 subunits, LGI1 and CASPR2. VGKC complex antibodies were found in 162 of 1131 (14%) sera. 90 of these (56%) had antibodies targeting the extracellular domains of LGI1 or CASPR2. Of the remaining 72 double-negative sera, 10 (14%) immunoprecipitated 125 I-αDTX itself, and 27 (38%) bound to solubilised co-expressed Kv1.1/1.2/1.6 subunits and/or Kv1.2 subunits alone, at levels proportionate to VGKC complex antibody levels (r=0.57, p=0.0017). The sera with LGI1 and CASPR2 antibodies immunoprecipitated neither preparation. None of the 27 Kv1-precipitating samples bound live hippocampal neurons or Kv1 extracellular domains, but 16 (59%) bound to permeabilised Kv1-expressing human embryonic kidney 293T cells. These intracellular Kv1 antibodies mainly associated with non-immune disease aetiologies, poor longitudinal clinical-serological correlations and a limited immunotherapy response. Double-negative VGKC complex antibodies are often directed against cytosolic epitopes of Kv1 subunits and occasionally against

  18. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  19. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  20. SGK3 Sensitivity of Voltage Gated K+ Channel Kv1.5 (KCNA5

    Directory of Open Access Journals (Sweden)

    Musaab Ahmed

    2016-01-01

    Full Text Available Background: The serum & glucocorticoid inducible kinase isoform SGK3 is a powerful regulator of several transporters, ion channels and the Na+/K+ ATPase. Targets of SGK3 include the ubiquitin ligase Nedd4-2, which is in turn a known regulator of the voltage gated K+ channel Kv1.5 (KCNA5. The present study thus explored whether SGK3 modifies the activity of the voltage gated K+ channel KCNA5, which participates in the regulation of diverse functions including atrial cardiac action potential, activity of vascular smooth muscle cells, insulin release and tumour cell proliferation. Methods: cRNA encoding KCNA5 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild-type SGK3, constitutively active S419DSGK3, inactive K191NSGK3 and/or wild type Nedd4-2. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp. Results: Voltage gated current in KCNA5 expressing Xenopus oocytes was significantly enhanced by wild-type SGK3 and S419DSGK3, but not by K191NSGK3. SGK3 was effective in the presence of ouabain (1 mM and thus did not require Na+/K+ ATPase activity. Coexpression of Nedd4-2 decreased the voltage gated current in KCNA5 expressing Xenopus oocytes, an effect largely reversed by additional coexpression of SGK3. Conclusion: SGK3 is a positive regulator of KCNA5, which is at least partially effective by abrogating the effect of Nedd4-2.

  1. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolari......The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased......M. Application of NS1643 also resulted in a prolonged postrepolarization refractory time. Finally, cardiomyocytes exposed to NS1643 resisted reactivation by small depolarizing currents mimicking early afterdepolarizations. In conclusion, HERG channel activation by small molecules such as NS1643 increases...

  2. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel

    Directory of Open Access Journals (Sweden)

    Olga B. Vadzyuk

    2018-03-01

    Full Text Available The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate. Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane. Keywords: ATP-sensitive potassium channel, Diazoxide, 5-hydroxydecanoate, Myometrium, Mitochondria, Mitochondrial swelling, Mitochondrial membrane potential, ROS

  3. Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries

    DEFF Research Database (Denmark)

    Chadha, Preet S; Zunke, Friederike; Davis, Alison J

    2012-01-01

    The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature.......The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature....

  4. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    Science.gov (United States)

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel

  5. C-terminal β9-strand of the cyclic nucleotide-binding homology domain stabilizes activated states of Kv11.1 channels.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available Kv11.1 potassium channels are important for regulation of the normal rhythm of the heartbeat. Reduced activity of Kv11.1 channels causes long QT syndrome type 2, a disorder that increases the risk of cardiac arrhythmias and sudden cardiac arrest. Kv11.1 channels are members of the KCNH subfamily of voltage-gated K(+ channels. However, they also share many similarities with the cyclic nucleotide gated ion channel family, including having a cyclic nucleotide-binding homology (cNBH domain. Kv11.1 channels, however, are not directly regulated by cyclic nucleotides. Recently, crystal structures of the cNBH domain from mEAG and zELK channels, both members of the KCNH family of voltage-gated potassium channels, revealed that a C-terminal β9-strand in the cNBH domain occupied the putative cyclic nucleotide-binding site thereby precluding binding of cyclic nucleotides. Here we show that mutations to residues in the β9-strand affect the stability of the open state relative to the closed state of Kv11.1 channels. We also show that disrupting the structure of the β9-strand reduces the stability of the inactivated state relative to the open state. Clinical mutations located in this β9-strand result in reduced trafficking efficiency, which suggests that binding of the C-terminal β9-strand to the putative cyclic nucleotide-binding pocket is also important for assembly and trafficking of Kv11.1 channels.

  6. Molecular Mechanisms Underlying Renin-Angiotensin-Aldosterone System Mediated Regulation of BK Channels

    Directory of Open Access Journals (Sweden)

    Zhen-Ye Zhang

    2017-09-01

    Full Text Available Large-conductance calcium-activated potassium channels (BK channels belong to a family of Ca2+-sensitive voltage-dependent potassium channels and play a vital role in various physiological activities in the human body. The renin-angiotensin-aldosterone system is acknowledged as being vital in the body's hormone system and plays a fundamental role in the maintenance of water and electrolyte balance and blood pressure regulation. There is growing evidence that the renin-angiotensin-aldosterone system has profound influences on the expression and bioactivity of BK channels. In this review, we focus on the molecular mechanisms underlying the regulation of BK channels mediated by the renin-angiotensin-aldosterone system and its potential as a target for clinical drugs.

  7. IgG and complement deposition and neuronal loss in cats and humans with epilepsy and voltage-gated potassium channel complex antibodies.

    Science.gov (United States)

    Klang, Andrea; Schmidt, Peter; Kneissl, Sibylle; Bagó, Zoltán; Vincent, Angela; Lang, Bethan; Moloney, Teresa; Bien, Christian G; Halász, Péter; Bauer, Jan; Pákozdy, Akos

    2014-05-01

    Voltage-gated potassium channel complex (VGKC-complex) antibody (Ab) encephalitis is a well-recognized form of limbic encephalitis in humans, usually occurring in the absence of an underlying tumor. The patients have a subacute onset of seizures, magnetic resonance imaging findings suggestive of hippocampal inflammation, and high serum titers of Abs against proteins of the VGKC-complex, particularly leucine-rich, glioma-inactivated 1 (LGI1). Most patients are diagnosed promptly and recover substantially with immunotherapies; consequently, neuropathological data are limited. We have recently shown that feline complex partial cluster seizures with orofacial involvement (FEPSO) in cats can also be associated with Abs against VGKC-complexes/LGI1. Here we examined the brains of cats with FEPSO and compared the neuropathological findings with those in a human with VGKC-complex-Ab limbic encephalitis. Similar to humans, cats with VGKC-complex-Ab and FEPSO have hippocampal lesions with only moderate T-cell infiltrates but with marked IgG infiltration and complement C9neo deposition on hippocampal neurons, associated with neuronal loss. These findings provide further evidence that FEPSO is a feline form of VGKC-complex-Ab limbic encephalitis and provide a model for increasing understanding of the human disease.

  8. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    International Nuclear Information System (INIS)

    Long, Yan; Lin, Zuoxian; Xia, Menghang; Zheng, Wei; Li, Zhiyuan

    2013-01-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC 50 values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds

  9. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yan; Lin, Zuoxian [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Xia, Menghang; Zheng, Wei [National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Zhiyuan, E-mail: li_zhiyuan@gibh.ac.cn [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2013-03-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.

  10. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    Science.gov (United States)

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  11. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Science.gov (United States)

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.

    Science.gov (United States)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  13. Clinical utility of seropositive voltage-gated potassium channel–complex antibody

    Science.gov (United States)

    Jammoul, Adham; Shayya, Luay; Mente, Karin; Li, Jianbo; Rae-Grant, Alexander

    2016-01-01

    Abstract Background: Antibodies against voltage-gated potassium channel (VGKC)–complex are implicated in the pathogenesis of acquired neuromyotonia, limbic encephalitis, faciobrachial dystonic seizure, and Morvan syndrome. Outside these entities, the clinical value of VGKC-complex antibodies remains unclear. Methods: We conducted a single-center review of patients positive for VGKC-complex antibodies over an 8-year period. Results: Among 114 patients positive for VGKC-complex antibody, 11 (9.6%) carrying the diagnosis of limbic encephalitis (n = 9) or neuromyotonia (n = 2) constituted the classic group, and the remaining 103 cases of various neurologic and non-neurologic disorders comprised the nonclassic group. The median titer for the classic group was higher than the nonclassic group (p 0.25 nM) VGKC-complex antibody levels (p VGKC-complex antibody titers are more likely found in patients with classically associated syndromes and other autoimmune conditions. Low-level VGKC-complex antibodies can be detected in nonspecific and mostly nonautoimmune disorders. The presence of VGKC-complex antibody, rather than its level, may serve as a marker of malignancy. PMID:27847683

  14. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Intracellular mediators of potassium-induced aldosterone secretion

    International Nuclear Information System (INIS)

    Ganguly, A.; Chiou, S.; Davis, J.S.

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) in 3 H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium

  16. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    Science.gov (United States)

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  17. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  18. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels.

    Science.gov (United States)

    Schewe, Marcus; Nematian-Ardestani, Ehsan; Sun, Han; Musinszki, Marianne; Cordeiro, Sönke; Bucci, Giovanna; de Groot, Bert L; Tucker, Stephen J; Rapedius, Markus; Baukrowitz, Thomas

    2016-02-25

    Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Mechanism of voltage-gated channel formation in lipid membranes.

    Science.gov (United States)

    Guidelli, Rolando; Becucci, Lucia

    2016-04-01

    Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  1. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    Science.gov (United States)

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  2. Critical voltage effects in electron channeling patterns

    International Nuclear Information System (INIS)

    Farrow, R.C.

    1984-01-01

    Electron channeling patterns were used to study critical voltage effects in the metals molybdenum and tungsten. The purpose was to characterize both theoretically and experimentally how a critical voltage will affect the channeling pattern line shapes. The study focused on the second order critical voltage that results from the degeneracy between the Bloch wave states of the (110) and (220) reflections. Theoretical (110) series electron channeling pattern line profiles were calculated using the dynamical theory of Hirsch and Humphreys (1970). A 10 beam dynamical electron diffraction calculation was performed (using complex Fourier lattice potentials) to generate Bloch wave coefficients, excitation amplitudes, and absorption coefficients needed for determining backscattering coefficients and subsequent backscattered electron intensities. The theoretical model is applicable to electron diffraction at all energies since no high energy approximation or perturbation method was used

  3. When should we test for voltage-gated potassium channel complex antibodies? A retrospective case control study.

    Science.gov (United States)

    O'Sullivan, B J; Steele, T; Ellul, M A; Kirby, E; Duale, A; Kier, G; Crooks, D; Jacob, A; Solomon, T; Michael, B D

    2016-11-01

    Patients with voltage-gated potassium channel (VGKC)-complex antibodies are increasingly recognized as having central, peripheral or combined phenotypes. With increasing awareness, more patients are tested and the clinical spectrum is expanding. Consequently, clinicians may be uncertain as to which patients should or should not be tested. Previous studies have identified common clinical features, but none has looked at the usefulness of these in predicting seropositive disease. We conducted a case-control study of patients tested for VGKC-complex antibodies over 10years at a regional tertiary neurology centre determining which clinical/biochemical features were associated with antibody-positive disease. We found a marked increase in the numbers tested, although the percentage positive remained low. Antibody titre was highest in central disease (pVGKC-disease (p=0.01). Seizures were present in 11 (69%) of those with VGKC-disease versus three (18%) without (odds ratio [OR] 10.3, 95% confidence interval [CI]: 2.0-52.7, p=0.005). There was an inverse correlation between the antibody titre and serum sodium. A multivariate model selected seizures and hyponatraemia as predictive of VGKC disease (sensitivity 75% and specificity 82%); faciobrachial dystonic movements were specific but insensitive. Interestingly serum alkaline phosphatase was higher in those with VGKC-disease (p=0.016) and highest in those with peripheral disease (p=0.015). An ALP>70u/L was strongly associated with antibody positivity (OR 4.11 95% CI: 1.43-11.8, p=0.007) with a sensitivity of 74.2%. The presence of seizures, faciobrachial movements, and hyponatraemia should raise suspicion of VGKC-disease; alkaline phosphatase may represent a novel biomarker, particularly in those with peripheral disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    Science.gov (United States)

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  5. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K channels may be of importance....

  6. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  7. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  8. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.

    Science.gov (United States)

    Wu, Jing-Xiang; Ding, Dian; Wang, Mengmeng; Kang, Yunlu; Zeng, Xin; Chen, Lei

    2018-06-01

    ATP-sensitive potassium channels (K ATP ) are energy sensors on the plasma membrane. By sensing the intracellular ADP/ATP ratio of β-cells, pancreatic K ATP channels control insulin release and regulate metabolism at the whole body level. They are implicated in many metabolic disorders and diseases and are therefore important drug targets. Here, we present three structures of pancreatic K ATP channels solved by cryo-electron microscopy (cryo-EM), at resolutions ranging from 4.1 to 4.5 Å. These structures depict the binding site of the antidiabetic drug glibenclamide, indicate how Kir6.2 (inward-rectifying potassium channel 6.2) N-terminus participates in the coupling between the peripheral SUR1 (sulfonylurea receptor 1) subunit and the central Kir6.2 channel, reveal the binding mode of activating nucleotides, and suggest the mechanism of how Mg-ADP binding on nucleotide binding domains (NBDs) drives a conformational change of the SUR1 subunit.

  9. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  10. Role of vascular potassium channels in the regulation of renal hemodynamics

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Braunstein, Thomas Hartig; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    of one or more classes of K+ channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K+ channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood...... pressure. Four main classes of K+ channels [calcium activated (KCa), inward rectifier (Kir), voltage activated (KV), and ATP sensitive (KATP)] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K+ channels in the regulation of renal vascular...... function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K+ channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations...

  11. Effect of Potassium Channel Modulators on Morphine Withdrawal in Mice

    Directory of Open Access Journals (Sweden)

    Vikas Seth

    2010-01-01

    Full Text Available The present study was conducted to investigate the effect of potassium channel openers and blockers on morphine withdrawal syndrome. Mice were rendered dependent on morphine by subcutaneous injection of morphine; four hours later, withdrawal was induced by using an opioid antagonist, naloxone. Mice were observed for 30 minutes for the withdrawal signs ie, the characteristic jumping, hyperactivity, urination and diarrhea. ATP-dependent potassium (K + ATP channel modulators were injected intraperitoneally (i.p. 30 minutes before the naloxone. It was found that a K + ATP channel opener, minoxidil (12.5–50 mg/kg i.p., suppressed the morphine withdrawal significantly. On the other hand, the K + ATP channel blocker glibenclamide (12.5–50 mg/kg i.p. caused a significant facilitation of the withdrawal. Glibenclamide was also found to abolish the minoxidil's inhibitory effect on morphine withdrawal. The study concludes that K + ATP channels play an important role in the genesis of morphine withdrawal and K + ATP channel openers could be useful in the management of opioid withdrawal. As morphine opens K + ATP channels in neurons, the channel openers possibly act by mimicking the effects of morphine on neuronal K + currents.

  12. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    Science.gov (United States)

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  13. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels.

    Science.gov (United States)

    Capes, Deborah L; Goldschen-Ohm, Marcel P; Arcisio-Miranda, Manoel; Bezanilla, Francisco; Chanda, Baron

    2013-08-01

    Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.

  14. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  15. Moderate hypoxia influences potassium outward currents in adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Mayuri Prasad

    Full Text Available Moderate hypoxic preconditioning of adipose-derived stem cells (ASCs enhances properties such as proliferation and secretion of growth factors, representing a valuable strategy to increase the efficiency of cell-based therapies. In a wide variety of cells potassium (K+ channels are key elements involved in the cellular responses to hypoxia, suggesting that ASCs cultured under low oxygen conditions may display altered electrophysiological properties. Here, the effects of moderate hypoxic culture on proliferation, whole-cell currents, and ion channel expression were investigated using human ASCs cultured at 5% and 20% oxygen. Although cell proliferation was greatly enhanced, the dose-dependent growth inhibition by the K+ channel blocker tetraethylammonium (TEA was not significantly affected by hypoxia. Under both normoxic and hypoxic conditions, ASCs displayed outward K+ currents composed by Ca2+-activated, delayed rectifier, and transient components. Hypoxic culture reduced the slope of the current-voltage curves and caused a negative shift in the voltage activation threshold of the whole-cell currents. However, the TEA-mediated shift of voltage activation threshold was not affected by hypoxia. Semiquantitative real-time RT-PCR revealed that expression of genes encoding for various ion channels subunits related to oxygen sensing and proliferation remained unchanged after hypoxic culture. In conclusion, outward currents are influenced by moderate hypoxia in ASCs through a mechanism that is not likely the result of modulation of TEA-sensitive K+ channels.

  16. Investigating ion channel conformational changes using voltage clamp fluorometry.

    Science.gov (United States)

    Talwar, Sahil; Lynch, Joseph W

    2015-11-01

    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  18. Limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies as a cause of adult-onset mesial temporal lobe epilepsy.

