WorldWideScience

Sample records for voltage power supplies

  1. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  2. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  3. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  4. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  5. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  6. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  7. High voltage power supplies for INDUS-2 RF system

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  8. Dual voltage power supply with 48 volt

    Energy Technology Data Exchange (ETDEWEB)

    Froeschl, Joachim; Proebstle, Hartmut; Sirch, Ottmar [BMW Group, Muenchen (Germany)

    2012-11-01

    Automotive electrics/electronics have just reached a period of tremendous change. High voltage systems for Hybrid, Plug-In Hybrid or Battery Electric Vehicles with high power electric motors, high energy accumulators and electric climate compressors will be introduced in order to achieve the challenging targets for CO{sub 2} emissions and energy efficiency and to anticipate the mobility of the future. Additionally, innovations and the continuous increase of functionality for comfort, safety, driver assistance and infotainment systems require more and more electrical power of the vehicle power supply at all. On the one hand side electrified vehicles will certainly achieve a significant market share, on the other hand side they will increase the pressure to conventional vehicles with combustion engines for fuel consumption and CO{sub 2} emissions. These vehicles will be enabled to keep their competitiveness by new functions and the optimization of their electric systems. A dual voltage power supply with 48 Volt and 12 Volt will be one of the key technologies to realize these requirements. The power capability of the existing 12 Volt power supply has reached its limits. Further potentials can only be admitted by the introduction of 48 Volt. For this reason the car manufacturers Audi, BMW, Daimler, Porsche and Volkswagen started very early on this item and developed a common specification of the new voltage range. Now, it is necessary to identify the probable systems at this voltage range and to start the developments. (orig.)

  9. Intense neutron source: high-voltage power supply specifications

    International Nuclear Information System (INIS)

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  10. Power supply and stabilization of the supply system on board using decentralized voltage rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Grueb, W; Wegerer, K

    1987-04-01

    The functionally redundant power supply system of the Transrapid 06 II maglev train is described; it comprises four independent, battery-buffered networks and 30 linear generators per train section. Voltage rectifiers adapt the velocity- and load-dependent linear generator voltage to the 440 V d.c. networks and assure dynamic stabilisation as well as buffer battery loading. The result is a high-reliability power supply system on board with optimum utilisation of the power supplied by the linear generators while the train is running.

  11. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  12. Design of full digital 50 kV electronic gun high voltage power supply

    International Nuclear Information System (INIS)

    Ge Lei; Shang Lei

    2014-01-01

    The design of full digital electronic gun high voltage power supply based on DSP was introduced in this paper. This power supply has innovations of full digital feedback circuit and PID closed-loop control mode. The application of high frequency resonant converter circuit reduces the size of the resonant element and transformer. The current-coupling distributed high voltage transformer and rectifier circuit were employed in this power supply. By this way, the power supply efficiency is improved and the number of distributed parameters is reduced, and the rectifier circuit could work under the oil-free environment. This power supply has been used in electronic grid-control high voltage system of the irradiation accelerator. (authors)

  13. 250 kV 6 mA compact Cockcroft-Walton high-voltage power supply

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhan-Wen; Su, Xiao-Dong; Wei, Zhen; Huang, Zhi-Wu; Miao, Tian-You; Su, Tong-Ling [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Lu, Xiao-Long; Wang, Jun-Run; Yao, Ze-En, E-mail: zeyao@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-08-15

    A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of the output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.

  14. Optimization of a high voltage power supply for a nitrogen laser

    International Nuclear Information System (INIS)

    Baly, L.; Garcia, M.A.; Martin, J.L.

    1997-01-01

    In the present paper the optimization of a high voltage switching power supply for a compact TEA nitrogen laser is described. Taking as criterion the recovering of the charging voltage in a 95% of the maximal voltage, the relationships between the recovering rate coefficient, the recovering time and the maximal repetition frequency were obtained. Using an experimental set-up the power supply optimal values of turns in the primary transformer coil N p= 35 and excitation pulse frequency f exc= 25.5 kHz was determined

  15. Design of high voltage power supply of miniature X-ray tube based on resonant Royer

    International Nuclear Information System (INIS)

    Liu Xiyao; Zeng Guoqiang; Tan Chengjun; Luo Qun; Gong Chunhui; Huang Rui

    2013-01-01

    Background: In recent years, X rays are widely used in various fields. With the rapid development of national economy, the demand of high quality, high reliability, and high stability miniature X-ray tube has grown rapidly. As an important core component of miniature X-ray tube, high voltage power supply has attracted wide attention. Purpose: To match miniature, the high voltage power supply should be small, lightweight, good quality, etc. Based on the basic performance requirements of existing micro-X-ray tube high voltage power supply, this paper designs an output from 0 to -30 kV adjustable miniature X-ray tube voltage DC power supply. Compared to half-bridge and full-bridge switching-mode power supply, its driving circuit is simple. With working on the linear condition, it has no switching noise. Methods: The main circuit makes use of DC power supply to provide the energy. The resonant Royer circuit supplies sine wave which drives to the high frequency transformer's primary winding with resultant sine-like high voltage appearing across the secondary winding. Then, the voltage doubling rectifying circuit would achieve further boost. In the regulator circuit, a feedback control resonant transistor base current is adopted. In order to insulate air, a silicone rubber is used for high pressure part packaging, and the output voltage is measured by the dividing voltage below -5 kV. Results: The stability of circuit is better than 0.2%/6 h and the percent of the output ripple voltage is less than 0.3%. Keeping the output voltage constant, the output current can reach 57 μA by changing the size of load resistor. This high voltage power supply based on resonant Royer can meet the requirement of miniature X-ray tube. Conclusions: The circuit can satisfy low noise, low ripple, low power and high voltage regulator power supply design. However, its efficiency is not high enough because of the linear condition. In the next design, to further reduce power consumption, we

  16. Exploration of a radiation hardening stabilized voltage power supply

    International Nuclear Information System (INIS)

    Xie Zeyuan; Xu Xianguo

    2014-01-01

    This paper mainly introduces the design method of radiation hardening stabilized voltage power supply that makes use of commercial radiation resistant electronic devices and the test results of radiation performance of the power supply and devices are presented in detail. The experiment results show that the hardened power supply can normally work until 1000 Gy (Si) total dose and 1 × 10 14 n/cm 2 neutron radiation, and it doesn't latchup at about 1 × l0 9 Gy (Si)/s gamma transient dose rate. (authors)

  17. The control system based on PXI technology for high voltage power supply

    International Nuclear Information System (INIS)

    Chen Dehong; Zhang Ming; Ma Shaoxiang; Xia Linglong; Zeng Zhen; Zhang Xueliang; Wang Chuliang; Yu Kexun

    2014-01-01

    A 100 kV/60 A high voltage power supply (HVPS) is being developed to carry some auxiliary heating research on J-TEXT and supply the auxiliary heating system. The power supply which consists of 144 switch modules is based on PSM technology. For the requirement of isolation, control and protection, a control system based on the PCI extensions for instrumentation (PXI) which meets up with the CODAC standards is designed with developed PSM technology for the high voltage power supply. The compact structure of hardware in the control system is presented too. And the control strategy which is based on shift phase pulse width modulation is discussed Some tests are performed on the control system to validate the control strategy, the experimental results show that the system has a good control performance and fast response, which meets the control requirement of 100 kV/60 A high voltage power supply. (authors)

  18. An approach for high voltage power supply system for HCAL of LHCb experiment

    International Nuclear Information System (INIS)

    Cimpean, A.; Dumitru, D.; Kluger, A.; Magureanu, C.; Tarta, D.; Coca, C.; Orlandea, M.; Popescu, S.

    2003-01-01

    The main aim of the calorimeter system of the LHCb (Large Hadron Collider Beauty) experiment dedicated to precision measurements of CP violation and rare phenomena is to provide identification of the electrons, hadrons and photons, for the level-0 trigger and offline analysis with measurements of position and energy. The system consists in a scintillator pad/preshower (SPD/PS) detector, an electromagnetic calorimeter (ECAL) and a hadron calorimeter (HCAL), all the sub-detectors having a similar technology with scintillating tiles as active material and being read out via wavelength-shifting fibers and with an identical readout electronics for ECAL and HCAL and similar electronics for the PS. During 1997-1999 a computer controlled High Voltage (HV) distribution scheme was developed by Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH) group and used to supply the PMTs of half HCAL prototype during the beam tests (1998-2000). This scheme consisted of three parts: 1) a control box which includes low voltage power supply, the RS232 interface to a PC and three modules of high voltage power supply; 2) two types of multichannel HV distributors with an individual voltage setting; 3) a software package to control all settings and refresh them periodically. Based on the acquired experience, a new design for a High Voltage Power Supply (HVPS) which satisfies the LHCb requirements has been developed for PMTs of the hadron calorimeter. The demands of this system are simplicity and low cost. This HVPS with multiple outputs (HV for photocathode and D1 - D4 dynodes) is destined to supply, with the same high voltage, groups of PMTs sorted by similar characteristics as gain and sensitivity. Because of the high rates (∼ 40 MHz) supported by PMTs, booster voltage sources are necessary to supply current for the last 4 dynodes. The box has 5 HV power supplies for photocathodes and the last 4 dynodes, each HV power supply being followed by a 4 channel

  19. Development of an intelligent high-voltage direct-current power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Zhao Xiuliang

    1997-01-01

    The operation and performances of a new type direct-current high-voltage power supply are described. The power supply with intelligent feature is controlled by a single-chip microcomputer (8031), and various kinds of output voltage can be preset. The output-voltage is monitored and regulated by the single-chip microcomputer and displayed by LED. The output voltage is stable when the load current is within the allowable limits

  20. A 600kV 15mA Cockcroft-Walton high-voltage power supply with high stability and low-ripple voltage

    International Nuclear Information System (INIS)

    Su Tongling; Zhang Yimin; Chen Shangwen; Liu Yantong; Lv Huiyi; Liu Jiangtao

    2006-01-01

    A Cockcroft-Walton high-voltage power supply with high stability and low-ripple voltage has been developed. This power supply has been operated in a ns pulse neutron generator. The maximum non-load voltage is 600kV while the working voltage and load current are 550kV and 15mA, respectively. The tested results indicate that when the power supply is operated at 300kV, 6.7mA and the input voltage varies +/-10%, the long-term stability of the output voltage is S=(0.300-1.006)x10 -3 . The ripple voltage is δU P-P =6.2V at 300kV, 6.8-8.3mA and the ratio of δU P-P to the output voltage V H is δU P-P /V H =2.1x10 -5

  1. Design of power oscillator for 500 keV/20 mA Cockroft-Walton high voltage supply

    International Nuclear Information System (INIS)

    Djasiman; Sudjatmoko; Suprapto

    1999-01-01

    A design of power oscillator for Cockroft-Walton high voltage supply was carried out. This high voltage supply would be used as the acceleration voltage supply of an electron beam machine designed to have 500 keV/20 mA capacity. The power oscillator design consisted of output specification, circuit diagram, power supply and oscillator main components determinations. The power oscillator output wave power, voltage and frequency designed according to voltage multiplier input requirements. The design results showed that the circuit was class-c tickler oscillator having an output specification of 12.1 kW, 15 kV and 40 kHz sinus wave. The main component was a ITK 15-2 triode tube. (author)

  2. Low cost concepts to reduce the voltage ripple of the DC power supply

    International Nuclear Information System (INIS)

    Cheng, Y.; Liu, K.B.

    1993-01-01

    If the gain of current feedback is low, the short term stability of magnet power supply will be affected by a soft power line. Typically, the step-charge and the imbalance of the three phase power line cause the most serious voltage ripple. Usually, the voltage feedback with a coupling transformer is considered to reduce the voltage ripple. However, for the high current power supply, the space and cooling problem of the coupling transformer become inconvenient. In this paper, the authors suggest to use the toroidal core with the compensation winding, working like a DCCT, as the coupling transformer. Then, a high speed detector of the AC line level is developed. It restricts the voltage ripple passing to the coupling transformer. These methods have the advantage of small size, low power consumption and low cost

  3. Design of the all solid high-voltage power supply for a gyrotron body

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yihua [School of Mathematics and Physics, University of South China, Hengyang, 421001 (China); Chen, Wenguang, E-mail: 430000485393@usc.edu.cn [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Hu, Bo [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Rao, Jun; Huang, Mei; Kang, Zihua; Feng, Kun [Southwestern Institute of Physics, Chengdu, 610041 (China); Huang, Jiaqi [School of Electrical Engineering, University of South China, Hengyang, 421001 (China)

    2017-04-15

    Highlights: • Completed design of all solid-state high-voltage power supply for gyrotron body on HL-2M ECRH. • Consist of 58 PSM modules and one BUCK module, controlled by DSP system. • Fabricated full voltage 35 kV, 200 mA BPS and tested in dummy load. • The BPS can operate in three modes: single pulse mode, multi-pulse modulation mode and the six-level preset mode. - Abstract: Gyrotron plays an important role in the research of electron cyclotron resonance heating (ECRH) on Tokomak. The high-frequency switched power supply technology and pulse step modulation (PSM) technology are used in the development of the all solid high-voltage body power supply (BPS) for 1 MW/105 GHz Gyrotron on ECRH system. Firstly, the basic structure of the BPS and its control system are introduced. Secondly, the software control algorithm of voltage stabilization and modulate method are developed. Finally, the design is verified by the experiments. The experimental results of the single pulse mode, the multi-pulse modulation mode and the six-level preset mode, are shown. The output voltage of the power supply can reach 35 kV and the current at about 200 mA, which are adjustable in the full range. The maximum modulation frequency can reach 1 kHz and the front edge of the pulse can be adjust from 0 to 3 ms and the accuracy of the output voltage is less than 100 V. The results show that the control method is feasible and can be applied to other high power microwave sources.

  4. A new VME based high voltage power supply for large experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M. (Fermi National Accelerator Lab., Batavia, IL (United States)); Franzini, P. (Columbia Univ., New York, NY (United States)); Jones, A.A. (Superconducting Super Collider Lab., Dallas, TX (United States)); Lopez, M.L. (La Plata Univ. Nacional (Argentina)); Wimpenny, S.J.; Yang, M.J

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  5. A new VME based high voltage power supply for large experiments

    International Nuclear Information System (INIS)

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M.; Franzini, P.; Jones, A.A.; Lopez, M.L.; Wimpenny, S.J.; Yang, M.J.

    1991-11-01

    A new VME based high voltage power supply has been developed for the D OE experiment at Fermilab. There are three types of supplies delivering up to ±5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs

  6. Characterization of a pulsed mode high voltage power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Ghazali, A B; Ahmad, T S; Abdullah, N A

    2013-01-01

    This paper discusses the characterization of a pulsed mode high voltage power supply (HVPS) using LT1073 chip. The pulsed modulated signal generated from this chip is amplified using a step-up ferrite core transformer of 1:20 turn ratio and then further multiplied and converted into DC high voltage output using a diode-capacitor arrangement. The circuit is powered by a 9V alkaline battery but regulated at 5V supply. It was found that the output for this setup is 520V, 87 μA with 10% load regulation. This output is suitable to operate a pancake-type GM detector, typically model LND 7317 where the plateau is from 475V to 675V. It was also found that when a β-source with intensity of 120 cps is used, the power consumption of the circuit is 5 V, 10.1 mA only. When the battery was left 'on' for 40 hours continuously, the battery's voltage has dropped to 6.9V, meaning that the 5V supply as well as 520V output is still maintained. It is noted that the minimum output voltage of 475V has reached when the regulated supply has reduced to 4.6V and consequently the 9V battery dropped to 6.5V, and this had happened after approximately 3 days of continuous operation. The power efficiency for this circuitry was found to be 89.5%. This result has far better in performance since the commercial portable equipment of this type has normally specified that not less than 8 hours continuous operation only. On the circuit design for this power supply, it was found that the enveloped frequency is 133 Hz with approximately 50% duty cycle. The modulated frequency during 'on' state was found to be 256 KHz in which the majority of power consumption is required.

  7. Voltage balancing in modular energy storage of power supply for micro resistance welding

    Directory of Open Access Journals (Sweden)

    Kozhushko Yu. V.

    2017-10-01

    Full Text Available Micro resistance welding is one of the most effective ways to obtain permanent joints of metal parts. The quality of welded joints strongly depends on the characteristics of the power supply of welding equipment. The power supplies for micro resistance welding based on Energy Storage topology have a softer impact on the network than the ones based on Direct Energy topology. The use of supercapacitors for Energy Storage type power supplies makes it possible to reduce the dimensions of welding equipment and to improve its technical parameters. However, the feature of the supercapacitors is low value of the nominal voltage, which usually does not exceed 3 V. To provide higher voltage, the modules of supercapacitors connected in series are designed. In order to extend the life time of such modules, a voltage balancing system is required. A circuit for balancing the voltage of a modular supercapacitor energy storage of a power supply for micro resistance welding is proposed. The fragments of calculation of control units of a supercapacitor module cell are given. The simulation of the balancing circuit operation is carried out and time charts of the supercapacitor charge process are obtained. The operability and effectiveness of the proposed solution is confirmed. The advantage of the proposed circuit is the possibility of obtaining the high efficiency because of returning the excessive energy of the module cell back into the power supply.

  8. A combined compensation method for the output voltage of an insulated core transformer power supply

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.; Qin, B.; Chen, D. Z. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  9. High-voltage power supply of ND6 portable dose rate meter

    International Nuclear Information System (INIS)

    Wang Shaling

    2001-01-01

    Portable dose rate meter needs to be equipped with a set of high-voltage power supply which is supplied by batteries and has characteristic of high quality, low energy expense and small size. The author introduces application conditions and performance guide line

  10. An efficient high-voltage power supply for a photomultiplier tube

    NARCIS (Netherlands)

    Ainutdinov, VM; Vonsovskii, NN; Kompaniets, KG; Kozyr, AI; Mikhailov, YV

    2003-01-01

    An adjustable power supply for a photomultiplier tube operating in the pulsed spectrometric mode with a wide range of linearity is described. The power consumed by the source is 50 mW. The output voltage is varied from 800 to 2000 V. The maximum ripple amplitude is 2.5 mV.

  11. The Design of Nanosecond Fast-switch Pulsed High Voltage Power Supply Based on Solid-state

    International Nuclear Information System (INIS)

    Chen Wenguang; Chen Wei; Rao Yihua

    2009-01-01

    The high voltage pulsed power supply is applied in the experiment of the nuclear science widely. It main consist of DC high-voltage power supply (HVPS) and pulse modulator. The high-frequency series-resonant inverter technology and IGBT series technology are used to design the HVPS and the modulator, respectively. The main circuit, control circuit, high voltage transformer and solid-state switch are illuminated in the paper. The apparatus can operate at a maximum output voltage of 6 kilovolt, which can be modulated single pulse and also be modulated by series pulse. A prototype is fabricated and tested, experimental results show that the pulsed power supply is well-designed and rising edge time to meet the nsclass; it can achieve the requirement of rapid modulation. (authors)

  12. Development of anode high voltage power supply system for ECRH of HL-2A tokamak

    International Nuclear Information System (INIS)

    Chen Wenguang

    2009-01-01

    The anode high voltage power supply system consist of DC high-voltage power supply (HVPS) and pulse modulator. SCR is used to vary AC input voltage of the step-up transformer by controlling the trigger phase in the HVPS, and regulate the DC output voltage linearly at the potential of low-end via BJT, Dual closed-loop control technology is applied in the controller, and its maximum output is at 30kV and 130mA. Tetrode is the core component of the modulator. The circuit design is optimized by using the simulation software. Test and HL-2A discharge experimental results show that the power supply system is designed with some characteristics of output scale widely, low ripple and modulate quickly. (authors)

  13. Structure Design and Analysis of High-Voltage Power Supply for ECRH

    International Nuclear Information System (INIS)

    Wang Lei; Huang Yiyun; Zhao Yanping; Zhang Jian; Yang Lei; Guo Wenjun

    2014-01-01

    In order to develop a high-voltage power supply (HVPS) with high quality parameters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electrical field and potential simulations of its main devices are analyzed. Finally, relevant calculations and conclusions are given. (fusion engineering)

  14. Design automation of switching mode high voltage power supply for nuclear instruments

    International Nuclear Information System (INIS)

    El-araby, S.M.S.

    1999-01-01

    This paper presents an automation procedure for the design of switching mode high voltage power supplies, using Pc programming facility. The procedure permits the selection of a ready made or designed ferrite transformer. This selection could be achieved according to the designer desire; as the program includes complete information about ready made ferrite transformer through complete database. The procedure is based on suggested template circuit. Micro-Cap IV simulation package is used to verify the desired high voltage power supply design. Simulation results agree quite well with suggested procedure's results. Design aspects and development needed to increase automation capabilities are also discussed

  15. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  16. Effect of voltage sags on digitally controlled line connected switched-mode power supplies

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2012-01-01

    Different voltage disorders like voltage fluctuations, sags, frequency variations may occur in the power supply networks due to different fault conditions. These deviations from normal operation affects in different ways the line connected devices. Standards were developed to protect and ensure...... of voltage sags is analyzed. Fault tolerant control algorithm was designed, implemented and is discussed. The fault conditions and their effects were investigated at different power levels....

  17. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    International Nuclear Information System (INIS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-01-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  18. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengjun, E-mail: wufengjun@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Cui, Yuan [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Hongbin [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Zhang, Huajian [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Bin [University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohui [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  19. DIII-D ICRF high voltage power supply regulator upgrade

    International Nuclear Information System (INIS)

    Cary, W.P.; Burley, B.L.; Grosnickle, W.H.

    1997-11-01

    For reliable operation and component protection, of the 2 MW 30--120 MHz ICRF Amplifier System on DIII-D, it is desirable for the amplifier to respond to high VSWR conditions as rapidly as possible. This requires a rapid change in power which also means a rapid change in the high voltage power supply current demands. An analysis of the power supply's regulator dynamics was needed to verify its expected operation during such conditions. Based on this information it was found that a new regulator with a larger dynamic range and some anticipation capability would be required. This paper will discuss the system requirements, the as-delivered regulator performance, and the improved performance after installation of the new regulator system. It will also be shown how this improvement has made the amplifier perform at higher power levels more reliably

  20. Source of high-voltage power supply for ozone generators at glow discharge

    International Nuclear Information System (INIS)

    Bruev, A.A.; Golota, V.I.; Zavada, L.M.; Taran, G.V.

    2000-01-01

    High-voltage power supply source on quasi-resonance inverter base which works at direct current regime is described. This source forms 20 kV voltage with 0 - 10 mA current regulation. It protects the source from current break-downs and feeds ozone generators at glow discharge

  1. Study on the characters of high voltage charging power supply system for diagnostics neutral beam on HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhang Jian; Huang Yiyun; Liu Baohua; Guo Wenjun; Shen Xiaoling; Wei Wei

    2011-01-01

    A high voltage power supply system has been developed for the diagnostic neutral beam on the HT-7 experimental Tokamak, and the over-voltage phenomenon of storage capacitor was founded in the experiment. In order to analyse and resolve this problem, the structure and principle of high voltage power supply is described and the primary high voltage charging power supply system is introduced in detail. The phenomenon of over-voltage on the capacitors is also studied with circuit model, and the conclusion is obtained that the leakage inductance is the mA in reason which causes the over-voltage on the capacitors. (authors)

  2. MAGY: An innovative high voltage-low current power supply for gyrotron

    International Nuclear Information System (INIS)

    Siravo, Ugo; Alex, Juergen; Bader, Michael; Carpita, Mauro; Fasel, Damien; Gavin, Serge; Perez, Albert

    2011-01-01

    From the electrical point of view, the body and the anode of high power gyrotrons behave as capacitive loads. A highly dynamic power supply is, therefore, hard to achieve. The MAGY concept (Modulator for the Anode of a triode type GYrotron) embodies an innovative solution to manage the capacitive current ensuring a very low ripple on the output voltage. It consists of a series of independent, bi-directional and regulated DC sources. Compared to existing topologies, this solution requires a smaller number of power modules. It avoids internal high frequency modulation and simultaneously offers high resolution of the output voltage and a wide range of operating scenarios.

  3. A high voltage DC switching power supply of corona discharge for ozone tube

    International Nuclear Information System (INIS)

    Ketkaew, Siseerot

    2007-08-01

    Full text: This paper presents a study of design and construction of a high voltage DC switching power supply for corona generating of ozone gas generating. This supply uses fly back converter at 3 k Vdc 30 khz and controls its operation using PWM techniques. I C TL494 is controlled of the switching. The testing of supply by putting high voltage to ozone gas tube at one-hour, the oxygen quantity 21 % of air, which ozone tube model enables ozone gas generating capacity of 95.2 mgO3/hr

  4. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    International Nuclear Information System (INIS)

    Saminto; Eko Priyono; Sugeng Riyanto

    2013-01-01

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  5. Laser power supply

    International Nuclear Information System (INIS)

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  6. Negative-feedback control system of the high voltage power supply for ECRH

    International Nuclear Information System (INIS)

    Ding Tonghai; Liu Baohua; Jiang Shufang

    2001-01-01

    A kind of high accuracy negative high voltage power supply (HVPS) was introduced. The serial feedback was regulated according to the character of the high power tetrode and a new kind of integrator with preset value, which solved the key technological problem of the HVPS that the ECRH system required a voltage of -80 kV, a pulse width of 10 - 100 ms and a precision of 99.7%. The result using a PSPICE code simulation has shown that the method is practical

  7. Ultra-long-pulse microwave negative high voltage power supply with fast protection

    International Nuclear Information System (INIS)

    Xu Weihua; Wu Junshuan; Zheng Guanghua; Huang Qiaolin; Yang Chunsheng; Zhou Yuanwei; Chen Yonghao

    1998-01-01

    Two 1.4 MW high voltage power supply (HVPS) modules with 3-5 s pulse duration have been developed for LHCD experiment in the HT-7 tokamak. The power source consists of a pulsed generator and the electric circuit. Duration of the ultra-long-pulse is controlled by switching-on dc relay immediately and switching-off ac contactor after a given time, and the fast protection is executed by a crowbar. Due to the soft starting of the power source, the problem of overvoltage induced by dc relay switching-on has been solved. Each power supply module outputs a rated power (-35 kV, 40 A) on the dummy load. With the klystrons connected as the load of the power supply modules, LHCD experiments have been conducted successfully in the HT-7 tokamak

  8. Mobile medium-voltage switching system. Temporary standby power supply in record time; Mobile Mittelspannungsschaltanlage. Vorlaeufige Wiederversorgung in Rekordzeit

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, Matthias; Schwarz, Stefan [Siemens AG, Mannheim (Germany); Wingerter, Dieter [BASF SE, Ludwigshafen (Germany); Doering, Holger [B. Goebel und Sohn GmbH, Asschaffenburg (Germany). Fahrzeugbau

    2011-02-28

    BASF SE Ludwigshafen operates more than 100 medium-voltage switching stations for power supply to its plants. The complexity of the production plants and production method make it necessary to have immediate standby power supply in case of interruption of a medium-voltage switching station. For this purpose, a transportable emergency container was acquired that contains a medium-voltage switching system. Power can be supplied at very short notice, simply by plugging the necessary cable connections. No cranes or other tools are required for installation. The emergency container is designed for use at varying voltage levels and can be transported by road to other BASF sites in Europe. The switching station is a gas-insulated medium-voltage switching station 8DA10 by Siemens, designed for operating voltages of 6, 10, 20, and 35 kW.

  9. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume III - Procedural Details

    National Research Council Canada - National Science Library

    1996-01-01

    .... The thrust of this program was to improve the reliability of High Voltage Power Supplies (HVPS). This was accomplished conducting a comprehensive evaluation of the materials, components and processes used to produce HVPS...

  10. OPC Server and BridgeView Application for High Voltage Power Supply Lecroy 1458

    CERN Document Server

    Swoboda, D; CERN. Geneva

    2000-01-01

    Abstract The aim of this project was to develop an OPC server to communicate over an RS232 serial line. This communication media is commonly used with commercial instruments. The development was made for a High Voltage power supply in the context of the Alice [1] experiment. In addition, the structured modular concept will allow changing the transmission media or power supply type with little effort. The high voltage power supply should be accessible remotely through a network. OPC[2] is an acronym for OLE[3] for Process Control. OPC is based on the DCOM [3] communication protocol, which allows communication with any computer running a Windows based OS. This standard is widely used in industry to access device data through Windows applications. The concept is based on the client-server architecture. The hardware and the software architecture are described. Subsequently details of the implemented programs are given with emphasis on the possibility to replace parts of the software in order to use differ...

  11. Threshold voltage and power-supply tolerance of CMOS logic design families

    NARCIS (Netherlands)

    Kishor, M.; Pineda de Gyvez, J.

    2000-01-01

    The advent of deep submicron technologies brings new challenges to digital circuit design. A reduced threshold voltage (VT) and power supply (Vdd) in addition to process variabilities have a direct impact on circuit design. In a semiconductor environment it is conventionally thought that parametric

  12. High-voltage power supply - 2.500 V - 4mA

    International Nuclear Information System (INIS)

    Souza, H.H. de.

    1977-01-01

    A high-voltage power supply, in a NIM two-width module, was developed to be used in nuclear measurements systems. The design utilizes the principle of DC-DC conversion. A general description of the instrument and of its circuity is presented, as well as a report of the results obtained from the tests performed to establish its characteristics [pt

  13. A comparative study of different transformer connections for railway power supply- mitigation of voltage unbalance

    DEFF Research Database (Denmark)

    Firat, Gurkan; Yang, Guangya; Ali Hussain Al-Ali, Haider

    2015-01-01

    The railway represents a large power consumer that can cause uneven loading of the phases in the high voltage grid. These unbalanced loads supplied by the utility may lead to voltage unbalance problems in the system and thereby affects the other consumers connected to the same network. It is fact...... that, voltage unbalance appears mainly as a result of unbalanced currents at the points of common coupling drawn by unevenly distributed loads. Because of a significant amount of negative sequence current injected to the system, the power system components will suffer from consequent negative effects...... such as overheating, additional losses of lines and transformers, interference with communication systems etc. This paper presents a comparative study of some transformer connections which commonly used in railway supplying AC traction loads, for voltage unbalance mitigations. Simulations for comparison...

  14. Voltage ripple compensation for grid connected electrolyser power supply using small DC link capacitor

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, Laszlo; Munk-Nielsen, Stig

    2014-01-01

    The purpose of this work was to investigate a three-phase-grid connected power supply using small DC link capacitor for electrolyser application. The hydrogen generation system requires low voltage and high current power supply. Thus the structure of the 3-phase power supply is defined as follows......: a three phase rectification, a small DC-link capacitor and a phase-shifted full-bridge converter with current doubler rectification. Design constraints and control problems are investigated. The advantages and problems caused by the use of small DC link capacitor are presented. The control of the system...

  15. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  16. Power supply system for KSTAR neutral beam injector

    International Nuclear Information System (INIS)

    Cho, W.; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-01-01

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  17. Concept of voltage monitoring for a nuclear power plant emergency power supply system (PWR 1300 MWe)

    International Nuclear Information System (INIS)

    Andrade, R.B. de

    1988-01-01

    Voltage monitoring concept for a Nuclear Power Plant Emergency Power Supply Systems (PWR 1300 MWe) is described based on the phylosophy adopted for Angra 2 and 3 NPP's. Some suggested setpoints are only guidance values and can be modified during plant commissioning for a better performance of the whole protection system. (author) [pt

  18. High-power high-voltage pulse generator for supplying electrostatic precipitators of dust

    International Nuclear Information System (INIS)

    Radu, A.; Martin, D.

    1992-01-01

    The study and development of an experimental high voltage generator specialized in the supply of electrostatic precipitators are presented. The main parameters of the pulse generator are: U = -30 kV, I = 8.8 A, τ = 120μs, f r = 150 Hz. The pulse generator was tested on a laboratory electrostatic precipitator with nominal capacitance C = 25 nF, biased at -40 kV by means of a separate high voltage rectifier. The experimental results will be used for the creation of a more powerful pulse generator, a prototype for the supply of a real industrial electrostatic precipitator: U = -50 kV, I = 313 A, τ = 100μs, f r = 300 Hz, C = 100 nF. (Author)

  19. Low-power operation using self-timed circuits and adaptive scaling of the supply voltage

    DEFF Research Database (Denmark)

    Nielsen, Lars Skovby; Niessen, C.; Sparsø, Jens

    1994-01-01

    Recent research has demonstrated that for certain types of applications like sampled audio systems, self-timed circuits can achieve very low power consumption, because unused circuit parts automatically turn into a stand-by mode. Additional savings may be obtained by combining the self......-timed circuits with a mechanism that adaptively adjusts the supply voltage to the smallest possible, while maintaining the performance requirements. This paper describes such a mechanism, analyzes the possible power savings, and presents a demonstrator chip that has been fabricated and tested. The idea...... of voltage scaling has been used previously in synchronous circuits, and the contributions of the present paper are: 1) the combination of supply scaling and self-timed circuitry which has some unique advantages, and 2) the thorough analysis of the power savings that are possible using this technique.>...

  20. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Science.gov (United States)

    2010-07-01

    ... portable or mobile equipment from low-voltage three-phase resistance grounded power systems shall contain... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage... STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage...

  1. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    International Nuclear Information System (INIS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-01-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  2. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Tian, Jinshou [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Qin, Hong [School of Computer Science and Technology, Xi' an University of Science and Technology, Xi' an 710054 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China)

    2017-04-11

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  3. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    Science.gov (United States)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  4. High-Voltage Power Supply System for Laser Isotope Separation

    Energy Technology Data Exchange (ETDEWEB)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-06-26

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

  5. High-Voltage Power Supply System for Laser Isotope Separation

    International Nuclear Information System (INIS)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-01-01

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs

  6. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  7. A new VME-based high voltage power supply for large photomultiplier systems

    International Nuclear Information System (INIS)

    Neumaier, S.; Hubbeling, T.; Kolb, B.W.; Purschke, M.L.; Ippolitov, M.; Blume, C.; Bohne, E.M.; Bucher, D.; Claussen, A.; Peitzmann, T.; Schepers, G.; Schlagheck, H.

    1995-01-01

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10,080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.)

  8. Charging system of ECRH high-voltage power supply and its control system

    International Nuclear Information System (INIS)

    Hu Guofu; Ding Tonghai; Liu Baohua; Jiang Shufang

    2003-01-01

    High-voltage power supply (HVPS) of Electron Cyclotron Resonance Heating (ECRH) for HT-7 and HT-7U is presently being constructed. The high voltage (100 kV) energy of HVPS is stored in the capacitor banks, and they can power one or two gyrotrons. All the operation of the charging system will be done by the control system, where the field signals are interfaced to programmable logic controller (PLC). The use of PLC not only simplifies the control system, but also enhances the reliability. The software written by using configuration software installed in the master computer allows for remote and multiple operator control, and the status and data information is also remotely available

  9. A novel high voltage start up circuit for an integrated switched mode power supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hao; Chen Xingbi, E-mail: huhao21@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2010-09-15

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions. (semiconductor devices)

  10. AC power supply systems

    International Nuclear Information System (INIS)

    Law, H.

    1987-01-01

    An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)

  11. Design development and testing of high voltage power supply with crowbar protection for IOT based RF amplifier system in VECC

    Science.gov (United States)

    Thakur, S. K.; Kumar, Y.

    2018-05-01

    This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.

  12. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    Science.gov (United States)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  13. Nuclear fusion power supply device

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  14. Concept of voltage and frequency monitoring for a nuclear power plant normal power supply system - PWR 1300 MWe

    International Nuclear Information System (INIS)

    Andrade, R.B. de

    1990-01-01

    Voltage and frequency monitoring concept for a Nuclear Power Plant Normal Power Supply System (PWR 1300 MWe) is described based on the phylosophy adopted for Angra 2 and e NPP's. Some suggested setpoints are only guidance values and can be modified during plant commissioning for a better performance of the whole protection system. (author) [pt

  15. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  16. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  17. Power-supply system for high-voltage electron guns with grid control

    International Nuclear Information System (INIS)

    Grigorev, Y.V.

    1985-01-01

    A power-supply system for electron guns with grid control is described which consists of a source of accelerating voltage between 20 and 180 kV with a current of 100 mA and a control circuit for an electron gun that contains a pulse generator having an output voltage of up to 5 kV for pulse durations of 2, 10, 50 and 90 microseconds. The output pulses of the generator are synchronized with a certain phase of the cathode heater current of the gun, and they can be repeated at a frequency between 100 and 0.4 Hz. The system is reliable and resistant to the overloads associated with breakdowns in the gun

  18. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis

  19. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  20. A Comparative Study of Analog Voltage-mode Control Methods for Ultra-Fast Tracking Power Supplies

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents a theoretical and experimental comparison of the standard PWM/PID voltage-mode control method for single-phase buck converters with two highperformance self-oscillating (a.k.a. sliding mode) control methods. The application considered is ultra-fast tracking power supplies...... (UFTPSs) for RF power amplifiers, where the switching converter needs to track a varying reference voltage precisely and quickly while maintaining low output impedance. The small-signal analyses performed on the different controllers show that the hysteretic-type controller can achieve the highest loop...

  1. High voltage power supplies for the neutral beam injectors of the stellarator TJ-II

    International Nuclear Information System (INIS)

    Alonso, J.; Liniers, M.; Martinez Laso, L.; Jauregi, E.; Lucia, C.; Valcarcel, F.

    2001-01-01

    Neutral beam injection will be available for the second experimental phase of TJ-II. Two injectors, set in co-counter configuration, will inject into the plasma two 40 keV H 0 beams, each of up to 1 MW. The two high voltage power supplies to feed the acceleration grids of the injectors, described in this paper, are of the transformer-rectifier type, taking their primary energy from a pulsed flywheel generator, and are coupled to the acceleration grids through a switching device. This environment effectively sets the main operation limits and protection requirements of the power supplies

  2. Design and application of the high-voltage DC power-supply control system based on PLC

    International Nuclear Information System (INIS)

    Huang Yiyun; Zheng Guanghua; Wu Junshuan; Yang Chunsheng; Hu Huaichuan

    2002-03-01

    The design and application of A kind of high-voltage DC power-supply control system based on PLC is referred, in addition, KingView is used to monitor the system in real time and manage the man-machine conversation ideally

  3. Near-Threshold Computing and Minimum Supply Voltage of Single-Rail MCML Circuits

    Directory of Open Access Journals (Sweden)

    Ruiping Cao

    2014-01-01

    Full Text Available In high-speed applications, MOS current mode logic (MCML is a good alternative. Scaling down supply voltage of the MCML circuits can achieve low power-delay product (PDP. However, the current almost all MCML circuits are realized with dual-rail scheme, where the NMOS configuration in series limits the minimum supply voltage. In this paper, single-rail MCML (SRMCML circuits are described, which can avoid the devices configuration in series, since their logic evaluation block can be realized by only using MOS devices in parallel. The relationship between the minimum supply voltage of the SRMCML circuits and the model parameters of MOS transistors is derived, so that the minimum supply voltage can be estimated before circuit designs. An MCML dynamic flop-flop based on SRMCML is also proposed. The optimization algorithm for near-threshold sequential circuits is presented. A near-threshold SRMCML mode-10 counter based on the optimization algorithm is verified. Scaling down the supply voltage of the SRMCML circuits is also investigated. The power dissipation, delay, and power-delay products of these circuits are carried out. The results show that the near-threshold SRMCML circuits can obtain low delay and small power-delay product.

