WorldWideScience

Sample records for voltage probe electrical

  1. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes.

    Science.gov (United States)

    Rowland, Clare E; Susumu, Kimihiro; Stewart, Michael H; Oh, Eunkeu; Mäkinen, Antti J; O'Shaughnessy, Thomas J; Kushto, Gary; Wolak, Mason A; Erickson, Jeffrey S; Efros, Alexander L; Huston, Alan L; Delehanty, James B

    2015-10-14

    The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect.

  2. Zero voltage mass spectrometry probes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha; Li, Yafeng

    2017-10-10

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  3. An Optoelectronic High-voltage Probe for Measuring Impulse Voltage Distribution of HVDC Converter Valve

    Institute of Scientific and Technical Information of China (English)

    方志; 邱毓昌

    2007-01-01

    A high-voltage optoelectronic probe is developed for measuring impulse voltage distribution along thyristor units in the HVDC converter valve. The dimension of the resistive voltage divider is optimized by means of numerical compttation of electric field. A pulse frequency modulation (PFM) mode is adopted for the data transmission link because of its immunity to high-intensity electromagnetic interference. Experimental results indicate that the linearity deviation for the whole measuring system is within ± 0.15 %, and therefore it can meet requirements specified by IEC60700-1.

  4. High voltage electricity installations a planning perspective

    CERN Document Server

    Jay, Stephen Andrew

    2006-01-01

    The presence of high voltage power lines has provoked widespread concern for many years. High Voltage Electricity Installations presents an in-depth study of policy surrounding the planning of high voltage installations, discussing the manner in which they are percieved by the public, and the associated environmental issues. An analysis of these concerns, along with the geographical, environmental and political influences that shape their expression, is presented. Investigates local planning policy in an area of the energy sector that is of highly topical environmental and public concern Cover

  5. High voltage and electrical insulation engineering

    CERN Document Server

    Arora, Ravindra

    2011-01-01

    "The book is written for students as well as for teachers and researchers in the field of High Voltage and Insulation Engineering. It is based on the advance level courses conducted at TU Dresden, Germany and Indian Institute of Technology Kanpur, India. The book has a novel approach describing the fundamental concept of field dependent behavior of dielectrics subjected to high voltage. There is no other book in the field of high voltage engineering following this new approach in describing the behavior of dielectrics. The contents begin with the description of fundamental terminology in the subject of high voltage engineering. It is followed by the classification of electric fields and the techniques of field estimation. Performance of gaseous, liquid and solid dielectrics under different field conditions is described in the subsequent chapters. Separate chapters on vacuum as insulation and the lightning phenomenon are included"--

  6. Electrical system architecture having high voltage bus

    Science.gov (United States)

    Hoff, Brian Douglas [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  7. HIGH VOLTAGE SAFETY MANAGEMENT SYSTEM OF ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.

  8. Voltage Support from Electric Vehicles in Distribution Grid

    DEFF Research Database (Denmark)

    Huang, Shaojun; Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    , the combination of these two methods is also examined for controlled EV charging. Simulation results show that the combination of the two individual supporting methods has the best performance in terms of voltage regulation as well as improving EV penetration level at weak distribution grids.......The paper evaluates the voltage support functions from electric vehicles (EVs) on a typical Danish distribution grid with high EV penetration. In addition to the popular voltage control modes, such as voltage droop charging (low voltage level leads to low charging power) and reactive power support...

  9. Electric field measurement of organic photovoltaic cell model using electrooptic probe

    Science.gov (United States)

    Saito, Ryo; Yabe, Yoko; Suzuki, Akito; Shinagawa, Mitsuru; Sugino, Hiroyuki; Katsuyama, Jun; Matsumoto, Yoshinori

    2016-09-01

    In this paper, we describe the use of a transverse electrooptic probe to measure the electric field of an organic photovoltaic (OPV) cell model. It is necessary to measure the voltage of each OPV cell in order to diagnose failure of the OPV. An electric field is generated by the OPV cell voltage, so measuring the electric field is effective for obtaining a failure diagnosis of the OPV. We use a transverse electrooptic probe as an instrumentation tool for measuring the electric field over the OPV. We confirmed the principle of superposition for the electric field strength from each OPV cell model. These results show that the calibration of each OPV cell voltage can be accomplished by measuring the electric field strength over the OPV cells.

  10. Analysis of Voltage Support by Electric Vehicles and Photovoltaic in a Real Danish Low Voltage Network

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Marinelli, Mattia; Juul Møller, René

    2014-01-01

    of incorporating electric vehicles (EVs) in a low voltage distribution network with high penetration of photovoltaic installations (PVs), and focuses on analysing potential voltage support functions from EVs and PVs. In addition, the paper evaluates the benefits that reactive power control may provide...

  11. Electric Double-Layer Capacitors Applying to Voltage Sag Compensator

    Science.gov (United States)

    Nara, Hidetaka

    Recently the electric double-layer capacitor (EDLC) which is rapidly charged and discharged and offers long life, maintenance-free, has been developed as a new energy storage element. Therefore, we developed the uninterruptible power supply as voltage sag compensator utilizing EDLC. This paper describes an abstract of EDLC and applying to voltage sag compensation.

  12. Driving Pressure Influence in Voltage Maps Measurement Process Using Advanced Pneumatic Mapping Probe

    Directory of Open Access Journals (Sweden)

    Marek Kukucka

    2016-01-01

    Full Text Available Our paper deals with the method of the voltage-impedance map measurement process as a method useful for the electric mapping of human skin. The area of research extends from the basic research to its practical application in acupuncture skin mapping and acupuncture point localization and visualization. The problem of sufficient skin coverage and electrical contact with measuring electrodes is solved by the conventional mechanical telescopic electrodes and by the pneumatic matrix electrode probe. A 2D or 3D voltage-impedance map of skin is an output of the measuring, interpretation and evaluation process. New pneumatic construction of measuring probe was implemented to achieve a better coverage of specified skin area and get a reduced force range of the touching electrodes allowing the steady contact of the skin-electrode. A skin contact is related to the driving pressure of touching electrodes. Our paper offers experimentally measured results, voltage maps of skin on specific areas, selected measured and described acupuncture points and their applications in electro-acupuncture.

  13. [Fatal electric arc accidents due to high voltage].

    Science.gov (United States)

    Strauch, Hansjürg; Wirth, Ingo

    2004-01-01

    The frequency of electric arc accidents has been successfully reduced owing to preventive measures taken by the professional association. However, the risk of accidents has continued to exist in private setting. Three fatal electric arc accidents caused by high voltage are reported with reference to the autopsy findings.

  14. Visible light laser voltage probing on thinned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Beutler, Joshua; Clement, John Joseph; Miller, Mary A.; Stevens, Jeffrey; Cole, Jr., Edward I.

    2017-03-21

    The various technologies presented herein relate to utilizing visible light in conjunction with a thinned structure to enable characterization of operation of one or more features included in an integrated circuit (IC). Short wavelength illumination (e.g., visible light) is applied to thinned samples (e.g., ultra-thinned samples) to achieve a spatial resolution for laser voltage probing (LVP) analysis to be performed on smaller technology node silicon-on-insulator (SOI) and bulk devices. Thinning of a semiconductor material included in the IC (e.g., backside material) can be controlled such that the thinned semiconductor material has sufficient thickness to enable operation of one or more features comprising the IC during LVP investigation.

  15. Electric Vehicle IM Controller Based on Voltage-Fed Inverter

    Institute of Scientific and Technical Information of China (English)

    宋建国; 张承宁; 袁学; 谭建

    2004-01-01

    A novel electric vehicle (EV) induction motor (IM) controller based on voltage-fed inverter is presented. It is shown that the proposed adaptive control algorithm effectively both simplifies the structure and expands the capacity of controller. The relationship between stator's voltage and that of current under rotor's flux-oriented-coordinates is first introduced, and then the structure of vector control is analyzed, in which voltage compensation is inducted as the core feedback procedure. Experiments prove that, together with a facility for realization, a smooth transition, a prompt torque response and small concussion are gained. Extensive research conducted by varying parameters that result in practical ripple is proposed in conclusion.

  16. Review of Adult Electrical Burn Injury Outcomes Worldwide: An Analysis of Low-Voltage vs High-Voltage Electrical Injury.

    Science.gov (United States)

    Shih, Jessica G; Shahrokhi, Shahriar; Jeschke, Marc G

    The aims of this article are to review low-voltage vs high-voltage electrical burn complications in adults and to identify novel areas that are not recognized to improve outcomes. An extensive literature search on electrical burn injuries was performed using OVID MEDLINE, PubMed, and EMBASE databases from 1946 to 2015. Studies relating to outcomes of electrical injury in the adult population (≥18 years of age) were included in the study. Forty-one single-institution publications with a total of 5485 electrical injury patients were identified and included in the present study. Fourty-four percent of these patients were low-voltage injuries (LVIs), 38.3% high-voltage injuries (HVIs), and 43.7% with voltage not otherwise specified. Forty-four percentage of studies did not characterize outcomes according to LHIs vs HVIs. Reported outcomes include surgical, medical, posttraumatic, and others (long-term/psychological/rehabilitative), all of which report greater incidence rates in HVI than in LVI. Only two studies report on psychological outcomes such as posttraumatic stress disorder. Mortality rates from electrical injuries are 2.6% in LVI, 5.2% in HVI, and 3.7% in not otherwise specified. Coroner's reports revealed a ratio of 2.4:1 for deaths caused by LVI compared with HVI. HVIs lead to greater morbidity and mortality than LVIs. However, the results of the coroner's reports suggest that immediate mortality from LVI may be underestimated. Furthermore, on the basis of this analysis, we conclude that the majority of studies report electrical injury outcomes; however, the majority of them do not analyze complications by low vs high voltage and often lack long-term psychological and rehabilitation outcomes after electrical injury indicating that a variety of central aspects are not being evaluated or assessed.

  17. Electric Insulation Detection Method for High-voltage Insulators

    Directory of Open Access Journals (Sweden)

    Wang Jiajun

    2013-07-01

    Full Text Available The principle of partial discharge detection is that through partial bridged discharge under high voltage electric field, it detects the inner air-filled cavity of high-voltage insulators. And it is a nondestructive detection method based on discharge magnitude to judge the insulation quality. The detecting system that adopts the partial discharge detection is more rigorous than testing system for electricity products, which must have small discharge capacity and higher sensitivity. This paper describes the principles of partial discharge detection and analysis insulation detection.

  18. Dephasing in semiconductor-superconductor structures by coupling to a voltage probe

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Jauho, Antti-Pekka; Flensberg, Karsten

    2000-01-01

    We study dephasing in semiconductor-superconductor structures caused by coupling to a voltage probe. We consider structures where the semiconductor consists of two scattering regions between which partial dephasing is possible. As a particular example we consider a situation with a double barrier...... of the conductance when a finite coupling to the voltage probe is taken into account....

  19. Probe for testing electrical properties of a test sample

    DEFF Research Database (Denmark)

    2012-01-01

    A probe for testing electrical properties of test samples includes a body having a probe arm defining proximal and distal ends, the probe arm extending from the body at the proximal end of the probe arm, whereby a first axis is defined by the proximal and the distal ends. The probe arm defines...

  20. Static Electricity as Part of Electromagnetic Environment on High-Voltage Electrical Substation

    Directory of Open Access Journals (Sweden)

    M. Fursanov

    2012-01-01

    Full Text Available Causes of occurrences electrostatic discharges (ESD on high-voltage electric substation were investigated and dependences values ESD’s on parameters interaction structures, humidity of air were found. Experimental research values ESD’s on high-voltage electric substation and in man-made conditions was fulfilled. Uncertainty measurement’s was taken into consideration by research results analyze. Matching with research of other authors was made. Danger ESD’s for electric devises was established.

  1. Effect of bleeding method and low voltage electrical stimulation on ...

    African Journals Online (AJOL)

    None the less, personal observations would recommend the use of TS due ... Electrical stimulation also had no effect on the Warner Bratzler shear force values in the fillet. It can be concluded that low voltage ES has no advantage pertaining to ...

  2. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-01-31

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  3. Electric probe for spin transition and fluctuation

    Science.gov (United States)

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'diaye, Alpha T.; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Tserkovnyak, Yaroslov; Qiu, Z. Q.; Saitoh, Eiji

    Spin fluctuation and transition have always been one of central topics of magnetism and condense matter science. To probe them, neutron scatterings have been used as powerful tools. A part of neutrons injected into a sample is scattered by spin fluctuation inside the sample. This process transcribes the spin fluctuation onto scattering intensity, which is commonly represented by dynamical magnetic susceptibility of the sample and is maximized at magnetic phase transitions. Importantly, a neutron carries spin without electric charge, and it thus can bring spin into a sample without being disturbed by electric energy: an advantage of neutrons, although large facilities such as a nuclear reactor is necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop micro probe for spin fluctuation and transition; not only a neutron beam, spin current is also a flux of spin without an electric charge and its transport reflects spin fluctuation in a sample. We demonstrate detection of anti-ferromagnetic transition in ultra-thin CoO films via frequency dependent spin-current transmission measurements.

  4. Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires

    Institute of Scientific and Technical Information of China (English)

    LONG Yun-Ze; DUVAIL Jean-Luc; CHEN Zhao-Jia; JIN Ai-Zi; GU Chang-Zhi

    2008-01-01

    We report the current-voltage (I-V) characteristics and electrical conductivity of individual template-synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires (190 ± 6 nm in diameter and σRT : 11.2±2Ω-1cm-1)over a wide temperature range from 300 to 10K. With lowering temperature, the Ⅰ- Ⅴ characteristics become nonlinear around 50 K, and a clear Coulomb gap-like structure appears in the differential conductance (dI/dV)spectra. The temperature dependence of the resistance below 70 K follows ln R ∝ T-1/2, which can be interpreted as Efros-Shklovskii hopping conduction in the presence of a Coulomb gap. In addition, the influences of measurement methods such as the applied bias voltage magnitude, the two-probe and four-probe techniques used in the resistance measurements are also reported and discussed.

  5. Electric Voltage Control as an Implementation of Neural Network Applications

    Directory of Open Access Journals (Sweden)

    A. A. Al-Rababah

    2008-01-01

    Full Text Available Present study was proposed the monitoring of mathematical model of electric voltage source with using neural network for application in control systems as sensor and command signal. The monitoring system, consist of toroidal choke or transformer with high saturated ferromagnetic cores. The input information we receive from current periodic curves. The current was distributed into Fourier or walsh series. The combination of these harmonics and their amplitude values determine monitoring voltage value directly. For increase of this system precision, the mathematical model was constructed on basis of partial differential quasi-stationary electromagnetic field equations and ordi-nary differential electromagnetic circuit equations combination.

  6. Integration of Electric Vehicles in Low Voltage Danish Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Thøgersen, Paul; Møller, Jan

    2012-01-01

    Electric Vehicles (EVs) are considered as one of the important components of the future intelligent grids. Their role as energy storages in the electricity grid could provide local sustainable solutions to support more renewable energy. In order to estimate the extent of interaction of EVs...... in the electricity grid operation, a careful examination in the local electricity system is essential. This paper investigates the degree of EV penetration and its key influence on the low voltage distribution grids. Three detailed models of residential grids in Denmark are considered as test cases in this study...... are reflected as the major technical constraint to the stable operation of the electricity grids for integrating more EVs, when compared to the thermal loading on the cables....

  7. A tail of two voltages: Proteomic comparison of the three electric organs of the electric eel

    Science.gov (United States)

    Traeger, Lindsay L.; Sabat, Grzegorz; Barrett-Wilt, Gregory A.; Wells, Gregg B.; Sussman, Michael R.

    2017-01-01

    The electric eel (Electrophorus electricus) is unusual among electric fishes because it has three pairs of electric organs that serve multiple biological functions: For navigation and communication, it emits continuous pulses of weak electric discharge (<1 V), but for predation and defense, it intermittently emits lethal strong electric discharges (10 to 600 V). We hypothesized that these two electrogenic outputs have different energetic demands reflected by differences in their proteome and phosphoproteome. We report the use of isotope-assisted quantitative mass spectrometry to test this hypothesis. We observed novel phosphorylation sites in sodium transporters and identified a potassium channel with unique differences in protein concentration among the electric organs. In addition, we found transcription factors and protein kinases that show differential abundance in the strong versus weak electric organs. Our findings support the hypothesis that proteomic differences among electric organs underlie differences in energetic needs, reflecting a trade-off between generating weak voltages continuously and strong voltages intermittently. PMID:28695212

  8. Morphology and Electric Conductance Change Induced by Voltage Pulse Excitation in (GeTe)2/Sb2Te3 Superlattices

    Science.gov (United States)

    Bolotov, Leonid; Saito, Yuta; Tada, Tetsuya; Tominaga, Junji

    2016-09-01

    Chalcogenide superlattice (SL) phase-change memory materials are leading candidates for non-volatile, energy-efficient electric memory where the electric conductance switching is caused by the atom repositioning in the constituent layers. Here, we study the time evolution of the electric conductance in [(GeTe)2/(Sb2Te3)1]4 SLs upon the application of an external pulsed electric field by analysing the structural and electrical responses of the SL films with scanning probe microscopy (SPM) and scanning probe lithography (SPL). At a low pulse voltage (1.6-2.3 V), a conductance switching delay of a few seconds was observed in some SL areas, where the switch to the high conductance state (HCS) is accompanied with an SL expansion under the strong electric field of the SPM probe. At a high pulse voltage (2.5-3.0 V), the HCS current was unstable and decayed in a few seconds; this is ascribed to the degradation of the HCS crystal phase under excessive heating. The reversible conductance change under a pulse voltage of opposite polarity emphasised the role of the electric field in the phase-transition mechanism.

  9. Morphology and Electric Conductance Change Induced by Voltage Pulse Excitation in (GeTe)2/Sb2Te3 Superlattices

    Science.gov (United States)

    Bolotov, Leonid; Saito, Yuta; Tada, Tetsuya; Tominaga, Junji

    2016-01-01

    Chalcogenide superlattice (SL) phase-change memory materials are leading candidates for non-volatile, energy-efficient electric memory where the electric conductance switching is caused by the atom repositioning in the constituent layers. Here, we study the time evolution of the electric conductance in [(GeTe)2/(Sb2Te3)1]4 SLs upon the application of an external pulsed electric field by analysing the structural and electrical responses of the SL films with scanning probe microscopy (SPM) and scanning probe lithography (SPL). At a low pulse voltage (1.6–2.3 V), a conductance switching delay of a few seconds was observed in some SL areas, where the switch to the high conductance state (HCS) is accompanied with an SL expansion under the strong electric field of the SPM probe. At a high pulse voltage (2.5–3.0 V), the HCS current was unstable and decayed in a few seconds; this is ascribed to the degradation of the HCS crystal phase under excessive heating. The reversible conductance change under a pulse voltage of opposite polarity emphasised the role of the electric field in the phase-transition mechanism. PMID:27618797

  10. Voltage Collapse Risk Associated to Under-Voltage Capacitive Compensation in Electric Power System Operation

    Directory of Open Access Journals (Sweden)

    Heraldo S. Barbuy

    2009-01-01

    Full Text Available Problem statement: In the operation of an Electric Power System (EPS, it has been usual to provide reactive power injection to avoid an under-voltage bus condition. In some situations an adequate voltage profile will not be a guarantee against Voltage Collapses (VCs that may cause blackouts as seen in many occurrences around the world. The repeatedly injection of reactive power can turn a bus into a characteristic too much capacitive. Under this condition and in the presence of a considerable percentage of the constant power load type, there will be a high risk of a VC. Any of the indices proposed in the literature as VC Proximity Indicators (VCPIs may alert the operator about the risk. Approach: In order to elucidate the problem stated, simulations were performed using MatLab/SimPowerSystems. It was used a basic example system composed by an infinite-bus feeding, through a large impedance line, a bus load whose power could be increased in ramp manner. It is also included a shunt capacitive compensation at the load bus every time the voltage value reaches 0.9 pu. Therefore, the VC risk increase could be shown by means of graphic results and the indications of some VCPIs sensitivity indices (including the new proposed index. Results: The graphics obtained in this study is a contribution to illustrate the voltage collapse risk problem when dealing with adjustments of voltage profile to meet the system requirements. Also, a VCPI sensitivity indicator using apparent load power was tested. The results have shown that all VCPI responses are very similar for a given case and electric system. Conclusion/Recommendations: Any VCPI information can help in the decision stage between either more reactive power injection or load shedding. A routine can also be developed for a supervisory program in order to alert the operator about VC risks.

  11. Thyristor voltage converter in induction electric drives with microprocessor control

    Energy Technology Data Exchange (ETDEWEB)

    Braslavsky, I.; Zuzev, A.; Shilin, S. [Electric Drive Department, Urals State Technical University, Ekaterinburg (Russian Federation)

    1997-12-31

    The paper consists of some results on developed pulse model of thyristor voltage converter which is one of the most mathematically complicated unit of electric drive. The model structure and model parameter calculating method are represented. The application of the model allows to analyse stability in `locally` by the linear pulse system theory methods with talking into consideration quantise processes within the converter. Such application provides the obtaining higher accurate results comparing with the non-linear system theory approximate methods. Logarithmic frequency characteristics are used to analyse converter dynamic features and they are represented too. (orig.) 4 refs.

  12. Generator voltage stabilisation for series-hybrid electric vehicles.

    Science.gov (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  13. Voltage biasing, cyclic voltammetry, & electrical impedance spectroscopy for neural interfaces.

    Science.gov (United States)

    Wilks, Seth J; Richner, Tom J; Brodnick, Sarah K; Kipke, Daryl R; Williams, Justin C; Otto, Kevin J

    2012-02-24

    Electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measure properties of the electrode-tissue interface without additional invasive procedures, and can be used to monitor electrode performance over the long term. EIS measures electrical impedance at multiple frequencies, and increases in impedance indicate increased glial scar formation around the device, while cyclic voltammetry measures the charge carrying capacity of the electrode, and indicates how charge is transferred at different voltage levels. As implanted electrodes age, EIS and CV data change, and electrode sites that previously recorded spiking neurons often exhibit significantly lower efficacy for neural recording. The application of a brief voltage pulse to implanted electrode arrays, known as rejuvenation, can bring back spiking activity on otherwise silent electrode sites for a period of time. Rejuvenation alters EIS and CV, and can be monitored by these complementary methods. Typically, EIS is measured daily as an indication of the tissue response at the electrode site. If spikes are absent in a channel that previously had spikes, then CV is used to determine the charge carrying capacity of the electrode site, and rejuvenation can be applied to improve the interface efficacy. CV and EIS are then repeated to check the changes at the electrode-tissue interface, and neural recordings are collected. The overall goal of rejuvenation is to extend the functional lifetime of implanted arrays.

  14. AN ASSESSMENT OF HIGH-VOLTAGE DC ELECTRICAL POWER IN AIRCRAFT ELECTRICAL SYSTEMS.

    Science.gov (United States)

    If the presently installed three-phase ac transmission system on aircraft were replaced by a higher voltage dc ( HVDC ) transmission using a ground...from one- to two-thirds of the total electrical system weight. HVDC may have some disadvantages such as higher short-circuit currents, some increase in

  15. MATHEMATICAL MODEL OF HYBRID ELECTRIC VEHICLE HIGH-VOLTAGE BATTERY IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2010-01-01

    Full Text Available The mathematical model of hybrid electric vehicle NiMH high-voltage battery is obtained. This model allows to explore the interaction of vehicle tractive electric drive and high-voltage battery at the electric motive power motion and in the process of recuperation of braking kinetic energy.

  16. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    OpenAIRE

    Ye Peng; Tao Liu; Haifeng Gong; Xianming Zhang

    2016-01-01

    The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric...

  17. THE EFFECT OF LIGHTNING ON HIGH VOLTAGE ELECTRICAL SUBSTATIONS’ LOW VOLTAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2016-01-01

    Full Text Available The article presents the results of studies of the effects of lightning on low voltage systems of high voltage electrical substations with outdoor switchgears of 110 kV. The topicality of research is associated with a wide spreading of such substations as well as with a high reliability requirements of their work and, also, with their widespread distribution and high probability of lightning strikes to the substation or around it. The highest probable and the most dangerous effects of lightning on low voltage systems of a substation are determined on the basis of critical review and special literature analysis and, also, of systematization of practical information that had been collected during the survey of operating substations. Adequate physical models were developed for the list of hazardous effects based on physical processes of lightning. A model of each effect was studied on the basis of the sensitivity theory. The accuracy and adequacy of the models were verified by means of comparison of calculation results for the models under investigation with the results of calculations fulfilled in accordance with specialized programs, as well as from practical or theoretical data obtained by other authors. The factors that had been included in the models were studied and were defined in accordance with their nature (natural or artificial, the range of possible values in a substation was determined; the coefficients of elasticity were calculated. The obtained results enable to ascertain the contribution of the factor in the effect of lightning and the ability to control the factor. The relationship between the factors and the effects of lightning are shown as graphs. For practical application the information, obtained as the result of the research, was organized in the form of checklists that can be applied when collecting baseline information to develop the lightning protection of the substation, to examine the existing lightning protection, to

  18. VOLTAGE STABILITY ASSESSMENT FOR WIND FARMS INTEGRATION INTO ELECTRICITY GRIDS WITH AND WITHOUT CONSIDERATION OF VOLTAGE DEPENDENT LOADS

    Directory of Open Access Journals (Sweden)

    TOMA R.

    2016-09-01

    Full Text Available The paper presents a comparative study between the effects on voltage stability of the integration of a wind farm into the electricity grid with or without voltage dependent loads in the context of different locations of a synchronous compensator from the grid. The P-V curves are built by using the PowerFactory DigSilent 15.2.2 and a DPL script that implements a simplified form of the Continuation Power Flow method.

  19. Self-Healable Electrical Insulation for High Voltage Applications

    Science.gov (United States)

    Williams, Tiffany S.

    2017-01-01

    Polymeric aircraft electrical insulation normally degrades by partial discharge with increasing voltage, which causes excessive localized Joule heating in the material and ultimately leads to dielectric failure of the insulator through thermal breakdown. Developing self-healing insulation could be a viable option to mitigate permanent mechanical degradation, thus increasing the longevity of the insulation. Instead of relying on catalyst and monomer-filled microcapsules to crack, flow, and cure at the damaged sites described in well-published mechanisms, establishment of ionic crosslinks could allow for multiple healing events to occur with the added benefit of achieving full recovery strength under certain thermal environments. This could be possible if the operating temperature of the insulator is the same as or close to the temperature where ionic crosslinks are formed. Surlyn, a commercial material with ionic crosslinks, was investigated as a candidate self-healing insulator based off prior demonstrations of self-healing behavior. Thin films of varying thicknesses were investigated and the effects of thickness on the dielectric strength were evaluated and compared to representative polymer insulators. The effects of thermal conditioning on the recovery strength and healing were observed as a function of time following dielectric breakdown. Moisture absorption was also studied to determine if moisture absorption rates in Surlyn were lower than that of common polyimides.

  20. Diffusion voltage in polymer light emitting diodes measured with electric field induced second harmonic generation

    Science.gov (United States)

    Kristensen, P. K.; Rafaelsen, J.; Pedersen, T. G.; Pedersen, K.

    2005-12-01

    We apply electric field induced second harmonic (EFISH) to polymer light emitting diodes (PLEDs) and demonstrate the ability to determine the diffusion voltage in PLED devices. The EFISH signal is proportional to the square of the effective field, which is the sum of the diffusion voltage and the applied voltage. By minimizing the EFISH-signal as a function of the applied voltage, the diffusion voltage is determined by measuring the applied voltage that cancels out the diffusion voltage. The PLEDs are fabricated with indium tin oxide (ITO) as the hole injecting contact and two different electron injecting contacts, namely aluminum and calcium. The diffusion voltage originates from the rearranged charges caused by the difference in Fermi levels in the materials in the PLEDs. Different contacts will thus cause different diffusion voltages. We demonstrate here that the EFISH signal is proportional to the square of the effective field in both reverse and forward bias, and discuss the dependence on contact materials.

  1. Analysis of predictor factors of limb amputation in patients with high-voltage electrical burns

    OpenAIRE

    2015-01-01

    Background: Limb amputation is considered one of the most devastating consequences of electrical injury. Any factors that correlate with the degree of muscle damage can be used to predict the necessity of limb amputation. The aim of this study was to determine the factors that can be used to predict limb amputation in high-voltage electrically injured patients. Methods: Eighty-two high-voltage electrically injured patients were admitted to the Department of Plastic and Reconstructive Surg...

  2. Investigation of Voltage Unbalance Problems In Electric Arc Furnace Operation Model

    OpenAIRE

    Yacine DJEGHADER; Hocine LABAR

    2013-01-01

    In modern steel industry, Electric Arc Furnaces are widely used for iron and scarp melting. The operation of electric arc furnace causes many power quality problems such as harmonics, unbalanced voltage and flicker. The factors that affect Electric arc furnace operation are the melting or refining materials, melting stage, electrodes position (arc length), electrode arm control and short circuit power of the feeder, so, arc voltages, current and power are defined as a nonlinear function of ar...

  3. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....

  4. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  5. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads

    Science.gov (United States)

    Lafleur, T.; Delattre, P. A.; Booth, J. P.; Johnson, E. V.; Dine, S.

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  6. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads.

    Science.gov (United States)

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  7. Phase-wise enhanced voltage support from electric vehicles in a Danish low-voltage distribution grid

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    High deployment of electric vehicles (EVs) imposes great challenges for the distribution grids, especially in unbalanced systems with notable voltage variations which detrimentally affect security of supply. On the other hand, with development of Vehicle-to-Grid technology, EVs may be able...

  8. Power dissipated in a non-thermal atmospheric pressure plasma jet measured by miniaturized electrical probes

    Science.gov (United States)

    Golda, Judith; Schulz-von der Gathen, Volker

    2016-09-01

    Non-thermal atmospheric pressure plasma jets are used in bio-medicine, because they generate reactive species at a low gas temperature. Knowledge and control of plasma parameters is required for stable and reliable operation. Therefore, measuring dissipated power in these plasmas is necessary. However, this is challenging because the delivered sender power is often orders of magnitudes higher than the power dissipated in the discharge itself. To measure this dissipated power, we built miniaturized electrical probes directly attached to the jet device. We observed that the dissipated power is a more comprehensive parameter than the common parameter voltage: For example, gas temperature and emission line intensities rose exponentially with increasing voltage but linearly with increasing power. Our analyses further revealed that a substantial proportion of the dissipated power is transformed into heat. In conclusion, miniaturized electrical probes give a fundamental insight into the energy balance of atmospheric pressure plasmas. In the future, these probes can also be adapted to different types of atmospheric pressure plasmas. This work was supported by DFG within the frameworks of the Package Project PAK 816.

  9. Modified electrical transport probe design for standard magnetometer

    CERN Document Server

    Assaf, Badih A; Wei, Peng; Katmis, Ferhat; Moodera, Jagadeesh S; Heiman, Don

    2012-01-01

    Making electrical transport measurements on a material is often a time consuming process that involves testing a large number of samples. It is thus inconvenient to wire up and rewire samples on to a sample probe. We therefore present a method of modifying Quantum Design's MPMS SQUID magnetometer transport probe that simplifies the process of sample mounting. One of the difficulties to overcome is the small diameter of the sample space. A small socket is designed and mounted on the probe so that various samples mounted on individual headers can be readily exchanged in the socket. We also present some test results on the topological insulator Bi2Te2Se using the modified probe.

  10. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  11. Investigation of Voltage Unbalance Problems In Electric Arc Furnace Operation Model

    Directory of Open Access Journals (Sweden)

    Yacine DJEGHADER

    2013-06-01

    Full Text Available In modern steel industry, Electric Arc Furnaces are widely used for iron and scarp melting. The operation of electric arc furnace causes many power quality problems such as harmonics, unbalanced voltage and flicker. The factors that affect Electric arc furnace operation are the melting or refining materials, melting stage, electrodes position (arc length, electrode arm control and short circuit power of the feeder, so, arc voltages, current and power are defined as a nonlinear function of arc length. This study focuses on investigation of unbalanced voltage due to Electrics Arc Furnace operation mode. The simulation results show the major problem of unbalanced voltage affecting secondary of furnace transformer is caused by the different continues movement of electrodes.

  12. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil...

  13. Impact Study of Electric Vehicle (EV) Integration on Medium Voltage (MV) Grids

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Nielsen, Arne Hejde; Østergaard, Jacob

    2011-01-01

    The impact study of electric vehicle (EV) grid integration on medium voltage (MV) grids was carried out to quantify the power component loading and voltage profile change in MV grids due to the extra demands from the EV charging. Three charging scenarios, dumb charging, time charging and fleet...

  14. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  15. Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks

    DEFF Research Database (Denmark)

    García-Villalobos, J.; Zamora, I.; Knezovic, Katarina

    2016-01-01

    The massive introduction of plug-in electric vehicles (PEVs) into low voltage (LV) distribution networks will lead to several problems, such as: increase of energy losses, decrease of distribution transformer lifetime, lines and transformer overload issues, voltage drops and unbalances...

  16. Improvement of Local Voltage in Feeders with Photovoltaic using Electric Vehicles

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guangya; Fawzy, Y. T.

    2013-01-01

    profiles. This paper proposes a storage strategy to alleviate voltage rise in feeders with PV, using coordinated electric vehicle (EV) load as the storage solution. The voltage support strategy is easy to implement practically and it is demonstrated on a test feeder emulating a household with roof...

  17. Acute ischemic stroke in low-voltage electrical injury: A case report

    OpenAIRE

    Huan-Jui, Yeh; Chih-Yang, Liu; Huei-Yu, Lo; Po-Chih, Chen

    2010-01-01

    Background: Acute stroke is not a common complication of electrical injury, and only a few cases of acute stroke have been reported for lightning or high-voltage injuries. Case Report: We present the case of a man who suffered from a low-voltage electrical injury followed by ischemic stroke. Magnetic resonance angiography showed segmental narrowing of the right internal carotid artery and right middle cerebral artery. The patient underwent thrombolytic therapy and catheter-assisted angioplast...

  18. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  19. A METHOD FOR DETERMINING LOCATION OF VOLTAGE FLUCTUATIONS SOURCE IN ELECTRIC GRID

    Directory of Open Access Journals (Sweden)

    G.A. Senderovich

    2016-06-01

    Full Text Available Purpose. The purpose of work is development of a method of definition of the location of a source of fluctuations of voltage. Methodology. The reasons of emergence of fluctuations of voltage at an arrangement of a source both in power lines, and in the consumer's networks, are connected with changes of consumption and active and reactive capacities. As criterion for definition of the location of a source of fluctuations of voltage we choose change of size of the active power received by reception substation on equivalent communication with system. The source of fluctuations of voltage is external for the consumer if emergence of fluctuations of voltage leads to the coordinated changes of tension and consumed in the area of active power that corresponds to a condition of the positive regulating effect of active loading on voltage (1. The source of fluctuations of voltage is internal for the consumer if emergence of fluctuations of voltage leads to counter changes of tension and consumed in the area of active power that resembles a condition of the negative regulating effect of active loading on voltage superficially (6. Results. The method of definition of the location of a source of fluctuations of voltage in an electric network which, works by the principle of an assessment of correlation of change of power and tension in a power supply network is developed. The method allows to consider shift between extrema of curves of change of voltage of U(t and power of Pload(t. Originality. The method of definition of an arrangement of a source of fluctuations of voltage is developed. Practical value. The answer to this question where the source of fluctuations of voltage (in the territory of the consumer is located or in an external network confirmed with the determined calculation, can form a basis of the expert opinion for the solution of legal disputes at an assessment of the damages caused by poor quality of electric energy.

  20. Electrical Conductivity Studies on Individual Conjugated Polymer Nanowires: Two-Probe and Four-Probe Results

    Directory of Open Access Journals (Sweden)

    Duvail JeanLuc

    2009-01-01

    Full Text Available Abstract Two- and four-probe electrical measurements on individual conjugated polymer nanowires with different diameters ranging from 20 to 190 nm have been performed to study their conductivity and nanocontact resistance. The two-probe results reveal that all the measured polymer nanowires with different diameters are semiconducting. However, the four-probe results show that the measured polymer nanowires with diameters of 190, 95–100, 35–40 and 20–25 nm are lying in the insulating, critical, metallic and insulting regimes of metal–insulator transition, respectively. The 35–40 nm nanowire displays a metal–insulator transition at around 35 K. In addition, it was found that the nanocontact resistance is in the magnitude of 104Ω at room temperature, which is comparable to the intrinsic resistance of the nanowires. These results demonstrate that four-probe electrical measurement is necessary to explore the intrinsic electronic transport properties of isolated nanowires, especially in the case of metallic nanowires, because the metallic nature of the measured nanowires may be coved by the nanocontact resistance that cannot be excluded by a two-probe technique.

  1. Voltage Flicker Mitigation in Electric Arc Furnace using D-STATCOM

    Directory of Open Access Journals (Sweden)

    Deepthisree Madathil

    2014-10-01

    Full Text Available The major power quality issue of voltage flicker has resulted as a serious concern for the customers and heavy power companies. Voltage flicker is an impression of unsteadiness of visual sensation induced by a light source whose luminance fluctuates with time. This phenomenon is experienced when an Electric Arc Furnace (EAF as load is connected to the power system. Flexible AC transmission devices (FACTS devices were gradually utilized for voltage flicker reduction. In this paper the FACTS device of Distribution Static Synchronous Compensator (D-STATCOM is used to serve the purpose of mitigating voltage flickering caused by electric arc furnace load, which is efficiently controlled by Icosɸ control algorithm. The model of electric arc furnace is considered as a current source controlled by a non linear resistance, which had been simulated and performance was analyzed using MATLAB/SIMULINK Software.

  2. The Thawing Characteristic of Frozen Tofu under High-Voltage Alternating Electric Field

    Directory of Open Access Journals (Sweden)

    Shilong Deng

    2017-01-01

    Full Text Available To systematically and comprehensively investigate the high voltage alternating electric field (HVAEF thawing processing, we investigated the high-voltage electric field thawing characteristic of the frozen tofu at different voltages for alternating current (AC. The thawing time, thawing loss of frozen tofu, and specific energy consumption (SEC of HVEF system were measured. Seven different mathematical models were then compared to simulate thawing time curves based on root mean square error, reduced mean square of deviation, and modeling efficiency. The results showed that the thawing rate of frozen tofu was notably greater in the high-voltage electric field system when compared to control. Both Linear and Quadratic models were the best mathematical models. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the HVAEF thawing properties of frozen tofu.

  3. Integration of Electric Vehicles in Low Voltage Danish Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Thøgersen, Paul; Møller, Jan

    2012-01-01

    Electric Vehicles (EVs) are considered as one of the important components of the future intelligent grids. Their role as energy storages in the electricity grid could provide local sustainable solutions to support more renewable energy. In order to estimate the extent of interaction of EVs...

  4. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil......-fuelled generators to supply future grid support functions. The quick start and fast response characteristics of battery storages enable the electric vehicles to provide most of the power system auxiliary tasks. This chapter discusses key ancillary services that could be supplied by electric vehicles to maintain...... the system balance in power systems with high volumes of wind power generation. To analyse the applications and performance of electric vehicles in supplying active power balancing services, the case studies simulated in wind-power-dominated Danish power systems are also presented....

  5. Market-based coordinated charging of electric vehicles on the low-voltage distribution grid

    NARCIS (Netherlands)

    Ghijsen, M.; D'hulst, R

    2011-01-01

    This paper presents a market based coordination mechanism for charging electric vehicles. In market based coordination, a virtual market is used to match supply and demand of a commodity. The goal is to limit the impact of the electric vehicles on the low voltage distribution grid. First it is shown

  6. Power quality issues into a Danish low-voltage grid with electric vehicles

    DEFF Research Database (Denmark)

    Marra, Francesco; Jensen, Morten M.; Garcia-Valle, Rodrigo

    2011-01-01

    An increased interest on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is dealing with their introduction into low voltage (LV) distribution grids. Lately, analysis on power quality issues has received attention when considering EVs as additional load. The charging of EVs...

  7. Market-based coordinated charging of electric vehicles on the low-voltage distribution grid

    NARCIS (Netherlands)

    Ghijsen, M.; D'hulst, R

    2011-01-01

    This paper presents a market based coordination mechanism for charging electric vehicles. In market based coordination, a virtual market is used to match supply and demand of a commodity. The goal is to limit the impact of the electric vehicles on the low voltage distribution grid. First it is shown

  8. Derivation of Incident Angle and Sweeping Voltage Design on Advanced Ionospheric Probe onboard FORMOSAT-5

    Science.gov (United States)

    Lin, Z. W.; Chao, C. K.; Chang, Y. S.

    2014-12-01

    Advanced Ionospheric Probe (AIP) developed by the National Central University (NCU), Taiwan, has been selected to install on FORMOSAT-5 satellite. It is an all-in-one plasma sensor with the sampling rate up to 8,192 Hz to measure ionospheric plasma concentrations, velocities, and temperatures over a wide range of spatial scales. The design of AIP sensor allows it to sequentially perform as a Retarding Potential Analyzer (RPA), an Ion Drift Meter (IDM), an Ion Trap (IT), or a Planer Langmuir Probe (PLP). Unlike the inherited payload IPEI onboard FORMOSAT-1/ROCSAT-1, the entrance opening of IDM of AIP is circular instead of square shape, causes the difference in the geometry calculation of the projection area. New method is present to obtain the incident angle from the incoming plasma beam. Meanwhile, a set of sweeping voltage pattern is defined to get a better result of plasma parameters from RPA function. Upon the requirement of the mission, several sweeping voltage patterns are designed to fit the specified species of plasma to increase the accuracy in the derivation of ram speed and temperature. A simulation is present to show the fitting result in different assumptions and conditions for each sweeping pattern.

  9. Study of seismic response and vibration control of High voltage electrical equipment damper based on TMD

    Science.gov (United States)

    Liu, Chuncheng; Wang, Chongyang; Mao, Long; Zha, Chuanming

    2016-11-01

    Substation high voltage electrical equipment such as mutual inductor, circuit interrupter, disconnecting switch, etc., has played a key role in maintaining the normal operation of the power system. When the earthquake disaster, the electrical equipment of the porcelain in the transformer substation is the most easily to damage, causing great economic losses. In this paper, using the method of numerical analysis, the establishment of a typical high voltage electrical equipment of three dimensional finite element model, to study the seismic response of a typical SF6 circuit breaker, at the same time, analysis and contrast the installation ring tuned mass damper (TMD damper for short), by changing the damper damping coefficient and the mass block, install annular TMD vibration control effect is studied. The results of the study for guiding the seismic design of high voltage electrical equipment to provide valuable reference.

  10. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    Science.gov (United States)

    Mathur, Vinay; Tanger, Ramesh; Gupta, Arun Kumar

    2016-01-01

    Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation. PMID:27170922

  11. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    Directory of Open Access Journals (Sweden)

    Aditya Pratap Singh

    2016-04-01

    Full Text Available Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation.

  12. Slime thickness evaluation of bored piles by electrical resistivity probe

    Science.gov (United States)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  13. Transcardiac conducted electrical weapon (TASER) probe deployments: incidence and outcomes.

    Science.gov (United States)

    Bozeman, William P; Teacher, Eric; Winslow, James E

    2012-12-01

    TASER (TASER International, Scottsdale, AZ) conducted electrical weapons (CEWs) are commonly used by law enforcement officers. Although animal studies have suggested that transcardiac CEW discharges may produce direct cardiac effects, this has not been demonstrated in human studies. This study sought to determine the incidence and outcomes of transcardiac CEW probe impact locations in a large series of actual CEW deployments. A multi-center database of consecutive CEW uses by law enforcement officers was retrospectively reviewed. Case report forms were independently reviewed by three investigators to identify cases with paired probe configurations potentially producing a transcardiac discharge vector. Descriptive analysis was performed and inter-rater reliability was assessed. Among 1201 total CEW uses, 813 included probe deployments and 178 cases had paired anterior probe impacts potentially capable of producing a transcardiac discharge vector. This represents 14.8% of all CEW uses (95% confidence interval [CI] 12.9-16.9%) and 21.9% of CEW uses in probe mode (95% CI 19.1-24.9%). Inter-rater agreement was very good, with kappa = 0.82. There were no immediate deaths in any cases (97.5% CI 0.0-0.3%) to suggest a cardiac dysrhythmia, including those with transcardiac discharge vector. CEW deployments with probe impact configurations capable of producing a transcardiac discharge occur in a minority of cases in field use conditions. None of these cases, transcardiac or otherwise, produced immediately fatal dysrhythmias. These data support the overall safety of CEWs and provide a benchmark estimate of the likelihood of transcardiac discharge vectors occurring in field use of CEWs. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Diffusion voltage in polymer light emitting diodes measured with electric field induced second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, P.K.; Rafaelsen, J.; Pedersen, T.G.; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, Pontoppidanstraede 103, 9220 Aalborg East (Denmark)

    2005-12-01

    We apply electric field induced second harmonic (EFISH) to polymer light emitting diodes (PLEDs) and demonstrate the ability to determine the diffusion voltage in PLED devices. The EFISH signal is proportional to the square of the effective field, which is the sum of the diffusion voltage and the applied voltage. By minimizing the EFISH-signal as a function of the applied voltage, the diffusion voltage is determined by measuring the applied voltage that cancels out the diffusion voltage. The PLEDs are fabricated with indium tin oxide (ITO) as the hole injecting contact and two different electron injecting contacts, namely aluminum and calcium. The diffusion voltage originates from the rearranged charges caused by the difference in Fermi levels in the materials in the PLEDs. Different contacts will thus cause different diffusion voltages. We demonstrate here that the EFISH signal is proportional to the square of the effective field in both reverse and forward bias, and discuss the dependence on contact materials. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Thermal and Electrical Conductivity Probe for Phoenix Mars Lander

    Science.gov (United States)

    2007-01-01

    NASA's Phoenix Mars Lander will assess how heat and electricity move through Martian soil from one spike or needle to another of a four-spike electronic fork that will be pushed into the soil at different stages of digging by the lander's Robotic Arm. The four-spike tool, called the thermal and electrical conductivity probe, is in the middle-right of this photo, mounted near the end of the arm near the lander's scoop (upper left). In one type of experiment with this tool, a pulse of heat will be put into one spike, and the rate at which the temperature rises on the nearby spike will be recorded, along with the rate at which the heated spike cools. A little bit of ice can make a big difference in how well soil conducts heat. Similarly, soil's electrical conductivity -- also tested with this tool -- is a sensitive indicator of moisture in the soil. This device adapts technology used in soil-moisture gauges for irrigation-control systems. The conductivity probe has an additional role besides soil analysis. It will serve as a hunidity sensor when held in the air.

  16. Extracellular stimulation of nerve cells with electric current spikes induced by voltage steps

    OpenAIRE

    2016-01-01

    A new stimulation paradigm is presented for the stimulation of nerve cells by extracellular electric currents. In the new paradigm stimulation is achieved with the current spike induced by a voltage step whenever the voltage step is applied to a live biological tissue. By experimental evidence and theoretical arguments, it is shown that this spike is well suited for the stimulation of nerve cells. Stimulation of the human tongue is used for proof of principle. Charge injection thresholds are ...

  17. Intrathoracic electrical impedance measurements from an esophageal probe.

    Science.gov (United States)

    Mitchell, M M; Newbower, R S

    1979-03-01

    The sensing of intrathoracic electrical impedance from an esophageal probe may allow relatively noninvasive monitoring of cardiac and respiratory functions of particular interest in anesthesia and intensive care. We have obtained a partial solution of the intrathoracic current-field problem for impedance measurements made from a four-terminal linear array of electrodes located in the esophagus. It allows prediction that aortic root motion will exceed aortic distension as a major determinant of the cardiac intrathoracic esophageal impedance signal. This prediction was confirmed for a specific carefully selected and placed electrode array in anesthetized dogs. In general, motions of organs will be more important than volume changes in affecting the esophageal impedance signal. Thus, timing information (preejection period and left ventricular ejection time) is available from electrodes on an esophageal probe, but cardiac output information appears to be inaccessible for fundamental reasons.

  18. Analysis and calculation of lightning-induced voltages in aircraft electrical circuits

    Science.gov (United States)

    Plumer, J. A.

    1974-01-01

    Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.

  19. Management of Power Quality Issues in Low Voltage Networks using Electric Vehicles: Experimental Validation

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Knezovic, Katarina; Marinelli, Mattia

    2017-01-01

    As Electric Vehicles (EVs) are becoming more wide spread, their high power consumption presents challenges for the residential low voltage networks, especially when connected to long feeders with unevenly distributed loads. However, if intelligently integrated, EVs can also partially solve...... and voltage unbalances by a local smart charging algorithm based on a droop controller. In order to validate this capability, a low-voltage grid with a share of renewable resources is recreated in SYSLAB PowerLabDK. The experimental results demonstrate the advantages of the intelligent EV charging...