    Science.gov (United States)

    Toyota, Tomoko; Akamatsu, Naoki; Tsuji, Sadatoshi; Nishizawa, Shigeru

    2014-06-01

    Recently, some reports have indicated that limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies (VGKC-Ab) is a cause of adult-onset mesial temporal lobe epilepsy (MTLE). We report a 53-year-old woman who had her first epileptic seizure at the age of 50 years old. Examination by 3-Tesla brain MRI revealed left hippocampal high signal intensity and swelling on fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging at 2 months after her first seizure. The patient received intravenous methylprednisolone and carbamazepine 300 mg/day. One month later, MRI revealed improvement of her left hippocampal abnormalities. Thereafter, she had no seizures, however, three years after her first seizure, EEG revealed a seizure pattern in the left temporal region. Brain MRI revealed left hippocampal high signal intensity and brain fluorodeoxyglucose positron emission tomography revealed hypermetabolism. Her serum VGKC-Ab levels were 118 pM(normal VGKC-Ab levels decreased to 4.4 pM. Remission of the epileptic seizures was also observed. This MTLE in the middle age was considered as limbic encephalitis associated with anti- VGKC-Ab. In cases of unexplained adult-onset MTLE, limbic encephalitis associated with anti-VGKC-Ab, which responds well to immunotherapy, should be considered in the differential diagnosis.

  19. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    Science.gov (United States)

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both

  20. Crystallization and preliminary X-ray diffraction studies of the tetramerization domain derived from the human potassium channel Kv1.3

    International Nuclear Information System (INIS)

    Winklmeier, Andreas; Weyand, Michael; Schreier, Christina; Kalbitzer, Hans Robert; Kremer, Werner

    2009-01-01

    The tetramerization domain of human Kv1.3 was cloned, expressed, purified and crystallized. The crystals belonged to space group I4 and diffracted to 1.2 Å resolution using synchrotron radiation. The tetramerization domain (T1 domain) derived from the voltage-dependent potassium channel Kv1.3 of Homo sapiens was recombinantly expressed in Escherichia coli and purified. The crystals were first grown in an NMR tube in 150 mM potassium phosphate pH 6.5 in the absence of additional precipitants. The crystals showed I4 symmetry characteristic of the naturally occurring tetrameric assembly of the single subunits. A complete native data set was collected to 1.2 Å resolution at 100 K using synchrotron radiation

  1. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.

    Science.gov (United States)

    Tang, Cheng; Zhou, Xi; Nguyen, Phuong Tran; Zhang, Yunxiao; Hu, Zhaotun; Zhang, Changxin; Yarov-Yarovoy, Vladimir; DeCaen, Paul G; Liang, Songping; Liu, Zhonghua

    2017-07-01

    Voltage-gated sodium channels (Na V s) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial Na V s have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial Na V s. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic Na V s Ns V Ba (nonselective voltage-gated Bacillus alcalophilus ) and NaChBac (bacterial sodium channel from Bacillus halodurans ) (IC 50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of Ns V Ba, whereas the local anesthetic drug lidocaine was shown to antagonize Ns V Ba without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of Ns V Ba, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of Ns V Ba in one of the deactivated states. In mammalian Na V s, JZTx-27 preferably inhibited the inactivation of Na V 1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic Na V s. More important, we proposed that JZTx-27 stabilized the Ns V Ba VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of Na V s.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. © FASEB.

  2. A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore.

    Science.gov (United States)

    Tomczak, Adam P; Fernández-Trillo, Jorge; Bharill, Shashank; Papp, Ferenc; Panyi, Gyorgy; Stühmer, Walter; Isacoff, Ehud Y; Pardo, Luis A

    2017-05-01

    Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4-S5 linker). However, our recent work on channels disrupted in the S4-S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of K V 10.1 revealed that the S4-S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use "split" channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in K V 10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4-S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4-S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism. © 2017 Tomczak et al.

  3. Modeling hysteresis observed in the human erythrocyte voltage-dependent cation channel

    DEFF Research Database (Denmark)

    Flyvbjerg, Henrik; Gudowska-Nowak, Ewa; Christophersen, Palle

    2012-01-01

    The non-selective voltage-activated cation channel from human red cells, which is activated at depolarizing potentials, has been shown to exhibit counter-clockwise gating hysteresis. Here, we analyze this phenomenon with the simplest possible phenomenological models. Specifically, the hysteresis ...

  4. New Role of P/Q-type Voltage-gated Calcium Channels

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform...... of the voltage-gated calcium channels (P/Q-type), is also expressed and contributes functionally to contraction of renal blood vessels in both mice and humans. Furthermore, preglomerular vascular SMCs and aortic SMCs coexpress L-, P-, and Q-type calcium channels within the same cell. Calcium channel blockers...... are widely used as pharmacological treatments. However, calcium channel antagonists vary in their selectivity for the various calcium channel subtypes, and the functional contribution from P/Q-type channels as compared with L-type should be considered. Confirming the presence of P/Q-type voltage...

  5. Distribution and function of voltage-gated sodium channels in the nervous system.

    Science.gov (United States)

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  6. Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: a "joint venture" alkaloid from arthropods and amphibians.

    Science.gov (United States)

    Vandendriessche, Thomas; Abdel-Mottaleb, Yousra; Maertens, Chantal; Cuypers, Eva; Sudau, Alexander; Nubbemeyer, Udo; Mebs, Dietrich; Tytgat, Jan

    2008-03-01

    Certain amphibians provide themselves with a chemical defense by accumulating lipophilic alkaloids into skin glands from dietary arthropods. Examples of such alkaloids are pumiliotoxins (PTXs). In general, PTXs are known as positive modulators of voltage-gated sodium channels (VGSCs). Unlike other PTXs, PTX 251D does not share this characteristic. However, mice and insect studies showed that PTX 251D is highly toxic and to date the basis of its toxicity remains unknown. In this work, we searched for the possible target of PTX 251D. The toxin was therefore made synthetically and tested on four VGSCs (mammalian rNa(v)1.2/beta(1), rNa(v)1.4/beta(1), hNa(v)1.5/beta(1) and insect Para/tipE) and five voltage-gated potassium channels (VGPCs) (mammalian rK(v)1.1-1.2, hK(v)1.3, hK(v)11.1 (hERG) and insect Shaker IR) expressed heterologously in Xenopus laevis oocytes, using the two-electrode voltage clamp technique. PTX 251D not only inhibited the Na(+) influx through the mammalian VGSCs but also affected the steady-state activation and inactivation. Interestingly, in the insect ortholog, the inactivation process was dramatically affected. Additionally, PTX 251D inhibited the K(+) efflux through all five tested VGPCs and slowed down the deactivation kinetics of the mammalian VGPCs. hK(v)1.3 was the most sensitive channel, with an IC(50) value 10.8+/-0.5 microM. To the best of our knowledge this is the first report of a PTX affecting VGPCs.

  7. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Science.gov (United States)

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  8. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Directory of Open Access Journals (Sweden)

    Gayle M. Passmore

    2012-05-01

    Full Text Available M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 µM XE991 sensitised Adelta- but not C-fibres to noxious heat stimulation and induced spontaneous, ongoing activity at 32ºC in many Adelta-fibres. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Adelta-fibre peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Adelta-fibre responses and provide a rationale for the nocifensive behaviours that arise following intraplantar injection of the M-channel blocker XE991.

  9. SENSITIVE EFFECTS OF POTASSIUM AND CALCIUM CHANNEL BLOCKING AND ATP-SENSITIVE POTASSIUM CHANNEL ACTIVATORS ON SEMINAL VESICLE SMOOTH MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    H SADRAEI

    2000-12-01

    Full Text Available Background. Seminal vesicle smooth muscle contraction is mediated through sympathetic and parasympathetic neurons activity. Although seminal vesicle plays an important role in male fertility, but little attention is given to mechanism involved in contraction of this organ.
    Methods. In this study effects of drugs which activate ATP - sensitive K channels and blockers of K and Ca channels were examined on contraction of guinea - pig isolated seminal vesicle due to electrical filled stimulation (EFS, noradrenaline, carbachol and KCI.
    Results. The K channel blocker tetraethyl ammonium potentate the EFS responses at all frequencies, while, the ATP - sensitive K channel inhibitor glibenclamide and the K channel opener levcromakalim, diazoxide, minoxidil and Ca channel blocker nifedipine all had relaxant effect on guinea - pig seminal vesicle.
    Discussion. This study indicate that activities of K and Ca channels is important in regulation of seminal vesicle contraction due to nerve stimulation, noradrenaline or carbachol.

  10. Conotoxins as Tools to Understand the Physiological Function of Voltage-Gated Calcium (CaV Channels

    Directory of Open Access Journals (Sweden)

    David Ramírez

    2017-10-01

    Full Text Available Voltage-gated calcium (CaV channels are widely expressed and are essential for the completion of multiple physiological processes. Close regulation of their activity by specific inhibitors and agonists become fundamental to understand their role in cellular homeostasis as well as in human tissues and organs. CaV channels are divided into two groups depending on the membrane potential required to activate them: High-voltage activated (HVA, CaV1.1–1.4; CaV2.1–2.3 and Low-voltage activated (LVA, CaV3.1–3.3. HVA channels are highly expressed in brain (neurons, heart, and adrenal medulla (chromaffin cells, among others, and are also classified into subtypes which can be distinguished using pharmacological approaches. Cone snails are marine gastropods that capture their prey by injecting venom, “conopeptides”, which cause paralysis in a few seconds. A subset of conopeptides called conotoxins are relatively small polypeptides, rich in disulfide bonds, that target ion channels, transporters and receptors localized at the neuromuscular system of the animal target. In this review, we describe the structure and properties of conotoxins that selectively block HVA calcium channels. We compare their potency on several HVA channel subtypes, emphasizing neuronal calcium channels. Lastly, we analyze recent advances in the therapeutic use of conotoxins for medical treatments.

  11. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

    Science.gov (United States)

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-05-01

    Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

  12. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    Science.gov (United States)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  13. Functional role of voltage gated Ca2+ channels in heart automaticity

    Directory of Open Access Journals (Sweden)

    Pietro eMesirca

    2015-02-01

    Full Text Available Pacemaker activity of automatic cardiac myocytes controls the heartbeat in everyday life. Cardiac automaticity is under the control of several neurotransmitters and hormones and is constantly regulated by the autonomic nervous system to match the physiological needs of the organism. Several classes of ion channels and proteins involved in intracellular Ca2+ dynamics contribute to pacemaker activity. The functional role of voltage-gated calcium channels (VGCCs in heart automaticity and impulse conduction has been matter of debate for 30 years. However, growing evidence shows that VGCCs are important regulators of the pacemaker mechanisms and play also a major role in atrio-ventricular impulse conduction. Incidentally, studies performed in genetically modified mice lacking L-type Cav1.3 (Cav1.3-/- or T-type Cav3.1 (Cav3.1-/- channels show that genetic inactivation of these channels strongly impacts pacemaking. In cardiac pacemaker cells, VGCCs activate at negative voltages at the beginning of the diastolic depolarization and importantly contribute to this phase by supplying inward current. Loss-of-function of these channels also impairs atrio-ventricular conduction. Furthermore, inactivation of Cav1.3 channels promotes also atrial fibrillation and flutter in knockout mice suggesting that these channels can play a role in stabilizing atrial rhythm. Genomic analysis demonstrated that Cav1.3 and Cav3.1 channels are widely expressed in pacemaker tissue of mice, rabbits and humans. Importantly, human diseases of pacemaker activity such as congenital bradycardia and heart block have been attributed to loss-of-function of Cav1.3 and Cav3.1 channels. In this article, we will review the current knowledge on the role of VGCCs in the generation and regulation of heart rate and rhythm. We will discuss also how loss of Ca2+ entry through VGCCs could influence intracellular Ca2+ handling and promote atrial arrhythmias.

  14. Evidence for functional diversity between the voltage-gated proton channel Hv1 and its closest related protein HVRP1.

    Directory of Open Access Journals (Sweden)

    Iris H Kim

    Full Text Available The Hv1 channel and voltage-sensitive phosphatases share with voltage-gated sodium, potassium, and calcium channels the ability to detect changes in membrane potential through voltage-sensing domains (VSDs. However, they lack the pore domain typical of these other channels. NaV, KV, and CaV proteins can be found in neurons and muscles, where they play important roles in electrical excitability. In contrast, VSD-containing proteins lacking a pore domain are found in non-excitable cells and are not involved in neuronal signaling. Here, we report the identification of HVRP1, a protein related to the Hv1 channel (from which the name Hv1 Related Protein 1 is derived, which we find to be expressed primarily in the central nervous system, and particularly in the cerebellum. Within the cerebellar tissue, HVRP1 is specifically expressed in granule neurons, as determined by in situ hybridization and immunohistochemistry. Analysis of subcellular distribution via electron microscopy and immunogold labeling reveals that the protein localizes on the post-synaptic side of contacts between glutamatergic mossy fibers and the granule cells. We also find that, despite the similarities in amino acid sequence and structural organization between Hv1 and HVRP1, the two proteins have distinct functional properties. The high conservation of HVRP1 in vertebrates and its cellular and subcellular localizations suggest an important function in the nervous system.

  15. Mechanism of Proarrhythmic Effects of Potassium Channel Blockers

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Ravens, Ursula

    2016-01-01

    Any disturbance of electrical impulse formation in the heart and of impulse conduction or action potential (AP) repolarization can lead to rhythm disorders. Potassium (K(+)) channels play a prominent role in the AP repolarization process. In this review we describe the causes and mechanisms...

  16. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  17. Altered expression of two-pore domain potassium (K2P channels in cancer.

    Directory of Open Access Journals (Sweden)

    Sarah Williams

    Full Text Available Potassium channels have become a focus in cancer biology as they play roles in cell behaviours associated with cancer progression, including proliferation, migration and apoptosis. Two-pore domain (K2P potassium channels are background channels which enable the leak of potassium ions from cells. As these channels are open at rest they have a profound effect on cellular membrane potential and subsequently the electrical activity and behaviour of cells in which they are expressed. The K2P family of channels has 15 mammalian members and already 4 members of this family (K2P2.1, K2P3.1, K2P9.1, K2P5.1 have been implicated in cancer. Here we examine the expression of all 15 members of the K2P family of channels in a range of cancer types. This was achieved using the online cancer microarray database, Oncomine (www.oncomine.org. Each gene was examined across 20 cancer types, comparing mRNA expression in cancer to normal tissue. This analysis revealed all but 3 K2P family members (K2P4.1, K2P16.1, K2P18.1 show altered expression in cancer. Overexpression of K2P channels was observed in a range of cancers including breast, leukaemia and lung while more cancers (brain, colorectal, gastrointestinal, kidney, lung, melanoma, oesophageal showed underexpression of one or more channels. K2P1.1, K2P3.1, K2P12.1, were overexpressed in a range of cancers. While K2P1.1, K2P3.1, K2P5.1, K2P6.1, K2P7.1 and K2P10.1 showed significant underexpression across the cancer types examined. This analysis supports the view that specific K2P channels may play a role in cancer biology. Their altered expression together with their ability to impact the function of other ion channels and their sensitivity to environmental stimuli (pO2, pH, glucose, stretch makes understanding the role these channels play in cancer of key importance.

  18. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    Science.gov (United States)

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  19. Patients with Long QT Syndrome Due to Impaired hERG-encoded Kv11.1 Potassium Channel Have Exaggerated Endocrine Pancreatic and Incretin Function Associated with Reactive Hypoglycemia

    DEFF Research Database (Denmark)

    Hyltén-Cavallius, Louise; Iepsen, Eva W; Wewer Albrechtsen, Nicolai J

    2017-01-01

    Background -Loss-of-function mutations in hERG (encoding the Kv11.1 voltage-gated potassium channel) cause long QT syndrome (LQT2) due to prolonged cardiac repolarization. However, Kv11.1 is also present in pancreatic α and β cells and intestinal L and K cells, secreting glucagon, insulin, and th...

  20. Highly selective water channel activity measured by voltage clamp: analysis of planar lipid bilayers reconstituted with purified AqpZ.

    Science.gov (United States)

    Pohl, P; Saparov, S M; Borgnia, M J; Agre, P

    2001-08-14

    Aquaporins are membrane channels selectively permeated by water or water plus glycerol. Conflicting reports have described ion conductance associated with some water channels, raising the question of whether ion conductance is a general property of the aquaporin family. To clarify this question, a defined system was developed to simultaneously measure water permeability and ion conductance. The Escherichia coli water channel aquaporin-Z (AqpZ) was studied, because it is a highly stable tetramer. Planar lipid bilayers were formed from unilamellar vesicles containing purified AqpZ. The hydraulic conductivity of bilayers made from the total extract of E. coli lipids increased 3-fold if reconstituted with AqpZ, but electric conductance was unchanged. No channel activity was detected under voltage-clamp conditions, indicating that less than one in 10(9) transport events is electrogenic. Microelectrode measurements were simultaneously undertaken adjacent to the membrane. Changes in sodium concentration profiles accompanying transmembrane water flow permitted calculation of the activation energies: 14 kcal/mol for protein-free lipid bilayers and 4 kcal/mol for lipid bilayers containing AqpZ. Neither the water permeability nor the electric conductivity exhibited voltage dependence. This sensitive system demonstrated that AqpZ is permeated by water but not charged ions and should permit direct analyses of putative electrogenic properties of other aquaporins.

  1. Voltage-gated calcium channels of Paramecium cilia.

    Science.gov (United States)

    Lodh, Sukanya; Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2016-10-01

    Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca 2+ entering the cilium through voltage-gated Ca 2+ (Ca V ) channels that are found exclusively in the cilia. As ciliary Ca 2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the Ca V channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary Ca V channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three Ca V α1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary Ca V channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of Ca V channel activity do not express any of the three Ca V 1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three Ca V channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the Ca V 1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. © 2016. Published by The Company of Biologists Ltd.

  2. Creutzfeldt-Jakob Disease-Like Periodic Sharp Wave Complexes in Voltage-Gated Potassium Channel-Complex Antibodies Encephalitis: A Case Report.