  4. The development of long pulse high voltage power supply for MNI-1U neutral beam injector

    International Nuclear Information System (INIS)

    Detai Wang

    1989-01-01

    A high power long pulse high voltage power supply (HVPS) for MNI- 1 U neutral beam injector (NBI) is described. This HVPS is used as a switching regulator with a duty cycle of 1/100, the specifications of circuit are as follows, output pulse voltage 50kv, pulse current 30A, pulse width 50ms, rise-time and fall-time of the voltage are less than 25 μs, stability of the pulse flat is better than 0.5%, regulation response time of the pulse voltage less than 30 μs can be attained. It is also used as a stable DC HVPS, output voltage is 1 to 100kv, current is 1 to 5A. If regulation tube is shunted with high power resistor in parallel, the current can be extended to 10 A, stability of the output voltage or current is better than 0.1%. Now, the HVPS has been put into operation for MNI- 1 U NBI and PIG ion source made in French. 3 refs., 5 figs

  5. Online high voltage power supply ripple estimation and feedforward in LEDA

    International Nuclear Information System (INIS)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1999-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of LLRF control system for LEDA. They propose an estimator of the ripple and its time derivative and a control law which is based on PID control and adaptive feedforward of estimated ripple. The control law reduces the effect of the deterministic cathode ripple that is due to high voltage power supply and achieves tracking of desired set points

  6. Scaling of Supply Voltage in Design of Energy Saver FIR Filter on 28nm FPGA

    DEFF Research Database (Denmark)

    Pandey, Bishwajeet; Jain, Vishal; Sharma, Rashmi

    2017-01-01

    In this work, we are going to analyze the effect of main supply voltage, auxiliary supply voltage, local voltage of different power bank, and supply voltage in GTX transceiver and BRAM on power dissipation of our FIR design using Verilog during implementation on 28nm FPGA. We have also taken three.......33%, 86%, 90.67%, 65.33%, 52%, and 48.67% reduction in IO power dissipation of FIR Filter design on CSG324 package of Artix-7 FPGA family....

  7. High voltage power supplies for ITER RF heating and current drive systems

    International Nuclear Information System (INIS)

    Gassmann, T.; Arambhadiya, B.; Beaumont, B.; Baruah, U.K.; Bonicelli, T.; Darbos, C.; Purohit, D.; Decamps, H.; Albajar, F.; Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T.; Parmar, D.; Patel, A.; Rathi, D.; Singh, N.P.

    2011-01-01

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  8. Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-03-01

    Full Text Available Overhead high voltage power line (HVPL online monitoring equipment is playing an increasingly important role in smart grids, but the power supply is an obstacle to such systems’ stable and safe operation, so in this work a hybrid wireless power supply system, integrated with inductive energy harvesting and wireless power transmitting, is proposed. The energy harvesting device extracts energy from the HVPL and transfers that from the power line to monitoring equipment on transmission towers by transmitting and receiving coils, which are in a magnetically coupled resonant configuration. In this paper, the optimization design of online energy harvesting devices is analyzed emphatically by taking both HVPL insulation distance and wireless power supply efficiency into account. It is found that essential parameters contributing to more extracted energy include large core inner radius, core radial thickness, core height and small core gap within the threshold constraints. In addition, there is an optimal secondary coil turn that can maximize extracted energy when other parameters remain fixed. A simple and flexible control strategy is then introduced to limit power fluctuations caused by current variations. The optimization methods are finally verified experimentally.

  9. Protection of the MFTF accel power supplies

    International Nuclear Information System (INIS)

    Wilson, J.H.; Wood, J.C.

    1979-01-01

    The MFTF experiment's Sustaining Neutral Beam Power Supply System (SNBPSS) includes twenty-four 95 kV, 80 A accel dc power supplies (ADCPS). Each power supply includes a relatively high-impedance (20 percent) rectifier transformer and a step voltage regulator with a 50-100 percent voltage range. With this combination, the fault current for some postulated faults may be lower than the supply's full load current at maximum voltage. A design has been developed which uses protective relays and current-limiting fuses coordinated to detect phase and ground faults, DC faults, incorrect voltage conditions, rectifier faults, power factor correction capacitor faults, and overloads. This unusual solution ensures fast tripping on potentially destructive high-current faults and long-time delays at lower currents to allow 30 second pulse operation. The ADCPS meets the LLL specification that all major assemblies be self-protecting, that is, able to sustain external faults without damage to minimize damage due to internal faults

  10. Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge

    Directory of Open Access Journals (Sweden)

    K Higa

    2016-10-01

    Full Text Available We have developed the high voltage power-supply unit by Cockcroft-Walton circuit for ingenerate high pressure due to underwater shockwave by electrical discharge. This high voltage power supply has the problem of the metal contact switch operation that contact switch stop by melting and bonding due to electrical spark. We have studied the evaluation of materials of contact switch for the reducing electrical energy loss and the problem of contact switch operation. In this research, measurement of discharge voltage and high pressure due to underwater shockwave was carried out using the contact switch made of different materials as brass plate, brass-carbon plate-brass and carbon block. The contact switch made of carbon is effective to reduce energy loss and problem of contactor switch operation.

  11. Design and development of power supplies at VECC for accelerators

    International Nuclear Information System (INIS)

    Thakur, S.K.

    2013-01-01

    Several power supplies have been designed and developed in-house incorporating various topologies to match the load requirements. Most of the power supplies have been being utilised in K-130 and K-500 cyclotrons operation successfully from last several years. Amongst other types, Switching Mode PS (SMPS), Phase Controlled Rectifier (PCR), Linear mode power supply are mostly in use, irrespective of their own merits and demerits. Switching mode power supply (SMPS) is most common topology for various applications ranging from high current to high voltage applications. Due to low stored energy and faster response, the SMPS incorporating Pulse Switch Modulation (PSM) configuration is most suitable for high voltage DC power supply at larger power compared to its counterparts, makes possible to operate the power system without crowbar. For an IOT cathode power supply, a 200kW at - 40kV High voltage power supply is under development incorporating SMPS and PSM technique. Earlier, High Voltage power supply was made by using Tetrode Tube in linear mode for RF amplifier for K-130 Cyclotron. Later, in K-500 Cyclotron, a High Voltage power supply was developed incorporating PCR topology rated at 20kV, 20 Amp for Anodes for 3 nos. of RF amplifiers. These HV power supply is equipped with ultra-fast acting Crowbar Protection System developed in VECC which is for the protection of costly RF Tubes against the internal arc. Design and development of SMPS based Bipolar Power Supply with 4-Quadrant operation rated at ± 27 V, ± 300 Amp with current stability around 100 ppm for Super-conducting Magnets along with quench protection and energy dumping scheme. (author)

  12. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms.

    Science.gov (United States)

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  13. Accelerator magnet power supply using storage generator

    International Nuclear Information System (INIS)

    Karady, G.; Thiessen, H.A.

    1987-01-01

    Recently, a study investigated the feasibility of a large, 60 GeV accelerator. This paper presents the conceptual design of the magnet power supply (PS() and energy storage system. The main ring magnets are supplied by six, high-voltage and two, low-voltage power supplies. These power supplies drive a trapezoidal shaped current wave through the magnets. The peak current is 10 kA and the repetition frequency is 3.3 Hz. During the acceleration period the current is increased from 1040 A to 10,000 A within 50 msec which requires a loop voltage of 120 kV and a peak power of 1250 MW. During the reset period, the PS operates as an inverter with a peak power of -1250 MW. The large energy fluctuation necessitates the use of a storage generator. Because of the relatively high operation frequency, this generator operates in a transient mode which significantly increases the rotor current and losses. The storage generator is directly driven by a variable speed drive, which draws a practically constant power of 17 MW from the ac supply network and eliminates the pulse loading. For the reduction of dc ripple, the power supplies operate in a 24 pulse mode

  14. Power supply control system for experimental physical facilities

    International Nuclear Information System (INIS)

    Zelepukin, S.A.; Osipov, Eh.V.; Petrov, V.S.; Sergeev, V.A.; Uglekov, V.Ya.

    1979-01-01

    A multichannel (to 1024 channels) system for control of power supply voltage is descrited. The system consists of an analog commulator, a digital voltmeter and a special controller. The controller serves at the same time as an interface for connecting the system as a ''unit'' of the VECTOR and SUMMA unified electronic systems. The system has been realized for control of the photomultiplier power supply voltage of the MARK multipurpose experimental device (256 channels, the measurement accuracy is 0.2%, the measuring time is 500 ms per point). Software devised for the HP-2100 computer permits automatical comparison of photomultiplier power supply voltages with sample ones in the mode of continuous control of a single voltage or in the mode of programmed selection of voltages to provide the control in arbitrary order or automatic scanning

  15. VPE single core medium voltage cables in EVU supply networks. [Polyethylene (VPE)

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, E [Elektromark Kommunales Elektrizitaetswerk Mark A.G., Hagen (Germany, F.R.). Elektrotechnische Abt.

    1977-02-01

    This paper gives a brief outline of the different cable constructions and constructional parts of medium voltage cables (10 - 20 kV) in power supply networks. At medium voltage (particularly at 20 kV), single core cables are being used to an increasing extent, preferably for station supplies and for pole mounted cables. Polymerized polyethylene (VPE) is used as insulating material for this cable; according to present knowledge it is suitable for the insulation of power cables for all voltages up to 110 kV.

  16. Improving tokamak vertical position control in the presence of power supply voltage saturation

    International Nuclear Information System (INIS)

    Favez, J-Y; Lister, J B; Muellhaupt, Ph; Srinivasan, B

    2005-01-01

    The control of the current, position and shape of an elongated cross-section tokamak plasma is complicated by the so-called instability of the current vertical position. Linearized models all share the feature of a single unstable eigenmode, attributable to this vertical instability of the plasma equilibrium movement, and a large number of stable or marginally stable eigenmodes, attributable to zero or positive resistance in all other model circuit equations. Due to the size and therefore cost of the ITER tokamak, there will naturally be smaller margins in the poloidal field coil power supplies, implying that the feedback control will experience actuator saturation during large transients due to a variety of plasma disturbances. Current saturation is relatively benign, due to the integrating nature of the tokamak, resulting in a reasonable time horizon for strategically handling the approach to saturation which leads to the loss of one degree of freedom in the feedback control for each saturated coil. On the other hand, voltage saturation is produced by the feedback controller itself, with no intrinsic delay. This paper presents a feedback controller design approach which explicitly takes saturation of the power supply voltage into account when producing the power supply demand signals. We consider the vertically stabilizing part of the ITER controller (fast controller) with one power supply and therefore a single saturated input. We consider an existing ITER controller and enlarge its region of attraction to the full null controllable region by adding a continuous nonlinearity into the control. In a system with a single unstable eigenmode and a single stable eigenmode we have already provided a proof of the asymptotical stability of the closed loop system, and we have examined the performance of this new continuous nonlinear controller. We have subsequently extended this analysis to a system with a single eigenmode and multiple stable eigenmodes. The method

  17. ISABELLE magnet power supply system performance analysis

    International Nuclear Information System (INIS)

    Edwards, R.J.

    1981-01-01

    The power supply system that will energize the superconducting magnets in the ISABELLE 400 x 400 GeV accelerator must supply various voltages and currents. The voltages for the correction winding range from ten to one hundred twenty-five volts unipolar and bipolar with current rating of 50 to 300 amperes. The main field winding requires voltages from 90V (at flattop) to 600V during maximum ramp rate or acceleration cycle. The power supplies are programmable over their full range of output current with a reproducibility error varying from +- 10 ppM to +- 400 ppM of full scale. Included within the reproducibility error are the long and short term stability requirements of the power supplies. The purpose of this paper is to define some of the design goals and outline the approach taken in reaching these goals

  18. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  19. Energy discharge heater power supply

    International Nuclear Information System (INIS)

    Jaskierny, W.

    1992-11-01

    The heater power supply is intended to supply capacitively stored,energy to embedded heater strips in cryo magnets. The amount of energy can be controlled by setting different charge different capacitor values. Two chassis' can be operated in series or interlocks are provided. The charge voltage, number of capacitors pulse can be monitored. There and dual channel has two discharge supplies in one chassis. This report reviews the characteristics of this power supply further

  20. Voltage scheduling for low power/energy

    Science.gov (United States)

    Manzak, Ali

    2001-07-01

    Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned

  1. Improving Power Quality in AC Supply Grids

    Directory of Open Access Journals (Sweden)

    Piotr Fabijański

    2015-12-01

    Full Text Available This paper describes a digital and actual model of the UPQC (Unified Power Quality Conditioner integrated system for power quality improvement. The UPQC’s design and its connection to an AC supply grid, 1-phase and 3-phase alike, provide effective compensation of unwanted interferences in the waveforms of load supply voltages and non-linear load currents. This article presents an overview of topologies and control strategies. The study of the UPQC confirmed its positive impact on the power quality. The electricity parameters were significantly improved. Total harmonic distortion in supply voltage THDu decreased six-fold to 1.89%, and total harmonic distortion in load current THDi decreased more than ten-fold to 2.38% for a non-linear load (uncontrolled bridge rectifier with load L. Additionally, symmetrisation of supply voltages and reactive power compensation Q of linear load was obtained. The UPQC integrated system for power quality improvement can be used wherever high-quality and PN-EN 50160 standard – compliant electricity is required.

  2. Tetrode bias power supply for Indus-1, synchrotron radiation source

    International Nuclear Information System (INIS)

    Tripathi, A.; Badapanda, M.K.; Tyagi, R.; Upadhyay, R.; Bohrey, A.; Hannurkar, P.R.

    2009-01-01

    An AC regulator based 7 kV, 3 A high voltage DC power supply is designed, fabricated and tested on dummy load for BEL make Tetrode type 15000CX, used in the high power RF amplifier at 31.613 MHz employed with INDUS-1, Synchrotron Radiation Source (SRS). Various protections features like over voltage, under voltage, over current, phase failure and phase reversal are incorporated in this power supply and presented in this paper. As Tetrode amplifier requires various other power supplies in addition to this bias power supply and they are operated in a particular sequence for its healthy operation, suitable interlock arrangements have been incorporated and also presented in this paper. The reliable operation of protection and interlock features incorporated in this power supply has been checked with dummy load under simulated conditions. Three numbers of series limiting inductors, one in each phase, have been incorporated in this power supply to limit fault currents under unfavourable conditions and there by increasing the overall life of this power supply. It will replace existing 7 kV, 3 A HVDC power supply, which is in operation for more than fifteen years with Indus-1 SRS and is likely to be helpful in reducing the down time of Indus-1 SRS. It has better performance features than the existing power supply. The long term voltage stability better than 0.3 % and output ripple less than 0.3 % have been achieved for this Tetrode bias power supply. This power supply is likely to be integrated with INDUS-1 SRS soon. (author)

  3. Klystron bias power supplies for Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2008-01-01

    The functioning of an alternating current (AC) voltage regulator based high voltage direct current (HVDC) power supplies with better input and output performances has been presented in this paper. The authors have incorporated a 3-phase series limiting inductor, along with detuned passive filter in each power supply, to take care of line harmonics and the input power factor (IPF), which is simple, cost effective, reliable and provides input performance matching that of an equivalent active filter. Such arrangement has special significance for controlled HVDC power supplies supplying to fixed load but operated from widely varying input voltages. It achieves line voltage total harmonic distortion (THD) below 4% and IPF better than 0.97, for 415 V - 30% to 415 V + 10% variations in 3-phase input voltages. A properly designed crowbar, along with suitable limiting elements, is incorporated in each power supply and stringent wire survivability tests were carried out to limit klystron fault energy below 10 Joules. Several simulated waveforms and experiment results are also presented. (author)

  4. Voltage harmonics mitigation through hybrid active power filer

    International Nuclear Information System (INIS)

    Sahito, A.A.; Tunio, S.M.; Khizer, A.N.

    2016-01-01

    Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion) of 18.91 and 7.61 percentage in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter) is proposed to reduce these THD values below 5 percentage as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5 percentage. (author)

  5. Voltage Harmonics Mitigation through Hybrid Active Power Filter

    Directory of Open Access Journals (Sweden)

    Anwer Ali Sahito

    2016-01-01

    Full Text Available Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion of 18.91 and 7.61% in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter is proposed to reduce these THD values below 5% as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5%.

  6. A high-current, high-voltage power supply with special output current waveform for APS injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Despe, O.D.; McGhee, D.G.; Mills, F.E.; Turner, L.R.

    1991-01-01

    This paper describes a high-voltage, high-current power supply for the injector synchrotron dipole magnets at APS. In order to reset the dipole magnets in each cycle two different current waveforms are suggested. The first current waveform consists of three sections, namely: dc-reset, linear ramp, and recovery sections where injection is done ''on the fly''. The second current waveform consists of six different sections, dc-reset, transition to injection level, injection flat level, parabolic, linear ramp and recovery sections. The effect of such waveforms on the beam is discussed and the power supply limitations to follow such waveforms are given. The power supply limitations are due to the power components and control loops. The reference for the current loop is generated by a DAC which is discussed

  7. Modelling, stability and control of voltage behaviour in power supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David J [Sydney Univ., NSW (Australia). Dept. of Electrical Engineering; Hisken, Ian A [Newcastle Univ., NSW (Australia). Dept. of Electrical and Computer Engineering

    1994-12-31

    This paper gives an overview of a line of work on mid to long term voltages stability analysis and control in power systems. The results are based on use of a novel approach to dynamic load modelling using aggregate nonlinear structures. In general, the model for the transmission network and supply end dynamics is of the hybrid differential - algebraic - discrete kind. Various stability questions are precisely formulated and analysed in terms of network and load characteristics (steady-state and transient). The results are shown to be a useful framework for deriving criteria of the where, when and how much kind for various control actions such as load Thedding and tap-blocking. (author) 47 refs., 15 figs., 1 tab.

  8. Effect of energy saving lights on power supply

    NARCIS (Netherlands)

    Timens, R.B.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2012-01-01

    Weak power supply networks are very sensitive to non-linear low power loads. Electronics in low power loads are non-linear, very basic, and consisting of a rectifier bridge and bulk capacitor, consuming current only in the peak of the supplied voltage. Due to the relative high power supply network

  9. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  10. Controlled power supply for isotopes separator

    International Nuclear Information System (INIS)

    Lavaitte, A.; Pottier, J.

    1953-01-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [fr

  11. Wind Power Plant Voltage Stability Evaluation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  12. Solid state modulator for klystron power supply XFEL TDS INJ

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  13. A novel on-chip high to low voltage power conversion circuit

    International Nuclear Information System (INIS)

    Wang Hui; Wang Songlin; Mou Zaixin; Guo Baolong; Lai Xinquan; Ye Qiang; Li Xianrui

    2009-01-01

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6 μm BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm 2 area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/deg. C. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  14. A novel on-chip high to low voltage power conversion circuit

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hui; Wang Songlin; Mou Zaixin; Guo Baolong [Institute of Mechano-electronic Engineering, Xidian University, Xi' an 71007 (China); Lai Xinquan; Ye Qiang; Li Xianrui, E-mail: whui94@126.co [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China)

    2009-03-15

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6 mum BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm{sup 2} area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/deg. C. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  15. Study of the power supply topology with high stability for accelerator

    International Nuclear Information System (INIS)

    Wu Wei; Wang Yunfang; Wang Jiewei

    2005-01-01

    The requirements of the power supply for accelerator are analyzed. A few of topologies of the highly stabilized power supply are discussed. The types are listed: Auto-transformers-diode rectifier-transistor regulating current. Thyristor rectifier regulating voltage -transistor regulating current, Diode rectifier -DC-chopping. Thyristor rectifier regulating voltage -two-quadrant-chopping. The advantages and disadvantages of the topologies for power supply are discussed. The notice questions of the power supply designed for accelerator are analyzed. (authors)

  16. Line voltage distortions due to operation of the power supply devices required for plasma heating and magnetic field generation in the W7X thermonuclear fusion experiment

    International Nuclear Information System (INIS)

    Werner, F.

    1997-03-01

    The operation of the W7-X plasma heating devices requires high voltage DC power supplies with a total electrical power of 40 MVA. For this purpose twelve-pulse AC/DC converters are projected. These converters enforce a non sinusoidal line current, whose harmonics are causing corresponding line voltage distortions. To evaluate the extent of these distortions, the reaction of the harmonic currents on the AC line, is investigated by numerical network analysis. This is done for both, the 20 kV-junction point of the converters and the 110 kV-line terminal of the electricity supply company. Furthermore the design of LC series-resonant circuits, projected for power factor correction and damping of the harmonic content of the line voltage, has been verified. The additional operation of the 1.5 MVA magnet power supplies also contributes, even though to a much smaller extent, to the line voltage distortion. The influence of these twelve-pulse AC/DC converters was investigated too. The numerical calculations have been done with the aid of the network simulation program 'Pspice'. In an equivalent circuit the transmission line network and the transformers are represented by their inductances respectively equivalent inductances. The rectifier units are simulated by a number of current sources, producing the current harmonics in amplitude, frequency and phase. The harmonics amplitudes of the plasma heating power supplies are frequency and phase. The harmonics amplitudes of the plasma heating power supplies are measured values given by the manufacturer. For the magnet power supplies, the harmonics are derived from the theoretical step like I(t) current shape by Fourier series decomposition. Due to the action of the LC circuits the achieved characteristic voltage quality values are far below the permissible values corresponding to the recommendations of VDE 0160. (orig.) [de

  17. TECHNICAL AND ECONOMIC EVALUATION OF OPTIMAL VOLTAGE LEVEL FOR THE POWER SUPPLY OF DEEP MINE OPERATING HORIZONS

    OpenAIRE

    Shkrabets, F. P.; Ostapchuk, O. V.; Kozhevnikov, A. V.; Akulov, A. V.

    2015-01-01

    The most perspective option for possible deep mine power supply is the one with the deep input of 35 kV voltage by installing of underground 35kV/6 kV substation. This option is caused by the expected level of electrical loads, provided by mine development, the power consumers’ deep layout (considering the distance from the source to the shaft on the surface and from the shaft to the underground substation chamber) and primary and the most responsible power consumers (blind shaft lifting devi...

  18. Computer control of the high-voltage power supply for the DIII-D electron cyclotron heating system

    International Nuclear Information System (INIS)

    Clow, D.D.; Kellman, D.H.

    1992-01-01

    This paper reports on the DIII-D Electron Cyclotron Heating (ECH) high voltage power supply which is controlled by a computer. Operational control is input via keyboard and mouse, and computer/power supply interfact is accomplished with a Computer Assisted Monitoring and Control (CAMAC) system. User-friendly tools allow the design and layout of simulated control panels on the computer screen. Panel controls and indicators can be changed, added or deleted, and simple editing of user-specific processes can quickly modify control and fault logic. Databases can be defined, and control panel functions are easily referred to various data channels. User-specific processes are written and linked using Fortran, to manage control and data acquisition through CAMAC. The resulting control system has significant advantages over the hardware it emulates: changes in logic, layout, and function are quickly and easily incorporated; data storage, retrieval, and processing are flexible and simply accomplished; physical components subject to wear and degradation are minimized. In addition, the system can be expanded to multiplex control of several power supplies, each with its own database, through a single computer console

  19. On the optimization of the magneto-plasma compressor power supply system

    OpenAIRE

    Deshko, K. I.; Chernikov, V. A.

    2018-01-01

    The work of the miniature magneto-plasma compressor with the low-voltage power supply system was studied experimentally and the current and discharge voltage drop were measured. It was found that the voltage drop (a few tens of volts) remains practically constant during discharge. Performed electrical analysis allowed to determine the power efficiency of the supply system depending on the initial capacitor voltage, the discharge voltage and circuit parameters (capacitance, inductance, resista...

  20. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    Directory of Open Access Journals (Sweden)

    F Sohbatzadeh

    2017-02-01

    Full Text Available In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power

  1. An ultra low-power off-line APDM-based switchmode power supply with very high conversion efficiency

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2001-01-01

    This article describes the results from the research work on design of a ultra low power off-line power supply with very high conversion efficiency. The input voltage is 230 VAC nominal and output voltage is 5 VDC. By ultra low power levels, an output power level in the area ranging from 50 m......W and up to 1000 mW is meant. The small power supply is intended for use as a standby power supply in mains operated equipment, which requires a small amount of power in standby mode....

  2. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. The technical and economic problems arising in three phase extra high voltage transmission are discussed. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating and reactive power and stability problems.

  3. Characteristics of inversion operation on Fermilab phase controlled pulsed power supplies

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1977-01-01

    A well known property of phase controlled rectifiers with pulsed inductive loads is the ability to advance firing angles from full rectification (positive voltage) to full inversion (negative voltage). Though these properties have been effectively used in the Main Ring power supplies, they have not been extensively utilized for beam line magnet power supplies. Modifications to permit advancing phase angle sufficiently to permit inversion were made on TransRex 500 kW power supplies and Ling 55 kW power supplies. The objective of these modifications was to rapidly reduce the current in magnet loads to zero upon command. The modifications required and the performance of the power supplies are discussed

  4. Power supply system for negative ion source at IPR

    Science.gov (United States)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  5. Power supply system for negative ion source at IPR

    International Nuclear Information System (INIS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-01-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ∼5 x 10 12 cm -3 , from which ∼ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (∼15 to 35kV), and high current (∼ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (∼50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (∼ 50kV) isolated from the system. The paper shall

  6. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    International Nuclear Information System (INIS)

    Zito, Pietro; Maffia, Giuseppe; Lampasi, Alessandro

    2015-01-01

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  7. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Zito, Pietro, E-mail: pietro.zito@enea.it; Maffia, Giuseppe; Lampasi, Alessandro

    2015-10-15

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  8. Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue

    Science.gov (United States)

    Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku

    2018-02-01

    Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.

  9. Power supplies in 14 UD pelletron accelerator and its control (Paper No. CP 12)

    International Nuclear Information System (INIS)

    Vaze, M.Y.; Bhalerao, P.J.; Tambvekar, V.V.

    1990-01-01

    14UD Pelletron is a 14 million volt tandem heavy ion accelerator. For generation of the accelerating voltage, heavy ion beams and transporting the beam through low energy injector systems, accelerator, high energy system, analysing magnets and finally upto the target different types of types of D.C. power supplies with varying capacity and specifications are used in this accelerator. Broadly these power supplies can be classified in three different types: (1)D.C. high voltage low current voltage regulated supplies, (2)Low voltage high current current regulated high precision D.C. power supplies, and (3)Medium power current regulated D.C. power supplies. These power supplies are described and systems where they are used are mentioned. They are interfaced with CAMAC module and are controlled and monitored remotely from the control room through the serial highway link. (author). 2 figs

  10. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions. (author)

  11. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2008-01-01

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions

  12. Integrated high voltage power supply utilizing burst mode control and its performance impact on dielectric electro active polymer actuators

    DEFF Research Database (Denmark)

    Andersen, Thomas; Rødgaard, Martin Schøler; Andersen, Michael A. E.

    Through resent years new high performing Dielectric Electro Active Polymers (DEAP) have emerged. To fully utilize the potential of DEAPs a driver with high voltage output is needed. In this paper a piezoelectric transformer based power supply for driving DEAP actuators is developed, utilizing...

  13. Innovation of High Voltage Supply Adjustment Device on Diagnostic X-Ray Machine

    International Nuclear Information System (INIS)

    Sujatno; Wiranto Budi Santoso

    2010-01-01

    Innovation of high voltage supply adjustment device on diagnostic x-ray machine has been carried out. The innovation is conducted by utilizing an electronic circuit as a high voltage adjustment device. Usually a diagnostic x-ray machine utilizes a transformer or an auto-transformer as a high voltage supply adjustment device. A high power diagnostic x-ray machine needs a high power transformer which has big physical dimension. Therefore a box control where the transformer is located has to have big physical dimension. Besides, the price of the transformer is expensive and hardly found in local markets. In this innovation, the transformer is replaced by an electronic circuit. The main component of the electronic circuit is Triac BTA-40. As adjustment device, the triac is controlled by a variable resistor which is coupled by a stepper motor. A step movement of stepper motor varies a value of resistor. The resistor value determines the triac gate voltage. Furthermore the triac will open according to the value of electrical current flowing to the gate. When the gate is open, electrical voltage and current will flow from cathode to anode of the triac. The value of these electrical voltage and current depend on gate open condition. Then this triac output voltage is feed to diagnostic x-ray machine high voltage supply. Therefore the high voltage value of diagnostic x-ray machine is adjusted by the output voltage of the electronic circuit. By using this electronic circuit, the physical dimension of diagnostic x-ray machine box control and the price of the equipment can be reduced. (author)

  14. Buck supplies output voltage ripple reduction using fuzzy control

    Directory of Open Access Journals (Sweden)

    Nicu BIZON

    2007-12-01

    Full Text Available Using the PWM control for switching power supplies the peaks EMI noise appear at the switching frequency and its harmonics. Using randomize or chaotic PWM control techniques in these systems the power spectrum is spread out in all frequencies band spectral emissions, but with a bigger ripple in the output voltage. The proposed nonlinear feedback control method, which induces chaos, is based by fuzzy rules that minimize the output voltage ripple. The feasibility and effectiveness of this relative simple method is shown by simulation. A comparison with the previous control method is included, too.

  15. Cable Insulation Breakdowns in the Modulator with a Switch Mode High Voltage Power Supply

    CERN Document Server

    Cours, A

    2004-01-01

    The Advanced Photon Source modulators are PFN-type pulsers with 40 kV switch mode charging power supplies (PSs). The PS and the PFN are connected to each other by 18 feet of high-voltage (HV) cable. Another HV cable connects two separate parts of the PFN. The cables are standard 75 kV x-ray cables. All four cable connectors were designed by the PS manufacturer. Both cables were operating at the same voltage level (about 35 kV). The PS’s output connector has never failed during five years of operation. One of the other three connectors failed approximately five times more often than the others. In order to resolve the failure problem, a transient analysis was performed for all connectors. It was found that transient voltage in the connector that failed most often was subjected to more high-frequency, high-amplitude AC components than the other three connectors. It was thought that these components caused partial discharge in the connector insulation and led to the insulation breakdown. Modification o...

  16. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. This is followed by treatment of the technical and economic problems arising in three phase-extra high voltage transmission. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating, and reactive power and stability problems.

  17. 130 kV 130 A High voltage switching mode power supply for neutral beam plasma heating: design issues

    International Nuclear Information System (INIS)

    Ganuza, D.; Del Rio, J.M.; Garcia, I.; Garcia, F.; Garcia de Madinabeitia, P.; Perez, A.; Zabaleta, J.R.

    2003-01-01

    The company JEMA has designed and manufactured two High Voltage Switching Mode Power Supplies (HVSMPS), rated at 130 kV dc and 130 A, each of which will feed the accelerator grids of two Positive Ion Neutral Injector (PINI) loads, to be installed at the Joint European Torus (EFDA-JET facility located at Culham, UK). The solution designed by JEMA includes two matching transformers which adapt the 36 kV of the JET AC power distribution network to the required 670 V at the secondary side. Additionally, such transformers provide a 30 deg.phase shift which is required by a 30000 A 12 pulse thyristor rectifier. The obtained and stabilised 650 V feed 120 IGBT invertors, which operate at 2778 Hz with modulated square waveform. Each invertor feeds a High Insulation High Frequency Transformer. The 120 transformers corresponding to one power supply are arranged in three oil filled tanks and provide the main insulation from the low voltage to the high voltage side. The square waveform obtained at the secondary of each transformer is rectified by means of a diode bridge. The connection in series of the 120 diode bridges provides the required 130 kV d.c. at the output. In order to protect the load, a redundant solid state crowbar has been designed. Such short circuiting device is composed of 26 Light Triggered Thyristors (LTTs), connected in series. Electrical simulations have been carried out in order to ensure that the system complies with the requirements of high accuracy and adequate protection of the load. The critical design of the High Voltage-High Frequency Transformers has also required electrostatic simulations of the electric field distribution

  18. Modification of Modulating Anode Voltage Supply of Klystron for PEFP 20 MeV Linac

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2011-01-01

    The klystron (TH2089F, THALES) for PEFP 20MeV proton linear accelerator has a triode type electron gun and the modulating anode voltage should be supplied. The klystron has gone through some modification in the modulating anode voltage supply circuit. Formerly, the mod-anode voltage was supplied by using the tetrode-controlled voltage divider. This system requires addition power supply for the tetrode and the grid control circuit. Recently we modified the mod-anode supply from the tetrode-controlled voltage divider to a resistive voltage divider. The resistors for the previous voltage divider were installed at a supporter with high voltage bushing structure next to the klystron. In the previous system, the resistors were exposed to the air and their size was very bulky, length of which was about 1m long. To reduce the space occupied by the voltage divider and to improve the electrical insulation performance, the voltage dividing resistors were moved into the oil tank of the klystron. During the operation of the 20 MeV linac, the klystron parameters were measured. In this paper, the modification of the voltage divider and the operational characteristics of the klystron with modified voltage divider circuit are presented

  19. WORK SYSTEM ANALYSIS OF POWER SUPPLY IN OPTIMIZING ELECTRICITY ON PERSONAL COMPUTER (PC

    Directory of Open Access Journals (Sweden)

    Sudarmaji Sudarmaji

    2017-12-01

    Full Text Available Working Principles DC Power Supply - is an energy source for a computer to operate. The power supply changes the current from AC 110 volts to 60Hz or 220 volts 50Hz to DC + 3.3 volts, +5 volts and + 12 volts. Power Supply must carry a good and stable DC power supply so the system can run well. Tools running on the voltage supplied by the onboard voltage regulator, for example RIMM and RIMM require 2.5 volts while AGP AX and cards require 1.5 volts, both supplied by the onboard regulator of the motherboard. In addition to supplying power, the Power Supply can prevent the computer from starting until a Power Supply voltage exists at a predetermined area. Power Good is a sign of a special test that is sent to the motherboard as an active signal on the computer, usually marked by a green light when the power button is pressed. The current issued by the Power Supply is a direct current (DC, power output is composed of 200 watts, 250 watts, 300 watts, 350 watts, 400 watts to 600 watts. Computers with Intel Pentium 4 processors and above use power of 380 watts to 450 watts. Keywords: Power Supply, Computer, DC, Power Good, and volt

  20. Designing a power supply for Nim-bin formatted equipment

    International Nuclear Information System (INIS)

    Banuelos G, L. E.; Hernandez D, V. M.; Vega C, H. R.

    2016-09-01

    From an old Nuclear Chicago power supply that was practically in the trash, was able to recover the 19 inches casing, rear connectors and the housing where the circuits were. From here all mechanical parts were cleaned and the electronic design was started to replace the original voltage and current functions of this equipment. The cards for the ±6, ±12 and ±24 voltages were designed, simulated and tested with circuitry that does not rely on specialized components or that is sold only by the equipment manufacturer. In the handling of the current by each voltage to operate, was possible to tie with the specifications of the manufacturers like Ortec or Canberra where a model of power supply gives a power of 160 Watts. Basic tests were performed to show that the behavior is very similar to commercial equipment; such as the full load regulation index and the noise level in the supply voltages. So our Nim-bin voltage source is viable for use in our institution laboratories. (Author)

  1. Computer control of the high-voltage power supply for the DIII-D Electron Cyclotron Heating system

    International Nuclear Information System (INIS)

    Clow, D.D.; Kellman, D.H.

    1991-10-01

    The D3-D Electron Cyclotron Heating (ECH) high voltage power supply is controlled by a computer. Operational control is input via keyboard and mouse, and computer/power supply interface is accomplished with a Computer Assisted Monitoring and Control (CAMAC) system. User-friendly tools allow the design and layout of simulated control panels on the computer screen. Panel controls and indicators can be changed, added or deleted, and simple editing of user-specific processes can quickly modify control and fault logic. Databases can be defined, and control panel functions are easily referred to various data channels. User-specific processes are written and linked using Fortran, to manage control and data acquisition through CAMAC. The resulting control system has significant advantages over the hardware it emulates: changes in logic, layout, and function are quickly and easily incorporated; data storage, retrieval, and processing are flexible and simply accomplished, physical components subject to wear and degradation are minimized. In addition, the system can be expanded to multiplex control of several power supplied, each with its own database, through a single computer and console. 5 refs., 4 figs., 1 tab

  2. Operation of SST-1 TF power supply during SST-1 campaigns

    International Nuclear Information System (INIS)

    Sharma, Dinesh Kumar; Vora, Murtuza M.; Ojha, Amit; Singh, Akhilesh Kumar; Bhavsar, Chirag

    2015-01-01

    Highlights: • SST-1 TF power supply is 12 pulse SCR converter circuit. • TF power supply protection, measurement and control scheme are explained. • Quench, emergency and normal shot process is explained and results of SST-1 campaigns are shown. • Dynamic control of TF current. • The paper shows the results of last ten SST-1 campaigns. - Abstract: SST-1 TF power supply provides the direct current for the required magnetic field of TF coil. TF power supply includes transformer, 12-pulse converter, bus bar, water-cooled cable, protection and measuring equipments, and isolator, VME DAC system and GUI software. TF power supply is operated through GUI software built in TCL/Tk. VME DAC system monitors the parameters, provides On/Off commands, voltage and current references and initiates predefined reference to emergency shutdown. The emergency shutdown is hardwired to TF power supply from central control. During quench power supply converter opens DCCB and dump resistor is connected in the circuit and VME DAC system acquires bus bar voltage, dump voltage and dump current. Operation of TF power supply also requires monitoring of SCR and transformer temperature and water flow rate of water-cooled cable during high current long pulse shot. Before start up of TF power supply a quench simulation is performed to check the readiness of protection. This paper describes pre startup operation, normal shot operation, emergency and quench process, dynamic control and complete shutdown operation of TF power supply.

  3. Operation of SST-1 TF power supply during SST-1 campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dinesh Kumar, E-mail: dinesh@ipr.res.in; Vora, Murtuza M.; Ojha, Amit; Singh, Akhilesh Kumar; Bhavsar, Chirag

    2015-10-15

    Highlights: • SST-1 TF power supply is 12 pulse SCR converter circuit. • TF power supply protection, measurement and control scheme are explained. • Quench, emergency and normal shot process is explained and results of SST-1 campaigns are shown. • Dynamic control of TF current. • The paper shows the results of last ten SST-1 campaigns. - Abstract: SST-1 TF power supply provides the direct current for the required magnetic field of TF coil. TF power supply includes transformer, 12-pulse converter, bus bar, water-cooled cable, protection and measuring equipments, and isolator, VME DAC system and GUI software. TF power supply is operated through GUI software built in TCL/Tk. VME DAC system monitors the parameters, provides On/Off commands, voltage and current references and initiates predefined reference to emergency shutdown. The emergency shutdown is hardwired to TF power supply from central control. During quench power supply converter opens DCCB and dump resistor is connected in the circuit and VME DAC system acquires bus bar voltage, dump voltage and dump current. Operation of TF power supply also requires monitoring of SCR and transformer temperature and water flow rate of water-cooled cable during high current long pulse shot. Before start up of TF power supply a quench simulation is performed to check the readiness of protection. This paper describes pre startup operation, normal shot operation, emergency and quench process, dynamic control and complete shutdown operation of TF power supply.

  4. Pulsed power supply system for neutron well logging

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1975-01-01

    A variable D. C. power supply and a variable A. C. power supply are coupled onto the upper end of a single conductor cable at the earth's surface and from the lower end of said cable to a well logging instrument. The A. C. voltage is used to provide filament power for the ion source accelerator tube. The D. C. voltage is used to provide power to fixed D. C. loads maintained constant by regulators once a threshold is reached. The D. C. voltage is raised above the threshold to control the pulsed acceleration voltage and hence neutron output by first feeding into a unijunction relaxation oscillator in combination with an SCR output which output is transformer coupled into a voltage multiplier circuit. An antilatch feature is provided for the SCR by transformer coupling the pulses on the SCR anode back to the base of a transistor in series with the cathode of the SCR. Two outputs of the voltage multiplier circuit are connected to the cathode and anode, respectively, of an ion source accelerator tube, the cathode being connected through a resistor to retard the ripple pulsing of the cathode to allow ionization of the accelerator tube

  5. Booster main magnet power supply, present operation and potential future upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Bajon, E.; Bannon, M.; Marneris, I.; Danowski, G.; Sandberg, J.; Savatteri, S.

    2011-03-28

    The Brookhaven Booster Main Magnet Power Supply (MMPS) is a 24 pulse thyristor control supply, rated at 5500 Amps, +/-2000 Volts, or 3000 Amps, +/-6000 Volts. The power supply is fed directly from the power utility and the peak magnet power is 18 MWatts. This peak power is seen directly at the incoming ac line. This power supply has been in operation for the last 18 years. This paper will describe the present topology and operation of the power supply, the feedback control system and the different modes of operation of the power supply. Since the power supply has been in operation for the last 18 years, upgrading this power supply is essential. A new power supply topology has been studied where energy is stored in capacitor banks. DC to DC converters are used to convert the dc voltage stored in the capacitor banks to pulsed DC voltage into the magnet load. This enables the average incoming power from the ac line to be constant while the peak magnet power is pulsed to +/- 18 MWatts. Simulations and waveforms of this power supply will be presented.