  20. Management of Power Quality Issues in Low Voltage Networks using Electric Vehicles: Experimental Validation

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    As Electric Vehicles (EVs) are becoming more wide spread, their high power consumption presents challenges for the residential low voltage networks, especially when connected to long feeders with unevenly distributed loads. However, if intelligently integrated, EVs can also partially solve...... the existing and future power quality problems. One of the main aspects of the power quality relates to voltage quality. The aim of this work is to experimentally analyse whether series-produced EVs, adhering to contemporary standard and without relying on any V2G capability, can mitigate line voltage drops...

  1. Study of Energy Losses in High-Voltage Induction Motor Electric Drive

    Directory of Open Access Journals (Sweden)

    Svilen Rachev

    2016-10-01

    Full Text Available The dynamic behavior during operation of the high-voltage induction motor electric drive has been studied by means of mathematical model developed. The purpose is to draw out more clearly picture of operation of high-voltage induction motor drives. The system of differential equations has been transformed and solved using suitable software. As a result the values of the energy losses components in the induction motor have been obtained according to different values of supply voltage and factor of inertia. Some of the study results have been presented graphically. An analysis has been made and conclusions from the results obtained have been done.

  2. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid

    Science.gov (United States)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick

    2015-01-01

    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  3. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  4. [Accident risk perception in high-voltage electrical maintenance workers].

    Science.gov (United States)

    Micheli, M; Zanaletti, W; Giorgi, I; Argentero, P; Candura, S M

    2006-01-01

    Promoting safety at work represents a fundamental task for achieving improvement in the quality of working life and preventing accidental injuries at work. Nevertheless, over the last few decades injuries at work have continued to constitute a significant problem. The aim of this study was to examine accident risk perception in a sample of 45 subjects employed in the electricity sector and to relate their risk perception to personality characteristics, cognitive functioning, and personal and professional history. The instruments used were: "Cognitive Behavioral Assessment 2.0", the "Workplace safety questionnaire" (an Italian questionnaire on safety at work), and a battery of neuropsychological tests. Findings show that electricity (current variability) was perceived as the most serious risk factor, while the most frequent perceived risk factors for accidents were accidental falls, cuts and bruises. The subjects of our sample showed a good awareness of risk perception, and good mood response and augmented psychophysiological activation during accidental injuries.

  5. Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin.

    Science.gov (United States)

    Cestèle, Sandrine; Yarov-Yarovoy, Vladimir; Qu, Yusheng; Sampieri, François; Scheuer, Todd; Catterall, William A

    2006-07-28

    Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. beta-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that beta-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu(779) in extracellular loop IIS1-S2 and both Glu(837) and Leu(840) in extracellular loop IIS3-S4 reduce the binding affinity of beta-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect beta-scorpion toxin binding but alter voltage dependence of activation and enhance beta-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states.

  6. Structure and Function of the Voltage Sensor of Sodium Channels Probed by a β-Scorpion Toxin*S

    Science.gov (United States)

    Cestèle, Sandrine; Yarov-Yarovoy, Vladimir; Qu, Yusheng; Sampieri, François; Scheuer, Todd; Catterall, William A.

    2006-01-01

    Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. β-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that β-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu779 in extracellular loop IIS1–S2 and both Glu837 and Leu840 in extracellular loop IIS3–S4 reduce the binding affinity of β-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect β-scorpion toxin binding but alter voltage dependence of activation and enhance β-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states. PMID:16679310

  7. Direct Optical Probing of Transverse Electric Mode in Graphene

    CERN Document Server

    Menabde, Sergey; Kornev, Evgeny; Lee, Changhee; Park, Namkyoo

    2015-01-01

    Unique electrodynamic response of graphene implies a manifestation of an unusual propagating and localised transverse-electric (TE) mode near the spectral onset of interband transitions. However, excitation and further detection of the TE mode supported by graphene is considered to be a challenge for it is extremely sensitive to excitation environment and phase matching condition adherence. Here for the first time, we experimentally prove an existence of the TE mode by its direct optical probing, demonstrating significant coupling to an incident wave in electrically doped multilayer graphene sheet at room temperature. We believe that proposed technique of careful phase matching and obtained access to graphene TE excitation would stimulate further studies of this unique phenomenon, and enable its potential employing in various fields of photonics as well as for characterization of graphene.

  8. Effects of High-voltage Pulse Electric Field Treatment on the Structure Stability of Konjac Glucomannan

    Institute of Scientific and Technical Information of China (English)

    YAO Min-Na; FAN Lin-Lin; LIU Ya-Nan; CHEN Qing-Ai; ZENG Yuan; JIAN Wen-Jie; PANG Jie

    2011-01-01

    Structures of KGM treated in two high-voltage pulse electric fields were characterized by infrared spectroscopy,Raman spectroscopy,X-ray diffraction and so on.The results showed that intermolecular hydrogen bonding interactions of KGM were reduced after being treated with high-voltage pulse electric field,but there was no significant effect on its fiber chain form and thermal characteristics.Results of the study can provide a useful reference for further study on the structure and property of KGM,and especially can provide theoretical basis for the effect of physical field on the foodstuff deep processing related to KGM.

  9. 低压电气装置电能效率%Electrical Energy Efficiency within Low-voltage Electrical Installations

    Institute of Scientific and Technical Information of China (English)

    葛大麟

    2011-01-01

    介绍IECTC64/PT8—1工作组制定的IEC60364—8—1 Electrical Energy Efficiency within Low—voltage Electrical Installations(低压电气装置电能效率)新标准的工作进展情况。主要介绍电能效率标准的背景、适用范围.电能效率的性能指标,评价电气装置电能效率的方法.提高电能效率的方法论和设计理念:推荐提高电能效率的措施。%This paper introduces the progress of a new standard IEC 60364 - 8 - 1 Electrical Energy Efficiency within Low-voltage Electrical Installations drafted by IEC TC 64 / PT 8 - 1, the drafting background and application scope of the new standard, the performance level and the evaluation method of electrical energy efficiency of electrical installations, the methodology and design concept of improving electrical energy efficiency, and the measures of improving electrical energy efficiency is recommended.

  10. Sub-micron ZnO:N particles fabricated by low voltage electrical discharge lithography on Zn{sub 3}N{sub 2} sputtered films

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, C. García, E-mail: carlos.garcia@uam.es [Dpt. de Física Aplicada, Laboratorio de Microelectrónica, Universidad Autónoma de Madrid, 28020 Madrid (Spain); Jiménez-Trillo, J. [Dpt. Ingeniería de Circuitos y Sistemas, EUIT Telecomunicación, Universidad Politécnica de Madrid, Campus Sur, 28031 Madrid (Spain); Vélez, M. García [Dpt. Tecnología Electrónica, Escuela Superior de C.C. Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Madrid (Spain); Piqueras, J.; Pau, J.L. [Dpt. de Física Aplicada, Laboratorio de Microelectrónica, Universidad Autónoma de Madrid, 28020 Madrid (Spain); Coya, C.; Álvarez, A.L. [Dpt. Tecnología Electrónica, Escuela Superior de C.C. Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Madrid (Spain)

    2013-11-15

    This work analyzes the morphological, compositional and electrical modification of zinc nitride (Zn{sub 3}N{sub 2}) films through arc discharges produced by biasing a metal tip at a micrometric distance of the surface. Polycrystalline nitride layers are prepared by radio-frequency magnetron sputtering from a pure Zn target on glass substrates using N{sub 2} as working gas. Film properties after arc discharges are investigated by using scanning electron microscopy (SEM), ion beam analysis (IBA) techniques and four-probe resistivity measurements. Electrical discharge lithography performed at low bias voltages reveals as an effective mechanism to reduce resistivity by electrical breakdown of the thin oxide layer formed on top of the nitride. At higher voltages, electrical discharges along the scan increase nitride resistivity due to the severe modification of the structural properties. Additionally, compositional analysis reveals that nitrogen leaves the structure being replaced by ambient oxygen. This characteristic behavior leads to the formation of facetted submicron ZnO crystals whose size depends on the original Zn{sub 3}N{sub 2} grain size and the probe voltage used. The excess of zinc forms self-assembled microstructures along the scan edge.

  11. High-voltage electrical burns due to copper theft - Case series.

    Science.gov (United States)

    Braga, M J; Oliveira, I; Egipto, P; Silva, A

    2016-03-31

    Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring.

  12. High-voltage electrical burns due to copper theft – Case series

    Science.gov (United States)

    Braga, M.J.; Oliveira, I.; Egipto, P.; Silva, A.

    2016-01-01

    Summary Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring. PMID:27857650

  13. Removal of phenol by activated alumina bed in pulsed high-voltage electric field

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-nan; MA Jun; YANG Shi-dong

    2007-01-01

    A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1 % when air aeration flow rate was 1200 ml/min, and 88.2 % when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.

  14. The effects of high-voltage pulse electric discharges on ion adsorption on activated carbons

    Science.gov (United States)

    Gafurov, M. M.; Sveshnikova, D. A.; Larin, S. V.; Rabadanov, K. Sh.; Shabanova, Z. E.; Yusupova, A. A.; Ramazanov, A. Sh.

    2008-07-01

    The effects of high-voltage pulse electric discharges (HPED) on sorption of boron and sulfate ions on activated carbons of different kinds (KM-2, BAU, DAK) were investigated. The effect of HPED activation on the sorption characteristics of the systems was found to be similar to the temperature effect.

  15. The Preceding Voltage Pulse and Separation Welding Mechanism of Electrical Contacts

    DEFF Research Database (Denmark)

    Yang, Xiao Cheng; Huang, Jiang; Li, Zhen Biao

    2016-01-01

    In order to obtain a better understanding of the welding mechanism in contact separation, electrical endurance tests were conducted with AgSnO2 and AgNi contacts on a simulation test device. Waveforms of contact displacement, contact voltage, and current were recorded with LabVIEW during the tests...

  16. Effect of a low voltage with a high frequency electrical stunning on unconsciousness in slaughter pigs

    NARCIS (Netherlands)

    Lambooij, B.; Merkus, G.S.M.; Voorst, van N.; Pieterse, C.

    1996-01-01

    Effects of low voltage and high frequency electrical stunning of slaughter pigs was examined. Forty slaughter pigs were positioned for stunning while lying on a beam in a cage and stunned with 240 V with 800 Hz during 3 s passing the brain and 125 V with 50 Hz during 3 s passing the heart. Before th

  17. Electric current and voltage recordings on the myocardium during electrosurgical procedures in canines.

    Science.gov (United States)

    Selikowitz, S M; LaCourse, J R

    1987-03-01

    Voltage and current spectra were measured with probes placed directly on the canine myocardium during transurethral resection (TUR). It was determined that three factors may be related to potential cardiac effects during electrosurgical procedures: obvious low frequency components modulated from a center frequency of the electrosurgical generator; high current density due to high power setting during TUR, and duration of application of the cutting waveform.

  18. Analysis of electric field control methods for foil coils in high-voltage linear actuators

    Directory of Open Access Journals (Sweden)

    Beek T.A. van

    2015-12-01

    Full Text Available This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators and their sensitivity to misalignment. The investigated field control methods consist of resistive, refractive, capacitive and geometrical solutions for mitigating electric stress at edges and corners of foil coils. These field control methods are evaluated using 2-D boundary element and finite element methods. A comparison is presented between the field control methods and their ability to mitigate electric stress in coreless linear actuators. Furthermore, the sensitivity to misalignment of the field control methods is investigated.

  19. CT findings of the brain damages resulting from the high voltage electric injuries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Eun; Kim, Young Keun; Shim, Hyang Yi; Lee, Shin Hyung; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    1994-02-15

    The purpose of this study is to evaluate the CT features and pathogenesis of the electric brain injuries. We reviewed the CT scans of 3 patients injured by high-voltage electricity. We evaluated the findings early and delayed periods in each patients. The early CT findings were diffuse brain edema, scalp swelling, and focal hemorrhagic contusion. The findings of delayed period were cerebral infarction, pneumocephalus, brain abscess, and pneumatocele. CT was useful to correlate the pathogenesis and variable features of electric brain injuries.

  20. An Analysis of Magnetic Field Environment Near High-Voltage Power Lines and Contact Wires of Electric Railways

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magnetic pollution of high-voltage power transmission lines and electric railways is discussed

  1. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid (AVC-TeDP)

    Science.gov (United States)

    Gemin, Paul; Kupiszewski, Tom; Radun, Arthur; Pan, Yan; Lai, Rixin; Zhang, Di; Wang, Ruxi; Wu, Xinhui; Jiang, Yan; Galioto, Steve; Haran, Kiruba; Premerlani, William; Bray, Jim; Caiafa, Antonio

    2015-01-01

    The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.

  2. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    OpenAIRE

    F. Sohbatzadeh; Bagheri, M; S. Motallebi

    2017-01-01

    In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV) wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chem...

  3. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown

    Science.gov (United States)

    Neusel, C.; Jelitto, H.; Schneider, G. A.

    2015-04-01

    In order to develop and verify a dielectric breakdown model for bulk insulators thicker than 100 μm, the knowledge of the dominating conduction mechanism at high electric fields, or respectively voltages, is necessary. The dielectric breakdown is the electrical failure of an insulator. In some existing breakdown models, ohmic conduction is assumed as dominating conduction mechanism. For verification, the dominating dc conduction mechanism of bulk insulators at room temperature was investigated by applying high voltages up to 70 kV to the insulator until dielectric breakdown occurs. Four conduction models, namely, ohmic, space charge limited, Schottky, and Poole-Frenkel conduction, were employed to identify the dominating conduction mechanism. Comparing the calculated permittivities from the Schottky and Poole-Frenkel coefficients with experimentally measured permittivity, Schottky and Poole-Frenkel conduction can be excluded as dominating conduction mechanism. Based on the current density voltage characteristics (J-V-curve) and the thickness-dependence of the current density, space charge limited conduction (SCLC) was identified to be the dominating conduction mechanism at high voltages leading to dielectric breakdown. As a consequence, breakdown models based on ohmic conduction are not appropriate to explain the breakdown of the investigated bulk insulators. Furthermore, the electrical failure of the examined bulk insulators can only be described correctly by a breakdown model which includes SCLC as conduction mechanism.

  4. Multi-point probe for testing electrical properties and a method of producing a multi-point probe

    DEFF Research Database (Denmark)

    2011-01-01

    A multi-point probe for testing electrical properties of a number of specific locations of a test sample comprises a supporting body defining a first surface, a first multitude of conductive probe arms (101-101'''), each of the probe arms defining a proximal end and a distal end. The probe arms...... are connected to the supporting body (105) at the proximal ends, and the distal ends are freely extending from the supporting body, giving individually flexible motion to the probe arms. Each of the probe arms defines a maximum width perpendicular to its perpendicular bisector and parallel with its line...... of contact with the supporting body, and a maximum thickness perpendicular to its perpendicular bisector and its line of contact with the supporting body. Each of the probe arms has a specific area or point of contact (111-111''') at its distal end for contacting a specific location among the number...

  5. A Reduced-Part, Triple-Voltage DC-DC Converter for Electric Vehicle Power Management

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2007-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets; 14 V, 42 V and high voltage (>200 V) buses. A soft-switched, bi-directional dc-dc converter using only four switches was proposed for interconnecting the three nets. This paper presents a reduced- part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Simulation and experimental data are included to verify a simple power flow control scheme.

  6. Background voltage distortion influence on power electric systems in the presence of the Steinmetz circuit

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Luis; Pedra, Joaquin [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain); Caro, Manuel [IDOM Ingenieria y Arquitectura, C. Barcas 2, 46002 Valencia (Spain)

    2009-01-15

    In traction systems, it is usual to connect reactances in delta configuration with single-phase loads to reduce voltage unbalances and avoid electric system operation problems. This set is known as Steinmetz circuit. Parallel and series resonances can occur due to the capacitive reactance of the Steinmetz circuit and affect power quality. In this paper, the series resonance ''observed'' from the supply system is numerically located. The study of this resonance is important to avoid problems due to background voltage distortion. Experimental measurements are also presented to validate the obtained numerical results. (author)

  7. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    Science.gov (United States)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  8. [Transient high frequency nodal rhythm after a high voltage electric shock. Report of one case].

    Science.gov (United States)

    Supervía, August; Del Baño, Francisco; Aguirre, Alfons; Membrilla, Estela

    2013-09-01

    Electrical shock can cause a direct myocardial damage and different types of arrhythmias, which are uncommon and occur more often when there is a high voltage exposure. We report a 19-year-old male that received a high voltage shock, falling thereafter from an altitude of four meters. On admission to the emergency room, he had second and third degree burns in the right hand and the left thigh. The electrocardiogram showed a nodal rhythm of 72 beats per minute. After four hours of monitoring, sinus rhythm returned spontaneously.

  9. Electric eels use high-voltage to track fast-moving prey.

    Science.gov (United States)

    Catania, Kenneth C

    2015-10-20

    Electric eels (Electrophorus electricus) are legendary for their ability to incapacitate fish, humans, and horses with hundreds of volts of electricity. The function of this output as a weapon has been obvious for centuries but its potential role for electroreception has been overlooked. Here it is shown that electric eels use high-voltage simultaneously as a weapon and for precise and rapid electrolocation of fast-moving prey and conductors. Their speed, accuracy, and high-frequency pulse rate are reminiscent of bats using a 'terminal feeding buzz' to track insects. Eel's exhibit 'sensory conflict' when mechanosensory and electrosensory cues are separated, striking first toward mechanosensory cues and later toward conductors. Strikes initiated in the absence of conductors are aborted. In addition to providing new insights into the evolution of strongly electric fish and showing electric eels to be far more sophisticated than previously described, these findings reveal a trait with markedly dichotomous functions.

  10. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Science.gov (United States)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  11. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these

  12. Analysis of predictor factors of limb amputation in patients with high-voltage electrical burns

    Directory of Open Access Journals (Sweden)

    Guillermo García Álvarez

    2015-09-01

    Full Text Available Background: Limb amputation is considered one of the most devastating consequences of electrical injury. Any factors that correlate with the degree of muscle damage can be used to predict the necessity of limb amputation. The aim of this study was to determine the factors that can be used to predict limb amputation in high-voltage electrically injured patients. Methods: Eighty-two high-voltage electrically injured patients were admitted to the Department of Plastic and Reconstructive Surgery and Burns of National Arzobispo Loayza Hospital on a 5 year period. A retrospective analysis of the possible related risk factors between amputation and non-amputation patients was performed. Results: A total of 68 patients were enrolled for analysis. Thirteen patients underwent limb amputations. Multivariate analysis of the risk factors between amputation and non-amputation groups showed statistical significance for first 24 hour creatine kinase-isoenzyme MB (CKMB level. A serum CK-MB level above 14,955 U/L predicted high risk of limb amputation with high specificity (84% and sensitivity (77%. Only one patient with a remarkable decrease of creatine kinase (CPKt and CK-MB levels after fasciotomy avoided a major limb amputation. Conclusion: Our results suggest that CPK-MB level is an independent factor for prediction of limb amputation in patients with high-voltage electrical burns. We suggest that the addition of CPK-MB evaluation to clinical symptom screening may be a valuable method for early detection of muscle damage.

  13. Numerical simulation of high voltage electric pulse comminution of phosphate ore

    Institute of Scientific and Technical Information of China (English)

    Razavian Seyed Mohammad; Rezai Bahram; Irannajad Mehdi; Ravanji Mohammad Hasan

    2015-01-01

    Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phos-phate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals, the feed particle size and the location of conductive minerals in ores. The angle of material contact sur-face with the discharge electrode is also an important factor in the intensity of electrical field. Moreover, it is found that the specific liberation effect at the disintegration of phosphate ore by electrical pulses is due to the locality of the electrical field at the interface of mineral components of the phosphate ore aggregates with different permittivities. However, the intensity of the electrical field increases with shar-pening the contact angle. Besides, the electrical discharge in the samples is converted to the elec-trohydraulic discharge across the surrounding water by changing the distance between the discharge electrode and sample surface.

  14. Voltage inverter with push-pull topology to inject energy into electrical systems with modulation SPWM

    Directory of Open Access Journals (Sweden)

    Emerson Charles M. Silva

    2013-09-01

    Full Text Available This paper presents a proposal for a voltage inverter topology based on push-pull converters, switched at high frequency to inject energy into the grid from a source of DC power. A system using two reverse voltage static converters provides the power grid; energy in the form of alternating current, that can work in conjunction with the provision of utility power. Aiming at the possible use of renewable energy sources, that can be stored in the form of voltage continuous, such as wind, solar, hydroelectric and others. The functioning of topology is presented, such as the power and control circuits, as well as sizing components, theoretical and practical results achieved with the assembly of a prototype 100W of power and switching in 40khz, which after filtering provides the frequency of 60Hz, which is compatible with the Brazilian electrical system.

  15. Incorporating voltage security into the planning, operation and monitoring of restructured electric energy markets

    Science.gov (United States)

    Nair, Nirmal-Kumar

    As open access market principles are applied to power systems, significant changes are happening in their planning, operation and control. In the emerging marketplace, systems are operating under higher loading conditions as markets focus greater attention to operating costs than stability and security margins. Since operating stability is a basic requirement for any power system, there is need for newer tools to ensure stability and security margins being strictly enforced in the competitive marketplace. This dissertation investigates issues associated with incorporating voltage security into the unbundled operating environment of electricity markets. It includes addressing voltage security in the monitoring, operational and planning horizons of restructured power system. This dissertation presents a new decomposition procedure to estimate voltage security usage by transactions. The procedure follows physical law and uses an index that can be monitored knowing the state of the system. The expression derived is based on composite market coordination models that have both PoolCo and OpCo transactions, in a shared stressed transmission grid. Our procedure is able to equitably distinguish the impacts of individual transactions on voltage stability, at load buses, in a simple and fast manner. This dissertation formulates a new voltage stability constrained optimal power flow (VSCOPF) using a simple voltage security index. In modern planning, composite power system reliability analysis that encompasses both adequacy and security issues is being developed. We have illustrated the applicability of our VSCOPF into composite reliability analysis. This dissertation also delves into the various applications of voltage security index. Increasingly, FACT devices are being used in restructured markets to mitigate a variety of operational problems. Their control effects on voltage security would be demonstrated using our VSCOPF procedure. Further, this dissertation investigates

  16. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, M. S.; Gusev, Yu. P., E-mail: GusevYP@mpei.ru; Monakov, Yu. V.; Cho, Gvan Chun [National Research University “Moscow Power Engineering Institute,” (Russian Federation)

    2016-01-15

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed.

  17. An Improved Electrical Switching and Phase-Transition Model for Scanning Probe Phase-Change Memory

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-01-01

    Full Text Available Scanning probe phase-change memory (SPPCM has been widely considered as one of the most promising candidates for next-generation data storage devices due to its fast switching time, low power consumption, and potential for ultra-high density. Development of a comprehensive model able to accurately describe all the physical processes involved in SPPCM operations is therefore vital to provide researchers with an effective route for device optimization. In this paper, we introduce a pseudo-three-dimensional model to simulate the electrothermal and phase-transition phenomena observed during the SPPCM writing process by simultaneously solving Laplace’s equation to model the electrical process, the classical heat transfer equation, and a rate equation to model phase transitions. The crystalline bit region of a typical probe system and the resulting current-voltage curve obtained from simulations of the writing process showed good agreement with experimental results obtained under an equivalent configuration, demonstrating the validity of the proposed model.

  18. Electromechanical phase transition in dielectric elastomers under uniaxial tension and electrical voltage

    Science.gov (United States)

    Huang, Rui; Suo, Zhigang

    2012-02-01

    Subject to forces and voltage, a dielectric elastomer may undergo electromechanical phase transition. A phase diagram is constructed for an ideal dielectric elastomer membrane under uniaxial force and voltage, reminiscent of the phase diagram for liquid-vapor transition of a pure substance. We identify a critical point for the electromechanical phase transition. Two states of deformation (thick and thin) may coexist during the phase transition, with the mismatch in lateral stretch accommodated by wrinkling of the membrane in the thin state. The processes of electromechanical phase transition under various conditions are discussed. A reversible cycle is suggested for electromechanical energy conversion using the dielectric elastomer membrane, analogous to the classical Carnot cycle for a heat engine. The amount of energy conversion, however, is limited by failure of the dielectric elastomer due to electrical breakdown. With a particular combination of material properties, the electromechanical energy conversion can be significantly extended by taking advantage of the phase transition without electrical breakdown.

  19. Current-voltage characteristics of light-emitting diodes under optical and electrical excitation

    Institute of Scientific and Technical Information of China (English)

    Wen Jing; Wen Yumei; Li Ping; Li Lian

    2011-01-01

    The factors influencing the current-voltage (Ⅰ-Ⅴ) characteristics of light-emitting diodes (LEDs) are investigated to reveal the connection of Ⅰ-Ⅴ characteristics under optical excitation and those under electrical excitation.By inspecting the Ⅰ-Ⅴ curves under optical and electrical excitation at identical injection current,it has been found that the Ⅰ-Ⅴ curves exhibit apparent differences in voltage values.Furthermore,the differences are found to originate from the junction temperatures in diverse excitation ways.Experimental results indicate that if the thermal effect of illuminating spot is depressed to an ignorable extent by using pulsed light,the junction temperature will hardly deflect from that under optical excitation,and then the Ⅰ-Ⅴ characteristics under two diverse excitation ways will be the same.

  20. Modelling chloride penetration in concrete using electrical voltage and current approaches

    Directory of Open Access Journals (Sweden)

    Juan Lizarazo-Marriaga

    2011-03-01

    Full Text Available This paper reports a research programme aimed at giving a better understanding of the phenomena involved in the chloride penetration in cement-based materials. The general approach used was to solve the Nernst-Planck equation numerically for two physical ideal states that define the possible conditions under which chlorides will move through concrete. These conditions are named in this paper as voltage control and current control. For each condition, experiments and simulations were carried out in order to establish the importance of electrical variables such as voltage and current in modelling chloride transport in concrete. The results of experiments and simulations showed that if those electrical variables are included as key parameters in the modelling of chloride penetration through concrete, a better understanding of this complex phenomenon can be obtained.

  1. Increase in the scattering of electric field lines in a new high voltage SOI MESFET

    Science.gov (United States)

    Anvarifard, Mohammad K.

    2016-09-01

    This paper illustrates a new efficient technique to enhance the critical features of a silicon-on-insulator metal-semiconductor field-effect transistor (SOI MESFET) applied in high voltage applications. The structure we proposed utilizes a new method to scatter the electric field lines along the channel region. Realization of two trenches with different materials, which a trench is created in the channel region and the other one is created in the buried oxide, helps the proposed structure to improve the breakdown voltage, driving current, drain-source conductance, minimum noise figure, unilateral power gain and output power density. Exploring the obtained results, the proposed structure has superior electrical performance in comparison to the conventional structure.

  2. Voltage dip generator for testing wind turbines connected to electrical networks

    Energy Technology Data Exchange (ETDEWEB)

    Veganzones, C.; Martinez, S.; Platero, C.A.; Blazquez, F.; Ramirez, D.; Arribas, J.R.; Merino, J.; Gordillo, F. [Department of Electrical Engineering, ETSII, Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Sanchez, J.A.; Herrero, N. [Department of Civil Engineering, Hydraulics and Energy, ETSICCP, Universidad Politecnica de Madrid, Ciudad Universitaria, s/n. 28040 Madrid (Spain)

    2011-05-15

    This paper describes a new voltage dip generator that allows the shape of the time profile of the voltage generated to be configured. The use of this device as a tool to test the fault ride-through capability of wind turbines connected to the electricity grid can provide some remarkable benefits: First, this system offers the possibility of adapting the main features of the time-voltage profile generated (dip depth, dip duration, the ramp slope during the recovery process after clearing fault, etc.) to the specific requirements set forth by the grid operation codes, in accordance with different network electrical systems standards. Second, another remarkable ability of this system is to provide sinusoidal voltage and current wave forms during the overall testing process without the presence of harmonic components. This is made possible by the absence of electronic converters. Finally, the paper includes results and a discussion on the experimental data obtained with the use of a reduced size laboratory prototype that was constructed to validate the operating features of this new device. (author)

  3. Pattern of high voltage electrical injuries in the Kashmir valley: a 10-year single centre experience.

    Science.gov (United States)

    Kasana, R A; Baba, P U F; Wani, A H

    2016-12-31

    The objective was to study the clinical profile of high voltage electrical injuries in Kashmir, and various prevention and safety measures to bring down the incidence of such injuries in the future. All patients (176) with high voltage electrical injuries reporting to our centre from January 2001 to December 2010 were included in the study. The most common age group was 20-40 years, with mean age of 29.77 ± 8.98 years. Incidence was higher among the rural population (68.75%) than in urban areas (31.25%), and in the winter months. Electricians comprised 47.16% of victims. The most common mode of injury was touching a live wire directly or indirectly, and was seen in 63.64% of victims. Average total body surface burned was 15.27 ± 10.15 percent. Right upper limb was most commonly involved (64.20% of patients). Compartment syndrome was seen in 40.34% of patients, and fasciotomies on all the affected limbs saved around half of them. An average of 3.91 surgical procedures per patient were performed. Around one-third of the victims required major amputations. Reconstructive procedures were required in 49.43% of patients. Average hospital stay was 26.81 days. Average mortality rate was 2.27%. High voltage electrical injuries are not uncommon in the Kashmir Valley, and electrical workers are at higher risk. The incidence of high voltage injuries would not be so high if the workers were properly trained, hazards of high-tension lines were explained and the use of safety equipment was made mandatory.

  4. Modelling and Simulation of the SVC for Power System Flow Studies: Electrical Network in voltage drop

    OpenAIRE

    Narimen Aouzellag LAHAÇANI; Boubekeur MENDIL

    2008-01-01

    The goal of any Flexible AC Transmission Systems (FACTS) devices study is to measure their impact on the state of the electrical networks into which they are introduced. Their principal function is to improve the static and dynamic properties of the electrical networks and that by increasing the margins of static and dynamic stability and to allow the power transit to the thermal limits of the lines.To study this impact, it is necessary to establish the state of the network (bus voltages and ...

  5. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Science.gov (United States)

    Farajpour, A.; Rastgoo, A.; Mohammadi, M.

    2017-03-01

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  6. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, A., E-mail: ariobarzan.oderj@gmail.com; Rastgoo, A.; Mohammadi, M.

    2017-03-15

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  7. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip

    Energy Technology Data Exchange (ETDEWEB)

    Shahini, Mehdi; Yeow, John T W, E-mail: jyeow@uwaterloo.ca [University of Waterloo, 200 University Avenue West, Waterloo, ON (Canada)

    2011-08-12

    We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.

  8. Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel.

    Science.gov (United States)

    Mulholland, Michael D; Seidman, David N

    2011-12-01

    The differences in artifacts associated with voltage-pulsed and laser-pulsed (wavelength = 532 or 355 nm) atom-probe tomographic (APT) analyses of nanoscale precipitation in a high-strength low-carbon steel are assessed using a local-electrode atom-probe tomograph. It is found that the interfacial width of nanoscale Cu precipitates increases with increasing specimen apex temperatures induced by higher laser pulse energies (0.6-2 nJ pulse(-1) at a wavelength of 532 nm). This effect is probably due to surface diffusion of Cu atoms. Increasing the specimen apex temperature by using pulse energies up to 2 nJ pulse(-1) at a wavelength of 532 nm is also found to increase the severity of the local magnification effect for nanoscale M2C metal carbide precipitates, which is indicated by a decrease of the local atomic density inside the carbides from 68 ± 6 nm(-3) (voltage pulsing) to as small as 3.5 ± 0.8 nm(-3). Methods are proposed to solve these problems based on comparisons with the results obtained from voltage-pulsed APT experiments. Essentially, application of the Cu precipitate compositions and local atomic density of M2C metal carbide precipitates measured by voltage-pulsed APT to 532 or 355 nm wavelength laser-pulsed data permits correct quantification of precipitation.

  9. Electrical Probing of Inherent Spin Polarization in a Topological Insulator with Electrical Gating

    Science.gov (United States)

    Lee, Joon Sue; Richardella, Anthony; Samarth, Nitin

    2015-03-01

    The hallmark of a time-reversal symmetry protected three-dimensional topological insulator is the helically spin-textured surface state. Although electrical detection of spin polarization in topological insulators has been demonstrated very recently, there have not been any electrical measurements to demonstrate the entire mapping of the spin polarization throughout the surface state. We report the electrical probing of the spin-polarized surface state using a magnetic tunnel junction as a spin detector while the chemical potential of a topological insulator (Bi,Sb)2Te3 is tuned by back gating. Hysteretic spin signals were observed as the magnetization of the detector ferromagnet (permalloy) switches with in-plane magnetic field. Changing the direction of bias current through the topological insulator channel flips the direction of the spin polarization, resulting in the reverse of sign of the detected spin signals. We demonstrate the control of the Fermi energy, which has importance not only in further understanding of the spin-momentum locking in the surface state but also in possible electrical tuning of the spin polarization for potential spin-based devices. Supported by C-SPIN & DARPA/SRC.

  10. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.

  11. Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes.

    Science.gov (United States)

    Bernier, Maxime; Gaborit, Gwenaël; Duvillaret, Lionel; Paupert, Alain; Lasserre, Jean-Louis

    2008-05-01

    We present pigtailed electro-optic probes that allow a simultaneous measurement of high frequency electric fields and temperature using a unique laser probe beam. This has been achieved by the development of a novel probe design associated with a fully automated servo-controlled optical bench, initially developed to stabilize the electric field sensor response. The developed electro-optic probes present a stable response in outdoors conditions over a time duration exceeding 1 h, a frequency bandwidth from kHz to tens of GHz with a sensitivity of 0.7 Vm(-1)Hz(-(1/2)), and a temperature accuracy of 40 mK.

  12. Bilateral Lower Limb Amputations in a Nigerian Child Following High-Voltage Electrical Burns Injury: A Case Report

    OpenAIRE

    Dim, EM; Amanari, OC; Nottidge, TE; Inyang, UC; Nwashindi, A

    2013-01-01

    Abstract The human body conducts electricity very well. Direct contact with electric current can be lethal. The passage of electric current through the body is capable of producing a wide spectrum of injuries, including serious damage to the heart, brain, skin and muscles. Naked high-voltage electric cables negligently abandoned in residential, commercial and industrial areas are a recipe for disaster. This is a case report of a 5-year girl child who had bilateral lower limb gangrene followin...

  13. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment.

    Science.gov (United States)

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-11-20

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment.

  14. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment

    Directory of Open Access Journals (Sweden)

    Jingcun Liu

    2015-11-01

    Full Text Available Detecting partial discharge (PD is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor’s compact size makes it suitable for internal installation in high-voltage electrical equipment.

  15. An image reconstruction framework based on boundary voltages for ultrasound modulated electrical impedance tomography

    Science.gov (United States)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2016-11-01

    A new image reconstruction framework based on boundary voltages is presented for ultrasound modulated electrical impedance tomography (UMEIT). Combining the electric and acoustic modalities, UMEIT reconstructs the conductivity distribution with more measurements with position information. The proposed image reconstruction framework begins with approximately constructing the sensitivity matrix of the imaging object with inclusion. Then the conductivity is recovered from the boundary voltages of the imaging object. To solve the nonlinear inverse problem, an optimization method is adopted and the iterative method is tested. Compared with that for electrical resistance tomography (ERT), the newly constructed sensitivity matrix is more sensitive to the inclusion, even in the center of the imaging object, and it contains more effective information about the inclusions. Finally, image reconstruction is carried out by the conjugate gradient algorithm, and results show that reconstructed images with higher quality can be obtained for UMEIT with a faster convergence rate. Both theory and image reconstruction results validate the feasibility of the proposed framework for UMEIT and confirm that UMEIT is a potential imaging technique.

  16. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells

    Science.gov (United States)

    de Asis, Edward D., Jr.; Leung, Joseph; Wood, Sally; Nguyen, Cattien V.

    2010-03-01

    Identifying the neurophysiological basis underlying learning and memory in the mammalian central nervous system requires the development of biocompatible, high resolution, low electrode impedance electrophysiological probes; however, physically, electrode impedance will always be finite and, at times, large. Herein, we demonstrate through experiments performed on frog sartorius muscle that single multi-walled carbon nanotube electrode (sMWNT electrode) geometry and placement are two degrees of freedom that can improve biocompatibility of the probe and counteract the detrimental effects of MWNT/electrolyte interface impedance on the stimulation efficiency and signal-to-noise ratio (SNR). We show that high aspect ratio dependent electric field enhancement at the MWNT tip can boost stimulation efficiency. Derivation of the sMWNT electrode's electrical equivalent indicates that, at low stimulus voltage regimes below 1 V, current conduction is mediated by charge fluctuation in the double layer obviating electrolysis of water, which is potentially toxic to pH sensitive biological tissue. Despite the accompanying increase in electrode impedance, a pair of closely spaced sMWNT electrodes in a two probe (bipolar) configuration maintains biocompatibility and enhances stimulation efficiency and SNR compared to the single probe (unipolar) configuration. For stimulus voltages below 1 V, the electrical equivalent verifies that current conduction in the two probe configuration still proceeds via charge fluctuation in the double layer. As an extracellular stimulation electrode, the two sMWNT electrodes comprise a current dipole that concentrates the electric field and the current density in a smaller region of sartorius; consequently, the bipolar configuration can elicit muscle fiber twitching at low voltages that preclude electrolysis of water. When recording field potentials, the bipolar configuration subtracts the potential between two points allowing for the detection of

  17. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells

    Energy Technology Data Exchange (ETDEWEB)

    De Asis, Edward D Jr; Wood, Sally [Departments of Electrical Engineering and Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 (United States); Leung, Joseph [NASA Ames Research Center, MS 248-3, Moffett Field, CA 94035-1000 (United States); Nguyen, Cattien V, E-mail: cattien.v.nguyen@nasa.gov [ELORET Corporation, NASA Ames Research Center, M/S 229-1, Moffett Field, CA 94035-1000 (United States)

    2010-03-26

    Identifying the neurophysiological basis underlying learning and memory in the mammalian central nervous system requires the development of biocompatible, high resolution, low electrode impedance electrophysiological probes; however, physically, electrode impedance will always be finite and, at times, large. Herein, we demonstrate through experiments performed on frog sartorius muscle that single multi-walled carbon nanotube electrode (sMWNT electrode) geometry and placement are two degrees of freedom that can improve biocompatibility of the probe and counteract the detrimental effects of MWNT/electrolyte interface impedance on the stimulation efficiency and signal-to-noise ratio (SNR). We show that high aspect ratio dependent electric field enhancement at the MWNT tip can boost stimulation efficiency. Derivation of the sMWNT electrode's electrical equivalent indicates that, at low stimulus voltage regimes below 1 V, current conduction is mediated by charge fluctuation in the double layer obviating electrolysis of water, which is potentially toxic to pH sensitive biological tissue. Despite the accompanying increase in electrode impedance, a pair of closely spaced sMWNT electrodes in a two probe (bipolar) configuration maintains biocompatibility and enhances stimulation efficiency and SNR compared to the single probe (unipolar) configuration. For stimulus voltages below 1 V, the electrical equivalent verifies that current conduction in the two probe configuration still proceeds via charge fluctuation in the double layer. As an extracellular stimulation electrode, the two sMWNT electrodes comprise a current dipole that concentrates the electric field and the current density in a smaller region of sartorius; consequently, the bipolar configuration can elicit muscle fiber twitching at low voltages that preclude electrolysis of water. When recording field potentials, the bipolar configuration subtracts the potential between two points allowing for the detection of

  18. Comment on "Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires"

    Institute of Scientific and Technical Information of China (English)

    P. Ohlckers; P. Pipinys

    2009-01-01

    @@ In "Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires", Long et al.[1] reported the currentvoltage ( Ⅰ - Ⅴ) characteristics of individual poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in the temperature range from 20 to 50K (Fig. 2(a)). The authors stated that at temperatures equal to 50 K and higher, the Ⅰ - Ⅴ curves were linear. With decreasing temperature the Ⅰ - Ⅴ curves gradually became nonlinear. The temperature behavior of Ⅰ - Ⅴ characteristics is not suitably explained.

  19. Impact Study of Electric Vehicle (EV) Integration on Low Voltage (LV) Grids

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Cha, Seung-Tae; Nielsen, Arne Hejde

    2012-01-01

    Large scale deployment of electric vehicles (EVs) has become a very interesting option because it can both reduce the greenhouse gas (GHG) emission from the transport sector and facilitate the integration of more renewable energy resources (RES) by providing the flexibility of EV charging demands....... Although the EV grid integration is promising, the impact of the EV grid integration has to be investigated in order to identify the bottlenecks of power systems for the EV grid integration and assess different charging scenarios. This paper is focused on the impact of EV grid integration on low voltage...

  20. Green neighbourhoods in low voltage networks: measuring impact of electric vehicles and photovoltaics on load profiles

    CERN Document Server

    Hattam, Laura

    2016-01-01

    In the near future various types of low-carbon technologies (LCTs) are expected to be widely employed throughout the United Kingdom. However, the effect that these technologies will have at a household level on the existing low voltage (LV) network is still an area of extensive research. We propose an agent based model that estimates the growth of LCTs within local neighbourhoods, where social influence is imposed. Real-life data from a LV network is used that comprises of many socially diverse neighbourhoods. Both electric vehicle uptake and the combined scenario of electric vehicle and photovoltaic adoption are investigated with this data. A probabilistic approach is outlined, which determines lower and upper bounds for the model response at every neighbourhood. This technique is used to assess the implications of modifying model assumptions and introducing new model features. Moreover, we discuss how the calculation of these bounds can inform future network planning decisions.

  1. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space

    Science.gov (United States)

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen

    2016-08-01

    Kelvin probe force microscopy (KPFM) has provided deep insights into the local electronic, ionic and electrochemical functionalities in a broad range of materials and devices. In classical KPFM, which utilizes heterodyne detection and closed loop bias feedback, the cantilever response is down-sampled to a single measurement of the contact potential difference (CPD) per pixel. This level of detail, however, is insufficient for materials and devices involving bias and time dependent electrochemical events; or at solid-liquid interfaces, where non-linear or lossy dielectrics are present. Here, we demonstrate direct recovery of the bias dependence of the electrostatic force at high temporal resolution using General acquisition Mode (G-Mode) KPFM. G-Mode KPFM utilizes high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates. We show how G-Mode KPFM can be used to capture nanoscale CPD and capacitance information with a temporal resolution much faster than the cantilever bandwidth, determined by the modulation frequency of the AC voltage. In this way, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as a promising route to extend KPFM to the solid-liquid interface.

  2. Assessing Short-Term Voltage Stability of Electric Power Systems by a Hierarchical Intelligent System.

    Science.gov (United States)

    Xu, Yan; Zhang, Rui; Zhao, Junhua; Dong, Zhao Yang; Wang, Dianhui; Yang, Hongming; Wong, Kit Po

    2016-08-01

    In the smart grid paradigm, growing integration of large-scale intermittent renewable energies has introduced significant uncertainties to the operations of an electric power system. This makes real-time dynamic security assessment (DSA) a necessity to enable enhanced situational-awareness against the risk of blackouts. Conventional DSA methods are mainly based on the time-domain simulation, which are insufficiently fast and knowledge-poor. In recent years, the intelligent system (IS) strategy has been identified as a promising approach to facilitate real-time DSA. While previous works mainly concentrate on the rotor angle stability, this paper focuses on another yet increasingly important dynamic insecurity phenomenon-the short-term voltage instability, which involves fast and complex load dynamics. The problem is modeled as a classification subproblem for transient voltage collapse and a prediction subproblem for unacceptable dynamic voltage deviation. A hierarchical IS is developed to address the two subproblems sequentially. The IS is based on ensemble learning of random-weights neural networks and is implemented in an offline training, a real-time application, and an online updating pattern. The simulation results on the New England 39-bus system verify its superiority in both learning speed and accuracy over some state-of-the-art learning algorithms.

  3. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    Science.gov (United States)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  4. Radio-frequency sheath voltages and slow wave electric field spatial structure

    Energy Technology Data Exchange (ETDEWEB)

    Colas, Laurent, E-mail: laurent.colas@cea.fr; Lu, Ling-Feng [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Křivská, Alena [LPP-ERM-KMS, TEC partner, Brussels (Belgium); Jacquot, Jonathan [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  5. Preliminary Modeling of Permanent Magnet Probe Flowmeter for Voltage Signal Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Jeong, Ji Young; Kim, Tae Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An experimental study on performance analysis of the flowmeter has been performed. The study shows that sodium flow rate is linearly proportional to the induced voltage signal from the flowmeter under the turbulent flow condition. The experimental results support its availability in the PDRC system. But, the flowmeter should be able to measure sodium flow at low Reynolds number as well. That is because the PDRC system uses sodium natural convection for its operation. Thus, calibration of the flowmeter should be done at very low sodium flow rates. However, Von Weissenfluh et al. showed that the relationship between flow rate and measured voltage signal from the flowmeter may become non-linear at very low flow rates. The nonlinearity restricts the utilization of level sensor which provide reference flow rate in the calibration experiment. The primary objective of this study is to predict the sodium flow rate range where the induced voltage signals are linearly proportional to flow rates by estimating the induced voltage signals against sodium flow rates for a wide range of flows numerically. A commercial code FLUENT is adopted for the analysis of flow field. And MAXWELL which is an electromagnetic analysis software using a finite volume method has been used to analyze the magnetic field generated by permanent magnet of the flowmeter. The induced voltage signals have been estimated by coupling the sodium flow field and the magnetic field using FLUENT MHD module. It is expected that the PMPF voltage signals are linearly proportional to flow rates range of 0.0059 to 1.96 lps. This suggests that simple calibration technique using the linearity between flow rate and the voltage signal can be adopted in calibration of the PMPF.

  6. Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

    Science.gov (United States)

    Vilitis, O.; Rutkis, M.; Busenbergs, J.; Merkulovs, D.

    2016-12-01

    The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

  7. Analysis on electrical characteristics of high-voltage GaN-based light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Guo Wei-Ling; Yan Wei-Wei; Zhu Yan-Xu; Liu Jian-Peng; Ding Yan; Cui De-Sheng; Wu Guo-Qing

    2012-01-01

    In order to investigate their electrical characteristics,high-voltage light-emitting-diodes (HV-LEDs) each containing four cells in series are fabricated.The electrical parameters including varying voltage and parasitic effect are studied.It is shown that the ideality factors (IFs) of the HV-LEDs with different numbers of cells are 1.6,3.4,4.7,and 6.4.IF increases linearly with the number of cells increasing.Moreover,the performance of the HV-LED with failure cells is examined.The analysis indicates that the failure cell has a parallel resistance which induces the leakage of the failure cell.The series resistance of the failure cell is 76.8 Ω,while that of the normal cell is 21.3 Ω.The scanning electron microscope (SEM) image indicates that different metal layers do not contact well.It is hard to deposit the metal layers in the deep isolation trenches.The fabrication process of HV-LEDs needs to be optimized.

  8. Electrical properties of SnO{sub 2} ceramics for low voltage varistors

    Energy Technology Data Exchange (ETDEWEB)

    Glot, A.B., E-mail: alexglot@mixteco.utm.mx [Universidad Tecnologica de la Mixteca, Huajuapan de Leon 69000, Oaxaca (Mexico); Bulpett, R. [Brunel University, Uxbridge, UB8 3PH (United Kingdom); Ivon, A.I. [Dnepropetrovsk National University, Dnepropetrovsk 49010 (Ukraine); Gallegos-Acevedo, P.M. [Universidad Tecnologica de la Mixteca, Huajuapan de Leon 69000, Oaxaca (Mexico)

    2015-01-15

    It is shown that an addition of bismuth oxide Bi{sub 2}O{sub 3} (0.5 mol%) to the system SnO{sub 2}–CoO–Nb{sub 2}O{sub 5}–Cr{sub 2}O{sub 3} with small amounts of Nb{sub 2}O{sub 5} and Cr{sub 2}O{sub 3} (0.05 mol%) leads to a significant decrease in the electric field where a strong nonlinearity of the current–voltage characteristic takes place. This effect facilitates manufacture of ceramic materials for low voltage varistors with a relatively high nonlinearity coefficient of 15–20 and an electric field of 430−580Vcm{sup −1} (at a sintering temperature of 1300 °C) and, respectively, 11 and 287Vcm{sup −1} (at 1400 °C). The obtained experimental data indicate that ceramic materials in the system SnO{sub 2}–CoO–Nb{sub 2}O{sub 5}–Cr{sub 2}O{sub 3}–Bi{sub 2}O{sub 3} exhibit the typical structure of varistor ceramics with conductive grains of tin dioxide (SnO{sub 2}) and highly resistive grain boundaries. In particular, the capacitance at 10 Hz and high dc bias becomes negative as in other SnO{sub 2} and ZnO varistors.