    Science.gov (United States)

    Savard, Martin; Irani, Sarosh R; Guillemette, Annie; Gosselin-Lefebvre, Stéphanie; Geschwind, Michael; Jansen, Gerard H; Gould, Peter V; Laforce, Robert

    2016-02-01

    Voltage-gated potassium channel-complex antibodies (VGKC-cAbs) encephalitis, a treatable autoantibody encephalopathy, has been previously reported to clinically mimic sporadic Creutzfeldt-Jakob disease. Among available clinical clues to distinguish them, periodic sharp wave complexes, a typical finding in sporadic Creutzfeldt-Jakob disease, have never been reported in association with VGKC-cAbs encephalitis. A 76-year-old man was transferred to a tertiary neurology center with a clinical history of 6-month weight loss, cognitive disturbance, and nonspecific generalized weakness. He had two seizures the month before transfer and then evolved to severe encephalopathy, requiring mechanical ventilation. Periodic sharp wave complexes every 1 to 2 seconds over slowed background were found on EEG, and MRI showed cerebellar and bifrontal cortical T2/FLAIR/DWI hypersignal without restricted diffusion on ADC mapping. Pancorporal positron emission tomography scan was negative. An immunotherapy trial did not improve the patient condition. Therefore, he died after life support withdrawal. Brain autopsy revealed mononuclear neocortex infiltrate without significant spongiosis, and the anti-VGKC test showed a seropositivity of 336 pmol/L (normal, 0-31), 3 month after the patient deceased. This is the first reported case of VGKC-cAbs encephalitis associated with periodic sharp wave complexes on EEG, which further confuse the differential diagnosis with sporadic Creutzfeldt-Jakob disease. However, the cortical DWI hypersignal without restriction seems to remain a way to discriminate these two entities appropriately, when present. These clues are of paramount importance because VGKC-cAbs encephalitis is a treatable disease.

  3. Resveratrol Protects Against Ultraviolet A-Mediated Inhibition of the Phagocytic Function of Human Retinal Pigment Epithelial Cells Via Large-Conductance Calcium-Activated Potassium Channels

    Directory of Open Access Journals (Sweden)

    Shwu-Jiuan Sheu

    2009-07-01

    Full Text Available This study was undertaken to examine the protective effect of resveratrol on human retinal pigment epithelial (RPE cell phagocytosis against ultraviolet irradiation damage. Cultured RPE cells were exposed to ultraviolet A (UVA, 20 minutes irradiation, and treated with meclofenamic acid (30μM, 20 minutes, paxilline (100 μM, 20 minutes or resveratrol (10μM, 20 minutes. Meclofenamic acid and resveratrol were given after exposure to UVA. Pretreatment with meclofenamic acid, resveratrol or paxilline before UVA irradiation was also performed. Fluorescent latex beads were then fed for 4 hours and the phagocytotic function was assessed by flow cytometry. UVA irradiation inhibited the phagocytic function of human RPE cells. The large-conductance calcium-activated potassium channel activator meclofenamic acid ameliorated the damage caused by UVA irradiation. Pretreatment with resveratrol acid also provided protection against damage caused by UVA. Posttreatment with meclofenamic acid offered mild protection, whereas resveratrol did not. In conclusion, the red wine flavonoid resveratrol ameliorated UVA-mediated inhibition of human RPE phagocytosis. The underlying mechanism might involve the large-conductance calcium-activated potassium channels.

  4. The Voltage-Sensing Domain of Kv7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2010-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2–Kv7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability. PMID:21687499

  5. The voltage-sensing domain of kv7.2 channels as a molecular target for epilepsy-causing mutations and anticonvulsants

    Directory of Open Access Journals (Sweden)

    Francesco eMiceli

    2011-02-01

    Full Text Available Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically-determined channelopathies affecting heart rhythm (arrhythmias, neuronal excitability (epilepsy, pain or skeletal muscle contraction (periodic paralysis. Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function.In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2-5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically-determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  6. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    Science.gov (United States)

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells. © 2016 Pinelli et al.

  7. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor

    Science.gov (United States)

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.

    2013-01-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551

  8. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.

    Science.gov (United States)

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy

    2013-06-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.

  9. On the mechanism of TBA block of the TRPV1 channel.

    Science.gov (United States)

    Oseguera, Andrés Jara; Islas, León D; García-Villegas, Refugio; Rosenbaum, Tamara

    2007-06-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a nonselective cation channel activated by capsaicin and responsible for thermosensation. To date, little is known about the gating characteristics of these channels. Here we used tetrabutylammonium (TBA) to determine whether this molecule behaves as an ion conduction blocker in TRPV1 channels and to gain insight into the nature of the activation gate of this protein. TBA belongs to a family of classic potassium channel blockers that have been widely used as tools for determining the localization of the activation gate and the properties of the pore of several ion channels. We found TBA to be a voltage-dependent pore blocker and that the properties of block are consistent with an open-state blocker, with the TBA molecule binding to multiple open states, each with different blocker affinities. Kinetics of channel closure and burst-length analysis in the presence of blocker are consistent with a state-dependent blocking mechanism, with TBA interfering with closing of an activation gate. This activation gate may be located cytoplasmically with respect to the binding site of TBA ions, similar to what has been observed in potassium channels. We propose an allosteric model for TRPV1 activation and block by TBA, which explains our experimental data.

  10. Emerging psychiatric syndromes associated with antivoltage-gated potassium channel complex antibodies.

    Science.gov (United States)

    Prüss, Harald; Lennox, Belinda R

    2016-11-01

    Antibodies against the voltage-gated potassium channel (VGKC) were first recognised as having a potential pathogenic role in disorders of the central nervous system in 2001, with VGKC antibodies described in patients with limbic encephalitis, and the subsequent seminal paper describing the clinical phenotype and immunotherapy treatment responsiveness in 13 patients with VGKC antibodies and limbic encephalitis in 2004. These initial case descriptions were of a progressive neuropsychiatric syndrome with abnormalities of mood, sleep and cognition recognised alongside the neurological symptoms of seizures and autonomic instability. The clinical syndromes associated with VGKC complex (VGKCC) antibodies have broadened considerably over the last 15 years, with multiple cases of more restricted 'formes fruste' presentations associated with VGKCC antibodies being described. However, the relevance of antibodies in these cases has remained controversial. The understanding of the pathogenic nature of VGKC antibodies has further advanced since 2010 with the discovery that VGKC antibodies are not usually antibodies against the VGKC subunits themselves, but instead to proteins that are complexed with the potassium channel, in particular leucine-rich, glioma-inactivated protein 1 (LGI1) and contactin-associated protein 2 (Caspr2). Antibodies against these proteins have been associated with particular, although overlapping, clinical phenotypes, each also including neuropsychiatric features. Our aim is to critically review the association between VGKCC, LGI1 and Caspr2 antibodies with isolated psychiatric presentations-with a focus on cognitive impairment, mood disorders and psychosis. We recommend that screening for VGKCC, LGI1 and Caspr2 antibodies be considered for those with neuropsychiatric presentations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain

    Directory of Open Access Journals (Sweden)

    Yukiko eMishina

    2014-09-01

    Full Text Available Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviours. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP prototypical design or on the voltage dependent state transitions of microbial opsins.We recently introduced a new VSFP design in which the voltage-sensing domain (VSD is sandwiched between a FRET pair of fluorescent proteins (termed VSFP-Butterflies and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  12. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain.

    Science.gov (United States)

    Mishina, Yukiko; Mutoh, Hiroki; Song, Chenchen; Knöpfel, Thomas

    2014-01-01

    Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviors. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs) has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP) prototypical design or on the voltage-dependent state transitions of microbial opsins. We recently introduced a new VSFP design in which the voltage-sensing domain (VSD) is sandwiched between a fluorescence resonance energy transfer pair of fluorescent proteins (termed VSFP-Butterflies) and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  13. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  14. Fluorescence-tracking of activation gating in human ERG channels reveals rapid S4 movement and slow pore opening.

    Directory of Open Access Journals (Sweden)

    Zeineb Es-Salah-Lamoureux

    2010-05-01

    Full Text Available hERG channels are physiologically important ion channels which mediate cardiac repolarization as a result of their unusual gating properties. These are very slow activation compared with other mammalian voltage-gated potassium channels, and extremely rapid inactivation. The mechanism of slow activation is not well understood and is investigated here using fluorescence as a direct measure of S4 movement and pore opening.Tetramethylrhodamine-5-maleimide (TMRM fluorescence at E519 has been used to track S4 voltage sensor movement, and channel opening and closing in hERG channels. Endogenous cysteines (C445 and C449 in the S1-S2 linker bound TMRM, which caused a 10 mV hyperpolarization of the V((1/2 of activation to -27.5+/-2.0 mV, and showed voltage-dependent fluorescence signals. Substitution of S1-S2 linker cysteines with valines allowed unobstructed recording of S3-S4 linker E519C and L520C emission signals. Depolarization of E519C channels caused rapid initial fluorescence quenching, fit with a double Boltzmann relationship, F-V(ON, with V((1/2 (,1 = -37.8+/-1.7 mV, and V((1/2 (,2 = 43.5+/-7.9 mV. The first phase, V((1/2 (,1, was approximately 20 mV negative to the conductance-voltage relationship measured from ionic tail currents (G-V((1/2 = -18.3+/-1.2 mV, and relatively unchanged in a non-inactivating E519C:S620T mutant (V((1/2 = -34.4+/-1.5 mV, suggesting the fast initial fluorescence quenching tracked S4 voltage sensor movement. The second phase of rapid quenching was absent in the S620T mutant. The E519C fluorescence upon repolarization (V((1/2 = -20.6+/-1.2, k = 11.4 mV and L520C quenching during depolarization (V((1/2 = -26.8+/-1.0, k = 13.3 mV matched the respective voltage dependencies of hERG ionic tails, and deactivation time constants from -40 to -110 mV, suggesting they detected pore-S4 rearrangements related to ionic current flow during pore opening and closing.THE DATA INDICATE: 1 that rapid environmental changes occur at the

  15. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    Science.gov (United States)

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  16. "Slow" Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA.

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    Full Text Available CaV2.2 (N-type voltage-gated calcium channels (Ca2+ channels play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. "Fast" voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of "slow" voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate "slow" inactivation of sodium channels, but little is known about if/how second messengers control "slow" inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA dramatically prolonged recovery from "slow" inactivation, but an inactive control (4α-PMA had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating "slow" inactivation. We postulate that the kinetics of recovery from "slow" inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe.

  17. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators

    Science.gov (United States)

    Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.

    2016-01-01

    Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial

  18. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  19. Molecular Surface of JZTX-V (β-Theraphotoxin-Cj2a Interacting with Voltage-Gated Sodium Channel Subtype NaV1.4

    Directory of Open Access Journals (Sweden)

    Ji Luo

    2014-07-01

    Full Text Available Voltage-gated sodium channels (VGSCs; NaV1.1–NaV1.9 have been proven to be critical in controlling the function of excitable cells, and human genetic evidence shows that aberrant function of these channels causes channelopathies, including epilepsy, arrhythmia, paralytic myotonia, and pain. The effects of peptide toxins, especially those isolated from spider venom, have shed light on the structure–function relationship of these channels. However, most of these toxins have not been analyzed in detail. In particular, the bioactive faces of these toxins have not been determined. Jingzhaotoxin (JZTX-V (also known as β-theraphotoxin-Cj2a is a 29-amino acid peptide toxin isolated from the venom of the spider Chilobrachys jingzhao. JZTX-V adopts an inhibitory cysteine knot (ICK motif and has an inhibitory effect on voltage-gated sodium and potassium channels. Previous experiments have shown that JZTX-V has an inhibitory effect on TTX-S and TTX-R sodium currents on rat DRG cells with IC50 values of 27.6 and 30.2 nM, respectively, and is able to shift the activation and inactivation curves to the depolarizing and the hyperpolarizing direction, respectively. Here, we show that JZTX-V has a much stronger inhibitory effect on NaV1.4, the isoform of voltage-gated sodium channels predominantly expressed in skeletal muscle cells, with an IC50 value of 5.12 nM, compared with IC50 values of 61.7–2700 nM for other heterologously expressed NaV1 subtypes. Furthermore, we investigated the bioactive surface of JZTX-V by alanine-scanning the effect of toxin on NaV1.4 and demonstrate that the bioactive face of JZTX-V is composed of three hydrophobic (W5, M6, and W7 and two cationic (R20 and K22 residues. Our results establish that, consistent with previous assumptions, JZTX-V is a Janus-faced toxin which may be a useful tool for the further investigation of the structure and function of sodium channels.

  20. The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2011-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K(+) channels encoded by the K(v)7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by K(v)7.2-K(v)7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in K(v)7.2 and K(v)7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of K(v)7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in K(v)7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  1. Kir 4.1 inward rectifier potassium channel is upregulated in astrocytes in a murine multiple sclerosis model.

    Science.gov (United States)

    Mercado, Francisco; Almanza, Angélica; Rubio, Nazario; Soto, Enrique

    2018-06-11

    Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K + inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Structural basis for KCNE3 modulation of potassium recycling in epithelia.

    Science.gov (United States)

    Kroncke, Brett M; Van Horn, Wade D; Smith, Jarrod; Kang, CongBao; Welch, Richard C; Song, Yuanli; Nannemann, David P; Taylor, Keenan C; Sisco, Nicholas J; George, Alfred L; Meiler, Jens; Vanoye, Carlos G; Sanders, Charles R

    2016-09-01

    The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(-)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated "up" state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the "CF gender gap."

  3. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers*

    OpenAIRE

    Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro

    2016-01-01

    The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1?S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a ?-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kineti...

  4. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms.

    Directory of Open Access Journals (Sweden)

    Rebecca E Haddock

    Full Text Available BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat. Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca/IK(Ca inhibition; with such activity being impaired in obesity. SK(Ca-IK(Ca activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine (CyPPA and 1-ethyl-2-benzimidazolinone (1-EBIO, respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca distribution and elevated expression. In contrast, the SK(Ca-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir and Na(+/K(+-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K

  5. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model.

    Science.gov (United States)

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi

    2015-01-01

    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical remodeling. Amiodarone alter potassium ion channel activity (Ito, IKur, IK1 and IKs), shortening fAPD.

  6. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    Science.gov (United States)

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  7. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  8. Effect of potassium channel modulators in mouse forced swimming test

    Science.gov (United States)

    Galeotti, Nicoletta; Ghelardini, Carla; Caldari, Bernardetta; Bartolini, Alessandro

    1999-01-01

    The effect of intracerebroventricular (i.c.v.) administration of different potassium channel blockers (tetraethylammonium, apamin, charybdotoxin, gliquidone), potassium channel openers (pinacidil, minoxidil, cromakalim) and aODN to mKv1.1 on immobility time was evaluated in the mouse forced swimming test, an animal model of depression. Tetraethylammonium (TEA; 5 μg per mouse i.c.v.), apamin (3 ng per mouse i.c.v.), charybdotoxin (1 μg per mouse i.c.v.) and gliquidone (6 μg per mouse i.c.v.) administered 20 min before the test produced anti-immobility comparable to that induced by the tricyclic antidepressants amitriptyline (15 mg kg−1 s.c.) and imipramine (30 mg kg−1 s.c.). By contrast pinacidil (10–20 μg per mouse i.c.v.), minoxidil (10–20 μg per mouse i.c.v.) and cromakalim (20–30 μg per mouse i.c.v.) increased immobility time when administered in the same experimental conditions. Repeated administration of an antisense oligonucleotide (aODN) to the mKv1.1 gene (1 and 3 nmol per single i.c.v. injection) produced a dose-dependent increase in immobility time of mice 72 h after the last injection. At day 7, the increasing effect produced by aODN disappeared. A degenerate mKv1.1 oligonucleotide (dODN), used as control, did not produce any effect in comparison with saline- and vector-treated mice. At the highest effective dose, potassium channels modulators and the mKv1.1 aODN did not impair motor coordination, as revealed by the rota rod test, nor did they modify spontaneous motility as revealed by the Animex apparatus. These results suggest that modulation of potassium channels plays an important role in the regulation of immobility time in the mouse forced swimming test. PMID:10323599

  9. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons

    NARCIS (Netherlands)

    Battefeld, A.; Tran, B.T.; Gavrilis, J.; Cooper, E.C.; Kole, Maarten|info:eu-repo/dai/nl/256257574

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav ) channels in the axonal

  10. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons

    NARCIS (Netherlands)

    Battefeld, A.; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the

  11. The potassium channel KCa3.1 as new therapeutic target for the prevention of obliterative airway disease

    DEFF Research Database (Denmark)

    Hua, Xiaoqin; Deuse, Tobias; Chen, Yi-Je

    2013-01-01

    The calcium-activated potassium channel KCa3.1 is critically involved in T-cell activation as well as in the proliferation of smooth muscle cells and fibroblasts. We sought to investigate whether KCa3.1 contributes to the pathogenesis of obliterative airway disease (OAD) and whether knockout or p...

  12. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    Science.gov (United States)

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  13. Marine Toxins That Target Voltage-gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Robert J. French

    2006-04-01

    Full Text Available Abstract: Eukaryotic, voltage-gated sodium (NaV channels are large membrane proteins which underlie generation and propagation of rapid electrical signals in nerve, muscle and heart. Nine different NaV receptor sites, for natural ligands and/or drugs, have been identified, based on functional analyses and site-directed mutagenesis. In the marine ecosystem, numerous toxins have evolved to disrupt NaV channel function, either by inhibition of current flow through the channels, or by modifying the activation and inactivation gating processes by which the channels open and close. These toxins function in their native environment as offensive or defensive weapons in prey capture or deterrence of predators. In composition, they range from organic molecules of varying size and complexity to peptides consisting of ~10-70 amino acids. We review the variety of known NaV-targeted marine toxins, outlining, where known, their sites of interaction with the channel protein and their functional effects. In a number of cases, these natural ligands have the potential applications as drugs in clinical settings, or as models for drug development.