  6. AGS Fast spin resonance jump, magnets and power supplies

    International Nuclear Information System (INIS)

    Glenn, J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-01-01

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 (micro)s, hold flat for about 4 ms and fan to zero in 100 (micro)s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described

  7. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  8. Evaluation of “direct input” effectiveness for industrial enterprises power supply

    Directory of Open Access Journals (Sweden)

    Malinina Tatyana

    2017-01-01

    Full Text Available The cost of energy has increased significantly for the industrial enterprises over the recent years, due to an increase in the electricity tariffs and the changes in the rules of the electricity market. Tariffs for electricity sold to consumers, differentiated according to various parameters, one of which is the voltage range. The higher the voltage range, the lower the tariffs, and thus, the consumer pays less for the supplied energy. Currently only for big consumers made energy supply “direct input” through the construction of an overhead line (OL with a nominal voltage of 110 kV or 220 kV. However, it is advisable to consider the issue of power supply efficiency of big and medium-sized industrial enterprises based on the “direct input”. The questions of voltage level study based on empirical formulas are considered in the article, expressing the dependence of the voltage from the transmission distance and the amount of transmitted power. It was proven that these formulas give a large spread, so intermediate voltage classes 35 kV and 110 kV, which compared with the traditional option of power supply on the basis of the cable line 10 kV, have been selected. Based on the technical and economic calculations it has been proved the value of the transmit power and length of the line at which the power supply of industrial enterprise on the basis of “ direct input” with a nominal voltage of 110 kV becomes effective.

  9. A Performance Improvement of Power Supply Module for Safety-related Controller

    International Nuclear Information System (INIS)

    Kim, Jong-Kyun; Yun, Dong-Hwa; Hwang, Sung-Jae; Lee, Myeong-Kyun; Yoo, Kwan-Woo

    2015-01-01

    In this paper, in relation to voltage shortage state when power supply module is a slave mode, the performance improvement by modifying a PFC(Power Factor Correction) circuit is presented. With the modification of the PFC circuit, the performance improvement in respect of the voltage shortage state when the power supply module is a slave mode is checked. As a result, POSAFE-Q PLC can ensure the stability with the redundant power supply module. The purpose of this paper is to improve the redundant performance of power supply module(NSPS-2Q). It is one of components in POSAFE-Q which is a PLC(Programmable Logic Controller) that has been developed for the evaluation of safety-related. Power supply module provides a stable power in order that POSAFE-Q can be operated normally. It is possible to be mounted two power supply modules in POSAFE-Q for a redundant(Master/Slave) function. So that even if a problem occurs in one power supply module, another power supply module will provide a power to POSAFE-Q stably

  10. A Performance Improvement of Power Supply Module for Safety-related Controller

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Kyun; Yun, Dong-Hwa; Hwang, Sung-Jae; Lee, Myeong-Kyun; Yoo, Kwan-Woo [PONUTech Co., Seoul (Korea, Republic of)

    2015-10-15

    In this paper, in relation to voltage shortage state when power supply module is a slave mode, the performance improvement by modifying a PFC(Power Factor Correction) circuit is presented. With the modification of the PFC circuit, the performance improvement in respect of the voltage shortage state when the power supply module is a slave mode is checked. As a result, POSAFE-Q PLC can ensure the stability with the redundant power supply module. The purpose of this paper is to improve the redundant performance of power supply module(NSPS-2Q). It is one of components in POSAFE-Q which is a PLC(Programmable Logic Controller) that has been developed for the evaluation of safety-related. Power supply module provides a stable power in order that POSAFE-Q can be operated normally. It is possible to be mounted two power supply modules in POSAFE-Q for a redundant(Master/Slave) function. So that even if a problem occurs in one power supply module, another power supply module will provide a power to POSAFE-Q stably.

  11. Adaptive control strategy for ECRH negative high-voltage power supply based on CMAC neural network

    International Nuclear Information System (INIS)

    Luo Xiaoping; Du Pengying; Du Shaowu

    2011-01-01

    In order to solve the problem that the negative high-voltage power supply in an electron cyclotron resonance heating (ECRH) system can not satisfy the requirements because of the nonlinearity and sensitivity, the direct inverse model control strategy was proposed by using cerebellar model articulation controller(CMAC) for better control, and experiments were carried out to study the system performances with CMAC tracing dynamic signals. The results show that this strategy is strong in self-learning and self-adaptation and easy to be realized. (authors)

  12. Development of the power supplies of the prototype ion source for the EAST

    International Nuclear Information System (INIS)

    Liu Zhimin; Hu Chundong; Liu Sheng; Jiang Caichao; Song Shihua; Xie Yahong; Sheng Peng

    2011-01-01

    For the neutral beam injector (NBI) of the Experimental Advanced Superconducting Tokamak (EAST), a test stand of a high-current ion source has been in construction. The NBI power supply system includes the plasma generator power supply, plasma electrode power supply, high voltage power divider, negative high voltage power supply, and the transmission lines and the snubber. A multi-megawatt prototype ion source was developed. The arc discharge of the prototype ion source was obtained in the test. The test results for the ion source power supplies and the arc discharge of the ion source are presented. (authors)

  13. Reactive power management and voltage control in deregulated power markets

    Science.gov (United States)

    Spangler, Robert G.

    The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to

  14. Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System

    Directory of Open Access Journals (Sweden)

    Kristian Ismail

    2012-07-01

    Full Text Available Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on and the specific lag time (when off. This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.

  15. Fault Analysis of ITER Coil Power Supply System

    International Nuclear Information System (INIS)

    Song, In Ho; Jun, Tao; Benfatto, Ivone

    2009-01-01

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults

  16. Troubleshooting of Modulator DC power supply at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Seong; Kim, Han Sung; Kwon, Hyeok Jung; Kim, Seong Gu; Kim, Dae Il; Lee, Seok Geun; Kim, Jae Ha; Seol, Kyeong Tae; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The process of solving problems to operate the 2nd converter modulator will be introduced. Also, the PSpice simulation result about the 12-pulse rectifier will be compared with the measurement result. KOMAC (KOrea Multi-purpose Accelerator Complex) has four HVCMs (High Voltage Converter Modulator) which are the power source of nine klystrons. Four HVCMs are already operated since 2013 for operating the 100 MeV linear proton accelerator at KOMAC. This HVCM system includes the 12-pulse rectifier (ac-dc), capacitors bank (dc-link, Pos, Neg) and converter modulator (dc-dc). Especially, the 12-pulse rectifier system receives the power from the utility and converts 3,300 ac voltage to 2,200 dc voltage for supplying the dc power to the capacitors bank. This rectifier system used twelve thyristors for the rectification and applied RC snubber networks to protect the semiconductor switches (thyristors). Since the 2nd modulator dc power supply has troubled, the troubleshooting process conducted by the staves of KOMAC. It takes 3 months to solve the problems because it is not easy to find the faulty wiring. Nevertheless, our staves found the faulty point with a hope to operate the modulator system and the PSpice simulation helps to solve the problems. Using PSpice which is tool for simulating the circuit, the dc power supply abnormal phenomenon was simulated exactly. After corrected the faulty wiring, the modulator dc power supply operated.

  17. Switched-mode power supply apparatus and method

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead- time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power

  18. Switched-mode power supply apparatus and method

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead-time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power

  19. Positron Accumulator Ring (PAR) power supply

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    The Positron Accumulator Ring (PAR) consists of 8 dipole magnets connected in series. These magnets are energized via one 12-pulse dc power supply. The power supply consists of four phase controlled half-wave wye group converters. Each of the two half-wave converters are connected through an interphase transformer to obtain a full-wave converter with 120 degrees conduction. The input voltage for these two half-wave converters are 180 degrees apart. The two full-wave converters are connected in parallel through a third interphase transformer. This type of connection of the converters not only provides the required output current, it also improves the input power factor of the power supply. The output of the wye group converters is filtered through a passive L-R-C filter to reduce the ripple content of the output current. At low current values of the power supply the current ripple is high, thus a large filter is needed, which adds to the cost of the power supply, however at high output current levels, the current ripple is less severe. The large size of the filter can be reduced by adding an anti-parallel rectifier diode(D1) to the output of the power supply. A freewheeling diode(D2) is connected before the choke to circulate the current once the power supply is turned off. In order to measure the current in the magnet a high precision, low drift, zero flux current transductor is used. This transductor senses the magnet current which provides a feedback signal to control the gating of the converter's thyristors. A true 14 bit Digital to Analog Converter (DAC) is programmed by the control computer for the required current value, providing a reference for the current regulator. Fast correction of the line transients is provided by a relatively fast voltage loop controlled by a high gain slow response current loop

  20. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  1. Resonance power supplies for large accelerator

    International Nuclear Information System (INIS)

    Karady, G.; Schneider, E.J.

    1993-01-01

    The resonance power supply has been proposed as an efficient power supply for a future 6 GB, keon producing accelerator. This report presents a detailed analysis of the circuit operation. Based on these analyses each component is designed, one line diagram is developed, component requirements are determined and a detailed cost estimate is prepared. The major components of the system are: the magnet power supply, high voltage by-pass thyristor switch, with l0kA repetitive interruption capability, capacitor banks, capacitor bank thyristor switch, and an energy make up device. The most important components are the bypass thyristor switch and the energy injection device. The bypass thyristor switch is designed to turn on and interrupt to 10 kA dc current with a recovery voltage of 20kV and repetition frequency of 3 Hz. The switch consists of a large array of series and parallel connected thyristors and gate turn off (GTO) devices. The make up energy device is designed to replace the circuit energy losses. A capacitor bank is charged with constant current and discharged during the acceleration period. One of the advantages of the developed circuit is that it can be supplied directly from the local power network. In order to prove the validity of the assumptions, a scaled down model circuit was thoroughly tested. These tests proved that the engineering design of critical components is correct and this resonant power supply can be properly controlled by an inventer/rectifier connected in series with the magnet and by the make up energy device. This finding reduces the system cost

  2. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    Science.gov (United States)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  3. Stability analysis of a three-phase grid-connected DC power supply with small DC-link capacitor and voltage feed-forward compensation

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, L.

    2017-01-01

    The purpose of this work was to investigate effect of the DC-link voltage feed-forward compensation on the stability of the three-phase-grid connected DC power supply, used for electrolysis application, equipped with small DC link capacitor. In case of weak grid condition, the system...

  4. Design study of the vertical field power supply for JT-60

    International Nuclear Information System (INIS)

    Yabuno, Kohei; Tani, Keiji; Shimada, Ryuichi; Kishimoto, Hiroshi; Yoshida, Hidetoshi

    1977-09-01

    The results of a basic design study of the vertical field power supply for JT-60 (JAERI large tokamak) are described. The objective of the study is to evaluate several types of power supply circuits for fast excitation and control of the vertical field. A design requirement is to produce a rapidly increasing vertical field within accuracy of +-5% around the proper field strength required to center the plasma in the vacuum vessel. The plasma current is assumed to increase at the rate of about 100 MA/sec. To meet the requirement, a maximum voltage of 15 kV is necessary in the current build-up time, while generally relatively low voltage is necessary after the current flattop is reached. A hybrid power supply which consists of a dc power source (a thyristor converter) and an inductive energy storage system is proposed. The maximum voltage of the dc power source is determined as 4 kV from the voltage required in the current flattop time. This is sufficient also in the current build-up time if the dc power source is used together with the inductive energy storage system. (auth.)

  5. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2001-01-01

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  6. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  7. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  8. Study on a Highly Stabilized Power Supply for Hybrid-Magnet Superconducting Outsert

    International Nuclear Information System (INIS)

    Wu Jinglin; Long Jiaojiao; Liu Xiaoning

    2014-01-01

    The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm. (fusion engineering)

  9. Combined resonant tank capacitance and pulse frequency modulation control for ZCS-SR inverter-fed high voltage DC power supply

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2011-01-01

    Conventional pulse frequency modulated (PFM) zero current switching (ZCS) series resonant (SR) inverter fed high voltage dc power supplies have nearly zero switching loss. However, they have limitations of poor controllability at light loads and large output voltage ripple at low switching frequencies. To address these problems, this paper proposes a combined resonant tank capacitance and pulse frequency modulation based control approach. For the realization of the proposed control approach, the tank circuit of the resonant inverter is made up of several resonant capacitors that are switched into or out of the tank circuit by electromechanical switches. The output voltage of the converter is regulated by digitally modulating the resonant tank capacitance and narrowly varying the switching frequency. The proposed control scheme has several features, namely a wide range of controllability even at light loads, less output voltage ripple, and less current stress on the inverter's power switches at light loads. Therefore, the proposed control approach alleviates most of the problems associated with conventional PFM. Experimental results obtained from a scaled down laboratory prototype are presented to verify the effectiveness of the proposed system.

  10. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  11. On-chip digital power supply control for system-on-chip applications

    NARCIS (Netherlands)

    Meijer, M.; Pineda de Gyvez, J.; Otten, R.H.J.M.

    2005-01-01

    The authors presented an on-chip, fully-digital, power-supply control system. The scheme consists of two independent control loops that regulate power supply variations due to semiconductor process spread, temperature, and chip's workload. Smart power-switches working as linear voltage regulators

  12. High stability, high current DC-power supplies

    International Nuclear Information System (INIS)

    Hosono, K.; Hatanaka, K.; Itahashi, T.

    1995-01-01

    Improvements of the power supplies and the control system of the AVF cyclotron which is used as an injector to the ring cyclotron and of the transport system to the ring cyclotron were done in order to get more high quality and more stable beam. The power supply of the main coil of the AVF cyclotron was exchanged to new one. The old DCCTs (zero-flux current transformers) used for the power supplies of the trim coils of the AVF cyclotron were changed to new DCCTs to get more stability. The potentiometers used for the reference voltages in the other power supplies of the AVF cyclotron and the transport system were changed to the temperature controlled DAC method for numerical-value settings. This paper presents the results of the improvements. (author)

  13. A new electronic circuit for NIM rack power supply

    International Nuclear Information System (INIS)

    Toledo, Fabio de; Domienikan, Claudio; Zahn, Guilherme S.

    2013-01-01

    A new and useful electronic circuit designed to substitute the old power supply of IPEN model PM 1212 Nuclear Instrument Modules (NIM) racks is presented. Originally, these NIM racks were projected by IPEN workshop at 1974 to be used in nuclear research laboratories. The PM1212 provided mounting space and power sources for up to 12 standard nuclear electronic modules and power supply regulated DC voltages of ±24V (2A), ±12V (4A) and unregulated AC 117V (0.5A). Currently, several of these NIM racks are not in use because the electronic components of the original design have become obsolete and are no longer manufactured. The new electronic circuit provides the same original voltages adjusted in the single circuit and, additionally, ±6V. The new power supply was designed and constructed at IPEN-CNEN/SP by employing modern national components and expertise. (author)

  14. A new electronic circuit for NIM rack power supply

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Fabio de; Domienikan, Claudio; Zahn, Guilherme S., E-mail: fatoledo@ipen.br, E-mail: clanikan@ipen.br, E-mail: gzahn@ipen.br [Intituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A new and useful electronic circuit designed to substitute the old power supply of IPEN model PM 1212 Nuclear Instrument Modules (NIM) racks is presented. Originally, these NIM racks were projected by IPEN workshop at 1974 to be used in nuclear research laboratories. The PM1212 provided mounting space and power sources for up to 12 standard nuclear electronic modules and power supply regulated DC voltages of ±24V (2A), ±12V (4A) and unregulated AC 117V (0.5A). Currently, several of these NIM racks are not in use because the electronic components of the original design have become obsolete and are no longer manufactured. The new electronic circuit provides the same original voltages adjusted in the single circuit and, additionally, ±6V. The new power supply was designed and constructed at IPEN-CNEN/SP by employing modern national components and expertise. (author)

  15. Low-Power, Low-Voltage Analog to Digital ΣΔ

    DEFF Research Database (Denmark)

    Wismar, Ulrik Sørensen

    2007-01-01

    , and since long operation time is required, low supply voltage and low power consumption are of paramount importance. Consequently, various topologies have been compared to nd the most power ecient audio frequency modulator topology. Chapter 4 of this thesis compares power consumption of two of the most...... prevalent topologies, the single-loop modulator with integration in discrete time and the single-loop modulator with integration in continuous time. Both modulator topologies are with feedback, and all intermediate signals are in the voltage mode. Chapter 5 treats a modulator without feedback. Another...

  16. A unique power supply for the PEP II klystron at SLAC

    International Nuclear Information System (INIS)

    Cassel, R.; Nguyen, M.N.

    1997-07-01

    Each of the eight 1.2 MW RF klystrons for the PEP-II storage rings require a 2.5 MVA DC power supply of 83 Kv at 23 amps. The design for the supply was base on three factors, low cost, small size to fit existing substation pads, and good protection against damage to the klystron including klystron gun arcs. The supply uses a 12 pulse 12.5 KV primary thyristor star point controller with primary filter inductor to provide rapid voltage control, good voltage regulation, and fast turn off during klystron tube faults. The supply also uses a unique secondary rectifier, filter capacitor configuration to minimize the energy available under a klystron fault. The voltage control is from 0--90 KV with a regulation of < 0.1% and voltage ripple of < 1% P-P, (< 0.2% RMS) above 60 KV. The supply utilizes a thyristor crowbar, which under a klystron tube arc limits the energy in the klystron arc to < 5 joules. If the thyristor crowbar is disabled the energy supplied is < 40 joules into the arc. The size of the supply was reduced small enough to fit the existing PEP transformer yard pads. The cost of the power supply was < $140 per KVA

  17. Design and Development of a control system for the Drift Tube Chamber High Voltage Power Supply

    CERN Document Server

    Leon Vega, Luis Gerardo

    2017-01-01

    This paper contains information related to the design and development of a control and data acquisition manager implemented in WinCC, a Siemens SCADA system. The goal was to manage a CAEN HV (High Voltage) system for powering a Drift Tube (DT) chamber of the CMS experiment. Basically, this manager consists of two sections: a friendly user interface and powerful scripts to manage the back-end. It is in charge of adjusting the power supply settings to the correct values needed for the DT Chamber operations (ON, OFF, Standby), depending of the requirements of the operator, managing automatically all the transition process. Also, the manager is in charge of configuring the archiving process for acquiring data and providing the history of the system. It also implements the monitoring of the status of each connected channel, alerting in case it is needed.

  18. Turn-key supply for the power supplies of the control coils of wendelstein 7-X experiment

    International Nuclear Information System (INIS)

    Jauregi, E.; Ganuza, D.; Garcia, I.; Rio, J.M. del; Rummel, T.; Fuellenbach, F.

    2003-01-01

    In the Max-Planck Institute for Plasma Physics, IPP, in Greifswald, a new stellerator is being built for fusion research experiments, the so called Wendelstein 7-X Experiment. JEMA Company has designed, manufacture and supply the turnkey system which energises the ten control coils in the stellerator. The system comprises ten independent Switch-mode power supplies, and the central distribution stations for power, cooling and control facilities. Each power supply must provide a controlled current compounded of direct current and 0-20 Hz bandwidth ac current in a range of almost 3 kA at low voltage, 30 V, in four quadrants. Positive and negative voltage and sinusoidal current with low harmonic distortion is required by load. The selected design is based on Switch-mode-power supply technology (SMPS) providing the system with a very high regulation response (very low current and voltage ripple) and excellent input power factor, keeping the grid total harmonic distortion (THD) under minimum values. The sources can be operated locally as independent systems or they can be co-ordinated from a main control keeping current synchronisation requirements. The system in its entirety requires a high efficiency due to thermal considerations and reduced space. The system presented here introduces a decisive solution for the future power supplies to superconducting or regular coils, where the regulation, precision and ripple are the basic requirements for the design. During year 2000 the design stage was covered and in 2001 a first prototype for the power supplies was manufactured and successfully tested at factory. The entire system has been installed over this year after the series fabrication and it is currently working at IPP facilities, waiting for the acceptance tests scheduled before end of the year. This paper aims to explain the different stages the company went through in order to get validation of the power supply system and make it running at its last location

  19. All solid state high voltage power supply for neutral beam sources

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1984-01-01

    The conceptual design of a high frequency solid state, high power, high voltage, power system that reacts fast enough to be compatible with the requirements of a neutral beam source is presented. The system offers the potential of significant advantages over conventional power line frequency systems; such as high reliability, long life, relatively little maintenance requirements, compact size and modular design

  20. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    International Nuclear Information System (INIS)

    Sharma, P.K.; Kazarian, F.; Garibaldi, P.; Gassman, T.; Artaud, J.F.; Bae, Y.S.; Belo, J.; Berger-By, G.; Bernard, J.M.; Cara, Ph.; Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Goniche, M.; Guilhem, D.

    2011-01-01

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  1. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  2. Construction and qualification of the Power Supply system of the AMS-02 Tracker detector

    International Nuclear Information System (INIS)

    Menichelli, M.; Accardo, L.; Ambrosi, G.; Battiston, R.; Bizzarri, M.; Blasko, S.; Cosson, D.; Fiori, E.M.; Maris, O.; Papi, A.; Scolieri, G.

    2007-01-01

    The AMS-02 Tracker power supply system, described in this paper, has been designed optimizing noise performances, modularity and efficiency. The power is distributed starting from a 28V line coming from the power distribution system is converted into the needed voltages by means of DC-DC converters, and for bias supply and front-end voltages is post-regulated by means of linear regulators. Components Off The Shelf (COTS) have been extensively used in the construction of this power supply, however various radiation test campaigns have been performed in order to verify the reliability of these components. The power supply architecture developed for the tracker detector has been used as a guideline for the development of the power supplies for the other detectors in the experiment

  3. High precision power supplies for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Olsen, R.; Langenbach, H.

    1987-04-01

    Since beam stability depends to a considerable degree on the stability of the magnet power supplies, and it is desired to push for 3 GeV operation, it was required that new power supplies be obtained for the quadrupoles and sextupoles. These power supplies were to have the lowest ripple that could be reasonably achieved, and were to have a current regulation of better than 10 PPM. In addition, since they operate over a 5 : 1 voltage range, it was considered desirable to ensure that they operated with a good power factor over the operating range. The dipole power supply was modified to use the techniques employed in the smaller supplies

  4. Prototype tests on the ion source power supplies of the TEXTOR NI-system

    International Nuclear Information System (INIS)

    Goll, O.; Braunsberger, U.; Schwarz, U.

    1987-01-01

    The PINI ion source for the TEXTOR neutral injector is fed by a new modular transistorized power supply. All modules are located in a high voltage cage on 55 kV dc against ground. The normal operation of the injectors includes frequent grid breakdowns causing transient high voltage stresses on the ion source power supplies. These stresses must not disturb the safe operation of the power supplies. The paper describes the set up for extensive testing of a supply prototype module under the expected operating conditions. The main features of this test program are reviewed and the measures taken for a safe operation are discussed. As a result of the investigations, recommendations for the installation of the power supplies at the TEXTOR NI system are given

  5. Does the expansion of German high voltage power supply system imply health risks?; Geht vom Ausbau elektrischer Hochspannungsleitungen eine Gefahr fuer die menschliche Gesundheit aus?

    Energy Technology Data Exchange (ETDEWEB)

    Kappos, Andreas D.

    2016-07-01

    The decision of the German parliament to gradually close down nuclear power plants mainly located in the south of Germany and to support wind farms in the North Sea mud flats as the dominant regenerative energy source requires the strengthening and enlargement of the power supply system with the installation of new long distance high voltage power lines. The legally fixed dimension and formality of the actual planning process are discussed as well as the legal regulations for the protection of human health. Guided by the assessment of IARC a ''possible'' carcinogenic effect of low frequency electromagnetic fields on people living in the vicinity of high voltage power lines has to be considered. Therefore from a preventive viewpoint the minimal distance of 400 m between newly planned high voltage power lines and human settlements required by law seem justified.

  6. SNS EXTRACTION KICKER POWER SUPPLY PROTOTYPE TEST

    International Nuclear Information System (INIS)

    MI, J.L.; SANDBERG, J.; SANDERS, R.; SOUKAS, A.; ZHANG, W.

    2000-01-01

    The SNS (Spallation Neutron Source) accumulator ring Extraction System consists of a Fast kicker and a Lambertson Septum magnet. The proposed design will use 14 kicker magnets powered by an Extraction Kicker Power Supply System. They will eject the high power beam from the SNS accumulator ring into RTBT (Ring to Target Beam Tunnel) through a Lambertson Septum magnet. This paper describes some test results of the SNS Extraction Kicker power supply prototype. The high repetition rate of 60 pulse per second operation is the challenging part of the design. In the prototype testing, a 3 kA damp current of 700ns pulse-width, 200 nS rise time and 60 Hz repetition rate at 32 kV PFN operation voltage has been demonstrated. An Extraction kicker power supply system design diagram is depicted

  7. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  8. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Science.gov (United States)

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  9. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    Energy Technology Data Exchange (ETDEWEB)

    Babij, Michał; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol; Gotszalk, Teodor [Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Silberring, Jerzy [AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-05-15

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  10. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  11. Simple power supply for power load controlled isoelectric focusing

    Czech Academy of Sciences Publication Activity Database

    Duša, Filip; Šlais, Karel

    2014-01-01

    Roč. 35, č. 8 (2014), s. 1114-1117 ISSN 0173-0835 R&D Projects: GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : isoelectric focusing * power supply * voltage multiplier Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.028, year: 2014 http://hdl.handle.net/11104/0231022

  12. Engineering Design of the ITER AC/DC Power Supplies

    International Nuclear Information System (INIS)

    Oh, B. H.; Lee, K. W.; Hwang, C. K.; Jin, J. T.; Chang, D. S.; Kim, T. S.

    2009-02-01

    To design high power pulse power supplies, especially in huge power supplies have not designed till now, it is necessary to analyze a system's characteristics and relations with another systems as well as to know high voltage, high current control technologies. Contents of this project are; - Study for the engineering designs changed recently by ITER Organization(IO) and writing specifications for the power supplies to reduce project risk. - Detailed analysis of the AC/DC Converters and writing subtask reports on the Task Agreement. - Study for thyristor numbers, DCR's specifications for Korea-China sharing meetings. - Study for the grounding systems of the ITER power supply system. The results may used as one of reference for practical designs of the high power coil power supplies and also may used in various field such as electroplating, plasma arc furnaces, electric furnaces

  13. DAΦNE magnet power supply system

    International Nuclear Information System (INIS)

    Ricci, R.; Sanelli, C.; Stecchi, A.

    1998-01-01

    The e + -e - , 1020 MeV at center of mass, Particle Accelerator Complex DAΦNE, consists of a linear accelerator (Linac), a damping ring (D.A.), nearly 180 m of transfer lines (T.L.) and two storage rings (S.R.), that intersect each other in two points (I.P.), for Φ particle production. The D.A., T.L. and S.R. magnets are powered by means of 462 power supplies, rating from 100 W to 1 MW. The very different output currents, from 10 A to 2300 A, and output voltages, from 8 V to 1300 V, imposed many different technical solution realized by the world industry. This paper describes the Power Supply System giving also a description of the different typologies, their characteristics and control systems. The paper reports also the power supply performances and gives information on their installation and first year operation period

  14. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  15. Using a Voltage Domain Programmable Technique for Low-Power Management Cell-Based Design

    Directory of Open Access Journals (Sweden)

    Ching-Hwa Cheng

    2011-09-01

    Full Text Available The Multi-voltage technique is an effective way to reduce power consumption. In the proposed cell-based voltage domain programmable (VDP technique, the high and low voltages applied to logic gates are programmable. The flexible voltage domain reassignment allows the chip performance and power consumption to be dynamically adjusted. In the proposed technique, the power switches possess the feature of flexible programming after chip manufacturing. This VDP method does not use an external voltage regulator to regulate the supply voltage level from outside of the chip but can be easily integrated within the design. This novel technique is proven by use of a video decoder test chip, which shows 55% and 61% power reductions compared to conventional single-Vdd and low-voltage designs, respectively. This power-aware performance adjusting mechanism shows great power reduction with a good power-performance management mechanism.

  16. Optimum voltage of auxiliary systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Segawa, Motomichi

    1979-01-01

    In the power plants in Japan, their unit power output has been greatly enhanced since the introduction of new powerful thermal power plants from 1950's to 1960's. In both thermal and nuclear power plants, 1,000 MW machines have been already in operation. The increase of unit power output results in the increase of in-plant load capacity. Of these the voltage adopted for in-plant low voltage systems is now mainly 440 V at load terminals, and the voltage for in-plant high voltage systems has been changing to 6 kV level via 3 kV and 4 kV levels. As plant capacity increases, the load of low voltage systems significantly increases, and it is required to raise the voltage of 400 V level. By the way, the low voltage in AC is specified to be not higher than 600 V. This makes the change within the above range comparatively easy. Considering these conditions, it is recommended to change the voltage for low voltage systems to 575 V at power source terminals and 550 V at load terminals. Some merits in constructing power systems and in economy by raising the voltage were examined. Though demerits are also found, they are only about 15% of total merits. The most advantageous point in raising the voltage is to be capable of increasing the supplying range to low voltage system loads. (Wakatsuki, Y.)

  17. Simulation as a key to success in power supply design and development

    Energy Technology Data Exchange (ETDEWEB)

    Suur-Askola, S.; Laasonen, M.; Maeki, J. [Efore Muuntolaite Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the design and development process of a power supply by using simulation methods. The simulation principles and results of a 40W power supply are provided including EMI, voltage and current rating verification as well as power loss approximation. (orig.) 8 refs.

  18. Performance and modelling of 70kVdc power supply with solid-state crowbar

    International Nuclear Information System (INIS)

    Yellamraju, Sham Sunder Srinivas; Kulkarni, Sanjay V.

    2013-01-01

    The experimental activities of tokamak research involve development of high power RF and microwave sources for fusion related heating and current drive applications. High power RF and microwave tubes like Klystron, Gyrotron and Tetrode are in general operated with high voltage DC power supplies. These HVDC power supplies of the order of 70 kVdc, must be equipped with necessary arc fault protection in addition to general over current and over voltage protection. The arc fault protection must act within few microseconds to prevent permanent damage to the RF tube, window, etc. When an arc fault is detected, output voltage of the DC power supply is short circuited using a crowbar device (generally Ignitron, Thyratron, thyristor, rail-gap, etc.) that operates in few microseconds. This diverts the fault current from the load to crowbar device, thereby protecting the load. This is necessary as conventional protection in the power supply input takes ∼100 ms to switch-off. The crowbar device must be able to take the fault current till the circuit breaker placed at power supply input is switched off. The arc fault protection is tested for its effectiveness by “wire-burn” test. Full power short circuit of ∼1.5 MW DC power supply puts enormous stress on the power supply, utility and the crowbar, therefore frequent wire-burn testing is to be avoided. This report presents simulation of wire-burn test using PSIM software. Optimization of the component values without conducting actual wire-burn test could be achieved

  19. Performance and modelling of 70kVdc power supply with solid-state crowbar

    Energy Technology Data Exchange (ETDEWEB)

    Yellamraju, Sham Sunder Srinivas, E-mail: ysssrinivas@gmail.com [Institute for Plasma Research, BHAT, Gandhinagar 382428 (India); Kulkarni, Sanjay V. [Institute for Plasma Research, BHAT, Gandhinagar 382428 (India)

    2013-10-15

    The experimental activities of tokamak research involve development of high power RF and microwave sources for fusion related heating and current drive applications. High power RF and microwave tubes like Klystron, Gyrotron and Tetrode are in general operated with high voltage DC power supplies. These HVDC power supplies of the order of 70 kVdc, must be equipped with necessary arc fault protection in addition to general over current and over voltage protection. The arc fault protection must act within few microseconds to prevent permanent damage to the RF tube, window, etc. When an arc fault is detected, output voltage of the DC power supply is short circuited using a crowbar device (generally Ignitron, Thyratron, thyristor, rail-gap, etc.) that operates in few microseconds. This diverts the fault current from the load to crowbar device, thereby protecting the load. This is necessary as conventional protection in the power supply input takes ∼100 ms to switch-off. The crowbar device must be able to take the fault current till the circuit breaker placed at power supply input is switched off. The arc fault protection is tested for its effectiveness by “wire-burn” test. Full power short circuit of ∼1.5 MW DC power supply puts enormous stress on the power supply, utility and the crowbar, therefore frequent wire-burn testing is to be avoided. This report presents simulation of wire-burn test using PSIM software. Optimization of the component values without conducting actual wire-burn test could be achieved.

  20. DC-Link Protection and Control in Modular Uninterruptible Power Supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guan, Yajuan

    2018-01-01

    In this paper, a DC-link voltage protection (DCVP) control method is proposed to address the DC-link overvoltage issue due to power back-feeding in parallel Uninterruptible Power Supply (UPS) system. The proposed control method is able to protect the inverter against the excessive DC-link voltage...... by the line impedance mismatching or power back-feeding issue in the UPS system. In addition, an improved consensus-based distributed controller is proposed to alleviate the overshoot issue during the transient process in voltage amplitude and frequency restoration. Finally, the feasibility of the proposed...

  1. Uninterruptible power supply model of independent voltage inverter of NPP electrical equipment

    International Nuclear Information System (INIS)

    Rozhkov, V.V.; Ajdaralieva, V.Eh.

    2010-01-01

    A package of main transforming units models of advanced uninterruptible power supply systems of NPP electrical equipment was developed. The package of models allows investigating the basic modes of uninterruptible power supply systems operation by computer modeling. Simulation results were presented. Recommendations on choice of parameters of power circuit elements as well as on diagnostics and adjustment of regulators of converters control systems were given [ru

  2. A new high-voltage level-shifting circuit for half-bridge power ICs

    International Nuclear Information System (INIS)

    Kong Moufu; Chen Xingbi

    2013-01-01

    In order to reduce the chip area and improve the reliability of HVICs, a new high-voltage level-shifting circuit with an integrated low-voltage power supply, two PMOS active resistors and a current mirror is proposed. The integrated low-voltage power supply not only provides energy for the level-shifting circuit and the logic circuit, but also provides voltage signals for the gates and sources of the PMOS active resistors to ensure that they are normally-on. The normally-on PMOS transistors do not, therefore, need to be fabricated in the depletion process. The current mirror ensures that the level-shifting circuit has a constant current, which can reduce the process error of the high-voltage devices of the circuit. Moreover, an improved RS trigger is also proposed to improve the reliability of the circuit. The proposed level-shifting circuit is analyzed and confirmed by simulation with MEDICI, and the simulation results show that the function is achieved well. (semiconductor integrated circuits)

  3. Quick discharge circuit for pacer nuclear power supply

    International Nuclear Information System (INIS)

    Chen, C.Y.

    1975-01-01

    A quick discharge circuit for a pacer's nuclear power supply is described. A pacer capable of implantation within the body of a patient and capable of being powered by at least one nuclear battery is disclosed. Voltage from a single nuclear battery is increased by a factor of about 25 to 30 in order to provide a voltage level adequate to power pacer circuitry. A restartable DC--DC converter is used for this purpose. But if the converter malfunctions the load voltage must be reduced below a certain level for the converter to be automatically restarted. The present invention relates to means for reducing the time from converter malfunction to resumption of converter operation in order to reduce the corresponding inoperative pacer time period. (U.S.)

  4. High efficiency class-I audio power amplifier using a single adaptive supply

    International Nuclear Information System (INIS)

    Peng Zhenfei; Yang Shanshand; Feng Yong; Hong Zhiliang; Liu Yang

    2012-01-01

    A high efficiency class-I linear audio power amplifier (PA) with an adaptive supply is presented. Its efficiency is improved by a dynamic supply to reduce the power transistors' voltage drop. A gain compression technique is adopted to make the amplifier accommodate a single positive supply. Circuit complicity and chip area are reduced because no charge pump is necessary for the negative supply. A common shared mode voltage and a symmetric layout pattern are used to minimize the non-linearity. A peak efficiency of 80% is reached at peak output power. The measured THD+N before and after the supply switching point are 0.01% and 0.05%, respectively. The maximum output power is 410 mW for an 8 Ω speaker load. Unlike switching amplifiers, the class-I amplifier operates as a linear amplifier and hence has a low EMI. The advantage of a high efficiency and low EMI makes the class-I amplifier suitable for portable and RF sensitive applications. (semiconductor integrated circuits)

  5. Light emitting diode driver with differential voltage supply

    NARCIS (Netherlands)

    2015-01-01

    The current invention relates to a driver for driving one or a plurality of LEDs (D1, D2), comprising at least one driving unit (201, 202) adapted to be supplied with a differential voltage, between one first bias voltage (VB1) and one second bias voltage (VB2), the differential voltage being

  6. Exploration of dual supply voltage logic synthesis in state-of-the-art ASIC design flows

    Directory of Open Access Journals (Sweden)

    T. Mahnke

    2003-01-01

    Full Text Available Dual supply voltage scaling (DSVS for logiclevel power optimization at the has increasingly attracted attention over the last few years. However, mainly due to the fact that the most widely used design tools do not support this new technique, it has still not become an integral part of real-world design flows. In this paper, a novel logic synthesis methodology that enables DSVS while relying entirely on standard tools is presented. The key to this methodology is a suitably modeled dual supply voltage (DSV standard cell library. A basic evaluation of the methodology has been carried out on a number of MCNC benchmark circuits. In all these experiments, the results of state-of-the-art powerdriven single supply voltage (SSV logic synthesis have been used as references in order to determine the true additional benefit of DSVS. Compared with the results of SSV power optimization, additional power reductions of 10% on average have been achieved. The results prove the feasibility of the new approach and reveal its greater efficiency in comparison with a well-known dedicated DSVS algorithm. Finally, the methodology has been applied to an embedded microcontroller core in order to further explore the potentials and limitations of DSVS in an existing industrial design environment.

  7. A timing detector with pulsed high-voltage power supply for mass measurements at CSRe

    International Nuclear Information System (INIS)

    Zhang, W.; Tu, X.L.; Wang, M.; Zhang, Y.H.; Xu, H.S.; Litvinov, Yu. A.; Blaum, K.

    2014-01-01

    Accuracy of nuclear mass measurements in storage rings depends critically on the accuracy with which the revolution times of stored ions can be obtained. In such experiments, micro-channel plates (MCP) are used as timing detectors. Due to large phase space of injected secondary beams, a large number of ions cannot be stored in the ring and is lost within the first few revolutions. However, these ions interact with the detector and can saturate the MCP and thus deteriorate its performance. In order to eliminate such effects, a fast, pulsed high-voltage power supply (PHVPS) has been employed which keeps the detector switched-off during the first few revolutions. The new detector setup was taken into operation at the Experimental Cooler-Storage-Ring CSRe in Lanzhou and resulted in a significant improvement of the detector amplitude and efficiency characteristics

  8. Optimized control strategy for crowbarless solid state modular power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Badapanda, M.K.; Tripathi, A.; Hannurkar, P.R.; Pithawa, C.K.

    2009-01-01

    Solid state modular power supply with series connected IGBT based power modules have been employed as high voltage bias power supply of klystron amplifier. Auxiliary compensation of full wave inverter bridge with ZVS/ZCS operations of all IGBTs over entire operating range is incorporated. An optimized control strategy has been adopted for this power supply needing no output filter, making this scheme crowbarless and is presented in this paper. DSP based fully digital control with same duty cycle for all power modules, have been incorporated for regulating this power supply along with adequate protection features. Input to this power supply is taken directly from 11 kV line and the input system is intentionally made 24 pulsed to reduce the input harmonics, improve the input power factor significantly, there by requiring no line filters. Various steps have been taken to increase the efficiency of major subsystems, so as to improve the overall efficiency of this power supply significantly. (author)

  9. The arc power supply for the TEXTOR neutral injectors

    International Nuclear Information System (INIS)

    Schwarz, U.; Pfister, U.; Goll, O.; Wurslin, R.; Scherer, J.; Haubmann, S.