  9. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W. [Accelerator Science and Technology Centre, STFC Daresbury National Laboratory, Warrington WA4 4AD (United Kingdom); Jamison, S. P. [Accelerator Science and Technology Centre, STFC Daresbury National Laboratory, Warrington WA4 4AD (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-05-04

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  10. The time resolved measurement of ultrashort THz-band electric fields without an ultrashort probe

    CERN Document Server

    Walsh, David A; Jamison, Steven P

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse, and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  11. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    Science.gov (United States)

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented.

  12. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  13. Acoustics of the piezo-electric pressure probe

    Science.gov (United States)

    Dutt, G. S.

    1974-01-01

    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  14. Probing surface electric field noise with a single ion

    CERN Document Server

    Daniilidis, N; Bolloten, G; Ramm, M; Ransford, A; Ulin-Avila, E; Talukdar, I; Häffner, H

    2013-01-01

    We report room-temperature electric field noise measurements combined with in-situ surface characterization and cleaning of a microfabricated ion trap. We used a single-ion electric field noise sensor in combination with surface cleaning and analysis tools, to investigate the relationship between electric field noise from metal surfaces in vacuum and the composition of the surface. These experiments were performed in a novel setup that integrates ion trapping capabilities with surface analysis tools. We find that surface cleaning of an aluminum-copper surface significantly reduces the level of electric field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The post-cleaning noise levels are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap.

  15. Pyogenic Arthritis of the Ankle Joint Following a High-Voltage Electrical Burn in the Lower Extremity: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk Seon; Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Lee, Eil Seong; Min, Seon Jung; Han, You Mie [Dept. of Radiology, Hangang Scared Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Lee, Eil Seong [Dept.of Radiology, Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju (Korea, Republic of)

    2011-04-15

    A high-voltage electrical burn caused extensive deep muscle injuries beneath a relatively small skin wound at the contact point. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, which can lead to major amputations or sepsis. The radiologic features of this rare, sometimes life-threatening injury have occasionally been described in the literature. However, to the best of our knowledge, there have been no reports on a case of pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity. We report a case of the pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity.

  16. INFLUENCE OF RARE-EARTH DOPING ON THE ELECTRICAL PROPERTIES OF HIGH VOLTAGE GRADIENT ZnO VARISTORS

    Directory of Open Access Journals (Sweden)

    LEI KE

    2013-03-01

    Full Text Available The influence of rare-earth doping on the electrical properties of ZnO varistors was investigated. In a lower doping region, the electrical properties were greatly improved with the increase of rare-earth contents. The highest voltage gradient value of 1968.0 V/mm was obtained with a rare-earth concentration of 0.06 mol. %. The microstructure of samples with different amounts of rare-earth oxides was examined and the notable decrease of grain size was identified as the origin for the increased voltage gradient. The doped rare-earth oxides dissolved at the grain boundaries and the excessive doping reduced the voltage across the single grain/grain boundary from 2.72 V to 0.91 V. The poor electrical properties in a higher doping region resulted from the degeneration of grain boundaries and the decrease of block density.

  17. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    Directory of Open Access Journals (Sweden)

    F Sohbatzadeh

    2017-02-01

    Full Text Available In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power

  18. Analysis and Comparison of Voltage Dependent Charging Strategies for Single-Phase Electric Vehicles in an Unbalanced Danish Distribution Grid

    DEFF Research Database (Denmark)

    Álvarez, Jorge Nájera; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    This paper studies four voltage dependent solutions for modulating the charging of multiple Electric Vehicles (EVs) in a real Danish network. Uncontrolled EV charging, especially in grid with high EV penetration, can result in overloaded lines and transformers, low-voltages and other performance......-in on phases with lower voltages are constrained during the charging period. In order to solve instability issues which may occur due to lack of communication between the controllers, several improvements are applied to the aforementioned droop control. Simulation results demonstrate the performance...

  19. The electric characteristics simulation and structural parameters calculation of Si-based stabilitron with stabilizing voltage 6,5 V

    Directory of Open Access Journals (Sweden)

    Koritko N. N.

    2009-06-01

    Full Text Available The results of an optimization simulation of original manufacturing process and electric characteristics of stabilitrons with stabilizing voltage Ust=(6,5±0,5 V are presented. The flow of manufacturing process of simulated stabilitron includes the n+-type guard rings regions formation in the р-type substrate; the р–n-junction formation in the р-type substrate; intermediate oxide formation; metal deposition. The stabilizing voltage and differential resistance of the stabilitron voltage-current characteristic reverse branch values were received as the result of calculations at the normal, reduced and high temperature.

  20. High voltage electric potentials to enhance brain-derived neurotrophic factor levels in the brain.

    Science.gov (United States)

    Yanamoto, Hiroji; Nakajo, Yukako; Kataoka, Hiroharu; Iihara, Koji

    2013-01-01

    Development of a safe method to increase brain-derived neurotrophic factor (BDNF) levels in the brain is expected to enhance learning and memory, induce tolerance to cerebral infarction or tolerance to depressive state, improve glucose metabolism, and suppress appetite and body weight. We have shown that repetitive applications of high-voltage electric potential (HELP) to the body increase BDNF levels in the brain, improving learning and memory in mice. Here, we investigated the effects of HELP treatment for a chronic period on the BDNF levels in the mouse brain, and on body weight in mice and humans. Adult mice were exposed to 3.1 or 5.4 kV HELP (on the body), 5 h a day for 24 weeks, and BDNF levels in the brain and alterations in body weight were analyzed. Humans [age, 53.2 ± 15.5 years old; BMI, 27.8 ± 5.6 (mean ± SD, n = 6)] were exposed to 3.9 kV HELP (on the body) for 1 h a day, continuing for 33 months (2.8 years) under the monitor of body weight. In mice, the HELP application elevated BDNF levels in the brain at least temporarily, affecting body weight in a voltage- and time-dependent manner. In humans, the HELP treatment reduced body weight compared to the pretreated initial values without any aversive effects (p BDNF, and 5.4 kV HELP was considered as excessive. HELP with an appropriate voltage can be utilized to increase BDNF levels in the brain for a prolonged period. We anticipate further investigations to clarify the effect of the optimal-leveled HELP therapy on memory disturbances, neurological deficits after stroke, depression, diabetes, obesity and metabolic syndrome.

  1. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    Science.gov (United States)

    Polzin, Kurt A.; Hill, Carrie S.; Turchi, Peter J.; Burton, Rodney L.; Messer, Sarah; Lovberg, Ralph H.; Hallock, Ashley K.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are often employed to perform field measurements in electric propulsion applications where there are time-varying fields. Magnetic field probes provide the means to measure these magnetic fields and can even be used to measure the plasma current density indirectly through the application of Ampere's law. Measurements of this type can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. Results of the development of a standard for B-dot probe measurements are presented, condensing the available literature on the subject into an accessible set of rules, guidelines, and techniques to standardize the performance and presentation of future measurements.

  2. Impact and Cost Evaluation of Electric Vehicle Integration on Medium Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Cheng, Lin; Pineau, Ulysse;

    2013-01-01

    This paper presents the analysis of the impact of electric vehicle (EV) integration on medium voltage (MV) distribution networks and the cost evaluation of replacing the overloaded grid components. A number of EV charging scenarios have been studied. A 10 kV grid from the Bornholm Island...... in the city area has been used to carry out case studies. The case study results show that the secondary transformers are the bottleneck of the MV distribution networks and the increase of EV penetration leads to the overloading of secondary transformers. The cost of the transformer replacement has been...... evaluated. The transformer replacement cost reaches 72% of the total transformers value with 50% EV penetration and 3 Phase charging....

  3. Congestion management in open access based on relative electrical distances using voltage stability criteria

    Energy Technology Data Exchange (ETDEWEB)

    Yesuratnam, G.; Thukaram, D. [Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2007-10-15

    This paper presents an approach for alleviation of network over loads in the day-to-day operation of power systems under deregulated environment. The control used for over load alleviation is real power generation rescheduling based on relative electrical distance (RED) concept. The method estimates the relative location of load nodes with respect to the generator nodes. The contribution of each generator for a particular over loaded line is first identified, then based on RED concept the desired proportions of generations for the desired overload relieving is obtained, so that the system will have minimum transmission losses and more stability margins with respect to voltage profiles, bus angles and better transmission tariff. Results obtained for network overload alleviation of suitably modified IEEE 39-bus New England system are presented for illustration purposes. (author)

  4. A Complex Permittivity Based Sensor for the Electrical Characterization of High-Voltage Transformer Oils

    Directory of Open Access Journals (Sweden)

    Panayota Vassiliou

    2005-05-01

    Full Text Available This work investigates the use of a specially designed cylindrical metal cell, inorder to obtain complex permittivity and tanδ data of highly insulating High Voltage (HVtransformer oil samples. The data are obtained at a wide range of frequencies and operationtemperatures to demonstrate the polarization phenomena and the thermally stimulatedeffects. Such complex permittivity measurements may be utilized as a criterion for theservice life prediction of oil field electrical equipment (OFEE. Therefore, by one set ofmeasurements on a small oil volume, data may be provided on the impending termination,or continuation of the transformer oil service life. The oil incorporating cell, attached to theappropriate measuring units, could be described as a complex permittivity sensor. In thiswork, the acquired dielectric data from a great number of operating distribution networkpower transformers were correlated to corresponding physicochemical ones to demonstratethe future potential employment of the proposed measuring technique.

  5. Environmental justice: a contrary finding for the case of high-voltage electric power transmission lines.

    Science.gov (United States)

    Wartenberg, Daniel; Greenberg, Michael R; Harris, Gerald

    2010-05-01

    Environmental justice is the consideration of whether minority and/or lower-income residents in a geographic area are likely to have disproportionately higher exposures to environmental toxins than those living elsewhere. Such situations have been identified for a variety of factors, such as air pollution, hazardous waste, water quality, noise, residential crowding, and housing quality. This study investigates the application of this concept to high-voltage electric power transmission lines (HVTL), which some perceive as a health risk because of the magnetic fields they generate, and also as esthetically unpleasing. We mapped all 345 kV and higher voltage HVTL in New York State and extracted and summarized proximate US Census sociodemographic and housing characteristic data into four categories on the basis of distances from HVTL. Contrary to our expectation, people living within 2000 ft from HVTL were more likely to be exposed to magnetic fields, white, of higher income, more educated and home owners, than those living farther away, particularly in urban areas. Possible explanations for these patterns include the desire for the open space created by the rights-of-way, the preference for new homes/subdivisions that are often located near HVTL, and moving closer to HVTL before EMFs were considered a risk. This study suggests that environmental justice may not apply to all environmental risk factors and that one must be cautious in generalizing. In addition, it shows the utility of geographical information system methodology for summarizing information from extremely large populations, often a challenge in epidemiology.

  6. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    Science.gov (United States)

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  7. Comparison of Twitch Responses During Current- or Voltage-Controlled Transcutaneous Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Vargas Luna, José Luis; Krenn, Matthias; Löfler, Stefan; Kern, Helmut; Cortés R, Jorge A; Mayr, Winfried

    2015-10-01

    Neuromuscular electrical stimulation (NMES) is an established method for functional restoration of muscle function, rehabilitation, and diagnostics. In this work, NMES was applied with surface electrodes placed on the anterior thigh to identify the main differences between current-controlled (CC) and voltage-controlled (VC) modes. Measurements of the evoked knee extension force and the myoelectric signal of quadriceps and hamstrings were taken during stimulation with different amplitudes, pulse widths, and stimulation techniques. The stimulation pulses were rectangular and symmetric biphasic for both stimulation modes. The electrode-tissue impedance influences the differences between CC and VC stimulation. The main difference is that for CC stimulation, variation of pulse width and amplitude influences the amount of nerve depolarization, whereas VC stimulation is only dependent on amplitude variations for pulse widths longer than 150 μs. An important remark is that these findings are strongly dependent on the characteristics of the electrode-skin interface. In our case, we used large stimulation electrodes placed on the anterior thigh, which cause higher capacitive effects. The controllability, voltage compliance, and charge characteristics of each stimulation technique should be considered during the stimulators design. For applications that require the activation of a large amount of nerve fibers, VC is a more suitable option. In contrast, if the application requires a high controllability, then CC should be chosen prior to VC.

  8. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials.

    Science.gov (United States)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-07-15

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  9. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu, E-mail: higuchi.seiji@nims.go.jp, E-mail: nakayama.tomonobu@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)

    2011-07-15

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  10. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

    Science.gov (United States)

    Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan

    2015-04-01

    Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.

  11. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe.

    Science.gov (United States)

    Buron, Jonas D; Pizzocchero, Filippo; Jessen, Bjarke S; Booth, Timothy J; Nielsen, Peter F; Hansen, Ole; Hilke, Michael; Whiteway, Eric; Jepsen, Peter U; Bøggild, Peter; Petersen, Dirch H

    2014-11-12

    The electrical performance of graphene synthesized by chemical vapor deposition and transferred to insulating surfaces may be compromised by extended defects, including for instance grain boundaries, cracks, wrinkles, and tears. In this study, we experimentally investigate and compare the nano- and microscale electrical continuity of single layer graphene grown on centimeter-sized single crystal copper with that of previously studied graphene films, grown on commercially available copper foil, after transfer to SiO2 surfaces. The electrical continuity of the graphene films is analyzed using two noninvasive conductance characterization methods: ultrabroadband terahertz time-domain spectroscopy and micro four-point probe, which probe the electrical properties of the graphene film on different length scales, 100 nm and 10 μm, respectively. Ultrabroadband terahertz time-domain spectroscopy allows for measurement of the complex conductance response in the frequency range 1-15 terahertz, covering the entire intraband conductance spectrum, and reveals that the conductance response for the graphene grown on single crystalline copper intimately follows the Drude model for a barrier-free conductor. In contrast, the graphene grown on commercial copper foil shows a distinctly non-Drude conductance spectrum that is better described by the Drude-Smith model, which incorporates the effect of preferential carrier backscattering associated with extended, electronic barriers with a typical separation on the order of 100 nm. Micro four-point probe resistance values measured on graphene grown on single crystalline copper in two different voltage-current configurations show close agreement with the expected distributions for a continuous 2D conductor, in contrast with previous observations on graphene grown on commercial copper foil. The terahertz and micro four-point probe conductance values of the graphene grown on single crystalline copper shows a close to unity correlation, in

  12. Nanoscale Probing of Local Electrical Characteristics on MBE-Grown Bi₂Te₃ Surfaces under Ambient Conditions.

    Science.gov (United States)

    Macedo, Rita J; Harrison, Sara E; Dorofeeva, Tatiana S; Harris, James S; Kiehl, Richard A

    2015-07-08

    The local electrical characteristics on the surface of MBE-grown Bi2Te3 are probed under ambient conditions by conductive atomic force microscopy. Nanoscale mapping reveals a 10-100× enhancement in current at step-edges compared to that on terraces. Analysis of the local current-voltage characteristics indicates that the transport mechanism is similar for step-edges and terraces. Comparison of the results with those for control samples shows that the current enhancement is not a measurement artifact but instead is due to local differences in electronic properties. The likelihood of various possible mechanisms is discussed. The absence of enhancement at the step-edges for graphite terraces is consistent with the intriguing possibility that spin-orbit coupling and topological effects play a significant role in the step-edge current enhancement in Bi2Te3.

  13. Numerical Electric Field Analysis of Power Status Sensor Observing Power Distribution System Taking into Account Voltage Divider Measurement Circuit

    Science.gov (United States)

    Kubo, Takuro; Furukawa, Tatsuya; Itoh, Hideaki; Fukumoto, Hisao; Wakuya, Hiroshi; Ohchi, Masashi

    We have proposed and preproducted the voltage-current waveform sensor of resin molded type for measuring the power factor and harmonics in power distribution systems. We have executed numerical electromagnetic analyses using the finite element method to estimate the characteristics and behaviours of the sensor. Although the magnetic field analyses for the current sensor have involved the measurement circuit, the electric field analyses have not included the measurement circuit for measuring voltage waveforms of power lines. In this paper, we describe the electric field analyses with the measurement circuit and prove the insulating strength of the proposed sensor permissible to the use in 22kV power distribution systems.

  14. Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus).

    Science.gov (United States)

    Traeger, Lindsay L; Volkening, Jeremy D; Moffett, Howell; Gallant, Jason R; Chen, Po-Hao; Novina, Carl D; Phillips, George N; Anand, Rene; Wells, Gregg B; Pinch, Matthew; Güth, Robert; Unguez, Graciela A; Albert, James S; Zakon, Harold; Sussman, Michael R; Samanta, Manoj P

    2015-03-26

    With its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs. We present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs' electric organ, main electric organ, and Hunter's electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species. Our work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here.

  15. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  16. Optimal Requirements of a Data Acquisition System for a Quadrupolar Probe Employed in Electrical Spectroscopy

    CERN Document Server

    Settimi, A; Baskaradas, J A; Bianchi, C

    2009-01-01

    This paper discusses the development and engineering of electrical spectroscopy for simultaneous and non invasive measurement of electrical resistivity and dielectric permittivity. A quadrupolar probe is able to perform measurements on a subsurface with inaccuracies below a fixed limit in a band of low frequencies. The probe should be connected to an appropriate analogical digital converter (ADC) which samples in uniform or in phase and quadrature (IQ) mode. If the probe is characterized by a galvanic contact with the surface, the inaccuracies in the measurement of resistivity and permittivity, due to the uniform or IQ sampling ADC, are analytically expressed. A large number of numerical simulations prove that the performance of the probe depends on the selected sampler and that the IQ is better compared to the uniform mode under the same operating conditions, i.e. bit resolution and medium.

  17. MultiProbe Electrical Measurements of Carbon Nanotubes With On-line Raman Scattering

    Science.gov (United States)

    Yablon, Dalia; Yeshua, Talia; Lehmann, Christian; Reich, Stephanie; Strain, Kristin; Campbell, Eleano

    2014-03-01

    A multiprobe scanning probe microscope (SPM) system has been used to perform multiprobe electrical measurement of carbon nanotubes. In this system two probes can be used across an isolated carbon nanotube. A variety of probes have been developed that are compatible with multiprobe operation. These include probes for writing single single walled carbon nanotubes which have a high degree of alignment and this is demonstrated with on-line Raman. The interconnection of the multiprobe system with the Raman System will be described in detail. The combination has the potential to cross the fabrication/measurement gap that will allow for both production and nanocharacterization of such single molecule carbon nanotube molecular devices both with chemically sensitive Raman measurements (with and without plasmonic enhancement) and with on-line electrical transport on isolated carbon nanotubes.

  18. Using electric vehicle charging strategies to maximize PV-integration in the low voltage grid

    Energy Technology Data Exchange (ETDEWEB)

    Niesse, Astrid; Troeschel, Martin; Scherfke, Stefan; Schuette, Steffen [OFFIS, Oldenburg (Germany). R and D Div. Energy; Sonnenschein, Michael [Oldenburg Univ. (Germany). Dept. of Computing Science

    2011-07-01

    The role of electric vehicles (EV) in the low voltage grid has been discussed lately in many projects. An efficient energy management system for control of the charging processes while considering grid aspects is expected to raise high potential to build up Smart Grid functions. One focal point is to learn about the potential synergetic effects from EV and renewable energies regarding two main questions: (1) Is it possible to load EV batteries largely based on renewable sources - in particular PV - to guarantee positive carbon minimizing effects? (2) Can managed EV charging lead to an increased integration of fluctuating renewable energy resources in the grid? These questions can only be dealt with by keeping the status of the power infrastructure in perspective at any time -reliability of supply has to be ensured with high penetration of both EV and renewable energy resources. We used a simulative approach to follow up on these, studying the effects of charging processes for different shares of electric vehicles in the rural area of north-west Germany using characteristic grid types. Starting from these, we built up target scenarios that met our goals: Maximize PV integration, stabilize the grid and still guarantee the EV users' mobility. In this paper we present the results of scenarios with maximized PV integration and show the importance of managed charging processes to make best use of renewable feed-in for mobility purposes.

  19. Valorisation of grape pomace by the extraction of phenolic antioxidants: Application of high voltage electrical discharges.

    Science.gov (United States)

    Boussetta, N; Vorobiev, E; Deloison, V; Pochez, F; Falcimaigne-Cordin, A; Lanoisellé, J-L

    2011-09-15

    The aim of this study was to optimise the electrically assisted extraction in order to obtain grape pomace extracts with high polyphenols content, which would be potentially interesting for applications as natural antioxidants. High voltage electrical discharges (HVED) were applied for intensification of the extraction. The effects of the energy input, the electrodes distance gap and the liquid-to-solid ratio were studied. Diffusion was then carried out in different mixtures of water and ethanol for one hour at 20, 30, 40 and 60°C. The most efficient extraction was (i) an HVED pre-treatment at 80kJ/kg with an electrodes distance of 5mm in a liquid-to-solid ratio of 5 followed by (ii) a diffusion with 30% ethanol in water at 60°C for 30min. The highest total polyphenols content reached 2.8±0.4gGAE/100gDM with a corresponding antioxidant activity of 66.8±3.1gTEAC/kgDM. The polyphenols extraction rate increased with temperature in accordance to an Arrhenius type of relationship: activation energy of 21.5±1.1kJ/mol for HVED treated systems against 0.5±0.2kJ/mol for untreated ones.

  20. Effects of High-Voltage Electrical Stimulation in Improving the Viability of Musculocutaneous Flaps in Rats.

    Science.gov (United States)

    Neves, Lais Mara Siqueira das; Guirro, Elaine Caldeira de Oliveira; Albuquerque, Fernanda Luiza de Almeida; Marcolino, Alexandre Marcio

    2016-10-01

    The musculocutaneous flap of the transverse rectus abdominis muscle is a technique used for breast reconstruction, and one of the complications of this procedure is tissue necrosis. The objective of the study is to determine the effect of high-voltage electrical stimulation (HVES) in the transverse rectus abdominis muscle flap in rats. Fourteen rats underwent surgery for obtaining the flap. The rats were distributed into 2 homogeneous groups: group 1 underwent both surgery and the use of HVES, whereas group 2 underwent just the surgery (control). Electrical stimulation was applied immediately after surgery and for 2 consecutive days. The percentage of necrotic area was analyzed using the Image J software, and blood flow was assessed by infrared thermography in different regions of the flap, divided into 4 zones according to the proximity of the pedicle of the inferior epigastric artery. The results were analyzed using a Student t test, where group 1 experienced a necrotic area of 26.2%, and group 2 had an area of 54.5%. Regarding the temperature, the 2 groups showed increase in the minimum and maximum temperature on the fourth postoperative day. The HVES appeared to have a positive influence on the viability of the flap.

  1. Modelling and Simulation of the SVC for Power System Flow Studies: Electrical Network in voltage drop

    Directory of Open Access Journals (Sweden)

    Narimen Aouzellag LAHAÇANI

    2008-12-01

    Full Text Available The goal of any Flexible AC Transmission Systems (FACTS devices study is to measure their impact on the state of the electrical networks into which they are introduced. Their principal function is to improve the static and dynamic properties of the electrical networks and that by increasing the margins of static and dynamic stability and to allow the power transit to the thermal limits of the lines.To study this impact, it is necessary to establish the state of the network (bus voltages and angles, powers injected and forwarded in the lines before and after the introduction of FACTS devices. This brings to calculate the powers transit by using an iterative method such as Newton-Raphson. Undertaking a calculation without the introduction of FACTS devices followed by a calculation with the modifications induced by the integration of FACTS devices into the network, makes it possible to compare the results obtained in both cases and thus assess the interest of the use of devices FACTS.

  2. The Spin-Plane Double Probe Electric Field Instrument for MMS

    Science.gov (United States)

    Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.

    2016-03-01

    The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.

  3. Plasma diagnostics by means of electric probes; Diagnostico del plasma por medio de sondas electricas

    Energy Technology Data Exchange (ETDEWEB)

    Colunga S, S

    1991-04-15

    In this work a summary of the classical theoretical models to interpret the characteristic curve of a Langmuir electric probe placed in a plasma without magnetic field and with the one is made. The methodology for the electron temperature calculation and the density of the plasma in both cases is given, starting from the characteristic curve of the probe, as well as the approaches for the correct application of this diagnostic method of the plasma. (Author)

  4. The impacts of voltage sags in industrial electric systems; Os impactos dos afundamentos de tensao em sistemas eletricos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Reinaldo Moreira [Moinhos Vera Cruz, Santa Luzia, MG (Brazil); Silva, Selenio Rocha [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2010-10-15

    The sensitiveness increasing of industrial equipment related to the perturbation of electric grid, resulting in losses to the productive chain, turns the energy quality in the subject more discussed by the electrical community. In this study case on the problems caused by voltage sags to equipment of an industrial plant from the food sector, it is presented the identification process and the adopted solutions. (author)

  5. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis

  6. Optimal Coordinated Management of a Plug-In Electric Vehicle Charging Station under a Flexible Penalty Contract for Voltage Security

    Directory of Open Access Journals (Sweden)

    Jip Kim

    2016-07-01

    Full Text Available The increasing penetration of plug-in electric vehicles (PEVs may cause a low-voltage problem in the distribution network. In particular, the introduction of charging stations where multiple PEVs are simultaneously charged at the same bus can aggravate the low-voltage problem. Unlike a distribution network operator (DNO who has the overall responsibility for stable and reliable network operation, a charging station operator (CSO may schedule PEV charging without consideration for the resulting severe voltage drop. Therefore, there is a need for the DNO to impose a coordination measure to induce the CSO to adjust its charging schedule to help mitigate the voltage problem. Although the current time-of-use (TOU tariff is an indirect coordination measure that can motivate the CSO to shift its charging demand to off-peak time by imposing a high rate at the peak time, it is limited by its rigidity in that the network voltage condition cannot be flexibly reflected in the tariff. Therefore, a flexible penalty contract (FPC for voltage security to be used as a direct coordination measure is proposed. In addition, the optimal coordinated management is formulated. Using the Pacific Gas and Electric Company (PG&E 69-bus test distribution network, the effectiveness of the coordination was verified by comparison with the current TOU tariff.

  7. The characteristics of electrical trees in the inner and outer layers of different voltage rating XLPE cable insulation

    Science.gov (United States)

    Xie, Ansheng; Li, Shengtao; Zheng, Xiaoquan; Chen, George

    2009-06-01

    The statistical initiation and propagation characteristics of electrical trees in cross-linked polyethylene (XLPE) cables with different voltage ratings from 66 to 500 kV were investigated under a constant test voltage of 50 Hz/7 kV (the 66 kV rating cable is from UK, the others from China). It was found that the characteristics of electrical trees in the inner region of 66 kV cable insulation differed considerably from those in the outer region under the same test conditions; however, no significant differences appeared in the 110 kV rating cable and above. The initiation time of electrical trees in both the inner and the outer regions of the 66 kV cable is much shorter than that in higher voltage rating cables; in addition the growth rate of electrical trees in the 66 kV cable is much larger than that in the higher voltage rating cables. By using x-ray diffraction, differential scanning calorimetry and thermogravimetry methods, it was revealed that besides the extrusion process, the molecular weight of base polymer material and its distribution are the prime factors deciding the crystallization state. The crystallization state and the impurity content are responsible for the resistance to electrical trees. Furthermore, it was proposed that big spherulites will cooperate with high impurity content in enhancing the initiation and growth processes of electrical trees via the 'synergetic effect'. Finally, dense and small spherulites, high crystallinity, high purity level of base polymer material and super-clean production processes are desirable for higher voltage rating cables.

  8. The characteristics of electrical trees in the inner and outer layers of different voltage rating XLPE cable insulation

    Energy Technology Data Exchange (ETDEWEB)

    Xie Ansheng; Li Shengtao; Zheng Xiaoquan [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, George, E-mail: sli@mail.xjtu.edu.c, E-mail: xieansheng@gmail.co, E-mail: xqzheng@mail.xjtu.edu.c, E-mail: gc@ecs.soton.ac.u [School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2009-06-21

    The statistical initiation and propagation characteristics of electrical trees in cross-linked polyethylene (XLPE) cables with different voltage ratings from 66 to 500 kV were investigated under a constant test voltage of 50 Hz/7 kV (the 66 kV rating cable is from UK, the others from China). It was found that the characteristics of electrical trees in the inner region of 66 kV cable insulation differed considerably from those in the outer region under the same test conditions; however, no significant differences appeared in the 110 kV rating cable and above. The initiation time of electrical trees in both the inner and the outer regions of the 66 kV cable is much shorter than that in higher voltage rating cables; in addition the growth rate of electrical trees in the 66 kV cable is much larger than that in the higher voltage rating cables. By using x-ray diffraction, differential scanning calorimetry and thermogravimetry methods, it was revealed that besides the extrusion process, the molecular weight of base polymer material and its distribution are the prime factors deciding the crystallization state. The crystallization state and the impurity content are responsible for the resistance to electrical trees. Furthermore, it was proposed that big spherulites will cooperate with high impurity content in enhancing the initiation and growth processes of electrical trees via the 'synergetic effect'. Finally, dense and small spherulites, high crystallinity, high purity level of base polymer material and super-clean production processes are desirable for higher voltage rating cables.

  9. The electrical performance of Ag Zn batteries for the Venus multi-probe mission

    Science.gov (United States)

    Palandati, C.

    1975-01-01

    An evaluation of 5 Ah and 21 Ah Silver-Zinc batteries was made to determine their suitability to meet the energy storage requirements of the bus vehicle, 3 small probes and large probe for the Venus multi-probe mission. The evaluation included a 4 Ah battery for the small probe, a 21 Ah battery for the large probe, one battery of each size for the bus vehicle power, a periodic cycling test on each size battery and a wet stand test of charged and discharged cells of both cell designs. The study on the probe batteries and bus vehicle batteries included both electrical and thermal simulation for the entire mission. The effects on silver migration and zinc penetration of the cellophane separators caused by the various test parameters were determined by visual and X-ray fluorescence analysis. The 5 Ah batteries supported the power requirements for the bus vehicle and small probe. The 21 Ah large probe battery supplied the required mission power. Both probe batteries delivered in excess of 132 percent of rated capacity at the completion of the mission simulation.

  10. Wrist fracture in a 6-year-old girl after an accidental electric shock at low voltages.

    Science.gov (United States)

    Peyron, P A; Cathala, P; Vannucci, C; Baccino, E

    2015-03-01

    Bone injuries related to electric shocks are usually seen with high-voltage current exposure or with additional traumas, such as falls. Few cases of fractures after electric shocks at low-voltages (with no direct blunt trauma) are reported in the literature. They result from electrically-induced tetanic muscle contractions. Most of them involve the proximal appendicular skeleton, while distal fractures of limbs are uncommon. We report the case of a 6-year-old girl who suffered local superficial burns of the hand and a distal radius buckle-type fracture after sustaining a 230-V electric shock. The accident occurred while the girl was touching with the right hand the metallic stand of a non-insulated street lamp. She felt a sudden jolt and managed to pull her hand free quickly, without falling or losing consciousness. The superficial burns of the hand were consistent with Jellinek's electric marks, while the buckle fracture of the radius was consistent with a forceful contraction of the flexor muscles of the hand. Only four cases of radius fractures resulting from accidental electric shocks at low voltages have been previously reported in the literature. All of them involved pediatric patients, suggesting that a child's vulnerability to this kind of fracture may exist. The present case is the youngest one ever described.

  11. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    Science.gov (United States)

    Polzin, Kurt A.; Hill, Carrie S.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are useful for performing measurements in electric space thrusters and various plasma accelerator applications where a time-varying magnetic field is present. Magnetic field probes have proven to be a mainstay in diagnosing plasma thrusters where changes occur rapidly with respect to time, providing the means to measure the magnetic fields produced by time-varying currents and even an indirect measure of the plasma current density through the application of Ampère's law. Examples of applications where this measurement technique has been employed include pulsed plasma thrusters and quasi-steady magnetoplasmadynamic thrusters. The Electric Propulsion Technical Committee (EPTC) of the American Institute of Aeronautics and Astronautics (AIAA) was asked to assemble a Committee on Standards (CoS) for Electric Propulsion Testing. The assembled CoS was tasked with developing Standards and Recommended Practices for various diagnostic techniques used in the evaluation of plasma thrusters. These include measurements that can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. This paper presents a summary of the standard, describing the preferred methods for fabrication, calibration, and usage of inductive magnetic field probes for use in diagnosing plasma thrusters. Inductive magnetic field probes (also called B-dot probes throughout this document) are commonly used in electric propulsion (EP) research and testing to measure unsteady magnetic fields produced by time-varying currents. The B-dot probe is relatively simple in construction, and requires minimal cost, making it a low-cost technique that is readily accessible to most researchers. While relatively simple, the design of a B-dot probe is not trivial and there are many opportunities for errors in

  12. Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Wafa Tourab

    2016-06-01

    Conclusion: We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.

  13. Integration of 100% heat pumps and electric vehicles in the low voltage distribution network: A Danish case story

    DEFF Research Database (Denmark)

    Shao, Nan; You, Shi; Segerberg, Helena

    2013-01-01

    The existing electricity infrastructure may to a great extent limit a high penetration of micro-sized Distributed Energy Rescores (DERs), due to physical bottlenecks, e.g. load capacities of cables and transformers and voltage limitations. In this study, integration impacts of heat pumps (HPs...

  14. Shaft Voltage and Life of Bearing electric-erosion for the Brushless DC Motor

    Science.gov (United States)

    Maetani, Tatsuo; Isomura, Yoshinori; Komiyama, Hiroshi; Morimoto, Shigeo

    This paper describes the life of noise of bearing electro-erosion in the shaft voltage of brushless DC motors. We confirmed that shaft voltage is suppressed to equal to or less than the dielectric breakdown voltage of bearing lubricant in the insulated rotor proposed for suppression of shaft voltage. However, since bearing electro-erosion appears over time along with the deterioration of noise performance, the threshold of the shaft voltage to secure noise performance over long periods of time is necessary. Therefore, the threshold of the shaft voltage that influences the life of noise was obtained in acceleration tests.

  15. Impact of pulsed-electric field and high-voltage electrical discharges on red wine microbial stabilization and quality characteristics.

    Science.gov (United States)

    Delsart, C; Grimi, N; Boussetta, N; Miot Sertier, C; Ghidossi, R; Vorobiev, E; Mietton Peuchot, M

    2016-01-01

    In this study, pulsed-electric fields (PEF) and high-voltage electrical discharges (HVED) are proposed as new techniques for the microbial stabilization of red wines before bottling. The efficiency of the treatment was then evaluated. PEF and HVED-treatments have been applied to wine for the inactivation of Oenococcus oeni CRBO 9304, O. oeni CRBO 0608, Pediococcus parvulus CRBO 2.6 and Brettanomyces bruxellensis CB28. Different treatment times (1, 2, 4, 6, 8 and 10 ms) were used at 20 kV cm(-1) for the PEF treatments and at 40 kV for the HVED treatments, which correspond to applied energies from 80 to 800 kJ l(-1) . The effects of the treatments on the microbial inactivation rate and on various characteristics of red wines (phenolic composition, chromatic characteristics and physico-chemical parameters) were measured. The application of PEF or HVED treatments on red wine allowed the inactivation of alteration yeasts (B. bruxellensis CB28) and bacteria (O. oeni CRBO 9304, O. oeni CRBO 0608 and P. parvulus CRBO 2.6). The electric discharges at 40 kV were less effective than the PEF even after 10 ms of treatments. Indeed, 4 ms of PEF treatment at 20 kV cm(-1) were sufficient to inactivate all micro-organisms present in the wines. Also, the use of PEF had no negative impact on the composition of wines compared to the HVED treatments. Contrary to PEF, the phenolics compounds were degraded after the HVED treatment and the physico-chemical composition of wine were modified with HVED. PEF technology seems to be an interesting alternative to stabilize microbiologically wines before bottling and without modifying their composition. This process offers many advantages for winemakers: no chemical inputs, low energy consumption (320 kJ l(-1) ), fast (treatment time of 4 ms) and athermal (ΔT ≈ 10°C). © 2015 The Society for Applied Microbiology.

  16. Over Expression of Voltage Dependent Anion Channel 2 (VDAC2 in Muscles of Electrically Stunned Chickens

    Directory of Open Access Journals (Sweden)

    Norshahida Abu Samah, Azura Amid, and Faridah Yusof

    2011-12-01

    Full Text Available Water bath stunning is a common practice in commercial slaughterhouses. Such treatment is economic and in line with animal welfare practice. However, the conditions applied for the stunning process may vary from a slaughterhouse to another slaughterhouse. Such a loose regulation on the stunning procedure has opened up doors for food adulteration such as over dose stunning. In this study, a simple and reliable approach using proteomics have been developed to study the effect of different currents and voltages in stunning on the protein expression of the chickens. Protein profiles of the chickens were constructed in order to detect any differences in protein expression and modifications. The different voltage studied were 10 V, 40 V and 70 V while the values for current studied were 0.25 A, 0.5 A, and 0.75 A. After the proteomics analyses using 2D Platinum ImageMaster 6.0 and Matrix-assisted laser desorption ionization- time of flight (MALDI TOF spectrometry identification, Voltage dependent anion channel 2 (VDAC2 was identified to be over expressed in the muscle sample of over stunned chicken. The over expression of VDAC2 was confirmed at the transcriptional level of RNA expression. Real Time PCR showed that all over stunned samples contained higher mRNA expression level for VDAC2 genes. The mRNA level of VDAC2 was up-regulated by 59.87 fold change when normalized with housekeeping gene. In conclusion, VDAC2 could serve as potential biomarkers for identification of electrically stimulated chickens. The existence of these biomarkers will help to monitor the slaughtering and stunning process in the future. It will revolutionize the food authentication field and give a new breathe to the meat industry.ABSTRAK: Kaedah "waterbath stunning" merupakan amalan biasa di pusat-pusat penyembelihan. Kaedah ini adalah ekonomik dan selari dengan amalan kebajikan haiwan. Walaubagaimanapun, syarat-syarat yang digunakan untuk proses kejutan tersebut mungkin

  17. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    Science.gov (United States)

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  18. Electrical coupling between the human serotonin transporter and voltage-gated Ca(2+) channels.

    Science.gov (United States)

    Ruchala, Iwona; Cabra, Vanessa; Solis, Ernesto; Glennon, Richard A; De Felice, Louis J; Eltit, Jose M

    2014-07-01

    Monoamine transporters have been implicated in dopamine or serotonin release in response to abused drugs such as methamphetamine or ecstasy (MDMA). In addition, monoamine transporters show substrate-induced inward currents that may modulate excitability and Ca(2+) mobilization, which could also contribute to neurotransmitter release. How monoamine transporters modulate Ca(2+) permeability is currently unknown. We investigate the functional interaction between the human serotonin transporter (hSERT) and voltage-gated Ca(2+) channels (CaV). We introduce an excitable expression system consisting of cultured muscle cells genetically engineered to express hSERT. Both 5HT and S(+)MDMA depolarize these cells and activate the excitation-contraction (EC)-coupling mechanism. However, hSERT substrates fail to activate EC-coupling in CaV1.1-null muscle cells, thus implicating Ca(2+) channels. CaV1.3 and CaV2.2 channels are natively expressed in neurons. When these channels are co-expressed with hSERT in HEK293T cells, only cells expressing the lower-threshold L-type CaV1.3 channel show Ca(2+) transients evoked by 5HT or S(+)MDMA. In addition, the electrical coupling between hSERT and CaV1.3 takes place at physiological 5HT concentrations. The electrical coupling between monoamine neurotransmitter transporters and Ca(2+) channels such as CaV1.3 is a novel mechanism by which endogenous substrates (neurotransmitters) or exogenous substrates (like ecstasy) could modulate Ca(2+)-driven signals in excitable cells.

  19. Electric Probe Measurements of the Poloidal Velocity in the Scrape-Off Layer of ASDEX Upgrade

    DEFF Research Database (Denmark)

    Mehlmann, F.; Costea, S.; Schrittwieser, R..

    2014-01-01

    A reciprocating probe head with six pins was used for localized measurements of electric fields and densities in the scrape-off layer (SOL) of ASDEX Upgrade (AUG) up to the edge shear layer (SL) near the Last Closed Flux Surface (LCFS). The edge SL is characterized by a strong sudden change in th...

  20. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.

    2003-01-01

    For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope...

  1. A NEW TYPE OF MICROPUMP DRIVEN BY A LOW ELECTRIC VOLTAGE

    Institute of Scientific and Technical Information of China (English)

    Guo Shuxiang; ASAKA Kinji

    2004-01-01

    In this paper, we propose a new prototype model of a micro pump using ICPF (Ionic Conducting Polymer Film) actuator as the servo actuator. This micro pump consists of two active oneway valves that make use of the same ICPF actuator. The overall size of this micro pump prototype is 12mm in diameter and 20 mm in length. The actuating mechanism is as follows: (1) The ICPF actuator as the diaphragm is bent into anode side by application of electricity. Then the volume of the pump chamber increases, resulting in the inflow of liquid from the inlet to the chamber. (2) By changing the current direction, the volume of the pump chamber decreases, resulting in the liquid flow from the chamber to the outlet. (3) The ICPF actuator is put on a sine voltage, the micro pump provides liquid flow from the inlet to the outlet continuously. Characteristic of the micro pump is measured. The experimental results indicate that the micro pump has the satisfactory responses.

  2. Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations

    Science.gov (United States)

    Seoane, F.; Macías, R.; Bragós, R.; Lindecrantz, K.

    2011-11-01

    In this work, the single Op-Amp with load-in-the-loop topology as a current source is revisited. This circuit topology was already used as a voltage-controlled current source (VCCS) in the 1960s but was left unused when the requirements for higher frequency arose among the applications of electrical bioimpedance (EBI). The aim of the authors is not only limited to show that with the currently available electronic devices it is perfectly viable to use this simple VCCS topology as a working current source for wideband spectroscopy applications of EBI, but also to identify the limitations and the role of each of the circuit components in the most important parameter of a current for wideband applications: the output impedance. The study includes the eventual presence of a stray capacitance and also an original enhancement, driving with current the VCCS. Based on the theoretical analysis and experimental measurements, an accurate model of the output impedance is provided, explaining the role of the main constitutive elements of the circuit in the source's output impedance. Using the topologies presented in this work and the proposed model, any electronic designer can easily implement a simple and efficient current source for wideband EBI spectroscopy applications, e.g. in this study, values above 150 kΩ at 1 MHz have been obtained, which to the knowledge of the authors are the largest values experimentally measured and reported for a current source in EBI at this frequency.

  3. Piezoelectric ZnO-CNT nanotubes under axial strain and electrical voltage

    Science.gov (United States)

    Zhang, Jin; Wang, Ruijie; Wang, Chengyuan

    2012-09-01

    This paper aims to study the mechanical responses of a piezoelectric composite nanotube subject to an axial strain and electrical voltage. The nanotubes are fabricated by coating carbon nanotubes (CNTs) with zinc oxide (ZnO) nanocrystal. The axial buckling of the ZnO-CNTs nanotubes (ZCNTs) is investigated by using a composite Euler beam model accounting for the piezoelectricity of the coating layer. Particular attention is paid to the strengthening effect of the core CNT and the effect of the piezoelectricity of the outer ZnO layer. Pre-buckling analysis is also conducted to study the static deformation prior to the buckling. Analytical solutions are obtained based on the theory of three-dimensional elasticity and piezoelectricity. In particular, a tensile radial stress is achieved at the ZnO-CNT interface, which tends to separate the ZnO layer from core CNT and may generate delamination in composite ZCNTs. The size-dependence and physical basis of such an interface stress is thus discussed in details for ZCNTs.

  4. A model for mark size dependence on field emission voltage in heat-assisted magnetic probe recording on CoNi/Pt multilayers

    NARCIS (Netherlands)

    Zhang, Li; Bain, James A.; Zhu, Jian-Gang; Abelmann, Leon; Onoue, Takahiro

    2004-01-01

    A method of heat-assisted magnetic recording (HAMR) potentially suitable for probe-based storage systems is characterized. In this work, field emission current from a scanning tunneling microscope (STM) tip is used as the heating source. Pulse voltages of 2-7 V with a duration of 500 ns were applied

  5. Effects of Thermal and Solvent Aging on Breakdown Voltage of TPE, PBT/PET Alloy, and PBT Insulated Low Voltage Electric Wire

    Directory of Open Access Journals (Sweden)

    Eun-Soo Park

    2013-01-01

    Full Text Available Tests were performed to evaluate the effects of thermal and solvent aging on the mechanical and dielectric breakdown properties of four types of polyester resins, namely, the insulation layer of poly(butylene terephthalat (PBT- based thermoplastic elastomer (TPE, TPE1, poly(butylene 2,6-naphthalate-based TPE (TPE2, PBT/poly(ethylene terephthalate alloy (Alloy, and PBT extruded onto a copper conductor of low voltage electric wire. The tensile specimens used in this series were prepared from the same extruded resins. The prepared electric wires and tensile specimens were thermally aged in air and in toluene, xylene, TCB, and NMP. When Alloy and PBT were thermally aged in toluene, xylene and TCB at 120°C for 6 h, the tensile properties were significantly decreased compared to TPE1 and TPE2 at the same condition. The reduction of elongation at break of Alloy was more discernible than that of PBT. This result indicated that Alloy is more affected by thermal and solvent ageing. Among them, TPE2 showed the highest breakdown voltage (BDV, and it has also the highest BDV after thermal and solvent aging.

  6. A mechanical and electrical transistor structure (METS) with a sub-2 nm nanogap for effective voltage scaling.

    Science.gov (United States)

    Lee, Byung-Hyun; Moon, Dong-Il; Jang, HyunJae; Kim, Chang-Hoon; Seol, Myeong-Lok; Choi, Ji-Min; Lee, Dong-Il; Kim, Min-Wu; Yoon, Jun-Bo; Choi, Yang-Kyu

    2014-07-21

    A mechanical and electrical transistor structure (METS) is proposed for effective voltage scaling. The sub-2 nm nanogap by atomic layer deposition (ALD) without stiction and the application of a dielectric with high-permittivity allowed the pull-in voltage of sub-2 V, showing the strength of the mechanical actuation that is hard to realize in a typical complementary metal-oxide-semiconductor (CMOS) transistor. The results are verified by simulation and interpreted by the numerical equation. Therefore the METS can pave a new way to make a breakthrough to overcome the limits of CMOS technology.

  7. Design of 154 kV Extra-High-Voltage Prototype SF6 Bushing for Superconducting Electric Power Applications

    Science.gov (United States)

    Koo, Ja-yoon; Seong, Jae-gyu; Hwang, Jae-sang; Lee, Bang-wook; Lee, Sang-hwa

    2012-09-01

    One of the critical components to be developed for high-voltage superconducting devices, such as superconducting transformers, cables, and fault current limiters, is a high-voltage bushing to supply a high current to devices without insulation difficulties in cryogenic environments. Unfortunately, suitable bushings for high-temperature-superconductivity (HTS) equipment have not been fully developed to address cryogenic insulation issues. As a fundamental step towards developing the optimum design of the 154 kV prototype SF6 bushing of HTS devices, the puncture and creepage breakdown voltages of glass-fiber-reinforced-plastic (GFRP) were analyzed with a variety of configurations of electrodes and gap distances in the insulation material. And design factors of high-voltage cryogenic bushings were obtained from the result of tests. Finally, the withstand voltage tests of manufacturing a 154 kV extra-high-voltage (EHV) prototype bushing has been performed. Consequently, we verified the insulation level of the newly designed 154 kV EHV cryogenic prototype bushings for superconducting electric power applications.

  8. Duration of Electrically Induced Atrial Fibrillation Is Augmented by High Voltage of Stimulus with Higher Blood Pressure in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Tomomi Nagayama

    2014-01-01

    Full Text Available Objective. Many previous clinical studies have suggested that atrial fibrillation (AF is closely associated with hypertension. However, the benefits of antihypertensive therapy on AF are still inconsistent, and it is necessary to explore the factors augmenting AF in hypertensive rats. The aim of the present study was to investigate the correlation between arterial pressure or voltage stimulus and to the duration of electrically induced AF in normotensive or hypertensive rats. Methods. AF was reproducibly induced by transesophageal atrial burst pacing in spontaneously hypertensive rats (SHR and Wistar-Kyoto rats (WKY. We did the burst pacing at high (20 V or low (5 V voltage. Results. Duration of AF did not correlate with systolic blood pressure (SBP and stimulus voltage in WKY. However, only in SHR, duration of AF with high stimulus voltage significantly correlated with SBP and was significantly longer in high than in low voltage stimulus. Discussion and Conclusion. Duration of AF is augmented by high voltage stimulus with higher blood pressure in SHR.