  14. The Voltage-Gated Potassium Channel Subfamily KQT Member 4 (KCNQ4) Displays Parallel Evolution in Echolocating Bats

    Science.gov (United States)

    Liu, Yang; Han, Naijian; Franchini, Lucía F.; Xu, Huihui; Pisciottano, Francisco; Elgoyhen, Ana Belén; Rajan, Koilmani Emmanuvel; Zhang, Shuyi

    2012-01-01

    Bats are the only mammals that use highly developed laryngeal echolocation, a sensory mechanism based on the ability to emit laryngeal sounds and interpret the returning echoes to identify objects. Although this capability allows bats to orientate and hunt in complete darkness, endowing them with great survival advantages, the genetic bases underlying the evolution of bat echolocation are still largely unknown. Echolocation requires high-frequency hearing that in mammals is largely dependent on somatic electromotility of outer hair cells. Then, understanding the molecular evolution of outer hair cell genes might help to unravel the evolutionary history of echolocation. In this work, we analyzed the molecular evolution of two key outer hair cell genes: the voltage-gated potassium channel gene KCNQ4 and CHRNA10, the gene encoding the α10 nicotinic acetylcholine receptor subunit. We reconstructed the phylogeny of bats based on KCNQ4 and CHRNA10 protein and nucleotide sequences. A phylogenetic tree built using KCNQ4 amino acid sequences showed that two paraphyletic clades of laryngeal echolocating bats grouped together, with eight shared substitutions among particular lineages. In addition, our analyses indicated that two of these parallel substitutions, M388I and P406S, were probably fixed under positive selection and could have had a strong functional impact on KCNQ4. Moreover, our results indicated that KCNQ4 evolved under positive selection in the ancestral lineage leading to mammals, suggesting that this gene might have been important for the evolution of mammalian hearing. On the other hand, we found that CHRNA10, a gene that evolved adaptively in the mammalian lineage, was under strong purifying selection in bats. Thus, the CHRNA10 amino acid tree did not show echolocating bat monophyly and reproduced the bat species tree. These results suggest that only a subset of hearing genes could underlie the evolution of echolocation. The present work continues to

  15. Clinical relevance of positive voltage-gated potassium channel (VGKC)-complex antibodies: experience from a tertiary referral centre.

    Science.gov (United States)

    Paterson, Ross W; Zandi, Michael S; Armstrong, Richard; Vincent, Angela; Schott, Jonathan M

    2014-06-01

    Voltage-gated potassium channel (VGKC)-complex antibodies can be associated with a range of immunotherapy-responsive clinical presentations including limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. However, there are patients with positive levels in whom the significance is uncertain. To evaluate the clinical significance associated with positive (>100 pM) VGKC-complex antibodies. Over a 4-year period, 1053 samples were sent for testing of which 55 were positive. The clinical presentations, final diagnoses and responses to immunotherapies, when given, were assessed retrospectively and the likelihood of autoimmunity was categorised as definite, possible, unlikely or undetermined (modified from Zuliani et al 2012). Only 4 of the 32 patients with low-positive (100-400 pM) levels were considered definitely autoimmune, 3 with peripheral nerve hyperexcitability and 1 with a thymoma; 3 were given immunotherapies. Of the remaining 28 with low-positive levels, 13 (3 of whom had tumours) were considered possibly autoimmune, and 15 were unlikely or undetermined; 1 was given immunotherapy unsuccessfully. Of the 23 patients with high-positive (>400 pM) levels, 12 were given immunotherapies, 11 of whom showed a good response. 11 were considered definitely autoimmune, 10 with limbic encephalitis (antibody specificity: 5 LGI1, 1 contactin2, 2 negative, 2 untested) and 1 with a tumour. In the remaining 12, autoimmunity was considered possible (n=9; most had not received immunotherapies), or unlikely (n=3). As antibody testing becomes more widely available, and many samples are referred from patients with less clear-cut diagnoses, it is important to assess the utility of the results. VGKC-complex antibodies in the range of 100-400 pM (0.1-0.4 nM) were considered clinically relevant in rare conditions with peripheral nerve hyperexcitability and appeared to associate with tumours (12.5%). By contrast high-positive (>400 pM; >0.4 nM) levels were considered definitely

  16. Axonal voltage-gated ion channels as pharmacological targets for pain

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Romer Rosberg, Mette

    2013-01-01

    Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become...... maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which...... ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage...

  17. Heteromeric K(v)7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons

    NARCIS (Netherlands)

    Battefeld, Arne; Tran, Baouyen T.; Gavrilis, Jason; Cooper, Edward C.; Kole, Maarten H. P.

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na-v) channels in the

  18. Cloning and functional expression of a plant voltage-dependent chloride channel.

    Science.gov (United States)

    Lurin, C; Geelen, D; Barbier-Brygoo, H; Guern, J; Maurel, C

    1996-01-01

    Plant cell membrane anion channels participate in basic physiological functions, such as cell volume regulation and signal transduction. However, nothing is known about their molecular structure. Using a polymerase chain reaction strategy, we have cloned a tobacco cDNA (CIC-Nt1) encoding a 780-amino acid protein with several putative transmembrane domains. CIC-Nt1 displays 24 to 32% amino acid identity with members of the animal voltage-dependent chloride channel (CIC) family, whose archetype is CIC-0 from the Torpedo marmorata electric organ. Injection of CIC-Nt1 complementary RNA into Xenopus oocytes elicited slowly activating inward currents upon membrane hyperpolarization more negative than -120 mV. These currents were carried mainly by anions, modulated by extracellular anions, and totally blocked by 10 mM extracellular calcium. The identification of CIC-Nt1 extends the CIC family to higher plants and provides a molecular probe for the study of voltage-dependent anion channels in plants. PMID:8624442

  19. Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.

    Science.gov (United States)

    Song, Weizhong; Du, Yuzhe; Liu, Zhiqi; Luo, Ningguang; Turkov, Michael; Gordon, Dalia; Gurevitz, Michael; Goldin, Alan L; Dong, Ke

    2011-05-06

    Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.

  20. The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Schmitt, Nicole; Calloe, Kirstine

    2006-01-01

    The family of Kv7 (KCNQ) potassium channels consists of five members. Kv7.2 and 3 are the primary molecular correlates of the M-current, but also Kv7.4 and Kv7.5 display M-current characteristics. M-channel modulators include blockers (e.g., linopirdine) for cognition enhancement and openers (e.g...

  1. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  2. Inhibitory actions by ibandronate sodium, a nitrogen-containing bisphosphonate, on calcium-activated potassium channels in Madin–Darby canine kidney cells

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The nitrogen-containing bisphosphonates used for management of the patients with osteoporosis were reported to influence the function of renal tubular cells. However, how nitrogen-containing bisphosphates exert any effects on ion currents remains controversial. The effects of ibandronate (Iban, a nitrogen-containing bisphosphonate, on ionic channels, including two types of Ca2+-activated K+ (KCa channels, namely, large-conductance KCa (BKCa and intermediate-conductance KCa (IKCa channels, were investigated in Madin–Darby canine kidney (MDCK cells. In whole-cell current recordings, Iban suppressed the amplitude of voltage-gated K+ current elicited by long ramp pulse. Addition of Iban caused a reduction of BKCa channels accompanied by a right shift in the activation curve of BKCa channels, despite no change in single-channel conductance. Ca2+ sensitivity of these channels was modified in the presence of this compound; however, the magnitude of Iban-mediated decrease in BKCa-channel activity under membrane stretch with different negative pressure remained unchanged. Iban suppressed the probability of BKCa-channel openings linked primarily to a shortening in the slow component of mean open time in these channels. The dissociation constant needed for Iban-mediated suppression of mean open time in MDCK cells was 12.2 μM. Additionally, cell exposure to Iban suppressed the activity of IKCa channels, and DC-EBIO or 9-phenanthrol effectively reversed its suppression. Under current-clamp configuration, Iban depolarized the cells and DC-EBIO or PF573228 reversed its depolarizing effect. Taken together, the inhibitory action of Iban on KCa-channel activity may contribute to the underlying mechanism of pharmacological or toxicological actions of Iban and its structurally similar bisphosphonates on renal tubular cells occurring in vivo.

  3. Electrophysiological characterisation of KCNQ channel modulators

    DEFF Research Database (Denmark)

    Schrøder, R.L

    Potassium (K+) ion channels are ubiquitously expressed in mammalian cells, and each channel serves a precise physiological role due to its specific biophysical characteristics and expression pattern. A few K+ channels are targets for certain drugs, and in this thesis it is suggested that the KCNQ K......+ channels may be targets for neuroprotective, anti-epileptic and anti-nociceptive compounds. The importance of these channels is underscored by the fact that four out of five KCNQ channel subtypes are involved in severe human diseases. However, the pharmacology of the KCNQ channels is yet poorly understood...... as these channels were identified only recently. Therefore, there is a need for understanding the biophysical behavior and pharmacology of these ion channels. KCNQ channels belong to the group of voltage-activated K+ channels. The subfamily consists of KCNQ1-5, which is primarily expressed in the CNS, heart, ear...

  4. Voltage dependence of a stochastic model of activation of an alpha helical S4 sensor in a K channel membrane

    Science.gov (United States)

    Vaccaro, S. R.

    2011-09-01

    The voltage dependence of the ionic and gating currents of a K channel is dependent on the activation barriers of a voltage sensor with a potential function which may be derived from the principal electrostatic forces on an S4 segment in an inhomogeneous dielectric medium. By variation of the parameters of a voltage-sensing domain model, consistent with x-ray structures and biophysical data, the lowest frequency of the survival probability of each stationary state derived from a solution of the Smoluchowski equation provides a good fit to the voltage dependence of the slowest time constant of the ionic current in a depolarized membrane, and the gating current exhibits a rising phase that precedes an exponential relaxation. For each depolarizing potential, the calculated time dependence of the survival probabilities of the closed states of an alpha helical S4 sensor are in accord with an empirical model of the ionic and gating currents recorded during the activation process.

  5. Interactions between β-catenin and the HSlo potassium channel regulates HSlo surface expression.

    Directory of Open Access Journals (Sweden)

    Shumin Bian

    Full Text Available The large conductance calcium-activated potassium channel alpha-subunit (Slo is widely distributed throughout the body and plays an important role in a number of diseases. Prior work has shown that Slo, through its S10 region, interacts with β-catenin, a key component of the cytoskeleton framework and the Wnt signaling pathway. However, the physiological significance of this interaction was not clear.Using a combination of proteomic and cell biology tools we show the existence of additional multiple binding sites in Slo, and explore in detail β-catenin interactions with the S10 region. We demonstrate that deletion of this region reduces Slo surface expression in HEK cells, which indicates that interaction with beta-catenin is important for Slo surface expression. This is confirmed by reduced expression of Slo in HEK cells and chicken (Gallus gallus domesticus leghorn white hair cells treated with siRNA to β-catenin. HSlo reciprocally co-immunoprecipitates with β-catenin, indicating a stable binding between these two proteins, with the S10 deletion mutant having reduced binding with β-catenin. We also observed that mutations of the two putative GSK phosphorylation sites within the S10 region affect both the surface expression of Slo and the channel's voltage and calcium sensitivities. Interestingly, expression of exogenous Slo in HEK cells inhibits β-catenin-dependent canonical Wnt signaling.These studies identify for the first time a central role for β-catenin in mediating Slo surface expression. Additionally we show that Slo overexpression can lead to downregulation of Wnt signaling.

  6. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

    Science.gov (United States)

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-05-01

    Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra

  7. Point mutation of a conserved aspartate, D69, in the muscarinic M2 receptor does not modify voltage-sensitive agonist potency.

    Science.gov (United States)

    Ågren, Richard; Sahlholm, Kristoffer; Nilsson, Johanna; Århem, Peter

    2018-01-29

    The muscarinic M 2 receptor (M 2 R) has been shown to display voltage-sensitive agonist binding, based on G protein-activated inward rectifier potassium channel (GIRK) opening and radioligand binding at different membrane voltages. A conserved aspartate in transmembrane segment (TM) II of M 2 R, D69, has been proposed as the voltage sensor. While a recent paper instead presented evidence of tyrosines in TMs III, VI, and VII acting as voltage sensors, these authors were not able to record GIRK channel activation by a D69N mutant M 2 R. In the present study, we succeeded in recording ACh-induced GIRK channel activation by this mutant at -80 and 0 mV. The acetylcholine EC 50 was about 2.5-fold higher at 0 mV, a potency shift very similar to that observed at wild-type M 2 R, indicating that voltage sensitivity persists at the D69N mutant. Thus, our present observations corroborate the notion that D69 is not responsible for voltage sensitivity of the M 2 R. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+ channels.

    Directory of Open Access Journals (Sweden)

    Seok-Yong Lee

    2009-03-01

    Full Text Available Voltage-dependent K(+ (Kv channels gate open in response to the membrane voltage. To further our understanding of how cell membrane voltage regulates the opening of a Kv channel, we have studied the protein interfaces that attach the voltage-sensor domains to the pore. In the crystal structure, three physical interfaces exist. Only two of these consist of amino acids that are co-evolved across the interface between voltage sensor and pore according to statistical coupling analysis of 360 Kv channel sequences. A first co-evolved interface is formed by the S4-S5 linkers (one from each of four voltage sensors, which form a cuff surrounding the S6-lined pore opening at the intracellular surface. The crystal structure and published mutational studies support the hypothesis that the S4-S5 linkers convert voltage-sensor motions directly into gate opening and closing. A second co-evolved interface forms a small contact surface between S1 of the voltage sensor and the pore helix near the extracellular surface. We demonstrate through mutagenesis that this interface is necessary for the function and/or structure of two different Kv channels. This second interface is well positioned to act as a second anchor point between the voltage sensor and the pore, thus allowing efficient transmission of conformational changes to the pore's gate.

  9. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  10. Signature and Pathophysiology of Non-canonical Pores in Voltage-Dependent Cation Channels.

    Science.gov (United States)

    Held, Katharina; Voets, Thomas; Vriens, Joris

    2016-01-01

    Opening and closing of voltage-gated cation channels allows the regulated flow of cations such as Na(+), K(+), and Ca(2+) across cell membranes, which steers essential physiological processes including shaping of action potentials and triggering Ca(2+)-dependent processes. Classical textbooks describe the voltage-gated cation channels as membrane proteins with a single, central aqueous pore. In recent years, however, evidence has accumulated for the existence of additional ion permeation pathways in this group of cation channels, distinct from the central pore, which here we collectively name non-canonical pores. Whereas the first non-canonical pores were unveiled only after making specific point mutations in the voltage-sensor region of voltage-gated Na(+) and K(+) channels, recent evidence indicates that they may also be functional in non-mutated channels. Moreover, several channelopathies have been linked to mutations that cause the appearance of a non-canonical ion permeation pathway as a new pathological mechanism. This review provides an integrated overview of the biophysical properties of non-canonical pores described in voltage-dependent cation channels (KV, NaV, Cav, Hv1, and TRPM3) and of the (patho)physiological impact of opening of such pores.

  11. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    Science.gov (United States)

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  12. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat

    DEFF Research Database (Denmark)

    Stankevicius, Edgaras; Dalsgaard, Thomas; Kroigaard, Christel

    2011-01-01

    This study was designed to investigate whether calcium-activated potassium channels of small (SK(Ca) or K(Ca)2) and intermediate (IK(Ca) or K(Ca)3.1) conductance activated by 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) are involved in both nitric oxide (NO) and endothelium-derived hyperpolar......This study was designed to investigate whether calcium-activated potassium channels of small (SK(Ca) or K(Ca)2) and intermediate (IK(Ca) or K(Ca)3.1) conductance activated by 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) are involved in both nitric oxide (NO) and endothelium...... in human umbilical vein endothelial cells (HUVECs), and calcium concentrations were investigated in both HUVECs and mesenteric arterial endothelial cells. In both superior (∼1093 μm) and small mesenteric (∼300 μm) arteries, NS309 evoked endothelium- and concentration-dependent relaxations. In superior....... In small mesenteric arteries, NS309 relaxations were reduced slightly by ADMA, whereas apamin plus an IK(Ca) channel blocker almost abolished relaxation. Iberiotoxin did not change NS309 relaxation. HUVECs expressed mRNA for SK(Ca) and IK(Ca) channels, and NS309 induced increases in calcium, outward...

  13. Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes

    Science.gov (United States)

    Leipold, Enrico; Borges, Adolfo

    2012-01-01

    Scorpion β toxins, peptides of ∼70 residues, specifically target voltage-gated sodium (NaV) channels to cause use-dependent subthreshold channel openings via a voltage–sensor trapping mechanism. This excitatory action is often overlaid by a not yet understood depressant mode in which NaV channel activity is inhibited. Here, we analyzed these two modes of gating modification by β-toxin Tz1 from Tityus zulianus on heterologously expressed NaV1.4 and NaV1.5 channels using the whole cell patch-clamp method. Tz1 facilitated the opening of NaV1.4 in a use-dependent manner and inhibited channel opening with a reversed use dependence. In contrast, the opening of NaV1.5 was exclusively inhibited without noticeable use dependence. Using chimeras of NaV1.4 and NaV1.5 channels, we demonstrated that gating modification by Tz1 depends on the specific structure of the voltage sensor in domain 2. Although residue G658 in NaV1.4 promotes the use-dependent transitions between Tz1 modification phenotypes, the equivalent residue in NaV1.5, N803, abolishes them. Gating charge neutralizations in the NaV1.4 domain 2 voltage sensor identified arginine residues at positions 663 and 669 as crucial for the outward and inward movement of this sensor, respectively. Our data support a model in which Tz1 can stabilize two conformations of the domain 2 voltage sensor: a preactivated outward position leading to NaV channels that open at subthreshold potentials, and a deactivated inward position preventing channels from opening. The results are best explained by a two-state voltage–sensor trapping model in that bound scorpion β toxin slows the activation as well as the deactivation kinetics of the voltage sensor in domain 2. PMID:22450487

  14. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    Science.gov (United States)

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  15. Inward rectifier potassium current IKir promotes intrinsic pacemaker activity of thalamocortical neurons.

    Science.gov (United States)

    Amarillo, Yimy; Tissone, Angela I; Mato, Germán; Nadal, Marcela S

    2018-06-01

    Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (rectifier potassium current I Kir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of I Kir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of I Kir and hyperpolarization-activated cationic current I h that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that I Kir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with I h and increases the robustness of low threshold-activated calcium current I T -mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current I Kir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that I Kir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current I h ; and increases the robustness of oscillations mediated by the low threshold-activated calcium current I T . Upregulation of I Kir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).