    1986-01-01

    The 24 single arcs in the plasma source of the TEXTOR neutral injector are supplied with an overall current of 1800 A at an arc voltage of 150 V DC. The current is switched on and off in less than 1 msec. The paper presents a new modular solution for such a power supply. Each arc is powered by a separately switched mode supply module. One single module consists of a diode rectifier bridge with a filter, a fast semiconductor switch, an inductance in series for stabilizing the current and a free-wheeling path. The layout of this power supply system is described in detail based on test results. Design features and technical data are given

  10. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    Parmar, Darshan Kumar; Singh, N.P.; Gajjar, Sandip

    2015-01-01

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  11. Development of control system for multi-converter high voltage power supply using programmable SoC

    International Nuclear Information System (INIS)

    Dave, Rasesh; Singh, N.P.; Thakar, Aruna; Dhola, Hitesh; Gajjar, Sandip; Parmar, Darshan Kumar; Baruah, Ujjwal Kumar; Dharangutti, Jagruti; Zaveri, Tanish

    2015-01-01

    Multi-converter based High Voltage Power Supplies (HVPSs) find application in multi-megawatt accelerators, RF systems. Control system for HVPS must be a combination of superior parallel processing, real time performance, fast computation and versatile connectivity. The hardware platform is expected to be robust, easily scalable for future developments without any cost overhead. Typical HVPS control mechanism involves communication, generation of precise control signals/pulses for few hundred Nos of chopper and closed loop control in microsecond range for regulated output. Such kind of requirements can be met with Zynq All Programmable SoC, which is a combination of Dual core ARM Cortex A-9 Processing System (PS) and Xilinx 7 series FPGA based Programmable Logic (PL). Deterministic functions of power supply control system such as generation of control signals with precise inter-channel delay of nanosecond range and communication with individual chopper at 100kbps can be implemented on PL. PS should implement corrective tasks based on field feedback received from individual chopper, user interface and OS management that allows to take full advantage of system capabilities. PS and PL are connected with on-chip AXI-4 interface with low latency and higher bandwidth through 9 AXI ports. Typically PS boots first, this ensures secure booting and prevents external environment from tampering PL. This paper describes development of control system on Zynq All Programmable SoC for HVPS. (author)

  12. Development of control system for multi-converter High voltage Power supply using programmable SoC

    Science.gov (United States)

    Dave, Rasesh; Dharangutti, Jagruti; Singh, N. P.; Thakar, Aruna; Dhola, Hitesh; Gajjar, Sandip; Parmar, Darshan; Zaveri, Tanish; Baruah, Ujjwal

    2017-04-01

    Multi-converter based High Voltage Power Supplies (HVPSs) find application in multi-megawatt accelerators, RF systems. Control system for HVPS must be a combination of superior parallel processing, real time performance, fast computation and versatile connectivity. The hardware platform is expected to be robust, easily scalable for future developments with minimal overheads. This paper describes development of control system on Zynq All Programmable SoC (System on Chip) for HVPS. Typical HVPS control mechanism involves communication, generation of precise control signals/pulses for few hundred numbers of chopper and closed loop control in microsecond range for regulated output. Such kind of requirements can be met with Zynq All Programmable SoC, which is a combination of Dual core ARM Cortex A-9 Processing System (PS) and Xilinx 7 series FPGA based Programmable Logic (PL). Deterministic functions of power supply control system such as generation of control signals with precise inter-channel delay of nanosecond range and communication with individual chopper at 100kbps can be implemented on PL. PS should implement corrective tasks based on field feedback received from individual chopper, user interface and OS management that allows to take full advantage of system capabilities. PS and PL are connected with on-chip AXI-4 interface with low latency and higher bandwidth through 9 AXI ports. Typically PS boots first, this ensures secure booting and prevents external environment from tampering PL.

  13. Design of constant current charging power supply for J-TEXT ohmic field capacitor banks

    International Nuclear Information System (INIS)

    Lv Shudong; Zhang Ming; Rao Bo; Yu Kexun; Yang Cheng

    2014-01-01

    The charging characteristic of the capacitor charging power supply was analyzed with practical series resonant topology. The method that setting two current taps and regulating PWM switching frequency was putted forward with close loop controlling algorithm to charge the multi-group capacitor banks with constant current. A capacitor charging power supply with the max output current 6.5 A and the max output voltage 2000 V is designed. Experimental results show that, this power supply can charge the four capacitor banks to any four different voltages in 1 minute with charging accuracy less than 1%, and meet the requirements of J-TEXT ohmic field power system. (authors)

  14. A re-evaluation of nuclear plant offsite power supplies

    International Nuclear Information System (INIS)

    William E Berger; Robert E Henry

    2005-01-01

    Full text of publication follows: De-regulation of the electric power industry has resulted in separate ownership of the transmission and power generation facilities as well as a revised format for operating the transmission facilities. Currently we see the transfer of large blocks of bulk power between markets which can impact the voltage regulation at the offsite power supply. Where Nuclear Plant operations once knew with a large degree of certainty the operating range of the system supplying the offsite power supply, this may no longer be the case and more challenges to the safety systems could result. These challenges may manifest themselves as either a loss of offsite power or voltage levels approaching the degraded level setpoints. In this paper we will first explore what challenges are caused by deregulation and how they impact offsite power supply operations. Next we will incorporate the knowledge grained regarding accidents and consequences from the Individual Plant Evaluations (IPE's) to see how the offsite power supply could be operated to mitigate the challenges and extend the capacity of the auxiliary power system. Various scenarios will be examined using the Modular Accident Analysis Program (MAAP) as an integral plant model. MAAP simulations that include both the plant thermal hydraulic responses and corresponding electric power demand are presented to demonstrate the impact of alternate approaches to offsite power system operation. The original design phase of the offsite and onsite power distribution system was based on a criterion relating to the starting of all safety loads if a safety injection signal was present independent of the accident or its progression. The IPE and risk informed insights that are readily available today will be applied in the re-analyses of the offsite distribution system response. (authors)

  15. 1000-kVA arc power supply

    International Nuclear Information System (INIS)

    Wright, R.E.; Barber, G.C.; Ponte, N.S.

    1979-01-01

    Because of ever-increasing power demands for the development of the Oak Ridge duoPIGatron ion source, a continuous-duty arc power supply was constructed for the Medium Energy Test Facility (METF) to furnish power for the plasma generator of experimental ion sources. The power supply utilizes 12-pulse rectification with half-wave switching in a delta and wye full-wave bridge that may be connected in series or parallel. It will deliver 340 V dc, 2500 A to an ion source when series connected and 170 V dc, 5000 A when paralleled connected. Silicon-controlled rectifiers (SCR) in each rectifier bridge can be switched for pulses as short as 10 ms through continuous duty. The filter section that reduces the ripple in the output consists of an inductor-to-capacitor (L-C) filter to smooth the 720-Hz pulses. The power transformer serves as an isolation transformer allowing the secondary to be elevated to the accelerating potential of the ion source. The dc output level is controlled with a 1000-kVA auto transformer connected to the primary of the power transformer. All elevated voltages and currents are monitored at ground potential with an optical telemetry system. This paper describes the power supply in detail, including block diagrams, component specifications, and waveforms when supplying power to an ion source

  16. An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Vijith Vijayakumaran Nair

    2015-06-01

    Full Text Available In near-field wireless-powered biomedical implants, the receiver voltage largely overrides the compliance of low-voltage power receiver systems. To limit the induced voltage, generally, low-voltage topologies utilize limiter circuits, voltage clippers or shunt regulators, which are power-inefficient methods. In order to overcome the voltage limitation and improve power efficiency, we propose an integrated chip high-voltage power receiver based on the step down approach. The topology accommodates voltages as high as 30 V and comprises a high-voltage semi-active rectifier, a voltage reference generator and a series regulator. Further, a battery management circuit that enables safe and reliable implant battery charging based on analog control is proposed and realized. The power receiver is fabricated in 0.35-μm high-voltage Bipolar-CMOS-DMOStechnology based on the LOCOS0.35-μm CMOS process. Measurement results indicate 83.5% power conversion efficiency for a rectifier at 2.1 mA load current. The low drop-out regulator based on the current buffer compensation and buffer impedance attenuation scheme operates with low quiescent current, reduces the power consumption and provides good stability. The topology also provides good power supply rejection, which is adequate for the design application. Measurement results indicate regulator output of 4 ± 0.03 V for input from 5 to 30 V and 10 ± 0.05 V output for input from 11 to 30 V with load current 0.01–100 mA. The charger circuit manages the charging of the Li-ion battery through all if the typical stages of the Li-ion battery charging profile.

  17. Superconducting toroidal field coil power supply and protection system for NET

    International Nuclear Information System (INIS)

    Hicks, J.B.

    1986-01-01

    A power supply and quench protection system is proposed in which alternate coils are connected in series to produce two separate circuits, each with 8 coils. Both circuits are provided with power supplies comprising rectifier transformers and thyristor equipped Graetz bridges, which are operated at maximum forward voltage (125 V) to charge the coils to 24 kA, 17.75 GJ in ≅ 2 hours and are fully inverted for scheduled discharges. Pulsed firing of the thyristors allows the same power supplies to be used to maintain the currents against resistive losses, without increasing the reactive power consumption or harmonic current generation. Rapid discharges are initiated by opening d.c. circuit breakers to introduce discharge resistors between the coils of each circuit. The maximum possible value of peak voltage-to-ground is then limited to 2.25 times the discharge voltage applied to each coil. A 5 kV discharge voltage allows the coils to be discharged with a time constant of 18.5 s, which is sufficiently rapid to limit the quench ''hot spot'' temperature to 68 K. The coil connections impose sufficient symmetry on the coil current distribution to ensure that no out-of-plane forces are produced on the coils. Even if one circuit breaker fails to interrupt, the variation of coil currents is sufficiently small that the resulting symmetric variation of radial centring forces is acceptable

  18. Energy efficiency criteria in uninterruptible power supply selection

    International Nuclear Information System (INIS)

    Moreno-Munoz, A.; Rosa, Juan Jose Gonzalez de la; Flores-Arias, J.M.; Bellido-Outerino, F.J.; Gil-de-Castro, A.

    2011-01-01

    With the generalized use of microelectronic devices, server computers and other susceptible equipment, the subject related to power quality (PQ) and its relationship to vulnerability of high performance plants are becoming an increasing concern to the industry. This paper addresses how uninterruptible power supply (UPS), particularly when configured in distributed DC mode, can become an energy efficient (EE) solution in high-tech buildings, especially when integrated with complimentary PQ measures. The paper is based on PQ audits conducted at different high-tech industries over the last years. It was found that the main problems for the equipment installed were voltage sags (or dips). Among all categories of electrical disturbances, voltage sags and momentary interruptions are the nemeses of the automated industrial process. The paper analyzes the capabilities of modern electronic power supplies and the convenience of embedded solution. Finally it is addresses the role of the Standards on the protection of electronic equipment and the implications for the final costumer.

  19. High performance magnet power supply optimization

    International Nuclear Information System (INIS)

    Jackson, L.T.

    1988-01-01

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems

  20. Optimization of Passive Voltage Multipliers for Fast Start-up and Multi-voltage Power Supplies in Electromagnetic Energy Harvesting Systems

    Science.gov (United States)

    Yang, G.; Stark, B. H.; Burrow, S. G.; Hollis, S. J.

    2014-11-01

    This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up.

  1. Optimization of Passive Voltage Multipliers for Fast Start-up and Multi-voltage Power Supplies in Electromagnetic Energy Harvesting Systems

    International Nuclear Information System (INIS)

    Yang, G; Stark, B H; Burrow, S G; Hollis, S J

    2014-01-01

    This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up

  2. Development of an amorphous surge blocker for a high voltage acceleration power supply of the neutral beam injectors

    International Nuclear Information System (INIS)

    Mizuno, Makoto; Ohara, Yoshihiro; Watanabe, Kazuhiro; Ozaki, Akira.

    1993-10-01

    An amorphous surge blocker for a high voltage acceleration power supply for the neutral beam injectors has been developed. Since the saturation magnetic flux density of the amorphous core is higher than that of the ferrite core, the surge blocker made of amorphous cores can be reduced in size appreciably compared to the conventional ferrite surge blocker. A 350 kV, 0.05 volt-second amorphous surge blocker was designed, fabricated and tested. The amorphous core was made by winding an amorphous tape with a film for the layer insulation and was heat-treated to recover the magnetic characteristics. The core is molded by epoxy resin and installed in a FRP insulator tube filled with SF 6 gas for the insulation. The volt-second measured was higher than the designed value and the electrical breakdown along the cores and between layers was not observed. This test result shows that the amorphous surge blocker is applicable for a dc acceleration power supply for high energy neutral beam injectors. (author)

  3. Design and Implement of Low Ripple and Quasi-digital Power Supply

    Science.gov (United States)

    Xiangli, Li; Yanjun, Wei; Hanhong, Qi; Yan, Ma

    A switch linearity hybrid power supply based on single chip microcomputer is designed which merged the merits of the switching and linear power supply. Main circuit includes pre-regulator which works in switching mode and series regulator which works in linear mode. Two-stage regulation mode was adopted in the main circuit of the power. A single chip computer (SCM) and high resolution of series D/A and A/D converters are applied to control and measurement which achieved continuous adjustable and low ripple constant current or voltage power supply

  4. Minimization of the transformer inter-winding parasitic capacitance for modular stacking power supply applications

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Ouyang, Ziwei; Knott, Arnold

    2014-01-01

    In an isolated power supply, the inter-winding parasitic capacitance plays a vital role in the mitigation of common mode noise currents created by fast voltage transient responses. The lower the transformer inter-winding capacitance, the more immune the power supply is to fast voltage transient...... responses. This requirement is even more critical for modular stacking applications in which multiple power supplies are stacked. This paper addresses the issue by presenting a detailed analysis and design of an unconventional isolated power supply that uses a ring core transformer with a very low inter......-winding parasitic capacitance of 10 pF. Considering its output power of 300 W, this approach yields about 0.033 pF/W inter-winding capacitance over output power, approximately thirty times lower than existing approaches in the literature. This makes the converter a suitable solution for modular stacking of fast...

  5. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  6. Performance of the TJ-II ECRH system with the new -80 kV 50 A high voltage power supply

    International Nuclear Information System (INIS)

    Fernandez, A.; de la Fuente, J.M.; Ganuza, D.; Kirpitchev, I.; Alonso, J.; Garcia, F.; Ascasibar, E.; del Rio, J.M.; Garcia, I.; Ros, A.; Alvarez, P.; Tolkachev, A.; Catalan, G.

    2009-01-01

    The ECRH system of the TJ-II stellarator consists of two triode - 53.2 GHz - gyrotrons, which can deliver a maximum power of 300 kW each, during 1 s. Both gyrotrons are fed by a common high voltage power supply (HVPS). During the last experimental campaigns the performance of the gyrotrons were limited by the HVPS, whose maximum output current was limited to 30 A and the ripple level of the output voltage was around 7%. In order to guarantee the reliability of the ECRH system and to improve its performance, a new HVPS has been developed and manufactured by the company JEMA and was commissioned at CIEMAT during 2007. The design is based on solid-state technology and high frequency commutation techniques. The new unit reaches -80 kV and 50 A during a maximum pulse length of 1 s. The complete design, testing and commissioning of the HVPS are presented, as well as the routine operation of the ECRH system during the TJ-II experimental campaign.

  7. Performance of the TJ-II ECRH system with the new -80 kV 50 A high voltage power supply

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: angela.curto@ciemat.es; de la Fuente, J.M.; Ganuza, D. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Kirpitchev, I.; Alonso, J. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain); Garcia, F. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Ascasibar, E. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain); del Rio, J.M.; Garcia, I. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Ros, A.; Alvarez, P.; Tolkachev, A.; Catalan, G. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain)

    2009-06-15

    The ECRH system of the TJ-II stellarator consists of two triode - 53.2 GHz - gyrotrons, which can deliver a maximum power of 300 kW each, during 1 s. Both gyrotrons are fed by a common high voltage power supply (HVPS). During the last experimental campaigns the performance of the gyrotrons were limited by the HVPS, whose maximum output current was limited to 30 A and the ripple level of the output voltage was around 7%. In order to guarantee the reliability of the ECRH system and to improve its performance, a new HVPS has been developed and manufactured by the company JEMA and was commissioned at CIEMAT during 2007. The design is based on solid-state technology and high frequency commutation techniques. The new unit reaches -80 kV and 50 A during a maximum pulse length of 1 s. The complete design, testing and commissioning of the HVPS are presented, as well as the routine operation of the ECRH system during the TJ-II experimental campaign.

  8. Ultracapacitor-Based Uninterrupted Power Supply System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less

  9. A multi-channel AC power supply controller

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Ma Xiaoli; Zhou Bo; Yin Weiwei

    2003-01-01

    A multi-channel ac power supply controller developed recently by authors is introduced briefly in this paper. This controller is a computer controlled multi-electronic-switch device. This controller was developed for the automatic control and monitoring system of a 220 V ac power supply system, it is a key front-end device of the automatic control and monitoring system. There is an electronic switch in each channel, the rated load power is ≤1 kW/each channel. Another function is to sample the 220 V ac output voltage so that computer can monitor the operation state of each electronic switch. Through these switches, the 220 V ac power supply is applied to some device or apparatus that need to be powered by 220 V ac power supply. In the design, a solid-state relay was employed as an electronic switch. This controller can be connected in cascade mode. There are 8 boxes at most can be connected in cascade mode. The length of control word is 8 bit, which contains addressing information and electronic switch state setting information. The sampling output of the controller is multiplexed. It is only one bit that indicates the operating state of an electronic switch. This controller has been used in an automatic control and monitoring system for 220 V ac power supply system

  10. Fault protection system in a 'regulated high voltage power supply (80 KV, 130A)' for neutral beam injector

    International Nuclear Information System (INIS)

    Patel, Paresh; Sumod, C.B.; Thakkar, Dipal

    2011-01-01

    Regulated High Voltage Power Supply (RHVPS) system has been developed at Institute for Plasma Research (IPR) for use with the Neutral Beam and RF applications. The highest ratings manufactured so far is 80 kV, 130 A. The system is developed in house and also being delivered at different research institutes for various applications. Since it is a multi megawatt output power system, and the loads have very low fault energy tolerant, fault protection system is mandatory. Protections are mandatory at each stage of conversion. Output fault protection is done in a variety of ways. Fast turn off at output is achieved and test results are discussed. Multi secondary transformers (5.6 MVA rating, with 40 outputs) are used in realising the power supply. These special transformers need protection even for over current at one secondary when the output fault current is not reflected to primaries to break the main circuit breaker. It becomes difficult to bifurcate fault in such situations. Special technique is applied to sense it. Electronic means are used for fast detection and tripping the system. This paper describes the basic RHVPS topology and test results along with presentation on the input and output fault protection systems. (author)

  11. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  12. 130 kV 130 A high voltage switching mode power supply for neutral beam injectors-Control issues and algorithms

    International Nuclear Information System (INIS)

    Ganuza, D.; Garcia, F.; Zulaika, M.; Perez, A.; Jones, T.T.C.

    2005-01-01

    The company JEMA has delivered to the Joint European Torus (JET facility in Culham) two high voltage switching mode power supplies (HVSMPS) each rated 130 kVdc and 130 A. One HVSMPS feeds the grids of two PINI loads. This paper describes the main control issues and the algorithms developed for the project. The most demanding requirements from the control point of view is an absolute accuracy of ±1300 V and the possibility of performing up to 255 re-applications of the high voltage during a 20 s pulse. Keeping the output voltage ripple to the specified tolerance has been a major achievement of the control system. Since the output stage is formed of several modules (120) connected in series, their stray capacitance to ground significantly influences the individual contribution of each single module to the global output voltage. Two complementary techniques have been used to balance the effects of the stray capacities. The fast re-applications requirement has a significant impact on the intermediate dc link. This section is composed of a capacity of 0.83 F, which feeds the 120 invertor modules. The dc link is fed by a 12 pulse SCR rectifier, whose matching transformers are connected to the 36 kV grid. Every re-application and every voltage shutdown supposes a quasi-instantaneous power step of 17 MW. Fast open loop algorithms have been implemented in order to keep the dc link voltage within acceptable margins. Moreover, the HVSMPS output characteristics have to be maintained during the rapid and important voltage fluctuations of the 36 kV mains (28-37 kV). The general control system is based on a Simatic S7 PLC, and a SCADA user interface. Up to 1000 signals are acquired. The control system has shown to be also a useful tool to allow for a rapid and accurate identification of faults and their origin

  13. Transient Processes in Electric Power Supply System for Oil Terminal with Own Gas-Turbine Power Station

    Directory of Open Access Journals (Sweden)

    A. M. Hаshimov

    2009-01-01

    Full Text Available The paper contains results of the investigations concerning influence of symmetrical and non-symmetrical short circuits at main power network on electric power supply system of a huge oil terminal which is powered by own gas-turbine power station. Calculations have been made in accordance with the IEC and IEEЕ requirements. Estimations for voltage level and distribution of short circuit current in the electric power supply system of the Sangachal oil terminal being operated in parallel with the AzerEnerji grid are presented in the paper

  14. Circuit design and simulation of a HV-supply controlling the power of 140 GHz 1 MW gyrotrons for ECRH on W7-X

    International Nuclear Information System (INIS)

    Brand, P.; Mueller, G.A.

    2003-01-01

    For plasma heating by ECR in the Stellarator W7-X under construction, 140 GHz gyrotrons with 1 MW cw output power are under development. These tubes have a voltage depressed collector for electron energy recovery. Each gyrotron is fed by two high-voltage sources: a high-power supply for driving the electron beam and a precision low-power supply for beam acceleration. In addition, a protection system with a thyratron crowbar for fast power removal in case of gyrotron arcing is installed. The low-power high-voltage source for beam acceleration is realized by a high-voltage servo-amplifier driving the depression voltage such that the influence of the voltage noise of the main high-power supply on the acceleration voltage is suppressed by feed-back control of the amplifier. Design and simulation of the servo-amplifier by PSpice is presented

  15. Crosstalk measurement on the D-III neutral beam power supplies

    International Nuclear Information System (INIS)

    Nerm, A.; Bowles, E.; Callis, R.W.; Colleraine, A.; Cowels, G.; Finizio, R.; Moore, D.; Tooker, J.F.; Varga, H.

    1983-01-01

    The Doublet III neutral beam plasma heating system comprises three beamlines with a total of six ion sources. Each of these ion sources is energized from a Neutral Beam Power System (NBPS) which is capable of delivering pulses at 80 kV and 100 A with pulse lengths up to 1 second in duration. A 138 kV San Diego Gas and Electric Company line is used as the prime power source for the NBPS. The 138 kV line is stepped down through an 84 MVA (pulse rating) 138 kV-12.47 kV transformer and an 8 MVA (pulse rating) 138 kV--480 V transformer. The 12.47 kV transformer feeds six NBPS high voltage circuits. The 480 V transformer supplies power to the filament, arc, and auxiliary power systems and control consoles in each NBPS. Each of the NBPS may block (controlled interruption of NBPS to protect the ion source) several times during a shot. Voltage variations due to such blocking by one or more systems have been measured on the 12.47 kV distribution bus as part of an effort to reduce system interaction. Interaction due to blocking during shots was found to be caused by noise picked up in low level circuits during ion source faults. High voltage DC fluctuations due to blocking do not cause interaction unless the voltage sags below the minimum required anode voltage for the pulse tetrodes in the Modular/Regulator, but interaction due to crowbar of the high voltage DC supply by a NBPS may result in a domino effect unless the remaining online systems are caused to block until the crowbarred system is cleared from the line (This feature is not presently implemented.). Voltage sag on the 480 V bus results from simultaneous operation of the ion sources. This sag, when it occurs, may lower the arc power input to the ion sources and cause reduced output power

  16. Proposal of modification of the Atucha I nuclear power plant's emergency power supply system

    International Nuclear Information System (INIS)

    Palacio, Pedro; Dabove, Mario

    1989-01-01

    The emergency power supply system of Atucha I N.P.P. consists of three 50% diesel generators. During the transient from normal power supply to emergency power supply (approximately 15 seconds) an hydraulic generator takes care of the emergency system. By this way, the emergency busbars constitute themselves an interruption free system. The two emergency busbars work normally coupled. This proposal consists of the following modifications: 1) Add a new diesel generator in order to allow the operation with two diesel generators per busbar. 2) To work with the two emergency busbars not coupled as normal operation mode. 3) To eliminate the hydraulic generator from the emergency power supply system, in order to simplify the operation and to reduce the failure possibility. Without the hydraulic turbine generator, the emergency busbars loose the interruption free condition. For this reason, for the loads that are not able for this mode of operation and are connected to the emergency power supply system, two additional low-voltage interruption free busbars are necessary. Finally, this proposal is compared with the Atucha II N.P.P. emergency power supply system. (Author)

  17. Improvements in electric power supply in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Minovskii, Yu.P.; Nabokov, Eh.P.; Savel' ev, G.P.

    1985-01-01

    Reviews measures taken by major coal producing countries to increase output levels. Discusses research carried out into advance design of equipment in FRG, UK, USA and France and proposes establishment of central automatic control of electric power supply system in Soviet mines, improvement in underground power supply equipment, increase in reliability, stabilization of standby capacity in low voltage circuits, maintenance-free electrical equipment, and efficient spare part storage in underground workings. States that introduction of the proposed system (details are given) will ensure that Soviet mines will eventually reach the development level of foreign mines. 2 refs.

  18. An Enhanced Control Scheme for Uninterruptible Power Supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Wei, Baoze

    2017-01-01

    To address the active power feeding issue in the parallel Uninterruptible Power Supply (UPS) system, a DC-link Voltage Protection (DCVP) control strategy is proposed in this paper. The proposed control method only relies on local load information, which increases the system reliability...... and robustness. Moreover, virtual resistance based regulation strategies are proposed for solving the active power sharing imbalance caused by the active power feeding and harmonic power sharing imbalanced caused by the line resistance mismatching. In addition, an anti-windup based consensus distributed...

  19. The supply voltage apparatus of the CUORE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A. [INFN, Sezione di Milano Bicocca - Istituto Nazionale di Fisica Nucleare, Piazza della Scienza 3 Milano (Italy); Università di Milano Bicocca - Dipartimento di Fisica, Piazza della Scienza 3 Milano (Italy); Pessina, G., E-mail: Pessina@mib.infn.it [INFN, Sezione di Milano Bicocca - Istituto Nazionale di Fisica Nucleare, Piazza della Scienza 3 Milano (Italy); Università di Milano Bicocca - Dipartimento di Fisica, Piazza della Scienza 3 Milano (Italy)

    2016-07-11

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  20. The supply voltage apparatus of the CUORE experiment

    Science.gov (United States)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2016-07-01

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  1. The supply voltage apparatus of the CUORE experiment

    International Nuclear Information System (INIS)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2016-01-01

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  2. The calculation and simulation of the ECRH HV power supply for the HL-2A tokamak

    International Nuclear Information System (INIS)

    Mao Xiaohui; Li Qing; Xuan Weimin; Yao Lieying

    2006-01-01

    In order to satisfy the requirement of ECRH, the ECRH HV power supply (ECHV-HVPS) on the base of high voltage pulse modulation has been designed. The filter inductance in the ECHV-HVPS is much smaller than the voltage regulation power supply. Modulations are adopted in the power supply, so the short time of the leading edge and lagging edge of the pulse is achieved. The main circuit of the ECHV-HVPS is showed. The equivalent resistance and the transient response of the PS are calculated and analyzed using MATLAB, and experiment results are given. (authors)

  3. Modular Power Supply for Micro Resistance Welding

    Directory of Open Access Journals (Sweden)

    Bondarenko Oleksandr

    2017-07-01

    Full Text Available The study is devoted to the important issue of enhancing the circuitry and characteristics of power supplies for micro resistance welding machines. The aim of the research is to provide high quality input current and to increase the energy efficiency of the output pulse generator by means of improving the circuit topologies of the power supply main blocks. In study, the principle of constructing the power supply for micro resistance welding, which provides high values of output welding current and high accuracy of welding pulse formation, makes it possible to reduce energy losses, and provides high quality of consumed input current, is represented. The multiphase topology of the charger with power factor correction based on SEPIC converters is suggested as the most efficient for charging the supercapacitor storage module. The multicell topology of the supercapacitor energy storage with voltage equalizing is presented. The parameters of the converter cells are evaluated. The calculations of energy efficiency of the power supply’s input and output converters based on suggested topologies are carried out and verified in MATLAB Simulink. The power factor value greater than 99 % is derived.

  4. Energy-efficient control of a multi-section supercapacitor power supply of an electric drive

    Directory of Open Access Journals (Sweden)

    Mozzhechkov Vladimir

    2018-01-01

    Full Text Available A method for synthesizing the control laws of a multi-section supercapacitor power supply of an electric drive is developed. The synthesized control law for an electric drive realizes the prescribed motion and minimizes the required capacitance of the power source. It is achieved through optimal disconnection and connection to the power line of the drive at designated times of one of the power supply sections. Reduction of the required capacitance of the power supply is achieved through a fuller discharge of some of its sections in motion conditions requiring a low level of electrical voltage and saving high voltage in other sections for the respective motion conditions. A mathematical formulation of the problem and a method of its solution is proposed. An example of the implementation of the proposed method is considered.

  5. Resonant converter topologies for constant-current power supplies and their applications

    International Nuclear Information System (INIS)

    Borage, Mangesh

    2013-01-01

    Power electronics, in general, and power supplies, in particular, is an important field of accelerator technology due to its widespread use, for instance in dc, ramp or pulse magnet power supplies, high voltage power supplies for electrostatic accelerators and RF amplifies, power supplies for vacuum pumps, vacuum gauges, beam diagnostic devices etc. It has been possible to meet stringent performance requirements with the continuing advancement in the field of power electronics. Resonant converters have been an active area of research in power electronics field due to variety of topologies, diverse, peculiar and useful characteristics. While the majority of the previous work on resonant converters has been directed towards developing methods of analysis and control techniques for the mentioned applications, very little has been done to explore their suitability for application as a constant-current power supply, which is either inherently required or can be advantageously applied in power supplies for various accelerator subsystems and other industrial applications such as electric arc welding, laser diode drivers, magnet illumination systems, battery charging, electrochemical processes etc.

  6. Advanced power supply and distribution systems for Columbus

    Science.gov (United States)

    Eggers, Gert

    1988-01-01

    The paper describes power supply and distribution systems to be used on unmanned/man-tended Columbus elements, capable of supplying 10 kW to 30 kW to a variety of users in low earth orbits (LEO's). For the definition of the Electrical Power System (EPS) challenging requirements as the provision of high power levels under hard LEO conditions, maintainability, commonality etc. are to be taken into account. These requirements are to be seen in conjunction with the Columbus IOC (initial operational capability) scenario stipulating that EPS hardware shall be used on the Polar Platform, the Pressurized Module attached to the U.S. Space Station and the Man-Tended Free Flier. According to the availability of European technologies, the baseline in the power generation area is a photovoltaic system which provides three regulated main buses (150 V d.c.) to the users. In order to maintain power supply during eclipse phases, nickel hydrogen batteries will be used for energy storage purposes with nickel cadmium as back-up solution. The power distribution system needs special attention. Due to the elevated voltage levels mechanical switch gear cannot be used any longer. It is to be replaced by solid state power controllers (SSPC). Because these devices show a totally different behaviour with regard to conventional relay contacts, new approaches in the area of switching and protection are necessary. In view of the crucial role of this new technology for the realization of medium voltage d.c. systems, it is of great importance for Columbus and, hence will receive adequate consideration in the paper. In order to cater for effective management and control of the power supply and distribution hardware, a so called power system internal data processing assembly (PINDAP) has been introduced in the EPS. PINDAP is the key to reduced dependence on ground stations (alleviated ground support requirements); it keeps crew involvement in the EPS control process to as minimum and provides

  7. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  8. Integration of -70kV, 22A high voltage power supply with solid state crowbar and the LHCD system of SST-1

    International Nuclear Information System (INIS)

    Rajan Babu, N.; Virani, C.G.; Dalakoti, S.; Sharma, P.K.; Ambulkar, K.K.; Parmar, P.R.; Thakur, A.L.; Dhorajiya, Pragnesh

    2015-01-01

    LHCD system is a important system for the steady state operation of the SST-1 machine. Four numbers of klystrons of 3.7 GHz are used as a microwave source to produce 2 MW of microwave power. This power is launched into the machine to achieve the steady state operation of the SST-1 Machine. A -70kV, 22A high voltage power supply and a solid-state crowbar are procured and tested and validated for its performance separately. Both of the system are integrated and tested for its integrated performance for the safe and reliable test of the klystron tube. A 10J wire test is conducted for the optimum value of the series resistor. This test will validate the integrated performance of power supply, Crowbar and the interlocking circuit. This paper details the optimization of the ballast resistor from 150 ohms to 40 ohms and its successful integration with the klystron tube for its 500kW CW operation. Some operational experience is also shared

  9. Operational experience with -20 kV, 5 A DC power supply in Indus-2 RF system

    International Nuclear Information System (INIS)

    Tyagi, R.K.; Tripathi, A.; Upadhyay, R.; Badapanda, M.K.; Lad, M.

    2015-01-01

    An AC regulator based -20 kV, 5 A DC power supply is employed to bias 60 kW, 505.8 MHz klystron amplifier in Indus-2 RF system. A three terminal triggered spark gap based crowbar along with suitable limiting elements is incorporated at the output of the power supply for protection of sensitive klystron amplifier during load arcing conditions. Wire burn test is carried out on this power supply along with crowbar to ensure that the stored energy dumped into klystron during its arcing is less than 20 Joule. Various protection circuits like over voltage, over current, under voltage, phase failure, thermal overload and transformer oil over temperature protection have been incorporated in this power supply. Preventive maintenance of the power supply is carried out at regular intervals to ensure that it operates satisfactorily during actual operation.This includes checking the breakdown strength of transformer oil, drying of Silica gels in transformer breathers, checking of all electrical connections and cleaning of all high voltage components. The calibration of various meters, checking the setting of various protection-interlock cards and checking the healthiness of crowbar system are also done at regular intervals. During operation, crucial performance parameters of this power supply along with various interlock signals are continuously monitored. Suitable arrangement has been made to operate this supply either in local mode as well as in remote mode. This power supply is operating satisfactorily with klystron amplifier in Indus-2 RF system in round the clock mode for last 15 years and its operational experience are presented in this paper. (author)

  10. Switched power workshop power supply working group

    International Nuclear Information System (INIS)

    Haseroth, H.; Hopkins, D.; Ikezi, H.; Kirbie, H.; Lincke, E.; Wilson, M.

    1988-01-01

    The power supply working group was assigned the problem of pulse charging the 3-MeV gun. The gun is a radial line structure that has two charging configurations: a single ring charged to 500 kV or nine rings charged from 100 to 200 kV. In either configuration, the pulsed source must rapidly charge the structure's ring(s) before breakdown can begin. The issues encountered in charging the structure can be divided into two categories. First, the charging system must be well matched to the gun structure. Proper impedance matching will avoid reflections and limit the fault current if the ring should spark. Second, several systems can achieve the wide range of charge voltages necessary. Some are better suited to high voltages, while others are better at low voltages. The following paragraphs will address the impedance matching issues are review three choices for pulse generators. A system for each type of source is described along with a very rough cost estimate. 1 ref., 4 figs., 2 tabs

  11. Switched power workshop: Power supply working group

    International Nuclear Information System (INIS)

    Haseroth, H.; Hopkins, D.; Ikezi, H.; Kirbie, H.C.; Lincke, E.; Wilson, M.

    1989-01-01

    The power supply working group was assigned the problem of pulse charging the 3-MeV gun. The gun is a radial line structure that has two charging configurations: a single ring charged to 500 kV or nine rings charged from 100 to 200 kV. In either configuration, the pulsed source must rapidly charge the structure's ring(s) before breakdown can begin. The issues encountered in charging the structure can be divided into two categories. First, the charging system must be well matched to the gun structure. Proper impedance matching will avoid reflections and limit the fault current if the ring should spark. Second, several systems can achieve the wide range of charge voltages necessary. Some are better suited to high voltages, while others are better at low voltages. The following paragraphs will address the impedance matching issues and review three choices for pulse generators. A system for each type of source is described along with a very rough cost estimate. 1 ref., 4 figs., 2 tabs

  12. DESIGN OF DYNAMIC VOLTAGE RESTORER TO ENHANCE POWER QUALITY RELYING ON RENEWABLE SOURCE

    Directory of Open Access Journals (Sweden)

    Haider M. Umran

    2018-05-01

    Full Text Available Power quality improvement of low voltage grid is a great challenge that confronts the sophisticated power applications, because their performance is highly sensitive to the quality of power supply. Dynamic Voltage Restorer (DVR used widely as an efficient and skillful device to adjust electrical disturbances of the distribution grids. This paper introduces an overview of the components of the 3-phase dynamic voltage restorer and design its own control circuit. The performance of DVR was developed on the basis of the appropriate selection of Photovoltaic (PV module instead of the present conventional designs. Through this design, the need of series converter (DVR for the current from an electrical grid will end and the problems of power losses will curb. The PV-module is selected to meet the requirements of the DVR during voltage sag/swell on voltage line. The proposed system is mimicked in MATLAB software/Simulink and the findings are presented to prove the success of the design in terms of: Full congruence of the load voltage waveform with source voltage waveform, attaining 0.77% of THD analysis for the load voltage and the waveforms of PV system.

  13. The AGS main magnet power supply upgrade

    International Nuclear Information System (INIS)

    Sandberg, J.N.; Casella, R.; Geller, J.; Marneris, I.; Soukas, A.; Schumburg, N.

    1995-01-01

    The AGS Main Magnet Power Supply consists of a group of thyristor controlled power converters that operate from full rectify to full invert. In order to minimize ripple during the critical periods of injection and extraction 24 pulse converters are used for these portions of the cycle. The maximum voltage available in this mode is nominally 2,000 volts. The converters that are functional during this portion of the cycle are called the flat-top bank or ''F'' bank modules. During acceleration and invert where voltages of up to 12,000 volts are needed and where the ripple requirements are less stringent, groups of twelve pulse converters are operational. These converters are called the Pulsed bank or ''P'' bank modules. The original controlled rectifier system consisted of 96 large mercury filled excitron tubes divided equally between the P bank and F bank converters. These devices were extremely durable and ran successfully for over twenty years. It was, decided to replace the excitron farm with multiple arrangements of three-phase, full-wave, bridge modules that utilize silicon controlled rectifiers (SCR's or thyristors) as the switching element. In order to match the existing transformer connections and buswork, eight identical modules were required; four for the P bank system and four for the F bank system. In order to reduce noise pickup and provide electrical isolation the high level SCR gate triggers are provided via fiberoptic cable. The status of various parameters such as water flow, auxiliary power supply performance, trigger circuitry failure, over voltage, overcurrent, and loss of phase reference are monitored via a programmable logic controller (PLCs). The PLCs use isolated input and output modules for various voltage levels from TTL to 150 Vdc to 125 Vac. These devices are extremely flexible and have allowed modifications and improvements that have enhanced the performance over any equivalent hard wired system

  14. Transient phenomena analysis of a DC-1 MV power supply for the ITER NBI

    International Nuclear Information System (INIS)

    Yamamoto, Masanori; Watanabe, Kazuhiro; Yamanaka, Haruhiko; Takemoto, Jumpei; Inoue, Takashi; Yamashita, Yasuo

    2010-08-01

    A power supply for the ITER Neutral Beam Injector (NBI) is a DC ultra-high voltage (UHV) power supply to accelerate negative ion beams of 40 A up to an energy of 1 MeV. Japan Atomic Energy Agency as the Japan Domestic Agency for ITER contributes procurement of dc -1 MV main components such as step-up -1 MV transformers rectifiers, a high voltage deck 2, a -1 MV insulating transformer, a transmission line, a surge reduction system and equipments for site test. Design of the surge suppression in the NBI power supply is one of the key issues to obtain the stable injector performance. This report describes the design study using EMTDC code on the surge suppression by optimizing the core snubber and additional elements in the -1 MV power supply. The results show that the input energy from the stray capacitance to the accelerator at the breakdown can be reduced to about 25 J that is smaller than design criteria for ITER. (author)

  15. Medium and high voltage power cables market in Europe

    International Nuclear Information System (INIS)

    Kupiec, M.

    1992-06-01

    This note gives an overview of the European market for medium and high voltage power cables. In this text, emphasis is placed on suppliers and important European clients; there is also a brief review of the different techniques for cable laying and utilization in Europe. This not has mainly been drafted from informations supplied by EUROPACABLE

  16. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    OpenAIRE

    Yoo, Cheol-Hee; Chung, Il-Yop; Yoo, Hyun-Jae; Hong, Sung-Soo

    2014-01-01

    Grid codes in many countries require low-voltage ride-through (LVRT) capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (P...