  9. Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Increased electrical breakdown strength and increased dielectric permittivity of silicone-based dielectric elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS–PPMS copolymers as well as PDMS–PEG copolymers in order to compensate for the negative...... effect of softness on electrical stability of silicone elastomers. The voltage-stabilised elastomer, incorporating a high-permittivity PDMS–PEG copolymer, possesses increased relative permittivity, high electrical breakdown strength, excellent network integrity and low dielectric loss and paves the way...... towards specialised silicone elastomers for dielectric elastomer transducer products with inherent softness and electrical stability, and thus increased actuation at a given voltage....

  10. Evaluation of commercial probes for on-line electrical conductivity measurements during goat gland milking process.

    Science.gov (United States)

    Romero, Gema; Díaz, Jose Ramon; Sabater, Jose Maria; Perez, Carlos

    2012-01-01

    The measurement of the milk electrical conductivity (EC) during mechanical milking has been widely studied for mastitis detection on cows because its improving of welfare and animal health, although research about small ruminants is scarce. The aim of this study was to evaluate the performance of three commercial conductimeters to be used during mechanical milking of small ruminant halves, especially Murciano-Granadina goats. The objective of this research was to integrate the probes on the milking unit and to check the suitability of the probe selected. The results presented in this research have guided authors to discard the commercial probes and to establish the requirements of a new probe design that is briefly outlined in the conclusions of this contribution.

  11. Evaluation of Commercial Probes for On-Line Electrical Conductivity Measurements during Goat Gland Milking Process

    Science.gov (United States)

    Romero, Gema; Díaz, Jose Ramon; Sabater, Jose Maria; Perez, Carlos

    2012-01-01

    The measurement of the milk electrical conductivity (EC) during mechanical milking has been widely studied for mastitis detection on cows because its improving of welfare and animal health, although research about small ruminants is scarce. The aim of this study was to evaluate the performance of three commercial conductimeters to be used during mechanical milking of small ruminant halves, especially Murciano-Granadina goats. The objective of this research was to integrate the probes on the milking unit and to check the suitability of the probe selected. The results presented in this research have guided authors to discard the commercial probes and to establish the requirements of a new probe design that is briefly outlined in the conclusions of this contribution. PMID:22666042

  12. Four-probe electrical characterization of Pt-coated TMV-based nanostructures.

    Science.gov (United States)

    Górzny, M L; Walton, A S; Wnęk, M; Stockley, P G; Evans, S D

    2008-04-23

    The electrical transport and structural properties of tobacco mosaic virus (TMV)-based nanostructures have been studied. Electroless deposition was used to coat the TMV outer surface with a 13 nm thick homogeneous Pt layer. SEM, TEM and electrical characterization of the obtained nanostructures has been performed. Using four independently controlled scanning tunnelling microscope tips we were able to perform four-point probe resistance measurements on linear virus assemblies and demonstrate the continuous nature of the metallic coating. The measured resistivity values of the virial nanowires exceeded the bulk value by 10-100 times; notwithstanding this the coated structure allowed high current densities, of the order of 10(5)-10(8) A cm(-2). The four-probe technique proved to be useful for analysing the electrical properties of bio-inorganic nanowires.

  13. Four-probe electrical characterization of Pt-coated TMV-based nanostructures

    Science.gov (United States)

    Górzny, M. Ł.; Walton, A. S.; Wnęk, M.; Stockley, P. G.; Evans, S. D.

    2008-04-01

    The electrical transport and structural properties of tobacco mosaic virus (TMV)-based nanostructures have been studied. Electroless deposition was used to coat the TMV outer surface with a 13 nm thick homogeneous Pt layer. SEM, TEM and electrical characterization of the obtained nanostructures has been performed. Using four independently controlled scanning tunnelling microscope tips we were able to perform four-point probe resistance measurements on linear virus assemblies and demonstrate the continuous nature of the metallic coating. The measured resistivity values of the virial nanowires exceeded the bulk value by 10-100 times; notwithstanding this the coated structure allowed high current densities, of the order of 105-108 A cm-2. The four-probe technique proved to be useful for analysing the electrical properties of bio-inorganic nanowires.

  14. Four-probe electrical characterization of Pt-coated TMV-based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gorzny, M L; Walton, A S; Evans, S D [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Wnek, M; Stockley, P G [Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)], E-mail: s.d.evans@leeds.ac.uk

    2008-04-23

    The electrical transport and structural properties of tobacco mosaic virus (TMV)-based nanostructures have been studied. Electroless deposition was used to coat the TMV outer surface with a 13 nm thick homogeneous Pt layer. SEM, TEM and electrical characterization of the obtained nanostructures has been performed. Using four independently controlled scanning tunnelling microscope tips we were able to perform four-point probe resistance measurements on linear virus assemblies and demonstrate the continuous nature of the metallic coating. The measured resistivity values of the virial nanowires exceeded the bulk value by 10-100 times; notwithstanding this the coated structure allowed high current densities, of the order of 10{sup 5}-10{sup 8} A cm{sup -2}. The four-probe technique proved to be useful for analysing the electrical properties of bio-inorganic nanowires.

  15. Convection Electric Field Observations by THEMIS and the Van Allen Probes

    Science.gov (United States)

    Califf, S.; Li, X.; Bonnell, J. W.; Wygant, J. R.; Malaspina, D.; Hartinger, M.; Thaller, S. A.

    2013-12-01

    We present direct electric field measurements made by THEMIS and the Van Allen Probes in the inner magnetosphere, focusing on the large-scale, near-DC convection electric field. The convection electric field drives plasma Earthward from the tail into the inner magnetosphere, playing a critical role in forming the ring current. Although it is normally shielded deep inside the magnetosphere, during storm times this large-scale electric field can penetrate to low L values (L mechanism for ~100 keV electron injection into the slot region and inner radiation belt. The relationship of the convection electric field with the plasmasphere is also important for understanding the dynamic outer radiation belt, as the plasmapause boundary has been strongly correlated with the dynamic variation of the outer radiation belt electrons.

  16. Theoretical aspects and methods of parameters identification of the electric traction system devices. method of cyclic current-voltage characteristics

    Directory of Open Access Journals (Sweden)

    T.M.Mishchenko

    2013-02-01

    Full Text Available Purpose. To define the characteristics of numerical calculations of mathematical model with one or more cyclic current voltage characteristics (CVC. This is an urgent problem, since any electric traction system device and electrified track in general, like non-linear passive or active two-terminal network in the present operating mode is described by current-voltage characteristic (CVC, which is based on the given input voltage and input current. Me-thodology. The electromagnetic process calculation in the power circuits of traction electric energy supply is the probabilistic task with solving nonlinear stochastic differential equations requiring for the development of special methods. Given the calculation difficulty, it is reasonable to perform them either by real CVC graph bypass or initially by applying its equivalent replacement with, for example, an ellipse. Findings. Numerical calculations of the mathematical model with one or more cyclic CVC can be performed by “real” CVC bypass or by "idealization" i. e. approximate replacement of real cyclic CVC. Originality. This paper presents the dynamic CVC of the DS3 and 2ES5K electric locomotives at different currents of electric locomotives. Practical value. Cyclic CVC normally and definitely can be applied in the system of electromagnetic state equations while transient state calculating in the traction system. Therefore while calculating the experimentally obtained CVC for the most “difficult and complex” (or/and the “easiest” mode is applied.

  17. Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System

    Directory of Open Access Journals (Sweden)

    Xueqi Hu

    2016-10-01

    Full Text Available In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field.

  18. Probing the electric field in organic double layer-system by optical second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eunju; Shibata, Yoshinori; Manaka, Takaaki [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Iwamoto, Mitsumasa, E-mail: iwamoto@ome.pe.titech.ac.j [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2009-11-30

    Optical electric field induced second harmonic generation (EFISHG) measurements were employed to probe the electric field in the active layer of organic field effect transistors (OFETs) and organic light emitting diodes (OLEDs). The OFETs used were double-layered with an active layer of pentacene/poly (3-hexyl thiophene) P3HT on SiO{sub 2} gate insulator with Au source and drain electrodes. It was shown that SHG from the P3HT bottom layer could be selectively probed at a wavelength of 450 nm. Similarly, by using OLEDs comprised of a double layer of Tris(8-hydroxyquinolinato) aluminium (Alq{sub 3}) and N'-di(1-naphthyl)-N,N'-diphenylbenzidine ({alpha}-NPD) with a device structure of indium-zinc oxide (IZO)/{alpha}-NPD/Alq{sub 3}/Al, it was shown that EFISHG from the Alq{sub 3} layer could be selectively probed at a wavelength of 1000 nm by reflective laser beam irradiation from IZO-side. The results show that the spectroscopic nature of materials allows us to selectively probe the electric field distribution in each layer of multi-layer in organic devices.

  19. Electric probe measurements of the poloidal velocity in the scrape-off layer of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mehlmann, F.; Costea, S.; Schrittwieser, R.; Lux, C.; Ionita, C. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Association EURATOM/OeAW (Austria); Naulin, V.; Rasmussen, J.J.; Nielsen, A.H. [Association EURATOM-DTU, Dept. of Physics, Technical University of Denmark, Lyngby (Denmark); Mueller, H.W.; Carralero, D.; Rohde, V. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Vianello, N. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy); Collaboration: ASDEX Upgrade Team

    2014-04-15

    A reciprocating probe head with six pins was used for localized measurements of electric fields and densities in the scrape-off layer (SOL) of ASDEX Upgrade (AUG) up to the edge shear layer (SL) near the Last Closed Flux Surface (LCFS). The edge SL is characterized by a strong sudden change in the poloidal velocity vθ close to the separatrix. The probes were used to determine this velocity by different methods which are critically compared to each other concerning their reliability. By the first method the poloidal velocity was deduced from the radial electric field E{sub r} measured by two radially staggered probe pins, with vθ being due to the E{sub r} x B{sub φ}-drift (B{sub φ} is the toroidal field). The two other methods utilized the cross correlation of two poloidally staggered ion-biased probes and two poloidally staggered floating probes, respectively. In this case the time lags with maximum cross correlation were used to determine the poloidal velocity and its jump, yielding comparable results to the first method. Also the method of conditional averaging was applied to the latter signals. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  1. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  2. The effect of gate voltage on the electrical transport properties in the contacts of C60 to carbon nanotube leads

    Directory of Open Access Journals (Sweden)

    AA Shokri

    2012-06-01

    Full Text Available  In this paper, we examined the effect of gate voltage, bias voltage, contact geometries and the different bond lengths on the electrical transport properties in a nanostructure consisting of C60 molecule attached to two semi-infinite leads made of single wall carbon nanotubes in the coherent regime. Our calculation was based on the Green’s function method within nearest-neighbour tight-binding approximation. After the calculation was of transmission, the electrical current was obtained by the Landauer-Buttiker formula. Next, the effect of the mentioned factors was investigated in the nanostructure. The application of the present results may be useful in designing devices based on molecular electronics in nanoscale.

  3. Probing the gate--voltage-dependent surface potential of individual InAs nanowires using random telegraph signals.

    Science.gov (United States)

    Salfi, Joe; Paradiso, Nicola; Roddaro, Stefano; Heun, Stefan; Nair, Selvakumar V; Savelyev, Igor G; Blumin, Marina; Beltram, Fabio; Ruda, Harry E

    2011-03-22

    We report a novel method for probing the gate-voltage dependence of the surface potential of individual semiconductor nanowires. The statistics of electronic occupation of a single defect on the surface of the nanowire, determined from a random telegraph signal, is used as a measure for the local potential. The method is demonstrated for the case of one or two switching defects in indium arsenide (InAs) nanowire field effect transistors at temperatures T=25-77 K. Comparison with a self-consistent model shows that surface potential variation is retarded in the conducting regime due to screening by surface states with density Dss≈10(12) cm(-2) eV(-1). Temperature-dependent dynamics of electron capture and emission producing the random telegraph signals are also analyzed, and multiphonon emission is identified as the process responsible for capture and emission of electrons from the surface traps. Two defects studied in detail had capture activation energies of EB≈50 meV and EB≈110 meV and cross sections of σ∞≈3×10(-19) cm2 and σ∞≈2×10(-17) cm2, respectively. A lattice relaxation energy of Sℏω=187±15 meV was found for the first defect.

  4. Session 4: Heterogeneous catalysts formation under high-voltage electric discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, R.I.; Sevostyanov, V.P.; Ivanova, Y.V.; Dogadina, N.V.; Rakitin, S.A. [Saratov State Univ. (Russian Federation)

    2004-07-01

    Energetic and environmental problems of today place heavy demands on both technologies of motor fuels production and exhaust gases cleaning. In this connection, main technological processes of petrochemistry and environmental catalysis require high-efficient and selective catalysts. The essence of EHB is short-time (1-2 {mu}sec) intense impact on an object to be processed that takes place under high-voltage pulse electric discharge in condensed matter. This paper is devoted to formation of aluminum-platinum-copper catalysts of hydrocarbons reforming and aluminum-platinum-nickel catalysts of redox cleaning of exhausted gases. In both cases catalyst formation takes place under EHB in steep media where catalyst carrier is set in. EHB treatment is fulfilled under discharge voltage 25-30 kV and variable electrode gap in the range from 1 to 30 mm. Under the treatment, 'carrier + steep solution' system is exposed to the number of acting factors, namely ultraviolet, cavitation and percussion waves, electric and magnetic influences. In our research, EHB was imposed to heterogeneous system of 2.5% Cu/Al{sub 2}O{sub 3} and water solution of H{sub 2}PtCl{sub 6}. It is shown that EHB catalyst provides yield of the target product (benzene) at a level of about 64 % (w.) under 550 C in comparison of 30.8 % (w.) level provided by traditional Cu,Pt/Al{sub 2}O{sub 3} catalyst. It is necessary to note change of n-hexane conversion mechanism in presence of aluminum-platinum-copper catalyst (EHB). Catalysate contains nearly no products of C5-dehydrocyclization (C5-DHC) whereas their yield reaches 20 % (w.) for traditional catalysts under similar conditions (550 C). This fact points to formation of aromatic hydrocarbons from n-paraffins by direct C6-dehydrocyclization omitting C5-dehydrocyclization and isomerization. EHB catalyst is characterized by drop in hydrocracking reaction output that increases selectivity of n-hexane reforming in aromatization. In order to find out EHB

  5. Exponential Tracking Control Using Backstepping Approach for Voltage-Based Control of a Flexible Joint Electrically Driven Robot

    Directory of Open Access Journals (Sweden)

    Jean Bosco Mbede

    2014-01-01

    Full Text Available This paper addresses the design of exponential tracking control using backstepping approach for voltage-based control of a flexible joint electrically driven robot (EFJR, to cope with the difficulty introduced by the cascade structure in EFJR dynamic model, to deal with flexibility in joints, and to ensure fast tracking performance. Backstepping approach is used to ensure global asymptotic stability and its common algorithm is modified such that the link position and velocity errors converge to zero exponentially fast. In contrast with the other backstepping controller for electrically driven flexible joint robot manipulators control problem, the proposed controller is robust with respect to stiffness uncertainty and allows tracking fast motions. Simulation results are presented for both single link flexible joint electrically driven manipulator and 2-DOF flexible joint electrically driven robot manipulator. These simulations show very satisfactory tracking performances and the superiority of the proposed controller to those performed in the literature using simple backstepping methodology.

  6. Urban exposure to ELF magnetic field due to high-, medium- and low-voltage electricity supply networks.

    Science.gov (United States)

    Bottura, V; Cappio Borlino, M; Carta, N; Cerise, L; Imperial, E

    2009-12-01

    The regional environment protection agency (ARPA) of the Aosta Valley region in north Italy performed a survey of magnetic field triggered by the power supply network in high, medium and low voltages on the entire area of Aosta town. The electrical distribution system for houses was not however taken into account. The aim of the survey was to evaluate the global population exposure and not simply the assessment of the legal exposure limit compliance.

  7. A Novel Electrical Insulating Material for 275 kV High-Voltage HTS Cable with Low Dielectric Loss

    Science.gov (United States)

    Hayakawa, N.; Nishimachi, S.; Maruyama, O.; Ohkuma, T.; Liu, J.; Yagi, M.

    2014-05-01

    In the case of high temperature superconducting (HTS) power transmission cables at high voltage operation, the electrical insulation technique in consideration of the dielectric loss reduction becomes crucial. In this paper, we focused on a Tyvek/polyethylene (PE) sheet, instead of the conventional polypropylene laminated paper (PPLP). We obtained the dielectric characteristics (epsilonr, tanδ) and partial discharge inception strength (PDIE) of PPLP, Tyvek and Tyvek/PE. We pointed out that the dielectric loss of 275 kV HTS cable with Tyvek/PE insulation will be reduced to 21 % of that with PPLP, and the total electrical loss including the AC loss will be reduced to 41 %.

  8. Methods for calculation of undelivered electricity in medium voltage network that is not integrated into the remote control system

    Directory of Open Access Journals (Sweden)

    Vrcelj Nada

    2013-01-01

    Full Text Available The method is based on data obtained from the so-called. hand-held measuring current at 10 kV voltage level and from reports of outages at reclosers that are installed in a part of network that is observed. At first, is calculates the electrical load of the main distribution power lines, and then simulates the corresponding power flow and calculates the undelivered electricity. The method was applied to parts of the network PD ED Belgrade that are not in the remote control system and is developed for the purpose of considering the effects of automation in the 10 kV PD ED Belgrade.

  9. INFLUENCE OF RARE-EARTH DOPING ON THE ELECTRICAL PROPERTIES OF HIGH VOLTAGE GRADIENT ZnO VARISTORS

    OpenAIRE

    2013-01-01

    The influence of rare-earth doping on the electrical properties of ZnO varistors was investigated. In a lower doping region, the electrical properties were greatly improved with the increase of rare-earth contents. The highest voltage gradient value of 1968.0 V/mm was obtained with a rare-earth concentration of 0.06 mol. %. The microstructure of samples with different amounts of rare-earth oxides was examined and the notable decrease of grain size was identified as the origin for the increase...

  10. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    Science.gov (United States)

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  11. Development of Voltage Regulation Plan by Composing Subsystem with the SFES for DC On-line Electric Vehicle

    Science.gov (United States)

    Jung, S.; Lee, J. H.; Yoon, M.; Lee, H.; Jang, G.

    The study of the application process of the relatively small size 'Superconducting Flywheel Energy Storage (SFES)' system is conducted to regulate voltage fluctuation of the DC On-Line Electric Vehicle (OLEV) system, which is designed by using DC power system network. It is recommended to construct the power conversion system nearby the substation because the charging system is under the low voltage. But as the system is usually built around urban area and it makes hard to construct the subsystems at every station, voltage drop can occur in power supply inverter that is some distance from the substation. As the alternative of this issue, DC distribution system is recently introduced and has possibility to solve the above issue. In this paper, SFES is introduced to solve the voltage drop under the low voltage distribution system by using the concept of the proposed DC OLEV which results in building the longer distance power supply system. The simulation to design the SFES by using DC power flow analysis is carried out and it is verified in this paper.

  12. Gate voltage control of the AlO x /SrTiO3 interface electrical properties

    Science.gov (United States)

    Delahaye, J.; Grenet, T.

    2016-10-01

    Electron-beam deposition of an insulating granular aluminium or off-stoichiometric amorphous alumina layer on a SrTiO3 surface is a simple way to get a metallic interface from insulating materials. No heating nor specific preparation of the SrTiO3 surface is needed. In this paper, we investigate how the electrical properties of this interface can be tuned by the use of a back gate voltage (electrical field through the SrTiO3 substrate). We demonstrate that the slow field-effect observed at room temperature can be used to tune in a controlled, reversible way the low temperature electrical properties of the interface. In particular, important parameters of a transistor such as the amplitude of the resistance response to gate voltage changes or the existence of an ‘on’ or an ‘off’ state at zero gate voltage and at low temperature can be adjusted in a single sample. This method should be applicable to any SrTiO3-based interface in which oxygen vacancies are involved and might provide a powerful way to study the metal or superconductor insulator transition observed in such systems.

  13. Electric vehicles in low voltage residential grid: a danish case study

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Thøgersen, Paul

    2012-01-01

    Electric Vehicles (EVs) have gained large interest in the energy sector as a carrier to support clean transportation and green electricity. The potential to use battery storages of electric vehicles as a sink for excess electricity that may result from large integration of wind power, especially...

  14. Transmission congestion and voltage profile management coordination in competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Yamin, H.Y. [Yarmouk Univ., Irbid (Jordan). Dept. of Power Engineering; Shahidehpour, S.M. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Electrical and Computer Engineering

    2003-12-01

    This paper describes a generalized active/reactive iterative coordination process between GENCOs and the Independent System Operator (ISO) for active (transmission congestion) and reactive (voltage profile) management in the day-ahead market. GENCOs apply priced-based unit commitment without transmission and voltage security constraints, schedule their units and submit their initial bids to the ISO. The ISO executes congestion and voltage profile management for eliminating transmission and voltage profile violations. If violations are not eliminated, the ISO minimizes the transmission and voltage profile violations and sends a signal via the Internet to GENCOs. GENCOs reschedule their units taking into account the ISO signals and submit modified bids to the ISO. The voltage problem is addressed and a linear model is formulated and used in the proposed method. The voltage problem is formulated as a linear programming with a block-angular structure and Dantzig-Wolfe decomposition is applied to generate several smaller problems for a faster and easier solution of large-scale power systems. Two 36 unit GENCOs are used to demonstrate the performance of the proposed generalized active/reactive coordination algorithm. (author)

  15. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    Science.gov (United States)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-07-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  16. Detection of Matrix Crack Density of CFRP using an Electrical Potential Change Method with Multiple Probes

    Science.gov (United States)

    Todoroki, Akira; Omagari, Kazuomi

    Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.

  17. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    Science.gov (United States)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  18. On the reliability of voltage and power as input parameters for the characterization of high power ultrasound applications

    Science.gov (United States)

    Haller, Julian; Wilkens, Volker

    2012-11-01

    For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.

  19. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  20. The digital algorithm for fast detecting and identifying the asymmetry of voltages in three-phase electric grids of mechanical engineering facilities

    Science.gov (United States)

    Shonin, O. B.; Kryltcov, S. B.; Novozhilov, N. G.

    2017-02-01

    The paper considers a new technique for the fast method of extracting symmetrical components of unbalanced voltages caused by the faults in electric grids of mechanical engineering facilities. The proposed approach is based on the iterative algorithm that checks if the set of at least three voltage discrete measurements belongs to a specific ellipse trajectory of the voltage space vector. Using classification of unbalanced faults in the grid and results of decomposing the voltages into symmetrical components, the algorithm is capable to discriminate between one-phase, two-phase and three-phase voltage sags. The paper concludes that results of simulation in Simulink environment have proved the correctness of the proposed algorithm for detecting and identifying the unbalanced voltage sags in the electrical grid under condition that it is free from high order harmonics.

  1. Project resumes: biological effects from electric fields associated with high-voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Abstracts of research projects are presented in the following areas: measurements and special facilities; cellular and subcellular studies; physiology; behavior; environmental effects; modeling, scaling and dosimetry; and high voltage direct current. (ACR)

  2. Impact of plug-in electric vehicles on voltage unbalance in ...

    African Journals Online (AJOL)

    DR OKE

    contributors of carbon dioxides, where the passenger vehicles account for half of the ... This study also presented that PEV charging in the low-voltage system can cause .... The summary information of EV connection are shown as Table 1.

  3. Voltage control and protection in electrical power systems from system components to wide-area control

    CERN Document Server

    Corsi, Sandro

    2015-01-01

    Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At th...

  4. Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator

    NARCIS (Netherlands)

    Chang Liao, Mei-Ling; de Boer, Teun P; Mutoh, Hiroki; Raad, Nour; Richter, Claudia; Wagner, Eva; Downie, Bryan R; Unsöld, Bernhard; Arooj, Iqra; Streckfuss-Bömeke, Katrin; Döker, Stephan; Luther, Stefan; Guan, Kaomei; Wagner, Stefan; Lehnart, Stephan E; Maier, Lars S; Stühmer, Walter; Wettwer, Erich; van Veen, Toon; Morlock, Michael M; Knöpfel, Thomas; Zimmermann, Wolfram-Hubertus

    2015-01-01

    RATIONALE: Monitoring and controlling cardiac myocyte activity with optogenetic tools offer exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac

  5. Electric Boiler and Heat Pump Thermo-Electrical Models for Demand Side Management Analysis in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bak-Jensen, Birgitte; Chen, Zhe

    2013-01-01

    The last fifteen years many European countries have integrated large percentage of renewable energy on their electricity generation mix. In Denmark the 21.3% of the electricity consumed nowadays is produced by the wind, and it has planned to be the 50% by 2025. In order to front future challenges...... on the power system control and operation, created by this unstable way of generation, Demand Side Management turns to be a promising solution. The storage capacity from thermo-electric units, like electric boilers and heat pumps, allows operating them with certain freedom. Hence they can be employed under...

  6. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP

    DEFF Research Database (Denmark)

    Lundby, Alicia; Akemann, Walther; Knöpfel, Thomas

    2010-01-01

    transfer) signal. Here we report sensing current measurements from VSFP2.3, and show that VSFP2.3 carries 1.2 e sensing charges, which are displaced within 1.5 ms. The sensing currents become faster at higher temperatures, and the voltage dependence of the decay time constants is temperature dependent...

  7. Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry.

    Science.gov (United States)

    Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing

    2017-10-01

    We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Determination of threshold and maximum operating electric stresses for selected high voltage insulation. Task 3: Investigation of high voltage capacitor insulation

    Science.gov (United States)

    Sosnowski, M.; Eager, G. S., Jr.

    1984-03-01

    The threshold voltage of capacitor insulation was investigated. The experimental work was performed on samples prepared from commercial polypropylene insulated, liquid-filled capacitors. The samples were vacuum-impregnated with the original capacitor insulating liquid obtained from the manufacturer. A limited number of full-size capacitor elements also were tested. Impulse voltage breakdown tests with dc voltage prestressing were performed at room temperature and 75 C. From the results of these tests, the threshold voltage of the samples of the capacitor insulation was determined at both temperatures and that of the whole capacitor elements at room temperature. The threshold voltage of the capacitor insulation was found to be approximately equal to the impulse breakdown voltage. No difference was found between the threshold voltage at room temperature and at 75 C. The threshold voltage of the whole capacitor elements at room temperature was found to be equal to approximately 80% of the threshold voltage of the capacitor insulation samples.

  9. Analysis of a three-part 230 kV optical voltage transducer with multiple electric field sensors

    Energy Technology Data Exchange (ETDEWEB)

    Namedanian, M.; Mozafari, M.; Razavi, S. [Niroo Research Inst., Tehran (Iran, Islamic Republic of). Dept. of Electronics, Control and Instrumentation

    2008-07-01

    A 3-part optical voltage transducer (OVT) was used as a replacement for conventional inductive and capacitive transformers. A quadrature method was used to position the sensors. The OVT was designed using a finite element simulation program with a particle swarm optimization (PSO) algorithm. Each section of the 3-part insulator consisted of a fiberglass tube with silicon rubber shedding. A corona ring was positioned around the top of the insulator. The simulations were conducted to demonstrate various perturbation scenarios and examine the potential distorted behaviour of the electric field. Ratio errors and voltage differences occurring from the various perturbations were calculated in order to determine the optimal positions and weights of the OVT. Results of the study indicated that the OVT will meet all standard requirements and be cheaper and easier to implement than conventional capacitive or inductive transformers. 8 refs., 3 tabs., 5 figs.

  10. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique

    Directory of Open Access Journals (Sweden)

    Igor Bogachev

    2015-11-01

    Full Text Available Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  11. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation.

    Science.gov (United States)

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V; Beg, Mirza Faisal; Tibbits, Glen F

    2015-05-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented.

  12. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  13. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures

    Science.gov (United States)

    Bilkan, Çiğdem; Azizian-Kalandaragh, Yashar; Altındal, Şemsettin; Shokrani-Havigh, Roya

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε‧, ε″) and electric modulus (M‧ and M″), loss tangent (tanδ), and ac electrical conductivity (σac) values of Al/Co3O4-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε‧, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σdc and σac, respectively. The M‧ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M‧ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and Nss effects with increasing frequency.

  14. Advanced electric-field scanning probe lithography on molecular resist using active cantilever

    Science.gov (United States)

    Kaestner, Marcus; Aydogan, Cemal; Lipowicz, Hubert-Seweryn; Ivanov, Tzvetan; Lenk, Steve; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Atanasov, Ivaylo; Krivoshapkina, Yana; Hofer, Manuel; Holz, Mathias; Rangelow, Ivo W.

    2015-03-01

    The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many novel nanoelectronic, NEMS, optical and bio-nanotechnology-based devices. Based on the thermally actuated, piezoresistive cantilever technology we have developed a first prototype of a scanning probe lithography (SPL) platform able to image, inspect, align and pattern features down to single digit nano regime. The direct, mask-less patterning of molecular resists using active scanning probes represents a promising path circumventing the problems in today's radiation-based lithography. Here, we present examples of practical applications of the previously published electric field based, current-controlled scanning probe lithography on molecular glass resist calixarene by using the developed tabletop SPL system. We demonstrate the application of a step-and-repeat scanning probe lithography scheme including optical as well as AFM based alignment and navigation. In addition, sequential read-write cycle patterning combining positive and negative tone lithography is shown. We are presenting patterning over larger areas (80 x 80 μm) and feature the practical applicability of the lithographic processes.

  15. Electrical discharges under high voltage on surface of Silica-Nickel ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, A.; Blanchart, P. [Groupement d' Etude des Materiaux Heterogenes (GEMH), ENSCI, 87065 Limoges (France)

    2004-12-01

    Strong electrical breakdowns on surface of Silica-Nickel cermets are obtained under pulsed electric field. The electric field is significantly lower than for breakdowns at a similar air gap under the same atmosphere pressure. This hot plasma-like process can be used for gas or liquid ignition. Processes follow the Paschen's and the Fowler-Nordheim's laws at surface micro-protrusions, when the current percolates through the composite material. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  16. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    Directory of Open Access Journals (Sweden)

    A. I. Eriksson

    2006-03-01

    Full Text Available The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW and an electron drift instrument (EDI. We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV below the spacecraft potential (in volts. We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  17. MR imaging findings of high-voltage electrical burns in the upper extremities: correlation with angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Min, Seon Jung; Han, You Mi (Dept. of Radiology, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of)); Suh, Kyung Jin (Dept. of Radiology, Dongguk Univ. College of Medicine, Gyeongju Hospital, Gyeongju (Korea, Republic of)), email: kyungjin.suh@gmail.com; Choi, Min Ho (Dept. of Internal Medicine, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of))

    2011-02-15

    Background: A high-voltage electrical burn is often associated with deep muscle injuries. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, and this can lead to major amputations or sepsis. MRI has excellent soft tissue contrast and it may aid in differentiating the areas of viable deep muscle from the areas of non-viable deep muscle. Purpose: To describe the MR imaging findings of a high-voltage electrical burn in the upper extremity with emphasis on the usefulness of the gadolinium-enhanced MRI and to compare the MR imaging findings with angiography. Material and Methods: We retrospectively reviewed the imaging studies of six patients with high-voltage electrical burns who underwent both MRI and angiography at the burn center of our hospital from January 2005 to December 2009. The imaging features were evaluated for the involved locations, the MR signal intensity of the affected muscles, the MR enhancement pattern, the involved arteries and the angiographic findings (classified as normal, sluggish flow, stenosis or occlusion) of the angiography of the upper extremity. We assessed the relationship between the MR imaging findings and the angiographic findings. Results: The signal intensities of affected muscles were isointense or of slightly high signal intensity as compared with the adjacent unaffected skeletal muscle on the T1-weighted MR images. Affected muscles showed heterogenous high signal intensity relative to the adjacent unaffected skeletal muscle on the T2- weighted images. The gadolinium-enhanced T1-weighted images showed diffuse inhomogeneous enhancement or peripheral rim enhancement of the affected muscles. The angiographic findings of the arterial injuries showed complete occlusion in three patients, severe stenosis in two patients and sluggish flow in one patient. Of these, the five patients with complete occlusion or severe stenosis on angiography showed non-perfused and non-viable areas of edematous muscle on

  18. Automatic Distance Monitoring System of Contact Connections in High Voltage Equipment of Electric Power Lines

    Directory of Open Access Journals (Sweden)

    M. Diachenko

    2013-01-01

    Full Text Available The developed automatic distance monitoring system of contact connections in high voltage equipment is based on technology of sensor circuits. The paper shows application of control methodology for contact connections in accordance with time rate of conductor temperature changes and contact connection and also direct measurement of transient resistance.

  19. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    Science.gov (United States)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  20. An electrical probe of the phonon mean-free path spectrum

    Science.gov (United States)

    Ramu, Ashok T.; Halaszynski, Nicole I.; Peters, Jonathan D.; Meinhart, Carl D.; Bowers, John E.

    2016-09-01

    Most studies of the mean-free path accumulation function (MFPAF) rely on optical techniques to probe heat transfer at length scales on the order of the phonon mean-free path. In this paper, we propose and implement a purely electrical probe of the MFPAF that relies on photo-lithographically defined heater-thermometer separation to set the length scale. An important advantage of the proposed technique is its insensitivity to the thermal interfacial impedance and its compatibility with a large array of temperature-controlled chambers that lack optical ports. Detailed analysis of the experimental data based on the enhanced Fourier law (EFL) demonstrates that heat-carrying phonons in gallium arsenide have a much wider mean-free path spectrum than originally thought.

  1. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

    Science.gov (United States)

    Zhelavskaya, Irina; Kurth, William; Spasojevic, Maria; Shprits, Yuri

    2016-07-01

    We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, f_{uhr}, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  2. Fast and direct measurements of the electrical properties of graphene using micro four-point probes.

    Science.gov (United States)

    Klarskov, M B; Dam, H F; Petersen, D H; Hansen, T M; Löwenborg, A; Booth, T J; Schmidt, M S; Lin, R; Nielsen, P F; Bøggild, P

    2011-11-04

    We present measurements of the electronic properties of graphene using a repositionable micro four-point probe system, which we show here to have unique advantages over measurements made on lithographically defined devices; namely speed, simplicity and lack of a need to pattern graphene. Measurements are performed in ambient, vacuum and controlled environmental conditions using an environmental scanning electron microscope (SEM). The results are comparable to previous results for microcleaved graphene on silicon dioxide (SiO(2)). We observe a pronounced hysteresis of the charge neutrality point, dependent on the sweep rate of the gate voltage; and environmental measurements provide insight into the sensor application prospects of graphene. The method offers a fast, local and non-destructive technique for electronic measurements on graphene, which can be positioned freely on a graphene flake.

  3. Fast and direct measurements of the electrical properties of graphene using micro four-point probes

    DEFF Research Database (Denmark)

    Klarskov, Mikkel Buster; Dam, Henrik Friis; Petersen, Dirch Hjorth

    2011-01-01

    . Measurements are performed in ambient, vacuum and controlled environmental conditions using an environmental scanning electron microscope (SEM). The results are comparable to previous results for microcleaved graphene on silicon dioxide (SiO2). We observe a pronounced hysteresis of the charge neutrality point......We present measurements of the electronic properties of graphene using a repositionable micro four-point probe system, which we show here to have unique advantages over measurements made on lithographically defined devices; namely speed, simplicity and lack of a need to pattern graphene......, dependent on the sweep rate of the gate voltage; and environmental measurements provide insight into the sensor application prospects of graphene. The method offers a fast, local and non-destructive technique for electronic measurements on graphene, which can be positioned freely on a graphene flake....

  4. The Electrostatic Wind Energy Converter: electrical performance of a high voltage prototype

    NARCIS (Netherlands)

    Djairam, D.

    2008-01-01

    Wind energy is converted to electrical energy by letting the wind move charged particles against the direction of an electric field. The advantage of this type of conversion is that no rotational movement, which occurs in conventional wind turbines, is required. An electrostatic wind energy

  5. Planning Future Electric Vehicle Central Charging Stations Connected to Low-Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben

    2012-01-01

    A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging...

  6. Biological effects from electric fields associated with high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    Efforts during the past year by the US Department of Energy and the Electric Power Research Institute-funded laboratories to investigate the biological effects from electric fields are described in resume form. Investigations generally have been summarized with objectives, accomplishments of the past year, and some indication of projected studies.

  7. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  8. Three-dimensional modelling of electric-arc development in a low-voltage circuit-breaker

    Energy Technology Data Exchange (ETDEWEB)

    Piqueras, L.; Henry, D.; Jeandel, D.; Scott, J. [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS/Universite de Lyon, Ecole Centrale de Lyon/Universite Lyon 1/INSA de Lyon, ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex (France); Wild, J. [Schneider Electric, 37 quai Merlin, 38050 Grenoble Cedex 9 (France)

    2008-09-15

    This article describes direct numerical simulation of the first three milliseconds following ignition of the arc in a low-voltage circuit-breaker using a computational-fluid-dynamics code adapted for electric-arc modelling. The mobile electrode is allowed for by a moving mesh. The results describe the evolution of the arc with time in terms of its detailed electrical, thermal and fluid dynamic properties. They allow the identification of several phases during the overall arc development process studied here: arc initialisation in the widening electrode gap, arc-thermal expansion, displacement of the arc towards the tip of the mobile electrode, and the beginning of commutation to the fixed electrode. (author)

  9. Cardiac thrombus developing after an accidental high-voltage electric shock in a child.

    Science.gov (United States)

    Akın, Alper; Bilici, Meki; Demir, Fikri; Gözü Pirinççioğlu, Ayfer; Yavuz, Celal

    2015-01-01

    Electric shock is a condition that may affect various organ systems and potentially cause death. Cardiac findings vary from asymptomatic mild injury to fatal myocardial involvement. Herein we present a five-year-old boy with a cardiac thrombus developing after an accidental electrical shock. Cardiac arrhythmias and evidence of ischemia have been reported after electric shock; we were, however, unable to identify an earlier case report of intracardiac thrombosis related to electric shock. Findings such as elevated cardiac enzymes and systolic dysfunction, which indicate myocardial damage following electric shock, were present in our patient. We think that the cardiac thrombus might have resulted from the myocardial damage and the slowed intracardiac blood flow related to systolic dysfunction. As the thrombus was thought to have been formed through known mechanisms, it was treated traditionally. However, further data regarding the etiology and management of such thrombi is needed.

  10. Electrical characterization of electron beam induced damage on sub-10 nm n-channel MOS transistors using nano-probing technique

    Science.gov (United States)

    Kang, Jonghyuk; Lee, Sungho; Choi, Byoungdeog

    2016-11-01

    Electron beam induced damage on sub-10 nm n-channel MOS transistors was evaluated using an atomic force microscopy-based nano-probing technique. After electron beam irradiation, all the device parameters shifted including threshold voltage (V th), saturation current, sub-threshold slope and transistor leakage current. A negative shift in V th occurred at low electron beam acceleration voltage (V acc) because of the increase in oxide trapped holes generated by excited plasmons. At high V acc, however, a positive V th shift was observed because of an increased contribution of interface trap generation caused by the deeper electron penetration depth. In addition, interface trap generation not only degraded the sub-threshold slope due to the additional capacitance from the generated interface traps, but also increased transistor leakage current due to changes in junction characteristics. Our studies show that it is critical to avoid electron beam exposure before electrical characterization on sub-10 nm devices even in the range of less than 1.0 kV of V acc using nano-probe systems.

  11. Ultra High Density Scanning Electrical Probe Phase-Change Memory for Archival Storage

    Science.gov (United States)

    Wang, Lei; Wright, C. David; Shah, Purav; Aziz, Mustafa M.; Sebastian, Abu; Pozidis, Haralampos; Pauza, Andrew

    2011-09-01

    The potential for using probe-based phase-change memories for the future archival storage at densities of around 1 Tbit/in.2 is investigated using a recording medium comprising a Si/TiN/DLC/GeSbTe/diamond-like carbon (DLC) stack together with a conductive PtSi tip for writing and reading. Both experimental and computational simulation results are presented. The simulations include a physically-realistic threshold switching model, as well as the effects of thermal boundary resistance and electrical contact resistance. The simulated bit size and shape correspond closely to that written experimentally.

  12. Numerical simulation of a permittivity probe for measuring the electric properties of planetary regolith

    Science.gov (United States)

    Spitzer, K.; Sohl, F.; Panzner, M.

    2007-08-01

    Measurements of dielectric regolith properties are particularly useful for the detection of subsurface water/ice deposits in various forms, providing important constraints on the volatile content of planetary sub-surfaces and interiors. Additionally, near-surface environmental processes like impact gardening, space weathering, material erosion, vertical mixing, lateral redistribution, and volatile exchange can be addressed more carefully if combined with measurements related to soil stratigraphy and texture. We present a numerical simulation technique that parallels the development of an in-situ probe for measuring electric key properties such as conductivity and permittivity of planetary, asteroid, and cometary regoliths. Our simulation techniques aim at accompanying the hardware development and conduct virtual experiments, e.g., to assess the response of arbitrary heterogeneous conductivity and permittivity distributions or to scrutinize possibilities for spatial reconstruction methods using inverse schemes. In a first step, we have developed a finite element simulation code on the basis of unstructured, adaptive triangular grids for arbitrary two-dimensional axisymmetric distributions of conductivity and permittivity. The code is able to take into account the spatial geometry of the probe and allows for possible inductive effects. In previous studies, the non-inductive approach has been used to convert potential and phase data into apparent material properties. By our simulations, we have shown that this approach is valid for the frequency range from 102 to 107 Hz and electric conductivities of 10-8 S/m typical for planetary regolith.We prove the accuracy of our code to be better than 10% using mixed types of boundary conditions and present a simulated vertical log through a horizontally stratified subsurface layer as a representative example of a heterogeneous distribution of electrical regolith properties. Resolution studies for the given electrode separation

  13. Conducted electrical weapon incapacitation during a goal-directed task as a function of probe spread.

    Science.gov (United States)

    Ho, Jeffrey; Dawes, Donald; Miner, James; Kunz, Sebastian; Nelson, Rebecca; Sweeney, James

    2012-12-01

    Despite training and field experience that the location and spread between conducted electrical weapon (CEW) probes is important in establishing incapacitation, there have been no human studies which have systematically examined the relationships between probe spread and incapacitation. We have investigated this relationship with the TASER(®) X26. We have also developed and validated methodologies for prospective assessment of the effectiveness of CEWs in the incapacitation of highly motivated human subjects. Subjects (n = 30) had probes placed on the front or back with randomly varied spreads in accordance with recommended targeting zones. Subjects were motivated to complete the task of disabling the device or a dummy officer suspended ten feet away during the exposure while using a training knife. Subjects were rated on their progress toward goal success and on the extent of any incapacitation using two separate observer scoring panels: one consisting of experts in physiology and X26 technology, and another of veteran peace officers. Incapacitation by all measures was found to be a function of spread; generally increasing in effectiveness up to spreads between 9 and 12 in. There were notable differences between front and back exposures, with front exposures not leading to full incapacitation of the upper extremities regardless of probe spread. This is the first published study on a quantitative methodology for directly assessing the effectiveness of CEWs in human incapacitation. We have also validated and quantified for the first time in human subjects that establishing a minimal spread between X26 probes correlates to the extent of device effectiveness.

  14. The effect of applied pressure on the electrical impedance of the bladder tissue using small and large probes.

    Science.gov (United States)

    Keshtkar, A; Keshtkar, A

    2008-01-01

    There are a number of studies using electrical impedance spectroscopy, a minimally invasive technique, as a tissue characterizing method with different probe sizes (usually with larger probe diameters than that used in this work). In urinary bladder studies the probe size are limited to 2 mm diameter, in order to pass through the working channel of the cystoscope to measure the impedance inside the urinary bladder. Thus, bio-impedance of the human urothelium can only be measured using a small sized probe for in vivo studies. Different pressures were applied with this probe and it was demonstrated that increasing the applied pressure over the probe would increase the measured electrical impedance of the bladder tissue. Therefore, the effect of applied pressure on the resulting electrical impedance was considered in this study (all of the measurements were taken on points that had benign histology). An excessive amount of the applied pressure beyond the first visible indentation (first recordable reading) pressure has a significant effect on the impedance of the bladder tissue (p < 0.001). Then, to reduce the effect of pressure on the measured bio-impedance, the effect of a larger probe (10 mm diameter) was considered (p < 0.001). Increasing the probe contact area is one way to reduce the pressure effect on measurements; however this is difficult in practice in the in vivo situation.

  15. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  16. Probing the Electromagnetic Local Density of States with a Strongly Mixed Electric and Magnetic Dipole Emitter

    CERN Document Server

    Karaveli, Sinan; Zia, Rashid

    2013-01-01

    We identify a solid-state quantum emitter whose room-temperature radiative decay is mediated by a nearly equal mixture of isotropic electric dipole (ED) and magnetic dipole (MD) transitions. Using energy-momentum spectroscopy, we experimentally show that the near-infrared $^3$T$_2{\\rightarrow}^3$A$_2$ emission from divalent-nickel-doped magnesium oxide (Ni$^{2+}$:MgO) is composed of $\\sim$50% MD and $\\sim$50% ED transitions. We then demonstrate that the spontaneous emission rate of these ions near planar interfaces is determined by the combined electric and magnetic local density of optical states (LDOS). This electromagnetic LDOS probes the total mode density, and thus similar to thermal emission, these unique electronic emitters effectively excite all polarizations and orientations of the electromagnetic field.

  17. Calorimeter probes for measuring high thermal flux. [in electric-arc jet facilities for planetary entry heating simulation

    Science.gov (United States)

    Russell, L. D.

    1979-01-01

    The paper describes expendable, slug-type calorimeter probes developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes are constructed with thin tungsten caps mounted on Teflon bodies; the temperature of the back surface of the tungsten cap is measured, and its rate of change gives the steady-state, absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. It is concluded that the simple construction of these probes allows them to be expendable and heated to destruction to obtain a measurable temperature slope at high heating rates.

  18. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping.

    Science.gov (United States)

    Chi, Yu-Wen; Hu, Chi-Chang; Shen, Hsiao-Hsuan; Huang, Kun-Ping

    2016-09-14

    Integrating various devices to achieve high-performance energy storage systems to satisfy various demands in modern societies become more and more important. Electrical double-layer capacitors (EDLCs), one kind of the electrochemical capacitors, generally provide the merits of high charge-discharge rates, extremely long cycle life, and high efficiency in electricity capture/storage, leading to a desirable device of electricity management from portable electronics to hybrid vehicles or even smart grid application. However, the low cell voltage (2.5-2.7 V in organic liquid electrolytes) of EDLCs lacks the direct combination of Li-ion batteries (LIBs) and EDLCs for creating new functions in future applications without considering the issue of a relatively low energy density. Here we propose a guideline, "choosing a matching pair of electrode materials and electrolytes", to effectively extend the cell voltage of EDLCs according to three general strategies. Based on the new strategy proposed in this work, materials with an inert surface enable to tolerate a wider potential window in commercially available organic electrolytes in comparison with activated carbons (ACs). The binder-free, vertically grown graphene nanowalls (GNW) and nitrogen-doped GNW (NGNW) electrodes respectively provide good examples for extending the upper potential limit of a positive electrode of EDLCs from 0.1 to 1.5 V (vs Ag/AgNO3) as well as the lower potential limit of a negative electrode of EDLCs from -2.0 V to ca. -2.5 V in 1 M TEABF4/PC (propylene carbonate) compared to ACs. This newly designed asymmetric EDLC exhibits a cell voltage of 4 V, specific energy of 52 Wh kg(-1) (ca. a device energy density of 13 Wh kg(-1)), and specific power of 8 kW kg(-1) and ca. 100% retention after 10,000 cycles charge-discharge, reducing the series number of EDLCs to enlarge the module voltage and opening the possibility for directly combining EDLCs and LIBs in advanced applications.

  19. Investigations on the electrical current-voltage response in protein light receptors

    CERN Document Server

    Alfinito, E; Reggiani, L

    2014-01-01

    We report a theoretical/computational approach for modeling the current-voltage characteristics of sensing proteins. The modeling is applied to a couple of transmembrane proteins, bacteriorhodopsin and proteorhodopsin, sensitive to visible light and promising biomaterials for the development of a new generation of photo-transducers. The agreement between theory and experiments sheds new light on the microscopic interpretation of charge transfer in proteins and biological materials in general.