  16. MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset

    Directory of Open Access Journals (Sweden)

    Christina Gross

    2016-09-01

    Full Text Available Seizures are bursts of excessive synchronized neuronal activity, suggesting that mechanisms controlling brain excitability are compromised. The voltage-gated potassium channel Kv4.2, a major mediator of hyperpolarizing A-type currents in the brain, is a crucial regulator of neuronal excitability. Kv4.2 expression levels are reduced following seizures and in epilepsy, but the underlying mechanisms remain unclear. Here, we report that Kv4.2 mRNA is recruited to the RNA-induced silencing complex shortly after status epilepticus in mice and after kainic acid treatment of hippocampal neurons, coincident with reduction of Kv4.2 protein. We show that the microRNA miR-324-5p inhibits Kv4.2 protein expression and that antagonizing miR-324-5p is neuroprotective and seizure suppressive. MiR-324-5p inhibition also blocks kainic-acid-induced reduction of Kv4.2 protein in vitro and in vivo and delays kainic-acid-induced seizure onset in wild-type but not in Kcnd2 knockout mice. These results reveal an important role for miR-324-5p-mediated silencing of Kv4.2 in seizure onset.

  17. Identification of an HV 1 voltage-gated proton channel in insects.

    Science.gov (United States)

    Chaves, Gustavo; Derst, Christian; Franzen, Arne; Mashimo, Yuta; Machida, Ryuichiro; Musset, Boris

    2016-04-01

    The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722. © 2016 Federation of European Biochemical Societies.

  18. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  19. Current-voltage characteristics of quantum-point contacts in the closed-channel regime: Transforming the bias voltage into an energy scale

    DEFF Research Database (Denmark)

    Gloos, K.; Utko, P.; Aagesen, M.

    2006-01-01

    We investigate the I(V) characteristics (current versus bias voltage) of side-gated quantum-point contacts, defined in GaAs/AlxGa1-xAs heterostructures. These point contacts are operated in the closed-channel regime, that is, at fixed gate voltages below zero-bias pinch-off for conductance. Our....... Such a built-in energy-voltage calibration allows us to distinguish between the different contributions to the electron transport across the pinched-off contact due to thermal activation or quantum tunneling. The first involves the height of the barrier, and the latter also its length. In the model that we...

  20. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes

    International Nuclear Information System (INIS)

    Hamilton, S.L.; Alvarez, R.M.; Fill, M.; Hawkes, M.J.; Brush, K.L.; Schilling, W.P.; Stefani, E.

    1989-01-01

    Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [ 3 H]PN200-110, and the alkaloid, [ 3 H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling

  1. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes.

    Science.gov (United States)

    Dunn, P M

    1998-09-15

    The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (delta) of 0.18 and a Kd at 0 mV of 20.5 mM. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, inter-spersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, delta = 0.44, and a Kd at 0 mV of 0.15 microM. Clotrimazole applied to the inner face of the membrane at a concentration block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 microM) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel.

  2. Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains.

    Science.gov (United States)

    Hsu, Eric J; Zhu, Wandi; Schubert, Angela R; Voelker, Taylor; Varga, Zoltan; Silva, Jonathan R

    2017-03-06

    Functional eukaryotic voltage-gated Na + (Na V ) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical Na V channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair Na V channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery. © 2017 Hsu et al.

  3. Developmental regulation of voltage-sensitive sodium channels in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.

    1985-01-01

    The developmental regulation of the voltage-sensitive Na + channel in rat skeletal muscle was studied in vivo and in vitro. In triceps surae muscle developing in vivo the development of TTX-sensitive Na + channel occurred primarily during the first three postnatal weeks as determined by the specific binding of [ 3 H]saxitoxin. This development proceeded in two separate phases. The first phase occurs independently of continuing motor neuron innervation and accounts for 60% of the adult density of TTX-sensitive Na + channels. The second phase, which begins about day 11, requires innervation. Muscle cells in primary culture were found to have both TTX-sensitive and insensitive Na + channels. The development of the TTX-sensitive channel, in vitro, paralleled the initial innervation-independent phase of development observed in vivo. The density of TTX-sensitive Na + channels in cultured muscle cells was regulated by electrical activity and cytosolic Ca ++ levels. Pharmacological blockade of the spontaneous electrical activity present in these cells lead to a nearly 2-fold increase in the surface density of TTX-sensitive channels. The turnover time of the TTX-sensitive Na + channel was measured by blocking the incorporation of newly synthesized channels with tunicamycin, an inhibitor of N-linked protein glycosylation. The regulation of channel density by electrical activity, cytosolic Ca ++ levels, and agents affecting cyclic neucleotide levels had no effect on the turnover time of the TTX-sensitive Na + channel, indicating that these regulatory agents instead affect the synthesis of the channel

  4. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    Science.gov (United States)

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  5. Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel

    International Nuclear Information System (INIS)

    Barchi, R.L.; Tanaka, J.C.

    1984-01-01

    In excitable membranes, the voltage-dependent sodium channel controls the primary membrane conductance change necessary for the generation of an action potential. Over the past four decades, the time- and voltage-dependent sodium currents gated by this channel have been thoroughly documented with increasingly sophisticated voltage-clamp techniques. Recent advances in the biochemistry of membrane proteins have led to the solubilization and purification of this channel protein from nerve (6) and from muscle (4) or muscle-derived (1) membranes, and have provided an approach to the correlation of the channel's molecular structure with its functional properties. Each of these sodium channel preparations appears to contain a large glycoprotein either as its sole component (2) or in association with several small subunits (6, 3). Evidence that these purified proteins represent the excitable membrane sodium channel is presented. 8 refs., 1 fig., 1 tab

  6. Distinct white matter integrity in glutamic acid decarboxylase and voltage-gated potassium channel-complex antibody-associated limbic encephalitis.

    Science.gov (United States)

    Wagner, Jan; Schoene-Bake, Jan-Christoph; Witt, Juri-Alexander; Helmstaedter, Christoph; Malter, Michael P; Stoecker, Winfried; Probst, Christian; Weber, Bernd; Elger, Christian E

    2016-03-01

    Autoantibodies against glutamic acid decarboxylase (GAD) and the voltage-gated potassium channel (VGKC) complex are associated with distinct subtypes of limbic encephalitis regarding clinical presentation, response to therapy, and outcome. The aim of this study was to investigate white matter changes in these two limbic encephalitis subtypes by means of diffusion tensor imaging (DTI). Diffusion data were obtained in 14 patients with GAD antibodies and 16 patients with VGKC-complex antibodies and compared with age- and gender-matched control groups. Voxelwise statistical analysis was carried out using tract-based spatial statistics. The results were furthermore compared with those of 15 patients with unilateral histologically confirmed hippocampal sclerosis and correlated with verbal and figural memory performance. We found widespread changes of fractional anisotropy and all diffusivity parameters in GAD-associated limbic encephalitis, whereas no changes were found in VGKC-complex-associated limbic encephalitis. The changes observed in the GAD group were even more extensive when compared against those of the hippocampal sclerosis group, although the disease duration was markedly shorter in patients with GAD antibodies. Correlation analysis revealed areas with a trend toward a negative correlation of diffusivity parameters with figural memory performance located mainly in the right temporal lobe in the GAD group as well. The present study provides further evidence that, depending on the associated antibody, limbic encephalitis features clearly distinct imaging characteristics by showing widespread white matter changes in GAD-associated limbic encephalitis and preserved white matter integrity in VGKC-complex-associated limbic encephalitis. Furthermore, our results contribute to a better understanding of the specific pathophysiologic properties in these two subforms of limbic encephalitis by revealing that patients with GAD antibodies show widespread affections of

  7. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size

    DEFF Research Database (Denmark)

    Christensen, Alex Hørby; Chatelain, Franck C; Huttner, Inken G

    2016-01-01

    distribution with predominant localization in the endosomal compartment. Two-electrode voltage-clamp experiments using Xenopus oocytes showed that both zebrafish and wild-type human TWIK-1 channels produced K(+) currents that are sensitive to external K(+) concentration as well as acidic pH. There were......The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown. To evaluate......-coding regions in two independent cohorts of patients (373 subjects) and identified three non-synonymous variants, p.R171H, p.I198M and p.G236S, that were all located in highly conserved amino acid residues. In transfected mammalian cells, zebrafish and wild-type human TWIK-1 channels had a similar cellular...

  8. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  9. The twisted ion-permeation pathway of a resting voltage-sensing domain.

    Science.gov (United States)

    Tombola, Francesco; Pathak, Medha M; Gorostiza, Pau; Isacoff, Ehud Y

    2007-02-01

    Proteins containing voltage-sensing domains (VSDs) translate changes in membrane potential into changes in ion permeability or enzymatic activity. In channels, voltage change triggers a switch in conformation of the VSD, which drives gating in a separate pore domain, or, in channels lacking a pore domain, directly gates an ion pathway within the VSD. Neither mechanism is well understood. In the Shaker potassium channel, mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions ('omega current') in the resting conformation ('S4 down'). Here we perform a structure-guided perturbation analysis of the omega conductance to map its VSD permeation pathway. We find that there are four omega pores per channel, which is consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway. Our results provide a model of the resting conformation of the VSD.

  10. Common variants in the hERG (KCNH2) voltage-gated potassium channel are associated with altered fasting and glucose-stimulated plasma incretin and glucagon responses

    DEFF Research Database (Denmark)

    Engelbrechtsen, Line; Mahendran, Yuvaraj; Jonsson, Anna

    2018-01-01

    BACKGROUND: Patients with long QT syndrome due to rare loss-of-function mutations in the human ether-á-go-go-related gene (hERG) have prolonged QT interval, risk of arrhythmias, increased secretion of insulin and incretins and impaired glucagon response to hypoglycemia. This is caused by a dysfun......BACKGROUND: Patients with long QT syndrome due to rare loss-of-function mutations in the human ether-á-go-go-related gene (hERG) have prolonged QT interval, risk of arrhythmias, increased secretion of insulin and incretins and impaired glucagon response to hypoglycemia. This is caused...... by a dysfunctional Kv11.1 voltage-gated potassium channel. Based on these findings in patients with rare variants in hERG, we hypothesized that common variants in hERG may also lead to alterations in glucose homeostasis. Subsequently, we aimed to evaluate the effect of two common gain-of-function variants in hERG...... in hERG on QT-interval and circulation levels of incretins, insulin and glucagon. The Danish population-based Inter99 cohort (n = 5895) was used to assess the effect of common variants on QT-interval. The Danish ADDITION-PRO cohort was used (n = 1329) to study genetic associations with levels of GLP-1...

  11. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    Science.gov (United States)

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  12. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    Science.gov (United States)

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  13. Ca2+ and voltage dependence of cardiac ryanodine receptor channel block by sphingosylphosphorylcholine.

    Science.gov (United States)

    Yasukochi, Midori; Uehara, Akira; Kobayashi, Sei; Berlin, Joshua R

    2003-03-01

    The effect of sphingosylphosphorylcholine (SPC) on the cytoplasmic Ca(2+) and voltage dependence of channel gating by cardiac ryanodine receptors (RyR) was examined in lipid bilayer experiments. Micromolar concentrations of the lysosphingolipid SPC added to cis solutions rapidly and reversibly decreased the single-channel open probability (P(o)) of reconstituted RyR channels. The SPC-induced decrease in P(o) was marked by an increase in mean closed time and burst-like channel gating. Gating kinetics during intraburst periods were unchanged from those observed in the absence of the sphingolipid, although SPC induced a long-lived closed state that appeared to explain the observed decrease in channel P(o). SPC effects were observed over a broad range of cis [Ca(2+)] but were not competitive with Ca(2+). Interestingly, the sphingolipid-induced, long-lived closed state displayed voltage-dependent kinetics, even though other channel gating kinetics were not sensitive to voltage. Assuming SPC effects represent channel blockade, these results suggest that the blocking rate is independent of voltage whereas the unblocking rate is voltage dependent. Together, these results suggest that SPC binds directly to the cytoplasmic side of the RyR protein in a location in or near the membrane dielectric, but distinct from cytoplasmic Ca(2+) binding sites on the protein.

  14. Localization and Molecular Determinants of the Hanatoxin Receptors on the Voltage-Sensing Domains of a K+ Channel

    Science.gov (United States)

    Li-Smerin, Yingying; Swartz, Kenton J.

    2000-01-01

    Hanatoxin inhibits voltage-gated K+ channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K+ channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We also examined a region encompassing S1–S3 using alanine-scanning mutagenesis to identify additional determinants of the toxin receptors. Finally, guided by the structure of the KcsA K+ channel, we explored whether the toxin interacts with the peripheral extracellular surface of the pore domain in the drk1 K+ channel. Our results argue for an intimate interaction between the toxin and the COOH terminus of S3 and suggest that the Hanatoxin receptors are confined within the voltage-sensing domains of the channel, at least 20–25 Å away from the central pore axis. PMID:10828242

  15. Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K+ channels.

    Science.gov (United States)

    Carvalho-de-Souza, Joao L; Bezanilla, Francisco

    2018-02-05

    Voltage sensitivity in ion channels is a function of highly conserved arginine residues in their voltage-sensing domains (VSDs), but this conservation does not explain the diversity in voltage dependence among different K + channels. Here we study the non-voltage-sensing residues 353 to 361 in Shaker K + channels and find that residues 358 and 361 strongly modulate the voltage dependence of the channel. We mutate these two residues into all possible remaining amino acids (AAs) and obtain Q-V and G-V curves. We introduced the nonconducting W434F mutation to record sensing currents in all mutants except L361R, which requires K + depletion because it is affected by W434F. By fitting Q-Vs with a sequential three-state model for two voltage dependence-related parameters ( V 0 , the voltage-dependent transition from the resting to intermediate state and V 1 , from the latter to the active state) and G-Vs with a two-state model for the voltage dependence of the pore domain parameter ( V 1/2 ), Spearman's coefficients denoting variable relationships with hydrophobicity, available area, length, width, and volume of the AAs in 358 and 361 positions could be calculated. We find that mutations in residue 358 shift Q-Vs and G-Vs along the voltage axis by affecting V 0 , V 1 , and V 1/2 according to the hydrophobicity of the AA. Mutations in residue 361 also shift both curves, but V 0 is affected by the hydrophobicity of the AA in position 361, whereas V 1 and V 1/2 are affected by size-related AA indices. Small-to-tiny AAs have opposite effects on V 1 and V 1/2 in position 358 compared with 361. We hypothesize possible coordination points in the protein that residues 358 and 361 would temporarily and differently interact with in an intermediate state of VSD activation. Our data contribute to the accumulating knowledge of voltage-dependent ion channel activation by adding functional information about the effects of so-called non-voltage-sensing residues on VSD dynamics. © 2018

  16. Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Theis

    2018-04-01

    Full Text Available The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs propagate back into the dendritic tree and activate voltage gated Ca2+ channels (VGCCs. For spines, this global mode of spine Ca2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca2+conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca2+ influx, the amount of EPSP mediated Ca2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.

  17. Voltage-gated sodium channels: action players with many faces

    NARCIS (Netherlands)

    Koopmann, Tamara T.; Bezzina, Connie R.; Wilde, Arthur A. M.

    2006-01-01

    Voltage-gated sodium channels are responsible for the upstroke of the action potential and thereby play an important role in propagation of the electrical impulse in excitable tissues like muscle, nerve and the heart. Duplication of the sodium channels encoding genes during evolution generated the

  18. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    Science.gov (United States)

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  19. Loss of Female Sex Hormones Exacerbates Cerebrovascular and Cognitive Dysfunction in Aortic Banded Miniswine Through a Neuropeptide Y-Ca2+-Activated Potassium Channel-Nitric Oxide Mediated Mechanism.

    Science.gov (United States)

    Olver, T Dylan; Hiemstra, Jessica A; Edwards, Jenna C; Schachtman, Todd R; Heesch, Cheryl M; Fadel, Paul J; Laughlin, M Harold; Emter, Craig A

    2017-10-31

    Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory. Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB-OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole-board task) were lower in the OVX groups ( P <0.05), with significant impairments in the AB-OVX group ( P <0.05). Resting carotid artery β stiffness and vascular resistance during central hypovolemia were increased in the AB-OVX group ( P <0.05), and blood flow recovery after central hypovolemia was reduced in both OVX groups ( P <0.05). Isolated pial artery (pressure myography) vasoconstriction to neuropeptide Y was greatest in the AB-OVX group ( P <0.05), and vasodilation to the Ca 2+ -activated potassium channel α-subunit agonist NS-1619 was impaired in both AB groups ( P <0.05). The ratio of phosphorylated endothelial nitric oxide synthase:total endothelial nitric oxide synthase was depressed and Ca 2+ -activated potassium channel α-subunit protein was increased in AB groups ( P <0.05). Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y-induced vasoconstriction along with reduced vasodilation associated with decreased Ca 2+ -activated potassium channel function and impaired nitric oxide signaling, the effects of which are exacerbated in the absence of female sex hormones. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    International Nuclear Information System (INIS)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na v 1.5 sodium and Ca v 1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential

  1. Expression of K2P5.1 potassium channels on CD4+ T lymphocytes correlates with disease activity in rheumatoid arthritis patients.

    Science.gov (United States)

    Bittner, Stefan; Bobak, Nicole; Feuchtenberger, Martin; Herrmann, Alexander M; Göbel, Kerstin; Kinne, Raimund W; Hansen, Anker J; Budde, Thomas; Kleinschnitz, Christoph; Frey, Oliver; Tony, Hans-Peter; Wiendl, Heinz; Meuth, Sven G

    2011-02-11

    CD4+ T cells express K(2P)5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K(2P)5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K(2P)5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients. Expression levels of K(2P)5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K(2P)5.1. K(2P)5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K(2P)5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K(2P)5.1 expression to disease activity parameters during a longitudinal follow-up for six months. Disease activity in RA patients correlates strongly with K(2P)5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K(2P)5.1 as a potential biomarker for disease activity and differential diagnosis.