  17. Design of EAST LHCD high power supply feedback control system based on PLC

    International Nuclear Information System (INIS)

    Hu Huaichuan; Shan Jiafang

    2009-01-01

    Design of EAST LHCD -35kV/5.6MW high power supply feedback control system based on PLC is described. Industrial computer and PLC are used to control high power supply in the system. PID arithmetic is adopted to achieve the feedback control of voltage of high power supply. Operating system is base on real-time operating system of QNX. Good controlling properties and reliable protective properties of the feedback control system are proved by the experiment results. (authors)

  18. Comparison of Power Supply Pumping of Switch-Mode Audio Power Amplifiers with Resistive Loads and Loudspeakers as Loads

    DEFF Research Database (Denmark)

    Knott, Arnold; Petersen, Lars Press

    2013-01-01

    Power supply pumping is generated by switch-mode audio power amplifiers in half-bridge configuration, when they are driving energy back into their source. This leads in most designs to a rising rail voltage and can be destructive for either the decoupling capacitors, the rectifier diodes...... in the power supply or the power stage of the amplifier. Therefore precautions are taken by the amplifier and power supply designer to avoid those effects. Existing power supply pumping models are based on an ohmic load attached to the amplifier. This paper shows the analytical derivation of the resulting...... waveforms and extends the model to loudspeaker loads. Measurements verify, that the amount of supply pumping is reduced by a factor of 4 when comparing the nominal resistive load to a loudspeaker. A simplified and more accurate model is proposed and the influence of supply pumping on the audio performance...

  19. Integrated cascade of photovoltaic cells as a power supply for integrated circuits

    NARCIS (Netherlands)

    Mouthaan, A.J.

    1984-01-01

    ICs can be powered directly when a supply voltage source capable of generating a multiple of the open circuit voltage of one pn-junction is available on a chip. Two schemes have been investigated for cascading photovoltaic cells on the chip. The structures can be made compatible with standard

  20. Design and simulation for the pulse high-voltage DC power supply (HVPS) of 1.2 MW/2.45 GHz HT-7U lower hybrid current drive system

    International Nuclear Information System (INIS)

    Huang Yiyun; Kuang Guangli; Xu Weihua; Liu Baohua; Lin Jianan; Wu Junshuan; Zheng Guanghua; Yang Chunshen

    2000-01-01

    The superconducting tokamak HT-7U has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW/2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation now, and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the Institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred

  1. Power supply of ETL-TPE 2

    International Nuclear Information System (INIS)

    Takeda, Syohei; Sato, Yasuhiro; Kiyama, Satoru; Ikeda, Nagayasu

    1986-01-01

    The ETL-TPE2 experiment is planned to investigate a behavior of high beta plasma with high temperature. A system design of power supply to generate and to confine the plasma is described. Essential features of the design are the following; 1) To obtain a dense plasma with high temperature, two capacitor banks with opposite polarities of 80 kV charging voltage are provided in tandem feed for the toroidal fast field. 2) A high current pulse with long duration is supplied by a power crowbar system and realizes the investigation of the plasma confinement for a longer pulsed magnetic field. A power supply system of the power crowbar is connected with a main circuit in series through a current transformer. The circuit system is operated at high efficiency and high reliability. 3) In the vertical and compensating field circuits, each rise time and peak value of currents can be controlled over a wide range of pre-set programmings corresponding to an experimental condition. 4) A small resistance is connected with a crowbar circuit in a compression pre-heat field circuit. The circuit can be crowbarred at an arbitrary phase. This operation and the effect of additional resistance are favourable to maintain an effective plasma heating and to improve the plasma confinement. (author)

  2. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG......) can regulate easily the reactive power generated in steady state. However, difficulties appear when reactive power has to be generated during voltage dips. Simulations have been carried out in order to check whether DFIG wind turbines can fulfill the reactive power requirements. Protection system...... commonly employed with DFIG in order to achieve ride-through capabilities including crowbar plays an important role to meet the requirements together with grid-side converter. Resistance associated with the crowbar and its connection duration are crucial at the beginning of the fault. Grid-side converter...

  3. Adaptive Supply Voltage Management for Low Power Logic Circuitry Operating at Subthreshold

    OpenAIRE

    Rehan Ahmed

    2015-01-01

    With the rise in demand of portable hand held devices and with the rise in application of wireless sensor networks and RFID reduction of total power consumption has become a necessity. To save power we operate the logic circuitry of our devices at sub-threshold. In sub-threshold the drain current is exponentially dependent on the threshold voltage hence the threshold variation causes profound variation of ION and IOFF the ratio of which affect the speed of a circuit drastically. S...

  4. Requirements Specication for Ampliers and Power Supplies in Active Loudspeakers

    DEFF Research Database (Denmark)

    Schneider, Henrik; Jensen, Lasse Crone; Petersen, Lars Press

    2014-01-01

    This work aims to provide designers with a method to develop a requirements specication for power supplies and ampliers in active loudspeakers. The motivation is to avoid over-sizing and unnecessary cost. A realistic estimation of the power supplied during playback of audio in a given loudspeaker...... is obtained by considering a wide range of audio source material, loudness normalization of the source material, crossover ltering, driver characteristics as well as a perceived maximum loudness/volume level. The results from analysing a sub-woofer and a woofer reveals the peak power, peak voltage, peak...... current and apparent power - thus providing a solid foundation for a requirement specication....

  5. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    Science.gov (United States)

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  6. Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags

    Directory of Open Access Journals (Sweden)

    Yangwu Shen

    2017-06-01

    Full Text Available The low voltage ride-through (LVRT capability of the doubly-fed induction generator (DFIG significantly impacts upon the integration of wind power into the power grid. This paper develops a novel comprehensive control strategy to enhance the LVRT and reactive power support capacities of the DFIG by installing the energy storage system (ESS. The ESS is connected to the DC-link capacitor of the DFIG and used to regulate the DC-link voltage during normal or fault operations. The unbalanced power between the captured wind power and the power injected to the grid during the transient process is absorbed or compensated by the ESS. The rotor-side converter (RSC is used to control the maximum power production and the grid-side converter (GSC is used to control the reactive power before participating in the voltage support. When the supply voltage continues to drop, the rotor speed is increased by controlling the RSC to realize the LVRT capability and help the GSC further enhance the reactive power support capability. The capacity of the GSC is dedicated to injecting the reactive power to the grid. An auxiliary transient pitch angle controller is proposed to protect the generator’s over speed. Both RSC and GSC act as reactive power sources to further enhance the voltage support capability with serious voltage sags. Simulations based on a single-machine infinite-bus power system verify the effectiveness of the developed comprehensive control strategy.

  7. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  8. Facts and feelings : Framing effects in responses to uncertainties about high-voltage power lines

    NARCIS (Netherlands)

    de Vries, G.; de Bruijn, J.A.

    2017-01-01

    To ensure power supply security, electricity transmission system operators (TSOs) have to upscale high-voltage overhead power lines. However, upscaling frequently meets opposition. Opposition can be caused by uncertainties about risks and benefits and might lead to costly delays (Linder, 1995;

  9. High performance AC–DC control power supply for low voltage ride ...

    Indian Academy of Sciences (India)

    Ride-Through (LVRT) in solar and wind applications, no work has been ... section 5. Figure 2. Schematic structure of a control power supply used in a HPC. ..... order plant transfer function to first order transfer function. Also, peak current ...

  10. Ultra-Fast Tracking Power Supply with 4th order Output Filter and Fixed-Frequency Hysteretic Control

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    A practical solution is presented for the design of a non-isolated DC/DC power converter with very low output ripple voltage and very fast output voltage step response. The converter is intended for use as an envelope tracking power supply for an RFPA (Radio Frequency Power Amplifier) in a Tetra2...

  11. Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation

    Science.gov (United States)

    Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng

    2017-08-01

    This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.

  12. Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation.

    Science.gov (United States)

    Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng

    2017-08-01

    This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (L s C p L p ) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.

  13. The degradation diagnosis of low voltage cables used at nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Toshio; Ashida, Tetsuya; Ikeda, Takeshi; Yasuhara, Takeshi; Takechi, Kei; Araki, Shogo

    2001-01-01

    Low voltage cables which have been used for the supply of electric power and the propagation of control signals in nuclear power plants must be sound for safe and stable operation. The long use of nuclear power plants has been reviewed, and the degradation diagnosis to estimate the soundness of low voltage cables has been emphasized. Mitsubishi Cable Industries has established a degradation diagnosis method of cables which convert the velocity of ultrasonic wave in the surface layer of the cable insulation or jacket into breaking elongation, and has developed a degradation diagnosis equipment of low voltage cables used at nuclear power plants in cooperation with Mitsubishi Heavy Industries. This equipment can be moved by an ultrasonic probe by sequential control and measure the ultrasonic velocity automatically. It is capable of a fast an sensitive diagnosis of the cables. We report the outline of this degradation diagnosis equipment and an example of the adaptability estimation at an actual nuclear power plant. (author)

  14. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  15. 40-kV, 25-ms neutral-beam power supply for TMX

    International Nuclear Information System (INIS)

    Leavitt, G.A.

    1977-01-01

    Modifications are described to upgrade the neutral-beam power supply for the TMX from 40 kV, 10 ms to 40 kV, 25 ms. The redesign of the accel and suppressor power supplies to achieve separation of the high-voltage and control sections, operation of the arc pulse lines in series, operation of the arc pulse lines in a noisy environment with SCR trigger and crowbar, and modifications to the electrolytic storage banks are discussed

  16. Design of power supply system for the prototype RF-driven negative ion source for neutral beam injection application

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Caichao; Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Wei, Jianglong, E-mail: jlwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xie, Yahong; Xu, Yongjian; Liang, Lizhen; Chen, Shiyong; Liu, Sheng; Liu, Zhimin; Xie, Yuanlai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    Highlights: • A supporting power supply system was designed in details for a RF-driven prototype negative ion source at ASIPP. • The RF power supply for plasma generation adopts an all-solid-state power supply structure. • The extraction grid power supply adopts the pulse step modulator (PSM) technology. - Abstract: In order to study the generation and extraction of negative ions for neutral beam injection application, a prototype RF-driven negative ion source and the corresponding test bed are under construction at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The target of the negative ion source is extracting a negation ion beam of 350 A/m{sup 2} for 3600 s plasma duration and 100 s beam duration. According to the required parameters of test bed, the design of power supply system is put forward for earlier study. In this paper, the performance requirements and design schemes of RF power supply for plasma generation, impedance matching network, bias voltage power supply, and extraction voltage power supply for negative beam extraction are introduced in details. The schemes provide a reference for the construction of power supply system and lay a foundation for the next phase of experimental operation.

  17. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Xu; Liu Ming; Li Peng; Chen Hongda

    2014-01-01

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm 2 . Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26–100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators. (semiconductor integrated circuits)

  18. Fault analysis and strategy of high pulsed power supply for high power laser

    International Nuclear Information System (INIS)

    Liu Kefu; Qin Shihong; Li Jin; Pan Yuan; Yao Zonggan; Zheng Wanguo; Guo Liangfu; Zhou Peizhang; Li Yizheng; Chen Dehuai

    2001-01-01

    according to the requirements of driving flash-lamp, a high pulsed power supply (PPS) based on capacitors as energy storage elements is designed. The author analyzes in detail the faults of high pulsed power supply for high power laser. Such as capacitor internal short-circuit, main bus breakdown to ground, flashlamp sudden short or break. The fault current and voltage waveforms were given by circuit simulations. Based on the analysis and computation, the protection strategy with the fast fuse and ZnO was put forward, which can reduce the damage of PPS to the lower extent and provide the personnel safe and collateral property from the all threats. The preliminary experiments demonstrated that the design of the PPS can satisfy the project requirements

  19. A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reese, Samantha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-24

    Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG power modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.

  20. High voltage pulse system for the streamer chamber supply of the GIBS spectrometer

    International Nuclear Information System (INIS)

    Aksinenko, V.D.; Glagoleva, N.S.; Dement'ev, E.A.; Kaminskij, N.I.; Matyushin, A.T.; Matyushin, V.T.; Rozhnyatovskaya, S.A.; Ryakhovskij, V.N.; Nurgozhin, N.N.; Khusainov, E.K.

    1987-01-01

    Results of development and testing of high voltage pulse system HVPS for the streamer chamber supply of the GIBS spectrometer are presented. HVPS consists of the following basic blocks: nanosecond pulse high voltage generator, high voltage charging supply, trigger generator, chamber parameter control devices, gas-oil vacuuming supply systems, auxiliary and fire-prevention devices. The system blocks are described. Experimental results of HVPC testing are presented. HVPC provides a reliable (10 5 operations) of streamer chamber supply with high voltage pulse parameters: amplitude - 500 kV, amplitude instability (0.5-1.5)%, pulse duration - 12 ns, delay time - 500 ns, delay instability (2.5-5)%, mean frequency of output a signals - 0.1 Hz

  1. A plasma aerodynamic actuator supplied by a multilevel generator operating with different voltage waveforms

    International Nuclear Information System (INIS)

    Borghi, Carlo A; Cristofolini, Andrea; Grandi, Gabriele; Neretti, Gabriele; Seri, Paolo

    2015-01-01

    In this work a high voltage—high frequency generator for the power supply of a dielectric barrier discharge (DBD) plasma actuator for the aerodynamic control obtained by the electro-hydro-dynamic (EHD) interaction is described and tested. The generator can produce different voltage waveforms. The operating frequency is independent of the load characteristics and does not require impedance matching. The peak-to-peak voltage is 30 kV at a frequency up to 20 kHz and time variation rates up to 60 kV μs −1 . The performance of the actuator when supplied by several voltage waveforms is investigated. The tests have been performed in still air at atmospheric pressure. Voltage and current time behaviors have been measured. The evaluation of the energy delivered to the actuator allowed the estimation of the periods in which the plasma was ignited. Vibrational and rotational temperatures of the plasma have been estimated through spectroscopic acquisitions. The flow field induced in the region above the surface of the DBD actuator has been studied and the EHD conversion efficiency has been evaluated for the voltage waveforms investigated. The nearly sinusoidal multilevel voltage of the proposed generator and the sinusoidal voltage waveform of a conventional ac generator obtain comparable plasma features, EHD effects, and efficiencies. Inverse saw tooth waveform presents the highest effects and efficiency. The rectangular waveform generates suitable EHD effects but with the lowest efficiency. The voltage waveforms that induce plasmas with higher rotational temperatures are less efficient for the conversion of the electric into kinetic energy. (paper)

  2. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....

  3. Voltage-Sharing Converter to Supply Single-Phase Asymmetrical Four-Level Diode-Clamped Inverter With High Power Factor Loads

    DEFF Research Database (Denmark)

    Boora, Arash A.; Nami, Alireza; Zare, Firuz

    2010-01-01

    The output voltage quality of some of the single-phase multilevel inverters can be improved when their dc-link voltages are regulated asymmetrically. Symmetrical and asymmetrical multilevel diode-clamped inverters have the problem of dc-link capacitor voltage balancing, especially when power factor...... that the proposed combination of introduced multioutput dc–dc converter and single-phase ADCI is a good candidate for power conversion in residential photovoltaic (PV) utilization....

  4. Analysis of three-phase power-supply systems using computer-aided design programs

    International Nuclear Information System (INIS)

    Oberst, E.F.

    1977-01-01

    A major concern of every designer of large, three-phase power-supply systems is the protection of system components from overvoltage transients. At present, three computer-aided circuit design programs are available in the Magnetic Fusion Energy (MFE) National Computer Center that can be used to analyze three-phase power systems: MINI SCEPTRE, SPICE I, and SPICE II. These programs have been used at Lawrence Livermore Laboratory (LLL) to analyze the operation of a 200-kV dc, 20-A acceleration power supply for the High Voltage Test Stand. Various overvoltage conditions are simulated and the effectiveness of system protective devices is observed. The simulated overvoltage conditions include such things as circuit breaker openings, pulsed loading, and commutation voltage surges in the rectifiers. These examples are used to illustrate the use of the computer-aided, circuit-design programs discussed in this paper

  5. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    Science.gov (United States)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  6. Perspective loads of transformer substations at development of urban power supply systems

    Directory of Open Access Journals (Sweden)

    Svetlana Guseva

    2012-06-01

    Full Text Available In work the system approach to formation of the urban power supply system is given. The hierarchical structure of the construction, voltage levels and load densities is considered. The mathematical and geometrical modeling of service areas for transformer substations of diff erent voltage is fulfi lled. Determination of perspective loads of transformer substations is given. The method of graphic placement of transformer substations in the city territory for new substations at existing structure of networks is off ered. The calculation program Microsoft EXCEL and the graphic program AutoCad are used for realization of method. The method allows fi nding a rational decision for the development of urban power supply system on the beginning design stages in conditions of the information uncertainty.

  7. Protection and switching system for the RFX power supply

    International Nuclear Information System (INIS)

    Browning, J.L.; Gray, J.W.; Mace, T.A.; Varley, G.L.

    1986-01-01

    The RFX toroidal field power supply comprises a large 4.8MJ (max) modular capacitor bank and four 14MW AC/DC converter flat-top power supply modules. The high fault level associated with the capacitor banks presents a problem in the design of the switching system, since mistiming could produce large currents in the flat-top supplies. The poloidal circuit consists of four groups of magnetising windings connected in series, each with its own flat-top convertor supply and opening switch transfer system. The flat-top converter supplies are needed when the transfer voltage has fallen from approximately 40kV to 1kV. Solutions to the problem of designing a fault-tolerant system which presents no danger to the flat-top converters are described in the paper. The adopted methods make use of hybrid ignitron/mechanical switches to give the required combination of switching speed and current carrying capacity, together with careful attention to the circuit layout of different switching elements. (author)

  8. Vehicle power supply cable with optical jacket monitoring and arcing interference detection; Bordnetzkabel mit optischer Mantelueberwachung und Stoerlichtbogendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Matthias [Fachhochschule Nordhausen (Germany). Lehrstuhl fuer Industrieelektronik; Kloss, Christina [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Polymere/Elastomere und Lichtwellenleiter; Lustermann, Birgit [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Lichtwellenleiter und Simulation optischer Systeme

    2012-10-15

    In vehicles with electrical drive, vehicle power supplies are used with high-voltage level, as well as with several voltage levels. In order to minimise any hazards through arcing faults associated with this, constructive and material-technical measures are necessary. Nordhausen Technical College presents a patented, opticalelectrical combination conductor - the main constituent of an innovative vehicle power supply cable with optical jacket monitoring and arcing interference detection. (orig.)

  9. Design and simulation of high accuracy power supplies for injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1991-01-01

    The ring magnet of the injector synchrotron consists of 68 dipole magnets. These magnets are connected in series and are energized from two feed points 180 degree apart by two identical 12-phase power supplies. The current in the magnet will be raised linearly to about 1 kA level, and after a small transition period (1 ms to 10 ms typical) the current will be reduced to below the injection level of 60 A. The repetition time for the current waveform is 500 ms. A relatively fast voltage loop along with a high gain current loop are utilized to control the current in the magnet with the required accuracy. Only one regulator circuit is used to control the firing pulses of the two sets of identical 12-phase power supplies. Pspice software was used to design and simulate the power supply performance under ramping and investigate the effect of current changes on the utility voltage and input power factor. A current ripple of ± 2 x 10 -4 and tracking error of ± 5 x 10 -4 was needed

  10. Upgrade of a 30 kV/10 mA anode power supply for triode type gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Siravo, Ugo, E-mail: ugo.siravo@epfl.ch; Alberti, Stefano; Dubray, Jérémie; Fasel, Damien; Hogge, Jean-Philippe; Marlétaz, Blaise; Marmillod, Philippe; Perez, Albert; Silva, Miguel

    2015-10-15

    Highlights: • Triode type gyrotron is fed by 3 power supplies: the main, an anode PS(APS) and a heater. • This paper presents the upgrade of 3APS, supplied in 1999, that never fulfilled the specs. • The new working principle is very efficient, easy to implement, for a minimal cost. • Upgraded APS provides extended modulation capabilities, no overshoot and lowerripple. • This upgrade will allow exploring new operation regimes for the 3 TCV X3 gyrotrons. - The RF power of a gyrotron with a triode type magnetron-injection-gun (MIG) can be directly controlled via the voltage applied between its anode and its cathode. Hence, the performance of this type of gyrotron relies directly on the possibilities offered by the power supply controlling the anode to cathode voltage. For a system of gyrotrons connected to the same main high-voltage power supply, with a triode MIG one has the additional advantage of independently controlling each individual gyrotron. This paper presents the modifications brought to the three existing 30 kV/10 mA anode power supplies connected to the 500 kW/118 GHz/2s X3 gyrotrons operated on the TCV Tokamak. The new working principle based on phase-shift modulation (PSM) is described in detail. Experimental results obtained on dummy load are compared to simulations performed during the design phase. With respect to the initial working principle, the modulation frequency capability has been increased by a factor 10 reaching more than 5 kHz, whereas the output voltage ripple as well as the overshoot/undershoot have been significantly reduced.

  11. MODELING OF THE CONTROLLED TRACTION POWER SUPPLY SYSTEM IN THE SPACE-TIME COORDINATES

    Directory of Open Access Journals (Sweden)

    Dmitry BOSYI

    2017-09-01

    Full Text Available The problems of the traction power supply system calculation are considered in the article. The authors proposed the space-time model, which is based on the analytical functions of the current- and voltage-drop distributions in the contact network. The usage of the proposed model is shown for the control law calculation both to stabilize the voltage at the pantographs of the electric rolling stocks and to reduce the power losses.

  12. Conceptual design of DC power supplies for FFHR superconducting magnet

    International Nuclear Information System (INIS)

    Chikaraishi, Hirotaka

    2012-01-01

    The force-free helical reactor (FFHR) is a helical-type fusion reactor whose design is being studied at the National Institute for Fusion Science. The FFHR will use three sets of superconducting coils to confine the plasma. It is not a fusion plasma experimental device, and the magnetic field configuration will be optimized for burning plasma. This paper introduces a conceptual design for a dc power system to excite the superconducting coils of the FFHR. In this design, the poloidal coils are divided into a main part, which generates a magnetic field for steady-state burning, and a control part, which is used in the ignition process to control the magnetic axis. The feasibility of this configuration was studied using the Large Helical Device coil parameters, and the coil voltages required to sweep the magnetic axis were calculated. It was confirmed that the axis sweep could be performed without a high output voltage from the main power supply. Finally, the power supply ratings for the FFHR were estimated from the stored magnetic energy. (author)

  13. Energy saved neon sign lighting power supply for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanitteerapan, T.; Dokpikul, S.; Arunrungrasmi, S. [King Mongkut Univ. of Technology Thonburi, Bangmod, Tungkru, Bangkok (Thailand). Dept. of Electrical Technology Education, Faculty of Industrial Education

    2007-07-01

    Petroleum oil, natural gas and fossil fuels are commonly used in power plants for electrical power generation. However, because of their negative environmental impacts, energy and environmental savings from renewable energy resources are necessary choices. Solar energy can be converted to the electrical voltage by using solar arrays. This process can be used in many electrical applications. This paper introduced a neon sign lighting power supply for a small photovoltaic powered stand-alone commercial advertising board for a remote area in Thailand. The circuit implementation was very simple, consisting of an active switch device, a resonant capacitor and high frequency transformer. The control also operated as a fixed frequency and fixed duty ratio controller. The paper discussed the principle of neon sign lighting, power circuit operation, and control circuit operation. To verify the proposed power supply, the circuit experiment of the proposed power supply for the neon sign lighting was applied to a 10 foot long, 10 millimeter diameter bulb. The neon sign was ignited smoothly with little power consumption. 2 refs., 1 tab., 10 figs.

  14. A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion

    Directory of Open Access Journals (Sweden)

    Jye-Chau Su

    2013-09-01

    Full Text Available In this paper, a power supply system for hybrid renewable energy conversion is proposed, which can process PV (photovoltaic power and wind-turbine energy simultaneously for step-down voltage and high current applications. It is a dual-input converter and mainly contains a PV energy source, a wind turbine energy source, a zero-voltage-switching (ZVS forward converter, and a current-doubler rectifier. The proposed power supply system has the following advantages: (1 PV-arrays and wind-energy sources can alternatively deliver power to the load during climate or season alteration; (2 maximum power point tracking (MPPT can be accomplished for both different kinds of renewable-energy sources; (3 ZVS and synchronous rectification techniques for the active switches of the forward converter are embedded so as to reduce switching and conducting losses; and (4 electricity isolation is naturally obtained. To achieve an optimally dynamic response and to increase control flexibility, a digital signal processor (DSP is investigated and presented to implement MPPT algorithm and power regulating scheme. Finally, a 240 W prototype power supply system with ZVS and current-doubler features to deal with PV power and wind energy is built and implemented. Experimental results are presented to verify the performance and the feasibility of the proposed power supply system.

  15. Current regulators for I/SUP 2/L circuits to be operated from low-voltage power supplies

    DEFF Research Database (Denmark)

    Bruun, Erik; Hansen, Ole

    1980-01-01

    A new bandgap current reference is described which can be used to control the injector current of I/SUP 2/L circuits for supply voltages down to about 1 V. For small currents the total injector current is obtained as a mirror of the reference current. For large injector currents the current control......, but well controlled temperature coefficient is desired. It is shown how a temperature stable ring oscillator with I/SUP 2/L gates can be constructed by tailoring the temperature dependence of the supply current appropriately....

  16. Dynamic analysis of compact helical system power supply and designs of its upgrade

    International Nuclear Information System (INIS)

    Tanahashi, S.; Yamada, S.

    1991-09-01

    Computed dynamic waveforms are compared with measured ones for the power supply of the Compact Helical System (CHS) during 1.5T operation and found to be in good agreement. On the basis of these results, designs for the upgraded power supply for 2T operation are discussed in the two cases, with and without power consumption for additional heating. In the former case, the additional heating power is supplied from the ac generator that powers the CHS coils. Electric voltages and currents in the electric circuit are shown for both cases. These designs show the possibility for 2T operation by addition of some components without changing the ratings of existing components. (author)

  17. Low-voltage Power Supply Subsystem for a Sub-Orbital Particle Physic Instrument

    Directory of Open Access Journals (Sweden)

    Hector Hugo Silva Lopez

    2014-01-01

    Full Text Available The Japanese Experiment Module–Extreme Universe Space Observatory (JEM-EUSO is a wide-field (+/-~30°of aperture 2.5m refractor telescope to be installed in the International Space Station (ISS. The instrument looks downward from its orbit, into Earth’s atmosphere, with the main objective of observing ultra-violet (UV fluorescence light generated by Ultra-High Energy Cosmic Rays (UHECR extensive air showers (EAS. It is a frontier particle-physics experiment, the first of its kind. The validation of the technical readiness level of such a complex and unique instrument requires prototypes at several levels of integration. At the highest level, the EUSO-Balloon instrument has been conceived, through French space agency (CNES. At a smaller scale and in suborbital flight, EUSO-Balloon integrates all the sub-systems of the full space JEM-EUSO telescope, allowing end-to-end testing of hardware and interfaces, and to probing the global detection chain and strategy, while improving at the same time our knowledge of atmospheric and terrestrial UV background. EUSO-Balloon will be flown by CNES for the first time from Timmins, Canada; on spring 2014.This article presents the low-voltage power supply (LVPS subsystem development for the EUSO-Balloon instrument. This LVPS is the fully operational prototype for the space instrument JEM-EUSO. Besides design and construction, all performance tests and integration results with the other involved subsystems are shown.

  18. Design of a 300-Watt Isolated Power Supply with Minimized Circuit Input-to-Output Parasitic Capacitance

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Petersen, Lars Press; Knott, Arnold

    2014-01-01

    This paper presents the design of a 300-Watt isolated power supply for MOS gate driver circuit in medium and high voltage applications. The key feature of the developed power supply is having a very low circuit input-to-output parasitic capacitance, thus maximizing its noise immunity. This makes...

  19. Charge-sharing SAR ADCs for low-voltage low-power applications

    CERN Document Server

    Rabuske, Taimur

    2017-01-01

    This book introduces readers to the potential of charge-sharing (CS) successive approximation register (SAR) analog-to-digital converters (ADCs), while providing extensive analysis of the factors that limit the performance of the CS topology. The authors present guidelines and useful techniques for mitigating the limitations of the architecture, while focusing on the implementation under restricted power budgets and voltage supplies.

  20. Multi-Mode Operation for On-line Uninterruptible Power Supply System

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Golestan, Saeed

    2018-01-01

    To enhance the robustness and disturbance rejection ability of an on-line uninterruptible power supply (UPS) system, an Internal Model Control (IMC)-based DC-link voltage regulation method is proposed in this paper. Furthermore, the multi-mode operations of the on-line UPS system are investigated...

  1. Study of pulse stretching in high current power supplies using multipulse techniques

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1977-01-01

    Considerable interest exists at Fermilab to increase the pulse width of the Neutrino Focusing Horn to permit an increase in beam spill length from twenty (20) microseconds to one (1) millisecond. Two techniques to do this were examined: (1) a high current transformer, and (2) increased bank capacitance using the multi-power supply technique. The transformer is the most straightforward conceptually; it is, however, a complicated device requiring sizable changes to the existing horn power supply. This alternative is briefly reviewed. The second scheme involves pulsing a 20 kv 200 ka power supply to establish the required load current and then maintaining this current by the sequential pulsing of a number of low voltage high current power supplies. This alternative is discussed in detail with the results of tests performed on the Fermilab Focusing Horn System

  2. Static converters power supply: transient regimes; Alimentation par convertisseurs statiques: regimes transitoires

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, G. [Ecole Superieure d`Electricite (France)

    1997-08-01

    Direct current motors, asynchronous and variable speed synchronous motors are generally supplied with static converters. Speed variation is obtained by voltage variation in DC motors and by frequency variation in AC motors. In these conditions, these motors are running continuously in transient regimes: the DC motors current is not direct and the AC motors current is not sinusoidal. This situation leads to pulsing couples in the shaft line and to an increase of Joule effect losses. The aim of this paper is to present the methods of study of the electric motors functioning using the shape of the power voltages given by converters and mathematical models of these machines. The synchronous machines are rapidly described while the asynchronous machines are studied using Ku`s transformation instead of Park`s transformation for simplification. For each type of machine, calculation methods allow to determine their current, additional losses and couple characteristics. The transient regimes considered are those remaining when the motor is running at a constant speed and defined regime (supply voltages are periodical functions of time). These transient regimes are identically reproducing with a frequency which is a multiple of the converters supply frequency. Transient regimes due to functioning changes of the motor, such as resisting couple or power supply frequency variations, are not considered in this study. (J.S.) 9 refs.

  3. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  4. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  5. High Voltage Distribution System (HVDS) as a better system compared to Low Voltage Distribution System (LVDS) applied at Medan city power network

    Science.gov (United States)

    Dinzi, R.; Hamonangan, TS; Fahmi, F.

    2018-02-01

    In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.

  6. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    Science.gov (United States)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  7. Protections Against Grid Breakdowns in the ITER Neutral Beam Injector Power Supplies

    International Nuclear Information System (INIS)

    Bigi, M.; Toigo, V.; Zanotto, L.

    2006-01-01

    The ITER Neutral Beam Injector (NBI) is designed to deliver 16.5 MW of additional heating power to the plasma, accelerating negative ions up to -1 MV with a current up to 40 A. Two main power supplies are foreseen to feed the system: the Acceleration Grid Power Supply (AGPS), which provides power to the acceleration grids, and the Ion Source Power Supply (ISPS), devoted to supplying the ion source components. For the accelerator, two different concepts are under investigation: the MAMuG (Multiple Aperture, Multiple Gap) and the SINGAP (SINgle Aperture). During operation of the NBI, the breakdown of the acceleration grids will occur regularly; as a consequence the AGPS is expected to experience frequent load short-circuits during a pulse. For each grid breakdown, energy and current peaks are delivered from the power supply systems that could damage the grids, if not limited. In previous NBI, rated for a lower accelerating voltage, the protection system in case of grid breakdowns was based on dc circuit breakers able to quickly disconnect the power supply from the grids. In the ITER case, a similar solution is not feasible, as the voltage level is too high for present dc breaker technology. Therefore, the protection strategy has to rely on fast switch-off of the power supplies, on the optimisation of the filter elements and core snubbers placed downstream the AGPS and on the introduction of additional passive elements. However, achieving a satisfactory protection against grid breakdowns is a challenging task, as the optimisation of each single provision can result in drawbacks for other aspects of the design; for instance, the optimisation of the filter elements, obtained by reducing the filter capacitance, produces an increase of the output voltage ripple. Therefore, the design of the protections must be carried out considering all the relevant aspects of the specifications, also those that are not strictly related to the limitations of the current peaks and energy

  8. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Science.gov (United States)

    2010-01-01

    ... operation when the external power supply is connected to the main electricity supply and the output is (or “all outputs are” for a multiple-voltage external power supply) connected to a load (or “loads” for a... any mechanical, optical, or electronic switches that automatically disconnect mains power from the...

  9. Fast quadrupole pulsed power supply in the AGS

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Halama, H.J.; Lambiase, R.F.; Montemurro, P.A.

    1984-01-01

    As part of the Polarized Proton Project at the AGS, a pulsed power supply system has been developed to energize a set of twelve fast quadrupoles which are symmetrically distributed around the 1/2-mile circumference of the machine. During a typical acceleration cycle, which is normally repeated every 2.4 s, these magnets are energized with bursts of triangular current pulses. The rise-time of each pulse is less than 2 μs and the width at the base varies from 1 to 3.5 ms depending on the pulse. Within a burst, pulses alternate in polarity and vary in amplitude from 160 A to 2700 A peak. Pulse separation is on the order of 40 ms. Due to the distributed nature of the load and high di/dt, each magnet is powered by a separate modulator. Magnets are driven via coaxial pulse transmission cables up to 200 ft long. In the modulators, the high power pulses are switched with thyratron/ignitron switch pairs. All modulators are charged in parallel with a common system of programmable high voltage power supplies. The overall system is controlled with a distributed network of microcomputers. This paper describes the development, construction and initial performance of the pulsed power supply system

  10. Design study of an AC power supply system in JT-60SA

    International Nuclear Information System (INIS)

    Shimada, Katsuhiro; Baulaigue, Olivier; Cara, Philippe; Coletti, Alberto; Coletti, Roberto; Matsukawa, Makoto; Terakado, Tsunehisa; Yamauchi, Kunihito

    2011-01-01

    In the initial research phase of JT-60SA, which is the International Thermonuclear Experimental Reactor (ITER) satellite Tokamak with superconducting toroidal and poloidal magnetic field coils, the plasma heating operation of 30 MW-60 s or 20 MW-100 s is planned for 5.5 MA single null divertor plasmas. To achieve this operation, AC power source of the medium voltage of 18 kV and ∼7 GJ has to be provided in total to the poloidal field coil power supplies and additional heating devices such as neutral beam injection (NBI) and electron cyclotron radio frequency (ECRF). In this paper, the proposed AC power supply system in JT-60SA was estimated from the view point of available power, and harmonic currents based on the standard plasma operation scenario during the initial research phase. This AC power supply system consists of the reused JT-60 power supply facilities including motor generators with flywheel, AC breakers, harmonic filters, etc., to make it cost effective. In addition, the conceptual design of the upgraded AC power supply system for the ultimate heating power of 41 MW-100 s in the extended research phase is also described.

  11. High currents, low voltages. Low-cost, high efficiency power supply meets the requirements of Intel Mobile Voltage Positioning; Von dicken Stroemen und kleinen Spannungen. Preiswerte Stromversorgung mit hohem Wirkungsgrad erfuellt die Anforderungen des Intel Mobile Voltage Positioning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, V.W.; Guan, P.; Chen, D. [Linear Technology, CA (United States)

    2001-12-27

    The increasing demands on notebook computers have clock rates and currents and reduced voltages as CPUs are produced in increasingly smaller structural sizes. This makes high demands on power supply. [German] Die steigende Nachfrage nach Rechenleistung in Notebook-Computern hat zu einem betraechtlichen Anstieg der Taktfrequenzen und der Stromaufnahme der CPUs gefuehrt. Gleichzeitig sind die Versorgungsspannungen erheblich gesunken, da die CPUs in Prozessen mit immer kleineren Strukturgroessen hergestellt werden. Als die CPU-Taktfrequenzen 1 GHz ueberstiegen, hat die Stromaufnahme der CPU erstmals 20 A ueberschritten, und die minimale Versorgungsspannung ist auf unter 1 V gefallen. Dies stellt gewaltige Anforderungen an die Stromversorgungen. (orig.)

  12. Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.

    Science.gov (United States)

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

  13. Design and simulation of high accuracy power supplies for injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1991-01-01

    The ring magnet of the injector synchrotron consists of 68 dipole magnets. These magnets are connected in series and are energized from two feed points 180 degrees apart by two identical 12-phase power supplies. The current in the magnet will be raised linearly at about 1 kA level, and after a small transition period (1 ms to 10 ms typical) the current will be reduced to below the injection level of 60 A. The repetition time for the current waveform is 500 ms. A relatively fast voltage loop along with a high gain current loop are utilized to control the current in the magnet with the required accuracy. Only one regulator circuit is used to control the firing pulses of the two sets of identical 12-phase power supplies. Pspice software was used to design and simulate the power supply performance under ramping and investigate the effect of current changes on the utility voltage and input power factor. A current ripple of ±2x10 -4 and tracking error of ±5x10 -4 was needed. 3 refs., 5 figs

  14. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.A.; MI, J.; OERTER, B.; SANDERS, R.; SANDBERG, J.

    2001-01-01

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beam dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful

  15. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Science.gov (United States)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  16. Transmission of power at high voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lane, F J

    1963-01-01

    High voltage transmission is considered to be concerned with circuits and systems operating at or above 132 kV. While the general examination is concerned with ac transmission, dc systems are also included. The choice of voltage for a system will usually involve hazardous assessments of the future requirements of industry, commerce and a changing population. Experience suggests that, if the estimated economic difference between two voltages is not significant, there is good reason to choose the higher voltage, as this will make the better provision for unexpected future expansion. Two principal functions served by transmission circuits in a supply system are: (a) the transportation of energy in bulk from the generator to the reception point in the distribution system; and (b) the interconnection and integration of the generating plant and associated loads. These functions are considered and various types of system are discussed in terms of practicability, viability, quality and continuity of supply. Future developments requiring transmission voltages up to 750 kV will raise many problems which are in the main empirical. Examples are given of the type of problem envisaged and it is suggested that these can only be partially solved by theory and model operation.

  17. DESIGN AND CONSTRUCTION OF A 12 kV DC POWER SUPPLY 175

    African Journals Online (AJOL)

    DR. AMINU

    voltage multiplying rectifier. It is suitable as a power supply for the nitrogen laser. .... (Hilborn, 1976), Raman spectroscopy (Kunabenchi, et al. 1982), and laser isotope ... laser consists of a channel that contains nitrogen gas, a switching system.

  18. A study on stimulation of DC high voltage power of LCC series parallel resonant in projectile velocity measurement system

    Science.gov (United States)

    Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan

    2017-10-01

    According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.

  19. Magnetically switched power supply system for lasers

    Science.gov (United States)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  20. Common-mode Voltage Reduction in a Motor Drive System with a Power Factor Correction

    DEFF Research Database (Denmark)

    Adabi, J.; Boora, A.A.; Zare, F.

    2012-01-01

    Common-mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this study, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order...... to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the AC-DC diode rectifier influences the common-mode voltage generated by the inverter because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique...

  1. Circuitry for monitoring a high direct current voltage supply for an ionization chamber

    International Nuclear Information System (INIS)

    1981-01-01

    An arrangement to measure the voltage of the supply and a switching means controlled by this is described. The voltage measurer consists of first and second signal coupling means, the input of the second (connected to the voltage supply) is connected in series with the output of the first. An ionization chamber with this circuitry may be used to monitor the radiation output of a particle accelerator more accurately. Faulty measurements of the dose output, caused by voltages in the earth circuit, are avoided. (U.K.)