  20. REACTIVE CURRENT OF AN INDUCTION ELECTRIC DRIVES WITH THYRISTOR VOLTAGE REGULATOR

    Directory of Open Access Journals (Sweden)

    J.V. Kovalova

    2014-12-01

    Full Text Available A model for a separation of reactive constituent from current of idling of an induction motor at its feed from a thyristor voltage regulator in the dependences on the control angle of thyristors is developed. As a result of modeling, dependence of relative reactive current which is approximated by formula for calculation of effective current of reactive constituent of nonsinusoidal current is obtained.

  1. Electrical Potential of Acupuncture Points: Use of a Noncontact Scanning Kelvin Probe

    Directory of Open Access Journals (Sweden)

    Brian J. Gow

    2012-01-01

    Full Text Available Objective. Acupuncture points are reportedly distinguishable by their electrical properties. However, confounders arising from skin-to-electrode contact used in traditional electrodermal methods have contributed to controversies over this claim. The Scanning Kelvin Probe is a state-of-the-art device that measures electrical potential without actually touching the skin and is thus capable of overcoming these confounding effects. In this study, we evaluated the electrical potential profiles of acupoints LI-4 and PC-6 and their adjacent controls. We hypothesize that acupuncture point sites are associated with increased variability in potential compared to adjacent control sites. Methods. Twelve healthy individuals were recruited for this study. Acupuncture points LI-4 and PC-6 and their adjacent controls were assessed. A 2 mm probe tip was placed over the predetermined skin site and adjusted to a tip-to-sample distance of 1.0 mm under tip oscillation settings of 62.4 Hz frequency. A surface potential scan spanning a 1.0 cm × 1.0 cm area was obtained. Results. At both the PC-6 and LI-4 sites, no significant differences in mean potential were observed compared to their respective controls (Wilcoxon rank-sum test, and 0.79, resp.. However, the LI-4 site was associated with significant increase in variability compared to its control as denoted by standard deviation and range ( and 0.0005, resp.. At the PC-6 site, no statistical differences in variability were observed. Conclusion. Acupuncture points may be associated with increased variability in electrical potential.

  2. Extended-gate-type IGZO electric-double-layer TFT immunosensor with high sensitivity and low operation voltage

    Science.gov (United States)

    Liang, Lingyan; Zhang, Shengnan; Wu, Weihua; Zhu, Liqiang; Xiao, Hui; Liu, Yanghui; Zhang, Hongliang; Javaid, Kashif; Cao, Hongtao

    2016-10-01

    An immunosensor is proposed based on the indium-gallium-zinc-oxide (IGZO) electric-double-layer thin-film transistor (EDL TFT) with a separating extended gate. The IGZO EDL TFT has a field-effect mobility of 24.5 cm2 V-1 s-1 and an operation voltage less than 1.5 V. The sensors exhibit the linear current response to label-free target immune molecule in the concentrations ranging from 1.6 to 368 × 10-15 g/ml with a detection limit of 1.6 × 10-15 g/ml (0.01 fM) under an ultralow operation voltage of 0.5 V. The IGZO TFT component demonstrates a consecutive assay stability and recyclability due to the unique structure with the separating extended gate. With the excellent electrical properties and the potential for plug-in-card-type multifunctional sensing, extended-gate-type IGZO EDL TFTs can be promising candidates for the development of a label-free biosensor for public health applications.

  3. Investigation of low-voltage pulse parameters on electroporation and electrical lysis using a microfluidic device with interdigitated electrodes.

    Science.gov (United States)

    Morshed, Bashir I; Shams, Maitham; Mussivand, Tofy

    2014-03-01

    Electroporation (EP) of biological cells leads to the exchange of materials through the permeabilized cell membrane, while electrical lysis (EL) irreversibly disrupts the cell membrane. We report a microfluidic device to study these two phenomena with low-voltage excitation for lab-on-a-chip (LOC) applications. For systematic study of EP, we have employed a quantification metric: flow Index (FI) of EP. Simulation and experimental results with the microfluidic device containing interdigitated, coplanar, integrated electrodes to electroporate, and rapidly lyse biological cells are presented. H&E stained human buccal cells were subjected to various pulse magnitudes, pulsewidths, and number of pulses. Simulations show that an electric field of 25 kV/cm with a 20 V applied potential produced 1.3 (°)C temperature rise for a 5 s of excitation. For a 20 V pulse-excitation with pulse-widths between 0.5 to 5 s, EL was observed, whereas for lower excitations, only EP was observed. FI of EP is found to be a direct function of pulse magnitudes, pulsewidths, and numbers of pulses. To release DNA from nucleus, excitation-pulses of 5 s were required. Quantification of EP would be useful for systematic study of EP toward optimization with various excitation pulses, while low-voltage requirement and high yield of EP and EL are critical to develop LOC for drug delivery and cell-sample preparation, respectively.

  4. High-voltage Pulsed Electric Field in.Food Industry%食品高压脉冲电场杀菌技术

    Institute of Scientific and Technical Information of China (English)

    袁丽佳; 何博; 姜彬; 尤涛

    2011-01-01

    High-voltage pulsed electric field is one of the most popular methods in food process. The mechanism of high-voltage pulsed electric field, the device of high-vo]tage pulsed electric field , and the application of it are introduced.%高压脉冲电场(high-voltage pulsed electric field,HPEF)杀菌技术是目前国际上最热门的食品加工技术之一,本文介绍了高压脉冲电场杀菌技术的基本机理,杀菌装置,以及对该技术在食品加工中应用的介绍。

  5. Use of very low frequency technology for diagnostic in medium voltage electric cables; Utilizacao da tecnologia VLF para diagnostico de cabos eletricos de media tensao

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Flavio Costa; Pinho, Wilson Pereira de [Companhia Siderurgica Nacional (CSN), Volta Redonda, RJ (Brazil). Gerencia de Distribuicao de Energeticos

    2010-07-01

    The present technical contribution presents a new technology used in the Companhia Siderurgica Nacional (CSN) to diagnose operating conditions, useful life and faults in medium voltage electrical cables. The Very Low Frequency is a nondestructive electrical testing, conducted in medium voltage electrical cables, designed to measure the overall state of insulation of the cables, and the precise location of the fault before the failure. Through two types of tests, Delta Tangent and Partial Discharge, it is possible to make a complete diagnosis of insulation performance of the cable and also detect the fault. The implantation of this predictive technique, will monitor the useful life of medium voltage cables, avoiding potential failures in electrical circuits of Usina Presidente Vargas, allowing the intervention of maintenance before the failure, that result in interference in the production process. (author)

  6. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    KAUST Repository

    Selvakumaran, Lakshmi

    2016-03-24

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification.

  7. Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spin electronics

    Science.gov (United States)

    He, Xi; Wang, Yi; Wu, Ning; Shi, Siqi; Caruso, A.; Vescovo, E.; Belashchenko, Kirill D.; Dowben, Peter; Binek, Christian

    2010-03-01

    Promising spintronic device concepts utilize the electric control of magnetic interfaces. We present compelling evidence of a roughness-insensitive and electrically controllable ferromagnetic state at the (0001) surface of antiferromagnetic chromia. If this ferromagnetic surface is placed in close proximity with a ferromagnetic Co/Pd multilayer film, exchange coupling across a Pd interlayer induces an electrically controllable unidirectional anisotropy in the Co/Pd film. This electrically controlled exchange bias effect allows for reversible isothermal shifting of the global hysteresis loop of the Co/Pd film along the magnetic field axis from negative to positive values. Supported by NSF through Career DMR-0547887, by NRI, by NSF MRSEC, and by the NRC/NRI supplement. K.D.B. is a Cottrell Scholar of Research Corporation.

  8. Application of atomic absorption spectroscopy for detection of multimetal traces in low-voltage electrical marks.

    Science.gov (United States)

    Jakubeniene, Marija; Zakaras, Algirdas; Minkuviene, Zita Nijole; Benoshys, Alvydas

    2006-08-10

    Application of atomic absorption spectroscopy to detect multimetal traces in injured skin is a promising tool for investigation of fatalities caused by electrocution. The present paper is aimed at testing the reliability of this method for metal traces detection in electric current marks and is focused on study of peculiarities of metal penetration into the skin exposed to a current impact. Bare aluminum wire, tin-lead coated copper multistrand wire, and zinc-plated steel rope were used to make electrical marks on pig skin. It is demonstrated that amount of copper, zinc, lead, and iron may serve as statistically reliable indicators for the type of wire, which caused the electrical mark, in spite of the background content of these metals in the skin without injury. Different penetration rates for different metals contained in the wire inflicting an electrical mark were observed.

  9. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    Science.gov (United States)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-04-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio antennas primarily developed for radio-astronomy observations. Our measurements are performed in the 30-80 MHz frequency band. For fair weather conditions the observations are in excellent agreement with model calculations. However, for air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the predictions of fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the magnitude and orientation of the electric fields at different heights in the thunderstorm clouds. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed. We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way. In part this presentation is based on the work: P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015).

  10. Low Voltage Electrolytic Capacitor Pulse Forming Inductive Network for Electric Weapons

    Science.gov (United States)

    2006-06-01

    reliable high- current, high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor...high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor-generator sets, so a solid...on an all-electric ship, those challenges are being met. The naval railgun, the army railgun, coilguns , and other electric weapon systems such as

  11. Epitaxial Graphene and Graphene–Based Devices Studied by Electrical Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Tim L. Burnett

    2013-03-01

    Full Text Available We present local electrical characterization of epitaxial graphene grown on both Si- and C-faces of 4H-SiC using Electrostatic Force Microscopy and Kelvin Probe Force Microscopy in ambient conditions and at elevated temperatures. These techniques provide a straightforward identification of graphene domains with various thicknesses on the substrate where topographical determination is hindered by adsorbates and SiC terraces. We also use Electrostatic Force Spectroscopy which allows quantitative surface potential measurements with high spatial resolution. Using these techniques, we study evolution of a layer of atmospheric water as a function of temperature, which is accompanied by a significant change of the absolute surface potential difference. We show that the nanoscale wettability of the material is strongly dependent on the number of graphene layers, where hydrophobicity increases with graphene thickness. We also use micron-sized graphene Hall bars with gold electrodes to calibrate work function of the electrically conductive probe and precisely and quantitatively define the work functions for single- and double-layer graphene.

  12. Heavy Water as a Probe of the Free Radical Nature and Electrical Conductivity of Melanin.

    Science.gov (United States)

    Rienecker, Shermiyah B; Mostert, A Bernardus; Schenk, Gerhard; Hanson, Graeme R; Meredith, Paul

    2015-12-01

    Melanins are pigmentary macromolecules found in many locations throughout nature including plants and vertebrate animals. It was recently proposed that the predominant brown-black pigment eumelanin is a mixed ionic-electronic conductor which has led to renewed interest in its basic properties as a model bioelectronic material. This exotic hybrid electrical behavior is strongly dependent upon hydration and is closely related to the free radical content of melanin which is believed to be a mixed population of two species: the semiquinone (SQ) and a carbon-centered radical (CCR). The predominant charge carrier is the proton that is released during the formation of the SQ radical and controlled by a comproportionation equilibrium reaction. In this paper we present a combined solid-state electron paramagnetic resonance (EPR), adsorption, and hydrated conductivity study using D2O as a probe. We make specific predictions as to how the heavy isotope effect, in contrast to H2O, should perturb the comproportionation equilibrium and the related outcome as far as the electrical conductivity is concerned. Our EPR results confirm the proposed two-spin mechanism and clearly demonstrate the power of combining macroscopic measurements with observations from mesoscopic probes for the study of bioelectronic materials.

  13. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  14. Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy

    Directory of Open Access Journals (Sweden)

    Zhao Shihua

    2011-01-01

    Full Text Available Abstract The nanoscale electrical properties of single-layer graphene (SLG, bilayer graphene (BLG and multilayer graphene (MLG are studied by scanning capacitance microscopy (SCM and electrostatic force microscopy (EFM. The quantum capacitance of graphene deduced from SCM results is found to increase with the layer number (n at the sample bias of 0 V but decreases with n at -3 V. Furthermore, the quantum capacitance increases very rapidly with the gate voltage for SLG, but this increase is much slowed down when n becomes greater. On the other hand, the magnitude of the EFM phase shift with respect to the SiO2 substrate increases with n at the sample bias of +2 V but decreases with n at -2 V. The difference in both quantum capacitance and EFM phase shift is significant between SLG and BLG but becomes much weaker between MLGs with a different n. The layer-dependent quantum capacitance behaviors of graphene could be attributed to their layer-dependent electronic structure as well as the layer-varied dependence on gate voltage, while the layer-dependent EFM phase shift is caused by not only the layer-dependent surface potential but also the layer-dependent capacitance derivation.

  15. Control and Protection in Low Voltage Grid with Large Scale Renewable Electricity Generation

    DEFF Research Database (Denmark)

    Mustafa, Ghullam

    of renewable energy based DGs are reduced CO2 emission, reduced operational cost as almost no fuel is used for their operation and less transmission and distribution losses as these units are normally built near to the load centers. This has also resulted in some operational challenges due to the unpredictable...... of the wind speed and solar irradiation fluctuations are tackled. The CIGRE Low Voltage (LV) network comprising two solar PV generating units of 3 kW and 4 kW, one 5.5 kW fixed-pitch fix speed WTG and two battery units each producing energy of 30kwh and 21kwh has been chosen for the study. The study...... the distribution system and the transmission grid has been proposed here. The algorithms, models and methodologies developed during this research study have been tested in a CIGRE low voltage distribution network. The simulation results show that they are able to correctly identify the states of the distribution...

  16. An AlGaN/GaN HEMT with a reduced surface electric field and an improved breakdown voltage

    Institute of Scientific and Technical Information of China (English)

    Xie Gang; Edward Xu; Niloufar Hashemi; Zhang Bo; Fred Y. Fu; Wai Tung Ng

    2012-01-01

    A reduced surface electric field in an AlGaN/GaN high electron mobility transistor (HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas (2-DEG) channel as an electric field shaping layer.The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions.Compared with the HEMTs with conventional sourceconnected field plates and double field plates,the HEMT with a Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge.By optimizing both the length of Mg-doped layer,Lm,and the doping concentration,a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure,respectively.In a device with VGS =-5 V,Lm =1.5 μm,a peak Mg doping concentration of 8×1017 cm-3 and a drift region length of 10 μm,the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty.

  17. INFLUENCE OF SHOCK VOLTAGE FROM THE ELECTRIC DISCHARGE ON THE FATIGUE ENDURANCE OF CARBON STEEL IN WATER

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2015-09-01

    Full Text Available Purpose. The research supposes the explanation of influence of stress impulses from an electrical discharge in water on the level of the limited endurance at a cyclic loading of the thermally work-hardened carbon steel. Methodology. Material for research was steel 45 (0,45 % carbon with сoncentration of chemical elements within the limits of steel composition. Specimens for tests are made as plates in 1 thick, width 15 and length 120-180 mm. The structural state of steel corresponded to quenching on a martensite from the normal temperatures of annealing and tempering at 300C, duration of 1 h. Microstructure was investigated with the use of electronic microscopy, the density of dislocations was estimated on the methods of X-ray analysis. Hardness was measured on the method of Rockwell (scale of «C». A cyclic loading was carried out in the conditions of symmetric bend on a tester «Saturn-10» at a temperature +20C. The treatment by shock voltage from the electrical discharge was carried out in water on setting of bath type «Iskra-23», used for cleaning of castings manufactures. Electric impulses were formed at 15-18 kV with energy of 10-12 kJ and amplitude of 1-2 GPа. Findings. As a result of processing pulses of a pressure wave of heat-strengthened steel 45 found the increase of endurance under the cyclic loading corresponds to an increased amount of accumulated dislocations on the fracture surface. The use of Coffin–Manson Equation allowed finding the decrease of deformation per cycle of loading as a result of arising stress from an electrical discharge in water. On the fracture surface (after pulse exposure was found the increased number of dislocations, located in different crystallographic systems, that is a testament to the rather complicated development of dislocation transformations in the structure of steel, which provide an increase of endurance at a fatigue. The increase of the limited endurance became as a result of impulsive

  18. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2016-08-01

    Full Text Available This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs and an indium-tin-oxide (ITO electrode with periodic holes (perforations under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  19. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    Science.gov (United States)

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  20. Perspectives of Safe Work Practices: Improving Personal Electrical Safety of Low-Voltage Systems from Electrical Hazards

    Directory of Open Access Journals (Sweden)

    Y. Mobarak,

    2016-12-01

    Full Text Available A person’s understanding of a safety hazard has a dramatic effect on his or her behavior. An in-depth understanding of a hazard usually results in a healthy respect for what can happen. People who know the most about a specific hazard tend to rely more heavily on procedures and plans to guide their actions. Personal protective equipment selection and use are influenced by increased understanding of a hazard. Training and training programs are influenced by the depth of knowledge held by all members of the line organization. Recent work has focused attention on the thermal effects of arc flashes. However, when electrical energy is converted into thermal energy in an arcing fault, still another energy conversion is taking place. Applications are on record that suggest that a considerable amount of force is created during an arcing fault. Concrete block walls can be destroyed by the increased pressure that is created during an arcing fault. This study is present about preventing injuries to people. We will study about injuries and then develop some understanding about electrical hazards. Also, we will present about safe work practices, responsible, and then about what makes us act as we do.

  1. The principle of elaboration of the relay protection against short circuits between the closely placed phases of high voltage electrical line

    Directory of Open Access Journals (Sweden)

    Kiorsak M.

    2015-12-01

    Full Text Available The article is devoted to the elaboration of the principle of relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation, based on the six phase’s symmetrical components. It is shown that the unsymmetrical short circuits between the closely placed phases are characterized by appearance of zero and tertiary sequences of symmetrical components. This fact can be used to choose them for relay protection. The electrical basic circuits and formulas for calculation of the passive parameters of zero and tertiary filters of currents (voltages are done. It is presented the structural-functional basic circuit scheme for relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation.

  2. Effect of FACTS Type to Optimization Performance and Voltage Stability for Electrical Network

    Directory of Open Access Journals (Sweden)

    Marouani Ismail

    2014-01-01

    Full Text Available In this paper, a multi objective evolutionary algorithm (MOEA to solve optimal reactive power (VAR dispatch problem with flexible AC transmission system (FACTS devices is presented. This nonlinear multi objective problem (MOP consists to minimize simultaneously real power loss in transmission lines and voltage deviation at load buses, by tuning parameters and location of FACTS. The constraints of this MOP are divided to equality constraints represented by load flow equations and inequality constraints such as, generation VAR sources and security limits at load buses. Two types of FACTS devices, thyristor controlled series capacitor (TCSC and unified power flow controller (UPFC are considered. The design problem is tested on the IEEE 30-bus system.

  3. Stochastic Dynamics of Electrical Membrane with Voltage-Dependent Ion Channel Fluctuations

    CERN Document Server

    Qian, Hong; Qian, Min

    2014-01-01

    Brownian ratchet like stochastic theory for the electrochemical membrane system of Hodgkin-Huxley (HH) is developed. The system is characterized by a continuous variable $Q_m(t)$, representing mobile membrane charge density, and a discrete variable $K_t$ representing ion channel conformational dynamics. A Nernst-Planck-Nyquist-Johnson type equilibrium is obtained when multiple conducting ions have a common reversal potential. Detailed balance yields a previously unknown relation between the channel switching rates and membrane capacitance, bypassing Eyring-type explicit treatment of gating charge kinetics. From a molecular structural standpoint, membrane charge $Q_m$ is a more natural dynamic variable than potential $V_m$; our formalism treats $Q_m$-dependent conformational transition rates $\\lambda_{ij}$ as intrinsic parameters. Therefore in principle, $\\lambda_{ij}$ vs. $V_m$ is experimental protocol dependent,e.g., different from voltage or charge clamping measurements. For constant membrane capacitance pe...

  4. Application of Autonomous Smart Inverter Volt-VAR Function for Voltage Reduction Energy Savings and Power Quality in Electric Distribution Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Nagarajan, Adarsh; Baggu, Murali; Chakraborty, Sudipta; Nguyen, Andu; Walinga, Sarah; McCarty, Michael; Bell, Frances

    2017-05-01

    This paper evaluated the impact of smart inverter Volt-VAR function on voltage reduction energy saving and power quality in electric power distribution systems. A methodology to implement the voltage reduction optimization was developed by controlling the substation LTC and capacitor banks, and having smart inverters participate through their autonomous Volt-VAR control. In addition, a power quality scoring methodology was proposed and utilized to quantify the effect on power distribution system power quality. All of these methodologies were applied to a utility distribution system model to evaluate the voltage reduction energy saving and power quality under various PV penetrations and smart inverter densities.

  5. Mineral Liberation of Magnetite-Precipitated Copper Slag Obtained via Molten Oxidation by Using High-Voltage Electrical Pulses

    Science.gov (United States)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-10-01

    Our proposed method, i.e., a controlled molten oxidation process under 1 vol pct oxygen, leads to selective precipitation of magnetite in a copper smelter slag for downstream iron separation. In the present study, the preroasted magnetite precipitated copper slag was treated via magnetite liberation, which was realized by using high-voltage electrical pulses. The mineral distribution was determined by using a laser microscope and its image analysis; and it revealed that the 100- µm under-sieve product contains approximately 70 pct of liberated mineral particles. The study affirms the positive outcome of using this new technology for comminution to obtain micrometer-scale particles that yield monominerals via selective liberation. Using magnetic separation, iron was capable of finally separating into high- and low-iron-bearing concentrate and tailing that can be used in specific applications.

  6. Voltage-dependent magnetic phase transition in magneto-electric epitaxial Cr2O3 nanoclusters

    Science.gov (United States)

    Halley, David; Najjari, Nabil; Godel, Florian; Hamieh, Mohamad; Doudin, Bernard; Henry, Yves

    2016-06-01

    We observe, as a function of temperature, a second order magnetic phase transition in nanometric Cr2O3 clusters that are epitaxially embedded in an insulating MgO matrix. They are investigated through their tunnel magneto-resistance signature, the MgO layer being used as a tunnel barrier. We infer the small magnetic dipoles carried by the Cr2O3 clusters and provide evidence of a magnetic phase transition at low temperature in those clusters: they evolve from an anti ferromagnetic state, with zero net moment close to 0 K, to a weak ferromagnetic state that saturates above about 10 K. The influence of magneto-electric effects on the weak ferromagnetic phase is also striking: the second order transition temperature turns out to be linearly dependent on the applied electric field.

  7. OPTIMAL CHARGING OF ELECTRICAL VEHICLES IN THE SMART CITY FOR LOSS MINIMIZATION AND VOLTAGE IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Adrian Toni Radu

    2017-06-01

    Full Text Available The world is two-thirds of the way through a century-long cycle of rapid urbanisation, at the end of which more than 70% of people will live in cities (World Health Organization, 2014. The urban transformation has become a major contributor to economic, demographic, social and environmental change. Electric vehicles (EVs have become increasingly popular over the last few years and are considered as an important means to mitigate air pollution problems in big cities around the world. With their onboard batteries, EVs also present an opportunity to serve as a demand response tool in supporting future smart grid where there is usually high penetration level of renewable energy (RE sources. In this paper, we consider the coordinated charging control of electrical vehicles in the charging stations. The goals are to illustrate how the integration of EVs at the urban area improve the overall load schedule of the distribution network.

  8. Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2015-12-01

    Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.

  9. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments

    Science.gov (United States)

    Knudsen, D. J.; Burchill, J. K.; Buchert, S. C.; Eriksson, A. I.; Gill, R.; Wahlund, J.-E.; Åhlen, L.; Smith, M.; Moffat, B.

    2017-02-01

    The European Space Agency's three Swarm satellites were launched on 22 November 2013 into nearly polar, circular orbits, eventually reaching altitudes of 460 km (Swarm A and C) and 510 km (Swarm B). Swarm's multiyear mission is to make precision, multipoint measurements of low-frequency magnetic and electric fields in Earth's ionosphere for the purpose of characterizing magnetic fields generated both inside and external to the Earth, along with the electric fields and other plasma parameters associated with electric current systems in the ionosphere and magnetosphere. Electric fields perpendicular to the magnetic field B→ are determined through ion drift velocity v→i and magnetic field measurements via the relation E→⊥=-v→i×B→. Ion drift is derived from two-dimensional images of low-energy ion distribution functions provided by two Thermal Ion Imager (TII) sensors viewing in the horizontal and vertical planes; v→i is corrected for spacecraft potential as determined by two Langmuir probes (LPs) which also measure plasma density ne and electron temperature Te. The TII sensors use a microchannel-plate-intensified phosphor screen imaged by a charge-coupled device to generate high-resolution distribution images (66 × 40 pixels) at a rate of 16 s-1. Images are partially processed on board and further on the ground to generate calibrated data products at a rate of 2 s-1; these include v→i, E→⊥, and ion temperature Ti in addition to electron temperature Te and plasma density ne from the LPs.

  10. Evaluation of the effectiveness of neurofeedback in the reduction of Posttraumatic stress disorder (PTSD) in a patient following high-voltage electric shock with the use of ERPs

    OpenAIRE

    Anna Chrapusta; Maria Pąchalska; Magdalena Wilk-Frańczuk; Małgorzata Starczyńska; Juri D. Kropotov

    2015-01-01

    Background. The aim of our research was an evaluation of the effectiveness of neurofeedback in reducing the symptoms of Post-trauma stress disorder (PTSD), which had developed as a result of a high-voltage electric burn to the head. Quantitative EEG (QEEG) and Event related potentials (ERPs) were utilised in the evaluation. Case study. A 21-year-old patient, experienced 4[sup]th[/sup] degree burns to his head as a result of a high-voltage electric burn. The patient was repeatedly opera...

  11. Integrating Multi-Domain Distributed Energy Systems with Electric Vehicle PQ Flexibility: Optimal Design and Operation Scheduling for Sustainable Low-Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Morvaj, Boran; Knezovic, Katarina; Evins, Ralph

    2016-01-01

    for minimising carbon emission in low-voltage distribution grids with high share of distributed energy resources and electric vehicles. The framework determines optimal EV flexibility usage (both active and reactive) while satisfying electric and thermal building demands, and maintaining the distribution grid...... in the stable operation. The model was applied to a real low-voltage Danish distribution grid where measurement data is available on hourly basis in order to determine EV flexibility impacts on carbon emissions, as well as the benefits of optimal DES design. The influence of EV reactive power control...

  12. Electrical sintering of silver nanoparticle ink studied by in-situ TEM probing.

    Directory of Open Access Journals (Sweden)

    Magnus Hummelgård

    Full Text Available Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1-10 mW/μm³. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 10⁵ Sm⁻¹.

  13. [A comparative analysis of the passive electric probe detection and spectrum diagnosis of laser-induced plasma].

    Science.gov (United States)

    Liu, Tong; Yang, Li-Jun; Wang, Li-Jun; Wang, Lang-Ping

    2014-02-01

    An approach to detecting laser-induced plasma using passive probe was brought up. The plasma of laser welding was studied by using a synchronous electric and spectral information acquisition system, the laser-induced plasma was detected by a passive electric probe and fiber spectrometer, the electrical signal was analyzed on the basis of the theory of plasma sheath, and the temperature of laser-induced plasma was calculated by using the method of relative spectral intensity. The analysis results from electrical signal and spectral one were compared. Calculation results of three kinds of surface circumstances, which were respectively coated by KF, TiO2 and without coating, were compared. The factors affecting the detection accuracy were studied. The results indicated that the results calculated by passive probe matched that by spectral signal basically, and the accuracy was affected by ions mass of the plasma. The designed passive electric probe can be used to reflect the continuous fluctuation of electron temperature of the generated plasma, and monitor the laser-induced plasma.

  14. Design and Experiments of the High Voltage Pulsed Electric Fields Sterilization System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihai; FANG Junlong; SHEN Weizheng

    2008-01-01

    This experiment designed the pulsed electric fields (PEF) of high intensity of 100 kV. cml sterilization system. Fluorescent pseudomonas as target cell was operated 180 s in the PEF. By observing the difference of the bacteria before and after the disposal by TEM, it is found that the cell wails of the treated bacteria were broken. Irreversible perforations were formed on the cell membrane. The cell inclusions and cell fragments were leaked. The cell died as a result. The results showed that the PEF sterilization system designed can be used for liquid food sterilization experiments.

  15. Two-Stage Electric Vehicle Charging Coordination in Low Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    Increased environmental awareness in the recent years has encouraged rapid growth of renewable energy sources (RESs); especially solar PV and wind. One of the effective solutions to compensate intermittencies in generation from the RESs is to enable consumer participation in demand response (DR......). Being a sizable rated element, electric vehicles (EVs) can offer a great deal of demand flexibility in future intelligent grids. This paper first investigates and analyzes driving pattern and charging requirements of EVs. Secondly, a two-stage charging algorithm, namely local adaptive control...

  16. Voltage profile optimization procedures in daily scheduling and in VAR planning of large scale electric systems

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Innorta, M.; Marannino, P.; Mognetti, F., Cova, B.

    1988-09-01

    This paper presents some criteria applied to the optimization of voltage profiles and reactive power generation distribution among various resources in daily scheduling and VAR planning. The mathematical models employed in the representation of the two problems are quite similar in spite of the different objective functions and control variable set. The solution is based upon the implementation of two optimal reactive power flow (ORPF) programs. The first ORPF determines a feasible operating point in daily scheduling application, or the minimum investment installations required by system security in VAR planning application. It utilizes a linear algorithm (gradient protection) suggested by Rosen which has been found to be a favourable alternative to the commonly suited simplex method. The second ORPF determines the minimum losses operating point, in the reactive power dispatch, or the most beneficial installation of reactive compensations in VAR planning. The solution of the economy problems is carried out by the Han-Powell algorithm. It essentially solves a set of quadratic sub-problems. In the adopted procedure, the quadratic sub-problems are solved by exploiting an active constraint strategy in the QUADRI subroutine used as an alternative to the well-known Beale method.

  17. PAIN RELIFE DURING LABOR: EFFICACY OF SKIN ELECTRICAL STIMULATION (TENS, INTERFERENTIAL, HIGH VOLTAGE

    Directory of Open Access Journals (Sweden)

    Z SHAHSHAHAN

    2001-09-01

    Full Text Available Introduction. Pain during labor is a physiologic pain cause anxity in mothers.There are many procedures to make labor painless in mothers. This study compare some of these methods. Methods. The study was carried out as a double blinded clinical trial on 149 pregnant women who refered to the Beheshti hospital (affiliated to IUMSHSduring 1998 to 2001 with labor pain. The term gravid women were divided randomly to five group. Control group (30 Cases,Placebo group (30 Cases, TENS (30 Cases, High voltage (26 Cases and Interferential (30 Cases.Pain level was measured with modified Mc Gill and Visual Analog Scale (VAS questionnaire at 4, 6, 8 and 10 Cm cervical dilation. Results. Difference was seen between TENS with placebo & control (P<0.05. The average time of active phase was significantly shorter (40-85 minute in Interferential group in comparison with other groups. Discussion. This is probably an indication of augmentation of contraction and may be this kind of wave could be used in abnormal uterine contraction and abnormal progress of labor.

  18. Electrical and Optical Properties of a High-Voltage Large Area Blue Light-Emitting Diode

    Science.gov (United States)

    Wang; Wei; Cai; Yong; Huang; Wei; Li; Hai-ou; Zhang; Bao-shun

    2013-08-01

    In this paper, we report a single-chip large area (5×5 mm2) InGaN/GaN blue LED with the optical output power of 4.3 W. This device consists of 24-stages small LED-cells that are connected in series. Driven at 500 mA, the forward voltage is measured to be 87.2 V with a reverse current of 2.63×10-9 A at -120 V. The comparison of two different cooling schemes, i.e., with/without fan cooling, was made; the results suggest that the thermal convection between the heat sink and air is more critical. A simple white LED package was also tried by covering silicone gel mixed with yttrium aluminum garnet (YAG) phosphor. The luminous flux and the correlated color temperature (CCT) were measured to be 1090 lm and 5082 K, when the device was driven at 500 mA. This report also demonstrated the feasibility of the application for camera flash.

  19. Probing kinetic drug binding mechanism in voltage-gated sodium ion channel: open state versus inactive state blockers.

    Science.gov (United States)

    Pal, Krishnendu; Gangopadhyay, Gautam

    2015-01-01

    The kinetics and nonequilibrium thermodynamics of open state and inactive state drug binding mechanisms have been studied here using different voltage protocols in sodium ion channel. We have found that for constant voltage protocol, open state block is more efficient in blocking ionic current than inactive state block. Kinetic effect comes through peak current for mexiletine as an open state blocker and in the tail part for lidocaine as an inactive state blocker. Although the inactivation of sodium channel is a free energy driven process, however, the two different kinds of drug affect the inactivation process in a different way as seen from thermodynamic analysis. In presence of open state drug block, the process initially for a long time remains entropy driven and then becomes free energy driven. However in presence of inactive state block, the process remains entirely entropy driven until the equilibrium is attained. For oscillating voltage protocol, the inactive state blocking is more efficient in damping the oscillation of ionic current. From the pulse train analysis it is found that inactive state blocking is less effective in restoring normal repolarisation and blocks peak ionic current. Pulse train protocol also shows that all the inactive states behave differently as one inactive state responds instantly to the test pulse in an opposite manner from the other two states.

  20. Frequency-dependent reduction of voltage-gated sodium current modulates retinal ganglion cell response rate to electrical stimulation

    Science.gov (United States)

    Tsai, David; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.

    2011-10-01

    The ability to elicit visual percepts through electrical stimulation of the retina has prompted numerous investigations examining the feasibility of restoring sight to the blind with retinal implants. The therapeutic efficacy of these devices will be strongly influenced by their ability to elicit neural responses that approximate those of normal vision. Retinal ganglion cells (RGCs) can fire spikes at frequencies greater than 200 Hz when driven by light. However, several studies using isolated retinas have found a decline in RGC spiking response rate when these cells were stimulated at greater than 50 Hz. It is possible that the mechanism responsible for this decline also contributes to the frequency-dependent 'fading' of electrically evoked percepts recently reported in human patients. Using whole-cell patch clamp recordings of rabbit RGCs, we investigated the causes for the spiking response depression during direct subretinal stimulation of these cells at 50-200 Hz. The response depression was not caused by inhibition arising from the retinal network but, instead, by a stimulus-frequency-dependent decline of RGC voltage-gated sodium current. Under identical experimental conditions, however, RGCs were able to spike at high frequency when driven by light stimuli and intracellular depolarization. Based on these observations, we demonstrated a technique to prevent the spiking response depression.

  1. MRI findings of the brain in high-voltage electrical burn patient: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheung Sook; Hong, Sung Hwan; Lee, Myung Joon; Cho, Seong Whi; Lee, Eil Seong; Kang, Ik Won [Hallym University College of Medicine, Seoul (Korea, Republic of)

    2003-05-01

    We report the delayed sequelae arising in a case of electrical injury, reviewing the literature on the subject and focusing on the MRI findings of the brain. A 23-year-old male suffered burns to the left parietal scalp, both feet, and the anterior chest wall. Neurological symptoms and MRI abnormalities appeared 14 days after the insult and continued for about three months. T1-weight MR images demonstrated homogeneous hypointensity, while T2-weighted images depicted hyperintense finger-like projections. Contrast-enhanced T1-weighted images demonstrated strong band-like enhancement, indicating meningeal hyperemia. Follow-up MR imaging showed that the lesion had disappeared, indicating that the cerebral edema and meaningeal hyperemia were reversible.

  2. New Breakdown Electric Field Calculation for SF6 High Voltage Circuit Breaker Applications

    Institute of Scientific and Technical Information of China (English)

    Ph.ROBIN-JOUAN; M.YOUSFI

    2007-01-01

    The critical electric fields of hot SF6 are calculated including both electron and ion kinetics in wide ranges of temperature and pressure,namely from 300 K up to 4000 K and 2 atmospheres up to 32 atmospheres respectively.Based on solving a multi-term electron Boltzmann equation the calculations use improved electron-gas collision cross sections for twelve SF6 dissociation products with a particular emphasis on the electron-vibrating molecule interactions.The ion kinetics is also considered and its role on the critical field becomes non negligible as the temperature is above 2000 K.These critical fields are then used in hydrodynamics simulations which correctly predict the circuit breaker behaviours observed in the case of breaking tests.

  3. Large naturally-produced electric currents and voltage traverse damaged mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Borgens Richard B

    2008-12-01

    Full Text Available Abstract Background Immediately after damage to the nervous system, a cascade of physical, physiological, and anatomical events lead to the collapse of neuronal function and often death. This progression of injury processes is called "secondary injury." In the spinal cord and brain, this loss in function and anatomy is largely irreversible, except at the earliest stages. We investigated the most ignored and earliest component of secondary injury. Large bioelectric currents immediately enter damaged cells and tissues of guinea pig spinal cords. The driving force behind these currents is the potential difference of adjacent intact cell membranes. For perhaps days, it is the biophysical events caused by trauma that predominate in the early biology of neurotrauma. Results An enormous (≤ mA/cm2 bioelectric current transverses the site of injury to the mammalian spinal cord. This endogenous current declines with time and with distance from the local site of injury but eventually maintains a much lower but stable value (2. The calcium component of this net current, about 2.0 pmoles/cm2/sec entering the site of damage for a minimum of an hour, is significant. Curiously, injury currents entering the ventral portion of the spinal cord may be as high as 10 fold greater than those entering the dorsal surface, and there is little difference in the magnitude of currents associated with crush injuries compared to cord transection. Physiological measurements were performed with non-invasive sensors: one and two-dimensional extracellular vibrating electrodes in real time. The calcium measurement was performed with a self-referencing calcium selective electrode. Conclusion The enormous bioelectric current, carried in part by free calcium, is the major initiator of secondary injury processes and causes significant damage after breach of the membranes of vulnerable cells adjacent to the injury site. The large intra-cellular voltages, polarized along the length of

  4. Particle-in-cell modeling of spacecraft-plasma interaction effects on double-probe electric field measurements

    Science.gov (United States)

    Miyake, Y.; Usui, H.

    2016-12-01

    The double-probe technique, commonly used for electric field measurements in magnetospheric plasmas, is susceptible to environmental perturbations caused by spacecraft-plasma interactions. To better model the interactions, we have extended the existing particle-in-cell simulation technique so that it accepts very small spacecraft structures, such as thin wire booms, by incorporating an accurate potential field solution calculated based on the boundary element method. This immersed boundary element approach is effective for quantifying the impact of geometrically small but electrically large spacecraft elements on the formation of sheaths or wakes. The developed model is applied to the wake environment near a Cluster satellite for three distinctive plasma conditions: the solar wind, the tail lobe, and just outside the plasmapause. The simulations predict the magnitudes and waveforms of wake-derived spurious electric fields, and these are in good agreement with in situ observations. The results also reveal the detailed structure of potential around the double probes. It shows that any probes hardly experience a negative wake potential in their orbit, and instead, they experience an unbalanced drop rate of a large potential hill that is created by the spacecraft and boom bodies. As a by-product of the simulations, we also found a photoelectron short-circuiting effect that is analogous to the well-known short-circuiting effect due to the booms of a double-probe instrument. The effect is sustained by asymmetric photoelectron distributions that cancel out the external electric field.

  5. Dependence of the electrical and optical properties on the bias voltage for ZnO:Al films deposited by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hyeong [School of Electronics and Information Engineering, Kunsan National University, Kunsan (Korea, Republic of)], E-mail: jhyi@kunsan.ac.kr; Song, Jun-Tae [School of Information and Communication Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2008-02-15

    Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited on glass, polycarbonate (PC), and polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The substrate dc bias voltage varied from 0 V to 50 V. Structural, electrical and optical properties of the films were investigated. The deposition rate of ZnO:Al films on glass substrate initially increased with the bias voltage, and then decreased with further increasing bias voltage. It was found that the best films on glass substrate with a low as 6.2 x 10{sup -4} {omega} cm and an average transmittance over 80% at the wavelength range of 500-900 nm can be obtained by applying the bias voltage of 30 V. The properties of the films deposited on polymer substrate, such as PC and PET, have a similar tendency, with slightly inferior values to those on glass substrate.

  6. Investigations of the electrical breakdown properties of insulator materials used in high voltage vacuum diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, R.P.; Carlson, R.L.; Melton, J.G.

    1993-08-01

    The Injector for the proposed Dual-Axis Radiographic Hydrodynamic Testing (DARHT) Facility at Los Alamos utilizes a monolithic insulator deployed in a radial configuration. The 1.83-m-diam {times} 25.4-cm-thick insulator with embedded grading rings separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Although much work has been done by the pulse power community in studying surface flash-over of insulating materials used in both axial and radial configurations, dendrite growth at the roots of grading rings embedded in materials suitable for very large insulators is less well characterized. Degradation of several acrylic insulators has been observed in the form of dendrites growing at the roots of the grading rings for large numbers (100`s) of pulses on the prototype DARHT Injector and other machines using similar radial geometries. In a few cases, these dendrites have led to catastrophic bulk breakdown of the acrylic between two grading rings making the insulator a costly loss. Insulating materials under investigation are acrylic (Lucite), epoxy (Furane), and cross-linked polystyrene (Rexolite); each of these materials has its own particular mechanical and electrical merits. All of these materials have been cast and machined into the required large size for the Injector. Test methods and the results of investigations into the breakdown strength of various interface geometries and the susceptibility of these materials to dendrite growth are reported.

  7. Cathodic voltage-controlled electrical stimulation of titanium implants as treatment for methicillin-resistant Staphylococcus aureus periprosthetic infections.

    Science.gov (United States)

    Ehrensberger, Mark T; Tobias, Menachem E; Nodzo, Scott R; Hansen, Lisa A; Luke-Marshall, Nicole R; Cole, Ross F; Wild, Linda M; Campagnari, Anthony A

    2015-02-01

    Effective treatment options are often limited for implant-associated orthopedic infections. In this study we evaluated the antimicrobial effects of applying cathodic voltage-controlled electrical stimulation (CVCES) of -1.8 V (vs. Ag/AgCl) to commercially pure titanium (cpTi) substrates with preformed biofilm-like structures of methicillin-resistant Staphylococcus aureus (MRSA). The in vitro studies showed that as compared to the open circuit potential (OCP) conditions, CVCES of -1.8 V for 1 h significantly reduced the colony-forming units (CFU) of MRSA enumerated from the cpTi by 97% (1.89 × 106 vs 6.45 × 104 CFU/ml) and from the surrounding solution by 92% (6.63 × 105 vs. 5.15 × 104 CFU/ml). The in vivo studies, utilizing a rodent periprosthetic infection model, showed that as compared to the OCP conditions, CVCES at -1.8 V for 1 h significantly reduced MRSA CFUs in the bone tissue by 87% (1.15 × 105 vs. 1.48 × 104 CFU/ml) and reduced CFU on the cpTi implant by 98% (5.48 × 104 vs 1.16 × 103 CFU/ml). The stimulation was not associated with histological changes in the host tissue surrounding the implant. As compared to the OCP conditions, the -1.8 V stimulation significantly increased the interfacial capacitance (18.93 vs. 98.25 μF/cm(2)) and decreased polarization resistance (868,250 vs. 108 Ω-cm(2)) of the cpTi. The antimicrobial effects are thought to be associated with these voltage-dependent electrochemical surface properties of the cpTi.

  8. High voltage energy storage system design for a parallel-through-the-road plug-in hybrid electric vehicle

    Science.gov (United States)

    Belt, Bryan Whitney D.

    A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle (PHEV) pairs an engine powering the front wheels of a vehicle with an electric motor powering the rear wheels. This arrangement gives the flexibility of being able to operate the vehicle in an all-electric mode, an all biodiesel mode, or a combination of both to create maximum power. For this work, a 1.7 L CIDI engine running on biodiesel will be the engine being used and a 103 kW Magna motor will power the rear wheels. In order to power the motor, a high voltage (HV) energy storage system (ESS) needs to be designed and integrated into the vehicle. The goal for the mechanical design of the ESS is to create a structure that will enclose all of the batteries and battery control modules to protect them from environmental factors such as dirt and water as well as to prevent them from becoming dislodged in the event of a collision. The enclosure will also serve as a means to protect the consumer from the dangers of HV. The mechanical design also entailed designing a cooling system that will keep the batteries operating in an acceptable temperature range while they are charging and discharging. The electrical design focused on designing a HV system that could adequately supply enough current flow to each component to meet the peak loading condition yet be able to disconnect should a fault occur to prevent component damage. The system was also designed with safety in mind. Controllers will constantly be monitoring both the HV and LV systems to make sure that each is isolated from the other. Should a controller detect a problem, it will disconnect the HV system. The electrical system will have a high voltage interlock loop (HVIL). The HVIL will be a continuous LV circuit that passes through every HV connector and various switches, so that, if a connector is unplugged or a switch is flipped, the circuit will open. A controller will be monitoring the HVIL for LV. Should it not detect LV, the controller will

  9. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Science.gov (United States)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  10. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Energy Technology Data Exchange (ETDEWEB)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  11. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  12. The effect of the variable frequency drive of the CNC roll grinding machine on the operation of other devices in low-voltage electrical installation

    Directory of Open Access Journals (Sweden)

    Simić Ninoslav

    2016-01-01

    Full Text Available This paper presents one of the observations that have been collected during the years of testing of electrical installations. A typical case from industrial plant in which are installed loads with variable frequency regulation is analyzed. We propose a simple way by measuring the frequency of the voltage in the objects, to establish the existence of possible irregularities in the operation of the individual units and analyze the influence of the current and voltage signal shape of one load to the work of other loads in the plant. The need for verification of electrical installations immediately upon receipt and installation of electrical equipment is emphasized and the use of the latest standards in the design and selection of equipment, in order to avoid unplanned expenses is recommended.

  13. An implementation of particle swarm optimization to evaluate optimal under-voltage load shedding in competitive electricity markets

    Science.gov (United States)

    Hosseini-Bioki, M. M.; Rashidinejad, M.; Abdollahi, A.

    2013-11-01

    Load shedding is a crucial issue in power systems especially under restructured electricity environment. Market-driven load shedding in reregulated power systems associated with security as well as reliability is investigated in this paper. A technoeconomic multi-objective function is introduced to reveal an optimal load shedding scheme considering maximum social welfare. The proposed optimization problem includes maximum GENCOs and loads' profits as well as maximum loadability limit under normal and contingency conditions. Particle swarm optimization (PSO) as a heuristic optimization technique, is utilized to find an optimal load shedding scheme. In a market-driven structure, generators offer their bidding blocks while the dispatchable loads will bid their price-responsive demands. An independent system operator (ISO) derives a market clearing price (MCP) while rescheduling the amount of generating power in both pre-contingency and post-contingency conditions. The proposed methodology is developed on a 3-bus system and then is applied to a modified IEEE 30-bus test system. The obtained results show the effectiveness of the proposed methodology in implementing the optimal load shedding satisfying social welfare by maintaining voltage stability margin (VSM) through technoeconomic analyses.

  14. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni

    2013-01-01

    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.

  15. In-plane magnetic field effect on switching voltage and thermal stability in electric-field-controlled perpendicular magnetic tunnel junctions

    Science.gov (United States)

    Grezes, C.; Rojas Rozas, A.; Ebrahimi, F.; Alzate, J. G.; Cai, X.; Katine, J. A.; Langer, J.; Ocker, B.; Khalili Amiri, P.; Wang, K. L.

    2016-07-01

    The effect of in-plane magnetic field on switching voltage (Vsw) and thermal stability factor (Δ) are investigated in electric-field-controlled perpendicular magnetic tunnel junctions (p-MTJs). Dwell time measurements are used to determine the voltage dependence of the energy barrier height for various in-plane magnetic fields (Hin), and gain insight into the Hin dependent energy landscape. We find that both Vsw and Δ decrease with increasing Hin, with a dominant linear dependence. The results are reproduced by calculations based on a macrospin model while accounting for the modified magnetization configuration in the presence of an external magnetic field.

  16. Hard- and software of real time simulation tools of Electric Power System for adequate modeling power semiconductors in voltage source convertor based HVDC and FACTS

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2014-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of Flexible Alternating Current Transmission System (FACTS devices and High Voltage Direct Current Transmission (HVDC system as part of real electric power systems (EPS. For that, a hybrid approach for advanced simulation of the FACTS and HVDC based on Voltage Source is proposed. The presented simulation results of the developed hybrid model of VSC confirm the achievement of the desired properties of the model and the effectiveness of the proposed solutions.