  2. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  3. Artificial modulation of the gating behavior of a K+ channel in a KvAP-DNA chimera.

    Directory of Open Access Journals (Sweden)

    Andrew Wang

    Full Text Available We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel.

  4. Common molecular determinants of tarantula huwentoxin-IV inhibition of Na+ channel voltage sensors in domains II and IV.

    Science.gov (United States)

    Xiao, Yucheng; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2011-08-05

    The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.

  5. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    Science.gov (United States)

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  6. TAURINE REGULATION OF VOLTAGE-GATED CHANNELS IN RETINAL NEURONS

    Science.gov (United States)

    Rowan, Matthew JM; Bulley, Simon; Purpura, Lauren; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine activates not only Cl−-permeable ionotropic receptors, but also receptors that mediate metabotropic responses. The metabotropic property of taurine was revealed in electrophysiological recordings obtained after fully blocking Cl−-permeable receptors with an inhibitory “cocktail” consisting of picrotoxin, SR95531, and strychnine. We found that taurine’s metabotropic effects regulate voltage-gated channels in retinal neurons. After applying the inhibitory cocktail, taurine enhanced delayed outward rectifier K+ channels preferentially in Off-bipolar cells, and the effect was completely blocked by the specific PKC inhibitor, GF109203X. Additionally, taurine also acted through a metabotropic pathway to suppress both L- and N-type Ca2+ channels in retinal neurons, which were insensitive to the potent GABAB receptor inhibitor, CGP55845. This study reinforces our previous finding that taurine in physiological concentrations produces a multiplicity of metabotropic effects that precisely govern the integration of signals being transmitted from the retina to the brain. PMID:23392926

  7. Effects of different components of serum after radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of myocardial cells

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianmin; Xiao Jiasi

    1997-01-01

    Objective: To study the effects of different components of serum in rats inflicted with radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of cultured myocardial cells. Method: Using patch clamp method to study the action of single ion channel. Results: The low molecular and lipid components of serum after different injuries models could all activate the inward rectifier potassium channel in cultured myocardial cells. The components of serum after combined radiation-burn injury showed the most significant effect, and the way of this effect was different from that from single injury. Conclusion: The serum components post injury altered the electric characteristic of myocardial cells, which may play a role in the combined effect of depressed cardiac function after combined radiation-burn injury

  8. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states.

    Science.gov (United States)

    Bargiello, Thaddeus A; Oh, Seunghoon; Tang, Qingxiu; Bargiello, Nicholas K; Dowd, Terry L; Kwon, Taekyung

    2018-01-01

    Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (V m or V i-o ). These transjunctional voltage dependent processes have been termed V j - or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use

  9. Antibodies to voltage-gated potassium and calcium channels in epilepsy.

    NARCIS (Netherlands)

    Majoie, H.J.; Baets, M.H.V. de; Renier, W.O.; Lang, B.; Vincent, A.

    2006-01-01

    OBJECTIVE: To determine the prevalence of antibodies to ion channels in patients with long standing epilepsy. BACKGROUND: Although the CNS is thought to be protected from circulating antibodies by the blood brain barrier, glutamate receptor antibodies have been reported in Rasmussen's encephalitis,

  10. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  11. Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes

    NARCIS (Netherlands)

    Casini, Simona; Verkerk, Arie O.; van Borren, Marcel M. G. J.; van Ginneken, Antoni C. G.; Veldkamp, Marieke W.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2009-01-01

    AIMS: Cardiac voltage-gated sodium channels control action potential (AP) upstroke and cell excitability. Intracellular calcium (Ca(i)(2+)) regulates AP properties by modulating various ion channels. Whether Ca(i)(2+) modulates sodium channels in ventricular myocytes, is unresolved. We studied

  12. Niflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.

    Science.gov (United States)

    Cheng, Lan; Sanguinetti, Michael C

    2009-05-01

    Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.

  13. A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.

    Science.gov (United States)

    Zhang, Alan H; Sharma, Gagan; Undheim, Eivind A B; Jia, Xinying; Mobli, Mehdi

    2018-04-21

    Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (Na V s) have attracted particular attention as potential analgesic targets. Na V s, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. Na V 1.7) to controlling electrical signalling in cardiac function (Na V 1.5). Understanding the structural basis of Na V function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective Na V modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit Na V s by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target Na V 1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from Na V 1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays. Copyright © 2018

  14. Aberrant modulation of a delayed rectifier potassium channel by glutamate in Alzheimer's disease.

    Science.gov (United States)

    Poulopoulou, Cornelia; Markakis, Ioannis; Davaki, Panagiota; Tsaltas, Eleftheria; Rombos, Antonis; Hatzimanolis, Alexandros; Vassilopoulos, Dimitrios

    2010-02-01

    In Alzheimer's disease (AD), potassium channel abnormalities have been reported in both neural and peripheral tissues. Herein, using whole-cell patch-clamp, we demonstrate an aberrant glutamate-dependent modulation of K(V)1.3 channels in T lymphocytes of AD patients. Although intrinsic K(V)1.3 properties in patients were similar to healthy individuals, glutamate (1-1000 microM) failed to yield the hyperpolarizing shift normally observed in K(V)1.3 steady-state inactivation (-4.4+/-2.7 mV in AD vs. -14.3+/-2.5 mV in controls, 10 microM glutamate), resulting in a 4-fold increase of resting channel activity. Specific agonist and antagonist data indicate that this abnormality is due to dysfunction of cognate group II mGluRs. Given that glutamate is present in plasma and that both mGluRs and K(V)1.3 channels regulate T-lymphocyte responsiveness, our finding may account for the presence of immune-associated alterations in AD. Furthermore, if this aberration reflects a corresponding one in neural tissue, it could provide a potential target in AD pathogenesis.

  15. The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes

    International Nuclear Information System (INIS)

    Law, J K Y; Chan, M; Yeung, C K; Rudd, J A; Hofmann, B; Ingebrandt, S; Offenhäusser, A

    2009-01-01

    The microelectrode array (MEA) was used to evaluate the cardioprotective effects of adenosine triphosphate sensitive potassium (K ATP ) channel activation using potassium channel openers (KCOs) on HL-1 cardiomyocytes subjected to acute chemically induced metabolic inhibition. Beat frequency and extracellular action potential (exAP) amplitude were measured in the presence of metabolic inhibitors (sodium azide (NaN 3 ) or 2-deoxyglucose (2-DG)) or KCOs (pinacidil (PIN, a cyanoguanidine derivative, activates sarcolemmal K ATP channels) or SDZ PCO400 (SDZ, a benzopyran derivative, activates mitochondrial K ATP channels)). The protective effects of these KCOs on metabolically inhibited HL-1 cells were subsequently investigated. Signal shapes indicated that NaN 3 and 2-DG reduced the rate of the sodium (Na + ) influx signal as reflected by a reduction in beat frequency. PIN and SDZ appeared to reduce both rate of depolarization and extent of the Na + influx signals. Pre-treating cardiomyocytes with PIN (0.1 mM), but not SDZ, prevented the reduction of beat frequency associated with NaN 3 - or 2-DG-induced metabolic inhibition. The exAP amplitude was not affected by either KCO. The cardioprotective effect of PIN relative to SDZ may be due to the opening of different K ATP channels. This metabolic inhibition model on the MEA may provide a stable platform for the study of cardiac pathophysiology in the future

  16. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels

    OpenAIRE

    Shang, Lijun; Tucker, Stephen J.

    2007-01-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the ?helix-bundle crossing?. However, in the inwardly rectifying (Kir) potassium channel family, the role of this ?hinge? residue in the second transmembrane domain (TM2) and t...

  17. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier.

    Science.gov (United States)

    Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre

    2017-07-01

    Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4  M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7  M) or selective GIRK channels blocker tertiapin (10 -6  M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4  M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.

  18. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    Science.gov (United States)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  19. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    Directory of Open Access Journals (Sweden)

    Stylianos Michalakis

    2018-03-01

    Full Text Available The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP or cyclic adenosine monophosphate (cAMP. Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN channels and voltage-gated potassium channels (KCN. In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  20. Killing of Candida albicans by Human Salivary Histatin 5 Is Modulated, but Not Determined, by the Potassium Channel TOK1

    OpenAIRE

    Baev, Didi; Rivetta, Alberto; Li, Xuewei S.; Vylkova, Slavena; Bashi, Esther; Slayman, Clifford L.; Edgerton, Mira

    2003-01-01

    Salivary histatin 5 (Hst 5), a potent toxin for the human fungal pathogen Candida albicans, induces noncytolytic efflux of cellular ATP, potassium, and magnesium in the absence of cytolysis, implicating these ion movements in the toxin's fungicidal activity. Hst 5 action on Candida resembles, in many respects, the action of the K1 killer toxin on Saccharomyces cerevisiae, and in that system the yeast plasma membrane potassium channel, Tok1p, has recently been reported to be a primary target o...

  1. Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion

    Directory of Open Access Journals (Sweden)

    Stanko S. Stojilkovic

    2017-06-01

    Full Text Available Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete gonadotropins in response to elevation in intracellular calcium concentration. These cells fire action potentials (APs spontaneously, coupled with voltage-gated calcium influx of insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of gonadotrophs reflects the expression of voltage-gated sodium, calcium, potassium, non-selective cation-conducting, and chloride channels at their plasma membrane (PM. These cells also express the hyperpolarization-activated and cyclic nucleotide-gated cation channels at the PM, as well as GABAA, nicotinic, and purinergic P2X channels gated by γ-aminobutyric acid (GABA, acetylcholine (ACh, and ATP, respectively. Activation of these channels leads to initiation or amplification of the pacemaking activity, facilitation of calcium influx, and activation of the exocytic pathway. Gonadotrophs also express calcium-conducting channels at the endoplasmic reticulum membranes gated by inositol trisphosphate and intracellular calcium. These channels are activated potently by hypothalamic gonadotropin-releasing hormone (GnRH and less potently by several paracrine calcium-mobilizing agonists, including pituitary adenylate cyclase-activating peptides, endothelins, ACh, vasopressin, and oxytocin. Activation of these channels causes oscillatory calcium release and a rapid gonadotropin release, accompanied with a shift from tonic firing of single APs to periodic bursting type of electrical activity, which accounts for a sustained calcium signaling and gonadotropin secretion. This review summarizes our current understanding of ion channels as signaling molecules in gonadotrophs, the role of GnRH and paracrine agonists in their gating, and the cross talk among channels.

  2. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  3. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+) -activated K(+) channels.

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-06-01

    Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). At a concentration without direct effect on vascular tone, kaempferol (3 × 10(-6) M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by N(ω)-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10(-4) M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10(-6) M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10(-3) M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa 1.1; 10(-7) M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa 1.1 channels. © 2015 The British Pharmacological Society.

  4. Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Pilar eMartinez-Martinez

    2013-09-01

    Full Text Available Changes of voltage-gated ion channels and ligand-gated receptor channels caused by mutation or autoimmune attack are the cause of so-called channelopathies in the central and peripheral nervous system. We present the pathophysiology of channelopathies of the neuromuscular junction in terms of loss-of-function and gain-of-function principles. Autoantibodies generally have reduced access to the CNS, but in some cases this is enough to cause disease. A review is provided of recent findings implicating autoantibodies against ligand–activated receptor channels and potassium channels in psychiatric and neurological disorders, including schizophrenia and limbic encephalitis. The emergence of channelopathy-related neuropsychiatric disorders has implications for research and practice.

  5. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family

    Science.gov (United States)

    2013-01-01

    Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829

  6. Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel.

    Science.gov (United States)

    Zhang, M; Liu, J; Jiang, M; Wu, D-M; Sonawane, K; Guy, H R; Tseng, G-N

    2005-10-01

    Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.

  7. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    OpenAIRE

    López López, José Ramón; Fernández Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván Viguera, Aida; Köhler, Ralf; Pérez García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández Fernández, José Manuel

    2015-01-01

    Producción Científica Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced...

  8. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...

  9. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  10. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Nnamdi Edokobi

    2018-04-01

    Full Text Available Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs. Voltage-gated sodium channels (NaVs are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.

  11. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    Science.gov (United States)

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages

  12. A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET

    International Nuclear Information System (INIS)

    Tripathi Shweta

    2014-01-01

    An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal—oxide—semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLAS™ 2D device simulator. (interdisciplinary physics and related areas of science and technology)

  13. A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET

    Science.gov (United States)

    Shweta, Tripathi

    2014-11-01

    An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal—oxide—semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLAS™ 2D device simulator.

  14. [Effects of vitamin K3 on the contractile activity of the colonic smooth muscles of guinea pig through the calcium activated potassium channel].

    Science.gov (United States)

    Li, Jun; Luo, He-sheng; He, Xiao-gu

    2006-07-25

    To study the mechanism of relaxation of gastrointestinal smooth muscles by vitamin K(3). Stripes of proximal colon were collected from guinea pigs. Suspension of single cells was created from these stripes. TD-112S transducer was used to measure the contraction of the stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L respectively. The Ca(2+)-activated K(+) current [IK(Ca)] of the cytomembrane of the colon smooth muscle was recorded with an EPC 10 amplifier under conventional whole cell patterns. The contraction frequencies of the muscle stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L were 79% +/- 4%, 58% +/- 5%, 33% +/- 4%, and 12% +/- 3% respectively of that of the control group (all P Vitamin K(3) inhibits the contractile activity of the colonic muscle stripes and increases the IK(Ca) of single myocytes concentration-dependently. The mechanism is activation of the Ca(2+)-activated K(+) channel, thus promoting the potassium efflux.

  15. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

    Science.gov (United States)

    Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R

    2016-09-01

    The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    Science.gov (United States)

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  17. Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies - a national cohort study.

    Science.gov (United States)

    Celicanin, M; Blaabjerg, M; Maersk-Moller, C; Beniczky, S; Marner, L; Thomsen, C; Bach, F W; Kondziella, D; Andersen, H; Somnier, F; Illes, Z; Pinborg, L H

    2017-08-01

    The aim of this study was to describe clinical and paraclinical characteristics of all Danish patients who tested positive for anti-voltage-gated potassium channels (VGKC)-complex, anti-leucine-rich glioma-inactivated 1 (LGI1) and anti-contactin-associated protein-2 antibodies in the serum/cerebrospinal fluid between 2009 and 2013 with follow-up interviews in 2015 and 2016. We evaluated antibody status, symptoms leading to testing, course of disease, suspected diagnosis and time of admission as well as diagnosis and treatment. All magnetic resonance imaging, electroencephalography and 18 F-fluorodeoxyglucose positron emission tomography scans were re-evaluated by experts in the field. A total of 28/192 patients tested positive for VGKC-complex antibodies by radioimmunoassay and indirect immunofluorescence; 17 had antibodies to LGI1 and 6/7 of the available cerebrospinal fluids from these patients were seropositive. These 17 patients all had a clinical phenotype appropriate to LGI1 antibodies. The remaining 11 were LGI1 negative (n = 4) or not tested (n = 7). Of these, two had a phenotype consistent with limbic encephalitis. The remaining phenotypes were Guillain-Barré syndrome, Creutzfeldt-Jakob disease, neuromyotonia and anti-N-methyl-D-aspartate receptor encephalitis. Magnetic resonance imaging abnormalities were demonstrated in 69% of the LGI1-positive patients. Two patients with normal magnetic resonance imaging demonstrated temporal lobe hypermetabolism using 18 F-fluorodeoxyglucose positron emission tomography. Abnormal electroencephalography recordings were found in 86% of the patients. Upon follow-up (median 3.2 years), the median modified Rankin Scale score of anti-LGI1-positive patients was 2 and only two patients reported seizures in the past year. Patients diagnosed with anti-LGI1 autoimmune encephalitis increased significantly from 2009 to 2014, probably due to increased awareness. In contrast to seropositive anti-VGKC-complex patients, all anti-LGI1

  18. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise.

    Science.gov (United States)

    Gupta, Rajeev

    2017-09-02

    The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. New Conotoxin SO-3 Targeting N-type Voltage-Sensitive Calcium Channels

    Directory of Open Access Journals (Sweden)

    Lei Wen

    2006-04-01

    Full Text Available Selective blockers of the N-type voltage-sensitive calcium (CaV channels are useful in the management of severe chronic pain. Here, the structure and function characteristics of a novel N-type CaV channel blocker, SO-3, are reviewed. SO-3 is a 25-amino acid conopeptide originally derived from the venom of Conus striatus, and contains the same 4-loop, 6-cysteine framework (C-C-CC-C-C as O-superfamily conotoxins. The synthetic SO-3 has high analgesic activity similar to ω-conotoxin MVIIA (MVIIA, a selective N-type CaV channel blocker approved in the USA and Europe for the alleviation of persistent pain states. In electrophysiological studies, SO-3 shows more selectivity towards the N-type CaV channels than MVIIA. The dissimilarity between SO-3 and MVIIA in the primary and tertiary structures is further discussed in an attempt to illustrate the difference in selectivity of SO-3 and MVIIA towards N-type CaV channels.

  20. The human red cell voltage-dependent cation channel. Part III: Distribution homogeneity and pH dependence

    DEFF Research Database (Denmark)

    Bennekou, P.; Barksmann, T. L.; Christophersen, P.

    2006-01-01

    The homogeneity of the distribution of the non-selective voltage-dependent cation channel (the NSVDC channel) in the human erythrocyte, and the pH dependence was investigated. Activation of this channel caused a uniform cellular dehydration, which was characterized by the changes in the erythrocyte...... osmotic resistance profiles: After 1/2 h of activation, the osmolarity at 50% hemolysis changed from 73 mM (control) to 34 mM NaCl, corresponding to 0.48% and 0.21% NaCl respectively. Unchanging standard deviations show participation of the entire erythrocyte population, which implies an even distribution...... of the NSVDC channel among the cells. Inactivation of the NSVDC channel with N-ethyl-maleimide (NEM) or blocking of the Cl- conductance with NS1652 retarded the migration of the resistance profiles towards lower osmolarities. The NSVDC channel activation was blocked by a decrease of the intracellular...