  2. Limitations on current ripple of the power supplies for the SSC bending magnets

    International Nuclear Information System (INIS)

    Lebedev, V.A.

    1993-01-01

    Noise and ripple in the bending magnets of large proton collider cause the beam emittance growth and the luminosity degradation. The emittance growth due to voltage ripple of the bending magnets power supplies is studied. The role of the collider transverse feedback system is shown to be very important to facilitate the requirements to value of ripple. The longitudinal emittance growth due to slow variations of power supply current is studied as well. 9 refs.; 15 figs

  3. Characteristics of a symmetrical Cockcroft-Walton power supply of 50 Hz 1.2 MV/50 mA

    Energy Technology Data Exchange (ETDEWEB)

    He Zifeng; Zhang Jinling; Liu Yonghao; Zhang Yutian; Zhang Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2011-05-15

    A 1.2 MV/50 mA symmetrical Cockcroft-Walton (SCW) power supply of over 83% power efficiency, driven by 50 Hz frequency, was developed for an industrial electron beam irradiator. It is constructed by capacitors of 45 nF and 28.13 nF in the coupling column and capacitors of 18.75 nF in the smoothing column. Working status of the rectifier in high power output condition was analyzed, and the conduction angle of the rectifier was calculated. The power factor (PF) of the SCW circuit has been studied, and the equivalent condensance of the circuit has been derived. Measurements were done for the PF compensation. The surge impact during the short circuit transient process was considered in choosing the protection resistance. Test results showed that design specifications of the power supply were achieved, with the non-load voltage being up to 1.32 MV and the ratio of ripple voltage to output voltage as 9.4%.

  4. The fast extraction kicker power supply for the main ring of J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, Kunio, E-mail: kunio.koseki@kek.jp

    2013-11-21

    An effect induced by parasitic inductance in a pulsed power supply for a fast extraction kicker was studied. The parasitic inductance in high voltage capacitors for a low impedance pulse forming network disturbs a sharp rise of an excitation current. A high voltage capacitor with a coaxial structure to minimize the parasitic inductance is proposed. The effectiveness was confirmed experimentally. An impedance mismatch by a leakage inductance of a pulse transformer in a transmission line was studied. The effect is serious at the flat-top period of the excitation current. By introducing a compensation circuit, which is composed by a capacitor and a resistor, impedance matching was established. The pulsed power supply for the fast extraction kicker was operated at a charging voltage of 30 kV. A required rise time of less than 1.1 μs was achieved. The flatness was also confirmed to be in an acceptable value of less than 1%. -- Highlights: ●An effect by parasitic inductance of the energy storage capacitor of the PFN was studied. ●A faster rise time was achieved by introducing a coaxial structure for the PFN capacitor. ●An impedance mismatch by a leakage inductance of a pulse transformer was studied. ●Serious deterioration of the pulsed waveform was cured by a compensation circuit. ●The pulsed power supply for the fast extraction kicker was developed and operated successfully.

  5. Active filter for INDUS-2 Q4 and Q5 power supplies

    International Nuclear Information System (INIS)

    Singh, Y.P.; Thakurta, A.C.; Kotaiah, S.

    2003-01-01

    Q4 and Q5 power supplies are SCR based power supplies wherein the rectified voltage is fed to a passive filter to reduce the ripple voltage. The output of the passive filter still contains some ripple particularly on the low frequency side. Attenuation of this ripple with passive filter necessitates increase in size of L and C and leads to sluggishness of the system. The design and the test results of an active filter module have been discussed wherein the low frequency attenuation can be very effectively taken care of by, allowing this to be absorbed in a coupling transformer put after the passive filter. Considerable size reduction has been achieved by using switching techniques. Low frequency attenuation has been made quite a simple task. This filter also helps in handling transients from input. (author)

  6. D.C. side active filter for high stability accelerator magnet power supplies

    International Nuclear Information System (INIS)

    Singh, Yash Pal; Thakurta, A.C.; Kotaiah, S.

    2006-01-01

    Accelerator d.c, magnets have to produce a highly stable magnetic field which in turn needs highly stable d.c. current sources to energise them. Indus-II Q4 and Q5 power supplies are SCR based power supplies wherein the rectified voltage is fed to a passive filter to reduce the ripple voltage. The output of the passive filter still contains some ripple particularly on the low frequency side. The design and the test results of an active filter module have been discussed wherein the low frequency attenuation can be very effectively taken care of by allowing this to be absorbed in a coupling transformer put after the passive filter. Considerable size reduction has been achieved by using switching techniques. Low frequency attenuation has been made quite a simple task. This filter also helps in handling transients from input. (author)

  7. Photovoltaic-STATCOM with Low Voltage Ride through Strategy and Power Quality Enhancement in a Grid Integrated Wind-PV System

    Directory of Open Access Journals (Sweden)

    Lakshman Naik Popavath

    2018-04-01

    Full Text Available The traditional configurations of power systems are changing due to the greater penetration of renewable energy sources (solar and wind, resulting in reliability issues. At present, the most severe power quality problems in distribution systems are current harmonics, reactive power demands, and the islanding of renewables caused by severe voltage variations (voltage sag and swell. Current harmonics and voltage sag strongly affect the performance of renewable-based power systems. Various conventional methods (passive filters, capacitor bank, and UPS are not able to mitigate harmonics and voltage sag completely. Based on several studies, custom power devices can mitigate harmonics completely and slightly mitigate voltage sags with reactive power supplies. To ensure the generating units remain grid-connected during voltage sags and to improve system operation during abnormal conditions, efficient and reliable utilization of PV solar farm inverter as STATCOMs is needed. This paper elaborates the dynamic performance of a VSC-based PV-STATCOM for power quality enhancement in a grid integrated system and low voltage ride through (LVRT capability. LVRT requirements suggest that the injection of real and reactive power supports grid voltage during abnormal grid conditions. The proposed strategy was demonstrated with MATLAB simulations.

  8. A low-voltage low-power 10-bit 200 MS/s pipelined ADC in 90 nm CMOS

    NARCIS (Netherlands)

    Abdinia, S.; Yavari, M.

    2010-01-01

    This paper presents a low-power 10-bit 200 MS/s pipelined ADC in a 90 nm CMOS technology with 1 V supply voltage. To decrease the power dissipation efficiently, a new architecture using a combination of two power reduction techniques named double-sampling and opamp-sharing has been used to reduce

  9. Power supply connection for ionizing radiation detection probes

    International Nuclear Information System (INIS)

    Zajic, J.

    1990-01-01

    One wire of the supply line is connected, through a diode in the forward direction, to the input terminal of the voltage stabilizer, and through the first resistor to the current limiter terminal of the voltage stabilizer, and also directly to the pulse separator terminal. The current limiter terminal of the voltage stabilizer is connected, through the second resistor, to the output terminal of the voltage stabilizer, and through the first capacitor to the voltage stabilizer earthing terminal, the earthing terminal of the pulse separator and through the other wire of the supply line to the earthing terminal of the detection probe. Furthermore, the input terminal of the voltage stabilizer is connected to a parallel combination of the third resistor with the second capacitor, whose other end is connected to the earthing terminal of the voltage stabilizer. The main asset of this connection consists in the high-frequency matching of the supply line being accomplished by a suitable choice of the resistor value without affecting the voltage for the detection probe. (M.D.)

  10. Organization of synchronization of power supplies for the T-15 device injector

    International Nuclear Information System (INIS)

    Gerasimov, V.P.; Gordin, V.I.; Grachev, V.F.; Ishkin, V.A.; Mozin, I.V.; Kuz'min, B.N.; Skosarev, V.A.

    1984-01-01

    The description of the system for the T-15 tokamak power supply and injector synchronization is presented. The synchronization system consists of 3 branches, comprising 6 sychronization devices according to the number of ion sources. According to the character of control, structurally and territorially, each branch of the synchronization system is devided into three parts: program-controlled, relized in CAMAC standard, synchronization devices, located in the room of low-voltage power supply system, and control channels, manufactured in the form of optical communication channels with controls units or galvanic decoupling units

  11. Building a new control system for the cyclotron power supplies

    International Nuclear Information System (INIS)

    Kormany, Z.; Lakatos, T.; Kovacs, P.; Szuecs, I.; Ander, I.

    2000-01-01

    Complete text of publication follows. The MGC cyclotron of the ATOMKI is a multi-particle and variable-energy machine with a rather complicated beam transport system. As a consequence, the current or voltage value of numerous power supplies should be set and adjusted by the operators during a typical run. The original control system of the cyclotron provides a traditional control desk for this purpose where the requested values can be set by using selector switches and up/down tumblers. The adjustment process with this system is completely manual and rather slow - every power supply unit gets its starting value one after the other and it typically takes 10 to 20 minutes to change the whole setting. Another disadvantage of the present system is the poor reproducibility / the analogue panel meters of the control desk cannot provide the required precision to exactly repeat a former setting. To overcome the above difficulties and speed up the adjustment process of the cyclotron and the beam transport lines, a new control system for the power supplies has been designed and is under implementation within the framework of our modernization project. Supported by the International Atomic Energy Agency, Technical Assistance Program - Project Code Number: HUN/4/013. The control of the power supplies will be changed to digital - the analogue control signals of the power stages will be produced by the D/A, the current and voltage values will be read by the A/D conversion modules of a programmable logic controller (PLC). The transition to digital control requires the development of special interface units. To separate completely the control and measuring channels from each other, they are isolated from the PLC-ground by applying opto-isolators. A two-channel (control and measurement) linear interface circuit built around the TIL 300 optical isolators has been designed, assembled and tested. It has been verified that the linearity and the precision of this circuit fulfills the

  12. Self-Oscillating Soft Switching Envelope Tracking Power Supply for Tetra2 Base Station

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents a high-efficiency, high-bandwidth solution to implementing an envelope tracking power supply for the RF power amplifier (RFPA) in a Tetra2 base station. The solution is based on synchronous rectified buck topology, augmented with high-side switch zero-current switching (ZCS......) implemented with a series inductor and an external clamping power supply. Combined with advanced power stage components (die-size MOSFETs), a high-performance fixed-frequency self-oscillating (sliding mode) control strategy and a 4th-order output filter, this leads to a compact, effective and efficient...... overall solution switching at 1MHz with 88-95% efficiency. In a class-AB RFPA amplifying a 50kHz bandwidth QAM Tetra2 signal at 4.6W average output power, the use of tracking supply voltage reduced power dissipation by 25W....

  13. MOTOR ACCELERATION TIME OPTIMIZATION BY THE CHANGE OF THE SUPPLY VOLTAGE VALUE

    Directory of Open Access Journals (Sweden)

    G. K. Aslanov

    2016-01-01

    Full Text Available Abstract. It is proved that the deviation of the voltage from the nominal values, often leads to overheating of the motor windings, which reduces the insulation life to a great extent.The task of determining the change in the acceleration time of the motor depending on the switching time of its supply voltage is set. The modeling of DC motor 2ПН132М operation in the short- run changes in starting voltage from 380 V to 220 V - which is its nominal value-is carried out. By sweep method is determined the optimum time for switching the supply voltage of the motor. Mathematical dependencies and simulation results are presented. 

  14. Designing a power supply for Nim-bin formatted equipment; Diseno de una fuente de alimentacion para equipos con formato Nim-bin

    Energy Technology Data Exchange (ETDEWEB)

    Banuelos G, L. E.; Hernandez D, V. M.; Vega C, H. R., E-mail: lebluis2012@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2016-09-15

    From an old Nuclear Chicago power supply that was practically in the trash, was able to recover the 19 inches casing, rear connectors and the housing where the circuits were. From here all mechanical parts were cleaned and the electronic design was started to replace the original voltage and current functions of this equipment. The cards for the ±6, ±12 and ±24 voltages were designed, simulated and tested with circuitry that does not rely on specialized components or that is sold only by the equipment manufacturer. In the handling of the current by each voltage to operate, was possible to tie with the specifications of the manufacturers like Ortec or Canberra where a model of power supply gives a power of 160 Watts. Basic tests were performed to show that the behavior is very similar to commercial equipment; such as the full load regulation index and the noise level in the supply voltages. So our Nim-bin voltage source is viable for use in our institution laboratories. (Author)

  15. Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel

    Directory of Open Access Journals (Sweden)

    Orly Yadid-Pecht

    2012-07-01

    Full Text Available Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR and Dynamic Range (DR as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

  16. Modular hot swappable 50 V, 700 A DC power supply with active redundancy

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Upadhyay, R.; Tripathi, A.; Tyagi, R.K.; Lad, M.

    2015-01-01

    A 50 V, 700 A voltage regulated modular hot swappable DC power supply has been designed and developed to bias 32 numbers of 500 W, 505.8 MHz solid state RF amplifiers for Indus-2 RF system. This power supply employs 7 numbers of 50 V, 100 A power modules which are operated in parallel and share load current equally. Active redundancy with hot swappable features incorporated in this power supply isolates the faulty module and facilitates its online replacement without affecting the operation of RF amplifiers, thereby significantly reducing the down time of the overall system. Each power module has inbuilt harmonics and power factor correction stage to improve its input performance parameters. This power supply has a dedicated controller, which monitors the healthiness of 32 numbers of RF amplifiers and 7 numbers of power modules, controls the equal sharing of load current among these modules as well as isolates the faulty RF amplifiers and power modules. The control system allows the user to set the trip limits for bias current of individual RF amplifier, power module currents and total power supply current independently for effective protection of the overall system. Issues related to EMI and high frequency switching noises are suitably taken care of in this power supply. The crucial parameters of this power supply are displayed on a local LCD panel as well as on remote PC via ethernet communication. This paper compares the availability and reliability of this hot swappable power supply with the configuration involving one dedicated power supply for each RF amplifier. The performance parameters of this power supply tested with solid state RF amplifiers are also presented in this paper. (author)

  17. Power supply for control and instrumentation in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Raghavan, K.; Shanmugam, T.K.

    1977-01-01

    The design and operation of the four 'no-break' power supplies for control and instrumentation in the Fast Breeder Test Reactor (FBTR), Kalpakkam, are described. Interruptions in the power supplies are eliminated by redundancy and battery back-up source while voltage dips and transients are taken care by automatic regulation system. The four power supplies are : (1) 24 V D.C. exclusively for neutronic and safety circuits, (2) 48 V D.C. for control logic indication lamps and solenoid valves, (3) 220 V D.C. for switchgear control, control room emergency lighting and D.C. flushing oil pump for the turbine and (4) 220 V A.C. single-phase 50 H/Z for computers and electronics of control and instrumentation. Stationary lead-acid batteries (lead antimony type) in floating mode operation with rectifier/charger are used for emergency back-up. All these power supplies are fed by 415 V, 3-phase, 50 HZ emergency supply buses which are provided with diesel generator back-up. Static energy conversion system (in preference to mechanical rotation system) is used for A.C. to D.C. and also for A.C. to A.C. conversion. (M.G.B.)

  18. An innovational application of digital power supply controller on SSRF dynamic power supply

    International Nuclear Information System (INIS)

    Chen Huanguang; Li Rui; Guo Chunlong; Shen Tianjian; Li Deming

    2008-01-01

    Control structure of dynamic power supply using PSI controller in SLS and Diamond is introduced. For designing dynamic power supply using PSI controller in the booster of SSRF, an innovative application of PSI digital power supply controller has been developed. In the commissioning of SSRF, the dynamic power supplies performed perfectly. (authors)

  19. Stability of electric characteristics of solar cells for continuous power supply

    Directory of Open Access Journals (Sweden)

    Stojanović Nebojša M.

    2015-01-01

    Full Text Available This paper investigates the output characteristics of photovoltaic solar cells working in hostile working conditions. Examined cells, produced by different innovative procedures, are available in the market. The goal was to investigate stability of electric characteristics of solar cells, which are used today in photovoltaic solar modules for charging rechargeable batteries which, coupled with batteries, supply various electronic systems such as radio repeaters on mountains tops, airplanes, mobile communication stations and other remote facilities. Charging of rechargeable batteries requires up to 25 % higher voltage compared to nominal output voltage of the battery. This paper presents results of research of solar cells, which also apply to cases in which continuous power supply is required. [Projekat Ministarstva nauke Republike Srbije, br. III 171007

  20. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  1. High-precision analog circuit technology for power supply integrated circuits; Dengen IC yo koseido anarogu kairo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, A.; Suzuki, T.; Mizoe, K. [Fuji Electric Corporate Research and Development,Ltd., Kanagawa (Japan)

    2000-08-10

    With the recent rapid spread of portable electronic appliances, specification requirements such as compact power supply and long operation with batteries have become severer. Power supply ICs (integrated circuits) are required to reduce power consumption in the circuit and perform high-precision control. To meet these requirements, Fuji Electric develops high-precision CMOS (complementary metal-oxide semiconductor) analog technology. This paper describes three analog circuit technologies of a voltage reference, an operational amplifier and a comparator as circuit components particularly important for the precision of power supply ICs. (author)

  2. A simple levitation system using wireless power supply system and Lorentz force

    International Nuclear Information System (INIS)

    Oka, Koichi; Tanaka, Masako

    2016-01-01

    A new type of magnetic levitation mechanism has been proposed. The feature of this mechanism is using wireless power supply system and Lorentz forces for levitation. The stability of levitation is performed by passive control by magnetic flux configuration between permanent magnets and active control of electromagnets. In this paper, the concept of levitation mechanism is introduced, FEM analyses for levitation force and wireless power supply performance is examined. In concept two types of levitation systems which are different on the point of active control directions are introduced. In FEM analyses, the required current for levitation and the directions of generating forces are calculated. In the study of wireless power supply system, the required voltage for the levitation is expected. Finally the feasibility of the proposed levitation system will be verified. (paper)

  3. Resilient architecture design for voltage variation

    CERN Document Server

    Reddi, Vijay Janapa

    2013-01-01

    Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended, voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations based on program and microarchitectural events can help steer the processor clear of danger, thus enabling tighter voltage margins that improve performance or lower power consumption. We describe

  4. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  5. Measurements of crowbar performance of the 20 kV 130 A dc power supply of the TRIUMF RF system

    International Nuclear Information System (INIS)

    Mitra, A.K.

    1991-05-01

    The TRIUMF RF system operates at a fixed frequency of 23.06 MHz with a power capability of 1800 kW. The dc plate power for the four push-pull power amplifiers is provided by a single dc power supply at 20 kV, 130 A and the amplifiers are protected by a single ignitron crowbar circuit. In the case of voltage breakdown outside the tube, the triggering of the crowbar circuit relies on the voltage developed across a low resistance shunt in the return path of the common dc power supply. Frequent failure of the crowbar ignitrons following an external dc voltage breakdown led to the investigation of the crowbar performance. Current transformers have been installed in the common B + line to the power amplifiers and the anode circuit of the ignitron crowbar in order to measure amplitude, duration and time delay of various dc currents under fault conditions. Similar current transformers were installed in the individual anode circuits of the power amplifiers to provide protection to the complete system in case of an external dc voltage breakdown. The results of these measurements and recommended solutions for operations are reported. (Author) 3 refs., 4 figs

  6. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  7. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  8. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    Full Text Available Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  9. Controlled power supply for isotopes separator; Alimentations regulees pour separateur d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lavaitte, A; Pottier, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1953-07-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [French] Cet equipement est destine a equiper le separateur d'isotopes qui fait l'objet du rapport C.E.A. n 138. Il comprend: - une alimentation regulee en tension. - une alimentation regulee en courant. Le spectre de fluctuations de ces ensembles est different dans les deux cas. (auteurs)

  10. Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A

    International Nuclear Information System (INIS)

    Xu Weidong; Xuan Weimin; Yao Lieying; Wang Yingqiao

    2012-01-01

    The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 μs. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.

  11. PV Power-Generation System with a Phase-Shift PWM Technique for High Step-Up Voltage Applications

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-01-01

    Full Text Available A PV power-generation system with a phase-shift pulse-width modulation (PWM technique for high step-up voltage applications is proposed. The proposed power-generation system consists of two stages. In the input stage, all power switches of the full-bridge converter with phase-shift technique can be operated with zero-current switching (ZCS at turn-on or turn-off transition. Hence, the switching losses of the power switches can be reduced. Then, in the DC output stage, a voltage-doubler circuit is used to boost a high dc-link bus voltage. To supply a utility power, a dc/ac inverter is connected to induce a sinusoidal source. In order to draw a maximum power from PV arrays source, a microcontroller is incorporated with the perturbation and observation method to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In this study, a full load power of 300 W prototype has been built. Experimental results are presented to verify the performance and feasibility of the proposed PV power-generation system.

  12. Determination of aggregated load power consumption, under non-sinusoidal supply using an improved load model

    International Nuclear Information System (INIS)

    Bagheri, R.; Moghani, J.S.; Gharehpetian, G.B.; Mirtalaei, S.M.M.

    2009-01-01

    The harmonic content of supply voltage results in additional power losses and hence increases the load power consumption. The role of the power quality equipments on the power consumption without using an accurate model cannot be determined, too. In this paper, an improved model for aggregated loads proposed, which estimates the effects of voltage harmonics on the power consumption. The distinguished aspect of the proposed model is its parameters identification method which is based on the practical techniques, such as employing a capacitor bank or varying dummy loads in steps. The proposed model has been verified by the comparison of measured and simulated results.

  13. Design and analysis of power supply and information transfer to three-axis gyroscope stabilizer platform

    Directory of Open Access Journals (Sweden)

    Belyanin Lev

    2016-01-01

    Full Text Available The paper focuses on problems of the engineering implementation of 3-axis gyrostabilizer of the camera for orthophotography performed from light and ultralight aircrafts. The functional diagram of gyrostabilizer is characterized by a lighter ball-bearing having a large inner diameter used for the platform suspension on its internal (vertical axis. The problem is to transfer the supply voltage to the platform and the electric signals to and from the platform. Design solutions concerning the power supply and information transfer are supported by the experimental techniques suggested in this paper, namely: the use of the rolling contact; three-phase gyro motor power supply replaced by that from the single-phase network; signal transmission from the precession angle sensor using the air transformer; current and voltage frequency division; DC mode selection for the torquer. The results obtained prove the efficiency of the suggested design solutions.

  14. Local Dynamic Reactive Power for Correction of System Voltage Problems

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  15. Development of a 400 kV 80 mA Cockcroft-Walton power supply and 12 kW isolation transformer systems for neutron generators

    Science.gov (United States)

    Lu, X.; Chen, S.; Zhang, Y.; Huang, Z.; Ma, Z.; Yao, Z.

    2017-06-01

    A 400 kV 80 mA Cockcroft-Walton power supply driven by 2.5 kHz frequency, and 12 kW isolation transformer systems are developed for an intense DD/DT neutron generator. The design, construction, and testing of the high voltage (HV) power supply and isolation transformer systems are detailed reported. The structure of step-up transformers can make the potential distribution uniform, and auxiliary coils of the isolation transformers can improve the power transmission efficiency significantly. The testing results show that the HV power supply can reach 400 kV, and the isolation transformer systems can withstand 400 kV voltages and its power transmission efficiency is about 98.1%.

  16. Design of an AC/DC power supply for telecom applications

    Energy Technology Data Exchange (ETDEWEB)

    Suntio, T.; Vallittu, P.; Laurinen, T.; Ikonen, M. [Efore Oy, Espoo (Finland)

    1997-12-31

    Typical Telecom uninterruptible power supply system (UPS) comprises of parallel connected rectifiers and storage batteries supplying DC power for Telecom switching systems on fixed or mobile telephone networks. The requirement is most often of total uninterruptibility meaning high reliability and availability performance as a vital design and development goal. The Telecom systems must also meet stringent noise emission and immunity requirements stipulated by EMC and Low Voltage Directives, European Telecommunications Standard Institute (ETSI) as well as other global and local standards depending on the area they are to be used. This paper will describe in practice the vital features the rectifiers should contain as well as presents results from a practical equipment of 48 V, 500 W. (orig.) 27 refs.

  17. Conducted noise analysis and protection of 45 kJ/s, ±50 kV capacitor charging power supply when interfaced with repetitive Marx based pulse power system

    Science.gov (United States)

    Naresh, P.; Patel, Ankur; Sharma, Archana

    2015-09-01

    Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage.

  18. 275 C Downhole Switched-Mode Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Chris Hutchens; Vijay Madhuravasal

    2008-08-31

    A vee-square (V2) control based controller IC is developed for a switch mode power supply capable of operating at extreme temperature/harsh environment conditions. A buck type regulator with silicon carbide power junction field effect transistors (JFET) as power devices is used to analyze the performance of controller. Special emphases are made on the analog sub-blocks--voltage reference, operational transconductance amplifier and comparator as individual building blocks. Transformer coupled gate drives and high temperature operable magnetic cores and capacitors are identified and tested for use in the design. Conventional ceramic chip packaging of ICs combined with lead carrier type mounting of passive filter components is introduced for hybrid packaging of the complete product. The developed SMPS is anticipated to support the operation of down-hole microcontrollers and other electronics devices that require low/medium power filtered dc inputs over an operating temperature of 275 C.

  19. Development of microcontroller based remote control system for HV power supply of ECR ion source for ADSS project

    International Nuclear Information System (INIS)

    Srivastava, S.; Misra, A.; Thakur, S.K.; Pandey, H.K.; Pandit, V.S.

    2009-01-01

    In this paper we will describe the design and development of the microcontroller based interface card used to control and monitor the operation of High Voltage Power supply 120kV/50mA (HVPS). This power supply is deployed for the extraction of proton beam from the microwave ion source in the ADSS project. (author)

  20. Future view of electric power supply techniques. Distribution techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Toshio

    1988-06-20

    Present situations surrounding the power distribution are described, and the problems and future trend of the power distribution are reviewed. It is described for the situations that the gravity of a power demand is transfering from industrial use to home use and the dependence on electrical energy is increasing. It is pointed out for the features that the distribution system exists on not only supply side but also customer side, the system is complicated and two-dimentional, and there is a tremendous amount of facility. High voltage, high frequency and automatic distribution, and the distributed power sources such as fuel cells are described in terms of the problems to ensure the power supply. The protection and decreasing of service interruptions, the protection of harmonic wave, and long-life equipments are described in terms of the problems to ensure the power quality. As for the problems to ensure a comfortable life and space, the communication system using the distribution system for a customer service or automatic operation in a house, and the enviromental harmony by a small facility or underground distribution are described. (1 tab)

  1. D. C. power supply

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, N. Watanabe, Y.; Kitani, M

    1978-04-01

    DC power supplies are for ordinary and emergency use as power sources for various structures such as office buildings, department stores, hotels, and for facilities such as roads, tunnels, dams, power stations, etc. There is strong demand for these dc power supplies to be safe, automated, and maintenance free, and to have high reliability. A dc power supply which meets these demands is described; electric circuit construction is emphasized. (10 figures, 4 tables)

  2. ESTIMATION OF DECREASING LOSSES OF ACTIVE POWER IN TRANSFORMERS IN SETTING BATTERY OF LOW-VOLTAGE CAPACITORS

    Directory of Open Access Journals (Sweden)

    V. N. Radkevich

    2014-01-01

    Full Text Available This paper describes an estimation method of decreasing losses of active power in power transformers with voltage 10(6/0,4 kV after installation of devices of reactive power compensation on output side depending on voltage level, connected to capacity devices, taking into account dielectric loss in capacitors. Analysis of functional dependences was carried out. Investigation of function with a help of derivations was carried out. Points of function extremum and also its intervals of rise and fall rates were founded. This paper describes graphic investigation of obtained functional dependence, which is introduced by quartic polynominal. It is established that decreasing of losses of active power depends on technical parameters and load factor of transformer, coefficient of loading power of electricity consumers, voltage value connected to capacitor unit.Using obtained functional dependences, calculations for the main size-types of power transformers with voltage 10(6/0,4 kV serie ТМГ 11 and ТМГ12 were done. It is established that depending on technical characteristics of certain transformer, coefficient of its loading and power, there is a definite value of deviation of real voltage value from working voltage of capacitor installation when it will be observed positive technical and economical effect from installed capacitor battery unit. For taken value of loading coefficient and transformer’s power the maximum decrease of losses of active power takes place under voltage directed to capacitor unit, which is lower then nominal value. For all taken size-types of power transformers the argument of investigating function for its maximal value is out of standard permissible of voltage deviations from nominal value.These functional dependents can be used for preliminary calculations, which are needed for making decision on compensation of reactive power in electric power supply systems of industrial objects. Their consideration allows more

  3. Facts and feelings: Framing effects in responses to uncertainties about high-voltage power lines

    OpenAIRE

    de Vries, G.; de Bruijn, J.A.

    2017-01-01

    To ensure power supply security, electricity transmission system operators (TSOs) have to upscale high-voltage overhead power lines. However, upscaling frequently meets opposition. Opposition can be caused by uncertainties about risks and benefits and might lead to costly delays (Linder, 1995; Wiedemann, Boerner,& Claus, 2016). To minimize opposition, TSOs and related public services need to respond to these uncertainties in a credible and convincing (effective) way. Effective risk commun...

  4. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...

  5. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    International Nuclear Information System (INIS)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Wu, Yan; Li, Jie

    2013-01-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O 3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O 3 generation was approximate 4 mg kJ −1 ; moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  6. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    Science.gov (United States)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  7. Maintenance management of emergency power supply equipment (uninterruptible power supply) in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nishida, Kyosuke; Hiyama, Hisao; Shibata, Satomi; Iwasaki, Shogo; Inami, Shinichi

    2009-01-01

    Uninterruptible power supply systems are installed in the Tokai reprocessing plant in preparation for the emergency case that the commercial power supply is stopped by an accidental or intentional interruption in the supply of electricity. The uninterruptible power supply system particularly provides a temporary power source to the important devices for the radiation control of nuclear critical monitoring in the plant. Thus, the system is potentially important and essential for nuclear plants. The paper reports the current activities such as regular inspections, replacement of parts and system update, to maintain the function of uninterruptible power supply systems. (author)

  8. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    Science.gov (United States)

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  9. Trim coil power supplies

    International Nuclear Information System (INIS)

    Haisler, R.; Peeler, H.; Zajicek, W.

    1985-01-01

    The 18 trim coil power supplies have been constructed and are now in place in the K500 pit and pit mezzanine. Final wiring of the primary power and control power is proceeding along with installation of cooling water supplies. The supplies are expected to be ready for final testing into resistive loads at the beginning of June, 1985

  10. Development of DC active filter for high magnetic field stable power supply

    International Nuclear Information System (INIS)

    Wang Lei; Liu Xiaoning

    2008-01-01

    The DC active filter (DAF), with very low current ripple, of the stable power supply system of high magnetic field device is developed by using the PWM and parallel active power filter technique. Due to the PWM control technique, the required DAF current can be obtained and the current ripple can be compensated by means of monitoring the load voltage, and the current ripple becomes very low by adjusting the load voltage. The simulation and analysis show that this system can respond to the reference quickly and is effective in suppressing the harmonics, especially the low-order harmonics. The feasibility of the proposed scheme is proved on the equipment built in the laboratory. (authors)

  11. Improvements to the power supply and control systems of Geiger-Mueller counter tubes

    International Nuclear Information System (INIS)

    Gavin, Gerard; Amberny, Philippe.

    1977-01-01

    This invention aims to provide a power supply and control system for Geiger-Mueller counter tubes requiring only one high voltage output, corresponding to the 'active' phase voltage. With this in view, the invention proposes, inter alia, a system comprising a high voltage source connected to the anode of the GM tube whose cathode is connected to a determination and counting circuit, featuring a cathode connected to the source via an electronic switch and to earth by a component for holding the potential difference at a given level and by another electronic switch, placed in series. The switches are controlled in turn so as alternately to bring the cathode to a first voltage, enabling the tube to function, and to a second voltage, causing the blocking of the tube, this second voltage being set by the component creating the voltage difference [fr

  12. Improvements to the power supply and control systems of Geiger-Mueller counter tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gavin, G; Amberny, P

    1977-10-19

    This invention aims to provide a power supply and control system for Geiger-Mueller counter tubes requiring only one high voltage output, corresponding to the 'active' phase voltage. With this in view, the invention proposes, inter alia, a system comprising a high voltage source connected to the anode of the GM tube whose cathode is connected to a determination and counting circuit, featuring a cathode connected to the source via an electronic switch and to earth by a component for holding the potential difference at a given level and by another electronic switch, placed in series. The switches are controlled in turn so as alternately to bring the cathode to a first voltage, enabling the tube to function, and to a second voltage, causing the blocking of the tube, this second voltage being set by the component creating the voltage difference.

  13. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  14. Design of a 300-Watt Isolated Power Supply for Ultra-Fast Tracking Converters

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Ouyang, Ziwei; Petersen, Lars Press

    2015-01-01

    This paper presents the design of a medium-powerrating isolated power supply for ultra-fast tracking converters and MOS-gate driver circuits in medium and high voltage applications. The key feature of the design is its very low circuit input-to-output parasitic capacitance, which maximizes its...

  15. Review of mixer design for low voltage - low power applications

    Science.gov (United States)

    Nurulain, D.; Musa, F. A. S.; Isa, M. Mohamad; Ahmad, N.; Kasjoo, S. R.

    2017-09-01

    A mixer is used in almost all radio frequency (RF) or microwave systems for frequency translation. Nowadays, the increase market demand encouraged the industry to deliver circuit designs to create proficient and convenient equipment with very low power (LP) consumption and low voltage (LV) supply in both digital and analogue circuits. This paper focused on different Complementary Metal Oxide Semiconductor (CMOS) design topologies for LV and LP mixer design. Floating Gate Metal Oxide Semiconductor (FGMOS) is an alternative technology to replace CMOS due to their high ability for LV and LP applications. FGMOS only required a few transistors per gate and can have a shift in threshold voltage (VTH) to increase the LP and LV performances as compared to CMOS, which makes an attractive option to replace CMOS.

  16. High voltage fast switches for nuclear applications

    International Nuclear Information System (INIS)

    Chatroux, D.; Lausenaz, Y.; Villard, J.F.; Lafore, D.

    1999-01-01

    SILVA process consists in a selective ionization of the 235 uranium isotope, using laser beams generated by dye lasers pumped by copper vapour laser (C.V.L.). SILVA involves power electronic for 3 power supplies: - copper vapour laser power supply, - extraction power supply to generate the electric field in the vapour, and - electron beam power supply for vapour generation. This article reviews the main switches that are proposed on the market or are on development and that could be used in SILVA power supplies. The SILVA technical requirements are: high power, high voltage and very short pulses (200 ns width). (A.C.)

  17. A HIGH BANDWIDTH BIPOLAR POWER SUPPLY FOR THE FAST CORRECTORS IN THE APS UPGRADE*

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ju; Sprau, Gary

    2017-06-25

    The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% of the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.

  18. Voltage stability in low voltage microgrids in aspects of active and reactive power demand

    Directory of Open Access Journals (Sweden)

    Parol Mirosław

    2016-03-01

    Full Text Available Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.

  19. Prediction of power losses in silicon iron sheets under PWM voltage supply

    International Nuclear Information System (INIS)

    Amar, M.; Kaczmarek, R.; Protat, F.

    1994-01-01

    The behavior of iron losses in silicon iron steels submitted to a PWM voltage is studied. The influence of modulation parameters (the depth of modulation and the number of eliminated harmonics) is clarified. In particular, the idea of an equivalent alternating pulse voltage that gives the same iron losses as the PWM voltage is established. An estimation formula for iron losses under the PWM voltage is developed based on the loss separation model and the voltage form factor. ((orig.))

  20. Wireless remote feeding for power supply of autarkic micro systems; Drahtlose Fernspeisung zur Energieversorgung autarker Mikrosysteme

    Energy Technology Data Exchange (ETDEWEB)

    Ungan, Tolgay

    2011-07-01

    Wireless power supply via a magnetic or electromagnetic field represents the most common energy supply of a battery-free micro system. The electronics of the micro system requires a minimum voltage for proper operation. Therefore it appears that the maximum working range is the distance at which this minimum voltage of the field no longer be taken. In typical applications, it is roughly the diameter of the antenna or coil of the reader. The voltage at the feeding point of the antenna is determined with the same irradiated field by the impedance of the antenna. If the range of the remote power is to be maximized, then this impedance has to be maximized. By achieving a very high impedance, even the use of an already existing source of radiation (radio, television or cell phone) could be used for powering a batteryless microsystem. The necessary conditions and limitations are indicated in this work theoretically as well as practically. Since the transformation of the voltage is proportional to the loaded quality factor and conventional air coils have a maximum quality factor of 150, they are unsuitable for efficient remote supply at low input powers. To solve this problem, a new method is developed to transformate the impedance using a quartz resonator with high quality factor. The resonators (quarts / SAW) are used as inductances with high quality to maximise the impedance and therefore the transformation of the voltage. Therefore the system can very efficiently adapt the antenna impedance to the high impedance input of the rectifier circuit. Experiments have shown that a rectified output voltage of more than 1 volt can be achieved from an antenna voltage of 7 mV at an input power of 1 muW (-30 dBm). The analytic and numerical description of the whole circuit delivers determining knowledge about the choice of the system components (resonator and diode). From the won knowledge of the overall system draughts are derived for special applications and their borders are

  1. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Science.gov (United States)

    2010-07-01

    ...-voltage equipment supplying power to such equipment receiving power from resistance grounded systems shall... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage...

  2. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    Science.gov (United States)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  3. An optimized low-power voltage controlled oscillator

    Science.gov (United States)

    Shah, Kriyang; Le, Hai Phuong; Singh, Jugdutt

    2007-01-01

    This paper presents an optimised low-power low-phase-noise Voltage Controlled Oscillator (VCO) for Bluetooth wireless applications. The system level design issues and tradeoffs related to Direct Conversion Receiver (DCR) and Low Intermediate Frequency (IF) architecture for Bluetooth are discussed. Subsequently, for a low IF architecture, the critical VCO performance parameters are derived from system specifications. The VCO presented in the paper is optimised by implementing a novel biasing circuit that employs two current mirrors, one at the top and the other one at the bottom of the cross-coupled complementary VCO, to give the exact replica of the current in both the arms of current mirror circuit. This approach, therefore, significantly reduces the system power consumption as well as improves the system performance. Results show that, the VCO consumes only 281μW of power at 2V supply. Its phase noise performance are -115dBc/Hz, -130dBc/Hz and -141dBc/Hz at the offset frequency of 1MHz, 3MHz and 5MHz respectively. Results indicate that 31% reduction in power consumption is achieved as compared to the traditional VCO design. These characteristics make the designed VCO a better candidate for Bluetooth wireless application where power consumption is the major issue.

  4. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  5. A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications

    International Nuclear Information System (INIS)

    Peters, Christian; Ortmanns, Maurits; Manoli, Yiannos; Spreemann, Dirk

    2008-01-01

    In this paper, a fully CMOS integrated active AC/DC converter for energy harvesting applications is presented. The rectifier is realized in a standard 0.35 µm CMOS process without special process options. It works as a full wave rectifier and can be separated into two stages—one passive and one active. The active part is powered from the storage capacitor and consumes about 600 nA at 2 V supply. The input voltage amplitude range is between 1.25 and 3.75 V, and the operating frequency range is from 1 Hz to as much as several 100 kHz. The series voltage drop over the rectifier is less than 20 mV. Measurements in combination with an electromagnetic harvester show a significant increase in the achievable output voltage and power compared to a common, discrete Schottky diode rectifier. The measured efficiency of the rectifier is over 95%. Measurements show a negligible temperature influence on the output voltage between −40 °C and +125 °C

  6. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal

    KAUST Repository

    Kim, Younggy

    2011-01-01

    Voltages produced by microbial fuel cells (MFCs) cannot be sustainably increased by linking them in series due to voltage reversal, which substantially reduces stack voltages. It was shown here that MFC voltages can be increased with continuous power production using an electronic circuit containing two sets of multiple capacitors that were alternately charged and discharged (every one second). Capacitors were charged in parallel by the MFCs, but linked in series while discharging to the circuit load (resistor). The parallel charging of the capacitors avoided voltage reversal, while discharging the capacitors in series produced up to 2.5 V with four capacitors. There were negligible energy losses in the circuit compared to 20-40% losses typically obtained with MFCs using DC-DC converters to increase voltage. Coulombic efficiencies were 67% when power was generated via four capacitors, compared to only 38% when individual MFCs were operated with a fixed resistance of 250 Ω. The maximum power produced using the capacitors was not adversely affected by variable performance of the MFCs, showing that power generation can be maintained even if individual MFCs perform differently. Longer capacitor charging and discharging cycles of up to 4 min maintained the average power but increased peak power by up to 2.6 times. These results show that capacitors can be used to easily obtain higher voltages from MFCs, allowing for more useful capture of energy from arrays of MFCs. © 2011 The Royal Society of Chemistry.

  7. Urban exposure to ELF magnetic field due to high-, medium- and low-voltage electricity supply networks

    International Nuclear Information System (INIS)

    Bottura, V.; Cappio Borlino, M.; Carta, N.; Cerise, L.; Imperial, E.

    2009-01-01

    The regional environment protection agency (ARPA) of the Aosta Valley region in north Italy performed a survey of magnetic field triggered by the power supply network in high, medium and low voltages on the entire area of Aosta town. The electrical distribution system for houses was not however taken into account. The aim of the survey was to evaluate the global population exposure and not simply the assessment of the legal exposure limit compliance. (authors)

  8. Temperature- and supply voltage-independent time references for wireless sensor networks

    CERN Document Server

    De Smedt, Valentijn; Dehaene, Wim

    2015-01-01

    This book investigates the possible circuit solutions to overcome the temperature- and supply voltage-sensitivity of fully-integrated time references for ultra-low-power communication in wireless sensor networks. The authors provide an elaborate theoretical introduction and literature study to enable full understanding of the design challenges and shortcomings of current oscillator implementations.  Furthermore, a closer look to the short-term as well as the long-term frequency stability of integrated oscillators is taken. Next, a design strategy is developed and applied to 5 different oscillator topologies and 1 sensor interface.All 6 implementations are subject to an elaborate study of frequency stability, phase noise, and power consumption. In the final chapter all blocks are compared to the state of the art. The main goals of this book are: • to provide a comprehensive overview of timing issues and solutions in wireless sensor networks; • to gain understanding of all underlying mechanisms by starti...

  9. Field Trial on a Rack-mounted DC Power Supply System with 80-Ah Lithium-ion Batteries

    Science.gov (United States)

    Matsushima, Toshio

    Using an industrial lithium-ion battery that has higher energy density than conventional valve-regulated lead-acid batteries, a rack-mounted DC-power-supply system was assembled and tested at a base transceiver station (BTS) offering actual services. A nominal output voltage and maximum output current of the system is 53.5V and 20A, respectively. An 80-Ah lithium-ion battery composed of 13 cells connected in series was applied in the system and maintained in a floating charge method. The DC-power-supply system was installed in a 19-inch power rack in the telecommunications equipment box at BTS. The characteristics of the 80Ah lithium-ion battery, specifications of the DC-power-supply system and field-test results were shown in this paper.

  10. [Development of residual voltage testing equipment].

    Science.gov (United States)

    Zeng, Xiaohui; Wu, Mingjun; Cao, Li; He, Jinyi; Deng, Zhensheng

    2014-07-01

    For the existing measurement methods of residual voltage which can't turn the power off at peak voltage exactly and simultaneously display waveforms, a new residual voltage detection method is put forward in this paper. First, the zero point of the power supply is detected with zero cross detection circuit and is inputted to a single-chip microcomputer in the form of pulse signal. Secend, when the zero point delays to the peak voltage, the single-chip microcomputer sends control signal to power off the relay. At last, the waveform of the residual voltage is displayed on a principal computer or oscilloscope. The experimental results show that the device designed in this paper can turn the power off at peak voltage and is able to accurately display the voltage waveform immediately after power off and the standard deviation of the residual voltage is less than 0.2 V at exactly one second and later.

  11. Five-Level Converter with Low Switching Frequency Applied as DC Voltage Supply

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg

    1999-01-01

    This paper describes the use of a multi-level converter as a DC supply. Equations for the converter will be deduced in the nondissipative case. The equations provide solutions to DC voltage and the angle of converter voltage. In addition the spectrum for the harmonics after the elimination of sel...

  12. Inductive-pulsed power supplying system for a betatron electromagnet

    International Nuclear Information System (INIS)

    Otrubyannikov, Yu.A.; Safronov, A.S.

    1984-01-01

    Circuit of producing quasitriangular current pulses designed for the pulsed power supply system of betatron electromagnet is described. Introduction of additional winding into electromagnet provides circuit galvanic isolation, artificial commutation of basic circuit thyristors and inductive power input to the winding during thyristor commutation. The considered system is used for excitation of betatron electromagnet up to 18 MeV. Magnetic field energy equals 1100 Y. The maximal voltage in energy storage capacitor - 4.8 kV. Current amplitude in basic winding - 335 A. The number of loops in basic winding equals 80, in additional one - 32. Current pulse duration in electromagnet-3.8 ms. The system provides operation with controlled current pulse frequency from 0 up to 150 Hz. The maximal consumption power - 18 kW

  13. High voltage system design for the IUCF 300 KV electron cooling system

    International Nuclear Information System (INIS)

    Bertuccio, T.; Brown, B.; Donica, G.; Ellison, T.; Friesel, D.L.

    1985-01-01

    A summary of the electron beam high voltage system design for the IUCF Cooler now under construction, is presented. There are extremely stringent regulation requirements (about 10ppm) on the main high voltage power supply (-300 kVDC, 15 mA), and less stringent requirements on the gun anode power supply, in order to achieve the regulation needed to store beams in the IUCF Cooler with very low momentum spreads (Δp/p approx. = 2 x 10 -5 ). An overview of the main high voltage power supply (HVPS) specifications and design, as well as provisions and plans to improve the regulation are discussed. The electron collection system, modeled after the FNAL collector which was able to collect between 99.9% and 99.99% of the electron beam, is discussed along with the requirements of the associated power supplies. The designs of the high voltage acceleration structures and high voltage platform are discussed, as well as practical design considerations based upon experience with the Fermilab 120 keV electron cooling system

  14. Development of a DC 1MV power supply technology for NB injectors

    International Nuclear Information System (INIS)

    Watanabe, K.; Kashiwagi, M.; Hanada, M.; Inoue, T.; Taniguchi, M.; Okumura, Y.; Sakamoto, K.; Ono, Y.; Yamashita, Y.; Kawashima, S.; Yamazaki, C.

    2006-01-01

    Major issues of NBI power supplies are a high-speed switching, regulation and transmission of dc ultra high voltage, and suppression of surge energy input to the beam source at breakdown. A GTO (gate turn off thyristor) inverter type power supply where the control is performed at low voltage ac side was designed for the ITER NB. Based on the remarkable progress of a high power IEGT (injection enhanced gate transistor), the design of the inverter has been modified to increase an efficiency and compactness using such new elements. A power loss in the inverter is reduced to be 30% of the GTO inverter system. For the transmission line of the dc UHV with intermediate voltages, a disk shape multi-conductor bushing with a transmission line test chamber has been developed. Dimensions of the bushing are 1.8 m in diameter and 140 mm in thickness at the edge. Electric fields at the conductor surface and insulator surface were designed to be lower than 5 kV/mm and 7 kV/mm, respectively. An electric field at the bottom of the ground potential outer conductor was designed to be lower than 1.2 kV/mm to prevent particle levitation which triggers breakdowns. The prototype transmission line has passed the standard impulse test up to 1,300 kV. A dc UHV up to 1,175 kV was successfully sustained for 300 s. To prevent the electric damage of the beam source at the breakdown, core snubbers using Fe-based nanocrystalline soft magnetic materials are adopted to dissipate the surge energy. (author)

  15. Magnet power supply for ISABELLE

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Frankel, R.F.; Thomas, M.G.

    1979-01-01

    The power supply system which will energize the superconducting magnets in the ISABELLE machine consists of some 520 computer-programmable power supplies with outputs ranging from 50 A to 4500 A. Most of the power supplies will be used for the correction of field harmonics, orbit correction and adjustment of the machine working line. During acceleration, currents in various magnet correction coils will be controlled in real time to track the main field; all power supplies must be highly stable during the stacking and storage of the beam (in some cases current regulation must be in the order of 0.001%). PS reference programs will be stored in microprocessor based function generators embedded in each power supply. Due to the large amount of stored energy in the system, the magnets must be protected during quenches. Details of the power supply and of the magnet quench protection system are described

  16. Transient evaluation using EMTP at single open phase with the offsite power transformer for the emergency power supply systems of nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2017-01-01

    The emergency power supply systems of nuclear power plants, as the objects of this research, are critical in supplying stable electric power to such systems as the emergency core cooling system (ECCS), and in maintaining safety of the nuclear power reactor; this was apparent in the accident at the Fukushima Daiichi Nuclear Power Station. The Nuclear Regulatory Commission (USNRC) issued regulatory documents (BL 2012-011, IN 2012-032), and has commenced evaluations on newly discovered vulnerability in the design of power supply systems which cannot be detected with under-voltage protection relays, with certain kinds of configuration of coils and iron core structures, such as when the offsite power supply side is a Y-connection and the load side is a ⊿-connection etc., when the detection of single open phase fault with the circuit of a transformer which is without a ground fault connected to the offsite power supply system. This report uses simulation by the electro magnetic transients program (EMTP) and clearly describe the response at the time of the power supply single open phase without ground fault for various configuration of coils and various iron core structures of the three-phase transformer, and identify the important issues in the response of emergency power supply systems and the safety related components of representative domestic PWR plants when the single open phase fault occurred without ground fault. This report describes the results of the simulations of operations of the protection relays of the emergency power supply systems and the safety related components of representative a domestic PWR plant with EMTP. This report explains the method to detect open-phase when the transformer is no-load which United States Electric Power Research Institute (EPRI) developed. As the detailed analyses data from EPRI related to the detection method concerned have not been disclosed officially yet, in this paper, the quantitative and detailed verification results

  17. Transient evaluation using EMTP at one phase opening of the offsite power transformer of the emergency power supply systems for nuclear power plants. This report is a follow-up the last year's

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2014-01-01

    The emergency power supply systems of nuclear power plants, as the objects of this research, are critical to supplying stable electric power to such systems as the emergency core cooling system (ECCS), and to maintaining the safety of the nuclear power reactor; this was apparent from the accident at the Fukushima Daiichi Nuclear Power Station. The USNRC issued regulatory documents (BL 2012-01, IN 2012-03), and has commenced to review those problems which cannot be detected by degraded-voltage protection relays such as new design vulnerability of the power supply systems that are certain kinds of winding structures and iron core structures when the one-phase open fault occurs without a ground fault of the transformer connected to the offsite power supply system, including when the offsite power supply side is a wye connection and the load side is a delta connection etc. The report of the INSS JOURNAL 2013 used simulation by the electro-magnetic transients program (EMTP) and obtained findings that clearly specified the response at the time of the power supply side one-phase open without ground fault of various winding structures and various iron core structures of the three-phase transformer and identified the important issues for the response of emergency power supply systems and the safety related components of representative domestic PWR plants when the one-phase open fault occurred without ground fault. In a continuation of the previous report, this paper summarizes the previous results, and then presents the principles by which normal voltages are maintained by both the primary and the secondary sides when the one-phase open failure without ground fault occurs on the primary side of the transformer, and the results of the analysis of operations of the protection relays of the emergency power systems and the safety related components of representative a domestic PWR plant by the simulation using EMTP. (author)

  18. Phase-wise enhanced voltage support from electric vehicles in a Danish low-voltage distribution grid

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    High deployment of electric vehicles (EVs) imposes great challenges for the distribution grids, especially in unbalanced systems with notable voltage variations which detrimentally affect security of supply. On the other hand, with development of Vehicle-to-Grid technology, EVs may be able...... to provide numerous services for grid support, e.g., voltage control. Implemented electronic equipment will allow them to exchange reactive power for autonomous voltage support without communicating with the distribution system operator or influencing the available active power for primary transportation...

  19. Filament supply circuit for particle accelerator

    International Nuclear Information System (INIS)

    Thompson, C.C. Jr.; Malone, H.F.

    1975-01-01

    In a particle accelerator of the type employing ac primary power and a voltage multiplication apparatus to achieve the required high dc accelerating voltage, a filament supply circuit is powered by a portion of the ac primary power appearing at the last stage of the voltage multiplier. This ac power is applied across a voltage regulator circuit in the form of two zener diodes connected back to back. The threshold of the zeners is below the lowest peak-to-peak voltage of the ac voltage, so that the regulated voltage remains constant for all settings of the adjustable acceleration voltage. The regulated voltage is coupled through an adjustable resistor and an impedance-matching transformer to the accelerator filament. (auth)

  20. Design and preliminary test results of the 40 MW power supply at the National High Magnetic Field Laboratory

    International Nuclear Information System (INIS)

    Boenig, H.J.; Bogdan, F.; Morris, G.C.; Ferner, J.A.; Schneider-Muntau, H.J.; Rumrill, R.H.; Rumrill, R.S.

    1993-01-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 x 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented

  1. Design, manufacture and factory testing of the Ion Source and Extraction Power Supplies for the SPIDER experiment

    International Nuclear Information System (INIS)

    Bigi, Marco; Rinaldi, Luigi; Simon, Muriel; Sita, Luca; Taddia, Giuseppe; Carrozza, Saverino; Decamps, Hans; Luchetta, Adriano; Meddour, Abdelraouf; Moressa, Modesto; Morri, Cristiano; Musile Tanzi, Antonio; Recchia, Mauro; Wagner, Uwe; Zamengo, Andrea; Toigo, Vanni

    2015-01-01

    Highlights: • 5 MVA ion source power supplies effectively integrated in 150 m"2 Faraday cage. • Load protection and performance requirements met of custom design high voltage power supplies. • 200 kW tetrode oscillator with 200 kHz frequency range successfully tested. - Abstract: The SPIDER experiment, currently under construction at the Neutral Beam Test Facility in Padua, Italy, is a full-size prototype of the ion source for the ITER Neutral Beam Injectors. The Ion Source and Extraction Power Supplies (ISEPS) for SPIDER are supplied by OCEM Energy Technology s.r.l. (OCEM) under a procurement contract with Fusion for Energy (F4E) covering also the units required for MITICA and ITER injectors. The detailed design of SPIDER ISEPS was finalized in 2011 and manufacture of most components completed by end 2013. The Factory Acceptance Tests took place early 2014. ISEPS, with an overall power rating of 5 MVA, form a heterogeneous set of items including solid state power converters and 1 MHz radiofrequency generators of 200 kW output power. The paper presents the main features of the detailed design developed by OCEM, focusing in particular on the high output voltage pulse step modulators, the high output current resonant converters, the radiofrequency generators by HIMMELWERK GmbH and the architecture and implementation of the complex control system. Details are given on non-standard factory tests verifying the insulation requirements specific to this application. Performance of ISEPS during the factory acceptance tests is described, with emphasis on demonstration of the load protection requirements, a crucial point for all neutral beam power supplies. Finally, key dates of SPIDER ISEPS installation and site testing schedule are provided.

  2. Design, manufacture and factory testing of the Ion Source and Extraction Power Supplies for the SPIDER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bigi, Marco, E-mail: marco.bigi@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Rinaldi, Luigi [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Simon, Muriel [Fusion for Energy, Josep Pla 2, 08019 Barcelona (Spain); Sita, Luca; Taddia, Giuseppe; Carrozza, Saverino [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Decamps, Hans [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Luchetta, Adriano [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Meddour, Abdelraouf [HIMMELWERK Hoch- und Mittelfrequenzanlagen GmbH, Jopestr. 10, 72072 Tübingen (Germany); Moressa, Modesto [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Morri, Cristiano; Musile Tanzi, Antonio [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Recchia, Mauro [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Wagner, Uwe [HIMMELWERK Hoch- und Mittelfrequenzanlagen GmbH, Jopestr. 10, 72072 Tübingen (Germany); Zamengo, Andrea; Toigo, Vanni [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2015-10-15

    Highlights: • 5 MVA ion source power supplies effectively integrated in 150 m{sup 2} Faraday cage. • Load protection and performance requirements met of custom design high voltage power supplies. • 200 kW tetrode oscillator with 200 kHz frequency range successfully tested. - Abstract: The SPIDER experiment, currently under construction at the Neutral Beam Test Facility in Padua, Italy, is a full-size prototype of the ion source for the ITER Neutral Beam Injectors. The Ion Source and Extraction Power Supplies (ISEPS) for SPIDER are supplied by OCEM Energy Technology s.r.l. (OCEM) under a procurement contract with Fusion for Energy (F4E) covering also the units required for MITICA and ITER injectors. The detailed design of SPIDER ISEPS was finalized in 2011 and manufacture of most components completed by end 2013. The Factory Acceptance Tests took place early 2014. ISEPS, with an overall power rating of 5 MVA, form a heterogeneous set of items including solid state power converters and 1 MHz radiofrequency generators of 200 kW output power. The paper presents the main features of the detailed design developed by OCEM, focusing in particular on the high output voltage pulse step modulators, the high output current resonant converters, the radiofrequency generators by HIMMELWERK GmbH and the architecture and implementation of the complex control system. Details are given on non-standard factory tests verifying the insulation requirements specific to this application. Performance of ISEPS during the factory acceptance tests is described, with emphasis on demonstration of the load protection requirements, a crucial point for all neutral beam power supplies. Finally, key dates of SPIDER ISEPS installation and site testing schedule are provided.

  3. Control voltage and power fluctuations when connecting wind farms

    Science.gov (United States)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  4. Control voltage and power fluctuations when connecting wind farms

    International Nuclear Information System (INIS)

    Berinde, Ioan; Bălan, Horia; Oros, Teodora Susana

    2015-01-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve

  5. Control voltage and power fluctuations when connecting wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com [Technical University of Cluj-Napoca, Romania, Faculty of Electrical Engineering, Department of Power Engineering and Management (Romania)

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  6. Development of high-power inverter supply for current drive of FRC plasma

    International Nuclear Information System (INIS)

    Kitano, Katsuhisa; Higashikozono, Takamitsu; Okada, Shigefumi; Goto, Seiichi

    2003-01-01

    High-Power RF supply is developed for the current drive of FRC (Field Reversed Configuration) plasma. The rotating magnetic field is produced by the four antennas set in the parallel direction to the geometrical axis of the FRC and faced each other. The sinusoidal currents with shifted phases by 90 degree each other should be supplied to the antennas. The two power supplies are necessary if a pair of the antennas faced oppositely are connected. Considering the plasma parameters, the rotating field of 50-100kHz and 50G at the center axis is expected to be required. We develop the adequate RF power supply for the purpose. The power supply consists of the inverter circuit, the step-up transformer and the LC tank ciruit. For the switching device of the inverter circuit, the IGBT (Insulated Gate Bipolar Transistor) is adopted. The inverter circuit is full bridge type. To operate it at high voltages, its arm consists of the 3 IGBTs arranged series. The output of the inverter is connected to the tank circuit by way of the step-up transformer with air core. The tank circuit is the parallel circuit of the antenna and the capacitor. By the adjustment of the frequency of the inverter output to the resonance frequency of the tank circuit, the large sinusoidal waveform current is obtained. The developed power supply can produce the current of 5kA at 10kV to the dummy antenna with almost the same inductance of the antenna. (author)

  7. Tuning magnet power supply

    International Nuclear Information System (INIS)

    Han, B.M.; Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The particles in a Rapid Cycling Accelerator are accelerated by rf cavities, which are tuned by dc biased ferrite cores. The tuning is achieved by the regulation of bias current, which is produced by a power supply. The tuning magnet power supply utilizes a bridge circuit, supplied by a three phase rectifier. During the rise of the current, when the particles are accelerated, the current is controlled with precision by the bridge which operates a power amplifier. During the fall of the current, the bridge operates in a switching mode and recovers the energy stored in the ferrites. The recovered energy is stored in a capacitor bank. The bridge circuit is built with 150 power transistors. The drive, protection and control circuit were designed and built from commercial component. The system will be used for a rf cavity experiment in Los Alamos and will serve as a prototype tuning power supply for future accelerators. 1 ref., 7 figs

  8. A 2-megawatt load for testing high voltage DC power supplies

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.; Primdahl, K.

    1993-01-01

    A high power water-cooled resistive load, capable of dissipating 2 Megawatts at 95 kilovolts is being designed and built. The load utilizes wirewound resistor elements suspended inside insulating tubing contained within a pressure vessel which is supplied a continuous flow of deionized water for coolant. A sub-system of the load is composed of non-inductive resistor elements in an oil tank. Power tests conducted on various resistor types indicate that dissipation levels as high as 22 times the rated dissipation in air can be achieved when the resistors are placed in a turbulent water flow of at least 15 gallons per minute. Using this data, the load was designed using 100 resistor elements in a series arrangement. A single-wall 316 stainless steel pressure vessel with flanged torispherical heads is built to contain the resistor assembly and deionized water. The resistors are suspended within G-11 tubing which span the cylindrical length of the vessel. These tubes are supported by G-10 baffles which also increase convection from the tubes by promoting turbulence within the surrounding water

  9. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  10. Alternative Solder Bond Packaging Approach for High-Voltage (HV) Pulsed Power Devices

    Science.gov (United States)

    2016-09-01

    triggered into the ON-state with a fiber - optic transmitter once the capacitor has been charged up to the desired voltage of choice with a power supply...substrate, which results in a much higher conductivity compared to highly doped p-type substrates in SiC (Fig. 1). The anode layer was etched using...reactive ion etch and then the mesa of the device was etched for total isolation. The gate contact implant was followed using nitrogen in a box

  11. Voltage generators of high voltage high power accelerators

    International Nuclear Information System (INIS)

    Svinin, M.P.

    1981-01-01

    High voltage electron accelerators are widely used in modern radiation installations for industrial purposes. In the near future further increasing of their power may be effected, which enables to raise the efficiency of the radiation processes known and to master new power-consuming production in industry. Improvement of HV generators by increasing their power and efficiency is one of many scientific and engineering aspects the successful solution of which provides further development of these accelerators and their technical parameters. The subject is discussed in detail. (author)

  12. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.; Sedin, A. A.; Feduschak, V. F. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.

  13. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  14. A CMOS Micro-power, Class-AB “Flipped” Voltage Follower using the quasi floating-gate technique

    Directory of Open Access Journals (Sweden)

    Juan Jesus Ocampo-Hidalgo

    2017-05-01

    Full Text Available This paper presents the design and characterization of a new analog voltage follower for low-voltage applications. The main idea is based on the “Flipped” Voltage Follower and the use of the quasi-floating gate technique for achieving class AB operation. A test cell was simulated and fabricated using a 0,5 μm CMOS technology. When the proposed circuit is supplied with VDD = 1,5 V, it presents a power consumption of only 413 μW. Measurement and experimental results show a gain bandwidth product of 10 MHz and a total harmonic distortion of 1,12 % at 1 MHz.

  15. Optically-powered Voltage-supply-device for Effective Utilization of Optical Energy in the Fiber-To-The-Home Network

    Science.gov (United States)

    Fukano, Hideki; Shinagawa, Takeshi; Tsuruta, Kenji

    An optically powered device with using InGaAs-Photodiode has been developed. This study aims to harvest light energy (2.8∼500μW) from the FTTH (Fiber To The Home) network and to utilize it for operating remote sensors without external energy sources. First, we designed and evaluated the characteristics of the booster circuit and confirmed that it could boost an input voltage of 0.3 V to 3.0 V. Next, we also evaluated the characteristics of InGaAs photodiode and confirmed that it can output a voltage over 0.3 V at 10-μW input light. We demonstrate that a ready-made sensor can be operated with an input optical power as low as 10 μW.

  16. Dynamic optimum dead time in piezoelectric transformer-based switch-mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Andersen, Thomas; Andersen, Michael A. E.

    2016-01-01

    to charge and discharge the input capacitance of piezoelectric transformers in order to achieve zero-voltage switching. This paper proposes a method for detecting the optimum dead time in piezoelectric transformer-based switch-mode power supplies. The provision of sufficient dead time in every cycle......Soft switching is required to attain high efficiency in high-frequency power converters. Piezoelectric transformerbased converters can benefit from soft switching in terms of significantly diminished switching losses and stresses. Adequate dead time is needed in order to deliver sufficient energy...

  17. Design of the klystron filament power supply control system for EAST LHCD

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zege; Wang, Mao; Hu, Huaichuan; Ma, Wendong; Zhou, Taian; Zhou, Faxin; Liu, Fukun; Shan, Jiafang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-09-15

    A filament is a critical component of the klystron used to heat the cathode. There are totally 44 klystrons in experimental advanced superconducting tokamak (EAST) lower hybrid current drive (LHCD) systems. All klystron filaments are powered by AC power suppliers through isolated transformers. In order to achieve better klystron preheat, a klystron filament power supply control system is designed to obtain the automatic control of all filament power suppliers. Klystron filament current is measured by PLC and the interlock between filament current and klystron high voltage system is also implemented. This design has already been deployed in two LHCD systems and proves feasible completely.

  18. Experiment and operation of a LHCD-35 kV/2.8 MW/1000 s high-voltage power supply on HT-7 tokamak

    International Nuclear Information System (INIS)

    Huang Yiyun

    2002-01-01

    A-35 kV/2.8 MW/1000s high-voltage power supply (HVPS) for HT-7 superconducting tokamak has been built successfully. The HVPS is scheduled to run on a 2.45 GHz/1 MW lower hybrid current drive (LHCD) system of HT-7 superconducting tokamak before the set-up of HT-7 superconducting tokamak in 2003. The HVPS has a series of advantages such as good steady and dynamic response, logical computer program controlling the HVPS without any fault, operational panel and experimental board for data acquisition, which both are grounded distinctively in a normative way to protect the main body of HVPS along with its attached equipment from dangers. Electric power cables and other control cables are disposed reasonably, to prevent signals from magnetic interference and ensure the precision of signal transfer. The author introduced the experiment and operation of a 35 kV/2.8 MW/1000 s HVPS for 2.45 GHz/1 MW LHCD system. The reliability and feasibility of the HVPS has been demonstrated in comparison with experimental results of original design and simulation data

  19. Virtual resistance-based control strategy for DC link regeneration protection and current sharing in uninterruptible power supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Guan, Yajuan; Savaghebi, Mehdi

    2017-01-01

    To address the DC link voltage regeneration issue in parallel Uninterruptible Power Supply (UPS) system, a DC link voltage protection (DCVP) method through online virtual resistance regulation is proposed. The proposed control strategy is able to protect the DC link from overvoltage that may...... trigger the protection mechanism of the UPS system. Moreover, a current sharing control strategy by regulating the virtual resistance is proposed to address the circulating current caused by the active power feeding. Finally, the feasibility of the proposed method is verified by experimental results from...

  20. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  1. Application of Newton's optimal power flow in voltage/reactive power control

    Energy Technology Data Exchange (ETDEWEB)

    Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  2. Automatic Voltage Control (AVC) System under Uncertainty from Wind Power

    DEFF Research Database (Denmark)

    Qin, Nan; Abildgaard, Hans; Flynn, Damian

    2016-01-01

    An automatic voltage control (AVC) system maintains the voltage profile of a power system in an acceptable range and minimizes the operational cost by coordinating the regulation of controllable components. Typically, all of the parameters in the optimization problem are assumed to be certain...... and constant in the decision making process. However, for high shares of wind power, uncertainty in the decision process due to wind power variability may result in an infeasible AVC solution. This paper proposes a voltage control approach which considers the voltage uncertainty from wind power productions....... The proposed method improves the performance and the robustness of a scenario based approach by estimating the potential voltage variations due to fluctuating wind power production, and introduces a voltage margin to protect the decision against uncertainty for each scenario. The effectiveness of the proposed...

  3. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    Science.gov (United States)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  4. Development of power supplies at VECC

    International Nuclear Information System (INIS)

    De, T.K.

    2005-01-01

    Large scale indigenous production of power supplies started at VECC since 1970. At a later stage, compact Superconducting Cyclotron demanded highly stable (of the order of 20 ppm) magnet power supplies to accommodate a large number of highly precise distributed beam trajectory in a smaller radial distance. Intensive quality development around the power supplies became essential. In-depth understanding of the power supply components, modules, computer based simulation, design, instrumentation, wide and long experience, all put together have contributed remarkable results leading to high quality indigenous development of power supply at VECC - a brief report has been presented in this paper. (author)

  5. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.

    Science.gov (United States)

    Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P

    2013-12-01

    We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.

  6. Thyristor current-pulse generator for betatron electromagnet with independent low-voltage supply

    International Nuclear Information System (INIS)

    Baginskii, B.A.; Makarevich, V.N.; Shtein, M.M.

    1989-01-01

    A thyristor generator is described that produces unipolar current pulses in the winding of a betatron electromagnet. The voltage on the electro-magnet is increased and the shape of the current pulses is improved by use of an intermediate inductive storage device. The current pulses have a duration of 11 msec, an amplitude of 190 A, and a repetition frequency of 50 Hz. The maximum magnetic-field energy is 450 J, the voltage on the electromagnet winding is 1.5 kV, and the supply voltage is 27 V

  7. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M., E-mail: kushagra.lalit@gmail.com; Mattoo, S. K. [Institute for Plasma Research, Gandhinagar (India)

    2016-07-15

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  8. Performance of unified power quality conditioner (UPQC) based on fuzzy controller for attenuating of voltage and current harmonics

    Science.gov (United States)

    Milood Almelian, Mohamad; Mohd, Izzeldin I.; Asghaiyer Omran, Mohamed; Ullah Sheikh, Usman

    2018-04-01

    Power quality-related issues such as current and voltage distortions can adversely affect home and industrial appliances. Although several conventional techniques such as the use of passive and active filters have been developed to increase power quality standards, these methods have challenges and are inadequate due to the increasing number of applications. The Unified Power Quality Conditioner (UPQC) is a modern strategy towards correcting the imperfections of voltage and load current supply. A UPQC is a combination of both series and shunt active power filters in a back-to-back manner with a common DC link capacitor. The control of the voltage of the DC link capacitor is important in achieving a desired UPQC performance. In this paper, the UPQC with a Fuzzy logic controller (FLC) was used to precisely eliminate the imperfections of voltage and current harmonics. The results of the simulation studies using MATLAB/Simulink and Simpower system programming for R-L load associated through an uncontrolled bridge rectifier was used to assess the execution process. The UPQC with FLC was simulated for a system with distorted load current and a system with distorted source voltage and load current. The outcome of the comparison of %THD in the load current and source voltage before and after using UPQC for the two cases was presented.

  9. Reactive power supply by distributed generators

    OpenAIRE

    Braun, M.

    2008-01-01

    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  10. Background voltage distortion influence on power electric systems in the presence of the Steinmetz circuit

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Luis; Pedra, Joaquin [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain); Caro, Manuel [IDOM Ingenieria y Arquitectura, C. Barcas 2, 46002 Valencia (Spain)

    2009-01-15

    In traction systems, it is usual to connect reactances in delta configuration with single-phase loads to reduce voltage unbalances and avoid electric system operation problems. This set is known as Steinmetz circuit. Parallel and series resonances can occur due to the capacitive reactance of the Steinmetz circuit and affect power quality. In this paper, the series resonance ''observed'' from the supply system is numerically located. The study of this resonance is important to avoid problems due to background voltage distortion. Experimental measurements are also presented to validate the obtained numerical results. (author)

  11. Power supply design for Hadron Facility

    International Nuclear Information System (INIS)

    Karady, G.; Kansog, J.; Thiessen, H.A.; Schneider, E.

    1987-01-01

    Recently, a study investigated the feasibility of building a large 60 GeV, kaon factory accelerator. This paper presents the conceptual design of the magnet power supplies and energy storage system. In this study the following three systems were investigated: (a) power supply using storage generator; (b) power supply using inductive storage device; and (c) resonant power supplies. These systems were analyzed from both technical and economical points of view. It was found that all three systems are feasible and can be built using commercially available components. From a technical point of view, the system using inductive storage is the most advantageous. The resonant power supply is the most economical solution

  12. Design of a -1 MV dc UHV power supply for ITER NBI

    Science.gov (United States)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  13. High voltage capacitor design and the determination of solid dielectric voltage breakdown

    International Nuclear Information System (INIS)

    Hutapea, S.

    1976-01-01

    The value of the external field intensity serves as an electrical insulating material and is a physical characteristic of the substance. Capacitor discharge in the dielectric medium are experimentally investigated. The high voltage power supply and other instrument needed are briefly discussed. Capacitors with working voltage of 30.000 volt and the plastic being used for dielectrics in the capacitors are also discussed. (author)

  14. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  15. Design of resonant converter based DC power supply for RF amplifier

    International Nuclear Information System (INIS)

    Mohan, Kartik; Suthar, Gajendra; Dalicha, Hrushikesh; Agarwal, Rohit; Trivedi, R.G.; Mukherjee, Aparajita

    2017-01-01

    ITER require 20 MW of RF power to a large variety of plasmas in the Ion Cyclotron frequency range for heating and driving plasma current. Nine RF sources of 2.5MW RF power level each collectively will accomplish the above requirement. Each RF source consists of SSPA, driver and end stage, above which driver and end stage amplifier are tube (Tetrode/Diacrode) based which requires auxiliary DC power source viz. filament, screen grid and control grid DC power supply. DC power supply has some stringent requirements like low stored energy, fast turn off, and low ripple value, etc. This paper will focus only on Zero Current Switching (ZCS) resonant converter based buck converter. This can serve the purpose of control grid and screen grid DC power supply for above requirement. IGBT switch will be used at 20 kHz so as to lower the filter requirement hence low stored energy and ripple in the output voltage. ZCS operation will also assist us in reducing EMI/EMC effect. Design of resonant tank circuit is important aspect of the converter as it forms the backbone of the complete system and basis of selection of other important parameters as well hence mathematical model analysis with the help of circuit equations for various modes have been shown as a part of selection criteria. Peak current through the switch, duty cycle, switching frequency will be the design parameters for selecting resonant tank circuit

  16. THREE-PHASE ENERGY SUPPLY SYSTEMS SIMULATION FOR THE TOTAL POWER LOSSES COMPONENTS ASSESSMENT

    Directory of Open Access Journals (Sweden)

    D.V. Tugay

    2016-09-01

    Full Text Available Purpose. The goal is to optimize a structure of Matlab-model of the three-phase energy supply system with power active filter. The mathematical model that describes the energy supply system modes of operation which contains additional losses is proposed. Methodology. We have applied concepts of the electrical circuits theory, mathematical modeling elements based on linear algebra and vector calculus, mathematical simulation in Matlab package. Results. We have developed two models of three-phase energy supply system. The first one is based on a vector representation, and the second one on the matrix representation of energy processes. Using these models we have solved the problem of maintaining unchanged the average useful power for 279 cases of energy supply system modes of operation. Originality. We have developed methods of mathematical analysis of a three-phase energy supply systems with polyharmonic voltages and currents in the symmetric and asymmetric modes. Practical value. We have created Matlab-model of a three-phase energy supply system with automated calculation of a correction factor. It allows reducing more than one order the time for energy processes elucidation in multiphase systems.

  17. 600W uninterruptible power supply

    Energy Technology Data Exchange (ETDEWEB)

    Frizell, C

    1988-01-01

    Although the mains power supply in western Europe is normally reliable, power failures, transients and noise can cause loss or corruption of data held on personal computers. The design of an uninterruptible power supply system (UPS) based on well proven technology, is described.

  18. Increasing the reliability of electricity supply of industrial enterprises for the account of application of a quick-running redundant power supply

    Directory of Open Access Journals (Sweden)

    Vertugin A.A.

    2017-06-01

    Full Text Available One of the main tasks to be performed when organizing the operation of the energy system is to ensure high-quality and uninterrupted power supply to consumers. Dips, interruptions and voltage surges of the electrical network are the most common causes of malfunctions in industrial plants and damage to household equipment, causing significant economic damage to both consumers and electricity suppliers.

  19. Serial powering of pixel modules

    International Nuclear Information System (INIS)

    Stockmanns, Tobias; Fischer, Peter; Huegging, Fabian; Peric, Ivan; Runolfsson, O.; Wermes, Norbert

    2003-01-01

    Modern pixel detectors for the next generation of high-energy collider experiments like LHC use readout electronics in deep sub-micron technology. Chips in this technology need a low supply voltage of 2-2.5 V alongside high current consumption to achieve the desired performance. The high supply current leads to significant voltage drops in the long and low mass supply cables so that voltage fluctuations at the chips are induced, when the supply current changes. This problem scales with the number of modules when connected in parallel to the power supplies. An alternative powering scheme connects several modules in series resulting in a higher supply voltage but a lower current consumption of the chain and therefore a much lower voltage drop in the cables. In addition the amount of cables needed to supply the detector is vastly reduced. The concept and features of serial powering are presented and studies of the implementation of this technology as an alternative for the ATLAS pixel detector are shown. In particular, it is shown that the potential risk of powering in series can be addressed and eliminated

  20. The supply voltage scaled dependency of the recovery of single event upset in advanced complementary metal—oxide—semiconductor static random-access memory cells

    International Nuclear Information System (INIS)

    Li Da-Wei; Qin Jun-Rui; Chen Shu-Ming

    2013-01-01

    Using computer-aided design three-dimensional simulation technology, the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigated. It reveals that the recovery linear energy transfer threshold decreases with the supply voltage reducing, which is quite attractive for dynamic voltage scaling and subthreshold circuit radiation-hardened design. Additionally, the effect of supply voltage on charge collection is also investigated. It is concluded that the supply voltage mainly affects the bipolar gain of the parasitical bipolar junction transistor (BJT) and the existence of the source plays an important role in supply voltage variation. (geophysics, astronomy, and astrophysics)

  1. Operational experience with reactive power control methods optimized for tokamak power supplies

    International Nuclear Information System (INIS)

    Sihler, C.; Huart, M.; Kaesemann, C.-P.; Streibl, B.

    2003-01-01

    The power and energy of the ASDEX Upgrade (AUG) tokamak are provided by two separate 10.5 kV, 110-85 Hz networks based on the flywheel generators EZ3-EZ4 in addition to the generator EZ2 dedicated to the toroidal field coil. The 10.5 kV networks supply the thyristor converters allowing fast control of the DC currents in the AUG poloidal field coils. Two methods for improving the load power factor in the present experimental campaign of AUG have been investigated, namely the control of the phase-to-neutral voltage in thyristor converters fitted with neutral thyristors, such as the new 145 MVA modular thyristor converter system (Group 6), and reactive power control achieved by means of static VAr compensators (SVC). The paper shows that reliable compensation up to 90 MVAr was regularly achieved and that electrical transients in SVC modules can be kept at an acceptable level. The paper will discuss the results from the reactive power reduction by SVC and neutral thyristor control and draw a comparative conclusion

  2. Voltage control on TEG-inverter system with pulse width modulation

    International Nuclear Information System (INIS)

    Kimura, N.; Kinoshita, H.; Matsuura, K.

    1984-01-01

    An ocean thermoelectric generating system can be expected to supply cheap electric power in future. And it can be used as base power supply or isolated power source in developing areas. The authors propose to apply forced-commutation inverter to thermoelectric energy conversion system and construct an electric power station which can be operated without any other synchronous generator (S-G) and can control ac system as stable as S-G. This paper shows that inverters can control voltage constant, though within a range of 10% load change, by using pulse width modulation (PWM). It also describes the design of the voltage control system covering from 50% to 100% load with combination of PWM and output voltage tap changing of TEG

  3. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.

  4. TEXT poloidal coil systems power supplies

    International Nuclear Information System (INIS)

    Hutchins, S.H.; Brower, D.F.

    1977-01-01

    TEXT is a convertional iron core tokamak which will have a toroidal field of 3.0 Tesla produced by room temperature copper coils and a maximum plasma current pulse of 400 kA induced by a 40 turn Ohmic Heating coil. The major radius is 100 cm and the minor radius of the plasma is 28 cm. The machine is intended for basic research in tokamak plasma physics and atomic physics and is designed primarily to provide a stable hot plasma, extremely good diagnostic access, and reliable operation. The discharge pulse length will be 300 msec and the repetition period 120 seconds. Power for the toroidal field coils and for the ohmic heating supply is provided by a 100 MVA energy storage alternator. The vertical field, horizontal field, fast positioning, and discharge cleaning power supply systems are powered from the Tokamak Laboratory power mains. The ohmic heating power system consists of an SCR controlled premagnetizing supply and commutation circuit, the main ohmic heating capacitor bank to provide plasma breakdown and current rise, and an SCR controlled power supply which sustains plasma current during the 300 ms pulse. The vertical field power system uses a small capacitor bank and an SCR controlled supply. The horizontal field has a reversible SCR controlled supply, and the fast positioning coils are powered by bipolar output transistor controlled supplies. This paper describes the loads, required wave forms, and the specifications for these power supply systems

  5. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  6. Practical switching power supply design

    CERN Document Server

    Brown, Martin C

    1990-01-01

    Take the ""black magic"" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive ""hands-on"" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also deta

  7. Serial powering of pixel modules

    CERN Document Server

    Stockmanns, Tobias; Hügging, Fabian Georg; Peric, I; Runólfsson, O; Wermes, Norbert

    2003-01-01

    Modern pixel detectors for the next generation of high-energy collider experiments like LHC use readout electronics in deep sub- micron technology. Chips in this technology need a low supply voltage of 2-2.5 V alongside high current consumption to achieve the desired performance. The high supply current leads to significant voltage drops in the long and low mass supply cables so that voltage fluctuations at the chips are induced, when the supply current changes. This problem scales with the number of modules when connected in parallel to the power supplies. An alternative powering scheme connects several modules in series resulting in a higher supply voltage but a lower current consumption of the chain and therefore a much lower voltage drop in the cables. In addition the amount of cables needed to supply the detector is vastly reduced. The concept and features of serial powering are presented and studies of the implementation of this technology as an alternative for the ATLAS pixel detector are shown. In par...

  8. High-voltage direct current (HVDC) transmission - a key technology for our power supply

    International Nuclear Information System (INIS)

    Dorn, J.

    2016-01-01

    The phasing-out of nuclear power in some countries and the aspirations of reducing carbon dioxide emissions have far-reaching implications for electric power generation in Europe. In the future, renewable electricity generation will account for a considerable share of the energy mix, but this type of production is often far from the load centers. In Germany, for example, large quantities of wind energy are already generated in the north and in the North Sea, but large load centers are located several hundred kilometers south of there. This requires an expansion of the transmission network with innovative solutions. High-voltage direct-current (HVDC) transmission plays an important role, since it brings a number of advantages over conventional AC technology and makes certain requirements feasible, for example Cable transmission over longer distances. The lecture presents the advantages of HVDC, the semiconductors used as well as the basic functions and typical performance of the used converter topopologies. The plant configurations and main components are illustrated using current projects. (rössner) [de

  9. A Low-input-voltage Wireless Power Transfer for Biomedical Implants

    DEFF Research Database (Denmark)

    Jiang, Hao; Bai, Kangjun; Zhu, Weijie

    2015-01-01

    Wireless power transfer is an essential technology to increase implants' longevity. A pair of inductivelycoupled coils operating at radio-frequency is extensively used to deliver electrical power to implants wirelessly. In this system, a power conditioning circuit is required convert the induced...... in the rectifier for the efficient AC to DC conversion. This requirement results in larger coil size, shorter operating distance or more stringent geometrical alignment between the two coils. In this paper, a low-input-voltage wireless power transfer has been demonstrated. In this system, the opencircuit voltage...... time-varying AC power harvested by the receiving coil to a stable DC power that is needed for powering circuits and sensors. Most existing power conditioning circuits require the induced voltage of the receiving coil to be significantly higher than the turn-on voltage of the diodes used...

  10. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  11. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    International Nuclear Information System (INIS)

    Hoppe, Eric W.; Merriman, Jason H.

    2011-01-01

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  12. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  13. Distributed Low Voltage Ride-Through Operation of Power Converters in Grid-Connected Microgrids under Voltage Sags

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Dragicevic, Tomislav

    2015-01-01

    it can make the MG a contributor in smooth ride through the faults. In this paper, a reactive power support strategy using droop controlled converters is proposed to aid MG riding through three phase symmetrical voltage sags. In such a case, the MGs should inject reactive power to the grid to boost...... the voltage in all phases at AC common bus. However, since the line admittances from each converter to point of common coupling (PCC) are not identical, the injected reactive power may not be equally shared. In order to achieve low voltage ride through (LVRT) capability along with a good power sharing...

  14. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  15. Characteristic performance of radio-frequency(RF) plasma heating using inverter RF power supplies

    International Nuclear Information System (INIS)

    Imai, Takahiro; Uesugi, Yoshihiko; Takamura, Shuichi; Sawada, Hiroyuki; Hattori, Norifumi

    2000-01-01

    High heat flux plasma are produced by high powe (∼14 kW) ICRF heating using inverter power supplies in the linear divertor simulator NAGDIS-II. The power flow of radiated rf power is investigated by a calorimetric method. Conventional power calculation using antenna voltage and current gives that about 70% of the rf power is radiated into the plasma. But increase of the heat load at the target and anode is about 10% of the rf power. Through this experiment, we find that about half of the rf power is lost at the antenna surface through the formation of rf induced sheath. And about 30% of the power is lost into the vacuum vessel through the charge exchange and elastic collision of ions with neutrals. (author)

  16. Effect of supply voltage and body-biasing on single-event transient pulse quenching in bulk fin field-effect-transistor process

    International Nuclear Information System (INIS)

    Yu Jun-Ting; Chen Shu-Ming; Chen Jian-Jun; Huang Peng-Cheng; Song Rui-Qiang

    2016-01-01

    Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse quenching with bulk FinFET are reported seldomly. Using three-dimensional technology computer aided design (3DTCAD) mixed-mode simulations, the effects of supply voltage and body-biasing on SET pulse quenching are investigated for the first time in bulk FinFET process. Research results indicate that due to an enhanced charge sharing effect, the propagating SET pulse width decreases with reducing supply voltage. Moreover, compared with reverse body-biasing (RBB), the circuit with forward body-biasing (FBB) is vulnerable to charge sharing and can effectively mitigate the propagating SET pulse width up to 53% at least. This can provide guidance for radiation-hardened bulk FinFET technology especially in low power and high performance applications. (paper)

  17. The overvoltage protection module for the power supply system for the pixel detector at Belle II experiment at KEK

    International Nuclear Information System (INIS)

    Kapusta, P.; Kisielewski, B.

    2015-01-01

    In this paper the overvoltage protection modules (OVP) for the power supply (PS) system of the Belle II pixel detector (PXD) are described. The aim of the OVP is to protect the detector and associated electronics against overvoltage conditions. Most critical in the system are voltages supplying the front-end ASICs. The PXD detector consists of the DEPFET sensor modules with integrated chips like the Drain Current Digitizer, the Switcher and the Data Handling Processor. These chips, implemented in modern sub-micron technologies, are quite vulnerable to variations in the supply voltages. The PXD will be placed in the Belle II experiment as close as possible to the interaction point, where access during experiment is very limited or even impossible, thus the PS and OVP systems exploit the remote-sensing method. Overvoltage conditions are due to failures of the PS itself, wrong setting of the output voltages or transient voltages coming out of hard noisy environment of the experiment. The OVP modules are parts of the PS modules. For powering the PXD 40 PS modules are placed 15 m outside the Belle II spectrometer. Each one is equipped with the OVP board. All voltages (22) are grouped in 4 domains: Analog, Digital, Steering and Gate which have independent grounds. The OVP boards are designed from integrated circuits from Linear Technology. All configurations were simulated with the Spice program. The control electronics is designed in a Xilinx CPLD. Two types of integrated circuits were used. LT4356 surge stopper protects loads from high voltage transients. The output voltages are limited to a safe value and also protect loads against over current faults. For less critical voltages, the LTC2912 voltage monitors are used that detect under-voltage and overvoltage events. It has to be noted that the OVP system is working independently of any other protection of the PS system, which increases its overall reliability. (authors)

  18. The overvoltage protection module for the power supply system for the pixel detector at Belle II experiment at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, P.; Kisielewski, B. [Institute of Nuclear Physics PAN, ul.Radzikowskiego 152, 31-875 Krakow, (Poland)

    2015-07-01

    In this paper the overvoltage protection modules (OVP) for the power supply (PS) system of the Belle II pixel detector (PXD) are described. The aim of the OVP is to protect the detector and associated electronics against overvoltage conditions. Most critical in the system are voltages supplying the front-end ASICs. The PXD detector consists of the DEPFET sensor modules with integrated chips like the Drain Current Digitizer, the Switcher and the Data Handling Processor. These chips, implemented in modern sub-micron technologies, are quite vulnerable to variations in the supply voltages. The PXD will be placed in the Belle II experiment as close as possible to the interaction point, where access during experiment is very limited or even impossible, thus the PS and OVP systems exploit the remote-sensing method. Overvoltage conditions are due to failures of the PS itself, wrong setting of the output voltages or transient voltages coming out of hard noisy environment of the experiment. The OVP modules are parts of the PS modules. For powering the PXD 40 PS modules are placed 15 m outside the Belle II spectrometer. Each one is equipped with the OVP board. All voltages (22) are grouped in 4 domains: Analog, Digital, Steering and Gate which have independent grounds. The OVP boards are designed from integrated circuits from Linear Technology. All configurations were simulated with the Spice program. The control electronics is designed in a Xilinx CPLD. Two types of integrated circuits were used. LT4356 surge stopper protects loads from high voltage transients. The output voltages are limited to a safe value and also protect loads against over current faults. For less critical voltages, the LTC2912 voltage monitors are used that detect under-voltage and overvoltage events. It has to be noted that the OVP system is working independently of any other protection of the PS system, which increases its overall reliability. (authors)

  19. Influence of the power supply parameters on the projectile energy in the permanent magnet electrodynamic accelerator

    Science.gov (United States)

    Waindok, Andrzej; Piekielny, Paweł

    2017-10-01

    The main objective of the research is to investigate, how the power supply parameters influence the kinetic energy of the movable element, called commonly a projectile or bullet. A calculation and measurement results of transient characteristics for an electrodynamic accelerator with permanent magnet support were presented in the paper. The calculations were made with using field-circuit model, which includes the parameters of the power supply, mass of the bullet and friction phenomenon. Characteristics of energy and muzzle velocity verso supply voltage (50 V to 350 V) and capacitance value (60 mF to 340.5 mF) were determined, as well. A measurement verification of selected points of calculation characteristics were carried out for investigated values of muzzle velocity. A good conformity between calculation and measurement results was obtained. Concluding, presented characteristics of the muzzle velocity and energy of the projectile vs. power supply parameters indicate, that accelerators could be used for fatigue testing of materials.

  20. Influence of the power supply parameters on the projectile energy in the permanent magnet electrodynamic accelerator

    Directory of Open Access Journals (Sweden)

    Waindok Andrzej

    2017-01-01

    Full Text Available The main objective of the research is to investigate, how the power supply parameters influence the kinetic energy of the movable element, called commonly a projectile or bullet. A calculation and measurement results of transient characteristics for an electrodynamic accelerator with permanent magnet support were presented in the paper. The calculations were made with using field-circuit model, which includes the parameters of the power supply, mass of the bullet and friction phenomenon. Characteristics of energy and muzzle velocity verso supply voltage (50 V to 350 V and capacitance value (60 mF to 340.5 mF were determined, as well. A measurement verification of selected points of calculation characteristics were carried out for investigated values of muzzle velocity. A good conformity between calculation and measurement results was obtained. Concluding, presented characteristics of the muzzle velocity and energy of the projectile vs. power supply parameters indicate, that accelerators could be used for fatigue testing of materials.

  1. Voltage conditions at motor starting in household power supply of nuclear power plants

    International Nuclear Information System (INIS)

    Heretik, P.

    2014-01-01

    The main purpose of this contribution is to develop a procedure for design verification of electrical devices. The design takes into account operating conditions where voltage drop on bus bars of respective electrical devices is of particular importance. Calculations for design verification are focused on the voltage drop condition for household operation. For simulation of the household operation simplified model which consists of main grid, auxiliary transformer, and motors is considered. For calculation data of these components provided by real manufacturers as an input for program ETAP and MATLAB. Results in ETAP and MATLAB simulations are compared with theoretical calculations without comparison with real experiment. Based on these verified simulations, design of electrical devices in NPPs can be performed. (authors)

  2. Monitoring operating temperature and supply voltage in achieving high system dependability

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    System dependability being a set of number of attributes, of which the important reliability, heavily depends on operating temperature and supply voltage. Any change beyond the designed specifications may change the system performance and could result in system reliability and hence dependability

  3. 49 CFR 236.516 - Power supply.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Power supply. 236.516 Section 236.516..., Train Control and Cab Signal Systems Standards § 236.516 Power supply. Automatic cab signal, train stop, or train control device hereafter installed shall operate from a separate or isolated power supply...

  4. 47 CFR 80.1015 - Power supply.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Power supply. 80.1015 Section 80.1015... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1015 Power supply. (a) There must be readily available for use under normal load conditions, a power supply sufficient...

  5. Voltage control in the future power transmission systems

    DEFF Research Database (Denmark)

    Qin, Nan

    Wind energy in Denmark covers 42% of the total power consumption in 2015, and will share up to 50% by 2020. Consequently, the conventional power plants are decommissioning. Under the progress of the green transition, the national decision leads to underground many overhead lines in the future...... stages. The voltage uncertainty caused by the wind power forecasting errors is estimated, which is applied as a voltage security margin to further constrain the voltage magnitude in the optimization problem. The problem under the uncertainty is therefore converted to a deterministic problem, which...... to ensure a highly reliable transmission, e.g. balancing the generation and the consumption in large geographic regions, the exchange capacities will be enlarged by upgrading the interconnections. The Danish power system, the electricity transportation hub between the Nordic and continental European systems...

  6. The power supply system for the DEPFET pixel detector at BELLE II

    International Nuclear Information System (INIS)

    Rummel, Stefan

    2013-01-01

    The upgrade of the KEKB accelerator towards 8×10 35 cm −2 s −1 poses several challenges for the BELLE II detector. Especially the innermost detector will be faced with a significant radiation of several MRad per year as well as a high hit density. To cope with this a silicon pixel detector will be used for the inner layers of the silicon tracker. The pixel detector (PXD) consists of two layers of DEPFET active pixel sensors. The DEPFET technology has an unique set of advantages like low power dissipation in the active area, flexible device size, radiation hardness and a thinning procedure allowing to adjust the thickness of the device over a wide range. The two layers close to the interaction point together with a low material budget will improve the IP resolution by a factor of 2 compared to the previous installed silicon detector. In addition silicon stand-alone pattern recognition will be possible together with the four layers of double sided strip detectors (DSSD) of the strip detector. The PXD detector system consists of the DEPFET modules with integrated readout chips, the data handling hybrid receiving the data and sending them to compute nodes performing an online pattern recognition. Moreover the power supply system provides the supply voltages for the DEPFET from a position outside of the detector. The power distribution is designed to provide low output impedance over all frequencies and transient response with appropriate overshoots. The PXD pose several challenges to the power distribution system—number of voltages, tight requirements on regulation and noise. -- Highlights: ► The KEKB accelerator receive a luminosity upgrade towards 8×10 35 cm −2 s −1 . ► A two layer pixel detector based on the DEPFET technology will be installed. ► An improvement of a factor of 2 in. impact parameter resolution is expected. ► The 34 A dedicated power supply system for the detector is under development which aims for low noise, low output impedance

  7. IMPLEMENTATION OF A SWITCHED POWER SUPPLY FOR THE PLASMA ELECTROLYTIC OXIDATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Fernando Gordillo-Delgado

    2017-07-01

    Full Text Available A switched-mode power supply was implemented for using in the Plasma Electrolytic Oxidation (PEO technique. The electronic devices are inexpensive and ordinarily used, which facilitates the construction of the system. A MICROCHIP microcontroller was used for generating a digital signal with frequency and duty cycle control; a capacitor bank and a diode bridge were also used for rectifying the input signal from the electrical network. The management of the output voltage was made with an arrangement of MOSFET transistors in the "low side" configuration; the measurement of the current was made with a Hall Effect sensor and using the USB communication the data was sent to a computer for visualization with a LabVIEW algorithm. The power supply was tested for creating microcavities in a titanium sheet with the aim of forming nanostructures of titanium dioxide.

  8. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  9. FPGA based control system for -100 kV, 25 A Crowbarless DC power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Tripathi, A.; Badapanda, M.K.; Lad, M.

    2015-01-01

    FPGA based digital control system has been developed for -100 kV, 25 A solid state modular crowbarless DC klystron bias power supply of 1 MW, 352.2 MHz RF test stand. The control system has capability to operate this power supply either in CW or pulse mode. Central controller, PSM controller and graphical user interface are key parts of this control system. Central controller monitors the status of various subsystems of this power supply like 11 kV step start unit, four numbers of main transformers each having 44 numbers of secondary windings and 176 numbers of switch power modules for deciding the number of power modules to be put ON and their duty cycles depending on the set output voltage and current. PSM controller sends appropriate control signal to the switch power modules through fibre optic lines and communicates it to the central controller. Linux based graphical user interface has been developed which enables the user to set the operating parameters along with their trip limits and displays the information of critical parameters of this power supply on a local touch screen panel. Provision for remote control and supervision is also provided through a separate PC connected to the main control system via Ethernet. The control system has capability to trip the power supply within 5 μsec in case any parameter exceeds its set limit. Suitable data logging feature is incorporated for offline fault analysis. The control system architecture along with its software protection interlocks are presented in this paper. The performance of the control system has been verified during operation of -100 kV, 25 A DC power supply with 1 MW, 352.2 MHz klystron amplifier. (author)

  10. Simplified design of switching power supplies

    CERN Document Server

    Lenk, John

    1995-01-01

    * Describes the operation of each circuit in detail * Examines a wide selection of external components that modify the IC package characteristics * Provides hands-on, essential information for designing a switching power supply Simplified Design of Switching Power Supplies is an all-inclusive, one-stop guide to switching power-supply design. Step-by-step instructions and diagrams render this book essential for the student and the experimenter, as well as the design professional. Simplified Design of Switching Power Supplies concentrates on the use of IC regulators. All popular forms of swit

  11. Multi-objective optimization of MOSFETs channel widths and supply voltage in the proposed dual edge-triggered static D flip-flop with minimum average power and delay by using fuzzy non-dominated sorting genetic algorithm-II.

    Science.gov (United States)

    Keivanian, Farshid; Mehrshad, Nasser; Bijari, Abolfazl

    2016-01-01

    D Flip-Flop as a digital circuit can be used as a timing element in many sophisticated circuits. Therefore the optimum performance with the lowest power consumption and acceptable delay time will be critical issue in electronics circuits. The newly proposed Dual-Edge Triggered Static D Flip-Flop circuit layout is defined as a multi-objective optimization problem. For this, an optimum fuzzy inference system with fuzzy rules is proposed to enhance the performance and convergence of non-dominated sorting Genetic Algorithm-II by adaptive control of the exploration and exploitation parameters. By using proposed Fuzzy NSGA-II algorithm, the more optimum values for MOSFET channel widths and power supply are discovered in search space than ordinary NSGA types. What is more, the design parameters involving NMOS and PMOS channel widths and power supply voltage and the performance parameters including average power consumption and propagation delay time are linked. To do this, the required mathematical backgrounds are presented in this study. The optimum values for the design parameters of MOSFETs channel widths and power supply are discovered. Based on them the power delay product quantity (PDP) is 6.32 PJ at 125 MHz Clock Frequency, L = 0.18 µm, and T = 27 °C.

  12. A High Resolution Switched Capacitor 1bit Sigma-Delta Modulator for Low-Voltage/Low-Power Applications

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    1996-01-01

    A high resolution 1bit Sigma-Delta modulator for low power/low voltage applications is presented. The modulator operates at a supply of 1-1.5V, the current drain is 0.1mA. The maximum resolution is 87dB equivalent to 14 bits of resolution. This is achieved with a signal-band of 5kHz, over-samplin...

  13. Generation of plasmas in water: utilization of a high-frequency, low-voltage bipolar pulse power supply with impedance control

    International Nuclear Information System (INIS)

    Baroch, P; Potocky, S; Saito, N

    2011-01-01

    Presented work focuses on the investigation and characterization of plasma discharges generated in water by newly developed bipolar pulse power supply. The main aim of our work was to solve and overcome problems with intensive arc discharge transition when the discharge is ignited and maintained by a low output impedance pulse power supply. For this purpose a novel type of bipolar pulse power supply was developed and tested. It was found that two distinguished stable modes of discharges generated in the water can be realized. Effects of water conductivity, pulse frequency and initial water temperature on the discharge properties were investigated. Optical emission spectroscopy was employed to study plasma parameters of the discharge and the correlation between the data obtained from the optical emission spectroscopy and the chemical species measured in the water was carried out.

  14. Employment within the power supply industry and the power supply related activities; Sysselsatte i kraftnaeringen og kraftrelatert virksomhet 2011

    Energy Technology Data Exchange (ETDEWEB)

    Thoen, Haavard

    2012-07-01

    The report's main objective is to investigate employment within the power supply industry and the power supply related activities. The report will describe the composition of employees in regard to sex, age and education. The power supply industry is defined in Statistics Norway's Standard Industrial Classification, as 'Production and distribution of electricity'. The group of companies related to power supply related activities employ similar persons in regard to education and occupation, typical to companies in the power supply industry. These two groups make up the power supply sector in this report. In 2011 there were 18 450 employees in the power supply sector. This constitutes an increase of nearly 13.5 per cent since 2004 and 1.1 per cent since 2010. The sex distribution of about 80 per cent men and 20 per cent women has been fairly stable since 2004. The power supply sector has a low share of women among its employees compared to the private sector in general. In 2011 the level of education in the power supply sector was higher than for the private sector in general. Since 2004, the share of persons with higher education has increased from 27 to 33 per cent. Employees in the power supply sector are on average older than employees in the private sector. The employees have matured since 2004, but in the last few years, there have also been signs of fresh recruitment. The power supply industry had a net influx of 380 new employees, in the period between 2009 and 2011. There were 1678 new employees and 1298 employees lost in the sector due to attrition. If we look at the supply of new employees who were also employed in 2010, 14.2 percent of female employees worked in temporary staff recruitment agencies. Temporary work seems to be an important entry gate to the power supply industry for women. Among men, the building- and construction sector was the most common background for new employees in the power supply industry. Among people who quit

  15. Design and Implementation of a High Quality Power Supply Scheme for Distributed Generation in a Micro-Grid

    Directory of Open Access Journals (Sweden)

    Mingchao Xia

    2013-09-01

    Full Text Available A low carbon, high efficiency and high quality power supply scheme for Distributed Generation (DG in a micro-grid is presented. A three-phase, four-leg DG grid-interfacing converter based on the improved structure of a Unified Power Quality Conditioner (UPQC, including a series converter and a parallel converter is adopted, and improved indirect and direct control strategies are proposed. It can be observed that these strategies effectively compensate for voltage sags, voltage swells and voltage distortion, as well as voltage power quality problems resulting from the nonlinear and unbalanced loads in a micro-grid. While solving the coupling interference from series–parallel, the grid-interfacing converter can achieve proper load power sharing in a micro-grid. In particular, an improved minimum-energy compensation method is proposed that can overcome the conventional compensation algorithm defects, ensure the load voltage’s phase angle stability, improve the voltage compensating ability and range, reduce the capacity and cost of converters, and reduce the shock of micro-grid switching between grid-connected mode and islanded mode. Moreover, the advantages/disadvantages and application situation of the two improved control strategies are analyzed. Finally, the performance of the proposed control strategies has been verified through a MATLAB/Simulink simulation under various operating conditions.

  16. Multi-Objective Optimization of Pulsed Power Supply for a Railgun

    Directory of Open Access Journals (Sweden)

    Mehrdad Jafarboland

    2011-07-01

    Full Text Available A novel two-objective optimization design model for pulsed power supply (PPS is proposed in this paper. The objectives are the muzzle velocity and the stored-to-kinetic energy efficiency. The design variables include the operating voltage and the trigger delay times between segments. The acceleration of the armature is constrained to lower than 106 m/s2. The optimization results for nuzzle velocity and the efficiency separately show the following: 1 The acceleration constraint has great influence on the performance; 2 wide current pulse yields high velocity but low efficiency; and 3 The operating voltage has to be increased to accelerate a heavier projectile to a certain velocity or at a certain efficiency. Pareto solution fronts for various projectile masses are found using the nondominated sorting genetic algorithm (NSGA-II under the integration environment of MATLAB software.

  17. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  18. Study of matrix converter as a current-controlled power supply in QUEST tokamak

    International Nuclear Information System (INIS)

    Liu, Xiaolong; Jiang, Yi; Nakamura, Kazuo

    2011-01-01

    Because QUEST tokamak has a divertor configuration with a higher κ and a negative n-index, a precise power supply with a rapid response is needed to control the vertical position of the plasma. A matrix converter is a direct power conversion device that uses an array of controlled bidirectional switches as the main power elements for creating a variable-output current system. This paper presents a novel three-phase to two-phase topological matrix converter as a proposed power supply that stabilizes the plasma vertical position and achieves unity input power factor. An indirect control strategy in which the matrix converter is split into a virtual rectifier stage and a virtual inverter stage is adopted. In the virtual rectifier stage, the instantaneous active power and reactive power are decoupled on the basis of system equations derived from the DQ transformation; hence, unity power factor is achieved. Space vector pulse width modulation is adopted to determine the switching time of each switch in the virtual rectifier; the output voltage of the virtual rectifier is adjusted by the virtual inverter stage to obtain the desired load current. Theoretical analyses and simulation results are provided to verify its feasibility. (author)

  19. Fibre optic control for electron gun power supplies and data acquisition of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Chavan, R.B.; Yadav, Vivek; Dixit, K.P.; Bakhtsingh, R.I.; Rajan, Rehim; Nanu, K.; Mittal, K.C.; Chakravarthy, D.P.; Gantayet, L.M.

    2011-01-01

    A 3 MeV, 10 mA DC Industrial Electron Beam Accelerator is being commissioned at Electron Beam Centre, Navi Mumbai. The electron beam is generated by a triode electron gun and injected into the accelerating column at 5 keV. The gun and its power supplies, (5 kV anode, 3 kV grid and 15V/20A filament), are floating at 3 Million volts, and are situated in a tank which is pressurized with SF6 at 6 kg/cm 2 . These power supplies are required to be controlled remotely. The various accelerator parameters like Beam Energy, Beam Current, RF Electrode Voltage, Power Oscillator Plate Voltage / Current and Vacuum are required to be monitored during beam operation. The software was developed in VB.Net for control and data acquisition. The database is provided in SQL 2005 for storing the data. For this purpose, control system using ADAM modules and Optical fibre has been designed and developed. This paper describes the design features of the control system and experience of use of control software during initial beam trials. (author)

  20. Power supply instrumentation for pulsed dielectric barrier discharges

    International Nuclear Information System (INIS)

    Quiroz Velázquez, V E; López Callejas, R; De la Piedad Beneitez, A; Rodríguez Méndez, B G; Peña Eguiluz, R; Muñoz Castro, A E; Barocio, S R; Mercado Cabrera, A; Valencia Alvarado, R

    2012-01-01

    The design and implementation of a pulsed high voltage supply intended to the production and control of pulsed dielectric barrier discharges are reported. The instrumentation includes three independently built DC sources coupled to Flyback-like converters using three 1:50 high voltage transformers. The system is capable of supplying voltages up to 70 kV at a 100-2000 Hz repetition rate, delivering 1-500 μs wide pulses. The system has been applied to the development of pulsed dielectric barrier discharges in a stainless steel coaxial reactor 30 cm long and with a 2.54 cm diameter. The inner nickel electrode diameter is 0.005 cm and is embedded in alumina. The discharges have been carried out in room pressure air. Discharges have been implemented. The discharge is made is a water environment for purposes of bacterial elimination.

  1. Modeling and simulation of dynamic voltage restorer in power system

    International Nuclear Information System (INIS)

    Abdel Aziz, M.A.A.M.

    2012-01-01

    There are many loads subjected to several Power Quality Problems such as voltage sags/swells, unbalance, harmonics distortion, and short interruption. These loads encompass a wide range of equipment which are very sensitive to voltage disturbances. The Dynamic Voltage Restorer (DVR) has recently been introduced to protect sensitive loads from voltage sags and other voltage disturbances in addition to this, it mitigates current harmonics distortion. It is a series connected power electronic based device. It is considered as one of the most efficient and effective solutions. Its appeal includes smaller size and fast dynamic response to disturbances. This work describes a proposal of the DVR to improve power quality distribution (medium voltage) system. The control of the compensation voltage and harmonics cancellation in the DVR is based on Adaptive Noise Canceling (ANC) technique. Simulation results carried out by PSCAD/EMTDC to investigate the performance of the proposed method.

  2. Development of Power Supply Management Module for Radio Signal Repeaters of Automatic Metering Reading System in Variable Solar Density Conditions

    Directory of Open Access Journals (Sweden)

    Kondratjevs K.

    2016-02-01

    Full Text Available In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.

  3. Development of Power Supply Management Module for Radio Signal Repeaters of Automatic Metering Reading System in Variable Solar Density Conditions

    Science.gov (United States)

    Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.

    2016-02-01

    In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.

  4. Solid State High Voltage Supply for EB and X-Ray Generators

    Czech Academy of Sciences Publication Activity Database

    Zobač, Martin; Vlček, Ivan

    2009-01-01

    Roč. 44, 5-6 (2009), s. 73-75 ISSN 0861-4717 R&D Projects: GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20650511 Keywords : high voltage supply * electron beam generator * x-ray generator Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Reduced Voltage Scaling in Clock Distribution Networks

    Directory of Open Access Journals (Sweden)

    Khader Mohammad

    2009-01-01

    Full Text Available We propose a novel circuit technique to generate a reduced voltage swing (RVS signals for active power reduction on main buses and clocks. This is achieved without performance degradation, without extra power supply requirement, and with minimum area overhead. The technique stops the discharge path on the net that is swinging low at a certain voltage value. It reduces active power on the target net by as much as 33% compared to traditional full swing signaling. The logic 0 voltage value is programmable through control bits. If desired, the reduced-swing mode can also be disabled. The approach assumes that the logic 0 voltage value is always less than the threshold voltage of the nMOS receivers, which eliminate the need of the low to high voltage translation. The reduced noise margin and the increased leakage on the receiver transistors using this approach have been addressed through the selective usage of multithreshold voltage (MTV devices and the programmability of the low voltage value.

  6. Multi-channel programmable power supply with temperature compensation for silicon sensors

    International Nuclear Information System (INIS)

    Shukla, R. A.; Achanta, V. G.; Dugad, S. R.; Kurup, A. M.; Lokhandwala, S. S.; Prabhu, S. S.; Freeman, J.; Los, S.; Garde, C. S.; Khandekar, P. D.; Gupta, S. K.; Rakshe, P. S.

    2016-01-01

    Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu et al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this

  7. Multi-channel programmable power supply with temperature compensation for silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, R. A.; Achanta, V. G.; Dugad, S. R., E-mail: dugad@cern.ch; Kurup, A. M.; Lokhandwala, S. S.; Prabhu, S. S. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Freeman, J.; Los, S. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Garde, C. S.; Khandekar, P. D. [Vishwakarma Institute of Information Technology, Pune 411048 (India); Gupta, S. K. [Tata Institute of Fundamental Research, Mumbai 400005 (India); GRAPES-3 Experiment, Cosmic Ray Laboratory, Raj Bhavan, Ooty 643001 (India); Rakshe, P. S. [Vishwakarma Institute of Information Technology, Pune 411048 (India); GRAPES-3 Experiment, Cosmic Ray Laboratory, Raj Bhavan, Ooty 643001 (India)

    2016-01-15

    Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu et al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this

  8. An energy-harvesting power supply for underwater bridge scour monitoring sensors

    Science.gov (United States)

    Wang, Yuli; Li, Yingjie; He, Longzhuang; Shamsi, Pourya; Zheng, Yahong R.

    2018-03-01

    The natural force of scouring has become one of the most critical risk endangering the endurance of bridges, thus leading to the necessity of deploying underwater monitoring sensors to actively detect potential scour holes under bridges. Due to the difficulty in re-charging batteries for underwater sensors, super capacitors with energy harvesting (EH) means are exploited to prolong the sustainability of underwater sensors. In this paper, an energy harvesting power supply based on a helical turbine is proposed to power underwater monitoring sensors. A small helical turbine is designed to convert water flow energy to electrical energy with favorable environmental robustness. A 3-inch diameter, 2.5-inch length and 3-bladed helical turbine was designed with two types of waterproof coupling with the sensor housing. Both designs were prototyped and tested under different flow conditions and we get valid voltage around 0.91 V which is enough to power monitoring sensor. The alternating current (AC) electrical energy generated by the helical turbine is then rectified and boosted to drive a DC charger for efficiently charging one super capacitor. The charging circuit was designed, prototyped and tested thoroughly with the helical turbine harvester. The results were promising, that the overall power supply can power an underwater sensor node with wireless transceivers for long-term operations

  9. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  10. The Study of Residual Voltage of Induction Motor and the Influence of Various Parameters on the Residual Voltage

    Science.gov (United States)

    Zhang, Shuping; Zhao, Chen; Tan, Weipu

    2017-05-01

    The majority important load of industrial area is mainly composed of induction motor, it is more common that induction motor becomes sluggishness and even tripping due to the lose of power supply or other malfunction in the practical work. In this paper, space vector method is used to establish a reduced order model of induction motor, and then study the changes of motor electromagnetic after losing electricity. Based on motion equations of the rotor and magnetic flux conservation principle, it uses mathematical methods to deduce the expression of rotor current, rotor flux, the stator flux and the residual voltage of stator side. In addition, relying on thermal power plants, it uses the actual data of power plants, takes DIgsilent software to simulate the residual voltage of motor after losing electricity. analyses the influence on the residual voltage with the changes of the moment of inertia, load ratio, initial size of slip and the load characteristic of induction motor. By analysis of these, it has a more detailed understanding about the changes of residual voltage in practical application, in additional, it is more beneficial to put into standby power supply safely and effectively, moreover, reduce the influence of the input process to the whole system.

  11. Low Power/Low Voltage Interface Circuitry for Capacitive Sensors

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    This thesis focuses mainly on low power/low voltage interface circuits, implemented in CMOS, for capacitive sensors. A brief discussion of demands and possibilities for analog signal processing in the future is presented. Techniques for low power design is presented. This is done by analyzing power...... power consumption. It is shown that the Sigma-Delta modulator is advantageous when embedded in a feedback loop with a mechanical sensor. Here a micro mechanical capacitive microphone. Feedback and detection circuitry for a capacitive microphone is presented. Practical implementations of low power....../low voltage interface circuitry is presented. It is demonstrated that an amplifier optimized for a capacitive microphone implemented in a standard 0.7 micron CMOS technology competes well with a traditional JFET amplifier. Furthermore a low power/low voltage 3rd order Sigma-Delta modulator is presented...

  12. Clipper circuit of pulse modulator used for klystron-5045 power supply

    CERN Document Server

    Akimov, A V

    2001-01-01

    While the operation of modulator to the pulsed transformer of klystron-5045, current through the primary winding of the pulse transformer (PT) continues to flow even upon the end of the klystron voltage operating pulse. This is determined by an energy stored in magnetizing inductance. The prolongation of magnetizing current passing process simultaneously with the premature choking of thyratron can cause high voltage of inverse polarity at the klystron, which cause the destruction of the cathode. We have considered the possibility of shortening time of magnetizing current passage for the charge of reasonable choice of clipper circuit parameters. The behavior of clipper circuit was studied in modulators used for the VEPP-5 (BINP, Russia) preinjector klystron power supply. The optimum operation run of the circuit was selected and its design features are described.

  13. PMU-Aided Voltage Security Assessment for a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, H.; Zhang, Y. C.; Zhang, J. J.; Muljadi, E.

    2015-04-08

    Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This paper proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant’s point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.

  14. Low-Power, Low-Voltage Resistance-to-Digital Converter for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2016-09-01

    Full Text Available IC (ASIP of Universal Sensors and Transducers Interface (USTI-MOB with low power consumption, working in the resistive measurement mode (one of 26 possible measuring modes is described in the article. The proposed IC has 20 W to 4.5 M W range of measurement, relative error< ±0.04 %, 0.85 mA supply current and 1.2 V supply voltage. The worst-case error of about< ±1.54 % is observed. IC has three popular serial interfaces: I2C, SPI and RS232/USB. Due to high metrological performance and technical characteristics the USTI- MOB is well suitable for such application as: sensor systems for IoT, wearable and mobile devices, and digital multimeters. The ICs can also work with any quasi-digital resistive converters, in which the resistance is converted to frequency, period, duty-cycle or pulse width.

  15. General conditions for electric power supply

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    If it is uncertain whether future power bills will be paid fully, it is admissible to take an action claiming a declaration which states that the electricity rate payment boycotter has no right to non-payment nor a right to withhold payment towards the electricity supply utility, and that the electricity supply utility has the right to stop energy supply because of reduced electricity rate payments effected and/or announced, and to denounce the contract without observing any term of notice. If the electricity buyer reduces a power bill to be paid without any legal grounds, the electricity supply utility has the right to stop power supplies and to denounce the power supply contract without observing any term of notice. The freedom of thought and the freedom of opinion must not be expressed by reducing power bills to be paid. Basic rights discontinue to be effective as soon as a contract or law is broken. A weighing of protected interests is not effected if the exercise of a basic law is unlawful. (orig./HP) [de

  16. A High Voltage Swing 1.9 GHz PA in Standard CMOS

    NARCIS (Netherlands)

    Aartsen, W.A.J.; Annema, Anne J.; Nauta, Bram

    2002-01-01

    A circuit technique for RF power amplifiers that reliably handle voltage peaks well above the nominal supply voltage is presented. To achieve this high-voltage tolerance the circuit implements switched-cascode transistors that yield reliable operation for voltages up to 7V at RF frequencies in a

  17. Reliability of dc power supplies in nuclear power plant application

    International Nuclear Information System (INIS)

    Eisenhut, D.G.

    1978-01-01

    In June 1977 the reliability of dc power supplies at nuclear power facilities was questioned. It was postulated that a sudden gross failure of the redundant dc power supplies might occur during normal plant operation, and that this could lead to insufficient shutdown cooling of the reactor core. It was further suggested that this potential for insufficient cooling is great enough to warrant consideration of prompt remedies. The work described herein was part of the NRC staff's efforts aimed towards putting the performance of dc power supplies in proper perspective and was mainly directed towards the particular concern raised at that time. While the staff did not attempt to perform a systematic study of overall dc power supply reliability including all possible failure modes for such supplies, the work summarized herein describes how a probabilistic approach was used to supplement our more usual deterministic approach to reactor safety. Our evaluation concluded that the likelihood of dc power supply failures leading to insufficient shutdown cooling of the reactor core is sufficiently small as to not require any immediate action

  18. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  19. Upgrade of the Nuclotron power supply

    International Nuclear Information System (INIS)

    Karpinskij, V.N.; Kondrat'ev, N.G.; Osipenkov, A.L.

    2010-01-01

    One of topics of the Nuclotron development is the modification of its power supply scheme and upgrade of the energy evacuation system aimed to provide long and safe operation of the Nuclotron at the dipole magnetic field up to 2 T. It is necessary for the Nuclotron operation as a part of injection chain of the heavy ion collider under design at JINR as well as for fulfillment of its current scientific program. In the report the structure and peculiarity of the existing power supply system are described. The existing system is based on separated supply of dipole magnets and quadrupole lenses. General goals of the power supply modification are described, structural and principal schemes of the power supply, control system and the schemes of the energy evacuation key are presented

  20. Intelligent power supply controller

    International Nuclear Information System (INIS)

    Rumrill, R.S.; Reinagel, D.J.

    1991-01-01

    The authors have developed a new power supply controller which would combine 20-bit precision, simple interfacing, and versatile software control. It performs many tasks internal to the power supply and also communicates with an external host computer. Parameters can be entered and/or read over a serial link using one of the 82 command words. In addition, an optional remote control panel can be located up to thousands of feet away. This new controller will reduce the software development time normally spent by the user, while increasing the reliability of the system. The cost is less than buying the equivalent separate CAMAC system. Nonvolatile memory remembers all configuration data; one generic controller can thus be programmed to use anywhere from the smallest power supply to the largest. The controllers will be used at the Clinton P. Anderson Meson Facility at Los Alamos