  17. Study of the electric field and wall voltage in a high pressure ac-PDP cell by laser induced fluorescence spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhou Yan; K. W. Whang; J. H. Yang; D. C. Jeong; C.H.Ha; Y.W. Choi

    2004-01-01

    The electric field in a surface discharge type ac-PDP cell with He or He/Xe(0.1%) mixture has been measured over a wide range of pressure (5 50kP1 using laser induced fluorescence detection. The wall voltage was estimated from the measured electric field. The Stark manifolds of triplet atomic helium Rydberg state (2s3S) with principal quantum numbers (n=8 and 9) have been used to measure the electric field, as the lifetime of 2s3S is longer than the single atomic helium Rydberg state (2s1S) in high pressure discharge. Comparison of the Stark manifolds between the n=9 and n=8shows that the measurement accuracy of electric field can be increased by 10%. The maximum electric field strength during discharge and the wall voltage at the end of pulse decreases with the increase of pressure. The comparison of He and He/Xe(0.1%) discharge at 13kPa showed that He/Xe gas mixture discharge can accumulate more wall charge on MgO surface and the electric field was somewhat higher than those of pure helium discharge during pulse off period under the same discharge conditions.

  18. Novel four-point-probe design and nanorobotic dual endeffector strategy for electrical characterization of as-grown SWCNT bundles

    DEFF Research Database (Denmark)

    Eichhorn, V; Fatikow, S; Sardan Sukas, Özlem

    2010-01-01

    In this paper, a novel nanorobotic strategy for non-destructive and direct electrical characterization of as-grown bundles of single-walled carbon nanotubes (SWCNTs) is presented. For this purpose, test patterns of SWCNT bundles having different diameters are grown on a silicon substrate...... by chemical vapor deposition. A new design of microstructured four-point-probes is proposed and fabricated allowing for direct contacting of vertically aligned bundles of SWCNTs. A nanorobotic setup is upgraded into a dual endeffector system to achieve good electrical contact between four...

  19. Automatic voltage imbalance detector

    Science.gov (United States)

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  20. Performance analysis of the PLC (Power Line Communication) in medium voltage electrical networks; Analise de desempenho de sistemas PLC em redes eletricas de media tensao

    Energy Technology Data Exchange (ETDEWEB)

    Mota, A.A.; Paleta, R. [Pontificia Universidade Catolica de Campinas (PUC-Campinas), SP (Brazil)], E-mail: amota@puc-campinas.edu.br; Mota, L.T.M.; Ricardo, R.A. [Indelmatec Engenharia, Campinas, SP (Brazil)], E-mail: mota@indelmatec.com.br

    2009-07-01

    Nowadays, the information access in communication networks is widely explored due to the increase of Internet users. In this context, the PLC (Power Line Communication) technology is an alternative for data transmission. This technology is based on the usage of transmission/distribution power lines for data transmission. However there are some problems related to the usage of this technology: adequate data transmission rates and generation of acceptable levels of electromagnetic interference (EMI). This work had the objective of studying the performance of PLC systems in medium voltage electrical networks, through the assess of data transmission rates and the generated EMI. Tests were carried out in a test field that corresponded to a medium voltage electrical network and the obtained results show that, under some circumstances, the PLC system does not reach the existent technical recommendations. (author)

  1. Computation of Pacemakers Immunity to 50 Hz Electric Field: Induced Voltages 10 Times Greater in Unipolar Than in Bipolar Detection Mode

    Directory of Open Access Journals (Sweden)

    Cihan Gercek

    2017-03-01

    Full Text Available Thisstudy aims to compute 50 Hz electric field interferences on pacemakers for diverse lead configurations and implantation positions. Induced phenomena in a surface-based virtual human model (standing male grounded with arms closed, 2 mm resolution are computed for vertical exposure using CST EM® 3D software, with and without an implanted pacemaker. Induced interference voltages occurring on the pacemaker during exposure are computed and the results are discussed. The bipolar mode covers 99% of the implanted pacing leads in the USA and Europe, according to statistics. The tip-to-ring distance of a lead may influence up to 46% of the induced voltage. In bipolar sensing mode, right ventricle implantation has a 41% higher induced voltage than right atrium implantation. The induced voltage is in average 10 times greater in unipolar mode than in bipolar mode, when implanted in the right atrium or right ventricle. The electric field threshold of interference for a bipolar sensing mode in the worst case setting is 7.24 kV·m−1, and 10 times higher for nominal settings. These calculations will be completed by an in vitro study.

  2. ASPECTS OF SURGE ARRESTERS’ MAXIMUM OPERATING VOLTAGE CHOICE FOR ELECTRICAL EQUIPMENT INSULATION PROTECTION IN 6-35 KV MAINS

    Directory of Open Access Journals (Sweden)

    Yu. N. Shumilov

    2013-09-01

    Full Text Available The paper shows that, in 6-35 kV mains, application of a non-linear surge arrester (SA with the maximum continuous admissible operating voltage which is 10% higher than the mains’ maximum operating voltage results in the SA protection from overheating and subsequent breakdown at nonnormable lifetime of single-phase arc faults.

  3. Solution processed self-assembled monolayer gate dielectrics for low-voltage organic transistors. : Section Title: Electric Phenomena

    NARCIS (Netherlands)

    Ball, James; Wobkenberg, Paul H.; Colleaux, Florian; Kooistra, Floris B.; Hummelen, Jan C.; Bradley, Donal D. C.; Anthopoulos, Thomas D.

    2008-01-01

    Low-voltage org. transistors are sought for implementation in high vol. low-power portable electronics of the future. Here we assess the suitability of three phosphonic acid based self-assembling mols. for use as ultra-thin gate dielecs. in low-voltage soln. processable org. field-effect

  4. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.

    Science.gov (United States)

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-04-22

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  5. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

    Science.gov (United States)

    Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing

    2016-03-23

    Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.

  6. Low Noise Amplifier for Use with Submillimeter Electric-Field Probes.

    Science.gov (United States)

    1987-05-01

    linear active region of operation, the voltage potentials on the positive and negative terminals of the input opamps are almost identical. Taking them...is introduced into an opamp because the gain from the positive terminal to the output is slightly different in magnitude from the gain from the...circuit. Using a very low noise opamp in a unity gain configuration, the best results can be obtained. The dc voltage supply may 4’v 21 +Vcc 100k IR MEG

  7. Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe.

    Science.gov (United States)

    Sowa, Barbara; Zhang, Xue Hua; Kozielski, Karen A; Dunstan, Dave E; Hartley, Patrick G; Maeda, Nobuo

    2014-11-01

    We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

  8. Electrical Study of Trapped Charges in Copper-Doped Zinc Oxide Films by Scanning Probe Microscopy for Nonvolatile Memory Applications

    Science.gov (United States)

    Su, Ting; Zhang, Haifeng

    2017-01-01

    Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335

  9. Measurement of Wave Electric Fields in Plasmas by Electro-Optic Probe

    CERN Document Server

    Nishiura, M; Mushiake, T; Kawazura, Y; Osawa, R; Fujinami, K; Yano, Y; Saitoh, H; Yamasaki, M; Kashyap, A; Takahashi, N; Nakatsuka, M; Fukuyama, A

    2016-01-01

    Electric field measurement in plasmas permits quantitative comparison between the experiment and the simulation in this study. An electro-optic (EO) sensor based on Pockels effect is demonstrated to measure wave electric fields in the laboratory magnetosphere of the RT-1 device with high frequency heating sources. This system gives the merits that electric field measurements can detect electrostatic waves separated clearly from wave magnetic fields, and that the sensor head is separated electrically from strong stray fields in circumference. The electromagnetic waves are excited at the double loop antenna for ion heating in electron cyclotron heated plasmas. In the air, the measured wave electric fields are in good absolute agreement with those predicted by the TASK/WF2 code. In inhomogeneous plasmas, the wave electric fields in the peripheral region are enhanced compared with the simulated electric fields. The potential oscillation of the antenna is one of the possible reason to explain the experimental resu...

  10. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  11. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  12. Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

    OpenAIRE

    Tourab, Wafa; Babouri, Abdesselam

    2015-01-01

    Background This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Methods Experimental Measurements for the Multi-lines power...

  13. Voltage-induced reduction of graphene oxide

    Science.gov (United States)

    Faucett, Austin C.

    Graphene Oxide (GO) is being widely researched as a precursor for the mass production of graphene, and as a versatile material in its own right for flexible electronics, chemical sensors, and energy harvesting applications. Reduction of GO, an electrically insulating material, into reduced graphene oxide (rGO) restores electrical conductivity via removal of oxygen-containing functional groups. Here, a reduction method using an applied electrical bias, known as voltage-induced reduction, is explored. Voltage-induced reduction can be performed under ambient conditions and avoids the use of hazardous chemicals or high temperatures common with standard methods, but little is known about the reduction mechanisms and the quality of rGO produced with this method. This work performs extensive structural and electrical characterization of voltage-reduced GO (V-rGO) and shows that it is competitive with standard methods. Beyond its potential use as a facile and eco-friendly processing approach, V-rGO reduction also offers record high-resolution patterning capabilities. In this work, the spatial resolution limits of voltage-induced reduction, performed using a conductive atomic force microscope probe, are explored. It is shown that arbitrary V-rGO conductive features can be patterned into insulating GO with nanoscale resolution. The localization of voltage-induced reduction to length scales < 10 nm allows studies of reduction reaction kinetics, using electrical current obtained in-situ, with statistical robustness. Methods for patterning V-rGO nanoribbons are then developed. After presenting sub-10nm patterning of V-rGO nanoribbons in GO single sheets and films, the performance of V-rGO nanoribbon field effect transistors (FETs) are demonstrated. Preliminary measurements show an increase in electrical current on/off ratios as compared to large-area rGO FETs, indicating transport gap modulation that is possibly due to quantum confinement effects.

  14. 高强脉冲电场与臭氧联用降解壳聚糖%Degradation of chitosan by high voltage pulsed electric field and ozone

    Institute of Scientific and Technical Information of China (English)

    罗文波; 唐超; 曾新安; 于淑娟

    2013-01-01

    The vigorous oxidation ability of ozone and the high energy input of pulsed electric field were utilized to degrade the macromolecular chitosan to oligochitosan. The degradation rate was up to 98. 5% after the combined treatment of high voltage pulsed electric field and ozone for 30 minutes in acetic acid homogeneous phase. Three experiment schemes of individual and combined treatments of high voltage pulsed electric field and ozone were designed the results showed that the efficiency of combined treatment was higher than that of single treatments, so the combination of high voltage pulsed electric field and ozone had high synergistic effect. By infrared spectrum analysis, the structure of degraded chitosan was not changed compared to the initial chitosan.%利用臭氧的强氧化性和电场的高能量降解大分子壳聚糖为壳寡糖.在乙酸均相体系中,高强脉冲电场与臭氧联用处理壳聚糖30min时,壳聚糖的降解率达到98.5%.设计了脉冲电场、臭氧单独处理和电场与臭氧联用处理3种实验方案,结果表明:电场与臭氧联用的处理效率要高于分别处理效率,电场与臭氧联用具有协同作用.经红外光谱分析,降解产物与原料壳聚糖结构基本一致.

  15. Directional movement of entomopathogenic nematodes in response to electrical fields: Effects of species, magnitude of voltage, and infective juvenile age

    Science.gov (United States)

    Entomopathogenic nematodes respond to a variety of stimuli when foraging. Previously, we reported a directional response to electrical fields for two entomopathogenic nematode species; specifically, when electrical fields were generated on agar plates Steinernema glaseri (a nematode that utilizes a...

  16. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Mohammed Hussain Essa

    2013-01-01

    Full Text Available In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD was used for the experimental design and response surface methodology (RSM was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R2 ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  17. Simplification Study of FE Model for 1000kV AC Transmission Line Insulator String Voltage and Grading Ring Surface Electric Field Distribution Calculation

    Directory of Open Access Journals (Sweden)

    Guoli Wang

    2013-09-01

    Full Text Available The finite element model of the 1000kV Ultra High Voltage (UHV AC transmission line porcelain insulator string voltage distribution and grading ring surface electric field distribution calculation has the characteristics of large size, complicated structure and various mediums. To insure the accuracy, related influencing factors should be considered to simplify the model reasonably for improving computational efficiency. A whole model and a simplified 3D finite element model of UHV AC transmission line porcelain insulator string were built. The influencing factors including tower, phase conductors, hardware fittings, yoke plate and phase interaction were considered in the analysis. And finally, the rationality of the simplified model was validated. The results comparison show that building a simplified model of three-phase bundled conductors within a certain length, simplifying the tower reasonably, omitting the hardware fittings and yoke plate and containing only single-phase insulator string model is feasible. The simplified model could replace the whole model to analyze the voltage distribution along the porcelain insulator string and the electric field distribution on the grading ring surface, and it can reduce the calculation scale, improve optimization efficiency of insulators string and grading ring parameters.

  18. Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-05-01

    Full Text Available The main objective of this paper was to study a bidirectional direct current to direct current converter (BDC topology with a high voltage conversion ratio for electric vehicle (EV batteries connected to a dc-microgrid system. In this study, an unregulated level converter (ULC cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC is introduced to achieve a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V. In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high voltage step-down conversion ratio (385 V to 48 V. The features, operation principles, steady-state analysis, simulation and experimental results are made to verify the performance of the studied novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be achieved, respectively, in charge and discharge states.

  19. Automatic System for the D.C. High Voltage Qualification of the Superconducting Electrical Circuits of the LHC Machine

    CERN Document Server

    Bozzini, D; Russenschuck, Stephan; Bednarek, M; Jurkiewicz, P; Kotarba, A; Ludwin, J; Olek, S

    2008-01-01

    A d.c. high voltage test system has been developed to verify automatically the insulation resistance of the powering circuits of the LHC. In the most complex case, up to 72 circuits share the same volume inside cryogenic lines. Each circuit can have an insulation fault versus any other circuit or versus ground. The system is able to connect up to 80 circuits and apply a voltage up to 2 kV D.C. The leakage current flowing through each circuit is measured within a range of 1 nA to 1.6 mA. The matrix of measurements allows characterizing the paths taken by the currents and locating weak points of the insulation between circuits. The system is composed of a D.C. voltage source and a data acquisition card. The card is able to measure with precision currents and voltages and to drive up to 5 high voltage switching modules offering 16 channels each. A LabVIEW application controls the system for an automatic and safe operation. This paper describes the hardware and software design, the testing methodology and the res...

  20. Effects of high voltage electrical stimulation on the rate of pH decline, meat quality and color stability in chilled beef carcasses

    Institute of Scientific and Technical Information of China (English)

    Ehsan Gharib Mombeni; Manoochehr Gharib Mombeini; Lucas Chaves Figueiredo; Debora Testoni Dias

    2013-01-01

    Objective:To determine the effects of high voltage electrical stimulation (HVES, 800 Voltage) on rapid decreases in pH values and improvements in meat quality. Methods:A total of 50 beef carcasses were applied, divided into two groups, one as a control and another for HVES. Meat quality was evaluated based on M. longissimus dorsi by examining pH and temperature levels at 1, 2, 5, 10 and 24 h, while color stability was examined seven days after slaughter. Results:HVES decreased the pH values of the meat and accelerated rigor mortis (P Conclusion:the HVES had positive effects on meat quality and color stability, in contrast to undesirable consumer preferences.

  1. A high-altitude balloon experiment to probe stratospheric electric fields from low latitudes

    Science.gov (United States)

    Gurubaran, Subramanian; Shanmugam, Manu; Jawahar, Kaliappan; Emperumal, Kaliappan; Mahavarkar, Prasanna; Buduru, Suneel Kumar

    2017-02-01

    The Earth's electrical environment hosts a giant electrical circuit, often referred to as the global electric circuit (GEC), linking the various sources of electrical generators located in the lower atmosphere, the ionosphere and the magnetosphere. The middle atmosphere (stratosphere and mesosphere) has been traditionally believed to be passively transmitting electric fields generated elsewhere. Some observations have reported anomalously large electric fields at these altitudes, and the scientific community has had to revisit the earlier hypothesis time and again. At stratospheric altitudes and especially at low latitudes, horizontal electric fields are believed to be of ionospheric origin. Though measurements of these fields from a balloon platform are challenging because of their small magnitudes (around a few mV m-1), a suitably designed long-duration balloon experiment capable of detecting such small fields can provide useful information on the time evolution of ionospheric electric fields, which is otherwise possible only using radar or satellite in situ measurements. We present herein details of one such experiment, BEENS (Balloon Experiment on the Electrodynamics of Near Space), carried out from a low-latitude site in India. The instrument package for this experiment is comprised of four deployable booms for measurements of horizontal electric fields and one inclined boom for vertical electric field measurements, all equipped with conducting spheres at the tip. The experiment was conducted from Hyderabad (17.5° N, 78.6° E) during the post-midnight hours on 14 December 2013. In spite of a few shortcomings we report herein, a noticeable feature of the observations has been the detection of horizontal electric fields of ˜ 5 mV m-1 at the stratospheric altitudes of ˜ 35 km.

  2. Measurements of Electric Field Fluctuations Using a Capacitive Probe on the MST Reversed Field Pinch

    Science.gov (United States)

    Tan, Mingsheng; Almagri, A. F.; Sarff, J. S.; McCollam, K. J.; Triana, J. C.; Li, H.; Ding, W. X.; Liu, W.

    2015-11-01

    Experimental measurements and extended MHD computation reveal that both flow and current density fluctuations are important for the magnetic relaxation of RFP plasmas via tearing fluctuations. Motivated by these results, we have developed a multi-electrode capacitive probe for radial profile measurements of the electrostatic potential deep in the plasma. The capacitive probe measures the ac plasma potential via electrodes insulated from the plasma using an annular boron nitride dielectric (also the particle shield), provided the secondary emission is sufficiently large (Te>20 eV). The probe has ten sets of four capacitors with 1.5 cm radial separation. At each radius, four capacitors are arranged on a 1.3 cm square grid. This probe has been inserted up to 15 cm from the wall in 200 kA deuterium plasmas. The fluctuation amplitudes increase during the sawtooth crash and the power spectrum broadens (similar to the behavior of magnetic field fluctuations). The frequency bandwidth allows measurements of the radial coherence and phase of the fluctuations associated with rotating tearing modes up to the Alfvénic range. A next-step goal is measurement of the total dynamo emf, ~ /B0 , to complement ongoing measurements of the Hall dynamo emf, / ne , using a deep-insertion magnetic probe. M. Tan is supported by ITER-China Program. Work is supported by US DOE.

  3. Four point probe structures with buried electrodes for the electrical characterization of ultrathin conducting films

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, R.A.M.; Kovalgin, A.Y.; Schmitz, J.

    2009-01-01

    Test structures for the electrical characterization of ultrathin conductive (ALD) films are presented based on buried electrodes on which the ultrathin film is deposited. This work includes test structure design and fabrication, and the electrical characterization of ALD TiN films down to 4 nm. It i

  4. Efficient design and simulation of an expandable hybrid (wind-photovoltaic) power system with MPPT and inverter input voltage regulation features in compliance with electric grid requirements

    Energy Technology Data Exchange (ETDEWEB)

    Skretas, Sotirios B.; Papadopoulos, Demetrios P. [Electrical Machines Laboratory, Department of Electrical and Computer Engineering, Democritos University of Thrace (DUTH), 12 V. Sofias, 67100 Xanthi (Greece)

    2009-09-15

    In this paper an efficient design along with modeling and simulation of a transformer-less small-scale centralized DC - bus Grid Connected Hybrid (Wind-PV) power system for supplying electric power to a single phase of a three phase low voltage (LV) strong distribution grid are proposed and presented. The main components of the hybrid system are: a PV generator (PVG); and an array of horizontal-axis, fixed-pitch, small-size, variable-speed wind turbines (WTs) with direct-driven permanent magnet synchronous generator (PMSG) having an embedded uncontrolled bridge rectifier. An overview of the basic theory of such systems along with their modeling and simulation via Simulink/MATLAB software package are presented. An intelligent control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component (PVG and WTs); to guarantee DC voltage regulation/stabilization at the input of the inverter; to transfer the total produced electric power to the electric grid, while fulfilling all necessary interconnection requirements. Finally, a practical case study is conducted for the purpose of fully evaluating a possible installation in a city site of Xanthi/Greece, and the practical results of the simulations are presented. (author)

  5. Electrical characterization of Cu(In,Ga)Se{sub 2}-solar cells by voltage dependent time-resolved photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Maiberg, Matthias, E-mail: matthias.maiberg@physik.uni-halle.de; Spindler, Conrad; Jarzembowski, Enrico; Scheer, Roland

    2015-05-01

    Time-resolved photoluminescence (TRPL) is a promising method for the investigation of charge carrier dynamics and recombination kinetics in semiconductor devices. To characterize Cu(In,Ga)Se{sub 2} (CIGSe) solar cells, we measured TRPL for different applied external forward voltages. We show that the TRPL decay time increases with increasing voltage in case of a high excitation intensity. This result is valid for a wide range of excitation frequencies of the laser. By simulation of the measured transients we determined semiconductor parameters which allow fitting the experimental photoluminescence transients for different voltages. The deduced quantities are the lifetime for deep defect assisted Schockley-Read-Hall recombination, doping density and charge carrier mobilities of the solar cell's absorber layer with values of 10 ns, 2 × 10{sup 15} cm{sup −3} and 1 cm{sup 2} V{sup −1} s{sup −1}, respectively, for a standard CIGSe solar cell. We further studied the appearance of a photovoltage in TRPL experiments with single-photon-counting methods. By experimental results we show a dependence of the open circuit voltage on the laser repetition rate, which influences the TRPL decay. - Highlights: • Time-resolved photoluminescence on Cu(In,Ga)Se{sub 2}-solar for different bias voltages • Build up of a photovoltage that varies luminescence decay for open circuit conditions • Inhibition of luminescence decay for increasing bias forward voltages • Determination of charge carrier mobilities and minority carrier lifetime by simulations.

  6. Evaluation of the electrical contact area in contact-mode scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Celano, Umberto, E-mail: celano@imec.be, E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried [IMEC, Kapeldreef 75, B-3001 Heverlee (Leuven) (Belgium); Department of Physics and Astronomy (IKS), KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Hantschel, Thomas; Giammaria, Guido; Conard, Thierry; Bender, Hugo [IMEC, Kapeldreef 75, B-3001 Heverlee (Leuven) (Belgium)

    2015-06-07

    The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10 nm{sup 2}) of the physical contact (∼100 nm{sup 2}) is effectively contributing to the transport phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10 nm electrical resolution observed in C-AFM measurements.

  7. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  8. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    Science.gov (United States)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.

  9. Using a water-confined carbon nanotube to probe the electricity of sequential charged segments of macromolecules

    Institute of Scientific and Technical Information of China (English)

    Wang Yu; Zhao Yan-Jiao; Huang Ji-Ping

    2012-01-01

    The detection of macromolecular conformation is particularly important in many physical and biological applications.Here we theoretically explore a method for achieving this detection by probing the electricity of sequential charged segments of macromolecules.Our analysis is based on molecular dynamics simulations,and we investigate a single file of water molecules confined in a half-capped single-walled carbon nanotube (SWCNT) with an external electric charge of +e or -e (e is the elementary charge).The charge is located in the vicinity of the cap of the SWCNT and along the centerline of the SWCNT.We reveal the picosecond timescaie for the re-orientation (namely,from one unidirectional direction to the other) of the water molecules in response to a switch in the charge signal,-e → +e or +e → e.Our results are well understood by taking into account the electrical interactions between the water molecules and between the water molecules and the external charge.Because such signals of re-orientation can be magnified and transported according to Tu et al.[2009 Proc.Natl.Acad.Sci.USA 106 18120],it becomes possible to record fingerprints of electric signals arising from sequential charged segments of a macromolecule,which are expected to be useful for recognizing the conformations of some particular macromolecules.

  10. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    National Research Council Canada - National Science Library

    F Sohbatzadeh; M Bagheri; S Motallebi

    2017-01-01

    In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed...

  11. Characterization of AlN/AlGaN/GaN:C heterostructures grown on Si(111) using atom probe tomography, secondary ion mass spectrometry, and vertical current-voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Martin, E-mail: martin.huberVIH@infineon.com [Infineon Technologies Austria AG, Siemensstrasse 2, A-9500 Villach, Austria and Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria); Daumiller, Ingo; Andreev, Andrei; Silvestri, Marco; Knuuttila, Lauri; Lundskog, Anders [Infineon Technologies Austria AG, Siemensstrasse 2, A-9500 Villach (Austria); Wahl, Michael; Kopnarski, Michael [IFOS Institut fuer Oberflaechen- und Schichtanalytik GmbH, Trippstadter Strasse 120, D-67663 Kaiserslautern (Germany); Bonanni, Alberta [Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria)

    2016-03-28

    Complementary studies of atom probe tomography, secondary ion mass spectrometry, and vertical current-voltage measurements are carried out in order to unravel the influence of C-doping of GaN on the vertical leakage current of AlN/AlGaN/GaN:C heterostructures. A systematic increment of the vertical blocking voltage at a given current density is observed in the structures, when moving from the nominally undoped conditions—corresponding to a residual C-background of ∼10{sup 17 }cm{sup −3}—to a C-content of ∼10{sup 19 }cm{sup −3} in the GaN layer. The value of the vertical blocking voltage saturates for C concentrations higher than ∼10{sup 19 }cm{sup −3}. Atom probe tomography confirms the homogeneity of the GaN:C layers, demonstrating that there is no clustering at C-concentrations as high as 10{sup 20 }cm{sup −3}. It is inferred that the vertical blocking voltage saturation is not likely to be related to C-clustering.

  12. Review of electrical characterization of ultra-shallow junctions with micro four-point probes

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Hansen, Ole; Hansen, Torben M.;

    2010-01-01

    techniques will become even more evident. In several recent studies micro four-point probe (M4PP) has been demonstrated as a reliable high precision metrology method for both sheet resistance and Hall effect measurements of ultra-shallow implants and has revealed a promising potential for carrier profiling....

  13. Typical values of the electric drift E × B/B2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements

    Science.gov (United States)

    Lejosne, Solène; Mozer, F. S.

    2016-12-01

    The electric drift E × B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependences of the components on radial distance, magnetic local time, and geographic longitude are examined. The results from Van Allen Probe A agree with Van Allen Probe B. They show, among other things, a typical corotation lag of the order of 5 to 10% below L 2.6, as well as a slight radial transport of the order of 20 m s-1. The magnetic local time dependence of the electric drift is consistent with that of the ionosphere wind dynamo below L 2 and with that of a solar wind-driven convection electric field above L 2. A secondary longitudinal dependence of the electric field is also found. Therefore, this work also demonstrates that the instruments on board Van Allen Probes are able to perform accurate measurements of the electric drift below L 3.

  14. Thermal runaway in polyimide at high electric field probed by infrared thermography

    Science.gov (United States)

    Diaham, Sombel; Belijar, Guillaume; Locatelli, Marie-Laure; Lebey, Thierry

    2015-03-01

    An original way for characterizing dielectrics under high electric field and high temperature based on the coupling between electric current measurements and real-time fast infrared (IR) thermography is demonstrated. Particularly, the Joule heating phenomenon at high field is quantified by 2D-temperature cartography in a polyimide (PI) film set at an initial temperature of 300 °C through IR observations of the polarized electrode. 2D-temperature cartography highlights the temperature increase with increasing the electric field. The thermal runway occurs prior to the dielectric breakdown from an electric field threshold of 140-150 V/μm. This corresponds to a dissipated volume power density between 2 and 5 mW/μm3. Such values report the limit of the electro-thermal equilibrium in PI film.

  15. An evaluation of two conducted electrical weapons and two probe designs using a swine comparative cardiac safety model.

    Science.gov (United States)

    Dawes, Donald Murray; Ho, Jeffrey D; Moore, Johanna C; Miner, James R

    2013-09-01

    Despite human laboratory and field studies that have demonstrated a reasonable safety profile for TASER brand conducted electrical weapons (CEW), the results of some swine studies and arrest related deaths temporal to the use of the CEWs continue to raise questions regarding cardiac safety. TASER International, Inc., has released a new CEW, the TASER X2, touted to have a better safety profile than its long-standing predecessor, the TASER X26. We have developed a model to assess the relative cardiac safety of CEWs and used it to compare the TASER X2 and the TASER X26. This safety model was also used to assess the relative safety of an experimental probe design as compared to the standard steel probe. Our results suggest that the TASER X2 has an improved safety margin over the TASER X26. The new probe design also has promise for enhanced cardiac safety, although may have some disadvantages when compared to the existing design which would make field use impractical.

  16. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers

    CERN Document Server

    Schellart, P; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-01-01

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  17. Photoluminescence as a Probe of the Electrical Charge Dependence of Gold Nanoparticles.

    Science.gov (United States)

    Obradovic, M; Di Vece, M; Asselberghs, I; Grandjean, D; Clays, K; Lievens, P

    2015-12-01

    Electro-optical switching can be achieved by changing the optical absorption of metal nanoparticles by adding or removing electrical charge, corresponding to increased, respectively, decreased electron density. In this work a different approach is taken by changing the photoluminescence properties as a function of electrical charge on gold nanoparticles. Whereas larger gold nanoparticles (diameter d = 5 and 10 nm), exhibiting a plasmon resonance peak in the absorption spectrum, were used to measure changes of the optical absorption spectrum upon electrical charging, for smaller gold nanoparticles (d = 2 and 5 nm) electrical charging was observed via changes of the photoluminescence. Increase and decrease in photoluminescence was observed at positive and negative applied potentials, respectively. The relation between changes of optical absorption and photoluminescence for the 5 nm particles by electrical charging provides information on the influence of the charge state on the electronic properties and therefore the optical transition probability. The reported observation that not only the optical absorption, but also the photoluminescence is affected by alteration of the electrical charge onto gold nanoparticles may open a new way towards electro-optical switching and bio-sensing.

  18. Vibrational Stark Effect to Probe the Electric-Double Layer of the Ionic Liquid-Metal Electrodes

    Science.gov (United States)

    Garcia Rey, Natalia; Moore, Alexander Knight; Toyouchi, Shuichi; Dlott, Dana

    2017-06-01

    Vibrational sum frequency generation (VSFG) spectroscopy is used to study the effect of room temperature ionic liquids (RTILs) in situ at the electrical double layer (EDL). RTILs have been recognized as electrolytes without solvent for applications in batteries, supercapacitors and electrodeposition^{1}. The molecular response of the RTIL in the EDL affects the performance of these devices. We use the vibrational Stark effect on CO as a probe to detect the changes in the electric field affected by the RTIL across the EDL on metal electrodes. The Stark effect is a shift in the frequency in response to an externally applied electric field and also influenced by the surrounding electrolyte and electrode^{2}. The CO Stark shift is monitored by the CO-VSFG spectra on Pt or Ag in a range of different imidazolium-based RTILs electrolytes, where their composition is tuned by exchanging the anion, the cation or the imidazolium functional group. We study the free induction decay (FID)^{3} of the CO to monitor how the RTIL structure and composition affect the vibrational relaxation of the CO. Combining the CO vibrational Stark effect and the FID allow us to understand how the RTIL electrochemical response, molecular orientation response and collective relaxation affect the potential drop of the electric field across the EDL, and, in turn, how determines the electrical capacitance or reactivity of the electrolyte/electrode interface. ^{1}Fedorov, M. V.; Kornyshev, A. A., Ionic Liquids at Electrified Interfaces. Chem. Rev. 2014, 114, 2978-3036. ^{2} (a) Lambert, D. K., Vibrational Stark Effect of Adsorbates at Electrochemical Interfaces. Electrochim. Acta 1996, 41, 623-630. (b) Oklejas, V.; Sjostrom, C.; Harris, J. M., SERS Detection of the Vibrational Stark Effect from Nitrile-Terminated SAMs to Probe Electric Fields in the Diffuse Double-Layer. J. Am. Chem. Soc. 2002, 124, 2408-2409. ^{3}Symonds, J. P. R.; Arnolds, H.; Zhang, V. L.; Fukutani, K.; King, D. A

  19. Analysis of the Mechanisms Determining the Thermal and Electrical Properties of Epoxy Nanocomposites for High Voltage Applications

    NARCIS (Netherlands)

    Tsekmes, I.A.

    2016-01-01

    The addition of microsized fillers to polymers, in order to tailor their properties, has been extensively used in many industrial applications since the 1960s. The same approach applies to the field of electrical insulation. Epoxy resin is a widely used polymer in the electrical power sector, but it

  20. Analysis of the Mechanisms Determining the Thermal and Electrical Properties of Epoxy Nanocomposites for High Voltage Applications

    NARCIS (Netherlands)

    Tsekmes, I.A.

    2016-01-01

    The addition of microsized fillers to polymers, in order to tailor their properties, has been extensively used in many industrial applications since the 1960s. The same approach applies to the field of electrical insulation. Epoxy resin is a widely used polymer in the electrical power sector, but it

  1. New Technology of Low Voltage Electrical Apparatus to Face the 21 Century%面向21世纪的低压电器新技术

    Institute of Scientific and Technical Information of China (English)

    陈德桂

    2001-01-01

    综合国内外低压电器近期发展,提出面向21世纪的低压电器新技术。从智能电器的网络化和信息化、信息技术与虚拟电器、环保电器和电器的高性能、小型化与结构设计现代化等方面进行了探讨。%The development of LV electrical apparatus at home and abroad in recent years was summarized. New technologies of low voltage electrical apparatus to face the 21 century were presented, which includes networked smart apparatus and information smart apparatus, simulation technology and virtual apparatus, environment protection apparatus, high performance, small size and modern structure design.

  2. Fault Diagnosis on Medium Voltage (MV Electric Power Distribution Networks: The Case of the Downstream Network of the AES-SONEL Ngousso Sub-Station

    Directory of Open Access Journals (Sweden)

    Thomas Tamo Tatietse

    2009-04-01

    Full Text Available An analysis of the Medium Voltage (MVelectricity power distribution network operated by Cameroon’s AES-SONEL company shows that losses are very high due to energy which is produced but not distributed and that the duration of power interruptions as a result of these faults is long due to the time used in searching for the faults. Given that quick detection of faults is a sure means of improving availability and productivity in any company, we hereby propose a system of real-time diagnosis of the faults on AES-SONEL’s electric power distribution network. After an inventory of typical faults on electric power networks and the proposal of a tool for their identification, we propose a system for the detection and localization of these various failures. The implementation of the system on a Programmable Logic Controller (PLC enables the performance of the system to be assessed.

  3. The influence of anatomical and physiological parameters on the interference voltage at the input of unipolar cardiac pacemakers in low frequency electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Joosten, S; Pammler, K; Silny, J [Research Center for Bioelectromagnetic Interaction (FEMU), University Hospital, Aachen University (Germany)], E-mail: joosten@femu.rwth-aachen.de

    2009-02-07

    The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.

  4. Electrostatic Probe with Shielded Probe Insulator Tube for Low Disturbing Plasma Measurements in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    D. Staack, Y. Raitses, and N.J. Fisch

    2003-07-10

    Electrostatic probes are widely used to measure spatial plasma parameters of the quasi-neutral plasma in Hall thrusters and similar ExB electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In Hall thrusters, probe-induced perturbations can produce changes in the discharge current and plasma parameters on the order of their steady state values. These perturbations are explored by varying the material, penetration distance, and residence time of various probe designs. A possible cause of these perturbations appears to be the secondary electron emission, induced by energetic plasma electrons, from insulator ceramic tubes in which the probe wire is inserted. A new probe in which a low secondary electron emission material, such as metal, shields the probe ceramic tube, is shown to function without producing such large perturbations. A segmentation of this shield further prevents probe -induced perturbations, by not shortening the plasma through the conductive shield. In a set of experiments with a segmented shield probe, the thruster was operated in the input power range of 500-2.5 kW and discharge voltages of 200-500 V, while the probe-induced perturbations of the discharge current were below 4% of its steady state value in the region in which 90% of the voltage drop takes place.

  5. Electrically conducting, ultra-sharp, high aspect-ratio probes for AFM fabricated by electron-beam-induced deposition of platinum

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jason, E-mail: jason.brown@physics.ox.ac.uk [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Kocher, Paul; Ramanujan, Chandra S; Sharp, David N [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Torimitsu, Keiichi [NTT Basic Research Laboratories, NTT Corporation, Atsugi, 243-0198 (Japan); Ryan, John F [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2013-10-15

    We report on the fabrication of electrically conducting, ultra-sharp, high-aspect ratio probes for atomic force microscopy by electron-beam-induced deposition of platinum. Probes of 4.0 ±1.0 nm radius-of-curvature are routinely produced with high repeatability and near-100% yield. Contact-mode topographical imaging of the granular nature of a sputtered gold surface is used to assess the imaging performance of the probes, and the derived power spectral density plots are used to quantify the enhanced sensitivity as a function of spatial frequency. The ability of the probes to reproduce high aspect-ratio features is illustrated by imaging a close-packed array of nanospheres. The electrical resistance of the probes is measured to be of order 100 kΩ. - Highlights: • Electrically conducting, ultra-sharp, high aspect-ratio probes for AFM with radius-of-curvature 4.0±±1.0 nm. • AFM probe fabrication by electron-beam-induced deposition of platinum. • Enhanced spatial resolution demonstrated through AFM of sputtered gold grains. • AFM imaging of deep clefts and recesses on a close-packed array of nanospheres.

  6. Investigation of SOL parameters and divertor particle flux from electric probe measurements in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Bak, J.G., E-mail: jgbak@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, H.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Bae, M.K. [Hanyang University, Seoul (Korea, Republic of); Juhn, J.W.; Seo, D.C.; Bang, E.N. [National Fusion Research Institute, Daejeon (Korea, Republic of); Shim, S.B. [Pusan National University, Pusan (Korea, Republic of); Chung, K.S. [Hanyang University, Seoul (Korea, Republic of); Lee, H.J. [Pusan National University, Pusan (Korea, Republic of); Hong, S.H. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    The upstream scrape-off layer (SOL) profiles and downstream particle fluxes are measured with a fast reciprocating Langmuir probe assembly (FRLPA) at the outboard mid-plane and a fixed edge Langmuir probe array (ELPA) at divertor region, respectively in the KSTAR. It is found that the SOL has a two-layer structure in the outboard wall-limited (OWL) ohmic and L-mode: a near SOL (∼5 mm zone) with a narrow feature and a far SOL with a broader profile. The near SOL width evaluated from the SOL profiles in the OWL plasmas is comparable to the scaling for the L-mode divertor plasmas in the JET and AUG. In the SOL profiles and the divertor particle flux profile during the ELMy H-modes, the characteristic e-folding lengths of electron temperature, plasma density and particle flux during an ELM phase are about two times larger than ones at the inter ELM.

  7. Static voltage fluctuation compensator for electric railway using self-commutated converters; Jireishiki denryoku henkan sochi ni yoru kidensoku denryoku yuzu hoshiki koryu denki tetsudoyo den`atsu hendo hosho sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Uzuka, T.; Hase, S.; Mochida, Y. [Railway Technical Research Institute, Tokyo (Japan); Takeda, M.; Miyashita, T. [Mitsubishi Electric Corp., Tokyo (Japan); Ueda, T. [Nihon University, Tokyo (Japan)

    1995-11-20

    In this paper, authors describe a basic figure of static voltage compensator for electric railway, named RPC (Railway Static Power Conditioner), its compensating philosophy and successful result of its test using a small model of RPC. An AC electric railway is placed under a load single phase, rapidly changing. To avoid voltage fluctuations under single phase loads, electric power is received from a larger source. And at a feeding subsection, 3-phase electric power is transferred to paired directional single-phase feeding electric power. Authors already proposed a static voltage compensator for AC electric railway, called `RPC`. The RPC links a pair of feeding circuits using 2 self-commutated inverters. At the substation, the RPC accommodates an active power of the directional pair of feeding circuits to balance 3-phase power and compensate a reactive power to regulate a 3-phase voltage fluctuation. At a sectioning post, it can compensate for voltage drop using a reactive power. Also it can act as an active filter to compensate higher-harmonics. Authors have made a small model (220V, 20kVA) of RPC. And we report on the results of tests using this small model under various conditions. The results indicate that RPC can accommodate single phase loads such as transformers and thyristors, can handle an exciting rush current of transformer, can compensate higher-harmonics and so on. 11 refs., 15 figs., 2 tabs.

  8. A Comparative Study of Electric Load Curve Changes in an Urban Low-Voltage Substation in Spain during the Economic Crisis (2008–2013)

    Science.gov (United States)

    Lara-Santillán, Pedro M.; Mendoza-Villena, Montserrat; Fernández-Jiménez, L. Alfredo; Mañana-Canteli, Mario

    2014-01-01

    This paper presents a comparative study of the electricity consumption (EC) in an urban low-voltage substation before and during the economic crisis (2008–2013). This low-voltage substation supplies electric power to near 400 users. The EC was measured for an 11-year period (2002–2012) with a sampling time of 1 minute. The study described in the paper consists of detecting the changes produced in the load curves of this substation along the time due to changes in the behaviour of consumers. The EC was compared using representative curves per time period (precrisis and crisis). These representative curves were obtained after a computational process, which was based on a search for days with similar curves to the curve of a determined (base) date. This similitude was assessed by the proximity on the calendar, day of the week, daylight time, and outdoor temperature. The last selection parameter was the error between the nearest neighbour curves and the base date curve. The obtained representative curves were linearized to determine changes in their structure (maximum and minimum consumption values, duration of the daily time slot, etc.). The results primarily indicate an increase in the EC in the night slot during the summer months in the crisis period. PMID:24895677

  9. A comparative study of electric load curve changes in an urban low-voltage substation in Spain during the economic crisis (2008-2013).

    Science.gov (United States)

    Lara-Santillán, Pedro M; Mendoza-Villena, Montserrat; Fernández-Jiménez, L Alfredo; Mañana-Canteli, Mario

    2014-01-01

    This paper presents a comparative study of the electricity consumption (EC) in an urban low-voltage substation before and during the economic crisis (2008-2013). This low-voltage substation supplies electric power to near 400 users. The EC was measured for an 11-year period (2002-2012) with a sampling time of 1 minute. The study described in the paper consists of detecting the changes produced in the load curves of this substation along the time due to changes in the behaviour of consumers. The EC was compared using representative curves per time period (precrisis and crisis). These representative curves were obtained after a computational process, which was based on a search for days with similar curves to the curve of a determined (base) date. This similitude was assessed by the proximity on the calendar, day of the week, daylight time, and outdoor temperature. The last selection parameter was the error between the nearest neighbour curves and the base date curve. The obtained representative curves were linearized to determine changes in their structure (maximum and minimum consumption values, duration of the daily time slot, etc.). The results primarily indicate an increase in the EC in the night slot during the summer months in the crisis period.

  10. A Comparative Study of Electric Load Curve Changes in an Urban Low-Voltage Substation in Spain during the Economic Crisis (2008–2013

    Directory of Open Access Journals (Sweden)

    Pedro M. Lara-Santillán

    2014-01-01

    Full Text Available This paper presents a comparative study of the electricity consumption (EC in an urban low-voltage substation before and during the economic crisis (2008–2013. This low-voltage substation supplies electric power to near 400 users. The EC was measured for an 11-year period (2002–2012 with a sampling time of 1 minute. The study described in the paper consists of detecting the changes produced in the load curves of this substation along the time due to changes in the behaviour of consumers. The EC was compared using representative curves per time period (precrisis and crisis. These representative curves were obtained after a computational process, which was based on a search for days with similar curves to the curve of a determined (base date. This similitude was assessed by the proximity on the calendar, day of the week, daylight time, and outdoor temperature. The last selection parameter was the error between the nearest neighbour curves and the base date curve. The obtained representative curves were linearized to determine changes in their structure (maximum and minimum consumption values, duration of the daily time slot, etc.. The results primarily indicate an increase in the EC in the night slot during the summer months in the crisis period.

  11. An Integrated Wireless Power Management and Data Telemetry IC for High-Compliance-Voltage Electrical Stimulation Applications.

    Science.gov (United States)

    Zhao, Jianming; Yao, Lei; Xue, Rui-Feng; Li, Peng; Je, Minkyu; Xu, Yong Ping

    2016-02-01

    This paper describes a 13.56-MHz wireless power recovery system with bidirectional data link for high-compliance-voltage neural/muscle stimulator. The power recovery circuit includes a 2-stage rectifier, 2 LDOs and a high voltage charge pump to provide 3 DC outputs: 1.8 V, 3.3 V and 20 V for the stimulator. A 2-stage time division based rectifier is proposed to provide 3 DC outputs simultaneously. It improves the power efficiency without introducing any impact on the forward data recovery. The 20 V output is generated by a modified low ripple charge pump that reduces the ripple voltage by 40%. The power management system shows 49% peak power efficiency. The data link includes a clock and data recovery (CDR) circuit and a load shift keying (LSK) modulator for bidirectional data telemetry. The forward and backward data rates of the data telemetry are 61.5 kbps and 33.3 kbps, respectively. In addition, a power monitor circuit for closed-loop power control is implemented. The whole system has been fabricated in a 24 V HV LDMOS option 1.8 μ m CMOS process, occupying a core area of around 3.5 mm (2).

  12. Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors.

    Science.gov (United States)

    Kisner, Alexandre; Heggen, Marc; Mayer, Dirk; Simon, Ulrich; Offenhäusser, Andreas; Mourzina, Yulia

    2014-05-21

    Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as -CH3, -NH2 and -COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold-sulfur moiety interactions, the interfacial charge due to the acid-base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer.

  13. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  14. Empirical estimates and theoretical predictions of the shorting factor for the THEMIS double-probe electric field instrument

    Science.gov (United States)

    Califf, S.; Cully, C. M.

    2016-07-01

    Double-probe electric field measurements on board spacecraft present significant technical challenges, especially in the inner magnetosphere where the ambient plasma characteristics can vary dramatically and alter the behavior of the instrument. We explore the shorting factor for the Time History of Events and Macroscale Interactions during Substorms electric field instrument, which is a scale factor error on the measured electric field due to coupling between the sensing spheres and the long wire booms, using both an empirical technique and through simulations with varying levels of fidelity. The empirical data and simulations both show that there is effectively no shorting when the spacecraft is immersed in high-density plasma deep within the plasmasphere and that shorting becomes more prominent as plasma density decreases and the Debye length increases outside the plasmasphere. However, there is a significant discrepancy between the data and theory for the shorting factor in low-density plasmas: the empirical estimate indicates ~0.7 shorting for long Debye lengths, but the simulations predict a shorting factor of ~0.94. This paper systematically steps through the empirical and modeling methods leading to the disagreement with the intention of motivating further study on the topic.

  15. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  16. Electrical transport properties and laser-induced voltage effect in La{sub 0.8}Ca{sub 0.2}MnO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Theingi, Mya [Kunming University of Science and Technology, Faculty of Materials Science and Engineering, Kunming (China); University of Yangon, Department of Chemistry, Yangon (Myanmar); Ma, Ji; Zhang, Hui; Cui, Qi; Yi, Jianhong; Chen, Qingming [Kunming University of Science and Technology, Faculty of Materials Science and Engineering, Kunming (China)

    2014-03-15

    La{sub 0.8}Ca{sub 0.2}MnO{sub 3} (LCMO) thin films about 200 nm thickness were grown on untilted and tilted (5 , 10 and 15 ) LaAlO{sub 3} (100) single crystal substrates by pulsed laser deposition technique. Electrical properties of the epitaxial thin films were studied by conventional four-probe technique and the anisotropic thermoelectric properties of the films grown on the tilted substrates have been investigated by laser-induced voltage (LIV) measurements. X-ray diffraction analysis and atomic force microscopy results show that the prepared LCMO thin films have a single phase and high crystalline quality. The remarkably large temperature coefficient of resistance (TCR) values (above 11 %/K) are observed in the all films. TCR value reaches 18 %/K on the film grown on 10 tilted substrate. The intensity of LIV signals monotonously increases with the tilting angles, and the largest signal is 148 mV with the fast time response 229 ns for the film grown on 15 tilted substrate. (orig.)

  17. Direct fabrication of electrically functional microstructures by fully voltage-controlled electrohydrodynamic jet printing of silver nano-ink

    Science.gov (United States)

    Wang, Ke; Stark, John P. W.

    2010-06-01

    We report electrohydrodynamic jet (E-jet) printing of a commercialised silver nano-ink in fully voltage-controlled fashion. Metallic pads and conducting tracks with hundred-micron feature size were drop-on-demands produced on Si substrates. Layer-by-layer printing was further performed, demonstrating a capability in creating 3D multistructures. Planar pattern with a large inductance of 2.5 μH and an excellent resistivity of 4.2×10-8 Ω m was fabricated, showing a true inductive device. Our result demonstrates a feasibility of E-jet printing in the application of smart electronic devices fabrication.

  18. Fast charge exchange ions in high power impulse magnetron sputtering of titanium as probes for the electrical potential

    Science.gov (United States)

    Breilmann, W.; Maszl, C.; von Keudell, A.

    2017-03-01

    High power impulse magnetron sputtering (HiPIMS) plasmas exhibit a high ionization fraction of the sputtered material and ions with high kinetic energies, which produce thin films with superior quality. These ion energy distribution functions (IEDF) contain energetic peaks, which are believed to be linked to a distinct electrical potential hump {{Δ }}{{{Φ }}}{{ionization}{{zone}}} inside rotating localized ionization zones, so called spokes, at target power densities above 1 kW cm‑2. Any direct measurement of this electrical potential structure is, however, very difficult due to the dynamic nature of the spokes and the very high local power density, which hampers the use of conventional emissive probes. Instead, we use a careful analysis of the IEDFs for singly and doubly charged titanium ions from a HiPIMS plasma at varying target power density. The energy peaks in the IEDFs measured at the substrate depend on the point of ionization and any charge exchange collisions on the path between ionization and impact at the substrate. Thereby, the IEDFs contain a convoluted information about the electrical potential structure inside the plasma. The analysis of these IEDFs reveal that higher ionization states originate at high target power densities from the central part of the plasma spoke, whereas singly charged ions originate from the perimeter of the plasma spoke. Consequently, we observe different absolute ion energies with the energy of Ti2+ being slightly higher than two times the energy of Ti+. Additional peaks are observed in the IEDFs of Ti+ originating from charge exchange reactions from Ti2+ and Ti3+ with titanium neutrals. Based on this analysis of the IEDFs, the structure of the electrical potential inside a spoke is inferred yielding {{Δ }}{{{Φ }}}{{ionization}{{zone}}} = 25 V above the plasma potential, irrespective of target power density.

  19. Magnetic domains in multiferroic YMn$2O5 probed by Spherical Neutron Polarimetry under electric field

    Science.gov (United States)

    Vecchini, Carlo; Chapon, Laurent; Radaelli, Paolo; Daoud-Aladine, Aziz; Brown, Jane; Chatterji, Tapan; Park, Soonyong; Cheong, Sang-Wook

    2008-03-01

    Precise determination of the magnetic structures in multiferroics RMn2O5 (R: Y, Ho, Bi) have been obtained by single crystal neutron diffraction. The analysis shows the presence of zig-zag antiferromagnetic chains in the ab-plane. An additional weak magnetic component parallel to the c-axis was detected which is modulated in phase quadrature with the a-b components. The nature and population of the coexisting antiferromagnetic domains in YMn2O5 have been determined by Spherical Neutron Polarimetry under an external electric field. We have proved that reversing the electrical polarity results in the inversion of the population of two types of antiferromagnetic domains, with opposite in-plane spin components. This analysis strongly supports theories in which the coupling of the magnetic configuration to the ferroelectric polarisation is due to magnetic exchange striction and likely not related to the small cycloidal modulation in the bc-plane.

  20. Application of scanning Kelvin probe microscopy for the electrical characterization of microcrystalline silicon for photovoltaics

    CERN Document Server

    Breymesser, A

    2000-01-01

    constructed and built. Great effort was concentrated on the characterization of the SKPM experiment. On the basis of an extended knowledge about the performance investigations concentrated on cross sections of microcrystalline silicon diode structures produced by hot-wire chemical vapor deposition (HW-CVD). A pin structure for the diodes was chosen due to the low diffusion lengths within this rather defective material. The evolution of the built-in electric drift field within the intrinsic absorber is a prerequisite for obtaining high short circuit current densities. SKPM was able to provide information about the potential and electric field distribution within the cross-sectioned diode structures. In conjunction with simulations statements about actual defect and dopant distributions could be derived. Several diode structures with different deposition and compensation conditions of the naturally n-type intrinsic layer were investigated. In order to explore the character of the defects deep level transient sp...

  1. Probing the sheath electric field with a crystal lattice by using thermophoresis in dusty plasma

    CERN Document Server

    Land, Victor; Matthews, Lorin; Hyde, Truell

    2010-01-01

    A two-dimensional dust crystal levitated in the sheath of a modified Gaseous Electronics Conference (GEC) reference cell is manipulated by heating or cooling the lower electrode. The dust charge is obtained by measuring global characteristics of the levitated crystal obtained from top-view pictures. From the force balance, the electric field in the sheath is reconstructed. From the Bohm criterion, we conclude that the dust crystal is levitated mainly above and just below the classical Bohm point.

  2. submitter Probing electric and magnetic fields with a Moiré deflectometer

    CERN Document Server

    Lansonneur, P; Demetrio, A; Müller, S R; Nedelec, P; Oberthaler, M K

    2017-01-01

    A new contact-free approach for measuring simultaneously electric and magnetic field is reported, which considers the use of a low energy ion source, a set of three transmission gratings and a position sensitive detector. Recently tested with antiprotons (Aghion et al., 2014) [1] at the CERN Antiproton Decelerator facility, this paper extends the proof of principle of a moiré deflectometer (Oberthaler et al., 1996) [2] for distinguishing electric from magnetic fields and opens the route to precision measurements when one is not limited by the ion source intensity. The apparatus presented, whose resolution is mainly limited by the shot noise is able to measure fields as low as 9 mVm−1 Hz−1/2 for electric component and 100 μG Hz−1/2 for the magnetic component. Scaled to 100 nm pitch for the gratings, accessible with current state-of-the-art technology [3], the moiré fieldmeter would be able to measure fields as low as 22 μVm−1 Hz−1/2 and 0.2 μG Hz−1/2.

  3. Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping.

    Science.gov (United States)

    Shimanovich, Klimentiy; Bouhadana, Yaniv; Keller, David A; Rühle, Sven; Anderson, Assaf Y; Zaban, Arie

    2014-05-01

    The electrical properties of metal oxides play a crucial role in the development of new photovoltaic (PV) systems. Here we demonstrate a general approach for the determination and analysis of these properties in thin films of new metal oxide based PV materials. A high throughput electrical scanning system, which facilitates temperature dependent measurements at different atmospheres for highly resistive samples, was designed and constructed. The instrument is capable of determining conductivity and activation energy values for relatively large sample areas, of about 72 × 72 mm(2), with the implementation of geometrical correction factors. The efficiency of our scanning system was tested using two different samples of CuO and commercially available Fluorine doped tin oxide coated glass substrates. Our high throughput tool was able to identify the electrical properties of both resistive metal oxide thin film samples with high precision and accuracy. The scanning system enabled us to gain insight into transport mechanisms with novel compositions and to use those insights to make smart choices when choosing materials for our multilayer thin film all oxide photovoltaic cells.

  4. Circular polarization of radio emission from air showers probes atmospheric electric fields in thunderclouds.

    Science.gov (United States)

    Gia Trinh, Thi Ngoc; Scholten, Olaf; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Horandel, Jörg R.; Nelles, Anna; Schellart, Pim; Rachen, Jorg; Rossetto, Laura; Rutjes, Casper; ter Veen, Sander; Thoudam, Satyendra

    2016-04-01

    When a high-energy cosmic-ray particle enters the upper layer of the atmosphere, it generates many secondary high-energy particles and forms a cosmic-ray-induced air shower. In the leading plasma of this shower electric currents are induced that emit electromagnetic radiation. These radio waves can be detected with LOw-Frequency ARray (LOFAR) radio telescope. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For the events under the fair weather conditions the emission process is well understood by present models. For the events measured under the thunderstorm conditions, we observe a large fraction of the circular polarization near the core of the shower which is not shown in the events under the fair-weather conditions. This can be explained by the change of direction of the atmospheric electric fields with altitude. Therefore, measuring the circular polarization of radio emission from cosmic ray extensive air showers during the thunderstorm conditions helps to have a better understanding about the structure of atmospheric electric fields in the thunderclouds.

  5. Three Dimensional Lithospheric Electrical Structure of the Tibetan Plateau as Revealed by SinoProbe Long Period Magnetotelluric Array Data

    Science.gov (United States)

    Wei, Wenbo; Zhang, Letian; Jin, Sheng; Ye, Gaofeng; Jing, Jianen; Dong, Hao; Xie, Chengliang; Yin, Yaotian

    2017-04-01

    The on-going continent-continent collision between the Indian and Eurasian plates since 55 Ma has created the spectacular topography of the Tibetan plateau. However, many first order questions remain to be answered as to the mechanisms behind this young orogenic process. Under the auspices of the SinoProbe Project, a three dimensional (3-D) Magnetotelluric (MT) array have been deployed on the Tibetan Plateau from 2010 to 2013 to better understand this orogeny. By the end of 2013, 1099 MT stations have been completed, including 102 combined broadband MT (BBMT) and long period MT (LMT) stations. In this study, MT data of these 102 combined stations have been used to investigate the deep lithospheric electrical structure of the Tibetan Plateau. MT impedances within the period range of 10 - 50000 s were extracted to be used for 3-D inversions with the ModEM code using the standard NLCG algorithm. The resulting lithospheric electrical structure of the Tibetan Plateau shows a distinct pattern of strong variation not only vertically, but also horizontally. Conductors are found to be widespread in the middle to lower crust. But their geometries are quite complex, and not obviously consistent with the hypothesis of continuous eastward channel flow. Instead, most crustal conductors in central and southern Tibet display a pattern of N-S extension. In the depth range of the upper mantle, two more conductive regions can be identified in the southern Qiangtang Terrane and in the central Lhasa Terrane. Resistor associated with the underthrust Inidan plate can be traced beneath the Bangong-Nujiang suture in western Tibet, but only beneath the central Lhasa terrane in central Tibet. * This work was jointly supported by the grants from Project SinoProbe-01 and National Natural Science Foundation of China (41404060).

  6. Surface current density distribution measurements of an electrically exploded foil via B-dot probe array data inversion

    Science.gov (United States)

    Ruden, E. L.; Amdahl, D. J.; Cooksey, R. H.; Robinson, P. R.; Analla, F. T.; Brown, D. J.; Kostora, M. R.; Camacho, J. F.

    2014-10-01

    Measurements are presented of the current per unit length as a function of the transverse distance from the center of a water-tamped 80 μm Al foil that narrows to a central width of 15.2 cm as it explodes into warm dense matter by Ohmic heating. Current is delivered by the discharge of a 36 μF capacitor bank charged to 30 kV and discharged to a peak current of 342 kA in 2.0 μs. The distribution is calculated by the linear regularized inversion of signals from an array of B-dot probes distributed along the foil's central half-width. The probes are far enough away from the foil (1 cm) be noninvasive and mechanically undisturbed during the time of interest. These results are compared to 3-D MHD ALEGRA simulations of the geometry driven by an external coupled two-loop lumped circuit model which accurately represents the driver. The goal of the effort is to test, in conjunction with other diagnostics, ab initio models of the equation of state and electrical conductivity of matter under conditions encountered in single-shot pulsed power devices (1 - 10 eV and 0.1 - 1 × solid density). This work was supported by AFOSR LRIR 11RD02COR.

  7. Modeling and simulations of the double-probe electric field instrument in tenuous and cold streaming plasmas

    Science.gov (United States)

    Miyake, Y.; Cully, C. M.; Usui, H.; Nakashima, H.

    2013-12-01

    In order to increase accuracy and reliability of in-situ measurements made by scientific spacecraft, it is imperative to develop comprehensive understanding of spacecraft-plasma interactions. In space environments, not only the spacecraft charging but also surrounding plasma disturbances such as caused by the wake formation may interfere directly with in-situ measurements. The self-consistent solutions of such phenomena are necessary to assess their effects on scientific spacecraft systems. As our recent activity, we work on the modeling and simulations of Cluster double-probe instrument in tenuous and cold streaming plasmas [1]. Double-probe electric field sensors are often deployed using wire booms with radii much less than typical Debye lengths of magnetospheric plasmas (millimeters compared to tens of meters). However, in tenuous and cold streaming plasmas seen in the polar cap and lobe regions, the wire booms have a high positive potential due to photoelectron emission and can strongly scatter approaching ions. Consequently, an electrostatic wake formed behind the spacecraft is further enhanced by the presence of the wire booms. We reproduce this process for the case of the Cluster satellite by performing plasma particle-in-cell (PIC) simulations [2], which include the effects of both the spacecraft body and the wire booms in a simultaneous manner, on modern supercomputers. The simulations reveal that the effective thickness of the booms for the Cluster Electric Field and Wave (EFW) instrument is magnified from its real thickness (2.2 millimeters) to several meters, when the spacecraft potential is at 30-40 volts. Such booms enhance the wake electric field magnitude by a factor of about 2 depending on the spacecraft potential, and play a principal role in explaining the in situ Cluster EFW data showing sinusoidal spurious electric fields of about 10 mV/m amplitudes. The boom effects are quantified by comparing PIC simulations with and without wire booms. The

  8. Evaluation of the effectiveness of neurofeedback in the reduction of Posttraumatic stress disorder (PTSD in a patient following high-voltage electric shock with the use of ERPs

    Directory of Open Access Journals (Sweden)

    Anna Chrapusta

    2015-09-01

    Full Text Available Background. The aim of our research was an evaluation of the effectiveness of neurofeedback in reducing the symptoms of Post-trauma stress disorder (PTSD, which had developed as a result of a high-voltage electric burn to the head. Quantitative EEG (QEEG and Event related potentials (ERPs were utilised in the evaluation. Case study. A 21-year-old patient, experienced 4[sup]th[/sup] degree burns to his head as a result of a high-voltage electric burn. The patient was repeatedly operated on and despite the severity of the injuries was to recover. However the patient complained of flashbacks, difficulties with sleeping as well as an inability to continue work in his given profession. Specialist tests were to show the presence within him of PTSD. As a result of which the patient was provided with neurofeedback therapy. The effectiveness of this therapy in the reduction (eradication of the symptoms of PTSD were evaluated through the utilisation of qantitative eeg (Qeeg and event related potentials (ERPs. Results. It was found that in the first examination that ERPs display the most significant deviations from the reference in the two components: (1 the one component is generated within the cingulate cortex. The pattern of its deviation from the norms is similar to that found in a group of OCD patients. In contrast to healthy subjects the component repeats itself twice; (2 the second component is generated in the medial prefrontal cortex. Its pattern (neuromarker is similar to that found in PTSD patients. There is a delay in the late part of the component, which probably reflects the flashbacks. In the second examination, after neurofeedback training, the ERPs were similar to the norm. The patient returned to work. Conclusions. Chronic PTSD developed within the patient as a result of a high-voltage electric burn. The application of a method of therapy (neurofeedback resulted in the withdrawal of the syndrome symptoms. ERPs in a GO/NOGO task can be

  9. Numerical Simulation of Voltage Electric Field in Complex Geometries for Different Electrode Arrangements using Meshless Local MQ-DQ Method

    DEFF Research Database (Denmark)

    Jalaal, M.; Soleimani, Soheil; Domairry, G.

    2011-01-01

    In this paper the meshless Local Multi Quadrics-based Differential Quadrature (MQ-DQ) method is applied to obtain the electric field distribution for different applicable irregular geometries. This method is the combination of Differential Quadrature approximation of derivatives and function...... with FEM and this fact that MQ-DQ method is an accurate and flexible method in solution of electrostatic equations....

  10. Reply to "Comment on 'Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires'"

    Institute of Scientific and Technical Information of China (English)

    LONG Yun-Ze

    2009-01-01

    @@ Recently we reported electrical properties of an individual PEDOT nanowire.[1] Ohlckers and Pipinys[2]suggested that the temperature-behavior of Ⅰ- Ⅴcurves and resistance can be described in the framework of a phonon-assisted tunneling (PhAT) model.

  11. Phase Balancing by Means of Electric Vehicles Single-Phase Connection Shifting in a Low Voltage Danish Grid

    DEFF Research Database (Denmark)

    Lico, Pasqualino; Marinelli, Mattia; Knezovic, Katarina

    2015-01-01

    . This may results in heavy imbalances. This paper uses a real Danish distribution system with household consumers, photovoltaic installation and electrical vehicles (EV). In this paper the possibility to use EVs’ charging spots in order to reduce grid’s imbalances will be investigated. Usually, charging...

  12. Effect of probe location on changes in vaginal electrical impedance during the porcine estrous cycle.

    Science.gov (United States)

    Rezác, Petr; Pöschl, Michael; Krivánek, Ivo

    2003-03-01

    The impedance technique is one of many methods that can be used for noninvasive monitoring of reproductive events occurring in cyclic animals. The influence of the depth of probe insertion on changes in vaginal impedance in sows during the estrous cycle was examined. Sows were checked twice a day for estrus via exposure to a sexually mature boar. The criterion for confirmation of ovulation was an increase in plasma progesterone levels above 4.0 ng/ml 8 and 12 days after the beginning of estrus. The impedance measurements were carried out using a four-terminal method at a distance of 8, 10, 12, 14, 16 and 18 cm from the vulva. In all six locations of the vagina the mean impedance values decreased gradually after weaning (Pfour-terminal method. The study suggests that the causes of impedance fluctuation are not only technical but also include a number of poorly understood biological causes.

  13. Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes

    Science.gov (United States)

    Tanrıkulu, E. E.; Yıldız, D. E.; Günen, A.; Altındal, Ş.

    2015-09-01

    The main electrical and dielectric properties of Au/TiO2/n-4H-SiC (MIS) type Schottky barrier diodes (SBDs) have been investigated as functions of frequency and applied bias voltage. We believe that the use of high dielectric interfacial layer between metal and semiconductor can improve the performance of Schottky diodes. From the experimental data, both electrical and dielectric parameters were found as strong function of frequency and applied bias voltage. The Fermi energy level (EF), the concentration of doping donor atoms (P), barrier height (ΦB) and series resistance (Rs) values were obtained from reverse and forward bias C-V characteristics. The changes in EF and ND with frequency are considerably low. Therefore, their values were taken at about constant. The real and imaginary parts of dielectric constant (\\varepsilon \\prime , \\varepsilon \\prime\\prime ), tangent loss (tanδ), ac electrical conductivity (σac), and real and imaginary parts of electric modulus (M‧ and M″) values were also obtained from reverse and forward bias C-V and G/ω-V characteristics. In addition, the voltage dependent profiles of all these electrical and dielectric parameters were drawn for each frequency. These results confirmed that both electrical and dielectric properties of Au/TiO2/n-4H-SiC (MIS) type SBD are quite sensitive to both the frequency and applied bias voltage due to surface polarization, density distribution of interface traps (Dit), and interfacial layer.

  14. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    to control and as such a high current capacity of the WPP side VSC might be required. Detailed simulation results are included in the report. The other option is to use a DC chopper, the results of which are also presented in detail in the report. It is observed that a DC chopper can provide a simple...... are related to surplus reactive power and added losses. On the other hand, HVDC transmission system can be arbitrarily long and for long distance power transmission requirement it provides much better efficiency compared to a corresponding HVAC system. HVDC may provide a viable solution for high power...... to trip off during temporary grid side faults, commonly described as low voltage fault-ride-through requirement. There are four different fault-ride-through options discussed in the report. The first option includes controlling of collector network frequency. This provides a very good opportunity to use...

  15. Probing the doping mechanisms and electrical properties of Al, Ga and In doped ZnO prepared by spray pyrolysis

    KAUST Repository

    Maller, Robert

    2016-05-24

    The measured structural, optical and electrical properties of Al, Ga and In doped ZnO films deposited using spray pyrolysis are reported over the doping range 0.1 - 3 atomic percent (at. %). Over the entire doping series highly transparent, polycrystalline thin films are prepared. Using the AC Hall effect we probe the electronic properties of our doped films separating the impact of doping on the measured charge carrier concentrations and Hall mobility, with an emphasis on the low doping, < 1 at. %, range. In this doping range highly resistive films are formed and we highlight AC Hall as a reliable and highly reproducible technique for analysing the doping mechanism. The implementation of a simple, post-deposition heat treatment of our AZO films creates typical films with charge carrier concentrations exceeding > 1019 cm-3 and electron mobilities over 10 cm2/Vs. We describe in detail the nature of the defect chemistry and the role of intrinsic defects, particularly traps, and show that despite significant variations in dopant species and grain boundary concentrations that the defect chemistry dominates the electrical characteristics.

  16. Probing the electrical switching of a memristive optical antenna by STEM EELS

    Science.gov (United States)

    Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.

    2016-07-01

    The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ~10-6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope.

  17. Probing the electrical properties of highly-doped Al:ZnO nanowire ensembles

    KAUST Repository

    Noriega, Rodrigo

    2010-01-01

    The analysis of transparent conducting oxide nanostructures suffers from a lack of high throughput yet quantitatively sensitive set of analytical techniques that can properly assess their electrical properties and serve both as characterization and diagnosis tools. This is addressed by applying a comprehensive set of characterization techniques to study the electrical properties of solution-grown Al-doped ZnO nanowires as a function of composition from 0 to 4 at. % Al:Zn. Carrier mobility and charge density extracted from sensitive optical absorption measurements are in agreement with those extracted from single-wire field-effect transistor devices. The mobility in undoped nanowires is 28 cm2 /V s and decreases to ∼14 cm2 /V s at the highest doping density, though the carrier density remains approximately constant (1020 cm-3) due to limited dopant activation or the creation of charge-compensating defects. Additionally, the local geometry of the Al dopant is studied by nuclear magnetic resonance, showing the occupation of a variety of dopant sites. © 2010 American Institute of Physics.

  18. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Assessment of duration of the drive operation in the mode of kinetic energy recovery under power supply voltage sags in electrical grids of mechanical engineering enterprises

    Science.gov (United States)

    Shonin, O. B.; Novozhilov, N. G.

    2017-02-01

    Voltage sags in electric grids of mechanical engineering enterprises may lead to disconnection of important power consumers with variable frequency drives from the power grid and further interruption of the production process. The paper considers a sensorless V/f control system of еру induction motor drive under normal conditions and under voltage sags on the basis of a computer model of the drive and derivation of a formula for assessment of possible duration of the drive operation in the mode of controlled recovery of kinetic energy accumulated in rotating mass of the drive. Results of simulations have been used to validate results of calculations of the rotor velocity deceleration made in a closed form obtained from the equation reflecting the balance of torques. It is shown that results of calculations practically coincide with results of simulations in the range up to 5% of the velocity initial value. The proposed formula may be useful for estimation of the duration of the drive operation in the mode of recovery of kinetic energy depending on parameters of the motor and driven mechanisms.

  20. Electrical characterization of dislocations in gallium nitride using advanced scanning probe techniques

    Science.gov (United States)

    Simpkins, Blake Shelley Ginsberg

    GaN-based materials are promising for high speed and power applications such as amplifier and communications circuits. Ga, In, and AIN-based alloys span a wide optical range (2--6.1 eV) and exhibit strong polarizations making them useful in many devices; however, films are highly defective (˜10 8 dislocations cm-2) due to lack of suitable substrates. Thus, nanoscale electronic characterization of these dislocations is critical for device and growth optimization. Scanning probe techniques enable characterization at length-scales unattainable by conventional techniques. First, scanning Kelvin probe microscopy (SKPM) was used to image surface potential variations due to charged dislocations in HVPE-grown GaN. The film's structural evolution "with thickness was monitored showing a decrease in dislocation density, likely through dislocation reaction. Numerical simulations were used to investigate tip-size effects when imaging highly localized (tens of nm) potential variations indicating that measured dislocation induced potential features in GaN can be much smaller (˜80%) than true variations. Next, capacitance variations in MBE-grown HFETs, due to dislocations-induced carrier depletion, were imaged with scanning capacitance microscopy (SCM). The distribution of these charged centers was correlated with buffer schemes showing that an AIN buffer leads to pseudomorphic (2D) nucleation and randomly distributed misfit dislocations while deposition directly on SiC results in island (3D) nucleation and a domain structure with dislocations grouped at domain boundaries. Hall measurements and numerical simulations were also carried out to further study the implications of these microstructures. Numerical results indicated that randomly distributed dislocations deplete a larger fraction of free carriers than the same density of grouped dislocations and correlated favorably with Hall results. Correlated SKPM and conductive AFM (C-AFM) measurements were then used to study

  1. Concurrent Provision of Frequency Regulation and Overvoltage Support by Electric Vehicles in a Real Danish Low Voltage Network

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Marinelli, Mattia; Andersen, Peter Bach

    2014-01-01

    Expected deployment of electric vehicles (EVs) introduces big technical challenges for power system operation, but also offers advantages provided that EVs are not considered merely as passive loads. With the development of Vehicle-to-Grid technology, EVs will be able to provide a number of ancil...... of increased loading. The analysed network has been modelled in Matlab SimPowerSystems and is based on real hourly metered data from a Danish MV/LV substation with numerous households...

  2. Probing electric fields inside microfluidic channels during electroosmotic flow with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Forry, Samuel P; Murray, Jacqueline R; Heien, Michael L A V; Locascio, Laurie E; Wightman, R Mark

    2004-09-01

    Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used in microfluidic channels. This method offers the advantage that it can resolve electroactive species not separated in the channel. In addition, this method provides a route to investigate the distribution of applied electrophoretic fields in microfluidic channels. To probe this, microelectrodes were inserted at various distances into channels and cyclic voltammograms recorded at 300 V/s were repeated at 0.1-s intervals. The use of a battery-powered laptop computer and potentiostat provided galvanic isolation between the applied electrophoretic field and the electrochemical measurements. In the absence of an external field, the peak potential for oxidation of the test solute, Ru(bpy)3(2+), was virtually unaltered by insertion of the microelectrode tip into the channel. When an electrophoretic field was applied, the peak potential for Ru(bpy)3(2+) oxidation shifted to more positive potentials in a manner that was directly proportional to the field in the channel. The shifts in peak potential observed with FSCV enabled direct compensation of the applied electrochemical potential. This approach was used to explore the electrophoretic field at the channel terminus. It was found to persist for more than 50 microm from the channel terminus. In addition, the degree of analyte dispersion was found to depend critically on the electrode position outside the channel.

  3. Design and synthesis of aromatic molecules for probing electric-fields at the nanoscale

    CERN Document Server

    Faez, Sanli; Markoulides, Marios; Buda, Francesco; Gourdon, André; Orrit, Michel

    2015-01-01

    We propose using halogenated organic dyes as nanoprobes for electric field and show their greatly enhanced Stark coefficients using density functional theory (DFT) calculations. We analyse halogenated variants of three molecules that have been of interest for cryogenic single molecule spectroscopy, perylene, terrylene, and dibenzoterrylene, with the zero-phonon optical transitions at blue, red, and near infrared. Out of all the combinations of halides and binding sites that are calculated, we have found that fluorination of the optimum binding site induces a dipole difference between ground and excited states larger than 0.5 D for all three molecules with the highest value of 0.69 D for fluoroperylene. We also report on synthesis of 3-fluoroterrylene and bulk spectroscopy of this compound in liquid and solid organic environments.

  4. A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing.

    Science.gov (United States)

    Song, Yang; Xiao, Li; Jayamani, Indumathy; He, Zhen; Cupples, Alison M

    2015-01-01

    Stable isotope probing and high throughput sequencing were used to characterize the microbial communities involved in carbon uptake in microbial fuel cells at two levels of electricity generation. With acetate, the dominant phylotypes involved in carbon uptake included Geobacter and Rhodocyclaceae. With glucose, both Enterobacteriaceae and Geobacter were dominant.

  5. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  6. 建筑工程中低压电气安装施工及质量控制%The Low Voltage Electrical Installation Construction and Quality Control of Construction Project

    Institute of Scientific and Technical Information of China (English)

    张兴龙

    2014-01-01

    建筑工程中低压电气安装施工非常复杂,容易受到不良因素的影响而导致其施工质量不佳。为了避免此种情况影响建筑电气的应用,应当采取有效的措施来控制电气安装施工质量,保证低压电气安装高质量地完成。%Low voltage electrical instal ation construction pr-oject is very complex, vulnerable to the impact of adverse factors which led to the poor quality of construction. In order to avoid the effect of the application of electrical construction, we should take effective measures to control the electrical instal ation construction quality, ensure the high quality com-pletion of low voltage electrical instal ation.

  7. Conceptual model of a logical system processor of selection to electrical filters for correction of harmonics in low voltage lines

    Science.gov (United States)

    Lastre, Arlys; Torriente, Ives; Méndez, Erik F.; Cordovés, Alexis

    2017-06-01

    In the present investigation, the authors propose a conceptual model for the analysis and the decision making of the corrective models to use in the mitigation of the harmonic distortion. The authors considered the setting of conventional models, and such adaptive models like the filters incorporation to networks neuronal artificial (RNA's) for the mitigating effect. In addition to the present work is a showing of the experimental model that learns by means of a flowchart denoting the need to use artificial intelligence skills for the exposition of the proposed model. The other aspect considered and analyzed are the adaptability and usage of the same, considering a local reference of the laws and lineaments of energy quality that demands the Department of Electricity and Energy Renewable (MEER) of Equator.

  8. Voltage-Gated Na+ Channel Isoforms and Their mRNA Expression Levels and Protein Abundance in Three Electric Organs and the Skeletal Muscle of the Electric Eel Electrophorus electricus.

    Science.gov (United States)

    Ching, Biyun; Woo, Jia M; Hiong, Kum C; Boo, Mel V; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2016-01-01

    This study aimed to obtain the coding cDNA sequences of voltage-gated Na+ channel (scn) α-subunit (scna) and β-subunit (scnb) isoforms from, and to quantify their transcript levels in, the main electric organ (EO), Hunter's EO, Sach's EO and the skeletal muscle (SM) of the electric eel, Electrophorus electricus, which can generate both high and low voltage electric organ discharges (EODs). The full coding sequences of two scna (scn4aa and scn4ab) and three scnb (scn1b, scn2b and scn4b) were identified for the first time (except scn4aa) in E. electricus. In adult fish, the scn4aa transcript level was the highest in the main EO and the lowest in the Sach's EO, indicating that it might play an important role in generating high voltage EODs. For scn4ab/Scn4ab, the transcript and protein levels were unexpectedly high in the EOs, with expression levels in the main EO and the Hunter's EO comparable to those of scn4aa. As the key domains affecting the properties of the channel were mostly conserved between Scn4aa and Scn4ab, Scn4ab might play a role in electrogenesis. Concerning scnb, the transcript level of scn4b was much higher than those of scn1b and scn2b in the EOs and the SM. While the transcript level of scn4b was the highest in the main EO, protein abundance of Scn4b was the highest in the SM. Taken together, it is unlikely that Scna could function independently to generate EODs in the EOs as previously suggested. It is probable that different combinations of Scn4aa/Scn4ab and various Scnb isoforms in the three EOs account for the differences in EODs produced in E. electricus. In general, the transcript levels of various scn isoforms in the EOs and the SM were much higher in adult than in juvenile, and the three EOs of the juvenile fish could be functionally indistinct.

  9. Research of equipment possession and gas and electric power habits of commercial and industrial consumers of low voltage; Pesquisa de posse de equipamentos e habitos de consumo de energia eletrica e gas de consumidores comerciais e industriais em baixa tensao

    Energy Technology Data Exchange (ETDEWEB)

    Jardini, Jose Antonio; Casolari, Ronaldo Pedro; Angrisano, Alexandre; Araujo, Dalva Souza de [Universidade de Sao Paulo, SP (Brazil). Escola Politecnica

    2000-07-01

    This paper reports a survey conducted by the Departamento de Energia e Automacao Eletrica, Escola Politecnica da Universidade de Sao Paulo, on the possession of electric and gas equipment, and the habits of consumption which were applied to a consumers attended in low voltage commercial class and industrial class services, in the state of Sao Paulo, Brazil.

  10. Recycling ``in situ`` of dielectric oil of electric transformer of medium and high voltage; Reciclaje ``in situ`` y ``en carga`` del aceite dielectrico de los transformadores electricos de media y alta tension

    Energy Technology Data Exchange (ETDEWEB)

    Solis, A.

    1997-06-01

    The author describes the process followed by the company to control the quality of every type of oil from electric transformer of medium and high voltage polluted because of its use. The pollutants contained in the dielectric liquid are eliminated or minimize through the following treatments: conditioning-reconditioning-regeneration. (Author) 6 refs.

  11. High- voltage Pulsed Electric Field Sterilization Equipment and Flow Control%高压脉冲电场灭菌设备及其流量控制

    Institute of Scientific and Technical Information of China (English)

    林荣华; 李伟光

    2012-01-01

    In order to optimize the sterilization effect of high-voltage pulsed electric field sterilization equipment, this paper analyzes its function according the tactors of the enfluence on the system, designs the overall structure and PLC-based flow control system by the way of frequency control of motor speed, describes the structure and principle of high-voltage pulse generator and the theory and realization of the flow control based on frequency control as well as the realization of communication between inverters and PLC with RS-485. The result shows that the equipment is able to control and adjust key process parameters well, comtro the flow by a simple and reliable way, and achieve high effective and fast sterilization.%为优化高压脉冲电场灭菌设备的灭菌效果,根据其影响因素进行了系统功能需求分析,设计了设备的总体架构,采用变频调速的方法,设计了基于PLC的流量控制系统.简述了高压脉冲发生器的结构及原理,重点介绍了基于变频调速的流量控制原理与实现,变频器与PLC的RS - 485通信的实现.实验表明,设备实现了关键工艺参数可调可控,运行效果良好,简单可靠地实现了流量的控制,实现了快速高效灭菌.

  12. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P

    2007-07-01

    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  13. A randomized, double-blind, sham-controlled study of static electric field therapy by high voltage alternating current for active rheumatoid arthritis.

    Science.gov (United States)

    Naito, Yuji; Yamaguchi, Shinnichi; Mori, Yasuhiro; Nakajima, Kouji; Hashimoto, Sanshiro; Tomaru, Masakazu; Satoh, Yoshihiko; Hitomi, Yuji; Karita, Masakazu; Hiwatashi, Tomoaki; Kawahito, Yutaka; Yoshikawa, Toshikazu

    2013-07-01

    Static electric field therapy by high voltage alternating current (EF-HVAC) is a traditional complementary Japanese medicine used for headache, shoulder stiffness, chronic constipation and insomnia. Open-label studies and clinical experience in Japan have suggested that this electric field therapy is safe and effective in treating chronic arthritis. We evaluated the efficacy of EF-HVAC therapy in a randomized, double-blinded, sham-controlled trial in patients with active rheumatoid arthritis (RA) in community-based general physician centers. Thirty patients fulfilling American College of Rheumatology (ACR) criteria for RA were treated with EF-HVAC therapy with the LEGACIS PLUS System (COCOROCA Corp., Tokyo, Japan) or sham therapy for 12 weeks and followed for 4 weeks without treatment. The disease activity score 28 (DAS28-CRP), visual analogue scale for pain (VAS), modified health assessment questionnaire (MHAQ), and inflammatory parameters were used as the outcome variable. Twenty four patients (n = 12 in each group) were analyzed by a per protocol analysis. Although a significant reduction in DAS28-CRP was observed in EF-HVAC group at 8 and 12 weeks compared to before treatment, there were no significant differences in DAS28-CRP scores during treatment between two groups. The scale of VAS was also significantly decreased by the treatment with EF-HVAC compared to before treatment, in addition, the scale of VAS in EF-HVAC group was significantly lower than sham group at 8 and 12 weeks. Changes in another parameters including MHAQ were not significant between before and after treatment, or by all comparative study between two groups. There were no adverse events related the treatment. In conclusion, the EF-HVAC therapy has a beneficial effect on the improvement to subjective pain of RA.

  14. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  15. Performances of the Electrical Spectroscopy employing a RESPER Probe for measuring the Salinity and Water Content of Concretes and Terrestrial Soils

    CERN Document Server

    Settimi, A; Zirizzotti, A; Marchetti, M; Sapia, V

    2010-01-01

    This paper proposes to discuss the performances of the electrical spectroscopy employing a RESPER probe to measure the salinity s and volumetric content {\\theta}W of water in concretes and terrestrial soils. The RESPER probe is an induction device for spectroscopy which performs simultaneous and non invasive measurements on the electrical RESistivity 1/{\\sigma} and relative dielectric PERmittivity {\\epsilon}r of a subjacent medium. The RESPER measures {\\sigma} and {\\epsilon} with inaccuracies below a prefixed limit (10%) in the band of middle and high frequencies (MF-HF). The conductivity is related to salinity and the dielectric permittivity to volumetric water content by suitable refined theoretical models which are consistent with the predictions of two empirical laws, respectively Archie's and Topp's. The better agreement, the lower the hygroscopic water content and the higher s; so a better agreement occurs for concretes, containing almost no bound water molecules, provided that are characterized by an h...

  16. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. 高压脉冲电场灭菌方法研究概况%Research on the High-voltage Pulsed Electric Field Sterilization Method

    Institute of Scientific and Technical Information of China (English)

    陈新梅; 李莹; 陈新华

    2014-01-01

    The high-voltage pulsed electric field (PEF) sterilization has significant advantages such as a short process-ing time,low energy consumption,small temperature rise,high sterilization rate and not affecting the effective components of drugs,and so on. Based on the review of the mechanism of PEF sterilization,sterilization devices and the possible influ-encing factors,and the comparison of other sterilization methods,the evaluation of the PEF sterilization method was made and the existing problems and commercial prospects in the fields of food and pharmaceuticals were discussed.%高压脉冲电场灭菌具有处理时间短、耗能低、升温小、灭菌率高、不影响药物的有效成分等显著优点,本文通过对高压脉冲电场灭菌作用机理、灭菌装置、可能的影响因素总结及与其他灭菌方式的比较,对高压脉冲电场灭菌方式进行评价,并探讨其现存问题及在食品、药品领域的应用前景。

  18. Variation in the response to manipulation of post-mortem glycolysis in beef muscles by low-voltage electrical stimulation and conditioning temperature.

    Science.gov (United States)

    Hollung, Kristin; Veiseth, Eva; Frøystein, Terje; Aass, Laila; Langsrud, Oyvind; Hildrum, Kjell Ivar

    2007-11-01

    The aim of this study was to investigate how manipulation of glycolytic rate by post-mortem processing conditions influences quality of aged beef of two bovine muscles of different physiological character, longissimus dorsi (LD) and adductor (AD). Post-mortem glycolysis was manipulated by low-voltage electrical stimulation (LV-ES) of half carcasses and by chilling rate of the muscles. Multivariate statistical analysis was used to visualise the data, while ANOVA was used to identify significant effects and interactions. As expected there was a significant effect of LV-ES on the pH decline in the first hours post-mortem in both muscles. Moreover, significant effects of LV-ES on WB shear force measured 2 and 8 days after slaughter were observed for LD at both chilling temperatures, while for AD no effect on WB shear force was observed. Furthermore, the results revealed a large individual variation in the response of LV-ES on both pH decline and WB shear force, and this variation did not always correlate for the two responses. Some animals showed no response of LV-ES on pH decline, but still had an improved WB shear force, and vice versa. The results from this study indicate that there probably are other mechanisms than accelerated pH decline and prevention of cold-shortening, by which LV-ES can affect meat tenderness.

  19. Proposal for the award of an industrial services contract for electrical installation work and maintenance of lighting and low-voltage distribution

    CERN Document Server

    2000-01-01

    This document concerns the award of an Industrial Services contract for electrical installation work and maintenance of lighting and low-voltage distribution. Following a market survey carried out among 127 firms in fifteen Member States, a call for tenders (IT-2754/ST) was sent on 2 June 2000 to three firms and four consortia, each consisting of two firms, in four Member States. By the closing date, CERN had received tenders from two firms and two consortia in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium SPIE TRINDEL(FR) ? CONTROLMATIC (DE), the lowest bidder complying with the specified requirements, for an initial period of three years from 1 July 2001 for a total amount of 41 705 497 Swiss francs, not subject to revision until 31 December 2003. The contract will include options for two one-year extensions beyond the initial three-year period for a total amount of 27 803 664 Swiss francs, for which CERN will seek approval by the Finance ...

  20. Development of High - voltage Pulse - transmission Electric Cable for Plasma Drill%等离子体钻机高压脉冲传输电缆的研制

    Institute of Scientific and Technical Information of China (English)

    季念迎; 裴彦良; 闫克平; 刘晨光; 章志成

    2012-01-01

    设计了等离子钻机高压脉冲传输电缆的结构,讨论了高压绝缘层的设计及材料选择.在此基础上,开展了高压脉冲传输电缆的绝缘阻抗和波阻抗测试实验.实验测试结果表明,所研制的传输电缆具有较高的绝缘性能和较小的波阻抗,可基本满足等离子体钻机的需要.%The structure of the high - voltage pulse - transmission electric cable was designed. The design of high - voltage insulation layer and the insulation material were discussed. Based on what mentioned above, the insulating resistance and the wave resistance tests of the high - voltage pulse - transmission electric cable were carried out. The test results show that the high - voltage pulse - transmission electric cable has good insulating property and little wave resistance, which meets the challenges of the plasma drill.

  1. Nitrile Probes of Electric Field Agree with Independently Measured Fields in Green Fluorescent Protein Even in the Presence of Hydrogen Bonding.

    Science.gov (United States)

    Slocum, Joshua D; Webb, Lauren J

    2016-05-25

    There is growing interest in using the nitrile vibrational oscillation as a site-specific probe of local environment to study dynamics, folding, and electrostatics in biological molecules such as proteins. Nitrile probes have been used extensively as reporters of electric field using vibrational Stark effect spectroscopy. However, the analysis of frequencies in terms of electric fields is potentially complicated by the large ground state dipole moment of the nitrile, which may irrevocably perturb the protein under investigation, and the ability of nitriles to accept hydrogen bonds, which causes frequency shifts that are not described by the Stark effect. The consequence of this is that vibrational spectroscopy of nitriles in biomolecules could be predominately sensitive to their local hydration status, not electrostatic environment, and have the potential to be particularly destabilizing to the protein. Here, we introduce green fluorescent protein (GFP) as a model system for addressing these concerns using biosynthetically incorporated p-cyanophenylalanine (pCNF) residues in the interior of GFP and measuring absorption energies of both the intrinsic GFP fluorophore and pCNF residues in response to a series of amino acid mutations. We show that observed changes in emission energy of GFP due to the mutations strongly correlate with changes in electric field experienced by both the nitrile probes and the intrinsic fluorophore. Additionally, we show that changes in electric field measured from the intrinsic fluorophore due to amino acid mutations are unperturbed by the addition of pCNF residues inserted nearby. Finally, we show that changes in electric field experienced by the vibrational probes trend monotonically with changes in field experienced by the native fluorophore even though the nitrile probe is engaged in moderate hydrogen bonding to nearby water molecules, indicated by the temperature dependence of the nitrile's absorption energy. Together these results

  2. 高压脉冲电场对微生物的灭活作用研究进展%Research Progress in the Effect of High-voltage Pulsed Electric Field on Microorganism Inactivation

    Institute of Scientific and Technical Information of China (English)

    陈新梅; 薛文静; 赵元

    2016-01-01

    Objective:To review the inactivation effect of high-voltage pulsed electric field on microorganism to provid theoretical basis for the further research and sterilization application of high-voltage pulsed electric field. Methods:The combination of high-volt-age pulse electric field, microbiology and pulse electric field as the keywords, the research results of high-voltage pulsed electric field on microbial inactivation in PubMed, CNKI, VIP Chinese journal full text database and Wanfang database during 2010 and 2015 were retrieved, summarized and reviewed. Results:As a non-thermal sterilization technology, high-voltage pulsed electric field not only had the characteristics of short sterilization time, narrow increasing extent of temperature and low energy consumption, but also could keep the original flavor of food. Conclusion:With the development of related technology, high-voltage pulsed electric field is expected to re-alize industrialization.%目的::综述高压脉冲电场对微生物的灭活作用,为进一步研究和应用高压脉冲电场灭菌提供理论基础。方法:以“高压脉冲电场”、“微生物”、“Pulse Electric Field”等组合为关键词,检索2010~2015年PubMed、中国知网、维普中文期刊全文数据库、万方数据库中有关高压脉冲电场对微生物的灭活作用的研究成果,进行总结和综述。结果:高压脉冲电场作为一种非热灭菌技术,不仅具有灭菌时间短、升温幅度小、耗能少的特点,还能保持食品原有风味不变。结论:随着相关技术的发展,高压脉冲电场有望实现产业化。

  3. Cathodic voltage-controlled electrical stimulation of titanium for prevention of methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii biofilm infections.

    Science.gov (United States)

    Canty, Mary; Luke-Marshall, Nicole; Campagnari, Anthony; Ehrensberger, Mark

    2017-01-15

    Antibiotic resistance of bacterial biofilms limits available treatment methods for implant-associated orthopaedic infections. This study evaluated the effects of applying cathodic voltage-controlled electrical stimulations (CVCES) of -1.5V and -1.8V (vs. Ag/AgCl) to coupons of commercially pure titanium (cpTi) incubated in cultures of methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii (A. baumannii) as a method of preventing bacterial attachment. Stimulations were applied for 2, 4, and 8h and coupon-associated and planktonic colony-forming units (CFU) were enumerated following stimulation. Compared to open circuit potential (OCP) controls, CVCES for 4h at -1.8V significantly reduced coupon-associated MRSA CFU by 99.9% (1.30×10(4)vs. 4.45×10(7), p=0.047) and A. baumannii coupon-associated CFU by 99.9% (1.64×10(4)vs. 5.93×10(7), p=0.001) and reduced planktonic CFU below detectable levels for both strains. CVCES at -1.8V for 8h also reduced coupon-associated and planktonic CFU below detectable levels for each strain. CVCES at -1.5V for 4 and 8h, and -1.8V for 2h did not result in clinically relevant reductions. For 4 and 8h stimulations, the current density was significantly higher for -1.8V than -1.5V, an effect directly related to the rate of water and oxygen reduction on the cpTi surface. This significantly increased the pH, a suspected influence in decreased CFU viability. The voltage-dependent electrochemical properties of cpTi likely contribute to the observed antimicrobial effects of CVCES. This study revealed that CVCES of titanium could prevent coupon-associated and planktonic CFU of Gram-positive MRSA and Gram-negative A. baumannii from reaching detectable levels in a magnitude-dependent and time-dependent manner.

  4. VOLTAGE REGULATORS ASYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2015-06-01

    Full Text Available A promising is currently the use of asynchronous generators with capacitive excitation as a source of electricity in stand-alone power systems. Drive asynchronous generators may exercise as a thermal engine and wind wheel wind power plant or turbines of small hydropower plants. The article discusses the structural and schematics of voltage stabilizers and frequency of asynchronous generators with improved operational and technical specifications. Technical novelty of design solutions of the magnetic system and stabilizers asynchronous generator of electricity parameters confirmed by the patents for the invention of the Russian Federation. The proposed technical solution voltage stabilizer asynchronous generators, can reduce the weight of the block capacitors excitation and reactive power compensation, as well as to simplify the control system power circuit which has less power electronic devices. For wind power plants it is an important issue not only to stabilize the voltage of the generator, but also the frequency of the current. Recommend functionality stabilizer schemes parameters of electric power made for direct frequency converters with artificial and natural switching power electronic devices. It is also proposed as part of stabilization systems use single-phase voltage, three-phase transformers with rotating magnetic field, reduce the level of electromagnetic interference generated by power electronic devices for switching, enhance the efficiency and reliability of the stabilizer.

  5. 地区电网电压无功联动协调控制系统的研究%Study on linkage and coordinated control system for voltage and reactive control in the region electric network

    Institute of Scientific and Technical Information of China (English)

    王玲; 林其友; 洪诚; 庞彦; 苏娟; 王峻

    2011-01-01

    为了提高地区电网电压质量、优化电网无功功率分布、降低网损,研制了一套地区电压无功联动协调控制系统.该系统在地市电网无功容量不足的情况下,自动给县级电压无功控制系统下发关口无功指令,依靠县级电网的剩余无功及时补偿地市电网的无功缺额.考虑市级 220 kV 变电站关口无功的实际值,结合省调下发的无功指令,确定了下发给县级电压无功控制系统的关口无功指令值,并详细阐述了地区电网电压无功联动协调控制方案.实际运行表明,该联动协调控制系统有利于提高地区电网的电压水平、促进电网无功的合理分布和降低网损,为供电企业带来经济和社会效益.%To improve the voltage quality, optimize reactive distribution and decrease losses in the region electric network, a voltage/reactive power linkage and coordinated control system for city and county electric power is developed. The system dynamically sends gateway reactive directives to country voltage and reactive control system when city reactive capacity is not enough, which depends on residuary reactive in the country electric network to compensate the reactive vacancy of city electric network in time. Considering city's 220 kV substations actual gateway reactive value and combining the province gateway reactive directives sent to city, this paper decides the gateway reactive value sending to country voltage and reactive control system, and illuminates the scheme to realize voltage and reactive linkage and coordinated control for regional electric network. Practical operation shows that the system is conducive to improving the voltage level, promote the rational distribution of reactive power, and decrease the loss of regional power grid, bringing economic and social benefits for power supply enterprises.

  6. Long-living plasmoids generation by high-voltage discharge through thin conducting layers

    CERN Document Server

    Pirozerski, A L

    2006-01-01

    A new type of pulse high voltage electric discharge through a thin conducting layer on the surface of glass plate has been investigated. The afterglow plasma of this discharge forms quasi-spherical object with a lifetime about 0.2-0.3 s. Electric properties of the objects were studied by electric probe method. Measurements of plasma radiation spectra kinetics at visible and near ultraviolet spectral ranges have been carried out. Comparative analysis of the physical properties of the plasmoids appearing in this discharges and of ones generated via thin metal wires burning is given. Possible mechanism of the plasma metastability are discussed.

  7. Effect of high-voltage electrical stimulation on the albumin and histamine serum concentrations, edema, and pain in acute joint inflammation of rats

    Directory of Open Access Journals (Sweden)

    Maria C. Sandoval

    2015-04-01

    Full Text Available BACKGROUND: The mechanism by which high-voltage electrical stimulation (HVPC acts on edema reduction is unknown. OBJECTIVE: To assess the effect of HVPC with negative polarity (- applied to the ankle of rats with acute joint inflammation. METHOD: Sixty-four rats were divided into four groups (n=16: inflamed+HVPC(-, 0.03 mL application of ι-carrageenan (3% to the tibiotarsal joint plus HVPC(-; inflamed+HVPC placebo, carrageenan application and HVPC placebo; normal+HVPC(-, HVPC application(-; and normal control, no intervention. The HVPC(- 100 Hz at a submotor level was applied daily for 45 min on three consecutive days. The variables were pain, hind-foot volume, and serum histamine and albumin assessed before and during the 48 hours following inflammation. The variables were compared using the t test, one-way ANOVA, nested ANOVA for repeated measures, and the post hoc Bonferroni test. Analysis of covariance was applied to adjust the effects of HVPC(- by measurements of pain, inflammation, albumin, and histamine at 24 h, and the final weight was compared to the other groups. The significance level was set at p0.05. Albumin was reduced in the groups that received the intervention, but there was no differences between them. There was only a 24 hour increase in histamine with the normal+HVPC(- (p=0.0001 and inflamed+HVPC placebo groups (p=0.01 compared to the normal control group. CONCLUSIONS: The results of the present study suggest that HVPC(- with the parameters employed did not reduce pain or edema and did not change serum albumin or histamine levels,, which indicates the inability of this resource to have a positive effect when treating treat acute joint inflammation.

  8. MRI study of acute high-voltage electric injury in forearm muscle%前臂肌群急性高压电击伤的MRI研究

    Institute of Scientific and Technical Information of China (English)

    舒锦尔; 盛三兰; 卢金花; 蒋春景; 仇旭光; 李惠民

    2001-01-01

    目的 分析前臂肌群急性高压电击伤的MRI表现,并探讨其临床意义。方法 9例 17只急性高压电击伤的前臂均于72 h内行术前MRI检查,并作病理对照。7例14只前臂并行增强扫描。结果 9例 17只前臂均于MRI检查后立即行筋膜切开扩创术。单纯扩创者6例 11只前臂,MRI表现主要为前群肌肉的损伤,范围较小,呈等T1、长T2信号;后群肌肉损伤较分散,无一定规律,损伤程度较轻,病灶近端增强后和T2WI均示边界锐利,呈刀尖样改变;其中4例8只做了增强扫描,见显著异常强化(Ⅰ型信号),术中电灼刺激相应肌肉有收缩,但较正常减弱,病理见不同程度坏死;在增强4例8只前臂中,有1个移行区者6只,有2个移行区者2只,各移行区边界均较清楚。扩创后截肢者3例 6只前臂,MRI表现为弥漫性前后群肌的损伤,呈混合信号,前臂近端以Ⅰ型信号为主,远端大片呈等T1、长T2或短T2信号,且无明显异常强化(Ⅱ、Ⅲ型信号),术中电灼刺激相应肌肉,未见明确收缩,病理提示几乎完全坏死。所有截肢前臂均有2个移行区,边界不清,第2移行区均呈花边状强化。结论 前臂肌群急性高压电击伤MRI表现为3种信号模式,与病理有明确对应关系,有助于临床处理及预后判断。%Objective To investigate the features of MR imaging of acute high-voltage electric injury in forearm muscle. Methods Nine patients (17 forearms, 8 males and 1 female, 15~36 years of age) with clinically and pathological proved acute high-voltage electric injury were studied on MRI retrospectively. MRI studies were obtained within 72 hours on Siemens 1.0 T MR scanner. 2 forearms were examined with body coil, and 15 with head coil. The severe area was placed as near as possible to the isocenter in the magnet and was used as the center of the MR imaging acquisition. Spin-echo T1 weighted images

  9. 智能电网下低压电力线通信的特性研究%Study on Communication Characteristic of Low Voltage Electric Power Lines in Smart Grid

    Institute of Scientific and Technical Information of China (English)

    邵昱; 李晨; 王超; 王珏; 闫帅榜

    2014-01-01

    提出智能电网环境下的通信方式,并说明低压电力线通信的优点。研究分析了低压电力线通信的时变性、深衰减、多径性、电磁干扰等特点。在分析电力载波通信(power line communication,PLC)原理及特点的基础上,提出利用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术来提高系统的传输性能。对智能电网环境下低压电力线通信技术的应用进行展望,并列举低压电力线通信在超远程抄表、网络连接等方面的应用。%This paper proposes a kind of communication way under the background of smart grid and explains merits of low voltage electric power line communication.It studies and analyzes time-varying characteristic,deep attenuation,multipath characteristic and electromagnetic interference of low voltage electric power line communication.On the basis of analyzing power line communication principles and features,it proposes to use orthogonal frequency division multiplexing technology to improve transmission performance of the system.In addition,it looks into distance application of low voltage electric power line communication technology under the background of smart grid and enumerates application cases of low voltage e-lectric power line communication in extra long distance meter reading,network connection,and so on.

  10. Non-isolated DC-AC converter with high voltage gain for autonomous systems of electric power; Conversor CC-CA nao isolado com alto ganho de tensao para aplicacao em sistemas autonomos de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, George Cajazeiras [Centro Federal de Educacao Tecnologica do Ceara (CEFET/CE), Fortaleza, CE (Brazil); Torrico-Bascope, Rene P. [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-PET), PE (Brazil)

    2008-07-01

    A non-isolated DC-AC converter with high voltage gain with two output sinusoidal voltage - 110 V and 220 V - and frequency 60 Hz for application in autonomous systems of electric power is proposed in this work. This topology consists of a boost converter with high voltage gain, based on three-state switching cell combined with a double half bridge inverter. This configuration type the size and the cost are reduced and the efficiency is gotten better, due to the reduced number of switches. The converters that compose this topology operate with high frequency, reducing the volume of the magnetic materials. can be mention as important characteristics: the voltage stress across the switches of the boost converter are low, due they be naturally clamped by one output filter capacitor, which allows the utilization of switches with lower conduction resistances, and the waveforms of the output voltage of the double half bridge inverter supplies for the load it is sinusoidal and it possesses low harmonic content. (author)

  11. Design of sewage treatment system based on high-voltage pulsed electric field technology%基于高压脉冲电场技术的污水处理系统研究设计

    Institute of Scientific and Technical Information of China (English)

    李唐; 王亚伟; 赵振良; 尤丽华

    2013-01-01

    针对污水处理厂剩余污泥含水率高,达到70%-80%,不利于进一步处理的问题,根据污水成分及其处理工艺特点,提出了一种基于高压脉冲电场技术的污水处理的方法.本文从理论上系统地阐述了高压脉冲电场处理装置的研制,设计了低成本高压脉冲电源,最高电压10 kV,最大电流50A,并且能方便的调节电场参数.%Contrary to the problem that the high moisture content of the excess sludge of the sewage treatment plant, up to 70% to 80% , the paper proposed a sewage treatment method based on the high-voltage pulse electric field (HPEF) technology, according to the composition of sewage and the feature of its treatment technology.The paper systematically expounded of how to design a pulsed electric field theoretically,and design a low-cost high-voltage pulse power supply with the peak impulse voltage 10 kV and impulse current to 50 A, which also can easily adjust the electric field parameters.

  12. Can undersea voltage measurements detect tsunamis?

    Digital Repository Service at National Institute of Oceanography (India)

    Manoj, C.; Kuvshinov, A.; Neetu, S.; Harinarayana, T.

    The movement of electrically conducting ocean water in the ambient geomagnetic field induces secondary electric and magnetic fields in the oceans. Ocean water transport is now routinely inferred from undersea cable voltage data. We try to answer...

  13. Compact, Lightweight, High Voltage Propellant Isolators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TA&T, Inc. proposes an enabling fabrication process for high voltage isolators required in high power solar electric and nuclear electric propulsion (SEP and...

  14. Compact, Lightweight, High Voltage Propellant Isolators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TA&T, Inc. proposes an enabling fabrication process for high voltage isolators required in high power solar electric and nuclear electric propulsion (SEP and...

  15. Towards the understanding of the origin of charge-current-induced spin voltage signals in the topological insulator Bi2Se3

    NARCIS (Netherlands)

    de Vries, Eric Kornelis; Kamerbeek, Alexander; Koirala, Nikesh; Brahlek, Matthew; Salehi, Maryam; Oh, Seongshik; van Wees, Bart; Banerjee, Tamalika

    2015-01-01

    Topological insulators provide a new platform for spintronics due to the spin texture of the surface states that are topologically robust against elastic backscattering. Here we report on an investigation of the measured voltage obtained from efforts to electrically probe spin-momentum locking in

  16. 高压脉冲电参数对果蔬介电特性的影响机理分析%Influence Mechanism of High-voltage Pulsed Electric Parameters on Dielectric Properties of Fruits and Vegetables

    Institute of Scientific and Technical Information of China (English)

    马飞宇; 郭玉明

    2013-01-01

    The high voltage pulse electric field pretreatment can improve the freeze-drying rate of fruits and vegetables and reduce energy consumption .But when researching fruit and vegetable dielectric property about the changes of on -line monitoring freeze-dried moisture content ,high-voltage pulsed electric field should be considered the influence of electri-cal parameter on dielectric properties of fruit and vegetable .In the cellular level , high-voltage pulsed electric fields effects fruits and vegetables , analyzing the influence of electric parameters on dielectric properties of fruit and vegetable . For equivalent circuit model of fruits and vegetables biological tissue , electrical parameters influence on dielectric proper-ties of fruit and vegetable , such as fruit and vegetable equivalent capacitance and equivalent impedance , which were summarized and analyzed about mechanism to provide a reference on high voltage pulse electric field pretreatment fruit and vegetable processing parameters optimization .%高压脉冲电场预处理果蔬可以提高果蔬冻干速率、降低能耗。但研究运用果蔬介电特性在线监测冻干水分变化时,需要考虑高压脉冲电场电参数对果蔬介电特性的影响。为此,针对高压脉冲电场作用果蔬细胞层面,分析了电参数对果蔬介电特性的影响,对果蔬生物组织等效电路模型和电参数对果蔬等效电容、等效阻抗等介电特性的影响等方面进行了综述分析及机理分析,为高压脉冲电场预处理果蔬工艺参数优化提供了参考。

  17. Early treatment of high-voltage electric burn wound in the limbs%四肢高压电烧伤创面的早期处理

    Institute of Scientific and Technical Information of China (English)

    沈余明; 胡骁骅; 宓惠茹; 于东宁; 覃风均; 陈辉; 王浩; 张国安

    2011-01-01

    Objective To summarize the experience of early treatment of high-voltage electric burn wounds in the limbs. Methods Fifty-four patients (50 males and 4 females,aged from 10 to 56 years) with high-voltage electric burn wounds in 97 limbs (67 upper limbs and 30 lower limbs) were hospitalized in our burn wards from January 2003 to December 2010. A total of 119 burn wounds in wrist-forearm,forearm-elbow-upper arm,shoulder-axillary region,ankle-foot,lower leg,around the knee,thigh-inguinal region were treated with incision for decompression within 10 days after burn. Under the premise of relatively stable systemic condition of the patients,certain surgical operations were performed as follows. (1) Sixteen limbs with 16 wounds were amputated,among them forearm amputation was performed for 5 upper limbs with necrosis,with preservation of elbow joints,and the residual wounds of the elbow and upper arm were repaired with pedicled latissimus dorsi musculo-cutaneous flaps;1 upper limb with upper arm amputated,with preservation of shoulder joint,was repaired with pedicled latissimus dorsi musculo-cutaneous flap. (2) Ninety-five wounds were covered with various tissue flaps with abundant blood supply after early debridement,in which 3 brachial arteries,1 vein,1 brachial artery and vein were reconstructed in 5 wrist wounds,artery reconstruction was performed in elbow wound of 1 case with injured brachial artery. (3) Eight wounds were treated with free skin grafting. Wound healing conditions were observed and followed up. Results Wounds in 16 limbs healed after amputation and repair. Blood supply and (or) venous return of hands were restored in 5 wrist wounds after vessel reconstruction. After artery reconstruction,abundant blood supply was observed in 1 case with injured brachial artery and amputation was avoided. Necrosis occurred in distal parts of tissue flaps in 5 wounds after grafting,in which 2 wounds healed after removal of necrotic tissue followed by closure with suture

  18. Design of a distributed high and low voltage line to prevent electricity theft%一种分布式高低压线路防窃电设计

    Institute of Scientific and Technical Information of China (English)

    肖监; 王玉萍; 桂专; 张秋雁

    2016-01-01

    At present the smart electricity consumption system, It mainly depend on the Remote terminal and smart me-ter to prevent electricity theft, It just use the low-voltage data, caused the instability of system, and high Rate of missing or errors. To solve this problem, design a field distributed system, it based on the Fault indicator and Low-voltage line collection, remote terminal judge the operating condition systematically. It can monitor all kinds of electricity stealing activities. It has the characteristics of high reliability, low cost and convenient maintenance. It can help the system to monitor anti-electricity theft.%目前智能用电系统中,防窃电主要依赖低压侧远方终端和电表判断,单一使用低压侧数据判断,系统不可靠,误报,漏报率高。针对该问题,设计了一种基于故障指示器和低压线路采集相结合,远方终端系统判断高压和低压数据,可有效监测各类常见窃电异常,系统可靠性高,投入成本低,运维便利,能为现有系统提供有效窃电监测。

  19. Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zhaofeng [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; Perea, Daniel E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Yoo, Jinkyoung [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Colby, Robert J. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Barker, Josh E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Picraux, S. T. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; McCartney, Martha R. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

    2016-09-13

    Doped Si-Ge nanowire (NW) heterojunctions were grown using the vapor-liquid-solid method with AuGa and Au catalyst particles. Transmission electron microscopy and off-axis electron holography (EH) were used to characterize the nanostructure and to measure the electrostatic potential profile across the junction resulting from electrically active dopants, while atom-probe tomography (APT) was used to determine the Si, Ge and total (active and inactive) dopant concentration profiles. A comparison of the measured potential profile with simulations indicated that Ga dopants unintentionally introduced during AuGa catalyst growth were electronically inactive despite APT results that showed considerable amounts of Ga in the Si region. 10% P in Ge and 100% B in Si were estimated to be activated, which was corroborated by in situ electron-holography biasing experiments. This combination of EH, APT, in situ biasing and simulations allows a better knowledge and understanding of the electrically active dopant distributions in NWs.

  20. Four-probe scanning tunnelling microscope with atomic resolution for electrical and electro-optical property measurements of nanosystems

    Institute of Scientific and Technical Information of China (English)

    Lin Xiao; He Xiao-Bo; Lu Jun-Ling; Gao Li; Huan Qing; Shi Dong-Xia; Gao Hong-Jun

    2005-01-01

    We demonstrate a special four-probe scanning tunnelling microscope (STM) system in ultrahigh vacuum (UHV),which can provide coarse positioning for every probe independently with the help of scanning electron microscope (SEM)and fine positioning down to nanometre using the STM technology. The system allows conductivity measurement by means of a four-point probe method, which can draw out more accurate electron transport characteristics in nanostructures, and provides easy manipulation of low dimension materials. All measurements can be performed in variable temperature (from 30K to 500K), magnetic field (from 0 to 0.1T), and different gas environments. Simultaneously, the cathodoluminescence (CL) spectrum can be achieved through an optical subsystem. Test measurements using some nanowire samples show that this system is a powerful tool in exploring electron transport characteristics and spectra in nanoscale physics.

  1. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  2. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical m

  3. Simulation Test System of Non-Contact D-dot Voltage Transformer

    Science.gov (United States)

    Yang, Jie; Wang, Jingang; Luo, Ruixi; Gao, Can; Songnong, Li; Kongjun, Zhou

    2016-04-01

    The development trend of future voltage transformer in smart grid is non-contact measurement, miniaturization and intellectualization. This paper proposes one simulation test system of non-contact D-dot transformer for voltage measurement. This simulation test system consists of D-dot transformer, signal processing circuit and ground PC port. D-dot transformer realizes the indirect voltage measurement by measuring the change rate of electric displacement vector, a non-contact means (He et al. 2004, Principles and experiments of voltage transformer based on self-integrating D-dot probe. Proc CSEE 2014;15:2445-51). Specific to the characteristics of D-dot transformer signals, signal processing circuits with strong resistance to interference and distortion-free amplified sensor output signal are designed. WIFI wireless network is used to transmit the voltage detection to LabVIEW-based ground collection port and LabVIEW technology is adopted for signal reception, data processing and analysis and other functions. Finally, a test platform is established to simulate the performance of the whole test system of single-phase voltage transformer. Test results indicate that this voltage transformer has sound real-time performance, high accuracy and fast response speed and the simulation test system is stable and reliable and can be a new prototype of voltage transformers.

  4. Análisis estadístico de la caída de tensión en un sistema eléctrico de baja tensión; Statistical analysis of the voltage drop in a low voltage electrical system

    Directory of Open Access Journals (Sweden)

    Juan M. Astorga Gómez

    2013-06-01

    Full Text Available En este trabajo se presenta un enfoque estadístico para la evaluación de la caída de tensión en un sistema eléctrico de baja tensión, basado en la aplicación de dos herramientas básicas del control estadístico de procesos conocidas como cartas de control y análisis de capacidad de procesos. Se muestran los resultados para dos sistemas de prueba, se realizan las pruebas de normalidad y autocorrelación parcial para las muestras, se interpretan los resultados de las cartas de control Xbarra-S y se evalúa la capacidad del proceso considerando las bases del mejoramiento de la calidad. Los sistemas de prueba usados en este trabajo son un sistema eléctrico monofásico de baja tensión y un sistema eléctrico trifásico de baja tensión. El objetivo principal de este trabajo es evaluar el estado de control estadístico de la variable de proceso “caída de tensión”, como herramienta para el mejoramiento continuo de los procesos eléctricos.  This paper presents a statistical approach for the evaluation of the voltage drop in a low voltage electrical system, based on the application of two basic tools of statistical process control known as control charts and process capability analysis. The results for two test systems are shown, testing of normality and partial autocorrelation for samples are performed, the results of the control charts Xbar-S are interpreted and the process capability analysis are assessed considering the foundations for the quality improvement. The test systems used in this work are one electrical system single-phase low voltage and one electrical system of three-phase low voltage. The main objective of this paper is to evaluate the state of statistical control of the process variable "voltage drop", as a tool for continuous improvement of the electrical process.

  5. 红外辐射测温技术在煤矿高压电器检测中的应用%Infrared radiation thermometry techniques in the coal high voltage electrical detection

    Institute of Scientific and Technical Information of China (English)

    王兴举; 黄宗建; 李进曌

    2014-01-01

    Infraredradiation thermometry techniques have real-time,convenient and non-destructive,which is widely used in electrical products,temperature detection,especially in high-voltage electrical equipment due to coal mining complex run construction environment,conventional means is difficult to accurately measure the temperature changes,and infrared radiation thermometry can quickly and accurately measure high voltage electrical coal mines.This article from the infrared radiation thermometry in the coal high voltage electrical temperature measurement standpoint,focusing on the formation mechanism of the infrared radiation thermometry,testing methods and testing techniques to note,as the actual production process to provide a reliable theoretical basis.%红外辐射测温技术具备了实时、便捷以及非破坏性等特点,广泛用于电器产品温度的检测中,特别是煤矿高压电器设备由于复杂的运行施工环境,常规手段很难准确的测量温度的变化,而红外辐射测温能够迅速准确的对煤矿高压电器进行测量。本文主要从红外辐射测温技术在煤矿高压电器温度的测量方面出发,重点研究了红外辐射测温的形成机理、测试手段以及需要注意的测试技巧,为生产实际过程中提供一个可靠的理论依据。

  6. Increase in the number of distributed power generation installations in electricity distribution grids - Simulation in a 16 kV medium-voltage network; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Simulationen im 16 kV Mittelspannungsnetz des AEW

    Energy Technology Data Exchange (ETDEWEB)

    Hoeckel, M.; Luechinger, P.

    2003-07-01

    This is the seventh part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This sixth appendix to the main report presents and discusses the results of simulations made on the basis of the real-life 16 kV medium-voltage distribution network operated by the Aargovian electricity utility AEW. This appendix describes the simulation methods used and the basic characteristics of medium-voltage networks and distributed generation facilities. Different types of load profiles, including domestic and industrial loads, are discussed. The results of the simulations are presented in graphical form and provide profiles of voltage and current, active and reactive power and further mains characteristics for varying load conditions. Also, daily profiles for situations with and without distributed generation are presented and short-circuit simulations and grid dynamics are discussed.

  7. A Capacitor Electricity Transformer as a Substitute for Lower Voltage Transformer%一种可替代降压变压器的容式电能变换器

    Institute of Scientific and Technical Information of China (English)

    刘白鸽; 周符明

    2000-01-01

    介绍了一种用电容器、二极管和开关组成的新型电能变换器(直流分压器)。直流分压器是一个单向传输的器件,在输入、输出交替进行的条件下,它能将输入的高电压实行分压,以直流低电压输出。直流分压器集开关电源和电能变换于一身,可以被用来设计降压型直流电源。%A new kind of electricity transformer which indudes capactiors, diodes and switches is introduced in this paper. It is an unilateralism-transforming device, which can dispart high import voltage when inputting and outputting by tums, and outputs low voltage of direct current. DC voltage divider can be used to design lower voltage direct current power.

  8. Piezo Voltage Controlled Planar Hall Effect Devices

    OpenAIRE

    Bao Zhang; Kang-Kang Meng; Mei-Yin Yang; Edmonds, K. W.; Hao Zhang; Kai-Ming Cai; Yu Sheng; Nan Zhang; Yang Ji; Jian-Hua Zhao; Hou-Zhi Zheng; Kai-You Wang

    2015-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the pie...

  9. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Pizzocchero, Filippo; Jessen, Bjarke Sørensen

    2014-01-01

    The electrical performance of graphene synthesized by chemical vapor deposition and transferred to insulating surfaces may be compromised by extended defects, including for instance grain boundaries, cracks, wrinkles, and tears. In this study, we experimentally investigate and compare the nano...

  10. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy.

    Science.gov (United States)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant (13)C nuclei coupled to the observer spins. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    Science.gov (United States)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  12. Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenko. As constrained by the Permittivity Probe SESAME-PP/Philae/Rosetta

    CERN Document Server

    Lethuillier, Anthony; Hamelin, Michel; Schmidt, Walter; Seidensticker, Klaus J; Grard, Réjean; Ciarletti, Valérie; Caujolle-Bert, Sylvain; Fischer, Hans-Herbert; Trautner, Roland

    2016-01-01

    Context. Comets are primitive objects, remnants of the volatile-rich planetesimals from which the solar system condensed. Knowing their structure and composition is thus crucial for the understanding of our origins. After the successful landing of Philae on the nucleus of 67P/Churyumov-Gerasimenko in November 2014, for the first time, the Rosetta mission provided the opportunity to measure the low frequency electrical properties of a cometary mantle with the permittivity probe SESAME-PP (Surface Electric Sounding and Acoustic Monitoring Experiment - Permittivity Probe). Aims. In this paper, we conduct an in-depth analysis of the data from active measurements collected by SESAME-PP at Abydos, which is the final landing site of Philae, to constrain the porosity and, to a lesser extent, the composition of the surface material down to a depth of about 1 meter. Methods. SESAME-PP observations on the surface are then analyzed by comparison with data acquired during the descent toward the nucleus and with numerical ...

  13. Comparative studies on extraction of laminarin by high voltage pulsed electric fields and traditional method%高压脉冲电场和传统热水法提取海带多糖的比较研究

    Institute of Scientific and Technical Information of China (English)

    刘航; 冯立强; 刘兴江

    2016-01-01

    Orthogonal tests are carried out to determine optimal laminarin extraction technologies by the high voltage pulsed electric fields and the traditional hot water method.The mechanism of the high voltage pulsed electric fields is preliminarily discussed.The optimal conditions of traditional method are:1∶50 of material-liquid ratio,60 ℃ of extraction temperature and 40 minutes of extraction time.The optimal conditions of high voltage pulsed electric fields are:1 ∶ 30 of material-liquid ratio,20 minutes of pulse time,10 kV of electric field intensity and 50 Hz of pulse frequency.Compared with traditional hot water extraction method,the extraction time is shortened by 50% and the extraction ratio is increased by 45% for high voltage pulsed electric field method.%利用正交试验确定了高压电脉冲电场和传统热水法提取海带多糖的方法的最佳工艺,并对2种工艺进行了比较,初步探讨高压脉冲的作用机理.结果表明,传统热水法提取海带多糖的最佳工艺为:海带粉与去离子水的料液比为1∶50,提取温度为60℃,提取时间为40 min.高压脉冲电场的最佳工艺为:海带粉与去离子水的料液比为1∶30,脉冲时间为20 min,脉冲电压为10 kV,脉冲频率为50 Hz.提取时间仅为传统热水法时间的1/2,海带多糖提取率比传统热水法提高45%.

  14. Graphene quantum dot (GQD)-induced photovoltaic and photoelectric memory elements in a pentacene/GQD field effect transistor as a probe of functional interface

    Science.gov (United States)

    Kim, Youngjun; Cho, Seongeun; Kim, Hyeran; Seo, Soonjoo; Lee, Hyun Uk; Lee, Jouhahn; Ko, Hyungduk; Chang, Mincheol; Park, Byoungnam

    2017-09-01

    Electric field-induced charge trapping and exciton dissociation were demonstrated at a penatcene/grapheme quantum dot (GQD) interface using a bottom contact bi-layer field effect transistor (FET) as an electrical nano-probe. Large threshold voltage shift in a pentacene/GQD FET in the dark arises from field-induced carrier trapping in the GQD layer or GQD-induced trap states at the pentacene/GQD interface. As the gate electric field increases, hysteresis characterized by the threshold voltage shift depending on the direction of the gate voltage scan becomes stronger due to carrier trapping associated with the presence of a GQD layer. Upon illumination, exciton dissociation and gate electric field-induced charge trapping simultaneously contribute to increase the threshold voltage window, which can potentially be exploited for photoelectric memory and/or photovoltaic devices through interface engineering.

  15. Neuro-fuzzy-wavelet network for detection and classification of the voltage disturbances in electrical power system; Rede neuro-fuzzy-wavelet para deteccao e classificacao de anomalias de tensao em sistemas eletricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Malange, Fernando C.V. [Universidade do Estado de Mato Grosso (UEMT), Caceres, MT (Brazil). Dept. de Computacao], E-mail: fmalange@gmail.com; Minussi, Carlos R. [Universidade Estadual Paulista (UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], E-mail: minussi@dee.feis.unesp.br

    2009-07-01

    A methodology for identifying and classifying voltage disturbances (harmonics, voltage sag, etc.) using fuzzy ARTMAP neural networks is presented. It is an ART (adaptive resonance theory) architecture family neural network that presents the stability and plasticity properties, which are fundamental requests for developing a reliable electrical systems with reduced processing time. Stability means a guarantee of good solutions; plasticity allows realize the training without restart the system every time there are new patterns to be stored in a weight matrix of the neural network. The training is realized from the wave forms provided by the acquisition data system, using the wavelets theory to generate the coefficients that constitute the input patterns of the neural network. Results from simulations show that the accuracy index is nearly 100%. (author)

  16. PIC simulation of the motion of plasma around ion sensitive probes

    Energy Technology Data Exchange (ETDEWEB)

    Ezumi, N. [Nagano National Coll. of Technology (Japan). Dept. of Electronics and Control Engineering

    2001-07-01

    The current-voltage characteristics, the structure of electric potential around an ion sensitive probe and the particle flux on the ion collector have been simulated by the two dimensional particle-in-cell code (Berkeley Code). Concerning the separate mechanism of ions and electrons on the probe, the importance of electric potential profile around the electrode was pointed out. It was found that the E x B drift motion of electrons moving along the equipotential surface plays an essential role in the ISP measurement. (orig.)

  17. Study on Smart Meter Reading System with Low Voltage Reactive Power Compensation for Electric Power Carrier%低压无功补偿型电力载波智能抄表系统研究

    Institute of Scientific and Technical Information of China (English)

    罗书克; 张元敏

    2011-01-01

    针对感性负载被低压用户广泛使用并消耗大量无功电能且抄表困难的现象,利用编码技术设计了具有低压无功补偿功能的电力载波智能抄表系统,给出了各组成部分的原理与硬件实现方案.在电能计量部分加入无功补偿单元,实现分户就地补偿,解决了不同电压等级间信号的传输,扩大了传输距离.实际应用表明,系统在大大减少工作量的基础上,提高了用电效率,降低了输电线路的损耗,实现了低压电网的智能化.%Aiming at the situation of inductive load is widely used by low voltage consumers, while large amount of reactive power energy is expended and meter reading is a difficult job, by adopting encoding technology, the smart meter reading system with low voltage reactive power compensation for electric power carrier has been designed. Hie principle of each composition and hardware implementation are given. In power metering section, reactive power compensation unit is added to realize local compensation for each household for resolving signal transmission among different voltage levels and expand transmission distance. Hie practical application shows that the electricity usage efficiency is enhanced and the loss of transmission lines is reduced, while labor is greatly decreased, thus intelligent low voltage power grid system can be implemented.

  18. Numerical evaluation of currents induced in a worker by ELF non-uniform electric fields in high voltage substations and comparison with experimental results.

    Science.gov (United States)

    Tarao, Hiroo; Korpinen, Leena H; Kuisti, Harri A; Hayashi, Noriyuki; Elovaara, Jarmo A; Isaka, Katsuo

    2013-01-01

    An ungrounded human, such as a substation worker, receives contact currents when touching a grounded object in electric fields. In this article, contact currents and internal electric fields induced in the human when exposed to non-uniform electric fields at 50 Hz are numerically calculated. This is done using a realistic human model standing at a distance of 0.1-0.5 m from the grounded conductive object. We found that the relationship between the external electric field strength and the contact current obtained by calculation is in good agreement with previous measurements. Calculated results show that the contact currents largely depend on the distance, and that the induced electric fields in the tissues are proportional to the contact current regardless of the non-uniformity of the external electric field. Therefore, it is concluded that the contact current, rather than the spatial average of the external electric field, is more suitable for evaluating electric field dosimetry of tissues. The maximum induced electric field appears in the spinal cord in the central nervous system tissues, with the induced electric field in the spinal cord approaching the basic restriction (100 mV/m) of the new 2010 International Commission on Non-Ionizing Radiation Protection guidelines for occupational exposure, if the contact current is 0.5 mA. Copyright © 2012 Wiley Periodicals, Inc.

  19. Investigation of a shock wave in an arcjet He plasma by using an electric probe and emission spectroscope

    Energy Technology Data Exchange (ETDEWEB)

    Kumagawa, G.; Kozue, K.; Fujino, S.; Matsuoka, L.; Endo, T.; Namba, S. [Hiroshima University, Higashi-Hiroshima (Japan); Tamura, N. [National Institute for Fusion Science, Gifu (Japan); Ezumi, N. [Nagano National College of Technology, Nagano (Japan)

    2014-10-15

    We developed an arcjet plasma device having a converging and diverging supersonic conical nozzle. Bright and dark emission structures were formed, depending on the gas pressure in the expansion section. In order to understand the mechanism for the formation of the structures, we evaluated the plasma parameters (electron density and temperature) by using a single probe and a visible emission spectroscope. The analysis of the probe measurements showed no temperature variation around the bright emission region. The plasma density increased significantly by a factor of two. Similar trends were also observed in the spectroscopic measurements. Moreover, the cell width (wavelength) of the shock wave calculated from the compressible fluid dynamics was in good agreement with the experimental value, indicating that this emission structure was caused by a shock cell that could be described by using compressible flow dynamics.

  20. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    Science.gov (United States)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field

  1. Development of a Remote Insulation Test Device for High-Voltage Electrical Motors%一种远程高压电机绝缘测试装置的开发研究

    Institute of Scientific and Technical Information of China (English)

    何锁侠; 佟洪明; 肖骥; 李开寒

    2014-01-01

    介绍了一种远程高压电机绝缘测试装置。根据系统需求,独自研发了一种加入了RS-485通信模块和控制模块的新一代电子式电阻表。基于西门子S7-200型PLC对高压电机绝缘监测设备、高压继电器、机械抓进行控制。建立了触摸屏、PLC、绝缘检测仪之间的通讯,实现了高压电机绝缘的远程测量功能。通过运用本装置,提高了高压电机绝缘检测的自动化水平,降低了设备维修频率,并保障了工人的人身安全。%A remote insulation test device for high -voltage electrical motors is introduced. To meet system requirement, a new -generation electronic insulation tester incorporating RS -485 communication module and control module was independently developed. Based on Siemens S7-200 PLC the system can control high-voltage motor insulation monitoring devices, high voltage relays and mechanical grips. Communication between the touch screen, PLC and insulation tester was established, realizing remote insulation measurement for high voltage motors. The device improves the automation level of high-voltage motor insulation test, reduces the frequency of equipment maintenance and ensures personal safety.

  2. Atom probe field ion microscopy of high resistivity materials

    Energy Technology Data Exchange (ETDEWEB)

    Sibrandij, S.J.; Larson, D.J.; Miller, M.K.

    1998-02-01

    Over the last 30 years the atom probe has proved to be a powerful tool for studying nanometer-sized compositional fluctuations in a wide range of metallic alloys but has had only limited applications to semiconductors and ceramics. One of the primary reasons for this difference is the higher resistivity of semiconducting and ceramic specimens. Because of this high resistivity, the high voltage field evaporation pulse is attenuated before it reaches the apex of the specimen thereby making the pulse ineffective for field evaporation. Experiments have demonstrated that both variants of the voltage-pulsed atom probe (i.e., those instruments in which the field evaporation pulse is applied directly to the specimen and those in which the negative pulse is applied to a counter electrode in front of the specimen) are equally affected. In this overview, the limits of applicability of the voltage-pulsed atom probe to high resistivity materials are examined. In this study, a wide range of materials have been examined to determine whether field ion microscopy and voltage-pulsed field evaporation can be achieved and the results are summarized in the report. Field ion microscopy including dc field evaporation was possible for all materials except bulk ceramic insulators and glasses. Field ion microscopy requires some conductivity both to achieve a high electric field at the apex of the specimen, and also to support the field ion current. In contrast, voltage-pulsed field evaporation requires transmission of the pulse to the apex of the specimen. All metallic alloys including high resistance alloys and metallic glasses were successfully field evaporated with a voltage pulse. Specimens that were produced from bulk material of several conducting ceramics including MoSi, TiB and TiC were also successfully field evaporated with a voltage pulse.

  3. Barrel wear reduction in rail guns: the effects of known and controlled rail spacing on low voltage electrical contact and the hard chrome plating of copper-tungsten rail and pure copper rails

    OpenAIRE

    McNeal, Cedric J.

    2003-01-01

    Approved for public release, distribution is unlimited 100 m/s). Low voltage electrical contact was not maintained for some experimental shots and non-parallel rails were the suspected cause. In this thesis, we used a non-contact capacitive sensor to determine rail spacing to within 2/kAcm10mael, so that the rails will be parallel within small tolerances. Several rails were used in these experiments: 75-25 copper-tungsten, chromium-plated 75-25 Cu-W, and chromium-plated pure copper rails. ...

  4. Space Life Sciences Directorate's Position on the Physiological Effects of Exposing the Crewmemeber to Low-Voltage Electrical Hazards During Extravehicular Activity

    Science.gov (United States)

    Hamilton, Douglas; Kramer, Leonard; Mikatarian, Ron; Polk, James; Duncan, Michael; Koontz, Steven

    2010-01-01

    The models predict that, for low voltage exposures in the space suit, physiologically active current could be conducted across the crew member causing catastrophic hazards. Future work with Naval Health Research Center Detachment Directed Energy Bio-effects Laboratory is being proposed to analyze additional current paths across the human torso and upper limbs. These models may need to be verified with human studies.

  5. Four point probe structures with buried and surface electrodes for the electrical characterization of ultrathin conducting films

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, R.A.M.; Kovalgin, A.Y.; Schmitz, J.

    2012-01-01

    Test structures for the electrical characterization of ultrathin conductive films are presented based on electrodes on which the ultrathin film is deposited. Two different designs are discussed: a novel design with buried electrodes and a conventional design with electrodes at the surface. This work

  6. Electrical breakdown of an acrylic dielectric elastomer: effects of hemispherical probing electrode’s size and force

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-10-01

    Full Text Available Dielectric elastomers are widely investigated as soft electromechanically active polymers (EAPs for actuators, stretch/force sensors, and mechanical energy harvesters to generate electricity. Although the performance of such devices is limited by the dielectric strength of the constitutive material, the electrical breakdown of soft elastomers for electromechanical transduction is still scarcely studied. Here, we describe a custom-made setup to measure electrical breakdown of soft EAPs, and we present data for a widely studied acrylic elastomer (VHB 4905 from 3M. The elastomer was electrically stimulated via a planar and a hemispherical metal electrode. The breakdown was characterized under different conditions to investigate the effects of the radius of curvature and applied force of the hemispherical electrode. With a given radius of curvature, the breakdown field increased by about 50% for a nearly 10-fold increase of the applied mechanical stress, while with a given mechanical stress the breakdown field increased by about 20% for an approximately twofold increase of the radius of curvature. These results indicate that the breakdown field is highly dependent on the boundary conditions, suggesting the need for reporting breakdown data always in close association with the measurement conditions. These findings might help future investigations in elucidating the ultimate breakdown mechanism/s of soft elastomers.

  7. Usage of a dc-to-dc converter for voltage adaption between energy storage and propulsion system in electric or hybrid vehicles; Einsatz eines DC/DC-Wandlers zur Spannungsanpassung zwischen Antrieb und Energiespeicher in Elektro- und Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenen, Timo

    2011-07-01

    Every time a new hybrid or electrical vehicle is developed, different topologies are compared to achieve the best results regarding weight costs and efficiency. The integration of a dc-to-dc converter between the battery stack and the power train is a frequently discussed alternative because the preferred voltage of the inverter and machine are often higher than the voltage of the battery stack. Within this thesis this approach was studied in detail and compared with the conventional concept without using a dc-to-dc converter. Therefore the influence of the dc-link voltage on the components like battery stack, machine, inverter and dc-to-dc converter was investigated. A change of the dc-link voltage leads to changes inside the components which affect weight, surface of the semiconductor devices and efficiency. This correlation could be used to develop a simulation process which optimizes the dc-link voltage regarding the programmed targets. In hybrid and electrical vehicles low weight and minimum costs are important and were defined as the main targets to achieve. The vantages which arise by using a dc-to-dc converter can be opposed to the disadvantages which also occur. The additional degree of freedom caused by the dc-to-dc converter shall be used. To achieve the best results regarding efficiency, the dc-link voltage has to be adapted to the operating point of the machine. First of all the dc-to-dc converter is an additional component with its weight, volume and losses. By the increased dc-link voltage on the drive train side, the size of the semiconductor devices inside the inverter could be reduced. Therefore the number of windings inside the machine has to be adapted accordingly. Also the wiring could be decreased based on the reduced currents. Overall there is still a higher weight and volume caused by the dc-to-dc converter. Also the efficiency map is influenced by the dc-to-dc converter. In the base speed region the dc-to-dc converter leads to a higher

  8. Hybrid electric vehicle power management system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  9. Electrical transport properties of oligothiophene based molecular films studied by current sensing Atomic Force Microscopy

    NARCIS (Netherlands)

    Hendriksen, Bas L.M.; Martin, Florent; Qi, Yabing; Qi, Y.; Mauldin, Clayton; Vukmirovic, Nenad; Ren, JunFeng; Wormeester, Herbert; Katan, Allard J.; Altoe, Virginia; Aloni, Shaul; Frechet, Jean M.J.; Wang, Lin-Wang; Salmeron, Miquel

    2011-01-01

    Using conducting probe atomic force microscopy (CAFM) we have investigated the electrical conduction properties of monolayer films of a pentathiophene derivative on a SiO2/Si-p+ substrate. By a combination of current–voltage spectroscopy and current imaging we show that lateral charge transport

  10. Electric power quality analysis methods. Application to voltage dips and harmonic disturbances; Methodes d'analyse de la qualite de l'energie electrique. Application aux creux de tension et a la pollution harmonique

    Energy Technology Data Exchange (ETDEWEB)

    Vanya, Ignatova

    2006-10-15

    The power quality concerns all the actors in the energy domains, that they are network administrators, suppliers, producers, or consumers of electricity. The research work presented in this PhD thesis is situated in the field of the power quality monitoring. Its objective is to introduce new techniques for analysis of power quality problems. There are different methods designed for the analysis of the power quality disturbances. This method reaches very good performances in the voltage dips analysis, as it allows segmenting, classifying and characterising these power quality disturbances. The periodic systems method allows the theoretical study of the generation and the propagation of harmonic disturbances in the network. Finally, the statistical matrix method has the objective to represent statistically electrical signals without loss of important information. (author)

  11. New technologies incorporated to the standards of secondary voltage electric power distribution: pad-mounted transformers, condominium underground network and electronic measurements; Novas tecnologias incorporadas aos padroes de fornecimento de energia eletrica em tensao secundaria de distribuicao: transformadores pedestal, redes subterraneas em condominios e medicao eletronica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Edilson L.; Silva, Francisco L.; Oliveira, Joao J.S.; Aguillera, Marco A. [ELETROPAULO, Sao Paulo, SP (Brazil). E-mail: joaosantos@eletropaulo.com.br

    1999-07-01

    This paper presents a general view on the new technologies, available in the electric power industry, incorporated to the standards of electric power supplying for secondary voltage distribution, and also the utilization of electronic meters, EURIDIS protocol and bus-way type bars.

  12. The dynamic response of a hot-wire anemometer: IV. Sine-wave voltage perturbation testing for near-wall hot-wire/film probes and the presence of low-high frequency response characteristics

    Science.gov (United States)

    Teo, C. J.; Khoo, B. C.; Teo, C. J.; Chew, Y. T.

    2001-01-01

    Experiments were performed using the electronic sine-wave voltage-perturbation test to systematically study the frequency responses of near-wall hot-wire probes subjected in turn to varying magnitudes of convective velocity and different effects of wall influence. In addition, quartz-substrate hot-film gauges with various thicknesses of quartz coating were also investigated. Results of the high cut-off frequency obtained using the sine-wave test (fsine) were found to be in fair agreement with those obtained using the square-wave test (fS) both for hot-wire and for hot-film sensors. The sine-wave test response curve exhibited a distinct bulging effect for the hot-film gauges. For the hot-wire sensors, a much weaker bulging effect was also observed. In contrast to fS and fsine, the low frequency response characteristic corresponding to the location of the bulging effect (fbulge) compared much more favourably with the dynamic frequency response (fD) obtained by Khoo et al and Chew et al using a known near-wall fluctuating flow field. Freymuth's theory for non-cylindrical hot-film sensors incorporating the Bellhouse-Schultz model was applied to predict the responses of the hot-film wall gauges when they were subjected to electronic sine-wave testing and dynamic perturbation testing under different parametric conditions. Although it is one-dimensional in nature, the model is capable of predicting most of the trends observed in the present study and previous works by Khoo et al (1998a) and Chew et al (1998a).

  13. Low-Voltage Consumption Coordination for Loss Minimization and Voltage Control

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for minimizing active power losses in low-voltage grids, by coordinating the consumption of electric vehicles and power generation from solar panels. We show that minimizing losses, also reduces voltage variations, and illustrate how this may be employed for increasing...... the number of electric vehicles and photovoltaic systems in the grid without violating grid constraints....

  14. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577 (Japan); Xu, Z., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kvashnin, D. G. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Tang, D.-M.; Xue, Y. M.; Bando, Y. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Sorokin, P. B. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700 (Russian Federation)

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  15. Probing exotic magnetic phases and electrical transport in Cr-rich γ-NiFeCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Pampa [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Majumdar, A.K., E-mail: akm@bose.res.in [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Ramakrishna Mission Vivekananda University, PO Belur Math, Howrah 711202 (India); Nigam, A.K. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2015-05-01

    We have identified ferromagnetic, antiferromagnetic, and re-entrant spin-glass-like phases in Cr-rich γ-NiFeCr alloys and studied their critical magnetic behavior. Their electrical resistivity exhibits distinct minima between 10 and 24 K with ρ∞−√T due to electron–electron interaction effects. Electron–phonon and electron–magnon contributions to ρ are isolated. The magnetoresistance shows hysteresis effects, a signature of spin-glass-like phases and a sign reversal with change of magnetic states. We have also observed that the nature of magnetic states strongly depends on the concentration of Fe and Cr. In this system, even a small amount of Fe enhances ferromagnetism a lot while addition of a little bit of Cr suppresses ferromagnetism and takes the system to the antiferromagnetic regime. The correlation between the magnetic and the electrical properties are more meaningful here since both studies were done on the same set of samples which have rather high melting points. - Highlights: • Identified ferro, antiferro, and re-entrant spin-glass phases in Ni–Fe–Cr alloys. • Resistivity ρ~−√T shows minima from 10–24 K due to electron–electron interaction. • Electron–phonon and electron–magnon contributions to ρ are isolated. • Magneto-transport measurements strengthened the magnetic phases identified. • Correlation in magnetic/electrical properties more meaningful if same samples used.

  16. Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes

    Science.gov (United States)

    Hu, Changzheng; Qu, Weiguo; Rajagopalan, Ramakrishnan; Randall, Clive

    2014-12-01

    Symmetric EDLCs made using high purity carbon electrodes derived from coconut char were tested using 1 M Tetraethylammonium hexafluorophosphate dissolved in two different solvents namely acetonitrile and propylene carbonate. The cell voltage of the capacitor made using propylene carbonate can be extended to 3.5 V and it exhibited good cycling and thermal stability upto 70 °C while the voltage was limited to below 3.0 V in acetonitrile. XPS analysis of the positive and negative electrodes of EDLCs post cycling showed that the primary degradation products were related to ring opening reactions in propylene carbonate based electrolytes while water played a key role in degradation of acetonitrile based EDLCs.

  17. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    OpenAIRE

    Mohammed Hussain Essa; Nuhu Dalhat Mu’azu; Salihu Lukman; Alaadin Bukhari

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant c...

  18. Investigation of disorder and its effect on electrical transport in electrochemically doped polymer devices by current–voltage and impedance spectroscopy

    Science.gov (United States)

    Rahman Khan, Motiur; Anjaneyulu, P.; Koteswara Rao, K. S. R.; Menon, R.

    2017-03-01

    We report on the analysis of temperature-dependent current–voltage characteristics and impedance measurements of electrochemically doped poly(3-methylthiophene) devices at different doping levels. The extent of doping is carefully tailored such that only the bulk-limited transport mechanism prevails. A transition from exponentially distributed trap-limited transport to trap-free space-charge-limited current is observed in current–voltage conduction upon increasing the doping. The obtained trap densities (3.2  ×  1016 cm‑3 and 8.6  ×  1015 cm‑3) and trap energies (31.7 meV and 16.6 meV) for different devices signify the variation in disorder with doping, which is later supported by impedance measurements. Impedance–frequency data for various devices can not be explained using the parallel resistance–capacitance (RC) model in the equivalent circuit. However, this was established by incorporating a constant phase element Q (CPE) instead of the capacitance parameter. It should be emphasized that low doping devices in particular are best simulated with two CPE elements, while the data related to other devices are fitted well with a single CPE element. It is also observed from evaluated circuit parameters that the spatial inhomogeneity and disorder are the cause of variability in different samples, which has an excellent correlation with the temperature-dependent current–voltage characteristics.

  19. Piezo Voltage Controlled Planar Hall Effect Devices

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  20. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.