  1. Investigation of channel width-dependent threshold voltage variation in a-InGaZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kuan-Hsien; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Wu, Ming-Siou; Hung, Yi-Syuan; Sze, Simon M. [Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Hung, Pei-Hua; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Yeh, Bo-Liang [Advanced Display Technology Research Center, AU Optronics, No. 1, Li-Hsin Rd. 2, Hsinchu Science Park, Hsinchu 30078, Taiwan (China)

    2014-03-31

    This Letter investigates abnormal channel width-dependent threshold voltage variation in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Unlike drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, the wider the channel, the larger the threshold voltage observed. Because of the surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider channel devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast IV measurement is utilized to demonstrate the self-heating induced anomalous channel width-dependent threshold voltage variation.

  2. Autoimmune encephalitis with anti-leucine-rich glioma-inactivated 1 or anti-contactin-associated protein-like 2 antibodies (formerly called voltage-gated potassium channel-complex antibodies).

    Science.gov (United States)

    Bastiaansen, Anna E M; van Sonderen, Agnes; Titulaer, Maarten J

    2017-06-01

    Twenty years since the discovery of voltage-gated potassium channel (VGKC)-related autoimmunity; it is currently known that the antibodies are not directed at the VGKC itself but to two closely associated proteins, anti-leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (Caspr2). Antibodies to LGI1 and Caspr2 give well-described clinical phenotypes. Anti-LGI1 encephalitis patients mostly have limbic symptoms, and anti-Caspr2 patients have variable syndromes with both central and peripheral symptoms. A large group of patients with heterogeneous symptoms are VGKC positive but do not have antibodies against LGI1 or Caspr2. The clinical relevance of VGKC positivity in these 'double-negative' patients is questionable. This review focusses on these three essentially different subgroups. The clinical phenotypes of anti-LGI1 encephalitis and anti-Caspr2 encephalitis have been described in more detail including data on treatment and long-term follow-up. A specific human leukocyte antigen (HLA) association was found in nontumor anti-LGI1 encephalitis, but not clearly in those with tumors. There has been increasing interest in the VGKC patients without LGI1/Caspr2 antibodies questioning its relevance in clinical practice. Anti-LGI1 encephalitis and anti-Caspr2 encephalitis are separate clinical entities. Early recognition and treatment is necessary and rewarding. The term VGKC-complex antibodies, lumping patients with anti-LGI1, anti-Caspr2 antibodies or lacking both, should be considered obsolete.

  3. A permeation theory for single-file ion channels: one- and two-step models.

    Science.gov (United States)

    Nelson, Peter Hugo

    2011-04-28

    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no

  4. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance a2+-activated K+ channels

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-01-01

    Background and Purpose Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. Experimental Approach The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). Key Results At a concentration without direct effect on vascular tone, kaempferol (3 × 10−6 M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by Nω-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10−4 M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10−6 M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10−3 M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa1.1; 10−7 M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. Conclusions and Implications The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa1.1 channels. PMID:25652142

  5. Sterol Regulation of Voltage-Gated K+ Channels.

    Science.gov (United States)

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  6. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability

    Science.gov (United States)

    Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.

    2014-01-01

    The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598

  7. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    International Nuclear Information System (INIS)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M.

    1990-01-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of [ 3 H]batrachotoxinin A 20α-benzoate ([ 3 H]BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of [ 3 H]BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited [ 3 H]BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents

  8. Evaluation of stochastic differential equation approximation of ion channel gating models.

    Science.gov (United States)

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  9. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    Science.gov (United States)

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  10. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  11. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-02-01

    Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.

  12. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    Science.gov (United States)

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface andthe transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K+], and could be blocked by Ba2+ or Rb+. In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba2+ (or Rb+) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K+] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10−6 cm s−1 and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K+ depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of

  13. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Directory of Open Access Journals (Sweden)

    Tzilhav Shem-Ad

    Full Text Available The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  14. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Science.gov (United States)

    Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer

    2013-01-01

    The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  15. The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation.

    Science.gov (United States)

    Xiao, Yucheng; Blumenthal, Kenneth; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2010-12-01

    The voltage-gated sodium channel Na(v)1.7 plays a crucial role in pain, and drugs that inhibit hNa(v)1.7 may have tremendous therapeutic potential. ProTx-II and huwentoxin-IV (HWTX-IV), cystine knot peptides from tarantula venoms, preferentially block hNa(v)1.7. Understanding the interactions of these toxins with sodium channels could aid the development of novel pain therapeutics. Whereas both ProTx-II and HWTX-IV have been proposed to preferentially block hNa(v)1.7 activation by trapping the domain II voltage-sensor in the resting configuration, we show that specific residues in the voltage-sensor paddle of domain II play substantially different roles in determining the affinities of these toxins to hNa(v)1.7. The mutation E818C increases ProTx-II's and HWTX-IV's IC(50) for block of hNa(v)1.7 currents by 4- and 400-fold, respectively. In contrast, the mutation F813G decreases ProTx-II affinity by 9-fold but has no effect on HWTX-IV affinity. It is noteworthy that we also show that ProTx-II, but not HWTX-IV, preferentially interacts with hNa(v)1.7 to impede fast inactivation by trapping the domain IV voltage-sensor in the resting configuration. Mutations E1589Q and T1590K in domain IV each decreased ProTx-II's IC(50) for impairment of fast inactivation by ~6-fold. In contrast mutations D1586A and F1592A in domain-IV increased ProTx-II's IC(50) for impairment of fast inactivation by ~4-fold. Our results show that whereas ProTx-II and HWTX-IV binding determinants on domain-II may overlap, domain II plays a much more crucial role for HWTX-IV, and contrary to what has been proposed to be a guiding principle of sodium channel pharmacology, molecules do not have to exclusively target the domain IV voltage-sensor to influence sodium channel inactivation.

  16. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  17. L-Type Voltage-Gated Ca2+ Channels Regulate Synaptic-Activity-Triggered Recycling Endosome Fusion in Neuronal Dendrites

    Directory of Open Access Journals (Sweden)

    Brian G. Hiester

    2017-11-01

    Full Text Available The repertoire and abundance of proteins displayed on the surface of neuronal dendrites are tuned by regulated fusion of recycling endosomes (REs with the dendritic plasma membrane. While this process is critical for neuronal function and plasticity, how synaptic activity drives RE fusion remains unexplored. We demonstrate a multistep fusion mechanism that requires Ca2+ from distinct sources. NMDA receptor Ca2+ initiates RE fusion with the plasma membrane, while L-type voltage-gated Ca2+ channels (L-VGCCs regulate whether fused REs collapse into the membrane or reform without transferring their cargo to the cell surface. Accordingly, NMDA receptor activation triggered AMPA-type glutamate receptor trafficking to the dendritic surface in an L-VGCC-dependent manner. Conversely, potentiating L-VGCCs enhanced AMPA receptor surface expression only when NMDA receptors were also active. Thus L-VGCCs play a role in tuning activity-triggered surface expression of key synaptic proteins by gating the mode of RE fusion.

  18. The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids.

    Science.gov (United States)

    González, Wendy; Riedelsberger, Janin; Morales-Navarro, Samuel E; Caballero, Julio; Alzate-Morales, Jans H; González-Nilo, Fernando D; Dreyer, Ingo

    2012-02-15

    The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2-2.5 pH units) is perceived by voltage-gated inward potassium channels (K(in)) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal K(in) channels are proposed to be histidines exposed to the apoplasm. However, in the Arabidopsis thaliana stomatal K(in) channel KAT1, mutations in the unique histidine exposed to the solvent (His267) do not affect the pH dependency. We demonstrate in the present study that His267 of the KAT1 channel cannot sense pH changes since the neighbouring residue Phe266 shifts its pKa to undetectable values through a cation-π interaction. Instead, we show that Glu240 placed in the extracellular loop between transmembrane segments S5 and S6 is involved in the extracellular acid activation mechanism. Based on structural models we propose that this region may serve as a molecular link between the pH- and the voltage-sensor. Like Glu240, several other titratable residues could contribute to the pH-sensor of KAT1, interact with each other and even connect such residues far away from the voltage-sensor with the gating machinery of the channel.

  19. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats.

    Science.gov (United States)

    Masuda, Kimiko; Takanari, Hiroki; Morishima, Masaki; Ma, FangFang; Wang, Yan; Takahashi, Naohiko; Ono, Katsushige

    2018-01-13

    Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (I Ks ), whereas I Ks was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-I Ks possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.

  20. Effects of trimethoprim-sulfadiazine and detomidine on the function of equine Kv 11.1 channels in a two-electrode voltage-clamp (TEVC) oocyte model.

    Science.gov (United States)

    Trachsel, D S; Tejada, M A; Groesfjeld Christensen, V; Pedersen, P J; Kanters, J K; Buhl, R; Calloe, K; Klaerke, D A

    2018-03-22

    The long QT syndrome (LQTS) is a channelopathy that can lead to severe arrhythmia and sudden cardiac death. Pharmacologically induced LQTS is caused by interaction between drugs and potassium channels, especially the K v 11.1 channel. Due to such interactions, numerous drugs have been withdrawn from the market or are administered with precautions in human medicine. However, some compounds, such as trimethoprim-sulfonamide combinations are still widely used in veterinarian medicine. Therefore, we investigate the effect of trimethoprim-sulfadiazine (TMS), trimethoprim, sulfadiazine, and detomidine on equine-specific K v 11.1 channels. K v 11.1 channels cloned from equine hearts were heterologously expressed in Xenopus laevis oocytes, and whole cell currents were measured by two-electrode voltage-clamp before and after drug application. TMS blocked equine K v 11.1 current with an IC 50 of 3.74 mm (95% CI: 2.95-4.73 mm) and affected the kinetics of activation and inactivation. Similar was found for trimethoprim but not for sulfadiazine, suggesting the effect is due to trimethoprim. Detomidine did not affect equine K v 11.1 current. Thus, equine K v 11.1 channels are also susceptible to pharmacological block, indicating that some drugs may have the potential to affect repolarization in horse. However, in vivo studies are needed to assess the potential risk of these drugs to induce equine LQTS. © 2018 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  1. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    Science.gov (United States)

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  2. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas Bille; Bentzen, Bo Hjorth; Olesen, Morten Salling

    2014-01-01

    Aims: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Disturbances in cardiac potassium conductance are considered as one of the disease mechanisms in AF. We aimed to investigate if mutations in potassium-channel β-subunits KCNE2 and KCNE3 are associated with early-onset lone AF. ...

  3. The Calcium-Activated Slow AHP: Cutting Through the Gordian Knot

    Directory of Open Access Journals (Sweden)

    Rodrigo eAndrade

    2012-10-01

    Full Text Available The phenomenon known as the slow afterhyperpolarization (sAHP was originally described more than 30 years ago in pyramidal cells as a slow, Ca2+-dependent afterpotential controlling spike frequency adaptation. Subsequent work showed that similar sAHPs were widely expressed in the brain and were mediated by a Ca2+-activated potassium current that was voltage independent, insensitive to most potassium channel blockers, and strongly modulated by neurotransmitters. However the molecular basis for this current has remained poorly understood. The sAHP was initially imagined to reflect the activation of a potassium channel directly gated by Ca2+ but recent studies have begun to question this idea. The sAHP is distinct from the Ca2+-dependent fast and medium AHPs in that it appears to sense cytoplasmic [Ca2+]i and recent evidence implicates proteins of the neuronal calcium sensor family as diffusible cytoplasmic Ca2+ sensors for the sAHP. Translocation of Ca2+-bound sensor to the plasma membrane would then be an intermediate step between Ca2+ and the sAHP channels. Parallel studies strongly suggest that the sAHP current is carried by different potassium channel types depending on the cell type. Finally, the sAHP current is dependent on membrane PtdIns(4,5P2 and Ca2+ appears to gate this current by increasing PtdIns(4,5P2 levels. Because membrane PtdIns(4,5P2 is essential for the activity of many potassium channels, these finding have led us to hypothesize that the sAHP reflects a transient Ca2+-induced increase in the local availability of PtdIns(4,5P2 which then activates a variety of potassium channels. If this view is correct, the sAHP current would not represent a unitary ionic current but the embodiment of a generalized potassium channel gating mechanism. This model can potentially explain the cardinal features of the sAHP, including its cellular heterogeneity, slow kinetics, dependence on cytoplasmic [Ca2+], high temperature-dependence, and

  4. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  5. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.

    Science.gov (United States)

    Shen, Huaizong; Zhou, Qiang; Pan, Xiaojing; Li, Zhangqiang; Wu, Jianping; Yan, Nieng

    2017-03-03

    Voltage-gated sodium (Na v ) channels are responsible for the initiation and propagation of action potentials. They are associated with a variety of channelopathies and are targeted by multiple pharmaceutical drugs and natural toxins. Here, we report the cryogenic electron microscopy structure of a putative Na v channel from American cockroach (designated Na v PaS) at 3.8 angstrom resolution. The voltage-sensing domains (VSDs) of the four repeats exhibit distinct conformations. The entrance to the asymmetric selectivity filter vestibule is guarded by heavily glycosylated and disulfide bond-stabilized extracellular loops. On the cytoplasmic side, a conserved amino-terminal domain is placed below VSD I , and a carboxy-terminal domain binds to the III-IV linker. The structure of Na v PaS establishes an important foundation for understanding function and disease mechanism of Na v and related voltage-gated calcium channels. Copyright © 2017, American Association for the Advancement of Science.

  6. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yunzhao R Ren

    Full Text Available The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders.

  7. Glycosylation of voltage-gated calcium channels in health and disease

    Czech Academy of Sciences Publication Activity Database

    Lazniewska, Joanna; Weiss, Norbert

    2017-01-01

    Roč. 1859, č. 5 (2017), s. 662-668 ISSN 0005-2736 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channels * voltage-gated calcium channels * N-glycosylation * ancillary subunit * trafficking * stability Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.498, year: 2016

  8. The Activation Effect of Hainantoxin-I, a Peptide Toxin from the Chinese Spider, Ornithoctonus hainana, on Intermediate-Conductance Ca2+-Activated K+ Channels

    Directory of Open Access Journals (Sweden)

    Pengfei Huang

    2014-08-01

    Full Text Available Intermediate-conductance Ca2+-activated K+ (IK channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases.

  9. NCBI nr-aa BLAST: CBRC-GACU-17-0011 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-17-0011 ref|NP_005540.1| potassium voltage-gated channel, shaker-related ...4990.1| Potassium voltage-gated channel, shaker-related subfamily, member 10 [Homo sapiens] emb|CAH74103.1| ...potassium voltage-gated channel, shaker-related subfamily, member 10 [Homo sapien...s] gb|EAW56454.1| potassium voltage-gated channel, shaker-related subfamily, member 10 [Homo sapiens] NP_005540.1 0.0 62% ...

  10. NCBI nr-aa BLAST: CBRC-FRUB-02-0329 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FRUB-02-0329 ref|NP_005540.1| potassium voltage-gated channel, shaker-related ...4990.1| Potassium voltage-gated channel, shaker-related subfamily, member 10 [Homo sapiens] emb|CAH74103.1| ...potassium voltage-gated channel, shaker-related subfamily, member 10 [Homo sapien...s] gb|EAW56454.1| potassium voltage-gated channel, shaker-related subfamily, member 10 [Homo sapiens] NP_005540.1 0.0 66% ...

  11. Nicorandil-Induced Hyperkalemia in a Uremic Patient

    Directory of Open Access Journals (Sweden)

    Hung-Hao Lee

    2012-01-01

    Full Text Available Nicorandil is an antianginal agent with nitrate-like and ATP-sensitive potassium channel activator properties. After activation of potassium channels, potassium ions are expelled out of the cells, which lead to membrane hyperpolarization, closure of voltage-gated calcium channels, and finally vasodilation. We present a uremic case suffering from repeated junctional bradycardia, especially before hemodialysis. After detailed evaluation, nicorandil was suspected to be the cause of hyperkalemia which induced bradycardia. This case reminds us that physicians should be aware of this potential complication in patients receiving ATP-sensitive potassium channel activator.

  12. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...

  13. Quantitative autoradiography of the binding sites for [125I] iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    International Nuclear Information System (INIS)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W.

    1991-01-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with [ 125 I]iodoglyburide (N-[2-[[[(cyclohexylamino)carbonyl]amino]sulfonyl]ethyl]-5- 125 I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific [ 125 I]iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of [ 125 I]iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels

  14. A novel 13 residue acyclic peptide from the marine snail, Conus monile, targets potassium channels.

    Science.gov (United States)

    Sudarslal, Sadasivannair; Singaravadivelan, Govindaswamy; Ramasamy, Palanisamy; Ananda, Kuppanna; Sarma, Siddhartha P; Sikdar, Sujit K; Krishnan, K S; Balaram, Padmanabhan

    2004-05-07

    A novel 13-residue peptide Mo1659 has been isolated from the venom of a vermivorous cone snail, Conus monile. HPLC fractions of the venom extract yielded an intense UV absorbing fraction with a mass of 1659Da. De novo sequencing using both matrix assisted laser desorption and ionization and electrospray MS/MS methods together with analysis of proteolytic fragments successfully yielded the amino acid sequence, FHGGSWYRFPWGY-NH(2). This was further confirmed by comparison with the chemically synthesized peptide and by conventional Edman sequencing. Mo1659 has an unusual sequence with a preponderance of aromatic residues and the absence of apolar, aliphatic residues like Ala, Val, Leu, and Ile. Mo1659 has no disulfide bridges distinguishing it from the conotoxins and bears no sequence similarity with any of the acyclic peptides isolated thus far from the venom of cone snails. Electrophysiological studies on the effect of Mo1659 on measured currents in dorsal root ganglion neurons suggest that the peptide targets non-inactivating voltage-dependent potassium channels.

  15. Dynamics of the resistive state of a narrow superconducting channel in the ac voltage-driven regime

    International Nuclear Information System (INIS)

    Yerin, Yu.S.; Fenchenko, V.N.

    2013-01-01

    Within the time-dependent Ginzburg-Landau equations the dynamics of the order parameter in superconducting narrow channels of different lengths is investigated in the ac voltage-driven regime. The resistive state of the system at low frequencies of the applied voltage is characterized by the formation of periodic-in-time groups of oscillating phase-slip centers (PSC). An increase in frequency reduces the duration of the existence of these periodic groups. Depending on the length of the channel the ac voltage either tends to revert the channel to the state with one central PSC in periodic groups or minimizes the number of forming PSCs and orders their pattern in the system. A further increase in frequency for rather short channels leads to suppression of the order parameter without any creation of PSCs. For systems, whose length exceeds the specified limit, the formation of PSC occurs after a certain time which increases rapidly with frequency. The current-voltage characteristics of rather short channels at different applied voltage frequencies are calculated too. It is found that the current-voltage characteristics have a step-like structure, and the height of the first step is determined by the quadruple value of the Josephson frequency.

  16. Effects of the small molecule HERG activator NS1643 on Kv11.3 channels.

    Directory of Open Access Journals (Sweden)

    Arne Bilet

    Full Text Available NS1643 is one of the small molecule HERG (Kv11.1 channel activators and has also been found to increase erg2 (Kv11.2 currents. We now investigated whether NS1643 is also able to act as an activator of Kv11.3 (erg3 channels expressed in CHO cells. Activation of rat Kv11.3 current occurred in a dose-dependent manner and maximal current increasing effects were obtained with 10 µM NS1643. At this concentration, steady-state outward current increased by about 80% and the current increase was associated with a significant shift in the voltage dependence of activation to more negative potentials by about 15 mV. In addition, activation kinetics were accelerated, whereas deactivation was slowed. There was no significant effect on the kinetics of inactivation and recovery from inactivation. The strong current-activating agonistic effect of NS1643 did not result from a shift in the voltage dependence of Kv11.3 channel inactivation and was independent from external Na(+ or Ca(2+. At the higher concentration of 20 µM, NS1643 induced clearly less current increase. The left shift in the voltage dependence of activation reversed and the voltage sensitivity of activation dramatically decreased along with a slowing of Kv11.3 channel activation. These data show that, in comparison to other Kv11 family members, NS1643 exerts distinct effects on Kv11.3 channels with especially pronounced partial antagonistic effects at higher concentration.

  17. Crystallization and preliminary crystallographic characterization of the PAS domains of EAG and ELK potassium channels

    International Nuclear Information System (INIS)

    Adaixo, Ricardo; Morais-Cabral, João Henrique

    2010-01-01

    The N-terminal PAS domains from the eukaryotic EAG potassium channels are thought to have a regulatory function. Here the expression, purification, crystallization and preliminary crystallographic characterization of two of these domains are described. Per–Arnt–Sim (PAS) domains are ubiquitous in nature; they are ∼130-amino-acid protein domains that adopt a fairly conserved three-dimensional structure despite their low degree of sequence homology. These domains constitute the N-terminus or, less frequently, the C-terminus of a number of proteins, where they exert regulatory functions. PAS-containing proteins generally display two or more copies of this motif. In this work, the crystallization and preliminary analysis of the PAS domains of two eukaryotic potassium channels from the ether-à-go-go (EAG) family are reported

  18. The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Science.gov (United States)

    Kopljar, Ivan; Labro, Alain J.; de Block, Tessa; Rainier, Jon D.; Tytgat, Jan

    2013-01-01

    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K+ permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure

  19. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.

    Science.gov (United States)

    Pattnaik, Bikash R; Hughes, Bret A

    2012-03-01

    Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 μM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 μM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 μM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 μM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits.

  20. Inhibitory effects of telmisartan on culture and proliferation of and Kv1.3 potassium channel expression in peripheral blood CD4+ T lymphocytes from Xinjiang Kazakh patients with hypertension

    Directory of Open Access Journals (Sweden)

    Sha-Sha Huang

    2016-10-01

    Full Text Available Introduction: Activation of T lymphocytes, for which potassium channels are essential, is involved in the development of hypertension. In this study, we explored the inhibitory effects of telmisartan on the culture and proliferation of and Kv1.3 potassium channel expression in peripheral blood CD4+ T lymphocytes derived from Xinjiang Kazakh patients with hypertension. Methods: CD4+ T-cell samples from hypertensive Kazakh patients and healthy Kazakh people were divided into healthy control, case control, telmisartan, and 4-aminopytidine groups. Changes in the expression levels of interleukin (IL-6 and IL-17 in the blood of the healthy control and case control subjects were detected by enzyme-linked immunosorbent assay. Peripheral blood CD4+ T lymphocytes were first activated and proliferated in vitro and then incubated for 0, 24, and 48 h under various treatment conditions. Thereafter, changes in CD4+ T-lymphocytic proliferation were determined using Cell Counting Kit-8 and microscope photography. Changes in messenger RNA (mRNA and protein expression of the Kv1.3 potassium channel in CD4+ T lymphocytes were detected using real-time quantitative polymerase chain reaction and Western blots, respectively. Results: The IL-6 and IL-17 expression levels were significantly higher in the blood of the hypertensive Kazakh patients than in the healthy Kazakh people. Telmisartan inhibited T-lymphocytic proliferation, as well as the mRNA and protein expression of the Kv1.3 potassium channel in CD4+ T lymphocytes, and the inhibitory effects were time-dependent, with the strongest inhibition observed after 48 h and significantly weaker inhibition observed after 24 h of treatment. Conclusions: Telmisartan may potentially regulate hypertensive inflammatory responses by inhibiting T-lymphocytic proliferation and Kv1.3 potassium channel expression in CD4+ T lymphocytes.

  1. Clinical presentation of anti-N-methyl-d-aspartate receptor and anti-voltage-gated potassium channel complex antibodies in children: A series of 24 cases.

    Science.gov (United States)

    Konuskan, Bahadir; Yildirim, Mirac; Topaloglu, Haluk; Erol, Ilknur; Oztoprak, Ulkuhan; Tan, Huseyin; Gocmen, Rahsan; Anlar, Banu

    2018-01-01

    The symptomatology and paraclinical findings of antibody-mediated encephalitis, a relatively novel disorder, are still being characterized in adults and children. A high index of suspicion is needed in order to identify these cases among children presenting with various neurological symptoms. The aim of this study is to examine the clinical, demographic and laboratory findings and outcome of children with anti-NMDAR and anti-VGKC encephalitis for any typical or distinctive features. Cases diagnosed with anti-N-Methyl d-aspartate receptor (NMDAR) and anti-voltage gated potassium channel (VGKC) antibody-mediated encephalopathy in four major child neurology centers are described. In four years, 16 children with NMDAR and 8 children with VGKC antibody-associated disease were identified in the participating centers. The most frequent initial manifestation consisted of generalized seizures and cognitive symptoms in both groups. Movement abnormalities were frequent in anti-NMDAR patients and autonomic symptoms, in anti-VGKC patients. Cerebrospinal fluid (CSF) protein, cell count and IgG index were normal in 9/15 anti-NMDAR and 5/8 anti-VGKC patients tested. EEG and MRI findings were usually nonspecific and non-contributory. The rate and time of recovery was not related to age, sex, acute or subacute onset, antibody type, MRI, EEG or CSF results. Treatment within 3 months of onset was associated with normal neurological outcome. Our results suggest anti-NMDAR and VGKC encephalopathies mostly present with non-focal neurological symptoms longer than 3 weeks. In contrast with adult cases, routine CSF testing, MRI and EEG did not contribute to the diagnosis in this series. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Targeted deletion of Kcne2 impairs HCN channel function in mouse thalamocortical circuits.

    Directory of Open Access Journals (Sweden)

    Shui-Wang Ying

    Full Text Available Hyperpolarization-activated, cyclic nucleotide-gated (HCN channels generate the pacemaking current, I(h, which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal and ancillary subunits. KCNE2 is a voltage-gated potassium channel ancillary subunit that also regulates heterologously expressed HCN channels; whether KCNE2 regulates neuronal HCN channel function is unknown.We investigated the effects of Kcne2 gene deletion on I(h properties and excitability in ventrobasal (VB and cortical layer 6 pyramidal neurons using brain slices prepared from Kcne2(+/+ and Kcne2(-/- mice. Kcne2 deletion shifted the voltage-dependence of I(h activation to more hyperpolarized potentials, slowed gating kinetics, and decreased I(h density. Kcne2 deletion was associated with a reduction in whole-brain expression of both HCN1 and HCN2 (but not HCN4, although co-immunoprecipitation from whole-brain lysates failed to detect interaction of KCNE2 with HCN1 or 2. Kcne2 deletion also increased input resistance and temporal summation of subthreshold voltage responses; this increased intrinsic excitability enhanced burst firing in response to 4-aminopyridine. Burst duration increased in corticothalamic, but not thalamocortical, neurons, suggesting enhanced cortical excitatory input to the thalamus; such augmented excitability did not result from changes in glutamate release machinery since miniature EPSC frequency was unaltered in Kcne2(-/- neurons.Loss of KCNE2 leads to downregulation of HCN channel function associated with increased excitability in neurons in the cortico-thalamo-cortical loop. Such findings further our understanding of the normal physiology of brain circuitry critically involved in cognition and have implications for our understanding of

  3. Atrial fibrillation: Therapeutic potential of atrial K+ channel blockers.

    Science.gov (United States)

    Ravens, Ursula; Odening, Katja E

    2017-08-01

    Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K + ) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two pore domain K + (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Here, we briefly review the characteristics of these K + channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Poulsen, Christian B; Walter, Steen

    2011-01-01

    Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved......-type subtype (Ca(v) 3.1 and Ca(v) 3.2) voltage-gated calcium channels (Ca(v)s), and quantitative PCR showed highest expression of L-type channels in renal arteries and variable expression between patients of subtypes of calcium channels in intrarenal vessels. Immunohistochemical labeling of kidney sections...

  5. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    Science.gov (United States)

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  6. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.

    Science.gov (United States)

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2009-09-01

    The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.

  7. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel.

    Science.gov (United States)

    Held, Katharina; Gruss, Fabian; Aloi, Vincenzo Davide; Janssens, Annelies; Ulens, Chris; Voets, Thomas; Vriens, Joris

    2018-03-31

    Mutagenesis at positively charged amino acids (arginines and lysines) (R1-R4) in the voltage-sensor domain (transmembrane segment (S) 4) of voltage-gated Na + , K + and Ca 2+ channels can lead to an alternative ion permeation pathway distinct from the central pore. Recently, a non-canonical ion permeation pathway was described in TRPM3, a member of the transient receptor potential (TRP) superfamily. The non-canonical pore exists in the native TRPM3 channel and can be activated by co-stimulation of the endogenous agonist pregnenolone sulphate and the antifungal drug clotrimazole or by stimulation of the synthetic agonist CIM0216. Alignment of the voltage sensor of Shaker K + channels with the entire TRPM3 sequence revealed the highest degree of similarity in the putative S4 region of TRPM3, and suggested that only one single gating charge arginine (R2) in the putative S4 region is conserved. Mutagenesis studies in the voltage-sensing domain of TRPM3 revealed several residues in the voltage sensor (S4) as well as in S1 and S3 that are crucial for the occurrence of the non-canonical inward currents. In conclusion, this study provides evidence for the involvement of the voltage-sensing domain of TRPM3 in the formation of an alternative ion permeation pathway. Transient receptor potential (TRP) channels are cationic channels involved in a broad array of functions, including homeostasis, motility and sensory functions. TRP channel subunits consist of six transmembrane segments (S1-S6), and form tetrameric channels with a central pore formed by the region encompassing S5 and S6. Recently, evidence was provided for the existence of an alternative ion permeation pathway in TRPM3, which allows large inward currents upon hyperpolarization independently of the central pore. However, very little knowledge is available concerning the localization of this alternative pathway in the native TRPM3 channel protein. Guided by sequence homology with Shaker K + channels, in which

  8. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  9. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation

    Science.gov (United States)

    Shantappa, Anil; Talukdar, Keka

    2018-04-01

    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  10. Twenty-channel high-voltage pulse generators

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Kashirin, A.P.

    1980-01-01

    A 20-channel high-voltage pulse generator operating with a mismatched load is described. The generator contains shaping lines 20 m long made of coaxial cable, a trigatron-type discharged, and isolating plates. The channel characteristic impedance is 50 Ohm. The maximum pulse amplitude is up to 15 kV on a high-resistance load and 7.5 kV on a matched one. The pulse duration is 100 ns at a pulse rise time of 12 ns, the delay introduced by the generator is 200 +-2.5 ns. Provision is made in the control circuit for compensation of the shaped pulse and separation of a pulse reflected from the load. The reflected pulse shape and amplitude characterize load parameters. Generator tests proved its high operational reliability (after 10 5 operations no significant changes in generator performances have been observed). The generator is intended for filmless data output from spark chambers

  11. NCBI nr-aa BLAST: CBRC-TGUT-08-0001 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-08-0001 ref|NP_067250.2| potassium voltage-gated channel, shaker-related ...assium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] emb|CAM23761.1| potassium voltage-gated channel, shak...4.1| potassium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] NP_067250.2 0.0 79% ...

  12. NCBI nr-aa BLAST: CBRC-ACAR-01-0365 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0365 ref|NP_067250.2| potassium voltage-gated channel, shaker-related ...assium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] emb|CAM23761.1| potassium voltage-gated channel, shak...4.1| potassium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] NP_067250.2 0.0 79% ...

  13. NCBI nr-aa BLAST: CBRC-MLUC-01-0737 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MLUC-01-0737 ref|NP_067250.2| potassium voltage-gated channel, shaker-related ...assium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] emb|CAM23761.1| potassium voltage-gated channel, shak...4.1| potassium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] NP_067250.2 0.0 87% ...

  14. NCBI nr-aa BLAST: CBRC-ETEL-01-1362 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ETEL-01-1362 ref|NP_067250.2| potassium voltage-gated channel, shaker-related ...assium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] emb|CAM23761.1| potassium voltage-gated channel, shak...4.1| potassium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] NP_067250.2 0.0 93% ...

  15. NCBI nr-aa BLAST: CBRC-OANA-01-2250 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OANA-01-2250 ref|NP_067250.2| potassium voltage-gated channel, shaker-related ...assium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] emb|CAM23761.1| potassium voltage-gated channel, shak...4.1| potassium voltage-gated channel, shaker-related subfamily, member 4 [Mus musculus] NP_067250.2 0.0 92% ...

  16. Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons.

    Science.gov (United States)

    Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O

    2009-08-01

    The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.

  17. Autoantibodies against voltage-gated potassium channel and glutamic acid decarboxylase in psychosis: A systematic review, meta-analysis, and case series.

    Science.gov (United States)

    Grain, Rosemary; Lally, John; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy R; Murray, Robin M; Gaughran, Fiona

    2017-10-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevalence of 1.5% (25/1720) compared to 0.7% in healthy controls (12/1753). Meta-analysis established that the pooled prevalence of GAD65 autoantibodies was 5.8% (95% confidence interval [CI]: 2.0-15.6%; I 2  = 91%; nine studies) in psychotic disorders, with a prevalence of 4.6% (95%CI: 1.2-15.9%; nine studies; I 2  = 89%) and 6.2% (95%CI: 1.2-27.0%; two studies; I 2  = 69%) in schizophrenia and bipolar disorder, respectively. People with psychosis were more likely to have GAD65 antibodies than controls (odds ratio [OR], 2.24; 95%CI: 1.28-3.92%; P = 0.005; eight studies; I 2  = 0%). Among 21 participants with treatment-resistant psychosis, none had VGKC antibodies. The prevalence of VGKC antibodies is low in psychosis. Our preliminary meta-analysis suggests that GAD autoantibodies are more common in people with psychosis than in controls, although few studies accounted for the possibility of co-existing type 1 diabetes mellitus and the clinical significance of reported GAD titers remains unclear. The paucity of studies reporting thresholds for defining GAD abnormality and rates of comorbid type 1 diabetes mellitus precludes interpretations regarding the influence of GAD antibodies on the development of psychotic disorders and may have led to an overestimate of the prevalence of GAD. Our case series fails to support the hypothesis that VGKC antibodies are linked to treatment resistance in psychosis, but the literature to date is remarkably sparse. © 2017 The

  18. Heparin/heparan sulfates bind to and modulate neuronal L-type (Cav1.2) voltage-dependent Ca2+ channels

    DEFF Research Database (Denmark)

    Garau, Gianpiero; Magotti, Paola; Heine, Martin

    2015-01-01

    Our previous studies revealed that L-type voltage-dependent Ca2+ channels (Cav1.2 L-VDCCs) are modulated by the neural extracellular matrix backbone, polyanionic glycan hyaluronic acid. Here we used isothermal titration calorimetry and screened a set of peptides derived from the extracellular......M), integrating their enthalpic and entropic binding contributions. Interaction between heparin and recombinant as well as native full-length neuronal Cav1.2α1 channels was confirmed using the heparin–agarose pull down assay. Whole cell patch clamp recordings in HEK293 cells transfected with neuronal Cav1.......2 channels revealed that enzymatic digestion of highly sulfated heparan sulfates with heparinase 1 affects neither voltage-dependence of channel activation nor the level of steady state inactivation, but did speed up channel inactivation. Treatment of hippocampal cultures with heparinase 1 reduced the firing...

  19. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium

    Directory of Open Access Journals (Sweden)

    Adela Banciu

    2018-05-01

    Full Text Available Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1, estrogen receptors (ESR1, ESR2, GPR30, and nuclear receptor coactivator 3 (NCOA3. Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM antagonized the effect of BAY K8644 (2.5 or 5 µM in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant

  20. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium.

    Science.gov (United States)

    Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela

    2018-05-09

    Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine