WorldWideScience

Sample records for voltage power source

  1. Voltage resonant inverter as a power source

    OpenAIRE

    Lupenko, Anatoliy; Stakhiv, Petro

    2014-01-01

    The operation mode of a voltage resonant inverter as a power source with variable load is analyzed. In order to reduce load power variations, an approach to development of the inverter’s load power response based on providing similar positive and negative power deviations from its nominal value has been proposed. The design procedure for resonant inverter with open loop structure as a power source has been elaborated. For a high pressure sodium lamp as a load, the power deviation of about 4% ...

  2. Intense neutron source: high-voltage power supply specifications

    International Nuclear Information System (INIS)

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  3. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters

    Directory of Open Access Journals (Sweden)

    Amir Ghorbani

    2018-05-01

    Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter

  4. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  5. Source of high-voltage power supply for ozone generators at glow discharge

    International Nuclear Information System (INIS)

    Bruev, A.A.; Golota, V.I.; Zavada, L.M.; Taran, G.V.

    2000-01-01

    High-voltage power supply source on quasi-resonance inverter base which works at direct current regime is described. This source forms 20 kV voltage with 0 - 10 mA current regulation. It protects the source from current break-downs and feeds ozone generators at glow discharge

  6. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    Science.gov (United States)

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  7. A digital controlled negative high voltage power source for LINAC of HLS

    International Nuclear Information System (INIS)

    Gao Hui; Chen Jun; Hong Jun; Wang Weibing

    2005-01-01

    This paper introduces the working principle of a 10-80 kV negative high voltage power source for the electronic gun of the 200 MeV LINAC of NSRL, especially how to realize the switch power, voltage/current sampling, feedback control and microcontroller module. The firmware design for the SOC microcontroller of ADuC8xx and the application software design for PC are also presented. (authors)

  8. A Hybrid, Current-Source/Voltage-Source Power Inverter Circuit

    DEFF Research Database (Denmark)

    Trzynadlowski, Andrzej M.; Patriciu, Niculina; Blaabjerg, Frede

    2001-01-01

    A combination of a large current-source inverter and a small voltage-source inverter circuits is analyzed. The resultant hybrid inverter inherits certain operating advantages from both the constituent converters. In comparison with the popular voltage-source inverter, these advantages include...... reduced switching losses, improved quality of output current waveforms, and faster dynamic response to current control commands. Description of operating principles and characteristics of the hybrid inverter is illustrated with results of experimental investigation of a laboratory model....

  9. All solid state high voltage power supply for neutral beam sources

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1984-01-01

    The conceptual design of a high frequency solid state, high power, high voltage, power system that reacts fast enough to be compatible with the requirements of a neutral beam source is presented. The system offers the potential of significant advantages over conventional power line frequency systems; such as high reliability, long life, relatively little maintenance requirements, compact size and modular design

  10. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  11. DESIGN OF DYNAMIC VOLTAGE RESTORER TO ENHANCE POWER QUALITY RELYING ON RENEWABLE SOURCE

    Directory of Open Access Journals (Sweden)

    Haider M. Umran

    2018-05-01

    Full Text Available Power quality improvement of low voltage grid is a great challenge that confronts the sophisticated power applications, because their performance is highly sensitive to the quality of power supply. Dynamic Voltage Restorer (DVR used widely as an efficient and skillful device to adjust electrical disturbances of the distribution grids. This paper introduces an overview of the components of the 3-phase dynamic voltage restorer and design its own control circuit. The performance of DVR was developed on the basis of the appropriate selection of Photovoltaic (PV module instead of the present conventional designs. Through this design, the need of series converter (DVR for the current from an electrical grid will end and the problems of power losses will curb. The PV-module is selected to meet the requirements of the DVR during voltage sag/swell on voltage line. The proposed system is mimicked in MATLAB software/Simulink and the findings are presented to prove the success of the design in terms of: Full congruence of the load voltage waveform with source voltage waveform, attaining 0.77% of THD analysis for the load voltage and the waveforms of PV system.

  12. Interconnected High-Voltage Pulsed-Power Converters System Design for H− Ion Sources

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents the design and experimental validations of a system of three new high-voltage (HV) pulsedpower converters for the H− sources. The system requires three pulsed voltages (50, 40, and 25 kV to ground) at 2-Hz repetition rate, for 700 μs of usable flat-top. The solution presents ripplefree output voltages and minimal stored energy to protect the ion source from the consequences of arc events. Experimental results on the final full-scale prototype are presented. In case of short-circuit events, the maximal energy delivered to the source is in the Joule range. HV flat-top stability of 1% is experimentally achieved with a simple Proportional-Integral- Derivative regulation and preliminary tuned H− source (e.g., radio frequency control, gas injection, and so forth). The system is running since more than a year with no power converter failures and damage to the source.

  13. Comparative study of microcontroller controlled four-wire voltage and current source shunt active power filters

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, S.

    2009-07-01

    During the past two decades, active power filters have increasingly grown their popularity as a viable method for improving electric power quality. The main reasons for this have been the advent of fast self-commutating solid-state devices, the progression of digital technology and the improved sensor technology. Four-wire active power filters provide an efficient solution for improving the quality of supply in grounded three-phase systems or three-phase systems with neutral conductors, which are commonly used for powering residential, office and public buildings. Four-wire active power filters are applicable in compensating current harmonics, reactive power, neutral current and load phase imbalance.This thesis presents a comparative study of microcontroller controlled four-wire voltage and current source shunt active power filters. The study includes two voltage source topologies and a current source topology with two different dc-link energy storage structures, which are compared on the basis of their filtering properties, filtering performance and efficiency. The obtained results are used for determining the suitability of current source technology for four-wire active power filtering and finding the most viable four-wire shunt active power filter topology. One commonly recognized disadvantage of the current source active power filter has always been the bulky dc-link inductor. To reduce the size of the dc-link inductor, an alternative dc-link structure for current source active power filters was introduced in the late 80's. The hybrid energy storage consists of both inductive and capacitive energy storage elements, two diodes and two controllable semiconductor switching devices. Since the capacitive element is used as a main storage unit, the inductance of the dc-link inductor can be considerably reduced. However, the original dc current control method proposed is not able to utilize the full potential of the hybrid energy storage and the inductance

  14. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Direct Power Control for Three-Phase Two-Level Voltage-Source Rectifiers Based on Extended-State Observation

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Yan, Zhuo

    2016-01-01

    This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent characte......This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent...

  16. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    International Nuclear Information System (INIS)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard

    2007-01-01

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks

  17. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Centre National de la Recherche Scientifique (Unite Mixte de Recherche 7037), 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2007-07-15

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks. (author)

  18. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  19. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  20. Spectrum analysis of a voltage source converter due to semiconductor voltage drops

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Eltouki, Mustafa

    2017-01-01

    It is known that power electronic voltage source converters are non-ideal. This paper presents a state-of-the-art review on the effect of semiconductor voltage drop on the output voltage spectrum, using single-phase H-bridge two-level converter topology with natural sampled pulse width modulation....... The paper describes the analysis of output voltage spectrum, when the semiconductor voltage drop is added. The results of the analysis of the spectral contribution including and excluding semiconductor voltage drop reveal a good agreement between the theoretical results, simulations and laboratory...

  1. Voltage-regulating constant-current sources in a linear induction accelerator

    International Nuclear Information System (INIS)

    Zhao Juan; Cao Kefeng; Deng Jianjun; Zhu Lijun; Yang Jia; Ye Chao; Huang Bin; Cao Ningxiang; Dong Jinxuan; Zhang Jichang; Yu Zhiguo; Chen Min

    2002-01-01

    Constant-current Sources are one of key units in a linear induction accelerator. The requirements for the sources are to supply stable direct current of high power for the induction coil, be easy to computer-control and highly stable and reliable. Applying the technique of linear current source regulating in series, the primary voltage of the power transformer is regulated through an MJYS-JL-350A type three-phase alterative voltage-regulating module. The output current variation is 300-500 A when the load variation is 0.06-0.1 Ω and the voltage drop of the regulator tube is controlled within 8 V±2V when the variation of mains voltage is in ±10%. Both the current ripple and stability meet the technical requirements. The constant-current sources are controlled through an industrial controller. For each of the constant-current sources has a smallest system comprised of 8051 which is communication-controlled through a RS-485 interface, the sources can be controlled remotely

  2. High-voltage, high-power architecture considerations

    International Nuclear Information System (INIS)

    Moser, R.L.

    1985-01-01

    Three basic EPS architectures, direct energy transfer, peak-power tracking, and a potential EPS architecture for a nuclear reactor are described and compared. Considerations for the power source and energy storage are discussed. Factors to be considered in selecting the operating voltage are pointed out. Other EPS architecture considerations are autonomy, solar array degrees of freedom, and EPS modularity. It was concluded that selection of the power source and energy storage has major impacts on the spacecraft architecture and mass

  3. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

    DEFF Research Database (Denmark)

    Qu, Hao; Yang, Xijun; Guo, Yougui

    2014-01-01

    Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

  4. Power conditioning system for energy sources

    Science.gov (United States)

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  5. Current source converter based D-STATCOM for voltage sag mitigation

    Directory of Open Access Journals (Sweden)

    Singh Moirangthem Deben

    2015-01-01

    Full Text Available This paper presents a novel method of realizing one of the custom power controllers, the distribution static synchronous compensator (D-STATCOM using current source converter (CSC topology. Almost all the custom power controllers such as dynamic voltage restorer (DVR, unified power quality conditioner (UPQC including D-STATCOM are generally designed and implemented by using voltage source converters (VSC and not much research publications with CSC based approach has been reported over the last one decade. Since the D-STATCOM is a current injection device, its performance can be improved when realized by a current-source converter which can generate a controllable current directly at its output terminals and offers many advantageous features. In this paper, an attempt has been made to study the performance of a CSC based D-STATCOM suitable for use in the power distribution system in order to mitigate voltage sag and improve power quality. The proposed model uses a three leg CSC whose switching strategy is based on sinusoidal pulse width modulation (SPWM. The model has been simulated in the Matlab/Simulink environment. The results of the simulation runs under steady state and dynamic load perturbation provide excellent voltage and current waveforms that support the justification of the proposed model.

  6. A Review of Passive Power Filters for Three-Phase Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Liserre, Marco

    2016-01-01

    and source impedances. Furthermore, the stabilizing effect is more difficult to be guaranteed for cost-optimized filters, which are characterized by low inductance and high capacitance passive components. In this paper, several passive filter topologies used to interface voltage source converters......In order to reduce size and cost, high-order passive filters are generally preferred in power converters to cancel out high frequency harmonics caused by pulse width modulation. However, the filter resonance peaks may require the use of passive dampers to stabilize the interactions between the load...

  7. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  8. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  9. Application of Newton's optimal power flow in voltage/reactive power control

    Energy Technology Data Exchange (ETDEWEB)

    Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  10. Power angle control of grid-connected voltage source converter in a wind energy application

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-31

    In this thesis, the connection of a voltage source converter to the grid in a wind energy application is examined. The possibility of using a cheap control system without grid current measurements, is investigated. The control method is based on controlling the voltage angle of the inverter, which governs the active power flow. The highest frequency of the power variation, coming from wind turbine, is approx. 5 Hz. Since the proposed control method easily can handle such power variations it is very well suited for wind turbine applications. The characteristics of the system depend on the DC-link capacitor, the grid filter inductance and resistance. Large values of the resistance damp the system well but increase the energy losses. A high inductance leads to a reduced harmonic level on the grid but makes the system slower. By using feed-forward of the generator/rectifier current signal, the performance is increased compared to an ordinary PI-control. Combining the Linear Quadratic (LQ) control method with Kalman filtered input signals, a robust control method with a good performance is obtained. The LQ controller controls both the phase displacement angle and the modulation index, resulting in higher bandwidth, and the typical power angle resonance at the grid frequency disappears. 22 refs, 109 figs, 14 tabs

  11. Coordinated Voltage Control Scheme for VSC-HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    This paper proposes a coordinated voltage control scheme based on model predictive control (MPC) for voltage source converter‐based high voltage direct current (VSC‐HVDC) connected wind power plants (WPPs). In the proposed scheme, voltage regulation capabilities of VSC and WTGs are fully utilized...... and optimally coordinated. Two control modes, namely operation optimization mode and corrective mode, are designed to coordinate voltage control and economic operation of the system. In the first mode, the control objective includes the bus voltages, power losses and dynamic Var reserves of wind turbine...

  12. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  13. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  14. Shunt PWM advanced var compensators based on voltage source inverters for Facts applications

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Pedro G; Misaka, Isamu; Watanabe, Edson H [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1994-12-31

    Increased attention has been given to improving power system operation. This paper presents modeling, analysis and design of reactive shunt power compensators based on PWM-Voltage Source Inverters (Pulse Width Modulation -Voltage Source Inverters). (Pulse Width Modulation - Voltage Source Inverters). The control algorithm is based on new concepts of instantaneous active and reactive power theory. The objective is to show that with a small capacitor in the side of a 3-phase PWM-VSI it is possible to synthesize a variable reactive (capacitive or inductive) device. Design procedures and experimental results are presented. The feasibility of this method was verified by digital simulations and measurements on a small scale model. (author) 9 refs., 12 figs.

  15. Pulsed voltage electrospray ion source and method for preventing analyte electrolysis

    Science.gov (United States)

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-12-27

    An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.

  16. High voltage power supplies for INDUS-2 RF system

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  17. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.

    2011-01-01

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  18. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  19. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  20. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  1. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  2. Optimum voltage of auxiliary systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Segawa, Motomichi

    1979-01-01

    In the power plants in Japan, their unit power output has been greatly enhanced since the introduction of new powerful thermal power plants from 1950's to 1960's. In both thermal and nuclear power plants, 1,000 MW machines have been already in operation. The increase of unit power output results in the increase of in-plant load capacity. Of these the voltage adopted for in-plant low voltage systems is now mainly 440 V at load terminals, and the voltage for in-plant high voltage systems has been changing to 6 kV level via 3 kV and 4 kV levels. As plant capacity increases, the load of low voltage systems significantly increases, and it is required to raise the voltage of 400 V level. By the way, the low voltage in AC is specified to be not higher than 600 V. This makes the change within the above range comparatively easy. Considering these conditions, it is recommended to change the voltage for low voltage systems to 575 V at power source terminals and 550 V at load terminals. Some merits in constructing power systems and in economy by raising the voltage were examined. Though demerits are also found, they are only about 15% of total merits. The most advantageous point in raising the voltage is to be capable of increasing the supplying range to low voltage system loads. (Wakatsuki, Y.)

  3. Coordinated voltage control in offshore HVDC connected cluster of wind power plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra Naidu; Rather, Zakir Hussain; Rimez, Johan

    This paper presents a coordinated voltage control scheme (CVCS) for a cluster of offshore wind power plants connected to a voltage-source converter-based high-voltage direct current system. The primary control point of the proposed voltage control scheme is the introduced Pilot bus, which is having...... by dispatching reactive power references to each wind turbine (WT) in the wind power plant cluster based on their available reactive power margin and network sensitivity-based participation factors, which are derived from the dV/dQ sensitivity of a WT bus w.r.t. the Pilot bus. This method leads...

  4. Parallel operation of voltage-source converters: issues and applications

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, F.C.B.; Silva, D.S. [Federal University of Juiz de Fora (UFJF), MG (Brazil)], Emails: felipe.brum@engenharia.ufjf.br, salomaoime@yahoo.com.br; Ribeiro, P.F. [Calvin College, Grand Rapids, MI (United States); Federal University of Juiz de Fora (UFJF), MG (Brazil)], E-mail: pfribeiro@ieee.org

    2009-07-01

    Technological advancements in power electronics have prompted the development of advanced AC/DC conversion systems with high efficiency and flexible performance. Among these devices, the Voltage-Source Converter (VSC) has become an essential building block. This paper considers the parallel operation of VSCs under different system conditions and how they can assist the operation of highly complex power networks. A multi-terminal VSC-based High Voltage Direct Current (M-VSC-HVDC) system is chosen to be modeled, simulated and then analyzed as an example of VSCs operating in parallel. (author)

  5. A Series-LC-Filtered Active Trap Filter for High Power Voltage Source Inverter

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2016-01-01

    Passive trap filters are widely used in high power Voltage Source Inverters (VSI) for the switching harmonic attenuation. The usage of the passive trap filters requires clustered and fixed switching harmonic spectrum, which is not the case for low pulse-ratio or Variable Switching Frequency (VSF...... current control of the auxiliary converter, which can be challenging considering that the switching harmonics have very high orders. In this paper, an Active Trap Filter (ATF) based on output impedance shaping is proposed. It is able to bypass the switching harmonics by providing nearly zero output...... impedance. A series-LC-filter is used to reduce the power rating and synthesize the desired output impedance of the ATF. Compared with the existing approaches, the compensated frequency range is greatly enlarged. Also, the current reference is simply set to zero, which reduces the complexity of the control...

  6. Impact of Wind Power Plants on Voltage Control of Power System

    DEFF Research Database (Denmark)

    Sarkar, Moumita; Altin, Müfit; Hansen, Anca Daniela

    High penetration of renewable energy sources poses numerous challenges on stability and security of power systems. Wind power plants (WPPs) of considerable size when connected to a weak grid by long transmission line results in low short circuit ratio at the point of connection. This may result...... control, during transient voltage dips. Steady-state analysis is performed for stressed system conditions. Results are validated through simulation in a detailed power system model....

  7. A high voltage gain quasi Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...... by a voltage doubling output rectifier. The converter is well-suited to applications requiring a high voltage gain, especially renewable energy sources such as photovoltaic and fuel-cell power supplies. To demonstrate the converter's performance a prototype designed to output 400 V at 500 W was constructed...

  8. Model predictive control for Z-source power converter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P.C.; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...

  9. Inverter for Interchangeable Use as Current Source Inverter and Voltage Source Inverter for Interconnecting to Grid

    Science.gov (United States)

    Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji

    We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.

  10. Distributed Reactive Power Control based Conservation Voltage Reduction in Active Distribution Systems

    Directory of Open Access Journals (Sweden)

    EMIROGLU, S.

    2017-11-01

    Full Text Available This paper proposes a distributed reactive power control based approach to deploy Volt/VAr optimization (VVO / Conservation Voltage Reduction (CVR algorithm in a distribution network with distributed generations (DG units and distribution static synchronous compensators (D-STATCOM. A three-phase VVO/CVR problem is formulated and the reactive power references of D-STATCOMs and DGs are determined in a distributed way by decomposing the VVO/CVR problem into voltage and reactive power control. The main purpose is to determine the coordination between voltage regulator (VR and reactive power sources (Capacitors, D-STATCOMs and DGs based on VVO/CVR. The study shows that the reactive power injection capability of DG units may play an important role in VVO/CVR. In addition, it is shown that the coordination of VR and reactive power sources does not only save more energy and power but also reduces the power losses. Moreover, the proposed VVO/CVR algorithm reduces the computational burden and finds fast solutions. To illustrate the effectiveness of the proposed method, the VVO/CVR is performed on the IEEE 13-node test system feeder considering unbalanced loading and line configurations. The tests are performed taking the practical voltage-dependent load modeling and different customer types into consideration to improve accuracy.

  11. A grid-voltage-sensorless resistive active power filter with series LC-filter

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Voltage-sensorless control has been investigated for Voltage Source Inverters (VSIs) for many years due to the reduced system cost and potentially improved system reliability. The VSI based Resistive Active Power Filters (R-APFs) are now widely used to prevent the harmonic resonance in power...... distribution network, for which the voltage sensors are needed in order to obtain the current reference. In this paper a grid-voltage-sensorless control strategy is proposed for the R-APF with series LC-filter. Unlike the traditional resistance emulation method, this proposed control method re...

  12. A Grid-Voltage-Sensorless Resistive Active Power Filter with Series LC-Filter

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    Voltage-sensorless control has been investigated for Voltage Source Inverters (VSIs) for many years due to the reduced system cost and potentially improved system reliability. The VSI based Resistive Active Power Filters (R-APFs) are now widely used to prevent the harmonic resonance in power...... distribution network, for which the voltage sensors are needed in order to obtain the current reference. In this paper a grid-voltage-sensorless control strategy is proposed for the R-APF with series LC-filter. Unlike the traditional resistance emulation method, this proposed control method re...

  13. Voltage Control of Distribution Grids with Multi-Microgrids Using Reactive Power Management

    Directory of Open Access Journals (Sweden)

    WLODARCZYK, P.

    2015-02-01

    Full Text Available Low-voltage Microgrids can be valuable sources of ancillary services for the Distribution System Operators (DSOs. The aim of this paper was to study if and how multi-microgrids can contribute to Voltage Control (VC in medium-voltage distribution grids by means of reactive power generation and/or absorption. The hierarchical control strategy was proposed with the main focus on the tertiary control which was defined as optimal power flow problem. The interior-point algorithm was applied to optimise experimental benchmark grid with the presence of Distributed Energy Resources (DERs. Moreover, two primary objectives were formulated: active power losses and amount of reactive power used to reach the voltage profile. As a result the active power losses were minimised to the high extent achieving the savings around 22% during entire day.

  14. Mitigation of Flicker using STATCOM with Three-Level 12-pulse Voltage Source Inverter

    OpenAIRE

    Ali Z a'fari

    2011-01-01

    Voltage flicker is a disturbance in electrical power systems. The reason for this disturbance is mainly the large nonlinear loads such as electric arc furnaces. Synchronous static compensator (STATCOM) is considered as a proper technique to mitigate the voltage flicker. Application of more suitable and precise power electronic converter leads to a more precise performance of the compensator. In this paper a three-level 12-pulse voltage source inverter (VSI) with a 12-term...

  15. The eGo grid model: An open source approach towards a model of German high and extra-high voltage power grids

    Science.gov (United States)

    Mueller, Ulf Philipp; Wienholt, Lukas; Kleinhans, David; Cussmann, Ilka; Bunke, Wolf-Dieter; Pleßmann, Guido; Wendiggensen, Jochen

    2018-02-01

    There are several power grid modelling approaches suitable for simulations in the field of power grid planning. The restrictive policies of grid operators, regulators and research institutes concerning their original data and models lead to an increased interest in open source approaches of grid models based on open data. By including all voltage levels between 60 kV (high voltage) and 380kV (extra high voltage), we dissolve the common distinction between transmission and distribution grid in energy system models and utilize a single, integrated model instead. An open data set for primarily Germany, which can be used for non-linear, linear and linear-optimal power flow methods, was developed. This data set consists of an electrically parameterised grid topology as well as allocated generation and demand characteristics for present and future scenarios at high spatial and temporal resolution. The usability of the grid model was demonstrated by the performance of exemplary power flow optimizations. Based on a marginal cost driven power plant dispatch, being subject to grid restrictions, congested power lines were identified. Continuous validation of the model is nescessary in order to reliably model storage and grid expansion in progressing research.

  16. Harmonic Analysis and Mitigation of Low- Frequency Switching Voltage Source Inverter with Auxiliary VSI

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    The output currents of high-power Voltage Source Inverters (VSIs) are distorted by the switching harmonics and the background harmonics in the grid voltage. This paper presents an active harmonic filtering scheme for high-power, low-frequency switching VSIs with an additional auxiliary VSI. In th...

  17. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage p....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0.......Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage...... problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults...

  18. Voltage regulation and power losses reduction in a wind farm integrated MV distribution network

    Science.gov (United States)

    Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb

    2018-01-01

    A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.

  19. Hard- and software of real time simulation tools of Electric Power System for adequate modeling power semiconductors in voltage source convertor based HVDC and FACTS

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2014-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of Flexible Alternating Current Transmission System (FACTS devices and High Voltage Direct Current Transmission (HVDC system as part of real electric power systems (EPS. For that, a hybrid approach for advanced simulation of the FACTS and HVDC based on Voltage Source is proposed. The presented simulation results of the developed hybrid model of VSC confirm the achievement of the desired properties of the model and the effectiveness of the proposed solutions.

  20. Analysis of loss distribution of Conventional Boost, Z-source and Y-source Converters for wide power and voltage range

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad

    2017-01-01

    Boost converters are needed in many applications which require the output voltage to be higher than the input voltage. Recently, boost type converters have been applied for industrial applications, and hence it has become an interesting topic of research. Many researchers proposed different...... impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and it has...... not been investigated yet. Therefore, this paper presents a comparison between the conventional boost, the Z-source, and the Y-source converters based on a thermal evaluation of the semiconductors. In addition, the three topologies are also compared with respect to their efficiency. In this study...

  1. Investigation of Grid-connected Voltage Source Converter Performance under Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    Renewable energy sources (RES) and HVDC links are typically interfaced with the grid by power converters, whose performance during grid faults is significantly different from that of traditional synchronous generators. This paper investigates the performance of grid-connected voltage source...... that the performance of VSCs varies with their control strategies. Negative-sequence current control is necessary to restrict converter current in each phase under unbalanced faults. Among presented control strategies, the balanced current control strategy complies with the present voltage support requirement best...

  2. Modified impedance source inverter for power conditioning system

    Indian Academy of Sciences (India)

    DC link voltage boost, reduced total harmonic distortion of output current and voltage, better voltage gain and wide range of output voltage controlcan be achieved easily with improved power quality. Experimental set-up of the modified impedance source inverter with Field Programmable Gate Array (FPGA) controller has ...

  3. Power supply system for negative ion source at IPR

    Science.gov (United States)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  4. Power supply system for negative ion source at IPR

    International Nuclear Information System (INIS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-01-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ∼5 x 10 12 cm -3 , from which ∼ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (∼15 to 35kV), and high current (∼ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (∼50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (∼ 50kV) isolated from the system. The paper shall

  5. Voltage scheduling for low power/energy

    Science.gov (United States)

    Manzak, Ali

    2001-07-01

    Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned

  6. Identification of voltage stability condition of a power system using measurements of bus variables

    Directory of Open Access Journals (Sweden)

    Durlav Hazarika

    2014-12-01

    Full Text Available Several online methods were proposed for investigating the voltage stability condition of an interconnected power system using the measurements of voltage and current phasors at a bus. For this purpose, phasor measurement units (PMUs are used. A PMU is a device which measures the electrical waves on an electrical network, using a common time source (reference bus for synchronisation. This study proposes a method for online monitoring of voltage stability condition of a power system using measurements of bus variables namely – (i real power, (ii reactive power and (iii bus voltage magnitude at a bus. The measurements of real power, reactive power and bus voltage magnitude could be extracted/captured from a smart energy meter. The financial involvement for implementation of the proposed method would significantly lower compared with the PMU-based method.

  7. 250 kV 6 mA compact Cockcroft-Walton high-voltage power supply

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhan-Wen; Su, Xiao-Dong; Wei, Zhen; Huang, Zhi-Wu; Miao, Tian-You; Su, Tong-Ling [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Lu, Xiao-Long; Wang, Jun-Run; Yao, Ze-En, E-mail: zeyao@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-08-15

    A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of the output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.

  8. An efficient high-voltage power supply for a photomultiplier tube

    NARCIS (Netherlands)

    Ainutdinov, VM; Vonsovskii, NN; Kompaniets, KG; Kozyr, AI; Mikhailov, YV

    2003-01-01

    An adjustable power supply for a photomultiplier tube operating in the pulsed spectrometric mode with a wide range of linearity is described. The power consumed by the source is 50 mW. The output voltage is varied from 800 to 2000 V. The maximum ripple amplitude is 2.5 mV.

  9. Gun power source for electron gun of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Dewangan, S.; Sharma, D.K.; Nanu, K.

    2011-01-01

    In DC electron beam accelerator electron gun is situated at high voltage terminal which requires constant power irrespective of beam energy. Floating power source is required for gun. This paper describes the scheme of static gun power source derived from parallel coupled voltage multiplier column. (author)

  10. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  11. Nonlinear Robust Control for Low Voltage Direct-Current Residential Microgrids with Constant Power Loads

    Directory of Open Access Journals (Sweden)

    Martín-Antonio Rodríguez-Licea

    2018-05-01

    Full Text Available A Direct Current (DC microgrid is a concept derived from a smart grid integrating DC renewable sources. The DC microgrids have three particularities: (1 integration of different power sources and local loads through a DC link; (2 on-site power source generation; and (3 alternating loads (on-off state. This kind of arrangement achieves high efficiency, reliability and versatility characteristics. The key device in the development of the DC microgrid is the power electronic converter (PEC, since it allows an efficient energy conversion between power sources and loads. However, alternating loads with strictly-controlled PECs can provide negative impedance behavior to the microgrid, acting as constant power loads (CPLs, such that the overall closed-loop system becomes unstable. Traditional CPL compensation techniques rely on a damping increment by the adaptation of the source or load voltage level, adding external circuitry or by using some advanced control technique. However, none of them provide a simple and general solution for the CPL problem when abrupt changes in parameters and/or in alternating loads/sources occur. This paper proposes a mathematical modeling and a robust control for the basic PECs dealing with CPLs in continuous conduction mode. In particular, the case of the low voltage residential DC microgrid with CPLs is taken as a benchmark. The proposed controller can be easily tuned for the desired response even by the non-expert. Basic converters with voltage mode control are taken as a basis to show the feasibility of this analysis, and experimental tests on a 100-W testbed include abrupt parameter changes such as input voltage.

  12. Wind Power Plant Voltage Stability Evaluation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  13. High-Voltage, Low-Power BNC Feedthrough Terminator

    Science.gov (United States)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  14. New Application’s Approach to Unified Power Quality Conditioners for Mitigation of Surge Voltages

    Directory of Open Access Journals (Sweden)

    Yeison Alberto Garcés Gomez

    2016-01-01

    Full Text Available This paper outlines a new approach for the compensation of power systems presented through the use of a unified power quality conditioner (UPQC which compensates impulsive and oscillatory electromagnetic transients. The newly proposed control technique involves a dual analysis of the UPQC where the parallel compensator is modelled as a sinusoidal controlled voltage source, while the series compensator is modelled as a sinusoidal controlled current source, opposed to the traditional approach where the parallel and series compensators are modelled as current and voltage nonsinusoidal sources, respectively. Also a new compensation algorithm is proposed through the application of the theory of generalized reactive power; this is then compared with the theory of active and reactive instantaneous power, or pq theory. The results are presented by means of simulations in MATLAB-Simulink®.

  15. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  16. Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags

    Directory of Open Access Journals (Sweden)

    Yangwu Shen

    2017-06-01

    Full Text Available The low voltage ride-through (LVRT capability of the doubly-fed induction generator (DFIG significantly impacts upon the integration of wind power into the power grid. This paper develops a novel comprehensive control strategy to enhance the LVRT and reactive power support capacities of the DFIG by installing the energy storage system (ESS. The ESS is connected to the DC-link capacitor of the DFIG and used to regulate the DC-link voltage during normal or fault operations. The unbalanced power between the captured wind power and the power injected to the grid during the transient process is absorbed or compensated by the ESS. The rotor-side converter (RSC is used to control the maximum power production and the grid-side converter (GSC is used to control the reactive power before participating in the voltage support. When the supply voltage continues to drop, the rotor speed is increased by controlling the RSC to realize the LVRT capability and help the GSC further enhance the reactive power support capability. The capacity of the GSC is dedicated to injecting the reactive power to the grid. An auxiliary transient pitch angle controller is proposed to protect the generator’s over speed. Both RSC and GSC act as reactive power sources to further enhance the voltage support capability with serious voltage sags. Simulations based on a single-machine infinite-bus power system verify the effectiveness of the developed comprehensive control strategy.

  17. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    Science.gov (United States)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  18. Design philosophy and use of high voltage power systems for multi-megawatt ion beam accelerators

    International Nuclear Information System (INIS)

    Barber, G.C.; Broverman, A.Y.; Hill, R.E.; Loring, C.M.; Ponte, N.S.

    1977-01-01

    The requirements for a neutral beam high voltage power system are derived from the characteristics of the ion source. High voltage system component characteristic requirements and choices are described

  19. MAGY: An innovative high voltage-low current power supply for gyrotron

    International Nuclear Information System (INIS)

    Siravo, Ugo; Alex, Juergen; Bader, Michael; Carpita, Mauro; Fasel, Damien; Gavin, Serge; Perez, Albert

    2011-01-01

    From the electrical point of view, the body and the anode of high power gyrotrons behave as capacitive loads. A highly dynamic power supply is, therefore, hard to achieve. The MAGY concept (Modulator for the Anode of a triode type GYrotron) embodies an innovative solution to manage the capacitive current ensuring a very low ripple on the output voltage. It consists of a series of independent, bi-directional and regulated DC sources. Compared to existing topologies, this solution requires a smaller number of power modules. It avoids internal high frequency modulation and simultaneously offers high resolution of the output voltage and a wide range of operating scenarios.

  20. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system...... to unbalanced faults. The compensation of unbalanced voltage sags and voltage unbalance in the CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0........ The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbalances, for the tested cases in the CIGRE LV test network are mainly due to single phase loads and due...

  1. Development of the power supplies of the prototype ion source for the EAST

    International Nuclear Information System (INIS)

    Liu Zhimin; Hu Chundong; Liu Sheng; Jiang Caichao; Song Shihua; Xie Yahong; Sheng Peng

    2011-01-01

    For the neutral beam injector (NBI) of the Experimental Advanced Superconducting Tokamak (EAST), a test stand of a high-current ion source has been in construction. The NBI power supply system includes the plasma generator power supply, plasma electrode power supply, high voltage power divider, negative high voltage power supply, and the transmission lines and the snubber. A multi-megawatt prototype ion source was developed. The arc discharge of the prototype ion source was obtained in the test. The test results for the ion source power supplies and the arc discharge of the ion source are presented. (authors)

  2. Index-based reactive power compensation scheme for voltage regulation

    Science.gov (United States)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute

  3. High-voltage transistor converter for pulsed x-ray sources

    International Nuclear Information System (INIS)

    Krasil'nikov, S.B.; Kristalinskii, A.L.; Lozovoi, L.N.; Markov, S.N.; Sindalovskii, E.I.

    1986-01-01

    A 24-V/12-kV converter for MIRA-2D and NORA pulsed x-ray sources is described. When the low-voltage supply varies within 20-26 V, the frequency stability of the x-ray pulses is higher by a factor of 3 ≅ 3 than when the PRIMA converter is used. For 14-24 V, the average output power of the converter is independent of the load impedance and increases linearly with an increase in supply voltage. The efficiency of the converter reaches 60%. The converter operates in the temperature range of -40 to +60 0 C

  4. A New Coordinated Voltage Control Scheme for Offshore AC Grid of HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2015-01-01

    This paper proposes a coordinated voltage control scheme (CVCS) which enhances the voltage ride through (VRT) capability of an offshore AC grid comprised of a cluster of offshore wind power plants (WPP) connected through AC cables to the offshore voltage source converter based high voltage DC (VSC......-HVDC) converter station. Due to limited short circuit power contribution from power electronic interfaced variable speed wind generators and with the onshore main grid decoupled by the HVDC link, the offshore AC grid becomes more vulnerable to dynamic voltage events. Therefore, a short circuit fault...... in the offshore AC Grid is likely to have significant implications on the voltage of the offshore AC grid, hence on the power flow to the onshore mainland grid. The proposed CVCS integrates individual local reactive power control of wind turbines and of the HVDC converter with the secondary voltage controller...

  5. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  6. Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters

    DEFF Research Database (Denmark)

    Vasquez, Juan Carlos; Guerrero, Josep M.; Savaghebi, Mehdi

    2013-01-01

    Power electronics based MicroGrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of parallel connected three-phase VSIs are derived. The proposed voltage and current inner control loops and the mat......Power electronics based MicroGrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of parallel connected three-phase VSIs are derived. The proposed voltage and current inner control loops...... control restores the frequency and amplitude deviations produced by the primary control. Also, a synchronization algorithm is presented in order to connect the MicroGrid to the grid. Experimental results are provided to validate the performance and robustness of the parallel VSI system control...

  7. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    Science.gov (United States)

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  8. PV Power-Generation System with a Phase-Shift PWM Technique for High Step-Up Voltage Applications

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-01-01

    Full Text Available A PV power-generation system with a phase-shift pulse-width modulation (PWM technique for high step-up voltage applications is proposed. The proposed power-generation system consists of two stages. In the input stage, all power switches of the full-bridge converter with phase-shift technique can be operated with zero-current switching (ZCS at turn-on or turn-off transition. Hence, the switching losses of the power switches can be reduced. Then, in the DC output stage, a voltage-doubler circuit is used to boost a high dc-link bus voltage. To supply a utility power, a dc/ac inverter is connected to induce a sinusoidal source. In order to draw a maximum power from PV arrays source, a microcontroller is incorporated with the perturbation and observation method to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In this study, a full load power of 300 W prototype has been built. Experimental results are presented to verify the performance and feasibility of the proposed PV power-generation system.

  9. Voltage sensitivity based reactive power control on VSC-HVDC in a wind farm connected hybrid multi-infeed HVDC system

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2013-01-01

    With increasing application of both Line Commutated Converter based High Voltage Direct Current (LCC-HVDC) systems and Voltage Source Converter based HVDC (VSC-HVDC) links, a new type of system structure named Hybrid Multi-Infeed HVDC (HMIDC) system is formed in the modern power systems. This paper...... presents the operation and control method of the wind farm connected HMIDC system. The wind power fluctuation takes large influence to the system voltages. In order to reduce the voltage fluctuation of LCC-HVDC infeed bus caused by the wind power variation, a voltage sensitivity-based reactive power...

  10. Grid Voltage Modulated Control of Grid-Connected Voltage Source Inverters under Unbalanced Grid Conditions

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an improved grid voltage modulated control (GVM) with power compensation is proposed for grid-connected voltage inverters when the grid voltage is unbalanced. The objective of the proposed control is to remove the power ripple and to improve current quality. Three power compensation...... objectives are selected to eliminate the negative sequence components of currents. The modified GVM method is designed to obtain two separate second-order systems for not only the fast convergence rate of the instantaneous active and reactive powers but also the robust performance. In addition, this method...

  11. Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue

    Science.gov (United States)

    Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku

    2018-02-01

    Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.

  12. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  13. Influence of current limitation on voltage stability with voltage sourced converter HVDC

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Jóhannsson, Hjörtur; Hansen, Anca Daniela

    2013-01-01

    A first study of voltage stability with relevant amount of Voltage Sourced Converter based High Voltage Direct Current (VSC-HVDC) transmission is presented, with particular focus on the converters’ behaviour when reaching their rated current. The detrimental effect of entering the current...

  14. A new high-voltage level-shifting circuit for half-bridge power ICs

    International Nuclear Information System (INIS)

    Kong Moufu; Chen Xingbi

    2013-01-01

    In order to reduce the chip area and improve the reliability of HVICs, a new high-voltage level-shifting circuit with an integrated low-voltage power supply, two PMOS active resistors and a current mirror is proposed. The integrated low-voltage power supply not only provides energy for the level-shifting circuit and the logic circuit, but also provides voltage signals for the gates and sources of the PMOS active resistors to ensure that they are normally-on. The normally-on PMOS transistors do not, therefore, need to be fabricated in the depletion process. The current mirror ensures that the level-shifting circuit has a constant current, which can reduce the process error of the high-voltage devices of the circuit. Moreover, an improved RS trigger is also proposed to improve the reliability of the circuit. The proposed level-shifting circuit is analyzed and confirmed by simulation with MEDICI, and the simulation results show that the function is achieved well. (semiconductor integrated circuits)

  15. Voltage stability in low voltage microgrids in aspects of active and reactive power demand

    Directory of Open Access Journals (Sweden)

    Parol Mirosław

    2016-03-01

    Full Text Available Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.

  16. How to Integrate Variable Power Source into a Power Grid

    Science.gov (United States)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  17. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal

    KAUST Repository

    Kim, Younggy

    2011-01-01

    Voltages produced by microbial fuel cells (MFCs) cannot be sustainably increased by linking them in series due to voltage reversal, which substantially reduces stack voltages. It was shown here that MFC voltages can be increased with continuous power production using an electronic circuit containing two sets of multiple capacitors that were alternately charged and discharged (every one second). Capacitors were charged in parallel by the MFCs, but linked in series while discharging to the circuit load (resistor). The parallel charging of the capacitors avoided voltage reversal, while discharging the capacitors in series produced up to 2.5 V with four capacitors. There were negligible energy losses in the circuit compared to 20-40% losses typically obtained with MFCs using DC-DC converters to increase voltage. Coulombic efficiencies were 67% when power was generated via four capacitors, compared to only 38% when individual MFCs were operated with a fixed resistance of 250 Ω. The maximum power produced using the capacitors was not adversely affected by variable performance of the MFCs, showing that power generation can be maintained even if individual MFCs perform differently. Longer capacitor charging and discharging cycles of up to 4 min maintained the average power but increased peak power by up to 2.6 times. These results show that capacitors can be used to easily obtain higher voltages from MFCs, allowing for more useful capture of energy from arrays of MFCs. © 2011 The Royal Society of Chemistry.

  18. A Circulating-Current Suppression Method for Parallel-Connected Voltage-Source Inverters With Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    This paper presents a theoretical study with experimental validation of a circulating-current suppression method for parallel operation of three-phase voltage source inverters (VSI), which may be suitable for modular parallel uninterruptible power supply systems or hybrid AC/DC microgrid applicat......This paper presents a theoretical study with experimental validation of a circulating-current suppression method for parallel operation of three-phase voltage source inverters (VSI), which may be suitable for modular parallel uninterruptible power supply systems or hybrid AC/DC microgrid......, and added into the conventional droop plus virtual impedance control. In the control architecture, the reference voltages of the inverters are generated by the primary control loop which consists of a droop control and a virtual impedance. The secondary control is used to compensate the voltage drop...

  19. Multilevel Converter by Cascading Two-Level Three-Phase Voltage Source Converter

    Directory of Open Access Journals (Sweden)

    Abdullrahman A. Al-Shamma’a

    2018-04-01

    Full Text Available This paper proposes a topology using isolated, cascaded multilevel voltage source converters (VSCs and employing two-winding magnetic elements for high-power applications. The proposed topology synthesizes 6 two-level, three-phase VSCs, so the power capability of the presented converter is six times the capability of each VSC module. The characteristics of the proposed topology are demonstrated through analyzing its current relationships, voltage relationships and power capability in detail. The power rating is equally shared among the VSC modules without the need for a sharing algorithm; thus, the converter operates as a single three-phase VSC. The comparative analysis with classical neutral-point clamped, flying capacitor and cascaded H-bridge exhibits the superior features of fewer insulated gate bipolar transistors (IGBTs, capacitor requirement and fewer diodes. To validate the theoretical performance of the proposed converter, it is simulated in a MATLAB/Simulink environment and the results are experimentally demonstrated using a laboratory prototype.

  20. SVC or VSC for reduction of voltage sags and flicker. Trends in power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, M; Schnettler, A [ABB Calor Emag Schaltanlagen AG, Mannheim (Germany); Halvarsson, P [ABB Power Systems AB, Vaesteraas (Sweden)

    1997-07-01

    In the past complaints about insufficient power quality were often caused by flicker observed in the neighbourhood of industrial networks. Voltage sags due to faults in the power system pass, however, mostly unnoticed as not-so-common events. Now electronic controls are penetrating more and more in industry. Electronic controllers on factory machines - particularly those for variable speed motors - are vulnerable to voltage sags. A one-tenth second sag can cause a $200.000 downtime incident in a big factory. Therefore the demands on power quality are rising in industry as well. The costly separation in clean networks for residential areas and dirty networks for industrial grids is no perfect solution to avoid such problems. Static VAr Compensators (SVC) are traditionally one means to control the voltage in industrial networks. Because of the recent development of powerful gate turn-off semiconductor devices another type of converter has gained new interest for mitigation of system disturbances, the voltage-source converter (VSC). The characteristics of both types of power electronics in view of their possibilities for this application are presented. (orig.)

  1. Induced over voltage test on transformers using enhanced Z-source inverter based circuit

    Science.gov (United States)

    Peter, Geno; Sherine, Anli

    2017-09-01

    The normal life of a transformer is well above 25 years. The economical operation of the distribution system has its roots in the equipments being used. The economy being such, that it is financially advantageous to replace transformers with more than 15 years of service in the second perennial market. Testing of transformer is required, as its an indication of the extent to which a transformer can comply with the customers specified requirements and the respective standards (IEC 60076-3). In this paper, induced over voltage testing on transformers using enhanced Z source inverter is discussed. Power electronic circuits are now essential for a whole array of industrial electronic products. The bulky motor generator set, which is used to generate the required frequency to conduct the induced over voltage testing of transformers is nowadays replaced by static frequency converter. First conventional Z-source inverter, and second an enhanced Z source inverter is being used to generate the required voltage and frequency to test the transformer for induced over voltage test, and its characteristics is analysed.

  2. Low voltage powering of on-detector electronics for HL-LHC experiments upgrades

    CERN Document Server

    Bobillier, Vincent; Vasey, Francois; Karmakar, Sabyasachi; Maity, Manas; Roy, Subhasish; Kundu, Tapas Kumar

    2018-01-01

    All LHC experiments will be upgraded during the next LHC long shutdowns (LS2 and LS3). The increase in resolution and luminosity and the use of more advanced CMOS technology nodes typically implies higher current consumption of the on-detector electronics. In this context, and in view of limiting the cable voltage drop, point-of-load DC-DC converters will be used on detector. This will have a direct impact on the existing powering scheme, implying new AC-DC and/or DC-DC stages as well as changes in the power cabling infrastructure. This paper presents the first results obtained while evaluating different LV powering schemes and distribution layouts for HL-LHC trackers. The precise low voltage power source requirements are being assessed and understood using the CMS tracker upgrade as a use-case.

  3. Control voltage and power fluctuations when connecting wind farms

    Science.gov (United States)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  4. Control voltage and power fluctuations when connecting wind farms

    International Nuclear Information System (INIS)

    Berinde, Ioan; Bălan, Horia; Oros, Teodora Susana

    2015-01-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve

  5. Control voltage and power fluctuations when connecting wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com [Technical University of Cluj-Napoca, Romania, Faculty of Electrical Engineering, Department of Power Engineering and Management (Romania)

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  6. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  7. A novel high voltage start up circuit for an integrated switched mode power supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hao; Chen Xingbi, E-mail: huhao21@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2010-09-15

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions. (semiconductor devices)

  8. Digital Control Techniques Based on Voltage Source Inverters in Renewable Energy Applications: A Review

    Directory of Open Access Journals (Sweden)

    Sohaib Tahir

    2018-02-01

    Full Text Available In the modern era, distributed generation is considered as an alternative source for power generation. Especially, need of the time is to provide the three-phase loads with smooth sinusoidal voltages having fixed frequency and amplitude. A common solution is the integration of power electronics converters in the systems for connecting distributed generation systems to the stand-alone loads. Thus, the presence of suitable control techniques, in the power electronic converters, for robust stability, abrupt response, optimal tracking ability and error eradication are inevitable. A comprehensive review based on design, analysis, validation of the most suitable digital control techniques and the options available for the researchers for improving the power quality is presented in this paper with their pros and cons. Comparisons based on the cost, schemes, performance, modulation techniques and coordinates system are also presented. Finally, the paper describes the performance evaluation of the control schemes on a voltage source inverter (VSI and proposes the different aspects to be considered for selecting a power electronics inverter topology, reference frames, filters, as well as control strategy.

  9. Power sharing algorithm for vector controlled six-phase AC motor with four customary three-phase voltage source inverter drive

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede

    2015-01-01

    This paper considered a six-phase (asymmetrical) induction motor, kept 30 phase displacement between two set of three-phase open-end stator windings configuration. The drive system consists of four classical three-phase voltage inverters (VSIs) and all four dc sources are deliberately kept isolated......) by nearest three vectors (NTVs) approach is adopted to regulate each couple of VSIs. The proposed power sharing algorithm is verified by complete numerical simulation modeling (Matlab/ Simulink-PLECS software) of whole ac drive system by observing the dynamic behaviors in different designed condition. Set...

  10. Voltage generators of high voltage high power accelerators

    International Nuclear Information System (INIS)

    Svinin, M.P.

    1981-01-01

    High voltage electron accelerators are widely used in modern radiation installations for industrial purposes. In the near future further increasing of their power may be effected, which enables to raise the efficiency of the radiation processes known and to master new power-consuming production in industry. Improvement of HV generators by increasing their power and efficiency is one of many scientific and engineering aspects the successful solution of which provides further development of these accelerators and their technical parameters. The subject is discussed in detail. (author)

  11. Coordinated Reactive Power and Voltage Management for Offshore Wind Farms with AC-connection

    DEFF Research Database (Denmark)

    Heussen, Kai

    2008-01-01

    This paper analyzes voltage and reactive power in a wind farm in dependence on switchable shunt and tap-changer settings in connection with the control ranges of flexible reactive power sources. Attention is paid to their interdependent effects on central control variables, such as voltage...... in the collection grid, reactive power exported to the grid and internal active power losses. An aggregated steady-state model of an offshore wind farm is presented and a reduced mathematical representation suitable for symbolic analysis is developed. A coordination scheme is proposed to coordinate fast continuous...... control inputs with slow tap-changing devices using a short-term prediction. The proposed scheme is aimed at balancing cost factors such as wear of switching components, active power loss within the wind farm and STATCOM capacity....

  12. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  13. Design of the all solid high-voltage power supply for a gyrotron body

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yihua [School of Mathematics and Physics, University of South China, Hengyang, 421001 (China); Chen, Wenguang, E-mail: 430000485393@usc.edu.cn [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Hu, Bo [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Rao, Jun; Huang, Mei; Kang, Zihua; Feng, Kun [Southwestern Institute of Physics, Chengdu, 610041 (China); Huang, Jiaqi [School of Electrical Engineering, University of South China, Hengyang, 421001 (China)

    2017-04-15

    Highlights: • Completed design of all solid-state high-voltage power supply for gyrotron body on HL-2M ECRH. • Consist of 58 PSM modules and one BUCK module, controlled by DSP system. • Fabricated full voltage 35 kV, 200 mA BPS and tested in dummy load. • The BPS can operate in three modes: single pulse mode, multi-pulse modulation mode and the six-level preset mode. - Abstract: Gyrotron plays an important role in the research of electron cyclotron resonance heating (ECRH) on Tokomak. The high-frequency switched power supply technology and pulse step modulation (PSM) technology are used in the development of the all solid high-voltage body power supply (BPS) for 1 MW/105 GHz Gyrotron on ECRH system. Firstly, the basic structure of the BPS and its control system are introduced. Secondly, the software control algorithm of voltage stabilization and modulate method are developed. Finally, the design is verified by the experiments. The experimental results of the single pulse mode, the multi-pulse modulation mode and the six-level preset mode, are shown. The output voltage of the power supply can reach 35 kV and the current at about 200 mA, which are adjustable in the full range. The maximum modulation frequency can reach 1 kHz and the front edge of the pulse can be adjust from 0 to 3 ms and the accuracy of the output voltage is less than 100 V. The results show that the control method is feasible and can be applied to other high power microwave sources.

  14. Photovoltaic-STATCOM with Low Voltage Ride through Strategy and Power Quality Enhancement in a Grid Integrated Wind-PV System

    Directory of Open Access Journals (Sweden)

    Lakshman Naik Popavath

    2018-04-01

    Full Text Available The traditional configurations of power systems are changing due to the greater penetration of renewable energy sources (solar and wind, resulting in reliability issues. At present, the most severe power quality problems in distribution systems are current harmonics, reactive power demands, and the islanding of renewables caused by severe voltage variations (voltage sag and swell. Current harmonics and voltage sag strongly affect the performance of renewable-based power systems. Various conventional methods (passive filters, capacitor bank, and UPS are not able to mitigate harmonics and voltage sag completely. Based on several studies, custom power devices can mitigate harmonics completely and slightly mitigate voltage sags with reactive power supplies. To ensure the generating units remain grid-connected during voltage sags and to improve system operation during abnormal conditions, efficient and reliable utilization of PV solar farm inverter as STATCOMs is needed. This paper elaborates the dynamic performance of a VSC-based PV-STATCOM for power quality enhancement in a grid integrated system and low voltage ride through (LVRT capability. LVRT requirements suggest that the injection of real and reactive power supports grid voltage during abnormal grid conditions. The proposed strategy was demonstrated with MATLAB simulations.

  15. A Method for the Realization of an Interruption Generator Based on Voltage Source Converters

    Directory of Open Access Journals (Sweden)

    Junhui Li

    2017-10-01

    Full Text Available In this paper we described the structure and working principle of an interruption generator based on voltage source converters (VSCs. The main circuit parameters of the VSCs are determined according to the target of power transfer capability, harmonic suppression, and dynamic response capability. A state feedback linearization method in nonlinear differential geometry theory was used for dq axis current decoupling, based on the mathematical model used in the dq coordinate system of VSCs. The direct current control strategy was adopted to achieve the independent regulation of active power and reactive power. The proportional integral (PI link was used to optimize the dynamic performance of the controller, and PI parameters were adjusted. Disturbance voltage waves were generated by the regular sampling method. PSCAD/EMTDC simulation results and physical prototype experiments showed that the device could generate various disturbance voltage waveforms steadily, and had good dynamic and steady-state performance.

  16. Diode-Assisted Buck-Boost Voltage-Source Inverters

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Teodorescu, Remus

    2009-01-01

    , a number of diode-assisted inverter variants can be designed with each having its own operational principle and voltage gain expression. For controlling them, a generic modulation scheme that can be used for controlling all diode-assisted variants with minimized harmonic distortion and component stress......This paper proposes a number of diode-assisted buck-boost voltage-source inverters with a unique X-shaped diode-capacitor network inserted between the inverter circuitry and dc source for producing a voltage gain that is comparatively higher than those of other buck-boost conversion techniques....... Using the diode-assisted network, the proposed inverters can naturally configure themselves to perform capacitive charging in parallel and discharging in series to give a higher voltage multiplication factor without compromising waveform quality. In addition, by adopting different front-end circuitries...

  17. Automatic Voltage Control (AVC) System under Uncertainty from Wind Power

    DEFF Research Database (Denmark)

    Qin, Nan; Abildgaard, Hans; Flynn, Damian

    2016-01-01

    An automatic voltage control (AVC) system maintains the voltage profile of a power system in an acceptable range and minimizes the operational cost by coordinating the regulation of controllable components. Typically, all of the parameters in the optimization problem are assumed to be certain...... and constant in the decision making process. However, for high shares of wind power, uncertainty in the decision process due to wind power variability may result in an infeasible AVC solution. This paper proposes a voltage control approach which considers the voltage uncertainty from wind power productions....... The proposed method improves the performance and the robustness of a scenario based approach by estimating the potential voltage variations due to fluctuating wind power production, and introduces a voltage margin to protect the decision against uncertainty for each scenario. The effectiveness of the proposed...

  18. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  19. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    Science.gov (United States)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  20. Reactive power management and voltage control in deregulated power markets

    Science.gov (United States)

    Spangler, Robert G.

    The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to

  1. Ultra-long-pulse microwave negative high voltage power supply with fast protection

    International Nuclear Information System (INIS)

    Xu Weihua; Wu Junshuan; Zheng Guanghua; Huang Qiaolin; Yang Chunsheng; Zhou Yuanwei; Chen Yonghao

    1998-01-01

    Two 1.4 MW high voltage power supply (HVPS) modules with 3-5 s pulse duration have been developed for LHCD experiment in the HT-7 tokamak. The power source consists of a pulsed generator and the electric circuit. Duration of the ultra-long-pulse is controlled by switching-on dc relay immediately and switching-off ac contactor after a given time, and the fast protection is executed by a crowbar. Due to the soft starting of the power source, the problem of overvoltage induced by dc relay switching-on has been solved. Each power supply module outputs a rated power (-35 kV, 40 A) on the dummy load. With the klystrons connected as the load of the power supply modules, LHCD experiments have been conducted successfully in the HT-7 tokamak

  2. Common-mode Voltage Reduction in a Motor Drive System with a Power Factor Correction

    DEFF Research Database (Denmark)

    Adabi, J.; Boora, A.A.; Zare, F.

    2012-01-01

    Common-mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this study, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order...... to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the AC-DC diode rectifier influences the common-mode voltage generated by the inverter because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique...

  3. Power conditioning using dynamic voltage restorers under different voltage sag types.

    Science.gov (United States)

    Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A

    2016-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.

  4. FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters

    Science.gov (United States)

    Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.

    2015-01-01

    This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852

  5. Reactive Power Compensation of a 24 MW Wind Farm using a 12-Pulse Voltage Source Converter

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Pedersen, Jørgen Kaas

    1998-01-01

    Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop and investig......Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop...... and investigate the use of a STATCOM by modelling and field testing an 8 MVar unit in a 24 MW wind farm....

  6. Impedance-Source Networks for Electric Power Conversion Part II

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede

    2015-01-01

    Impedance-source networks cover the entire spectrum of electric power conversion applications (dc-dc, dc-ac, ac-dc, ac-ac) controlled and modulated by different modulation strategies to generate the desired dc or ac voltage and current at the output. A comprehensive review of various impedance......-source-network-based power converters has been covered in a previous paper and main topologies were discussed from an application point of view. Now Part II provides a comprehensive review of the most popular control and modulation strategies for impedance-source network-based power converters/inverters. These methods...

  7. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  8. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  9. Dual voltage power supply with 48 volt

    Energy Technology Data Exchange (ETDEWEB)

    Froeschl, Joachim; Proebstle, Hartmut; Sirch, Ottmar [BMW Group, Muenchen (Germany)

    2012-11-01

    Automotive electrics/electronics have just reached a period of tremendous change. High voltage systems for Hybrid, Plug-In Hybrid or Battery Electric Vehicles with high power electric motors, high energy accumulators and electric climate compressors will be introduced in order to achieve the challenging targets for CO{sub 2} emissions and energy efficiency and to anticipate the mobility of the future. Additionally, innovations and the continuous increase of functionality for comfort, safety, driver assistance and infotainment systems require more and more electrical power of the vehicle power supply at all. On the one hand side electrified vehicles will certainly achieve a significant market share, on the other hand side they will increase the pressure to conventional vehicles with combustion engines for fuel consumption and CO{sub 2} emissions. These vehicles will be enabled to keep their competitiveness by new functions and the optimization of their electric systems. A dual voltage power supply with 48 Volt and 12 Volt will be one of the key technologies to realize these requirements. The power capability of the existing 12 Volt power supply has reached its limits. Further potentials can only be admitted by the introduction of 48 Volt. For this reason the car manufacturers Audi, BMW, Daimler, Porsche and Volkswagen started very early on this item and developed a common specification of the new voltage range. Now, it is necessary to identify the probable systems at this voltage range and to start the developments. (orig.)

  10. Performance of unified power quality conditioner (UPQC) based on fuzzy controller for attenuating of voltage and current harmonics

    Science.gov (United States)

    Milood Almelian, Mohamad; Mohd, Izzeldin I.; Asghaiyer Omran, Mohamed; Ullah Sheikh, Usman

    2018-04-01

    Power quality-related issues such as current and voltage distortions can adversely affect home and industrial appliances. Although several conventional techniques such as the use of passive and active filters have been developed to increase power quality standards, these methods have challenges and are inadequate due to the increasing number of applications. The Unified Power Quality Conditioner (UPQC) is a modern strategy towards correcting the imperfections of voltage and load current supply. A UPQC is a combination of both series and shunt active power filters in a back-to-back manner with a common DC link capacitor. The control of the voltage of the DC link capacitor is important in achieving a desired UPQC performance. In this paper, the UPQC with a Fuzzy logic controller (FLC) was used to precisely eliminate the imperfections of voltage and current harmonics. The results of the simulation studies using MATLAB/Simulink and Simpower system programming for R-L load associated through an uncontrolled bridge rectifier was used to assess the execution process. The UPQC with FLC was simulated for a system with distorted load current and a system with distorted source voltage and load current. The outcome of the comparison of %THD in the load current and source voltage before and after using UPQC for the two cases was presented.

  11. Design of High-Voltage Switch-Mode Power Amplifier Based on Digital-Controlled Hybrid Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Yanbin Hou

    2016-01-01

    Full Text Available Compared with conventional Class-A, Class-B, and Class-AB amplifiers, Class-D amplifier, also known as switching amplifier, employs pulse width modulation (PWM technology and solid-state switching devices, capable of achieving much higher efficiency. However, PWM-based switching amplifier is usually designed for low-voltage application, offering a maximum output voltage of several hundred Volts. Therefore, a step-up transformer is indispensably adopted in PWM-based Class-D amplifier to produce high-voltage output. In this paper, a switching amplifier without step-up transformer is developed based on digital pulse step modulation (PSM and hybrid multilevel converter. Under the control of input signal, cascaded power converters with separate DC sources operate in PSM switch mode to directly generate high-voltage and high-power output. The relevant topological structure, operating principle, and design scheme are introduced. Finally, a prototype system is built, which can provide power up to 1400 Watts and peak voltage up to ±1700 Volts. And the performance, including efficiency, linearity, and distortion, is evaluated by experimental tests.

  12. The development of long pulse high voltage power supply for MNI-1U neutral beam injector

    International Nuclear Information System (INIS)

    Detai Wang

    1989-01-01

    A high power long pulse high voltage power supply (HVPS) for MNI- 1 U neutral beam injector (NBI) is described. This HVPS is used as a switching regulator with a duty cycle of 1/100, the specifications of circuit are as follows, output pulse voltage 50kv, pulse current 30A, pulse width 50ms, rise-time and fall-time of the voltage are less than 25 μs, stability of the pulse flat is better than 0.5%, regulation response time of the pulse voltage less than 30 μs can be attained. It is also used as a stable DC HVPS, output voltage is 1 to 100kv, current is 1 to 5A. If regulation tube is shunted with high power resistor in parallel, the current can be extended to 10 A, stability of the output voltage or current is better than 0.1%. Now, the HVPS has been put into operation for MNI- 1 U NBI and PIG ion source made in French. 3 refs., 5 figs

  13. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current

    Science.gov (United States)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  14. Improvement the Capacity of Cockcroft-Walton High Voltage Source from 300 kV/20 mA to 500 kV/20 mA for Accelerating Voltage of Electron Beam Machine

    International Nuclear Information System (INIS)

    Suprapto; Djasiman

    2002-01-01

    The improvement capacity of Cockcroft-Walton high voltage source from 300 kV/20 mA to 500 kV/mA has been carrying out. To improve the capacity of high voltage source was done by means of increasing the stage number of voltage multiplier from 11 to 18 and its output voltage measuring resistance. Each stage of voltage multiplier consists of 2 capacitors and 2 circuits of high voltage diode. This voltage multiplier is constructed using main components of high voltage capacitor and high voltage diode each of 0.22 μF/50 kV and UF 5408 respectively. To avoid stray discharge and corona it was provided with high voltage electrode and corona ring. The test result indicated that the output voltage obtained from 16 stages was 350 kV according to operating condition of 25 MΩ resistive load and first stage voltage of 28.5 kV with oscillator frequency of 24 Hz. That condition requires anode voltage and current of 5.5 kV and 2.5 A respectively. The no load test for 16 stages indicates 400 kV of output voltage and 28.5 kV first stage voltage. Efficiency of high voltage source was 48 % at 6.75 kW of output power. The expected test of 500 kV with 18 stages of voltage multiplier can not be carried out because of some restrictive of loading system. From the test result can be predicted that the output voltage of 500 kV with 18 stages of voltage multiplier requires 31.2 kV of first stage voltage. Then the expected high voltage source of Cockcroft-Walton is capable as accelerating voltage source for Electron Beam Machine with energy of 500 kV. (author)

  15. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems

    DEFF Research Database (Denmark)

    Zhu, Jiebei; Guerrero, Josep M.; Hung, William

    2014-01-01

    A generic Inertia Emulation Controller (INEC) scheme for Multi-Terminal Voltage-Source-Converter based HVDC (VSC-MTDC) systems is proposed and presented in this paper. The proposed INEC can be incorporated in any Grid-side Voltage-Source-Converter (GVSC) station, allowing the MTDC terminal...

  16. An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Vijith Vijayakumaran Nair

    2015-06-01

    Full Text Available In near-field wireless-powered biomedical implants, the receiver voltage largely overrides the compliance of low-voltage power receiver systems. To limit the induced voltage, generally, low-voltage topologies utilize limiter circuits, voltage clippers or shunt regulators, which are power-inefficient methods. In order to overcome the voltage limitation and improve power efficiency, we propose an integrated chip high-voltage power receiver based on the step down approach. The topology accommodates voltages as high as 30 V and comprises a high-voltage semi-active rectifier, a voltage reference generator and a series regulator. Further, a battery management circuit that enables safe and reliable implant battery charging based on analog control is proposed and realized. The power receiver is fabricated in 0.35-μm high-voltage Bipolar-CMOS-DMOStechnology based on the LOCOS0.35-μm CMOS process. Measurement results indicate 83.5% power conversion efficiency for a rectifier at 2.1 mA load current. The low drop-out regulator based on the current buffer compensation and buffer impedance attenuation scheme operates with low quiescent current, reduces the power consumption and provides good stability. The topology also provides good power supply rejection, which is adequate for the design application. Measurement results indicate regulator output of 4 ± 0.03 V for input from 5 to 30 V and 10 ± 0.05 V output for input from 11 to 30 V with load current 0.01–100 mA. The charger circuit manages the charging of the Li-ion battery through all if the typical stages of the Li-ion battery charging profile.

  17. Voltage harmonics mitigation through hybrid active power filer

    International Nuclear Information System (INIS)

    Sahito, A.A.; Tunio, S.M.; Khizer, A.N.

    2016-01-01

    Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion) of 18.91 and 7.61 percentage in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter) is proposed to reduce these THD values below 5 percentage as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5 percentage. (author)

  18. Voltage Harmonics Mitigation through Hybrid Active Power Filter

    Directory of Open Access Journals (Sweden)

    Anwer Ali Sahito

    2016-01-01

    Full Text Available Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion of 18.91 and 7.61% in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter is proposed to reduce these THD values below 5% as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5%.

  19. A Low-input-voltage Wireless Power Transfer for Biomedical Implants

    DEFF Research Database (Denmark)

    Jiang, Hao; Bai, Kangjun; Zhu, Weijie

    2015-01-01

    Wireless power transfer is an essential technology to increase implants' longevity. A pair of inductivelycoupled coils operating at radio-frequency is extensively used to deliver electrical power to implants wirelessly. In this system, a power conditioning circuit is required convert the induced...... in the rectifier for the efficient AC to DC conversion. This requirement results in larger coil size, shorter operating distance or more stringent geometrical alignment between the two coils. In this paper, a low-input-voltage wireless power transfer has been demonstrated. In this system, the opencircuit voltage...... time-varying AC power harvested by the receiving coil to a stable DC power that is needed for powering circuits and sensors. Most existing power conditioning circuits require the induced voltage of the receiving coil to be significantly higher than the turn-on voltage of the diodes used...

  20. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Chen, Wenjie; Liserre, Marco

    2015-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrent problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zerosequence components are proposed to enhance the power control ability under this adverse condition. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC voltage....

  1. Possibilities by using a self-commutated voltage source inverter connected to a weak grid in wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    In this paper the hybrid wind farm connected to a weak grid is investigated. By combining different electrical wind power plant systems a cost-efficient solution is obtained. The point of common connection voltage level can be controlled by injecting reactive power from a phase-compensating capacitor battery and a voltage source inverter (VSI). If the short-circuit impedance ratio is lower than 1, the demanded reactive power injection to keep the voltage at nominal level is unrealistic. For short-circuit impedance ratios of 2 or higher the demanded reactive power level is acceptable. When using both induction generators and thyristor inverters the reactive power injector VSI size should be about 0.2 pu. If the hybrid farm consists of THYs, IGs and VSIs and the active power is equally shared between the systems, the VSI had to be scaled up by 5% to handle both active and reactive power. 7 refs, 10 figs, 2 tabs

  2. Distributed Low Voltage Ride-Through Operation of Power Converters in Grid-Connected Microgrids under Voltage Sags

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Dragicevic, Tomislav

    2015-01-01

    it can make the MG a contributor in smooth ride through the faults. In this paper, a reactive power support strategy using droop controlled converters is proposed to aid MG riding through three phase symmetrical voltage sags. In such a case, the MGs should inject reactive power to the grid to boost...... the voltage in all phases at AC common bus. However, since the line admittances from each converter to point of common coupling (PCC) are not identical, the injected reactive power may not be equally shared. In order to achieve low voltage ride through (LVRT) capability along with a good power sharing...

  3. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2014-01-01

    on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling of the proposed system...... of voltage control loop because the variation of dc-link voltage should be kept within an acceptable range during load transients. This is particularly important for systems with reduced dc-link capacitance because they are of lower energy capacity and very sensitive to step load changes. Simulation results...

  4. Voltage control in the future power transmission systems

    DEFF Research Database (Denmark)

    Qin, Nan

    Wind energy in Denmark covers 42% of the total power consumption in 2015, and will share up to 50% by 2020. Consequently, the conventional power plants are decommissioning. Under the progress of the green transition, the national decision leads to underground many overhead lines in the future...... stages. The voltage uncertainty caused by the wind power forecasting errors is estimated, which is applied as a voltage security margin to further constrain the voltage magnitude in the optimization problem. The problem under the uncertainty is therefore converted to a deterministic problem, which...... to ensure a highly reliable transmission, e.g. balancing the generation and the consumption in large geographic regions, the exchange capacities will be enlarged by upgrading the interconnections. The Danish power system, the electricity transportation hub between the Nordic and continental European systems...

  5. Optimal condition of memristance enhancement circuit using external voltage source

    Directory of Open Access Journals (Sweden)

    Hiroya Tanaka

    2014-05-01

    Full Text Available Memristor provides nonlinear response in the current-voltage characteristic and the memristance is modulated using an external voltage source. We point out by solving nonlinear equations that an optimal condition of the external voltage source exists for maximizing the memristance in such modulation scheme. We introduce a linear function to describe the nonlinear time response and derive an important design guideline; a constant ratio of the frequency to the amplitude of the external voltage source maximizes the memristance. The analysis completely accounts for the memristance behavior.

  6. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. The technical and economic problems arising in three phase extra high voltage transmission are discussed. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating and reactive power and stability problems.

  7. Voltage and frequency control of wind-powered islanded microgrids based on induction generator and STATCOM

    DEFF Research Database (Denmark)

    Bouzid, Allal; Sicard, Pierre; Guerrero, Josep M.

    2015-01-01

    This paper presents a comprehensive modeling of a three-phase cage induction machine used as a self-excited squirrel-cage induction generator (SEIG), and discusses the regulation of the voltage and frequency of a self-excited SEIG based on the action of the static synchronous Compensator (STATCOM......). The STATCOM with the proposed controller consists of a three-phase voltage-sourced inverter and a DC voltage. The compensator can provide the active and reactive powers and regulate AC system bus voltage and the frequency, but also may enhance the load stability. Moreover, a feed forward control method...

  8. Double input converters for different voltage sources with isolated charger

    Directory of Open Access Journals (Sweden)

    Chalash Sattayarak

    2014-09-01

    Full Text Available This paper presents the double input converters for different voltage input sources with isolated charger coils. This research aims to increase the performance of the battery charger circuit. In the circuit, there are the different voltage levels of input source. The operating modes of the switch in the circuit use the microcontroller to control the battery charge and to control discharge mode automatically when the input voltage sources are lost from the system. The experimental result of this research shows better performance for charging at any time period of the switch, while the voltage input sources work together. Therefore, this research can use and develop to battery charger for present or future.

  9. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  10. Modeling and simulation of dynamic voltage restorer in power system

    International Nuclear Information System (INIS)

    Abdel Aziz, M.A.A.M.

    2012-01-01

    There are many loads subjected to several Power Quality Problems such as voltage sags/swells, unbalance, harmonics distortion, and short interruption. These loads encompass a wide range of equipment which are very sensitive to voltage disturbances. The Dynamic Voltage Restorer (DVR) has recently been introduced to protect sensitive loads from voltage sags and other voltage disturbances in addition to this, it mitigates current harmonics distortion. It is a series connected power electronic based device. It is considered as one of the most efficient and effective solutions. Its appeal includes smaller size and fast dynamic response to disturbances. This work describes a proposal of the DVR to improve power quality distribution (medium voltage) system. The control of the compensation voltage and harmonics cancellation in the DVR is based on Adaptive Noise Canceling (ANC) technique. Simulation results carried out by PSCAD/EMTDC to investigate the performance of the proposed method.

  11. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. This is followed by treatment of the technical and economic problems arising in three phase-extra high voltage transmission. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating, and reactive power and stability problems.

  12. Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source

    International Nuclear Information System (INIS)

    Mohamadou, Youssoufa; Oh, Tong In; Wi, Hun; Sohal, Harsh; Farooq, Adnan; Woo, Eung Je; McEwan, Alistair Lee

    2012-01-01

    Current sources are widely used in bio-impedance spectroscopy (BIS) measurement systems to maximize current injection for increased signal to noise while keeping within medical safety specifications. High-performance current sources based on the Howland current pump with optimized impedance converters are able to minimize stray capacitance of the cables and setup. This approach is limited at high frequencies primarily due to the deteriorated output impedance of the constant current source when situated in a real measurement system. For this reason, voltage sources have been suggested, but they require a current sensing resistor, and the SNR reduces at low impedance loads due to the lower current required to maintain constant voltage. In this paper, we compare the performance of a current source-based BIS and a voltage source-based BIS, which use common components. The current source BIS is based on a Howland current pump and generalized impedance converters to maintain a high output impedance of more than 1 MΩ at 2 MHz. The voltage source BIS is based on voltage division between an internal current sensing resistor (R s ) and an external sample. To maintain high SNR, R s is varied so that the source voltage is divided more or less equally. In order to calibrate the systems, we measured the transfer function of the BIS systems with several known resistor and capacitor loads. From this we may estimate the resistance and capacitance of biological tissues using the least-squares method to minimize error between the measured transimpedance excluding the system transfer function and that from an impedance model. When tested on realistic loads including discrete resistors and capacitors, and saline and agar phantoms, the voltage source-based BIS system had a wider bandwidth of 10 Hz to 2.2 MHz with less than 1% deviation from the expected spectra compared to more than 10% with the current source. The voltage source also showed an SNR of at least 60 dB up to 2.2 MHz

  13. A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source

    Science.gov (United States)

    Nam, S. W.; Benz, S. P.; Martinis, J. M.; Dresselhaus, P.; Tew, W. L.; White, D. R.

    2003-09-01

    Johnson Noise Thermometry (JNT) involves the measurement of the statistical variance of a fluctuating voltage across a resistor in thermal equilibrium. Modern digital techniques make it now possible to perform many functions required for JNT in highly efficient and predictable ways. We describe the operational characteristics of a prototype JNT system which uses digital signal processing for filtering, real-time spectral cross-correlation for noise power measurement, and a digitally synthesized Quantized Voltage Noise Source (QVNS) as an AC voltage reference. The QVNS emulates noise with a constant spectral density that is stable, programmable, and calculable in terms of known parameters using digital synthesis techniques. Changes in analog gain are accounted for by alternating the inputs between the Johnson noise sensor and the QVNS. The Johnson noise power at a known temperature is first balanced with a synthesized noise power from the QVNS. The process is then repeated by balancing the noise power from the same resistor at an unknown temperature. When the two noise power ratios are combined, a thermodynamic temperature is derived using the ratio of the two QVNS spectral densities. We present preliminary results where the ratio between the gallium triple point and the water triple point is used to demonstrate the accuracy of the measurement system with a standard uncertainty of 0.04 %.

  14. Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters

    DEFF Research Database (Denmark)

    Vasquez, Juan Carlos; Guerrero, Josep M.; Savaghebi, Mehdi

    2011-01-01

    and discussed. Experimental results are provided to validate the performance and robustness of the VSIs functionality during Islanded and grid-connected operations, allowing a seamless transition between these modes through control hierarchies by regulating frequency and voltage, main-grid interactivity......Power electronics based microgrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of three-phase VSIs are derived. The proposed voltage and current inner control loops and the mathematical models...

  15. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  16. Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    Xinyin Zhang

    2015-07-01

    Full Text Available The Voltage Source Converter-HVDC (VSC-HVDC system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT of the VSC-HVDC connected wind farm is a key technology issue that must be solved, and it is currently lacking an economic and effective solution. In this paper, a LVRT coordinated control strategy is proposed for the VSC-HVDC-based wind power system. In this strategy, the operation and control of VSC-HVDC and wind farm during the grid fault period is improved. The VSC-HVDC system not only provides reactive power support to the grid, but also effectively maintains the power balance and DC voltage stability by reducing wind-farm power output, without increasing the equipment investment. Correspondingly, to eliminate the influence on permanent magnet synchronous generator (PMSG-based wind turbine (WT systems, a hierarchical control strategy is designed. The speed and validity of the proposed LVRT coordinated control strategy and hierarchical control strategy were verified by MATLAB/Simulink simulations.

  17. Low Power/Low Voltage Interface Circuitry for Capacitive Sensors

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    This thesis focuses mainly on low power/low voltage interface circuits, implemented in CMOS, for capacitive sensors. A brief discussion of demands and possibilities for analog signal processing in the future is presented. Techniques for low power design is presented. This is done by analyzing power...... power consumption. It is shown that the Sigma-Delta modulator is advantageous when embedded in a feedback loop with a mechanical sensor. Here a micro mechanical capacitive microphone. Feedback and detection circuitry for a capacitive microphone is presented. Practical implementations of low power....../low voltage interface circuitry is presented. It is demonstrated that an amplifier optimized for a capacitive microphone implemented in a standard 0.7 micron CMOS technology competes well with a traditional JFET amplifier. Furthermore a low power/low voltage 3rd order Sigma-Delta modulator is presented...

  18. PMU-Aided Voltage Security Assessment for a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, H.; Zhang, Y. C.; Zhang, J. J.; Muljadi, E.

    2015-04-08

    Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This paper proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant’s point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.

  19. Increase of the positive ion source power in JT-60 NBI

    International Nuclear Information System (INIS)

    Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru

    1998-09-01

    Neutral Beam Injection (NBI) heating experiment in JT-60 started in 1986, and the rated injection power of 20MW at 75keV with hydrogen was achieved after several month operation. In 1991, the ion sources and power supply had been upgraded for a higher beam energy up to 120keV with deuterium, following which the ion source operation re-started aiming for an injection power of 40MW at 110keV. In the operation, the beam acceleration voltage was tried to increase by modifying the ion source structure against the break-down which occurred frequently in the ion source. The beam acceleration was, however, unstable in a beam energy range of more than 105keV because of voltage-holding deterioration in the accelerator. Therefore we changed the strategy to increase the injection power: i.e. we tried to increase the beam current with keeping the beam energy. The structure of the source has been modified to be operated in a high current regime. As a result, the deuterium neutral beam injection of 40MW at 91-96keV was achieved in July 1996. (author)

  20. Characterization of a pulsed mode high voltage power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Ghazali, A B; Ahmad, T S; Abdullah, N A

    2013-01-01

    This paper discusses the characterization of a pulsed mode high voltage power supply (HVPS) using LT1073 chip. The pulsed modulated signal generated from this chip is amplified using a step-up ferrite core transformer of 1:20 turn ratio and then further multiplied and converted into DC high voltage output using a diode-capacitor arrangement. The circuit is powered by a 9V alkaline battery but regulated at 5V supply. It was found that the output for this setup is 520V, 87 μA with 10% load regulation. This output is suitable to operate a pancake-type GM detector, typically model LND 7317 where the plateau is from 475V to 675V. It was also found that when a β-source with intensity of 120 cps is used, the power consumption of the circuit is 5 V, 10.1 mA only. When the battery was left 'on' for 40 hours continuously, the battery's voltage has dropped to 6.9V, meaning that the 5V supply as well as 520V output is still maintained. It is noted that the minimum output voltage of 475V has reached when the regulated supply has reduced to 4.6V and consequently the 9V battery dropped to 6.5V, and this had happened after approximately 3 days of continuous operation. The power efficiency for this circuitry was found to be 89.5%. This result has far better in performance since the commercial portable equipment of this type has normally specified that not less than 8 hours continuous operation only. On the circuit design for this power supply, it was found that the enveloped frequency is 133 Hz with approximately 50% duty cycle. The modulated frequency during 'on' state was found to be 256 KHz in which the majority of power consumption is required.

  1. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  2. Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    Md Shafiul Alam

    2017-11-01

    Full Text Available This paper proposes the use of bridge type fault current limiters (BFCLs as a potential solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC (VSC-HVDC systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance the fault ride-through (FRT capability with auxiliary control devices like BFCLs. BFCL controllers have been developed to limit the fault current during the inception of system disturbances. Real and reactive power controllers for the VSC-HVDC have been developed based on current control mode. DC link voltage control has been achieved by a feedback mechanism such that net power exchange with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented in a real time digital simulator (RTDS. Symmetrical three phase as well as different types of unsymmetrical faults have been applied in the systems in order to show the effectiveness of the proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation have been greatly suppressed with the proposed BFCL. Another significant feature of this work is that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series dynamic braking resistor (SDBR. Comparative results show that the proposed BFCL is superior over SDBR in limiting fault current as well as improving system fault ride through (FRT capability.

  3. Mitigation of voltage sags in the distribution system with dynamic voltage restorer

    International Nuclear Information System (INIS)

    Viglas, D.; Belan, A.

    2012-01-01

    Dynamic voltage restorer is a custom power device that is used to improve voltage sags or swells in electrical distribution system. The components of the Dynamic Voltage Restorer consist of injection transformers, voltage source inverter, passive filters and energy storage. The main function of the Dynamic voltage restorer is used to inject three phase voltage in series and in synchronism with the grid voltages in order to compensate voltage disturbances. This article deals with mitigation of voltage sags caused by three-phase short circuit. Dynamic voltage restorer is modelled in MATLAB/Simulink. (Authors)

  4. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis

  5. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  6. Advances in high voltage power switching with GTOs

    International Nuclear Information System (INIS)

    Podlesak, T.F.

    1990-01-01

    The control of high voltage at high power, particularly opening switches, has been difficult in the past. Using gate turnoff thyristors (GTOs) arranged in series enables large currents to be switched at high voltage. The authors report a high voltage opening switch has been successfully demonstrated. This switch uses GTOs in series and successfully operates at voltages higher than the rated voltage of the individual devices. It is believed that this is the first time this has been successfully demonstrated, in that GTOs have been operated in series before, but always in a manner as to not exceed the voltage capability of the individual devices. In short, the devices have not worked together, sharing the voltage, but one device has been operated using several backup devices. Of particular interest is how well the individual devices share the voltage applied to them. Equal voltage sharing between devices is absolutely essential, in order to not exceed the voltage rating of any of the devices in the series chain. This is accomplished at high (microsecond) switching speeds. Thus, the system is useful for high frequency applications as well as high power, making for a flexible circuit system element. This demonstration system is rated at 5 KV and uses 1 KV devices. A larger 24 KV system is under design and will use 4.5 KV devices. In order to design the 24 KV switch, the safe operating area of the large devices must be known thoroughly

  7. Design concept for radiation hardening of low power and low voltage dynamic memories

    International Nuclear Information System (INIS)

    Schleifer, H.; Ropp, T.V.D.; Reczek, W.

    1995-01-01

    A radiation hard low power, low voltage dynamic memory is obtained by the use of a dummy cell concept. Compared to conventional dummy cell concepts, this concept applies a fully sized dummy cell. By optimizing the dummy cell precharge voltage for 5 V and 3 V operation and the timing of the dummy word-line, the overall soft error rate (SER) of the chip is improved by 2 orders of magnitude. An additional improvement of 1 order of magnitude is possible for 3 V operation by adjusting substrate bias and cell plate voltage. The results are verified by an accelerated SER measurement with a radium 226 source and an additional field soft error study

  8. An approach for high voltage power supply system for HCAL of LHCb experiment

    International Nuclear Information System (INIS)

    Cimpean, A.; Dumitru, D.; Kluger, A.; Magureanu, C.; Tarta, D.; Coca, C.; Orlandea, M.; Popescu, S.

    2003-01-01

    The main aim of the calorimeter system of the LHCb (Large Hadron Collider Beauty) experiment dedicated to precision measurements of CP violation and rare phenomena is to provide identification of the electrons, hadrons and photons, for the level-0 trigger and offline analysis with measurements of position and energy. The system consists in a scintillator pad/preshower (SPD/PS) detector, an electromagnetic calorimeter (ECAL) and a hadron calorimeter (HCAL), all the sub-detectors having a similar technology with scintillating tiles as active material and being read out via wavelength-shifting fibers and with an identical readout electronics for ECAL and HCAL and similar electronics for the PS. During 1997-1999 a computer controlled High Voltage (HV) distribution scheme was developed by Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH) group and used to supply the PMTs of half HCAL prototype during the beam tests (1998-2000). This scheme consisted of three parts: 1) a control box which includes low voltage power supply, the RS232 interface to a PC and three modules of high voltage power supply; 2) two types of multichannel HV distributors with an individual voltage setting; 3) a software package to control all settings and refresh them periodically. Based on the acquired experience, a new design for a High Voltage Power Supply (HVPS) which satisfies the LHCb requirements has been developed for PMTs of the hadron calorimeter. The demands of this system are simplicity and low cost. This HVPS with multiple outputs (HV for photocathode and D1 - D4 dynodes) is destined to supply, with the same high voltage, groups of PMTs sorted by similar characteristics as gain and sensitivity. Because of the high rates (∼ 40 MHz) supported by PMTs, booster voltage sources are necessary to supply current for the last 4 dynodes. The box has 5 HV power supplies for photocathodes and the last 4 dynodes, each HV power supply being followed by a 4 channel

  9. Methods of computing steady-state voltage stability margins of power systems

    Science.gov (United States)

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  10. Congestion management considering voltage security of power systems

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2009-01-01

    Congestion in a power network is turned up due to system operating limits. To relieve congestion in a deregulated power market, the system operator pays to market participants, GENCOs and DISCOs, to alter their active powers considering their bids. After performing congestion management, the network may be operated with a low security level because of hitting some flows their upper limit and some voltages their lower limit. In this paper, a novel congestion management method based on the voltage stability margin sensitivities is introduced. Using the proposed method, the system operator so alleviates the congestion that the network can more retain its security. The proposed method not only makes the system more secure after congestion management than other methods already presented for this purpose but also its cost of providing security is lower than the earlier methods. Test results of the proposed method along with the earlier ones on the New-England test system elaborate the efficiency of the proposed method from the viewpoint of providing a better voltage stability margin and voltage profile as well as a lower security cost. (author)

  11. Impact of the Voltage Dips in Shipboard Microgrid Power Systems

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Guerrero, Josep M.; Savaghebi, Mehdi

    2017-01-01

    Voltage and frequency transient variations are the most common power quality issues in a ship microgrid system. In this paper, the impacts of the voltage dips induced by the sudden-load of ballast pump are analyzed in detail for the ship power systems. Several relevant ship power quality standards...

  12. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    Fahad, A.; Ali, S.M.; Bhatti, A.A.; Nasir, M

    2013-01-01

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  13. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    Directory of Open Access Journals (Sweden)

    A. Pinar

    2015-01-01

    Full Text Available Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested with two entry-level MIG welders. The full bill of materials and open source designs are provided. Voltage and current were measured while making stepwise adjustments to the manual voltage setting on the welder. Three conditions were tested while welding with steel and aluminum wire on steel substrates to assess the role of electrode material, shield gas, and welding velocity. The results showed that the open source sensor circuit performed as designed and could be constructed for <$100 in components representing a significant potential value through lateral scaling and replication in the 3D printing community.

  14. An Inexpensive Source of High Voltage

    Science.gov (United States)

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  15. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  16. Power-supply system for high-voltage electron guns with grid control

    International Nuclear Information System (INIS)

    Grigorev, Y.V.

    1985-01-01

    A power-supply system for electron guns with grid control is described which consists of a source of accelerating voltage between 20 and 180 kV with a current of 100 mA and a control circuit for an electron gun that contains a pulse generator having an output voltage of up to 5 kV for pulse durations of 2, 10, 50 and 90 microseconds. The output pulses of the generator are synchronized with a certain phase of the cathode heater current of the gun, and they can be repeated at a frequency between 100 and 0.4 Hz. The system is reliable and resistant to the overloads associated with breakdowns in the gun

  17. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), CNRS, Nancy Universite, INPL-ENSEM 2, avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2009-08-01

    This paper proposes a perfect energy source supplied by a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices: battery and supercapacitor, for modern distributed generation system, particularly for future fuel cell vehicle applications. The energy in hybrid system is balanced by the dc bus voltage regulation. A supercapacitor module, as a high dynamic and high power density device, functions for supplying energy to regulate a dc bus voltage. A battery module, as a high energy density device, operates for supplying energy to a supercapacitor bank to keep it charged. A FC, as a slowest dynamic source in this system, functions to supply energy to a battery bank in order to keep it charged. Therefore, there are three voltage control loops: dc bus voltage regulated by a supercapacitor bank, supercapacitor voltage regulated by a battery bank, and battery voltage regulated by a FC. To authenticate the proposed control algorithm, a hardware system in our laboratory is realized by analog circuits and numerical calculation by dSPACE. Experimental results with small-scale devices (a PEMFC: 500-W, 50-A; a battery bank: 68-Ah, 24-V; and a supercapacitor bank: 292-F, 30-V, 500-A) corroborate the excellent control principle during motor drive cycle. (author)

  18. Induced voltages in metallic pipelines near power transmission lines

    International Nuclear Information System (INIS)

    Grcev, Leonid; Jankov, Voislav; Filiposki, Velimir

    2002-01-01

    With the continuous development of the electric power system and the pipeline networks used to convey oil or natural gas, cases of close proximity of high voltage structures and metallic pipelines become more and more frequent. Accordingly there is a growing concern about possible hazards resulting from voltages induced in the metallic pipelines by magnetic coupling with nearby power transmission lines. This paper presents a methodology for computation of the induced voltages in buried isolated metallic pipelines. A practical example of computation is also presented. (Author)

  19. Using a Voltage Domain Programmable Technique for Low-Power Management Cell-Based Design

    Directory of Open Access Journals (Sweden)

    Ching-Hwa Cheng

    2011-09-01

    Full Text Available The Multi-voltage technique is an effective way to reduce power consumption. In the proposed cell-based voltage domain programmable (VDP technique, the high and low voltages applied to logic gates are programmable. The flexible voltage domain reassignment allows the chip performance and power consumption to be dynamically adjusted. In the proposed technique, the power switches possess the feature of flexible programming after chip manufacturing. This VDP method does not use an external voltage regulator to regulate the supply voltage level from outside of the chip but can be easily integrated within the design. This novel technique is proven by use of a video decoder test chip, which shows 55% and 61% power reductions compared to conventional single-Vdd and low-voltage designs, respectively. This power-aware performance adjusting mechanism shows great power reduction with a good power-performance management mechanism.

  20. Control for nuclear thermionic power source

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Sawyer, C.D.

    1978-01-01

    A control for a power source is described which includes nuclear fuel interspersed with thermionic converters, including a power regulator that maintains a substantially constant output voltage to a variable load, and a control circuit that drives a neutron flux regulator in accordance with the current supplied to the power regulator and the neutron flux density in the region of the converters. The control circuit generates a control signal which is the difference between the neutron flux density and a linear fucntion of the current, and which drives the neutron regulator in a direction to decrease or increase the neutron flux according to the polarity of the control signal

  1. A Hybrid Optimization Method for Reactive Power and Voltage Control Considering Power Loss Minimization

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Bak, Claus Leth

    2015-01-01

    This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...

  2. Power source with spark-safe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Tsesarenko, N P; Alekhin, A V

    1982-01-01

    The invention refers to the technique of electrical monitoring and control in systems operating in a spark-safe medium (for example, in coal mines). A more accurate area of application is mobile objects with autonomous source of electricity (mine diesel locomotives, battery electric locomotives etc.). The purpose of the invention is to simplify and to improve the reliability of the planned device, and also to expand the area of application for conditions when it is powered from an autonomous generator of direct voltage. This goal is achieved because the power source with spark-safe outlet (the source contains a thyristor of advance disconnection, connected by anode to the delimiting throttle, one outlet of which is connected to the capacitor included between the controlling electrode and the anode of the thyristor, and the capacitor is connected through the resistor parallel to the outlet clamps of the source, while the thyristor of emergency protection connected parallel to the inlet clamps of the power source) is additionally equipped with a current sensor, hercon, transistor key (included in series in the power circuit) and optron, whose emitter is connected parallel to the current sensor connected in series to the inlet of the power source, while the receiver of the optron is connected in a circuit for controlling the thyristor of emergency protection. Hercon is built into the core of the delimiting throttle and is connected to the circuit for controlling the transistor key.

  3. Power sharing algorithm for vector controlled six-phase AC motor with four customary three-phase voltage source inverter drive

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2015-09-01

    Full Text Available This paper considered a six-phase (asymmetrical induction motor, kept 30° phase displacement between two set of three-phase open-end stator windings configuration. The drive system consists of four classical three-phase voltage inverters (VSIs and all four dc sources are deliberately kept isolated. Therefore, zero-sequence/homopolar current components cannot flow. The original and effective power sharing algorithm is proposed in this paper with three variables (degree of freedom based on synchronous field oriented control (FOC. A standard three-level space vector pulse width modulation (SVPWM by nearest three vectors (NTVs approach is adopted to regulate each couple of VSIs. The proposed power sharing algorithm is verified by complete numerical simulation modeling (Matlab/Simulink-PLECS software of whole ac drive system by observing the dynamic behaviors in different designed condition. Set of results are provided in this paper, which confirms a good agreement with theoretical development.

  4. Prototype tests on the ion source power supplies of the TEXTOR NI-system

    International Nuclear Information System (INIS)

    Goll, O.; Braunsberger, U.; Schwarz, U.

    1987-01-01

    The PINI ion source for the TEXTOR neutral injector is fed by a new modular transistorized power supply. All modules are located in a high voltage cage on 55 kV dc against ground. The normal operation of the injectors includes frequent grid breakdowns causing transient high voltage stresses on the ion source power supplies. These stresses must not disturb the safe operation of the power supplies. The paper describes the set up for extensive testing of a supply prototype module under the expected operating conditions. The main features of this test program are reviewed and the measures taken for a safe operation are discussed. As a result of the investigations, recommendations for the installation of the power supplies at the TEXTOR NI system are given

  5. A 600kV 15mA Cockcroft-Walton high-voltage power supply with high stability and low-ripple voltage

    International Nuclear Information System (INIS)

    Su Tongling; Zhang Yimin; Chen Shangwen; Liu Yantong; Lv Huiyi; Liu Jiangtao

    2006-01-01

    A Cockcroft-Walton high-voltage power supply with high stability and low-ripple voltage has been developed. This power supply has been operated in a ns pulse neutron generator. The maximum non-load voltage is 600kV while the working voltage and load current are 550kV and 15mA, respectively. The tested results indicate that when the power supply is operated at 300kV, 6.7mA and the input voltage varies +/-10%, the long-term stability of the output voltage is S=(0.300-1.006)x10 -3 . The ripple voltage is δU P-P =6.2V at 300kV, 6.8-8.3mA and the ratio of δU P-P to the output voltage V H is δU P-P /V H =2.1x10 -5

  6. Reactive Power Compensation of a 24 MW Wind Farm using a 12-Pulse Voltage Source Converter

    DEFF Research Database (Denmark)

    Søbrink, K.H.; Pedersen, Jørgen Kaas; Pedersen, Knud Ole Helgesen

    1998-01-01

    Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop and investig...

  7. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  8. Tetrode bias power supply for Indus-1, synchrotron radiation source

    International Nuclear Information System (INIS)

    Tripathi, A.; Badapanda, M.K.; Tyagi, R.; Upadhyay, R.; Bohrey, A.; Hannurkar, P.R.

    2009-01-01

    An AC regulator based 7 kV, 3 A high voltage DC power supply is designed, fabricated and tested on dummy load for BEL make Tetrode type 15000CX, used in the high power RF amplifier at 31.613 MHz employed with INDUS-1, Synchrotron Radiation Source (SRS). Various protections features like over voltage, under voltage, over current, phase failure and phase reversal are incorporated in this power supply and presented in this paper. As Tetrode amplifier requires various other power supplies in addition to this bias power supply and they are operated in a particular sequence for its healthy operation, suitable interlock arrangements have been incorporated and also presented in this paper. The reliable operation of protection and interlock features incorporated in this power supply has been checked with dummy load under simulated conditions. Three numbers of series limiting inductors, one in each phase, have been incorporated in this power supply to limit fault currents under unfavourable conditions and there by increasing the overall life of this power supply. It will replace existing 7 kV, 3 A HVDC power supply, which is in operation for more than fifteen years with Indus-1 SRS and is likely to be helpful in reducing the down time of Indus-1 SRS. It has better performance features than the existing power supply. The long term voltage stability better than 0.3 % and output ripple less than 0.3 % have been achieved for this Tetrode bias power supply. This power supply is likely to be integrated with INDUS-1 SRS soon. (author)

  9. Bi-directional power control system for voltage converter

    Science.gov (United States)

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  10. High voltage power network construction

    CERN Document Server

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  11. Experimental and numerical study of impact of voltage fluctuate, flicker and power factor wave electric generator to local distribution

    Science.gov (United States)

    Hadi, Nik Azran Ab; Rashid, Wan Norhisyam Abd; Hashim, Nik Mohd Zarifie; Mohamad, Najmiah Radiah; Kadmin, Ahmad Fauzan

    2017-10-01

    Electricity is the most powerful energy source in the world. Engineer and technologist combined and cooperated to invent a new low-cost technology and free carbon emission where the carbon emission issue is a major concern now due to global warming. Renewable energy sources such as hydro, wind and wave are becoming widespread to reduce the carbon emissions, on the other hand, this effort needs several novel methods, techniques and technologies compared to coal-based power. Power quality of renewable sources needs in depth research and endless study to improve renewable energy technologies. The aim of this project is to investigate the impact of renewable electric generator on its local distribution system. The power farm was designed to connect to the local distribution system and it will be investigated and analyzed to make sure that energy which is supplied to customer is clean. The MATLAB tools are used to simulate the overall analysis. At the end of the project, a summary of identifying various voltage fluctuates data sources is presented in terms of voltage flicker. A suggestion of the analysis impact of wave power generation on its local distribution is also presented for the development of wave generator farms.

  12. Investigation of Efficiency and Thermal Performance of The Y-source Converters for a Wide Voltage Range

    Directory of Open Access Journals (Sweden)

    Brwene Salah Gadalla

    2015-12-01

    Full Text Available The Y-source topology has a unique advantage of having high voltages gain with small shoot through duty cycles. Furthermore, having the advantage of high modulation index which increase the power density and improve the performance of the converter. In this paper, a collective thermal and efficiency investigation has been performed in order to improve the reliability of the converter. Evaluation of relevant losses as ( switching, conduction, capacitor ESR, core and winding losses , and evaluation of the junction temperature of the devices under 25C ambient temperature. The analysis is done for different voltage gain factors (2, 3, and 4, and different winding factor (4, and 5 using PLECS toolbox. The results shows that the higher the voltage gain and winding factor, the higher power losses and rising in the junction temperature of the device.

  13. Surge currents and voltages at the low voltage power mains during lightning strike to a GSM tower

    Energy Technology Data Exchange (ETDEWEB)

    Markowska, Renata [Bialystok Technical University (Poland)], E-mail: remark@pb.edu.pl

    2007-07-01

    The paper presents the results of numerical calculations of lightning surge currents and voltages in the low voltage power mains system connected to a free standing GSM base station. Direct lightning strike to GSM tower was studied. The analysis concerned the current that flows to the transformer station through AC power mains, the potential difference between the grounding systems of the GSM and the transformer stations and the voltage differences between phase and PE conductors of the power mains underground cable at both the GSM and the transformer sides. The calculations were performed using a numerical program based on the electromagnetic field theory and the method of moments. (author)

  14. Stochastic reactive power market with volatility of wind power considering voltage security

    International Nuclear Information System (INIS)

    Kargarian, A.; Raoofat, M.

    2011-01-01

    While wind power generation is growing rapidly around the globe; its stochastic nature affects the system operation in many different aspects. In this paper, the impact of wind power volatility on the reactive power market is taken into account. The paper presents a novel stochastic method for optimal reactive power market clearing considering voltage security and volatile nature of the wind. The proposed optimization algorithm uses a multiobjective nonlinear programming technique to minimize market payment and simultaneously maximize voltage security margin. Considering a set of probable wind speeds, in the first stage, the proposed algorithm seeks to minimize expected system payment which is summation of reactive power payment and transmission loss cost. The object of the second stage is maximization of expected voltage security margin to increase the system loadability and security. Finally, in the last stage, a multiobjective function is presented to schedule the stochastic reactive power market using results of two previous stages. The proposed algorithm is applied to IEEE 14-bus test system. As a benchmark, Monte Carlo Simulation method is utilized to simulate the actual market of given period of time to evaluate results of the proposed algorithm, and satisfactory results are achieved. -- Highlights: →The paper proposes a new algorithm for stochastic reactive power market clearing. →The stochastic nature of the wind which impacts the system operation and market clearing process, is taken into account. →The paper suggests an expected voltage stability margin and optimizes it in conjunction with expected total market payment. →To clear the market with two mentioned objective functions, a three-stage multiobjective nonlinear programming is implemented. →Also, a simple method is suggested to determine a suitable priority coefficient between two individual objective functions.

  15. Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system

    International Nuclear Information System (INIS)

    García-Triviño, Pablo; Torreglosa, Juan P.; Fernández-Ramírez, Luis M.; Jurado, Francisco

    2016-01-01

    Although electric vehicles (EVs) are experiencing a considerable upsurge, the technology associated with them is still under development. This study focused on the control and operation of a medium-voltage direct-current (MVDC) microgrid with an innovative decentralized control system, which was used as a fast charging station (FCS) for EVs. The FCS was composed of a photovoltaic (PV) system, a Li-ion battery energy storage system (BESS), two 48 kW fast charging units for EVs, and a connection to the local grid. With this configuration and thanks to its decentralized control, the FCS was able to work as a stand-alone system most of the time though with occasional grid support. This paper presents a new decentralized energy management system (EMS) with two options to control the power sources of the FCS. The choice of the power source depends on the MVDC bus voltage, the state-of-charge (SOC) of the BESS, and the control option of the EMS. This control was tested by simulating the FCS, when connected to several EVs and under different sun irradiance conditions. Simulation results showed that the FCS operated smoothly and effectively, which confirms the feasibility of using this technology in EVs. - Highlights: • This paper studies a MVDC microgrid for fast charging station of EV. • It is composed of a PV system, a BESS, two EV charging stations and a grid connection. • A decentralized control scheme is applied to control the power sources. • The MVDC bus voltage is the key parameter for controlling the system. • The results demonstrate the feasibility of the system and control under study.

  16. Solid-state fast voltage compensator for pulsed power applications requiring constant AC power consumption

    CERN Document Server

    Magallanes, Francisco Cabaleiro; Viarouge, Philippe; Cros, Jérôme

    2015-01-01

    This paper proposes a novel topological solution for pulsed power converters based on capacitor-discharge topologies, integrating a Fast Voltage Compensator which allows an operation at constant power consumption from the utility grid. This solution has been retained as a possible candidate for the CLIC project under study at CERN, which requires more than a thousand synchronously-operated klystron modulators producing a total pulsed power of almost 40 GW. The proposed Fast Voltage Compensator is integrated in the modulator such that it only has to treat the capacitor charger current and a fraction of the charging voltage, meaning that its dimensioning power and cost are minimized. This topology can be used to improve the AC power quality of any pulsed converters based on capacitor-discharge concept. A prototype has been built and exploited to validate the operating principle and demonstrate the benefits of the proposed solution.

  17. Coordination of voltage and reactive power control in the extra high voltage substations based on the example of solutions applied in the national power system

    Directory of Open Access Journals (Sweden)

    Dariusz Kołodziej

    2012-06-01

    Full Text Available This paper presents examples of coordination between automatic voltage and reactive power control systems (ARST covering adjacent and strongly related extra high voltage substations. Included are conclusions resulting from the use of these solutions. The Institute of Power Engineering, Gdańsk Division has developed and deployed ARST systems in the national power system for a dozen or so years.

  18. Design and Control of Parallel Three Phase Voltage Source Inverters in Low Voltage AC Microgrid

    Directory of Open Access Journals (Sweden)

    El Hassane Margoum

    2017-01-01

    Full Text Available Design and hierarchical control of three phase parallel Voltage Source Inverters are developed in this paper. The control scheme is based on synchronous reference frame and consists of primary and secondary control levels. The primary control consists of the droop control and the virtual output impedance loops. This control level is designed to share the active and reactive power correctly between the connected VSIs in order to avoid the undesired circulating current and overload of the connected VSIs. The secondary control is designed to clear the magnitude and the frequency deviations caused by the primary control. The control structure is validated through dynamics simulations.The obtained results demonstrate the effectiveness of the control structure.

  19. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    OpenAIRE

    Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei

    2014-01-01

    The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...

  20. Power dithering algorithm to avoid the overcoming of the voltage limit in presence of DG on distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Calderaro, V.; Coppola, V.; Galdi, V.; Piccolo, A. [Salerno Univ., Fisciano (Italy). Dept. of Information System Engineering and Electrical Engineering

    2008-07-01

    A new model of power distribution system has emerged in recent years in response to new generation technologies involving mini- and micro-generators that can be directly connected to medium voltage (MV) or low voltage (LV) power grids. The locations of these dispersed generators (DGs) are typically based on the availability of primary energy resources or on the specific needs of users. The increasing use of DGs causes new problems in terms of distribution network management and planning, with effect on the power quality, voltage profile or protection aspects. One of the problems arising on MV/LV distribution network, especially in weak rural areas, is related to the bus overvoltage at the point of common coupling (PCC). Therefore, this study proposed an approach to power control of the single generator that maximizes the active power injected on the network by DG, avoiding the trip of the minimum and maximum voltage protection installed at the PCC. Overvoltage typically occurs due to the injection of a large amount of power from unschedulable DG and a small power demand by the loads. This can trip overvoltage protection relays of DGs, and disconnect them from the grid. The local control strategy for DG systems proposed in this paper was based on the dithering algorithm. The proposed solution, operating on the electronic interface of the power generator, introduces or absorbs reactive power if the voltage at PCC is close to the limits, thus increasing the total active power injected by renewable sources. 17 refs., 3 tabs., 12 figs.

  1. Grid Filter Design for a Multi-Megawatt Medium-Voltage Voltage Source Inverter

    DEFF Research Database (Denmark)

    Rockhill, A.A.; Liserre, Marco; Teodorescu, Remus

    2011-01-01

    This paper describes the design procedure and performance of an LCL grid filter for a medium-voltage neutral point clamped (NPC) converter to be adopted for a multimegawatt wind turbine. The unique filter design challenges in this application are driven by a combination of the medium voltage...... converter, a limited allowable switching frequency, component physical size and weight concerns, and the stringent limits for allowable injected current harmonics. Traditional design procedures of grid filters for lower power and higher switching frequency converters are not valid for a multi......-megawatt filter connecting a medium-voltage converter switching at low frequency to the electric grid. This paper demonstrates a frequency domain model based approach to determine the optimum filter parameters that provide the necessary performance under all operating conditions given the necessary design...

  2. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.; Sedin, A. A.; Feduschak, V. F. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.

  3. Low-Power, Low-Voltage Analog to Digital ΣΔ

    DEFF Research Database (Denmark)

    Wismar, Ulrik Sørensen

    2007-01-01

    , and since long operation time is required, low supply voltage and low power consumption are of paramount importance. Consequently, various topologies have been compared to nd the most power ecient audio frequency modulator topology. Chapter 4 of this thesis compares power consumption of two of the most...... prevalent topologies, the single-loop modulator with integration in discrete time and the single-loop modulator with integration in continuous time. Both modulator topologies are with feedback, and all intermediate signals are in the voltage mode. Chapter 5 treats a modulator without feedback. Another...

  4. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrentt problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zero-sequence components are proposed to enhance the power control ability under this adverse conditions. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC sources....

  5. Survey of high-voltage pulse technology suitable for large-scale plasma source ion implantation processes

    International Nuclear Information System (INIS)

    Reass, W.A.

    1994-01-01

    Many new plasma processes ideas are finding their way from the research lab to the manufacturing plant floor. These require high voltage (HV) pulse power equipment, which must be optimized for application, system efficiency, and reliability. Although no single HV pulse technology is suitable for all plasma processes, various classes of high voltage pulsers may offer a greater versatility and economy to the manufacturer. Technology developed for existing radar and particle accelerator modulator power systems can be utilized to develop a modern large scale plasma source ion implantation (PSII) system. The HV pulse networks can be broadly defined by two classes of systems, those that generate the voltage directly, and those that use some type of pulse forming network and step-up transformer. This article will examine these HV pulse technologies and discuss their applicability to the specific PSII process. Typical systems that will be reviewed will include high power solid state, hard tube systems such as crossed-field ''hollow beam'' switch tubes and planar tetrodes, and ''soft'' tube systems with crossatrons and thyratrons. Results will be tabulated and suggestions provided for a particular PSII process

  6. Comparison of two voltage control strategies for a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    plants. This paper addresses the analysis of two different voltage control strategies for a wind power plant, i.e. decentralized and centralized voltage control schemes. The analysis has been performed using the equivalent and simplified transfer functions of the system. Using this representation......Larger percentages of wind power penetration translate to more demanding requirements from grid codes. Recently, voltage support at the point of connection has been introduced by several grid codes from around the world, thus, making it important to analyze this control when applied to wind power......, it is possible to investigate the influence of the plant control gain, short circuit ratio, and time delays on the system stability, as well as the fulfillment of the design requirements. The implemented plant voltage control is based on a slope voltage controller, which calculates the references to be sent...

  7. Wind Power Impact to Transient and Voltage Stability of the Power System in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Jørgensen, Preben; Palsson, Magni Thor

    2005-01-01

    Voltage stability, transient stability and reactive power compensation are extremely important issues for largescale integration of wind power in areas distant from the main transmission system in Eastern Denmark. This paper describes the application of a dynamic wind farm model in simulation...... studies for assessments of a large wind power penetration. The simulation results reveal problems with voltage stability due to the characteristic of wind turbine generation as well as the inability of the power system to meet the reactive power demand. Furthermore, the established model is applied...

  8. Topologically protected loop flows in high voltage AC power grids

    International Nuclear Information System (INIS)

    Coletta, T; Delabays, R; Jacquod, Ph; Adagideli, I

    2016-01-01

    Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids. (paper)

  9. Voltage control in Z-source inverter using low cost microcontroller for undergraduate approach

    Science.gov (United States)

    Zulkifli, Shamsul Aizam; Sewang, Mohd Rizal; Salimin, Suriana; Shah, Noor Mazliza Badrul

    2017-09-01

    This paper is focussing on controlling the output voltage of Z-Source Inverter (ZSI) using a low cost microcontroller with MATLAB-Simulink that has been used for interfacing the voltage control at the output of ZSI. The key advantage of this system is the ability of a low cost microcontroller to process the voltage control blocks based on the mathematical equations created in MATLAB-Simulink. The Proportional Integral (PI) control equations are been applied and then, been downloaded to the microcontroller for observing the changes on the voltage output regarding to the changes on the reference on the PI. The system has been simulated in MATLAB and been verified with the hardware setup. As the results, the Raspberry Pi and Arduino that have been used in this work are able to respond well when there is a change of ZSI output. It proofed that, by applying/introducing this method to student in undergraduate level, it will help the student to understand more on the process of the power converter combine with a control feedback function that can be applied at low cost microcontroller.

  10. Voltage control of a power-frequency E-beam irradiator

    International Nuclear Information System (INIS)

    Zhou Zhizhong; Hu Shouming; Wang Jun; Guo Honglei; Su Haijun

    2012-01-01

    Voltage stability and precision are key specifications of an electron beam irradiator. A voltage control system was developed for smooth high voltage regulating on a power frequency electron accelerator. Pillar variac driven by servo motor was used as the regulating device, with a programmable logic controller as the control unit. An industrial PC was employed to realize human-machine interaction. Open-loop and closed-loop modes were employed to regulate the high voltage. Experimental results show that the speed, stability and precision for high voltage regulating were improved greatly, hence a much better performance of the electron accelerator. (authors)

  11. Artificial Neural Network Application for Power Transfer Capability and Voltage Calculations in Multi-Area Power System

    Directory of Open Access Journals (Sweden)

    Palukuru NAGENDRA

    2010-12-01

    Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.

  12. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    International Nuclear Information System (INIS)

    Kenne, Godpromesse; Goma, Raphael; Nkwawo, Homere; Lamnabhi-Lagarrigue, Francoise; Arzande, Amir; Vannier, Jean Claude

    2010-01-01

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  13. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse, E-mail: gokenne@yahoo.co [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Goma, Raphael, E-mail: raphael.goma@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere, E-mail: homere.nkwawo@iutv.univ-paris13.f [Departement GEII, Universite Paris XIII, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Lamnabhi-Lagarrigue, Francoise, E-mail: lamnabhi@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir, E-mail: Amir.arzande@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Vannier, Jean Claude, E-mail: Jean-claude.vannier@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-01-15

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  14. Offshore wind power plants with VSC-HVDC transmission : Grid code compliance optimization and the effect on high voltage ac transmission system

    NARCIS (Netherlands)

    Ndreko, M.

    2017-01-01

    The development of large offshore wind power generation in the North Sea has been significantly accelerated in the last years. The large distance from shore in combination with the need for large transmission capacity has raised the interest for the voltage source converter high voltage direct

  15. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  16. Measurement and diagnosis system for 1.2 MV repetitive pulsed power source

    International Nuclear Information System (INIS)

    Li Yawei; Deng Jianjun; Xie Min; Feng Zongming; Liu Yuntao; Ma Chenggang

    2010-01-01

    In order to analyze the discharge performance and improve the design of the power system, a set of measurement and diagnosis system for the 1.2 MV repetitive pulsed power source, which supplies the drive power for a high power microwave source, has been designed by studying the high-voltage, high-current testing technology, data acquisition, signal processing, fault diagnosis, virtual instruments and electromagnetic compatibility technology, etc. A resistive-capacitive divider and a Rogowski coil are adopted in measurement; ADLINK corporation's PXI chips are used in data acquisition; data transmission system, condition monitoring and data analysis are developed by LabVIEW. This system can realize on-line monitoring and data analysis for the repetitive pulsed power source. (authors)

  17. Radio frequency glow discharge source with integrated voltage and current probes used for evaluation of discharge parameters

    International Nuclear Information System (INIS)

    Wilken, L.; Hoffmann, V.; Wetzig, K.

    2006-01-01

    A radio frequency (rf) Grimm-type glow discharge source for the chemical analysis of solid samples, with integrated voltage and current probes, was developed. All elements of a plasma equivalent circuit are determined from the measured current-voltage characteristics. The procedure is based on the independent evaluation of the ion current and electron current region. The physical meaning of the parameters is investigated by comparisons with measurements from dc glow discharges. We found that the reduced rf current of the powered electrode is comparable to the reduced current in dc discharges. A formula is developed that corrects the reduced current due to gas heating. The sheath thickness at the powered rf electrode is evaluated and is between 75 and 1100 μm. The voltage of the bulk plasma is in the range 2-15 V, and the resistance is between 30 and 400 Ω. The bulk plasma consumes about 3% of the total power, and the reduced voltage is comparable to the reduced electrical field in the positive column of direct current discharges. The sheath voltage at the grounded electrode is in the range 25-100 V, the capacities are between 10 and 400 pF, and the resistances are in the range 100 Ω-5000 Ω. We also found invariants for the evaluated sheath parameters

  18. High voltage generator circuit with low power and high efficiency applied in EEPROM

    International Nuclear Information System (INIS)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (V th ) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation. (semiconductor integrated circuits)

  19. A pragmatic approach to voltage stability analysis of large power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, H.G.; Pampin, G. [Inst. de Investigaciones Electricas, Morelos (Mexico); Diaz de Leon, J.A. [American Superconductor, Middleton, WI (United States)

    2008-07-01

    A methodology for performing voltage stability analyses for large power systems was presented. Modal and time-domain analyses were used for selection and siting solutions for potential voltage instability and collapse. Steady state systems were used to compute the smallest eigenvalues and associated eigenvalues of a reduced Jacobean matrix. The eigenvalues were used to provide a relative measure of proximity to voltage instability. The analysis was applied to provide an indication of a network's proximity to voltage collapse. Negative eigenvalues were representative of voltage instability conditions, while small positive values indicated proximity to voltage instability. The analysis technique was used to identify buses, lines, and generators prone to voltage instabilities for a 10-node network. A comparative analysis of results obtained from modal and time domain analyses were used to identify areas vulnerable to voltage instability conditions. Pre-fault, fault, and post-fault conditions were analyzed statically and dynamically. Results of the study showed that the combined method can be used to identify and place reactive power compensation solutions for voltage collapses in electric networks. 20 refs., 5 tabs., 7 figs.

  20. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  1. Micro/Nano Fabricated Solid-State Thermoelectric Generator Devices for Integrated High Voltage Power Sources

    Science.gov (United States)

    Fleurial, J.-P.; Ryan, M. A.; Snyder, G. J.; Huang, C.-K.; Whitacre, J. F.; Patel, J.; Lim, J.; Borshchevsky, A.

    2002-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Conventional power generators devices become inefficient in extreme environments (such as encountered in Mars, Venus or outer planet missions) and rechargeable energy storage devices can only be operated in a narrow temperature range thereby limiting mission duration. The planned development of much smaller spacecrafts incorporating a variety of micro/nanodevices and miniature vehicles will require novel, reliable power technologies. It is also expected that such micro power sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Advanced solid-state thermoelectric combined with radioisotope or waste heat sources and low profile energy storage devices are ideally suited for these applications. The Jet Propulsion Laboratory has been actively pursuing the development of thermoelectric micro/nanodevices that can be fabricated using a combination of electrochemical deposition and integrated circuit processing techniques. Some of the technical challenges associated with these micro/nanodevice concepts, their expected level of performance and experimental fabrication and testing results to date are presented and discussed.

  2. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    Science.gov (United States)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  3. Artificial intelligence techniques for voltage control

    Energy Technology Data Exchange (ETDEWEB)

    Ekwue, A.; Cheng, D.T.Y.; Macqueen, J.F.

    1997-12-31

    In electric power systems, the advantages of reactive power dispatching or optimisation include improved utilisation of reactive power sources and hence reduction in reactive power flows and real losses of the system; unloading of the system and equipment as a result of reactive flow reduction; the power factors of generation are improved and system security is enhanced; reduced voltage gradients and somewhat higher voltages which result across the system from improved operation; deferred capital investment is new reactive power sources as a result of improved utilisation of existing equipment; and for the National Grid Company plc (NGC), the main advantage is reduced out-of-merit operation. The problem of reactive power control has been studied and widely reported in the literature. Non-linear programming methods as well as linear programming techniques for constraint dispatch have been described. Static optimisation of reactive power sources by the use of sensitivity analysis was described by Kishore and Hill. Long range optimum var planning has been considered and the optimum amount and location of network reactive compensation so as to maintain the system voltage within the desired limits, while operating under normal and various insecurity states, have also been studied using several methods. The objective of this chapter is therefore to review conventional methods as well as AI techniques for reactive power control. (Author)

  4. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    Science.gov (United States)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  5. Frequency pulling in a low-voltage medium-power gyrotron

    Science.gov (United States)

    Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun

    2018-04-01

    Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.

  6. A comparative study of voltage stability indices in a power system

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K. [I.I.T., Kharagpur (India). Dept. of Electrical Engineering; Hazarika, D. [Assam Engineering College (India)

    2000-11-01

    The paper compares the effectiveness of voltage stability indices in providing information about the proximity of voltage instability of a power system. Three simple voltage stability indices are proposed and their effectiveness is compared with some of the recently proposed indices. The comparison is carried out over a wide range of system operating conditions by changing the load power factor and feeder X/R ratios. Test results for the IEEE 57 bus and IEEE 118 bus system are presented. (author)

  7. Electrical system architecture having high voltage bus

    Science.gov (United States)

    Hoff, Brian Douglas [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  8. Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Sen Song

    2018-06-01

    Full Text Available In high voltage direct current (HVDC power transmission of offshore wind power systems, DC/DC converters are applied to transfer power from wind generators to HVDC terminals, and they play a crucial role in providing a high voltage gain, high efficiency, and high fault tolerance. This paper introduces an innovative multi-port DC/DC converter with multiple modules connected in a scalable matrix configuration, presenting an ultra-high voltage step-up ratio and low voltage/current rating of components simultaneously. Additionally, thanks to the adoption of active clamping current-fed push–pull (CFPP converters as sub-modules (SMs, soft-switching is obtained for all power switches, and the currents of series-connected CFPP converters are auto-balanced, which significantly reduce switching losses and control complexity. Furthermore, owing to the expandable matrix structure, the output voltage and power of a modular converter can be controlled by those of a single SM, or by adjusting the column and row numbers of the matrix. High control flexibility improves fault tolerance. Moreover, due to the flexible control, the proposed converter can transfer power directly from multiple ports to HVDC terminals without bus cable. In this paper, the design of the proposed converter is introduced, and its functions are illustrated by simulation results.

  9. A novel on-chip high to low voltage power conversion circuit

    International Nuclear Information System (INIS)

    Wang Hui; Wang Songlin; Mou Zaixin; Guo Baolong; Lai Xinquan; Ye Qiang; Li Xianrui

    2009-01-01

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6 μm BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm 2 area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/deg. C. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  10. A novel on-chip high to low voltage power conversion circuit

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hui; Wang Songlin; Mou Zaixin; Guo Baolong [Institute of Mechano-electronic Engineering, Xidian University, Xi' an 71007 (China); Lai Xinquan; Ye Qiang; Li Xianrui, E-mail: whui94@126.co [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China)

    2009-03-15

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6 mum BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm{sup 2} area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/deg. C. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  11. Optimization of a high voltage power supply for a nitrogen laser

    International Nuclear Information System (INIS)

    Baly, L.; Garcia, M.A.; Martin, J.L.

    1997-01-01

    In the present paper the optimization of a high voltage switching power supply for a compact TEA nitrogen laser is described. Taking as criterion the recovering of the charging voltage in a 95% of the maximal voltage, the relationships between the recovering rate coefficient, the recovering time and the maximal repetition frequency were obtained. Using an experimental set-up the power supply optimal values of turns in the primary transformer coil N p= 35 and excitation pulse frequency f exc= 25.5 kHz was determined

  12. Characteristics of the low power cylindrical anode layer ion source

    International Nuclear Information System (INIS)

    Zhao Jie; Tang Deli; Cheng Changming; Geng Shaofei

    2009-01-01

    A low power cylindrical anode layer ion source and its working characteristic, and the beam distribution are introduced. This ion source has two working states, emanative state and collimated state, and the normal parameters of this system are: working voltage 200-1200 V, discharge current 0.1-1.4A, air pressure 1.9 x 10 -2 -1.7 x 10 -1 Pa, gas flow 5-20 sccm. (authors)

  13. СURRENT FILTERING IN A THREE-PHASE THREE-WIRE POWER SYSTEM AT ASYMMETRIC SINUSOIDAL VOLTAGES

    Directory of Open Access Journals (Sweden)

    M. Yu. Artemenko

    2018-04-01

    Full Text Available Purpose. Investigation of the optimal current distribution between source, shunt active filter and reactive compensator of a three-phase three-wire system that provides consumption of a sinusoidal symmetric current under asymmetric source voltages with minimal power losses was provided. Methodology. The tasks were solved by conducting theoretical and experimental studies. The main provisions of the theory of electrical circuits, the apparatus of mathematical analysis, methods for solving linear differential and algebraic equations, elements of matrix and complex calculus and vector algebra are used. During the development, modern methods and software of computer simulation of electrical engineering complexes and dynamic systems were applied: Matlab-Simulink, MATHCAD. Originality. The principle of compensating current distribution between PAF and reactive compensator of a three-phase three-wire power system with asymmetric sinusoidal voltage was proposed at which the input current is equal to the positive-sequence active current and rms value of PAF current is minimal. The feasibility to compensate the inactive sinusoidal Fryze current by reactive elements under arbitrary combination of load and source parameters was proved and expression for direct calculation of the reactive compensator parameters for generation of inactive Fryze current in the source unbalanced mode was obtained. Practical value. The simulative example for transmission line load showed that combined application of PAF and reactive compensator with the specified distribution of compensating currents ensured a reduction of power losses in 3.273 times and rms value of the SAF current is 12.9 % of rms value total compensation current.

  14. Novel high-voltage power lateral MOSFET with adaptive buried electrodes

    International Nuclear Information System (INIS)

    Zhang Wen-Tong; Wu Li-Juan; Qiao Ming; Luo Xiao-Rong; Zhang Bo; Li Zhao-Ji

    2012-01-01

    A new high-voltage and low-specific on-resistance (R on,sp ) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage V d is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field E I and the breakdown voltage (BV) of ABE SOI are 545 V/μm and −587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low R on,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Development of an intelligent high-voltage direct-current power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Zhao Xiuliang

    1997-01-01

    The operation and performances of a new type direct-current high-voltage power supply are described. The power supply with intelligent feature is controlled by a single-chip microcomputer (8031), and various kinds of output voltage can be preset. The output-voltage is monitored and regulated by the single-chip microcomputer and displayed by LED. The output voltage is stable when the load current is within the allowable limits

  16. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    Science.gov (United States)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  17. Low cost concepts to reduce the voltage ripple of the DC power supply

    International Nuclear Information System (INIS)

    Cheng, Y.; Liu, K.B.

    1993-01-01

    If the gain of current feedback is low, the short term stability of magnet power supply will be affected by a soft power line. Typically, the step-charge and the imbalance of the three phase power line cause the most serious voltage ripple. Usually, the voltage feedback with a coupling transformer is considered to reduce the voltage ripple. However, for the high current power supply, the space and cooling problem of the coupling transformer become inconvenient. In this paper, the authors suggest to use the toroidal core with the compensation winding, working like a DCCT, as the coupling transformer. Then, a high speed detector of the AC line level is developed. It restricts the voltage ripple passing to the coupling transformer. These methods have the advantage of small size, low power consumption and low cost

  18. Schenkel circuit and its characteristics. DC power source for NHV ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Toshio; Yamada, Masahiro; Nakazawa, Makoto; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan)

    1996-12-01

    For DC high voltage source, it is necessary to have sufficient power capacity to suit for electric current capacity required for operational load and further sufficient power stability when adapting it to an ion accelerator. In this paper, outlines of various DC high voltage forming circuits using generally and characteristics of Schenkel type DC source adapted to ion accelerator were described. Characteristics of the NHV Schenkel type DC electric source on actual circuit construction is shown as follows; (1) Whole circuit construction is intended to improve its discharge resistance by assembly with gaps and resistors. (2) Stability caused by geometric shape specific to the Schenkel circuit is improved by adopting integral moldings of aluminum for its structural material. And, (3) Upgrading of cooling effect, and miniaturization and forming heat loss reduction of system are intended by adopting all aluminum to increasing pressure transformer storing tank for countermeasure of vortex current. (G.K.)

  19. Schenkel circuit and its characteristics. DC power source for NHV ion accelerator

    International Nuclear Information System (INIS)

    Kimura, Toshio; Yamada, Masahiro; Nakazawa, Makoto; Iwamoto, Eiji

    1996-01-01

    For DC high voltage source, it is necessary to have sufficient power capacity to suit for electric current capacity required for operational load and further sufficient power stability when adapting it to an ion accelerator. In this paper, outlines of various DC high voltage forming circuits using generally and characteristics of Schenkel type DC source adapted to ion accelerator were described. Characteristics of the NHV Schenkel type DC electric source on actual circuit construction is shown as follows; 1) Whole circuit construction is intended to improve its discharge resistance by assembly with gaps and resistors. 2) Stability caused by geometric shape specific to the Schenkel circuit is improved by adopting integral moldings of aluminum for its structural material. And, 3) Upgrading of cooling effect, and miniaturization and forming heat loss reduction of system are intended by adopting all aluminum to increasing pressure transformer storing tank for countermeasure of vortex current. (G.K.)

  20. Allocation of Load-Loss Cost Caused by Voltage Sag

    Science.gov (United States)

    Gao, X.

    2017-10-01

    This paper focuses on the allocation of load-loss cost caused by voltage sag in the environment of electricity market. To compensate the loss of loads due to voltage sags, the load-loss cost is allocated to both sources and power consumers. On the basis of Load Drop Cost (LDC), a quantitative evaluation index of load-loss cost caused by voltage sag is identified. The load-loss cost to be allocated to power consumers themselves is calculated according to load classification. Based on the theory of power component the quantitative relation between sources and loads is established, thereby a quantitative calculation method for load-loss cost allocated to each source is deduced and the quantitative compensation from individual source to load is proposed. A simple five-bus system illustrates the main features of the proposed method.

  1. A Double-Resistive Active Power Filter System to Attenuate Harmonic Voltages of a Radial Power Distribution Feeder

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Han, Ruijing; Shen, Hong

    2016-01-01

    voltages. This paper proposes a double-resistive active power filter (D-RAPF) system consisting of a terminal-RAPF and an attenuation-RAPF for each individual harmonic. The terminal-RAPF operating as the characteristic impedance of the feeder is installed at the end bus to suppress harmonic propagation......Harmonic propagation between power-factor correction capacitors and system inductors seriously deteriorates power quality in a radial power distribution feeder. Installation of a resistive active power filter (RAPF) at the end bus only suppresses harmonic propagation, not attenuates harmonic...... at all harmonic frequencies. The attenuation-RAPF, whose control gain can be set according to the requirements of the harmonic voltage distortion limit, is installed at a specific position for each individual harmonic to attenuate the corresponding harmonic voltages. The D-RAPF system not only suppresses...

  2. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    Directory of Open Access Journals (Sweden)

    Baolian Liu

    2014-01-01

    Full Text Available The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the above problem, and the design method is given. The simulation and experiment results proved that the proposed variable structure control algorithm can eliminate the chattering problem existing in traditional variable structure control effectively, is insensitive to system disturbance, and has good robustness and fast dynamic response speed and stable DC bus voltage with small fluctuation. The above advantages ensure the compensation effect of APF.

  3. Effect of neutron irradiation on the breakdown voltage of power MOSFET's

    International Nuclear Information System (INIS)

    Hasan, S.M.Y.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The effect of neutron irradiation on power metal-oxide-semiconductor field effect transistor (power MOSFET) breakdown voltage has been investigated. Transistors with various breakdown voltage ratings were irradiated in a TRIGA nuclear reactor with cumulative fluence levels up to 5 x 10 14 neutrons/cm 2 (1 MeV equivalent). Noticeable increases in the breakdown voltages are observed in n-type MOSFET's after 10 13 neutrons/cm 2 and in p-type MOSFETs after 10 12 neutrons/cm 2 . An increase in breakdown voltage of as much as 30% is observed after 5 x 10 14 neutrons/cm 2 . The increase in breakdown voltage is attributed to the neutron-irradiation-induced defects which decrease the mean free path and trap majority carriers in the space charge region. The effect of positive trapped oxide charge due to concomitant gamma radiation and the effect of the termination structure on the increase in breakdown voltage are considered. An empirical model is presented to predict the value of the breakdown voltage as a function of neutron fluence

  4. On Stability of Voltage Source Inverters in Weak Grids

    DEFF Research Database (Denmark)

    Adib, Aswad; Mirafza, Behrooz; Wang, Xiongfei

    2018-01-01

    As the number of inverters increases in the power grid, the stability of grid-tied inverters becomes an important concern for the power industry. In particular, a weak grid can lead to voltage fluctuations at the inverter terminals and consequently cause inverter instability. In this paper, impac...

  5. Design of high voltage power supply of miniature X-ray tube based on resonant Royer

    International Nuclear Information System (INIS)

    Liu Xiyao; Zeng Guoqiang; Tan Chengjun; Luo Qun; Gong Chunhui; Huang Rui

    2013-01-01

    Background: In recent years, X rays are widely used in various fields. With the rapid development of national economy, the demand of high quality, high reliability, and high stability miniature X-ray tube has grown rapidly. As an important core component of miniature X-ray tube, high voltage power supply has attracted wide attention. Purpose: To match miniature, the high voltage power supply should be small, lightweight, good quality, etc. Based on the basic performance requirements of existing micro-X-ray tube high voltage power supply, this paper designs an output from 0 to -30 kV adjustable miniature X-ray tube voltage DC power supply. Compared to half-bridge and full-bridge switching-mode power supply, its driving circuit is simple. With working on the linear condition, it has no switching noise. Methods: The main circuit makes use of DC power supply to provide the energy. The resonant Royer circuit supplies sine wave which drives to the high frequency transformer's primary winding with resultant sine-like high voltage appearing across the secondary winding. Then, the voltage doubling rectifying circuit would achieve further boost. In the regulator circuit, a feedback control resonant transistor base current is adopted. In order to insulate air, a silicone rubber is used for high pressure part packaging, and the output voltage is measured by the dividing voltage below -5 kV. Results: The stability of circuit is better than 0.2%/6 h and the percent of the output ripple voltage is less than 0.3%. Keeping the output voltage constant, the output current can reach 57 μA by changing the size of load resistor. This high voltage power supply based on resonant Royer can meet the requirement of miniature X-ray tube. Conclusions: The circuit can satisfy low noise, low ripple, low power and high voltage regulator power supply design. However, its efficiency is not high enough because of the linear condition. In the next design, to further reduce power consumption, we

  6. Coordinated Voltage Control in Offshore HVDC Connected Cluster of Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Rather, Zakir Hussain; Rimez, Johan

    2016-01-01

    This paper presents a coordinated voltage control scheme (CVCS) for a cluster of offshore wind power plants (OWPPs) connected to a VSC HVDC system. The primary control point of the proposed voltage control scheme is the introduced Pilot bus, which is having the highest short circuit capacity...... in the offshore AC grid. The developed CVCS comprehends an optimization algorithm, aiming for minimum active power losses in the offshore grid, to generate voltage reference to the Pilot bus. During steady state operation, the Pilot bus voltage is controlled by dispatching reactive power references to each wind...... turbine (WT) in the WPP cluster based on their available reactive power margin and network sensitivity based participation factors, which are derived from the dV/dQ sensitivity of a WT bus w.r.t the Pilot bus. This method leads to minimization of the risk of undesired effects, particularly overvoltage...

  7. Triple voltage dc-to-dc converter and method

    Science.gov (United States)

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  8. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  9. Voltage optimal regulation of distribution power network with a source of dispersed generation owned by either one or several owners

    Directory of Open Access Journals (Sweden)

    Олександр Станиславович Яндульський

    2015-11-01

    Full Text Available The criteria of optimal voltage regulation in the electrical distribution network (EDN with a source of dispersed generation (SDG were formulated, if they belong to either one or different owners, taking into account the peculiarities of voltage regulation by means of the SDG and the OLTC system of the transformer. It was found out that under the conditions of economic unprofitability of voltage regulation, in accordance with the above criteria, the owners should take up coordinated work – the general objective function of voltage regulation to improve the effectiveness of regulation and achieve cost-effectiveness. The criteria of optimal voltage regulation if EDN and SDG belong to one owner were formulated. If their work becomes coordinated it is necessary to know exactly which transformer must be regulated; so a transformer with OLTC system should be chosen. Selection sequence is based on the calculation of the sensitivity of the voltage at the nodes within SDG with respect to OLTC position. The proposed OLTC system and SDG coordinated work makes it possible to increase the effectiveness of voltage regulation in the EDN with SDG under different conditions of ownership and increase the economic profitability of regulation

  10. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large...... central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  11. An algorithm for reduction of extracted power from photovoltaic strings in grid-tied photovoltaic power plants during voltage sags

    DEFF Research Database (Denmark)

    Tafti, Hossein Dehghani; Maswood, Ali Iftekhar; Pou, Josep

    2016-01-01

    strings should be reduced during voltage sags. In this paper, an algorithm is proposed for determining the reference voltage of the PV string which results in a reduction of the output power to a certain amount. The proposed algorithm calculates the reference voltage for the dc/dc converter controller......, based on the characteristics of the power-voltage curve of the PV string and therefore, no modification is required in the the controller of the dc/dc converter. Simulation results on a 50-kW PV string verified the effectiveness of the proposed algorithm in reducing the power from PV strings under......Due to the high penetration of the installed distributed generation units in the power system, the injection of reactive power is required for the medium-scale and large-scale grid-connected photovoltaic power plants (PVPPs). Because of the current limitation of the grid-connected inverter...

  12. A Reduced Switch Voltage Stress Class E Power Amplifier Using Harmonic Control Network

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    In this paper, a harmonic control network (HCN) is presented to reduce the voltage stress (maximum MOSFET voltage) of the class E power amplifier (PA). Effects of the HCN on the amplifier specifications are investigated. The results show that the proposed HCN affects several specifications of the amplifier, such as drain voltage, switch current, output power capability (Cp factor), and drain impedance. The output power capability of the presented amplifier is also improved, compared with the ...

  13. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    Directory of Open Access Journals (Sweden)

    Jiyoon Nam

    2016-01-01

    Full Text Available We demonstrate a compact amorphous silicon (a-Si solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.

  14. Voltage harmonic elimination with RLC based interface smoothing filter

    International Nuclear Information System (INIS)

    Chandrasekaran, K; Ramachandaramurthy, V K

    2015-01-01

    A method is proposed for designing a Dynamic Voltage Restorer (DVR) with RLC interface smoothing filter. The RLC filter connected between the IGBT based Voltage Source Inverter (VSI) is attempted to eliminate voltage harmonics in the busbar voltage and switching harmonics from VSI by producing a PWM controlled harmonic voltage. In this method, the DVR or series active filter produces PWM voltage that cancels the existing harmonic voltage due to any harmonic voltage source. The proposed method is valid for any distorted busbar voltage. The operating VSI handles no active power but only harmonic power. The DVR is able to suppress the lower order switching harmonics generated by the IGBT based VSI. Good dynamic and transient results obtained. The Total Harmonic Distortion (THD) is minimized to zero at the sensitive load end. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of RLC filter. Simulated results are presented. (paper)

  15. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  16. Design issues of the High Voltage platform and feedthrough for the ITER NBI Ion Source

    International Nuclear Information System (INIS)

    Boldrin, M.; Palma, M. Dalla; Milani, F.

    2009-01-01

    In the ITER heating Neutral Beam Injector (NBI), a High Voltage air-insulated platform (named High Voltage Deck, HVD) will be installed to host the Ion Source and Extractor Power supply system and associated diagnostics referred to -1 MV DC potential. All power and control cables are routed from the HVD via a feedthrough (HV bushing) to the gas insulated transmission line which feeds the Injector. The paper focuses on insulation and mechanical issues for both HVD and HV bushing which are very special components, far from the present industrial standards as far as voltage (-1 MV DC) and dimensions are concerned. For this purpose, a preliminary design of the HVD has been carried out as concerns the mechanical structure and external shield. Then, the structure has been verified with a seismic analysis applying the seismic load excitation specified for the ITER construction site (Cadarache) and carrying out verifications according to relevant international standards. As regards the HV bushing design, proposals for the complex inner conductor structure and for interfaces to the HVD and transmission line are outlined; alternative installation layouts (aside or underneath the HVD) are compared from both mechanical and electrical points of view.

  17. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  18. Coordinated control for low voltage ride-through of a PMSG-based wind power plant

    Directory of Open Access Journals (Sweden)

    Khagendra Thapa

    2016-01-01

    Full Text Available Wind turbine generators should be kept connected to a power grid, while supporting the voltage recovery in the case of a grid fault to meet low voltage ride-through requirement in some grid codes. This paper proposes a coordinated control scheme that prevents the increase in the DC-link voltage by reducing the active power in the machine side converter of permanent magnet synchronous generators (PMSGs in proportion to the voltage dip at the terminal of PMSGs. The proposed scheme changes the current priorities from the active current to the reactive current to inject more reactive power for a severe fault depending on the voltage dip. In addition, the grid-side converter operates in a voltage control mode with the slope, which is the ratio of reactive current capability to the voltage tolerance around a rated value. Moreover, during the fault, the slope is changed depending on the voltage dip to inject more reactive current. The performance of the proposed scheme is validated for a wind power plant consisting of 20 units of 5-MW PMSGs using an EMTP-RV simulator. The results demonstrate that the scheme enables the PMSGs not only to survive during the fault, but also to provide a dynamic reactive power support.

  19. Compact Source of Electron Beam with Energy of 200 kEv and Average Power of 2 kW

    CERN Document Server

    Kazarezov, Ivan; Balakin, Vladimir E; Bryazgin, Alex; Bulatov, Alexandre; Glazkov, Ivan; Kokin, Evgeny; Krainov, Gennady; Kuznetsov, Gennady I; Molokoedov, Andrey; Tuvik, Alfred

    2005-01-01

    The paper describes a compact electron beam source with average electron energy of 200 keV. The source operates with pulse power up to 2 MW under average power not higher than 2 kW, pulsed beam current up to 10 A, pulse duration up to 2 mks, and repetition rate up to 5 kHz. The electron beam is extracted through aluminium-beryllium alloy foil. The pulse duration and repetition rate can be changed from control desk. High-voltage generator for the source with output voltage up to 220 kV is realized using the voltage-doubling circuit which consists of 30 sections. The insulation type - gas, SF6 under pressure of 8 atm. The cooling of the foil supporting tubes is provided by a water-alcohol mixture from an independent source. The beam output window dimensions are 180?75 mm, the energy spread in the beam +10/-30%, the source weight is 80 kg.

  20. Impact of distributed generators on the power loss and voltage profile of sub-transmission network

    Directory of Open Access Journals (Sweden)

    A.S.O. Ogunjuyigbe

    2016-05-01

    Full Text Available This paper presents the impact of distributed generator (DG on the power loss and voltage profile of sub-transmission network at different penetration levels (PLs. The various DG technologies are modeled based on their electrical output characteristics. Voltage profile index which allows a single value to represent how well the voltage matches the ideal value is developed. The index allows a fair comparison of the voltage profile obtained from different scenarios. The extent to which DGs affect power losses and voltage profile depend on the type of DG technology, PL and the location in which the DG is connected to the grid. The integration of DGs reduces power losses on the network, however, as the PL increases, the power losses begin to increase. A PL of 50–75% is achieved on 69 kV voltage level and 25–50% penetration on 13.8 kV voltage level without an increase in the power loss. Also more DG can be integrated into the network at point of common connection of higher voltage level compared to the low voltage level.

  1. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.; Elizondo, Marcelo A.; Samaan, Nader A.

    2017-10-19

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage control problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.

  2. Energy control of supercapacitor/fuel cell hybrid power source

    International Nuclear Information System (INIS)

    Payman, Alireza; Pierfederici, Serge; Meibody-Tabar, Farid

    2008-01-01

    This paper deals with a flatness based control principle in a hybrid system utilizing a fuel cell as a main power source and a supercapacitor as an auxiliary power source. The control strategy is based on regulation of the dc bus capacitor energy and, consequently, voltage regulation. The proposed control algorithm does not use a commutation algorithm when the operating mode changes with the load power variation and, thus, avoids chattering effects. Using the flatness based control method, the fuel cell dynamic and its delivered power is perfectly controlled, and the fuel cell can operate in a safe condition. In the hybrid system, the supercapacitor functions during transient energy delivery or during energy recovery situations. To validate the proposed method, the control algorithms are executed in dSPACE hardware, while analogical current loops regulators are employed in the experimental environment. The experimental results prove the validity of the proposed approach

  3. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Science.gov (United States)

    2010-07-01

    ...-voltage power lines. 56.12071 Section 56.12071 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than trolley...

  4. Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter

    Science.gov (United States)

    Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun

    2018-03-01

    The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.

  5. Optimal Allocation of Generalized Power Sources in Distribution Network Based on Multi-Objective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Li Ran

    2017-01-01

    Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.

  6. Design of full digital 50 kV electronic gun high voltage power supply

    International Nuclear Information System (INIS)

    Ge Lei; Shang Lei

    2014-01-01

    The design of full digital electronic gun high voltage power supply based on DSP was introduced in this paper. This power supply has innovations of full digital feedback circuit and PID closed-loop control mode. The application of high frequency resonant converter circuit reduces the size of the resonant element and transformer. The current-coupling distributed high voltage transformer and rectifier circuit were employed in this power supply. By this way, the power supply efficiency is improved and the number of distributed parameters is reduced, and the rectifier circuit could work under the oil-free environment. This power supply has been used in electronic grid-control high voltage system of the irradiation accelerator. (authors)

  7. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    Science.gov (United States)

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  8. Propagation of disturbances as voltage fluctuations in transmission networks

    Directory of Open Access Journals (Sweden)

    Albert Hermina

    2016-08-01

    Full Text Available Significant changes occurred in the power system in Romania in recent years by reducing the power used in the system, the number of classic power sources in operation as well as by implementing renewable energy sources, have determined short circuit power reduction (node rigidity in the points where disturbing users are connected, that in the absence of adequate measures, result in disturbances above acceptable levels. The paper analyzes two power systems areas in which are connected users that cause voltage fluctuation. Disturbances as voltage fluctuations resulting in these nodes may exceed the acceptable values and can spread in the transmission network affecting power quality over large system areas. The analysis conducted reveals the influence of short circuit power in nodes where these users are connected and highlights the fact that in some cases (e.g. lines out of operation for maintenance, shutdown of classic units in the area the disturbances in the transmission network sent to the users at lower voltages may have values above those allowed. Technical Code of existing power transmission network makes no reference to voltage fluctuations, as a rule, in the electricity transmission network was considered that this phenomenon should not exist.

  9. Communication Characteristics of Faulted Overhead High Voltage Power Lines at Low Radio Frequencies

    Directory of Open Access Journals (Sweden)

    Nermin Suljanović

    2017-11-01

    Full Text Available This paper derives a model of high-voltage overhead power line under fault conditions at low radio frequencies. The derived model is essential for design of communication systems to reliably transfer information over high voltage power lines. In addition, the model can also benefit advanced systems for power-line fault detection and classification exploiting the phenomenon of changed conditions on faulted power line, resulting in change of low radio frequency signal propagation. The methodology used in the paper is based on the multiconductor system analysis and propagation of electromagnetic waves over the power lines. The model for the high voltage power line under normal operation is validated using actual measurements obtained on 400 kV power line. The proposed model of faulted power lines extends the validated power-line model under normal operation. Simulation results are provided for typical power line faults and typical fault locations. Results clearly indicate sensitivity of power-line frequency response on different fault types.

  10. Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Gooi, Hoay Beng; Guerrero, Josep M.

    2018-01-01

    This paper deals with development of a versatile and compact control strategy for voltage source converters in grid-connected and islanded microgrids using synchronous current converters technology. The key feature is its new integrated high-order controller/synchronizer with applicability to both...... and automated current-based grid synchronization. Moreover, the controller realizes a power-source current-controlled microgrid with minimum control loops, as compared to widely adopted voltage controlled microgrids in the literature, with advantages such as fault-ride-through and inherent droop-less power...... sharing capabilities. Adaptive current-based synchronization and smooth switching to islanding mode provides high flexibility, reliability and only-plug operation capability. Extensive simulation and experimental results are presented to demonstrate performance of the proposed control and management...

  11. TECHNICAL AND ECONOMIC EVALUATION OF OPTIMAL VOLTAGE LEVEL FOR THE POWER SUPPLY OF DEEP MINE OPERATING HORIZONS

    OpenAIRE

    Shkrabets, F. P.; Ostapchuk, O. V.; Kozhevnikov, A. V.; Akulov, A. V.

    2015-01-01

    The most perspective option for possible deep mine power supply is the one with the deep input of 35 kV voltage by installing of underground 35kV/6 kV substation. This option is caused by the expected level of electrical loads, provided by mine development, the power consumers’ deep layout (considering the distance from the source to the shaft on the surface and from the shaft to the underground substation chamber) and primary and the most responsible power consumers (blind shaft lifting devi...

  12. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  13. Optimal power and performance trade-offs for dynamic voltage scaling in power management based wireless sensor node

    Directory of Open Access Journals (Sweden)

    Anuradha Pughat

    2016-09-01

    Full Text Available Dynamic voltage scaling contributes to a significant amount of power saving, especially in the energy constrained wireless sensor networks (WSNs. Existing dynamic voltage scaling techniques make the system slower and ignore the event miss rate. This results in degradation of the system performance when there is non-stationary workload at input. The overhead due to transition between voltage level and discrete voltage levels are also the limitations of available dynamic voltage scaling (DVS techniques at sensor node (SN. This paper proposes a workload dependent DVS based MSP430 controller model used for SN. An online gradient estimation technique has been used to optimize power and performance trade-offs. The analytical results are validated with the simulation results obtained using simulation tool “SimEvents” and compared with the available AT9OS8535 controller. Based on the stochastic workload, the controller's input voltage, operational frequency, utilization, and average wait time of events are obtained.

  14. Local Dynamic Reactive Power for Correction of System Voltage Problems

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  15. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination...

  16. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    Science.gov (United States)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  17. Apparatus with a cooled X-ray source and a high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    Apparatus, especially for a dental application, with an X-ray source and a high voltage generator, whereby the X-ray source and a high voltage generator are contained in a housing, which is filled with a coolant medium, characterised by the housing being divided into two chambers, whereby the X-ray source is in the first chamber and the high voltage generator is in the second chamber and between the chambers a dividing wall is placed for the screening of the X-ray irradiation from the first chamber from the second, whereby at least one of the walls of the second chamber is elastic to accommodate the expansion of the coolant medium.

  18. Novel T-Z source inverter with high voltage gain and reduced transformer turn ratio

    DEFF Research Database (Denmark)

    Mostaan, Ali; Sharifi Malfejani, Saeed; Soltani, Mohsen

    2015-01-01

    Novel voltage source inverter based on the Z source inverter structure is introduced in this paper. In this new inverter, two inductors of the impedance network in conventional Z source inverter are replaced with two transformers or coupled inductors, but unlike the T-Z source inverter that it......'s voltage gain is raised with increasing the transformers turn ratio, the voltage gain in the proposed inverter is raised with lowering the transformer turn ratio. Therefore, transformers with lower turn ratio are required in the proposed inverter in compare with T- Z source inverter that can lead to lower...

  19. Optimal Design of a Resonance-Based Voltage Boosting Rectifier for Wireless Power Transmission.

    Science.gov (United States)

    Lim, Jaemyung; Lee, Byunghun; Ghovanloo, Maysam

    2018-02-01

    This paper presents the design procedure for a new multi-cycle resonance-based voltage boosting rectifier (MCRR) capable of delivering a desired amount of power to the load (PDL) at a designated high voltage (HV) through a loosely-coupled inductive link. This is achieved by shorting the receiver (Rx) LC-tank for several cycles to harvest and accumulate the wireless energy in the RX inductor before boosting the voltage by breaking the loop and transferring the energy to the load in a quarter cycle. By optimizing the geometries of the transmitter (Tx) and Rx coils and the number of cycles, N , for energy harvesting, through an iterative design procedure, the MCRR can achieve the highest PDL under a given set of design constraints. Governing equations in the MCRR operation are derived to identify key specifications and the design guidelines. Using an exemplary set of specs, the optimized MCRR was able to generate 20.9 V DC across a 100 kΩ load from a 1.8 V p , 6.78 MHz sinusoid input in the ISM-band at a Tx/Rx coil separation of 1.3 cm, power transfer efficiency (PTE) of 2.2%, and N = 9 cycles. At the same coil distance and loading, coils optimized for a conventional half-wave rectifier (CHWR) were able to reach only 13.6 V DC from the same source.

  20. Hybrid HVDC (H2VDC System Using Current and Voltage Source Converters

    Directory of Open Access Journals (Sweden)

    José Rafael Lebre

    2018-05-01

    Full Text Available This paper presents an analysis of a new high voltage DC (HVDC transmission system, which is based on current and voltage source converters (CSC and VSC in the same circuit. This proposed topology is composed of one CSC (rectifier and one or more VSCs (inverters connected through an overhead transmission line in a multiterminal configuration. The main purpose of this Hybrid HVDC (H2VDC, as it was designed, is putting together the best benefits of both types of converters in the same circuit: no commutation failure and system’s black start capability in the VSC side, high power converter capability and low cost at the rectifier side, etc. A monopole of the H2VDC system with one CSC and two VSCs—here, the VSC is the Modular Multilevel Converter (MMC considered with full-bridge submodules—in multiterminal configuration is studied. The study includes theoretical analyses, development of the CSC and VSCs control philosophies and simulations. The H2VDC system’s behavior is analyzed by computational simulations considering steady-state operation and short-circuit conditions at the AC and DC side. The obtained results and conclusions show a promising system for very high-power multiterminal HVDC transmission.

  1. Surge Protection in Low-Voltage AC Power Circuits: An Anthology

    Science.gov (United States)

    Martzloff, F. D.

    2002-10-01

    The papers included in this part of the Anthology provide basic information on the propagation of surges in low-voltage AC power circuits. The subject was approached by a combination of experiments and theoretical considerations. One important distinction is made between voltage surges and current surges. Historically, voltage surges were the initial concern. After the introduction and widespread use of current-diverting surge-protective devices at the point-of-use, the propagation of current surges became a significant factor. The papers included in this part reflect this dual dichotomy of voltage versus current and impedance mismatch effects versus simple circuit theory.

  2. A Comparison Study of Sinusoidal PWM and Space Vector PWM Techniques for Voltage Source Inverter

    Directory of Open Access Journals (Sweden)

    Ömer Türksoy

    2017-06-01

    Full Text Available In this paper, the methods used to control voltage source inverters which have been intensively investigated in recent years are compared. Although the most efficient result is obtained with the least number of switching elements in the inverter topologies, the method used in the switching is at least as effective as the topology. Besides, the selected switching method to control the inverter will play an effective role in suppressing harmonic components while producing the ideal output voltage. There are many derivatives of pulse width modulation techniques that are commonly used to control voltage source inverters. Some of widespread methods are sinusoidal pulse width modulation and space vector pulse width modulation techniques. These modulation techniques used for generating variable frequency and amplitude output voltage in voltage source inverters, have been simulated by using MATLAB/SIMULINK. And, the total harmonic distortions of the output voltages are compared. As a result of simulation studies, sinusoidal pulse width modulation has been found to have more total harmonic distortion in output voltages of voltage source inverters in the simulation. Space vector pulse width modulation has been shown to produce a more efficient output voltage with less total harmonic distortion.

  3. Effect of voltage sags on digitally controlled line connected switched-mode power supplies

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2012-01-01

    Different voltage disorders like voltage fluctuations, sags, frequency variations may occur in the power supply networks due to different fault conditions. These deviations from normal operation affects in different ways the line connected devices. Standards were developed to protect and ensure...... of voltage sags is analyzed. Fault tolerant control algorithm was designed, implemented and is discussed. The fault conditions and their effects were investigated at different power levels....

  4. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Horan, D.

    1999-01-01

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control and permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands

  5. Performance Evaluation of Three Different Inverter Configurations of DVR for Mitigation of Voltage Events

    Directory of Open Access Journals (Sweden)

    Miska Prasad

    2016-12-01

    Full Text Available The voltage events namely voltage sags and voltage swells represent the most common, frequent and important power quality events in today’s power system. Dynamic voltage restorer (DVR is one of the key components used to mitigate the supply voltage quality disturbances in terms of voltage sags and swells in the distribution system. It consists of an energy storage unit, a voltage source inverter, a filter, a coupling transformer and the control system. This paper presents three different inverter configurations of dynamic voltage restorer (DVR for mitigation of voltage events such as voltage sags and swells with sudden addition or removal of the nonlinear load. These three configurations are voltage source inverter based DVR (VSI-DVR, current source inverter based DVR (CSI-DVR and impedance or Z-source inverter based DVR (ZSI-DVR. The d-q control technique is used to control the operation of the DVR. The response of ZSI-DVR for mitigation of voltage sags and swells are investigated and compared with VSI-DVR and CSI-DVR using MATLAB/SIMULINK environment.

  6. Site Selection Strategy of Single-Frequency Tuned R-APF for Background Harmonic Voltage Damping in Power Systems

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Zeng, Jian; Chen, Zhe

    2013-01-01

    , and analyze the harmonic voltage propagation caused by the background harmonic voltage in power systems. Then, a new strategy is proposed for the site selection of resistive active power filter to damp the background harmonic voltage in power systems. Experiments have been performed to verify the theoretical......Series resonance between capacitance and line inductance may magnify background harmonic voltage and worsen the harmonic voltage distortion in power systems. To solve this problem, in this paper, the transmission line theory is used to set up the distributed parameter model of power system feeders...

  7. Design of power oscillator for 500 keV/20 mA Cockroft-Walton high voltage supply

    International Nuclear Information System (INIS)

    Djasiman; Sudjatmoko; Suprapto

    1999-01-01

    A design of power oscillator for Cockroft-Walton high voltage supply was carried out. This high voltage supply would be used as the acceleration voltage supply of an electron beam machine designed to have 500 keV/20 mA capacity. The power oscillator design consisted of output specification, circuit diagram, power supply and oscillator main components determinations. The power oscillator output wave power, voltage and frequency designed according to voltage multiplier input requirements. The design results showed that the circuit was class-c tickler oscillator having an output specification of 12.1 kW, 15 kV and 40 kHz sinus wave. The main component was a ITK 15-2 triode tube. (author)

  8. Harmonics and voltage stability analysis in power systems including

    Indian Academy of Sciences (India)

    In this study, non-sinusoidal quantities and voltage stability, both known as power quality criteria, are examined together in detail. The widespread use of power electronics elements cause the existence of significant non-sinusoidal quantities in the system. These non-sinusoidal quantities can create serious harmonic ...

  9. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  10. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Xu; Liu Ming; Li Peng; Chen Hongda

    2014-01-01

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm 2 . Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26–100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators. (semiconductor integrated circuits)

  11. Application of Load Compensation in Voltage Controllers of Large Generators in the Polish Power Grid

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available The Automatic Voltage Regulator normally controls the generator stator terminal voltage. Load compensation is used to control the voltage which is representative of the voltage at a point either within or external to the generator. In the Polish Power Grid (PPG compensation is ready to use in every AVR of a large generator, but it is utilized only in the case of generators operating at the same medium voltage buses. It is similar as in most European Power Grids. The compensator regulating the voltage at a point beyond the machine terminals has significant advantages in comparison to the slower secondary Voltage and Reactive Power Control System (ARNE1. The compensation stiffens the EHV grid, which leads to improved voltage quality in the distribution grid. This effect may be particularly important in the context of the dynamic development of wind and solar energy.

  12. Dispatching power system for preventive and corrective voltage collapse problem in a deregulated power system

    Science.gov (United States)

    Alemadi, Nasser Ahmed

    Deregulation has brought opportunities for increasing efficiency of production and delivery and reduced costs to customers. Deregulation has also bought great challenges to provide the reliability and security customers have come to expect and demand from the electrical delivery system. One of the challenges in the deregulated power system is voltage instability. Voltage instability has become the principal constraint on power system operation for many utilities. Voltage instability is a unique problem because it can produce an uncontrollable, cascading instability that results in blackout for a large region or an entire country. In this work we define a system of advanced analytical methods and tools for secure and efficient operation of the power system in the deregulated environment. The work consists of two modules; (a) contingency selection module and (b) a Security Constrained Optimization module. The contingency selection module to be used for voltage instability is the Voltage Stability Security Assessment and Diagnosis (VSSAD). VSSAD shows that each voltage control area and its reactive reserve basin describe a subsystem or agent that has a unique voltage instability problem. VSSAD identifies each such agent. VS SAD is to assess proximity to voltage instability for each agent and rank voltage instability agents for each contingency simulated. Contingency selection and ranking for each agent is also performed. Diagnosis of where, why, when, and what can be done to cure voltage instability for each equipment outage and transaction change combination that has no load flow solution is also performed. A security constrained optimization module developed solves a minimum control solvability problem. A minimum control solvability problem obtains the reactive reserves through action of voltage control devices that VSSAD determines are needed in each agent to obtain solution of the load flow. VSSAD makes a physically impossible recommendation of adding reactive

  13. The degradation diagnosis of low voltage cables used at nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Toshio; Ashida, Tetsuya; Ikeda, Takeshi; Yasuhara, Takeshi; Takechi, Kei; Araki, Shogo

    2001-01-01

    Low voltage cables which have been used for the supply of electric power and the propagation of control signals in nuclear power plants must be sound for safe and stable operation. The long use of nuclear power plants has been reviewed, and the degradation diagnosis to estimate the soundness of low voltage cables has been emphasized. Mitsubishi Cable Industries has established a degradation diagnosis method of cables which convert the velocity of ultrasonic wave in the surface layer of the cable insulation or jacket into breaking elongation, and has developed a degradation diagnosis equipment of low voltage cables used at nuclear power plants in cooperation with Mitsubishi Heavy Industries. This equipment can be moved by an ultrasonic probe by sequential control and measure the ultrasonic velocity automatically. It is capable of a fast an sensitive diagnosis of the cables. We report the outline of this degradation diagnosis equipment and an example of the adaptability estimation at an actual nuclear power plant. (author)

  14. Control of Grid Integrated Voltage Source Converters under Unbalanced Conditions: Development of an On-line Frequency-adaptive Virtual Flux-based Approach

    OpenAIRE

    Suul, Jon Are

    2012-01-01

    Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor- less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly ...

  15. Model Predictive Voltage Control of Wind Power Plants

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei

    2018-01-01

    the efficacy of the proposed WFVC, two case scenarios were designed: the wind farm is under normal operating conditions and the internal wind power fluctuation is considered; and besides internal power fluctuation, the impact of the external grid on the wind farm is considered.......This chapter proposes an autonomous wind farm voltage controller (WFVC) based on model predictive control (MPC). It also introduces the analytical expressions for the voltage sensitivity to tap positions of a transformer. The chapter then describes the discrete models for the wind turbine...... generators (WTGs) and static var compensators (SVCs)/static var generators (SVGs). Next, it describes the implementation of the on‐load tap changing (OLTC) in the MPC. Furthermore, the chapter examines the cost function as well as the constraints of the MPC‐based WFVC for both control modes. In order to test...

  16. Voltage Flicker Mitigation in Electric Arc Furnace using D-STATCOM

    OpenAIRE

    Deepthisree Madathil; Ilango Karuppasamy; Kirthika Devi V S; Manjula G Nair

    2014-01-01

    The major power quality issue of voltage flicker has resulted as a serious concern for the customers and heavy power companies. Voltage flicker is an impression of unsteadiness of visual sensation induced by a light source whose luminance fluctuates with time. This phenomenon is experienced when an Electric Arc Furnace (EAF) as load is connected to the power system. Flexible AC transmission devices (FACTS) devices were gradually utilized for voltage flicker reduction. In this paper the FACTS ...

  17. Power System Stability Using Decentralized Under Frequency and Voltage Load Shedding

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Faria Da; Bak, Claus Leth

    2014-01-01

    information to shed the loads with higher voltage decay first. Therefore, this approach deals with coordination of voltage and frequency information instead of independent methods. Numerical simulations which are carried out in DigSilent PowerFactory software confirm the efficiency of proposed methodology...

  18. Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Choong-Koo Chang

    2016-02-01

    Full Text Available Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV high resistance grounding (HRG system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

  19. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation.

    Science.gov (United States)

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan

    2017-04-04

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input

  20. Optically-powered Voltage-supply-device for Effective Utilization of Optical Energy in the Fiber-To-The-Home Network

    Science.gov (United States)

    Fukano, Hideki; Shinagawa, Takeshi; Tsuruta, Kenji

    An optically powered device with using InGaAs-Photodiode has been developed. This study aims to harvest light energy (2.8∼500μW) from the FTTH (Fiber To The Home) network and to utilize it for operating remote sensors without external energy sources. First, we designed and evaluated the characteristics of the booster circuit and confirmed that it could boost an input voltage of 0.3 V to 3.0 V. Next, we also evaluated the characteristics of InGaAs photodiode and confirmed that it can output a voltage over 0.3 V at 10-μW input light. We demonstrate that a ready-made sensor can be operated with an input optical power as low as 10 μW.

  1. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  2. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG......) can regulate easily the reactive power generated in steady state. However, difficulties appear when reactive power has to be generated during voltage dips. Simulations have been carried out in order to check whether DFIG wind turbines can fulfill the reactive power requirements. Protection system...... commonly employed with DFIG in order to achieve ride-through capabilities including crowbar plays an important role to meet the requirements together with grid-side converter. Resistance associated with the crowbar and its connection duration are crucial at the beginning of the fault. Grid-side converter...

  3. On-state voltage drop based power limit detection of IGBT inverters

    DEFF Research Database (Denmark)

    Trintis, Ionut; Ghimire, Pramod; Munk-Nielsen, Stig

    2015-01-01

    Power density is a key performance factor in order to reduce the cost and size of a power converter. Because of the unknown junction temperature, today’s design margins are relatively high to ensure safe and a reliable operation. In this paper, the on-state voltage drop is measured online for all...... insulated gate bipolar transistors (IGBTs) in the inverter, using advanced gate driver. The die temperature is estimated and monitored on each device during power converter operation. Based on the monitored temperature in real time, the maximum power capability is detected. The output power is increased...... until a safe operating temperature of power modules. This enable a power density is increased by 11.16 kW/litre to 19.13 kW/litre in a low voltage power stack which is typically used in wind power converters. Experiment results are shown for safe operation of converter at around 1.2 MW, which is built...

  4. Analysis of Voltage Forming Methods for Multiphase Inverters

    Directory of Open Access Journals (Sweden)

    Tadas Lipinskis

    2013-05-01

    Full Text Available The article discusses advantages of the multiphase AC induction motor over three or less phase motors. It presents possible stator winding configurations for a multiphase induction motor. Various fault control strategies were reviewed for phases feeding the motor. The authors propose a method for quality evaluation of voltage forming algorithm in the inverter. Simulation of a six-phase voltage source inverter, voltage in which is formed using a simple SPWM control algorithm, was performed in Matlab Simulink. Simulation results were evaluated using the proposed method. Inverter’s power stage was powered by 400 V DC source. The spectrum of output currents was analysed and the magnitude of the main frequency component was at least 12 times greater than the next biggest-magnitude component. The value of rectified inverter voltage was 373 V.Article in Lithuanian

  5. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  6. Design and Analysis of a Slope Voltage Control for a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Martínez, J.; Kjær, P. C.; Rodriguez, Pedro

    2012-01-01

    This paper addresses a detailed design of a wind power plant and turbine slope voltage control in the presence of communication delays for a wide short-circuit ratio range operation. The implemented voltage control scheme is based upon the secondary voltage control concept, which offers fast...... of connection with the grid. The performance has been tested using PSCAD/EMTDC program. The plant layout used in the simulations is based on an installed wind power plant, composed of 23 doubly fed generator wind turbines. The resulting performance is evaluated using a compilation of grid code voltage control...... response to grid disturbances, despite the communication delays, i.e., this concept is based on a primary voltage control, located in the wind turbine, which follows an external voltage reference sent by a central controller, called secondary voltage control, which is controlling the voltage at the point...

  7. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Science.gov (United States)

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  8. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    Energy Technology Data Exchange (ETDEWEB)

    Babij, Michał; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol; Gotszalk, Teodor [Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Silberring, Jerzy [AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-05-15

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  9. Voltage profile program for the Kennedy Space Center electric power distribution system

    Science.gov (United States)

    1976-01-01

    The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.

  10. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  11. ESTIMATION OF DECREASING LOSSES OF ACTIVE POWER IN TRANSFORMERS IN SETTING BATTERY OF LOW-VOLTAGE CAPACITORS

    Directory of Open Access Journals (Sweden)

    V. N. Radkevich

    2014-01-01

    Full Text Available This paper describes an estimation method of decreasing losses of active power in power transformers with voltage 10(6/0,4 kV after installation of devices of reactive power compensation on output side depending on voltage level, connected to capacity devices, taking into account dielectric loss in capacitors. Analysis of functional dependences was carried out. Investigation of function with a help of derivations was carried out. Points of function extremum and also its intervals of rise and fall rates were founded. This paper describes graphic investigation of obtained functional dependence, which is introduced by quartic polynominal. It is established that decreasing of losses of active power depends on technical parameters and load factor of transformer, coefficient of loading power of electricity consumers, voltage value connected to capacitor unit.Using obtained functional dependences, calculations for the main size-types of power transformers with voltage 10(6/0,4 kV serie ТМГ 11 and ТМГ12 were done. It is established that depending on technical characteristics of certain transformer, coefficient of its loading and power, there is a definite value of deviation of real voltage value from working voltage of capacitor installation when it will be observed positive technical and economical effect from installed capacitor battery unit. For taken value of loading coefficient and transformer’s power the maximum decrease of losses of active power takes place under voltage directed to capacitor unit, which is lower then nominal value. For all taken size-types of power transformers the argument of investigating function for its maximal value is out of standard permissible of voltage deviations from nominal value.These functional dependents can be used for preliminary calculations, which are needed for making decision on compensation of reactive power in electric power supply systems of industrial objects. Their consideration allows more

  12. Z-Source Inverter Based Power Quality Compensator with Enhanced Ride-Through Capability

    DEFF Research Database (Denmark)

    Gajanayake, C.J.; Vilathgamuwa, D.M.; Loh, P.C.

    2007-01-01

    Distributed generation has been gaining acceptance over the years and it has the potential to provide reliable power to sensitive loads. However, distributed networks are prone to unbalanced faults conditions. This makes single inverter DG systems unsuitable as UPS systems. This paper proposes...... a Zsource inverter based power quality compensator and a control structure that supplies high quality voltage to the connected sensitive load in the presence of other non linear loads. The proposed topology consists of combination of shunt and series inverters connected to a common Z-source impedance...... network. The shunt inverter is controlled to maintain a quality voltage waveform at the load bus. Whereas the series inverter enhances the ride-through capability during grid faults, protects the shunt inverter by limiting the current and also controls the power delivered to the grid. The performance...

  13. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    International Nuclear Information System (INIS)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.

    2016-01-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  14. Autonomous Control of Current and Voltage Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Jalilain, Alireza; Savaghebi, Mehdi

    2018-01-01

    In microgrids, Voltage Source Inverters (VSIs) interfacing Distributed Generation (DG) units can be operated in Voltage or Current Controlled Modes (VCM/CCM). In this paper, a coordinated control of CCM and VCM units for reactive power sharing and voltage harmonics compensation is proposed....... This decentralized control scheme is based on the local measurement of signals. In this way, the need for communication links is removed which results in a simpler and more reliable structure compared to the communication based control structures. To be more exact, the VCM units contribute to harmonics compensation....... Experimental and simulation studies show that the harmonics compensation is achieved by using only local measurements in presence of virtual admittance/impedance schemes of CCM/VCM units. Furthermore, it is demonstrated that the reactive power sharing among the CCM and VCM units is obtained based...

  15. Does the expansion of German high voltage power supply system imply health risks?; Geht vom Ausbau elektrischer Hochspannungsleitungen eine Gefahr fuer die menschliche Gesundheit aus?

    Energy Technology Data Exchange (ETDEWEB)

    Kappos, Andreas D.

    2016-07-01

    The decision of the German parliament to gradually close down nuclear power plants mainly located in the south of Germany and to support wind farms in the North Sea mud flats as the dominant regenerative energy source requires the strengthening and enlargement of the power supply system with the installation of new long distance high voltage power lines. The legally fixed dimension and formality of the actual planning process are discussed as well as the legal regulations for the protection of human health. Guided by the assessment of IARC a ''possible'' carcinogenic effect of low frequency electromagnetic fields on people living in the vicinity of high voltage power lines has to be considered. Therefore from a preventive viewpoint the minimal distance of 400 m between newly planned high voltage power lines and human settlements required by law seem justified.

  16. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... optimization. The proposed method is used to calculate the voltage bands and droop settings of PV inverters at each node by the supervisory controller. The local controller of each PV inverter implements the volt/var control and if necessary, the active power curtailment as per the received settings and based...... on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  17. Optimization of Passive Voltage Multipliers for Fast Start-up and Multi-voltage Power Supplies in Electromagnetic Energy Harvesting Systems

    Science.gov (United States)

    Yang, G.; Stark, B. H.; Burrow, S. G.; Hollis, S. J.

    2014-11-01

    This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up.

  18. Optimization of Passive Voltage Multipliers for Fast Start-up and Multi-voltage Power Supplies in Electromagnetic Energy Harvesting Systems

    International Nuclear Information System (INIS)

    Yang, G; Stark, B H; Burrow, S G; Hollis, S J

    2014-01-01

    This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up

  19. Single-event burnout hardening of planar power MOSFET with partially widened trench source

    Science.gov (United States)

    Lu, Jiang; Liu, Hainan; Cai, Xiaowu; Luo, Jiajun; Li, Bo; Li, Binhong; Wang, Lixin; Han, Zhengsheng

    2018-03-01

    We present a single-event burnout (SEB) hardened planar power MOSFET with partially widened trench sources by three-dimensional (3D) numerical simulation. The advantage of the proposed structure is that the work of the parasitic bipolar transistor inherited in the power MOSFET is suppressed effectively due to the elimination of the most sensitive region (P-well region below the N+ source). The simulation result shows that the proposed structure can enhance the SEB survivability significantly. The critical value of linear energy transfer (LET), which indicates the maximum deposited energy on the device without SEB behavior, increases from 0.06 to 0.7 pC/μm. The SEB threshold voltage increases to 120 V, which is 80% of the rated breakdown voltage. Meanwhile, the main parameter characteristics of the proposed structure remain similar with those of the conventional planar structure. Therefore, this structure offers a potential optimization path to planar power MOSFET with high SEB survivability for space and atmospheric applications. Project supported by the National Natural Science Foundation of China (Nos. 61404161, 61404068, 61404169).

  20. PowerFactory model for multi-terminal HVDC network with DC voltage droop control

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei

    Nowadays, most of the installed HVDC systems are based on line commutated converters (LCC), since this technology offers a series of advantages, mainly low costs and losses. However, voltage source converters (VSCs) have recently drawn more and more attention, due to their high controllability....... Moreover, recent developments have improved efficiency and power quality. For multi-terminal HVDC grids, the advantages of VSCs become so large, that VSC-HVDC systems are the only viable solution. Nevertheless, no VSC-based multi-terminal HVDC grids exist to date. This is the reason for which many research...

  1. Detecting Power Voltage Dips using Tracking Filters - A Comparison against Kalman

    Directory of Open Access Journals (Sweden)

    STANCIU, I.-R.

    2012-11-01

    Full Text Available Due of its significant economical impact, Power-Quality (PQ analysis is an important domain today. Severe voltage distortions affect the consumers and disturb their activity. They may be caused by short circuits (in this case the voltage drops significantly or by varying loads (with a smaller drop. These two types are the PQ currently issues. Monitoring these phenomena (called dips or sags require powerful techniques. Digital Signal Processing (DSP algorithms are currently employed to fulfill this task. Discrete Wavelet Transforms, (and variants, Kalman filters, and S-Transform are currently proposed by researchers to detect voltage dips. This paper introduces and examines a new tool to detect voltage dips: the so-called tracking filters. Discovered and tested during the cold war, they can estimate a parameter of interest one-step-ahead based on the previously observed values. Two filters are implemented. Their performance is assessed by comparison against the Kalman filter?s results.

  2. Method and system for a gas tube-based current source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  3. Impedance-based Analysis of DC Link Control in Voltage Source Rectifiers

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper analyzes the dynamics influences of the outer dc link control in the voltage source rectifiers based on the impedance model. The ac-dc interactions are firstly presented by means of full order small signal model in dq frame, which shows the input voltage and load condition are the two...

  4. Voltage Sag Mitigation and Load Reactive Power Compensation by UPQC

    OpenAIRE

    Ajitha, P; Jananisri, D

    2014-01-01

    This paper presents Unified Power Quality Conditioner(UPQC) that consist of series inverter and shunt inverter in back to back configuration which simultaneously compensate the power quality(PQ) problems of both voltage sag and load reactive power compensation . In this paper ,Neural network is tool which is considered for solving power quality problems. The simulation results from MATLAB/SIMULINK are discussed to validate the proposed method.

  5. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    International Nuclear Information System (INIS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-01-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  6. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Tian, Jinshou [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Qin, Hong [School of Computer Science and Technology, Xi' an University of Science and Technology, Xi' an 710054 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China)

    2017-04-11

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  7. Local Reactive Power Control Methods for Overvoltage Prevention of Distributed Solar Inverters in Low-Voltage Grids

    DEFF Research Database (Denmark)

    Demirok, Erhan; Gonzalez, Pablo Casado; Frederiksen, Kenn H. B.

    2011-01-01

    on sensitivity analysis. The sensitivity analysis shows that the same amount of reactive power becomes more effective for grid voltage support if the solar inverter is located at the end of a feeder. Based on this fundamental knowledge, a location-dependent power factor set value can be assigned to each inverter......voltage (LV) grids by means of solar inverters with reactive power control capability. This paper underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and then, the study introduces a new reactive power control method that is based......, and the grid voltage support can be achieved with less total reactive power consumption. In order to prevent unnecessary reactive power absorption from the grid during admissible voltage range or to increase reactive power contribution from the inverters that are closest to the transformer during grid...

  8. The control system based on PXI technology for high voltage power supply

    International Nuclear Information System (INIS)

    Chen Dehong; Zhang Ming; Ma Shaoxiang; Xia Linglong; Zeng Zhen; Zhang Xueliang; Wang Chuliang; Yu Kexun

    2014-01-01

    A 100 kV/60 A high voltage power supply (HVPS) is being developed to carry some auxiliary heating research on J-TEXT and supply the auxiliary heating system. The power supply which consists of 144 switch modules is based on PSM technology. For the requirement of isolation, control and protection, a control system based on the PCI extensions for instrumentation (PXI) which meets up with the CODAC standards is designed with developed PSM technology for the high voltage power supply. The compact structure of hardware in the control system is presented too. And the control strategy which is based on shift phase pulse width modulation is discussed Some tests are performed on the control system to validate the control strategy, the experimental results show that the system has a good control performance and fast response, which meets the control requirement of 100 kV/60 A high voltage power supply. (authors)

  9. Opposition-Based Improved PSO for Optimal Reactive Power Dispatch and Voltage Control

    Directory of Open Access Journals (Sweden)

    Shengrang Cao

    2015-01-01

    Full Text Available An opposition-based improved particle swarm optimization algorithm (OIPSO is presented for solving multiobjective reactive power optimization problem. OIPSO uses the opposition learning to improve search efficiency, adopts inertia weight factors to balance global and local exploration, and takes crossover and mutation and neighborhood model strategy to enhance population diversity. Then, a new multiobjective model is built, which includes system network loss, voltage dissatisfaction, and switching operation. Based on the market cost prices, objective functions are converted to least-cost model. In modeling process, switching operation cost is described according to the life cycle cost of transformer, and voltage dissatisfaction penalty is developed considering different voltage quality requirements of customers. The experiment is done on the new mathematical model. Through the simulation of IEEE 30-, 118-bus power systems, the results prove that OIPSO is more efficient to solve reactive power optimization problems and the model is more accurate to reflect the real power system operation.

  10. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    International Nuclear Information System (INIS)

    Sulaeman, M. Y.; Widita, R.

    2014-01-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation

  11. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  12. Decision Optimization for Power Grid Operating Conditions with High- and Low-Voltage Parallel Loops

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2017-05-01

    Full Text Available With the development of higher-voltage power grids, the high- and low-voltage parallel loops are emerging, which lead to energy losses and even threaten the security and stability of power systems. The multi-infeed high-voltage direct current (HVDC configurations widely appearing in AC/DC interconnected power systems make this situation even worse. Aimed at energy saving and system security, a decision optimization method for power grid operating conditions with high- and low-voltage parallel loops is proposed in this paper. Firstly, considering hub substation distribution and power grid structure, parallel loop opening schemes are generated with GN (Girvan-Newman algorithms. Then, candidate opening schemes are preliminarily selected from all these generated schemes based on a filtering index. Finally, with the influence on power system security, stability and operation economy in consideration, an evaluation model for candidate opening schemes is founded based on analytic hierarchy process (AHP. And a fuzzy evaluation algorithm is used to find the optimal scheme. Simulation results of a New England 39-bus system and an actual power system validate the effectiveness and superiority of this proposed method.

  13. Lower power by voltage stacking : a fine-grained system design approach

    NARCIS (Netherlands)

    Blutman, K.; Kapoor, A.; Martinez, J.G.; Fatemi, S.H.; Pineda de Gyvez, J.

    2016-01-01

    Stacking voltage domains on top of each other is a design approach that is getting the attention of engineering communities due to the implicit high efficiency of the power delivery. Previous works have shown voltage stacking at the core level only. In this paper we present a more involved approach

  14. Cable Insulation Breakdowns in the Modulator with a Switch Mode High Voltage Power Supply

    CERN Document Server

    Cours, A

    2004-01-01

    The Advanced Photon Source modulators are PFN-type pulsers with 40 kV switch mode charging power supplies (PSs). The PS and the PFN are connected to each other by 18 feet of high-voltage (HV) cable. Another HV cable connects two separate parts of the PFN. The cables are standard 75 kV x-ray cables. All four cable connectors were designed by the PS manufacturer. Both cables were operating at the same voltage level (about 35 kV). The PS’s output connector has never failed during five years of operation. One of the other three connectors failed approximately five times more often than the others. In order to resolve the failure problem, a transient analysis was performed for all connectors. It was found that transient voltage in the connector that failed most often was subjected to more high-frequency, high-amplitude AC components than the other three connectors. It was thought that these components caused partial discharge in the connector insulation and led to the insulation breakdown. Modification o...

  15. SYNTHESIS OF ACTIVE SCREENING SYSTEM OF MAGNETIC FIELD OF HIGH VOLTAGE POWER LINES OF DIFFERENT DESIGN TAKING INTO ACCOUNT SPATIAL AND TEMPORAL DISTRIBUTION OF MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2017-04-01

    Full Text Available Purpose. Analyze the spatial and temporal distribution of the magnetic field of high voltage power lines with different design allowing and development of recommendations for the design of active screening systems by magnetic field of high voltage power lines. Methodology. Analysis of the spatial and temporal distribution of the magnetic field of high voltage power lines of different design allowing is made on the basis of Maxwell's equations solutions in the quasi-stationary approximation. Determination of the number, configuration, spatial arrangement and the compensation coil currents is formulated in the form of multiobjective optimization problem that is solved by multi-agent multiswarm stochastic optimization based on Pareto optimal solutions. Results of active screening system for the synthesis of various types of transmission lines with different numbers of windings controlled. The possibility of a significant reduction in the level of the flux density of the magnetic field source within a given region of space. Originality. For the first time an analysis of the spatial and temporal distribution of the magnetic field of power lines with different types and based on findings developed recommendations for the design of active screening system by magnetic field of high voltage power lines. Practical value. Practical recommendations on reasonable choice of the number and spatial arrangement of compensating windings of active screening system by magnetic field of high voltage power lines of different design allowing for the spatial and temporal distribution of the magnetic field. Results of active screening system synthesis of the magnetic field of industrial frequency generated by single-circuit 110 kV high voltage power lines with the supports have 330 - 1T «triangle» rotating magnetic field with full polarization in a residential five-storey building, located near the power lines. The system contains three compensating coil and reduces

  16. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... point tracking controller without significant hardware or software modifications. In this way, the PV system will not operate at the maximum power point, whereas the inverter will not face any over-current challenge but can provide reactive power support in response to the grid voltage fault...

  17. Management of Power Quality Issues in Low Voltage Networks using Electric Vehicles: Experimental Validation

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Knezovic, Katarina; Marinelli, Mattia

    2017-01-01

    the existing and future power quality problems. One of the main aspects of the power quality relates to voltage quality. The aim of this work is to experimentally analyse whether series-produced EVs, adhering to contemporary standard and without relying on any V2G capability, can mitigate line voltage drops...... in improving the power quality of a highly unbalanced grid...

  18. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    Science.gov (United States)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  19. POWER STABILITY MONITORING BASED ON VOLTAGE INSTABILITY PREDICTION APPROACH THROUGH WIDE AREA SYSTEM

    OpenAIRE

    H. H. Goh; Q. S. Chua; S. W. Lee; B. C. Kok; K. C. Goh; K. T.K. Teo

    2014-01-01

    Nowadays, power systems are being forced to operate closer to its security limit due to current economic growth and the difficulties to upgrade the existing grid infrastructure. With the sudden increment of power demand, voltage instability problem has become a main concern to the power system operator because voltage instability has led or crucially contributed to some major blackouts throughout the world. Hence, methods for early warning and early prevention are required to prevent the powe...

  20. Modified SOGI based shunt active power filter to tackle various grid voltage abnormalities

    Directory of Open Access Journals (Sweden)

    Kalpeshkumar Patil

    2017-10-01

    Full Text Available Shunt Active Power Filters (SAPF have been effectively used to compensate the harmonics generated by the non-linear loads. The SAPF’s performance depends on the accurate generation of reference current, which is dependent greatly on the template of supply voltage. When the grid voltage (or its template is characterized by different abnormalities like presence of harmonics, imbalance, dc-offset etc., some of the conventional techniques of frequency estimation may fail to correctly estimate the frequency. This ultimately affects the reference current generation and hence, the SAPF operation, ultimately leading to high distortion of the grid currents. The paper presents modified dual second-order generalized integrator (MDSOGI based SAPF to ensure effective compensation of harmonics, even when the grid voltage is characterized by all the abnormalities mentioned above. It is highlighted with one case that when the sensed voltage is having dc-offset, DSOGI-SAPF results into the source current with THD, dc-offset and harmonic with values 5.82%, 0.8% and 4.5%, respectively. For the same case, the proposed technique yields grid current which is free of dc-offset and 2nd harmonic and has THD = 3.57%. The dynamic performance of the MDSOGI-SAPF is validated and its superior performance over DSOGI-SAPF is illustrated even with experimental results.

  1. Power converters for medium voltage networks

    CERN Document Server

    Islam, Md Rabiul; Zhu, Jianguo

    2014-01-01

    This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book's individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration te

  2. Online Optimal Switching Frequency Selection for Grid-Connected Voltage Source Inverters

    Directory of Open Access Journals (Sweden)

    Saher Albatran

    2017-12-01

    Full Text Available Enhancing the performance of the voltage source inverters (VSIs without changing the hardware structure has recently acquired an increased amount of interest. In this study, an optimization algorithm, enhancing the quality of the output power and the efficiency of three-phase grid connected VSIs is proposed. Towards that end, the proposed algorithm varies the switching frequency (fsw to maintain the best balance between switching losses of the insulated-gate-bipolar-transistor (IGBT power module as well as the output power quality under all loading conditions, including the ambient temperature effect. Since there is a contradiction with these two measures in relation to the switching frequency, the theory of multi-objective optimization is employed. The proposed algorithm is executed on the platform of Altera® DE2-115 field-programmable-gate-array (FPGA in which the optimal value of the switching frequency is determined online without the need for heavy offline calculations and/or lookup tables. With adopting the proposed algorithm, there is an improvement in the VSI efficiency without degrading the output power quality. Therefore, the proposed algorithm enhances the lifetime of the IGBT power module because of reduced variations in the module’s junction temperature. An experimental prototype is built, and experimental tests are conducted for the verification of the viability of the proposed algorithm.

  3. A Method of Maximum Power Control in Single-phase Utility Interactive Photovoltaic Generation System by using PWM Current Source Inverter

    Science.gov (United States)

    Neba, Yasuhiko

    This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.

  4. Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    Shoudao Huang

    2016-09-01

    Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.

  5. Best voltage bias-flipping strategy towards maximum piezoelectric power generation

    International Nuclear Information System (INIS)

    Liang, Junrui; Chung, Henry Shu-Hung

    2013-01-01

    In piezoelectric energy harvesting (PEH) systems, energy extracted from piezoelectric structure can be increased by making piezoelectric voltage in phase with vibration velocity and raising the voltage amplitude. Such voltage manipulations can be realized by synchronously flipping the piezoelectric voltage with respect to a bias dc source at every displacement extremum. Given that net harvested energy is obtained by deducting dissipated energy from total extracted energy, a sophisticated voltage bias-flipping scheme, which can maximize extracted energy at low dissipative cost, is required towards harvested energy optimization. This paper extends the state of the art by proposing the best bias-flip strategy, which is delivered on conceptual synchronized multiple bias-flip (SMBF) interface circuits. The proposed strategy coordinates both requirements on larger voltage change in synchronized instant for more extracted energy and smaller voltage change in each bias-flip action for less dissipated energy. It not only leads to further enhancement of harvesting capability beyond existing solutions, but also provides an unprecedented physical insight on maximum achievable harvesting capability of PEH interface circuit

  6. Power quality assessment

    International Nuclear Information System (INIS)

    Fathi, H.M.E.

    2012-01-01

    The electrical power systems are exposed to different types of power quality disturbances problems. Assessment of power quality is necessary for maintaining accurate operation of sensitive equipment's especially for nuclear installations, it also ensures that unnecessary energy losses in a power system are kept at a minimum which lead to more profits. With advanced in technology growing of industrial / commercial facilities in many region. Power quality problems have been a major concern among engineers; particularly in an industrial environment, where there are many large-scale type of equipment. Thus, it would be useful to investigate and mitigate the power quality problems. Assessment of Power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. The choice of monitoring equipment in a survey is also important to ascertain a solution to these power quality problems. A power quality assessment involves gathering data resources; analyzing the data (with reference to power quality standards); then, if problems exist, recommendation of mitigation techniques must be considered. The main objective of the present work is to investigate and mitigate of power quality problems in nuclear installations. Normally electrical power is supplied to the installations via two sources to keep good reliability. Each source is designed to carry the full load. The Assessment of power quality was performed at the nuclear installations for both sources at different operation conditions. The thesis begins with a discussion of power quality definitions and the results of previous studies in power quality monitoring. The assessment determines that one source of electricity was deemed to have relatively good power quality; there were several disturbances, which exceeded the thresholds. Among of them are fifth harmonic, voltage swell, overvoltage and flicker. While the second

  7. Admissibility of building cost subsidy in the power grid above the low voltage level

    International Nuclear Information System (INIS)

    Foerster, Sven

    2015-01-01

    Electricity networks are essential to the provision of electrical power to businesses and individuals. In particular for manufacturing businesses a connection to the grid above the low-voltage level is often useful. Network operators demand a subsidy for the new connection and for the change to a higher network level under the auspices of construction cost. The power network market above the low-voltage level is a natural monopoly. This leaves consumers looking for a connection to the power grid with no possibility to select among different network operators. Construction cost subsidies are not regulated by law above the low voltage level. The lack of legal regulation and the natural monopoly above the low-voltage level affect the balance of power between network operators and system users. The lawfulness of the construction cost subsidies, the prerequisites for their demand and a review of the calculation models (Leistungspreismodell, 2-Ebenen-Modell) as well as a proposal for a reform of this system form the subject of this work.

  8. The system of high-voltage power PMT for experiments at the JINR Nuclotron

    International Nuclear Information System (INIS)

    Piyadin, S.M.; Ladygin, V.P.; Pilyar, A.V.; Reznikov, S.G.; Janek, M.

    2015-01-01

    An 8-channel high-voltage power system based on the use of the module «Wenzel Elektronik N1130» is described. Specifications of control modules 8DAC-12 and 8ADC-14 designed for the high-voltage systems in CAMAC standard are presented. This system is designed to provide the power for the detectors used in physics experiments at the JINR Nuclotron.

  9. Power supplyer for reactor coolant recycling pump

    International Nuclear Information System (INIS)

    Nara, Hiroshi; Okinaka, Yo.

    1991-01-01

    The present invention concerns a variable voltage/variable frequency static power source (static power source) used as a power source for a coolants recycling pump motor of a nuclear power plant. That is, during lower power operation such as start up or shutdown in which stoppage of the power source gives less effect to a reactor core, power is supplied from a power system, a main power generator connected thereto or a high voltage bus in the plant or a common high voltage bus to the static power source. However, during rated power operation, power is supplied from the output of an axially power generator connected with a main power generator having an extremely great inertia moment to the static power device. With such a constitution, the static power device is not stopped by the lowering of the voltage due to a thunderbolt falling accident or the like to a power-distribution line suddenly occurred in the power system. Accordingly, reactor core flowrate is free from rapid decrease caused by the reduction of rotation speed of the recycling pump. Accordingly, disadvantgages upon operation control in the reactor core is not caused. (I.S.)

  10. Technical evaluation report on the adequacy of station electric-distribution-system voltages for the Millstone Nuclear Power Station, Units 1 and 2. Docket Nos. 50-245, 50-336

    International Nuclear Information System (INIS)

    Selan, J.C.

    1983-01-01

    This report documents the technical evaluation of the adequacy of the station electric-distribution-system voltages for the Millstone Nuclear Power Station, Units 1 and 2. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analyses submitted demonstrate that adequate voltages will be supplied to the Class 1E equipment under the worst-case conditions analyzed

  11. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  12. Design of power supply system for the prototype RF-driven negative ion source for neutral beam injection application

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Caichao; Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Wei, Jianglong, E-mail: jlwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xie, Yahong; Xu, Yongjian; Liang, Lizhen; Chen, Shiyong; Liu, Sheng; Liu, Zhimin; Xie, Yuanlai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    Highlights: • A supporting power supply system was designed in details for a RF-driven prototype negative ion source at ASIPP. • The RF power supply for plasma generation adopts an all-solid-state power supply structure. • The extraction grid power supply adopts the pulse step modulator (PSM) technology. - Abstract: In order to study the generation and extraction of negative ions for neutral beam injection application, a prototype RF-driven negative ion source and the corresponding test bed are under construction at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The target of the negative ion source is extracting a negation ion beam of 350 A/m{sup 2} for 3600 s plasma duration and 100 s beam duration. According to the required parameters of test bed, the design of power supply system is put forward for earlier study. In this paper, the performance requirements and design schemes of RF power supply for plasma generation, impedance matching network, bias voltage power supply, and extraction voltage power supply for negative beam extraction are introduced in details. The schemes provide a reference for the construction of power supply system and lay a foundation for the next phase of experimental operation.

  13. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  14. Energy Storage Characteristic Analysis of Voltage Sags Compensation for UPQC Based on MMC for Medium Voltage Distribution System

    Directory of Open Access Journals (Sweden)

    Yongchun Yang

    2018-04-01

    Full Text Available The modular multilevel converter (MMC, as a new type of voltage source converter, is increasingly used because it is a distributed storage system. There are many advantages of using the topological structure of the MMC on a unified power quality controller (UPQC, and voltage sag mitigation is an important use of the MMC energy storage system for the power quality compensation process. In this paper, based on the analysis of the topology of the MMC, the essence of energy conversion in a UPQC of voltage sag compensation is analyzed; then, the energy storage characteristics are calculated and analyzed to determine the performance index of voltage sag compensation; in addition, the simulation method is used to verify the voltage sag compensation characteristics of the UPQC; finally, an industrial prototype of the UPQC based on an MMC for 10 kV of medium voltage distribution network has been developed, and the basic functions of UPQC have been tested.

  15. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  16. A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yap Hoon

    2017-02-01

    Full Text Available In this paper, a refined reference current generation algorithm based on instantaneous power (pq theory is proposed, for operation of an indirect current controlled (ICC three-level neutral-point diode clamped (NPC inverter-based shunt active power filter (SAPF under non-sinusoidal source voltage conditions. SAPF is recognized as one of the most effective solutions to current harmonics due to its flexibility in dealing with various power system conditions. As for its controller, pq theory has widely been applied to generate the desired reference current due to its simple implementation features. However, the conventional dependency on self-tuning filter (STF in generating reference current has significantly limited mitigation performance of SAPF. Besides, the conventional STF-based pq theory algorithm is still considered to possess needless features which increase computational complexity. Furthermore, the conventional algorithm is mostly designed to suit operation of direct current controlled (DCC SAPF which is incapable of handling switching ripples problems, thereby leading to inefficient mitigation performance. Therefore, three main improvements are performed which include replacement of STF with mathematical-based fundamental real power identifier, removal of redundant features, and generation of sinusoidal reference current. To validate effectiveness and feasibility of the proposed algorithm, simulation work in MATLAB-Simulink and laboratory test utilizing a TMS320F28335 digital signal processor (DSP are performed. Both simulation and experimental findings demonstrate superiority of the proposed algorithm over the conventional algorithm.

  17. A Circulating Current Suppression Method for Parallel Connected Voltage-Source-Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper describes a theoretical with experiment study on a control strategy for the parallel operation of threephase voltage source inverters (VSI), to be applied to uninterruptible power systems (UPS). A circulating current suppression strategy for parallel VSIs is proposed in this paper based...... on circulating current control loops used to modify the reference currents by compensating the error currents among parallel inverters. Both of the cross and zero-sequence circulating currents are considered. The proposed method is coordinated together with droop and virtual impedance control. In this paper......, droop control is used to generate the reference voltage of each inverter, and the virtual impedance is used to fix the output impedance of the inverters. In addition, a secondary control is used in order to recover the voltage deviation caused by the virtual impedance. And the auxiliary current control...

  18. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  19. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  20. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  1. Power supply system for KSTAR neutral beam injector

    International Nuclear Information System (INIS)

    Cho, W.; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-01-01

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  2. High Voltage Distribution System (HVDS) as a better system compared to Low Voltage Distribution System (LVDS) applied at Medan city power network

    Science.gov (United States)

    Dinzi, R.; Hamonangan, TS; Fahmi, F.

    2018-02-01

    In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.

  3. Negative-feedback control system of the high voltage power supply for ECRH

    International Nuclear Information System (INIS)

    Ding Tonghai; Liu Baohua; Jiang Shufang

    2001-01-01

    A kind of high accuracy negative high voltage power supply (HVPS) was introduced. The serial feedback was regulated according to the character of the high power tetrode and a new kind of integrator with preset value, which solved the key technological problem of the HVPS that the ECRH system required a voltage of -80 kV, a pulse width of 10 - 100 ms and a precision of 99.7%. The result using a PSPICE code simulation has shown that the method is practical

  4. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  5. High voltage superconducting switch for power application

    International Nuclear Information System (INIS)

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  6. Application of Multipoint DC Voltage Control in VSC-MTDC System

    Directory of Open Access Journals (Sweden)

    Yang Xi

    2013-01-01

    Full Text Available The voltage-source-converter- (VSC- based multiterminal VSC-HVDC power transmission system (VSC-MTDC is an ideal approach to connect wind farm with power grid. Analyzing the characteristics of doubly fed induction generators as well as the basic principle and the control strategy of VSC-MTDC, a multiterminal DC voltage control strategy suitable for wind farm connected with VSC-MTDC is proposed. By use of PSCAD/EMTDC, the proposed control strategy is simulated, and simulation results show that using the proposed control strategy the conversion between constant power control mode and constant DC voltage control mode can be automatically implemented; thus the DC voltage stability control and reliable power output of wind farm can be ensured after the fault-caused outage of converter station controlled by constant DC voltage and under other faults. The simulation result shows that the model can fulfill multiterminal power transmission and fast response control.

  7. A method of accurate determination of voltage stability margin

    Energy Technology Data Exchange (ETDEWEB)

    Wiszniewski, A.; Rebizant, W. [Wroclaw Univ. of Technology, Wroclaw (Poland); Klimek, A. [AREVA Transmission and Distribution, Stafford (United Kingdom)

    2008-07-01

    In the process of developing power system disturbance, voltage instability at the receiving substations often contributes to deteriorating system stability, which eventually may lead to severe blackouts. The voltage stability margin at receiving substations may be used to determine measures to prevent voltage collapse, primarily by operating or blocking the transformer tap changing device, or by load shedding. The best measure of the stability margin is the actual load to source impedance ratio and its critical value, which is unity. This paper presented an accurate method of calculating the load to source impedance ratio, derived from the Thevenin's equivalent circuit of the system, which led to calculation of the stability margin. The paper described the calculation of the load to source impedance ratio including the supporting equations. The calculation was based on the very definition of voltage stability, which says that system stability is maintained as long as the change of power, which follows the increase of admittance is positive. The testing of the stability margin assessment method was performed in a simulative way for a number of power network structures and simulation scenarios. Results of the simulations revealed that this method is accurate and stable for all possible events occurring downstream of the device location. 3 refs., 8 figs.

  8. Shootthrough fault protection system for bipolar transistors in a voltage source transistor inverter

    International Nuclear Information System (INIS)

    Wirth, W.F.

    1982-01-01

    Faulted bipolar transistors in a voltage source transistor inverter are protected against shootthrough fault current, from the filter capacitor of the d-c voltage source which drives the inverter over the d-c bus, by interposing a small choke in series with the filter capacitor to limit the rate of rise of that fault current while at the same time causing the d-c bus voltage to instantly drop to essentially zero volts at the beginning of a shootthrough fault. In this way, the load lines of the faulted transistors are effectively shaped so that they do not enter the second breakdown area, thereby preventing second breakdown destruction of the transistors

  9. Development of Mixed Autonomous Power System on the Basis of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    D. P. Laoshvili

    2010-01-01

    Full Text Available A principal circuit diagram has been developed for an autonomous power system on the basis of renewable energy sources – solar and accumulator batteries.Due to the usage of a dc pulse converter, a dc converter (interrupter, an IGBT module inverter and a single-phase matching power transformer it is possible to achieve an effective sectioning of constant voltage and their inversion with minimal energy losses.Efficiency factor of the proposed converter installation exceeds 90 % and power factor is close to unity.

  10. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    Science.gov (United States)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  11. The Design of Nanosecond Fast-switch Pulsed High Voltage Power Supply Based on Solid-state

    International Nuclear Information System (INIS)

    Chen Wenguang; Chen Wei; Rao Yihua

    2009-01-01

    The high voltage pulsed power supply is applied in the experiment of the nuclear science widely. It main consist of DC high-voltage power supply (HVPS) and pulse modulator. The high-frequency series-resonant inverter technology and IGBT series technology are used to design the HVPS and the modulator, respectively. The main circuit, control circuit, high voltage transformer and solid-state switch are illuminated in the paper. The apparatus can operate at a maximum output voltage of 6 kilovolt, which can be modulated single pulse and also be modulated by series pulse. A prototype is fabricated and tested, experimental results show that the pulsed power supply is well-designed and rising edge time to meet the nsclass; it can achieve the requirement of rapid modulation. (authors)

  12. Development of anode high voltage power supply system for ECRH of HL-2A tokamak

    International Nuclear Information System (INIS)

    Chen Wenguang

    2009-01-01

    The anode high voltage power supply system consist of DC high-voltage power supply (HVPS) and pulse modulator. SCR is used to vary AC input voltage of the step-up transformer by controlling the trigger phase in the HVPS, and regulate the DC output voltage linearly at the potential of low-end via BJT, Dual closed-loop control technology is applied in the controller, and its maximum output is at 30kV and 130mA. Tetrode is the core component of the modulator. The circuit design is optimized by using the simulation software. Test and HL-2A discharge experimental results show that the power supply system is designed with some characteristics of output scale widely, low ripple and modulate quickly. (authors)

  13. Evaluation of the drain—source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method

    International Nuclear Information System (INIS)

    Ma Lin; Feng Shiwei; Zhang Yamin; Deng Bing; Yue Yuan

    2014-01-01

    The effect of drain—source voltage on AlGaAs/InGaAs PHEMTs thermal resistance is studied by experimental measuring and simulation. The result shows that AlGaAs/InGaAs PHEMTs thermal resistance presents a downward trend under the same power dissipation when the drain—source voltage (V DS ) is decreased. Moreover, the relatively low V DS and large drain—source current (I DS ) result in a lower thermal resistance. The chip-level and package-level thermal resistance have been extracted by the structure function method. The simulation result indicated that the high electric field occurs at the gate contact where the temperature rise occurs. A relatively low V DS leads to a relatively low electric field, which leads to the decline of the thermal resistance. (semiconductor devices)

  14. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Science.gov (United States)

    Hao, Zhibin; Wang, Guozhu; Li, Wenbin; Zhang, Junguo; Kan, Jiangming

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  15. Dynamics of voltage source converter in a grid connected solar photovoltaic system

    DEFF Research Database (Denmark)

    Haribabu, Divyanagalakshmi; Vangari, Adithya; Sakamuri, Jayachandra N.

    2015-01-01

    This paper emphasises the modelling and control of a voltage source converter (VSC) for three phase grid connected PV system. The transfer functions for inner current control and outer DC link voltage control for VSC are derived. The controllers for VSC are designed based on PI and K factor contr...

  16. An Integrated Inductor For Parallel Interleaved Three-Phase Voltage Source Converters

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2016-01-01

    Three phase Voltage Source Converters (VSCs) are often connected in parallel to realize high current output converter system. The harmonic quality of the resultant switched output voltage can be improved by interleaving the carrier signals of these parallel connected VSCs. As a result, the line...... of the state-of-the-art filtering solution. The performance of the integrated inductor is also verified by the experimental measurements....

  17. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    Science.gov (United States)

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  18. Multi-Stage Optimization-Based Automatic Voltage Control Systems Considering Wind Power Forecasting Errors

    DEFF Research Database (Denmark)

    Qin, Nan; Bak, Claus Leth; Abildgaard, Hans

    2017-01-01

    This paper proposes an automatic voltage control (AVC) system for power systems with limited continuous voltage control capability. The objective is to minimize the operational cost over a period, which consists of the power loss in the grid, the shunt switching cost, the transformer tap change...... electricity control center, where study cases based on the western Danish power system demonstrate the superiority of the proposed AVC system in term of the cost minimization. Monte Carlo simulations are carried out to verify the proposed method on the robustness improvements....

  19. Analysis of dc-Link Voltage Switching Ripple in Three-Phase PWM Inverters

    Directory of Open Access Journals (Sweden)

    Marija Vujacic

    2018-02-01

    Full Text Available The three-phase voltage source inverter (VSI is de facto standard in power conversion systems. To realize high power density systems, one of the items to be correctly addressed is the design and selection of the dc-link capacitor in relation to the voltage switching ripple. In this paper, effective formulas for designing the dc-link capacitor as a function of the switching voltage ripple amplitude are obtained, considering the operating conditions such as the modulation index and the output current amplitude. The calculations are obtained considering the requirements and restrictions referring to the high (switching-frequency dc-link voltage ripple component. Analyses have been performed considering the dc source impedance (non-ideal dc voltage source at the switching frequency and a balanced load. Analytical expressions are derived for the dc-link voltage switching ripple amplitude and its maximum value over the fundamental period. Different values of modulation index and output phase angle have been considered and different diagrams are presented. Analytical results were validated both by simulations and comprehensive experimental tests.

  20. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  1. Harmonics and voltage stability analysis in power systems including ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    two parameters affecting power quality – harmonics and voltage stability. ... is necessary to pay attention to energy system stability in the planning, management, and ... where k ∈ {m, m + 1,... ,n} and n is total number of the buses in the system.

  2. A comparison of medium voltage static transfer switches and medium voltage mechanical transfer switches

    Energy Technology Data Exchange (ETDEWEB)

    Risko, W. P.

    2002-07-01

    Medium voltage static transfer switches (MVSTS) and medium voltage mechanical transfer switches (MVATS) perform a common function, namely selecting between two independent power sources to provide uninterrupted power to the loads. Although the functions are the same the method of performing that function is different and this method impacts the sources and connected load. This article describes the two methods of transfer -- mechanical and static -- their advantages and disadvantages, and their preferred applications. The MVSTS can be incorporated into many applications; it can work in conjunction with backup sources such as generators; and can replace generators as a low cost solution. The reliability of the MVSTS is very high; it also outperforms the MVATS with regard to transfer speed, and can react to anomalies in the same sub-cycle time frame. Because the design of the MVSTS is modular, it can be engineered and designed to fit into existing and future systems and applications, and can be used with different switchgear variations and protection arrangements. For example, load isolation and protection breakers can be added to the switchgear to provide flexibility and isolation.

  3. Exploration of a radiation hardening stabilized voltage power supply

    International Nuclear Information System (INIS)

    Xie Zeyuan; Xu Xianguo

    2014-01-01

    This paper mainly introduces the design method of radiation hardening stabilized voltage power supply that makes use of commercial radiation resistant electronic devices and the test results of radiation performance of the power supply and devices are presented in detail. The experiment results show that the hardened power supply can normally work until 1000 Gy (Si) total dose and 1 × 10 14 n/cm 2 neutron radiation, and it doesn't latchup at about 1 × l0 9 Gy (Si)/s gamma transient dose rate. (authors)

  4. Power-MOSFET Voltage Regulator

    Science.gov (United States)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  5. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  6. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    International Nuclear Information System (INIS)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B.

    2010-01-01

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.

  7. A combined compensation method for the output voltage of an insulated core transformer power supply

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.; Qin, B.; Chen, D. Z. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  8. Inductor Design Comparison of Three-wire and Four-wire Three-phase Voltage Source Converters in Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    This paper studies the inductor design for three-wire and four-wire power factor correction converter (PFC). Designing the efficient inductor for this converter (regardless of connecting the midpoint to the ground) requires a comprehensive knowledge of the inductor current and voltage behavior....... This paper investigates how changing three-wire PFC to four-wire counterpart influences the inductor design in terms of size, losses, and overall efficiency of the converter. Therefore, the inductor current and voltage waveforms are analyzed and generalized in both cases for one switching cycle to build...... a foundation for comparison. Accordingly, the analyses are able to interpret the differences between both configurations and explain the core losses and the copper losses of inductors, especially those caused by the high frequency ac current ripple. Finally, two inductors are designed for a 5 kW PFC...

  9. Klystron bias power supplies for Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2008-01-01

    The functioning of an alternating current (AC) voltage regulator based high voltage direct current (HVDC) power supplies with better input and output performances has been presented in this paper. The authors have incorporated a 3-phase series limiting inductor, along with detuned passive filter in each power supply, to take care of line harmonics and the input power factor (IPF), which is simple, cost effective, reliable and provides input performance matching that of an equivalent active filter. Such arrangement has special significance for controlled HVDC power supplies supplying to fixed load but operated from widely varying input voltages. It achieves line voltage total harmonic distortion (THD) below 4% and IPF better than 0.97, for 415 V - 30% to 415 V + 10% variations in 3-phase input voltages. A properly designed crowbar, along with suitable limiting elements, is incorporated in each power supply and stringent wire survivability tests were carried out to limit klystron fault energy below 10 Joules. Several simulated waveforms and experiment results are also presented. (author)

  10. Nested high voltage generator/particle accelerator

    International Nuclear Information System (INIS)

    Adler, R.J.

    1992-01-01

    This patent describes a modular high voltage particle accelerator having an emission axis and an emission end, the accelerator. It comprises: a plurality of high voltage generators in nested adjacency to form a nested stack, each the generator comprising a cup-like housing having a base and a tubular sleeve extending from the base, a primary transformer winding encircling the nested stack; a secondary transformer winding between each adjacent pair of housings, magnetically linked to the primary transformer winding through the gaps; a power supply respective to each of the secondary windings converting alternating voltage from its respective secondary winding to d.c. voltage, the housings at the emission end forming a hollow throat for particle acceleration, a vacuum seal at the emission end of the throat which enables the throat to be evacuated; a particle source in the thrond power means to energize the primary transformer winding

  11. An Optimized Reactive Power Control of Distributed Solar Inverters in Low Voltage Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2011-01-01

    This study examines the reactive power ancillary services of solar inverters which are connected to low voltage (LV) distribution networks by giving attention to the grid voltage support service and grid losses. Two typical reference LV distribution network models as suburban and farm...... are introduced from the literature in order to evaluate contribution of two static droop strategies cosφ(P) and Q(U) on the grid voltage. Photovoltaic (PV) hosting capacities of the suburban and farm networks are estimated and the most predominant limitations of connecting more solar inverters are emphasized...... for each network type. Regarding the overloading of MV/LV distribution transformers, overloading of lines and the grid overvoltage limitations, new local grid voltage support methods (cosφ(P,U) and Q(U,P)) are also proposed. Resulting maximum allowable penetration levels with different reactive power...

  12. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  13. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  14. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  15. Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source Converter−Multi-Terminal High Voltage DC Grid-Connected Offshore Wind Farms with Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Ho-Young Kim

    2017-07-01

    Full Text Available Improving the performance of power systems has become a challenging task for system operators in an open access environment. This paper presents an optimization approach for solving the multi-objective scheduling problem using a modified non-dominated sorting genetic algorithm in a hybrid network of meshed alternating current (AC/wind farm grids. This approach considers voltage and power control modes based on multi-terminal voltage source converter high-voltage direct current (MTDC and battery energy storage systems (BESS. To enhance the hybrid network station performance, we implement an optimal process based on the battery energy storage system operational strategy for multi-objective scheduling over a 24 h demand profile. Furthermore, the proposed approach is formulated as a master problem and a set of sub-problems associated with the hybrid network station to improve the overall computational efficiency using Benders’ decomposition. Based on the results of the simulations conducted on modified institute of electrical and electronics engineers (IEEE-14 bus and IEEE-118 bus test systems, we demonstrate and confirm the applicability, effectiveness and validity of the proposed approach.

  16. Power electronic solutions for interfacing offshore wind turbine generators to medium voltage DC collection grids

    Science.gov (United States)

    Daniel, Michael T.

    Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing

  17. An improved direct feedback linearization technique for transient stability enhancement and voltage regulation of power generators

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun, Cameroun; Goma, Raphael; Lamnabhi-Lagarrigue, Francoise [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere [Departement GEII, Universite Paris XIII, IUT Villetaneuse, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Arzande, Amir; Vannier, Jean Claude [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-09-15

    In this paper, a simple improved direct feedback linearization design method for transient stability and voltage regulation of power systems is discussed. Starting with the classical direct feedback linearization technique currently applied to power systems, an adaptive nonlinear excitation control of synchronous generators is proposed, which is new and effective for engineering. The power angle and mechanical power input are not assumed to be available. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of angular speed, active electric power and generator terminal voltage. Experimental results of a practical power system show that fast response, robustness, damping, steady-state and transient stability as well as voltage regulation are all achieved satisfactorily. (author)

  18. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage

    Directory of Open Access Journals (Sweden)

    Sangeeta Singh

    2016-03-01

    Full Text Available In this paper, we have investigated a novel Schottky tunneling source impact ionization MOSFET (STS-IMOS to lower the breakdown voltage of conventional impact ionization MOS (IMOS and developed an analytical model for the same. In STS-IMOS there is an accumulative effect of both impact ionization and source induced barrier tunneling. The silicide source offers very low parasitic resistance, the outcome of which is an increment in voltage drop across the intrinsic region for the same applied bias. This reduces operating voltage and hence, it exhibits a significant reduction in both breakdown and threshold voltage. STS-IMOS shows high immunity against hot electron damage. As a result of this the device reliability increases magnificently. The analytical model for impact ionization current (Iii is developed based on the integration of ionization integral (M. Similarly, to get Schottky tunneling current (ITun expression, Wentzel–Kramers–Brillouin (WKB approximation is employed. Analytical models for threshold voltage and subthreshold slope is optimized against Schottky barrier height (ϕB variation. The expression for the drain current is computed as a function of gate-to-drain bias via integral expression. It is validated by comparing it with the technology computer-aided design (TCAD simulation results as well. In essence, this analytical framework provides the physical background for better understanding of STS-IMOS and its performance estimation.

  19. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    Science.gov (United States)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  20. Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-09-01

    Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.

  1. Comparison of VSC and Z-Source Converter: Power System Application Approach

    Directory of Open Access Journals (Sweden)

    Masoud Jokar Kouhanjani

    2017-01-01

    Full Text Available Application of equipment with power electronic converter interface such as distributed generation, FACTS and HVDC, is growing up intensively. On the other hand, various types of topologies have been proposed and each of them has some advantages. Therefore, appropriateness of each converter regarding to the application is a main question for designers and engineers. In this paper, a part of this challenge is responded by comparing a typical Voltage-Source Converter (VSC and Z-Source Converter (ZSC, through high power electronic-based equipment used in power systems. Dynamic response, stability margin, Total Harmonic Distortion (THD of grid current and fault tolerant are considered as assessment criteria. In order to meet this evaluation, dynamic models of two converters are presented, a proper control system is designed, a small signal stability method is applied and responses of converters to small and large perturbations are obtained and analysed by PSCAD/EMTDC.

  2. Design of a Solid-State Fast Voltage Compensator for klystron modulators requiring constant AC power consumption

    CERN Document Server

    Aguglia, Davide; Viarouge, Philippe; Cros, Jerome

    2014-01-01

    This paper proposes a novel topological solution for klystron modulators integrating a Fast Voltage Compensator which allows an operation at constant power consumption from the utility grid. This kind of solution is mandatory for the CLIC project under study, which requires several hundreds of synchronously operated klystron modulators for a total pulsed power of 39 GW. The topology is optimized for the challenging CLIC specifications, which require a very precise output voltage flat-top as well as fast rise and fall times (3µs). The Fast Voltage Compensator is integrated in the modulator such that it only has to manage the capacitor charger current and a fraction of the charging voltage. Consequently, its dimensioning power and cost is minimized.

  3. Voltage balancing in modular energy storage of power supply for micro resistance welding

    Directory of Open Access Journals (Sweden)

    Kozhushko Yu. V.

    2017-10-01

    Full Text Available Micro resistance welding is one of the most effective ways to obtain permanent joints of metal parts. The quality of welded joints strongly depends on the characteristics of the power supply of welding equipment. The power supplies for micro resistance welding based on Energy Storage topology have a softer impact on the network than the ones based on Direct Energy topology. The use of supercapacitors for Energy Storage type power supplies makes it possible to reduce the dimensions of welding equipment and to improve its technical parameters. However, the feature of the supercapacitors is low value of the nominal voltage, which usually does not exceed 3 V. To provide higher voltage, the modules of supercapacitors connected in series are designed. In order to extend the life time of such modules, a voltage balancing system is required. A circuit for balancing the voltage of a modular supercapacitor energy storage of a power supply for micro resistance welding is proposed. The fragments of calculation of control units of a supercapacitor module cell are given. The simulation of the balancing circuit operation is carried out and time charts of the supercapacitor charge process are obtained. The operability and effectiveness of the proposed solution is confirmed. The advantage of the proposed circuit is the possibility of obtaining the high efficiency because of returning the excessive energy of the module cell back into the power supply.

  4. Improvement of Voltage Stability in Electrical Network by Using a STATCOM

    Directory of Open Access Journals (Sweden)

    Kamel MERINI

    2014-02-01

    Full Text Available This paper aims to clarify power flow without and with static synchronous compensator (STATCOM and searching the best location of STATCOM to improve voltage in the Algerian network. In daily operation where there are all kinds of disturbances such as voltage fluctuations, voltage sags, swells, voltage unbalances and harmonics. STATCOM is modeled as a controllable voltage source. To validate the effectiveness of the Newton-Raphson method algorithm was implemented to solve power flow equations in presence of STATCOM. Case studies are carried out on 59-bus Algerian network test to demonstrate the performance of proposed models. Simulation results show the effectiveness and capability of STATCOM in improving voltage regulation in transmission systems; moreover the power solution using the Newton-Raphson algorithm developed. The STATCOM and the detailed simulation are performed using Matlab program.

  5. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  6. PC-based control of a high-voltage injector

    International Nuclear Information System (INIS)

    Constantin, F.

    1998-01-01

    The stability of high voltage injectors is one of the major problems in any accelerator system. Most of the troubles encountered in the normal operation of an accelerator are connected with the ion source and associated high voltage platforms, regardless of the source or high voltage generator type. The quality of the ion beam injected in the accelerator strongly depends on the power supplies used in the injector and on the ability to control the non-electrical parameters (gas-flow, temperature, etc.). A wide used method in controlling is based on optical links between high-voltage platform and computer, the adjustments being more or less automated. Although the method mentioned above can be still useful in injector control, a different approach is presented in this work, i.e., the computer itself is placed inside the high-voltage terminal. Only one optical link is still necessary to connect this computer with an user-friendly host at ground potential. Requirements: - varying and monitoring the filament current; - gas flow control in the ion source; - reading the vacuum values; - current and voltage control for the anodic, magnet, extraction, suppression and lens' sources. Even in the high voltage terminal there are compartments with different voltages regardless the floating ground. In our injector the extraction voltage is applied on the top of the ion source including the filament and the anodic voltage. The extraction voltage is of maximum 30 kV. In this situation a second optical link is required to transfer the control for the anodic and magnet source power supply assuming the dedicated computer on the floating ground. One PC is placed inside the high voltage terminal and one PC outside the injector. The optical link (more precisely two optical wires) connects the serial ports. The inside computer is equipped with two multipurpose ADC/DAC and digital I/O card. They permit to read or output DC levels ranging between 0 to 10 volts or TTL signals. The filament

  7. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    Science.gov (United States)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  8. Distributed stability control using intelligent voltage-margin relay

    Energy Technology Data Exchange (ETDEWEB)

    Wiszniewski, A.; Rebizant, W. [Wroclaw Univ. of Technology (Poland); Klimek, A. [Powertech Labs Inc., Surrey, BC (Canada)

    2010-07-01

    This paper presented an intelligent relay that operates if the load to source impedance ratio decreases to a level that is dangerously close to the stability limit, which leads to power system blackouts. The intelligent voltage-margin/difference relay installed at receiving substations automatically initiates action if the voltage stability margin drops to a dangerously low level. The relay decides if the tap changing devices are to be blocked and if under-voltage load shedding should be initiated, thereby mitigating an evolving instability. The intelligent relay has two levels of operation. At the first stage, which corresponds to the higher load to source impedance ratio, the relay initiates blocking of the tap changer. At the second stage, corresponding to the lower source to load impedance ratio, load shedding is initiated. The relay operates when the load to source impedance ratio reaches a certain predetermined level, but it does not depend either on the level of the source voltage or on the difference of source and load impedance phase angles. The algorithm for the relay is relatively simple and uses only locally available signals. Consequently, the transformer is well controlled to eliminate the cases of voltage instability. 6 refs., 7 figs.

  9. Multiagent voltage and reactive power control system

    Directory of Open Access Journals (Sweden)

    I. Arkhipov

    2014-12-01

    Full Text Available This paper is devoted to the research of multiagent voltage and reactive power control system development. The prototype of the system has been developed by R&D Center at FGC UES (Russia. The control system architecture is based on the innovative multiagent system theory application that leads to the achievement of several significant advantages (in comparison to traditional control systems implementation such as control system efficiency enhancement, control system survivability and cyber security.

  10. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    OpenAIRE

    Yoo, Cheol-Hee; Chung, Il-Yop; Yoo, Hyun-Jae; Hong, Sung-Soo

    2014-01-01

    Grid codes in many countries require low-voltage ride-through (LVRT) capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (P...

  11. Modern Risk Assessment for Nuclear Power Plants High-Voltage Substations

    International Nuclear Information System (INIS)

    Ioan, S.; Hurdubetiu, S.; Marza, F.; Mocanu, M.; Stefan, M.

    2002-01-01

    The paper describes a first Romanian attempt to set up the methodology for risk assessment and control within high-voltage substations, developed for the Nuclear power plant in Cernavoda (Romania). Considering the present risk assessment methods the MENER Project will develop a new methodology, in line with the European Community legislation and with the specific regional needs. In order to correctly shape the necessary resources required by a risk analysis a large size enterprise (a nuclear power plant) is selected and the following five indicators will be estimated: the economic profit, environmental risk, indirect (future) risk, technology improvement and physic and psychological risk. The results are expected to considerably facilitate risk assessment, by: evaluating project acceptability; evaluating equipment compliance to regulatory criteria; estimating excluding clearances; easing the design of emergency programmes; identifying the equipment use restrictions; identifying the risk sources; selecting the maintenance and risk reduction methods; testing the procedures leading to future regulatory norms; suitability of the risk management system modification. The immediate result of employing modern risk assessment methods could be the decrease by one third of the expenses required by environment protection, staff health and labor safety and quality management. (author)

  12. A Heuristic Approach to Distributed Generation Source Allocation for Electrical Power Distribution Systems

    Directory of Open Access Journals (Sweden)

    M. Sharma

    2010-12-01

    Full Text Available The recent trends in electrical power distribution system operation and management are aimed at improving system conditions in order to render good service to the customer. The reforms in distribution sector have given major scope for employment of distributed generation (DG resources which will boost the system performance. This paper proposes a heuristic technique for allocation of distribution generation source in a distribution system. The allocation is determined based on overall improvement in network performance parameters like reduction in system losses, improvement in voltage stability, improvement in voltage profile. The proposed Network Performance Enhancement Index (NPEI along with the heuristic rules facilitate determination of feasible location and corresponding capacity of DG source. The developed approach is tested with different test systems to ascertain its effectiveness.

  13. A cascaded three-phase symmetrical multistage voltage multiplier

    International Nuclear Information System (INIS)

    Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G

    2006-01-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM

  14. Study on the characters of high voltage charging power supply system for diagnostics neutral beam on HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhang Jian; Huang Yiyun; Liu Baohua; Guo Wenjun; Shen Xiaoling; Wei Wei

    2011-01-01

    A high voltage power supply system has been developed for the diagnostic neutral beam on the HT-7 experimental Tokamak, and the over-voltage phenomenon of storage capacitor was founded in the experiment. In order to analyse and resolve this problem, the structure and principle of high voltage power supply is described and the primary high voltage charging power supply system is introduced in detail. The phenomenon of over-voltage on the capacitors is also studied with circuit model, and the conclusion is obtained that the leakage inductance is the mA in reason which causes the over-voltage on the capacitors. (authors)

  15. Analysis of Paralleling Limited Capacity Voltage Sources by Projective Geometry Method

    Directory of Open Access Journals (Sweden)

    Alexandr Penin

    2014-01-01

    Full Text Available The droop current-sharing method for voltage sources of a limited capacity is considered. Influence of equalizing resistors and load resistor is investigated on uniform distribution of relative values of currents when the actual loading corresponds to the capacity of a concrete source. Novel concepts for quantitative representation of operating regimes of sources are entered with use of projective geometry method.

  16. An Enhanced Power Sharing Scheme for Voltage unbalance and harmonics compensation in an islanded AC microgrid

    DEFF Research Database (Denmark)

    Han, Yang; Shen, Pan; Zhao, Xin

    2016-01-01

    In this paper, an enhanced hierarchical control structure with multiple current loop damping schemes for voltage unbalance and harmonics compensation in ac islanded microgrid is proposed to address unequal power sharing problems. The distributed generation (DG) is properly controlled to autonomou......In this paper, an enhanced hierarchical control structure with multiple current loop damping schemes for voltage unbalance and harmonics compensation in ac islanded microgrid is proposed to address unequal power sharing problems. The distributed generation (DG) is properly controlled...... to autonomously compensate voltage unbalance and harmonics while sharing the compensation effort for the real power, reactive power, unbalance and harmonic powers. The proposed control system of the microgrid mainly consists of the positive sequence real and reactive power droop controllers, voltage and current......) technique is adopted to send the compensation command of the secondary control and auxiliary control from the microgrid control center (MGCC) to the local controllers of DG unit. Finally, the hardware-in-the-loop (HIL) results using dSPACE 1006 platform are presented to demonstrate the effectiveness...

  17. Wind Power - A Power Source Enabled by Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe

    2004-01-01

    . The deregulation of energy has lowered the investment in bigger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production sources from......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up...... the conventional, fossil (and short term) based energy sources to renewable energy sources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...

  18. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Directory of Open Access Journals (Sweden)

    Zhibin Hao

    Full Text Available The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  19. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    OpenAIRE

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede; Wheeler, Patrick; Siano, Pierluigi; Hammami, Manel

    2017-01-01

    Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned defic...

  20. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  1. Control of grid integrated voltage source converters under unbalanced conditions: development of an on-line frequency-adaptive virtual flux-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Suul, Jon Are

    2012-03-15

    Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor-less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly applied for operation during unbalanced conditions. Methods for voltage-sensor-less grid synchronization and control of VSCs under unbalanced grid voltage conditions will therefore be the main focus of this Thesis. Estimation methods based on the concept of Virtual Flux, considering the integral of the converter voltage in analogy to the flux of an electric machine, are among the simplest and most well known techniques for achieving voltage-sensor-less grid synchronization. Most of the established techniques for Virtual Flux estimation are, however, either sensitive to grid frequency variations or they are not easily adaptable for operation under unbalanced grid voltage conditions. This Thesis addresses both these issues by proposing a simple approach for Virtual Flux estimation by utilizing a frequency-adaptive filter based on a Second Order Generalized Integrator (SOGI). The proposed approach can be used to achieve on-line frequency-adaptive varieties of conventional strategies for Virtual Flux estimation. The main advantage is, however, that the SOGI-based Virtual Flux estimation can be arranged in a structure that achieves inherent symmetrical component sequence separation under unbalanced conditions. The proposed method for Virtual Flux estimation can be used as a general basis for voltage-sensor-less grid synchronization and control during unbalanced conditions. In this Thesis, the estimated Virtual Flux signals are used to develop a flexible strategy for control of active

  2. Power supply and stabilization of the supply system on board using decentralized voltage rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Grueb, W; Wegerer, K

    1987-04-01

    The functionally redundant power supply system of the Transrapid 06 II maglev train is described; it comprises four independent, battery-buffered networks and 30 linear generators per train section. Voltage rectifiers adapt the velocity- and load-dependent linear generator voltage to the 440 V d.c. networks and assure dynamic stabilisation as well as buffer battery loading. The result is a high-reliability power supply system on board with optimum utilisation of the power supplied by the linear generators while the train is running.

  3. Power Quality Problems Mitigation using Dynamic Voltage Restorer in Egypt Thermal Research Reactor (ETRR-2)

    International Nuclear Information System (INIS)

    Kandil, T.; Ayad, N.M.; Abdel Haleam, A.; Mahmoud, M.

    2013-01-01

    Egypt thermal research reactor (ETRR-2) was subjected to several Power Quality Problems such as voltage sags/swells, harmonics distortion, and short interruption. ETRR-2 encompasses a wide range of loads which are very sensitive to voltage variations and this leads to several unplanned shutdowns of the reactor due to trigger of the Reactor Protection System (RPS). The Dynamic Voltage Restorer (DVR) has recently been introduced to protect sensitive loads from voltage sags and other voltage disturbances. It is considered as one of the most efficient and effective solution. Its appeal includes smaller size and fast dynamic response to the disturbance. This paper describes a proposal of a DVR to improve power quality in ETRR-2 electrical distribution systems . The control of the compensation voltage is based on d-q-o algorithm. Simulation is carried out by Matlab/Simulink to verify the performance of the proposed method

  4. Design and Tuning of Wind Power Plant Voltage Controller with Embedded Application of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2017-01-01

    This study addresses a detailed design and tuning of a wind power plant voltage control with reactive power contribution of wind turbines and static synchronous compensators (STATCOMs). First, small-signal models of a single wind turbine and STATCOM are derived by using the state-space approach....... A complete phasor model of the entire wind power plant is constructed, being appropriate for voltage control assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage...... controller results in a guidance, proposed for this particular control architecture. It provides qualitative outcomes regarding the parametrisation of each individual control loop and how to adjust the voltage controller depending on different grid stiffnesses of the wind power plant connection...

  5. Design automation of switching mode high voltage power supply for nuclear instruments

    International Nuclear Information System (INIS)

    El-araby, S.M.S.

    1999-01-01

    This paper presents an automation procedure for the design of switching mode high voltage power supplies, using Pc programming facility. The procedure permits the selection of a ready made or designed ferrite transformer. This selection could be achieved according to the designer desire; as the program includes complete information about ready made ferrite transformer through complete database. The procedure is based on suggested template circuit. Micro-Cap IV simulation package is used to verify the desired high voltage power supply design. Simulation results agree quite well with suggested procedure's results. Design aspects and development needed to increase automation capabilities are also discussed

  6. Concept of voltage monitoring for a nuclear power plant emergency power supply system (PWR 1300 MWe)

    International Nuclear Information System (INIS)

    Andrade, R.B. de

    1988-01-01

    Voltage monitoring concept for a Nuclear Power Plant Emergency Power Supply Systems (PWR 1300 MWe) is described based on the phylosophy adopted for Angra 2 and 3 NPP's. Some suggested setpoints are only guidance values and can be modified during plant commissioning for a better performance of the whole protection system. (author) [pt

  7. Impact of cell-voltage on energy and power performance of supercapacitors with single-walled carbon nanotube electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Izadi-Najafabadi, Ali; Yamada, Takeo; Futaba, Don N.; Iijima, Sumio [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Hatori, Hiroaki [Project Headquarters, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Hata, Kenji [Japan Science and Technology Agency JST, Kawaguchi (Japan)

    2010-12-15

    We report the energy and power voltage-dependencies of supercapacitors using single-walled carbon nanotube electrodes. The energy density was dependent on the cell-voltage cubed (up to 4 V: E = 1.43 x V{sup 3}). The cubic relationship was attributed to the linear increase of the capacitance as a function of voltage, enabled by electrochemical doping. Furthermore, while up to 3.5 V, the maximum power rating of the nanotube electrodes increased as a function of the cell-voltage squared, beyond 3.5 V, a decline in power was observed as a result of depletion of the electrolyte's ions. (author)

  8. Selective Harmonic Virtual Impedance for Voltage Source Inverters with LCL filter in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Vasquez, Juan Carlos; Jalilian, Alireza Jalilian

    2012-01-01

    This paper presents a new control approach for voltage source inverters ended with LCL filters for microgrid applications. The control approach consists of voltage and current inner control loops in order to fix the filter capacitor voltage and a virtual impedance loop. The virtual impedance...... is added in order to mitigate the voltage distortion after the output inductor and improve the load sharing among parallel inverters. A general case with a combined voltage harmonic and unbalance distortion is considered. In such a case, voltage distortion is mitigated by inserting capacitive virtual...... impedance for negative sequence of fundamental component as well as positive and negative sequences of main harmonic components. Furthermore, resistive virtual impedances are added at these components in order to provide a proper load sharing and make the overall system more damped. Simulation results...

  9. Design & Fabrication of a High-Voltage Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  10. Computation of Steady State Nodal Voltages for Fast Security Assessment in Power Systems

    DEFF Research Database (Denmark)

    Møller, Jakob Glarbo; Jóhannsson, Hjörtur; Østergaard, Jacob

    2014-01-01

    Development of a method for real-time assess-ment of post-contingency nodal voltages is introduced. Linear network theory is applied in an algorithm that utilizes Thevenin equivalent representation of power systems as seen from every voltage-controlled node in a network. The method is evaluated b...

  11. Experiences in simulating and testing coordinated voltage control provided by multiple wind power plants

    Energy Technology Data Exchange (ETDEWEB)

    Arlaban, T.; Alonso, O.; Ortiz, D. [Acciona Windpower S.A. (Spain); Peiro, J.; Rivas, R. [Red Electrica de Espana SAU (Spain); Quinonez-Varela, G.; Lorenzo, P. [Acciona Energia S.A. (Spain)

    2011-07-01

    This document presents some field tests performed in a transmission system node in order to check the adequacy of voltage control performance by multiple wind power plants, with an overall capacity of 395 MW. It briefly explains the Spanish TSO motivation towards new voltage control requirements and the necessity of performing such tests in order to set the most convenient voltage control parameters and to verify the stable operation. It presents how different the voltage control capability between modern wind turbines (DFIG) and older ones (SCIG) specifically retrofitted for voltage control is. (orig.)

  12. Research on uncertainty evaluation measure and method of voltage sag severity

    Science.gov (United States)

    Liu, X. N.; Wei, J.; Ye, S. Y.; Chen, B.; Long, C.

    2018-01-01

    Voltage sag is an inevitable serious problem of power quality in power system. This paper focuses on a general summarization and reviews on the concepts, indices and evaluation methods about voltage sag severity. Considering the complexity and uncertainty of influencing factors, damage degree, the characteristics and requirements of voltage sag severity in the power source-network-load sides, the measure concepts and their existing conditions, evaluation indices and methods of voltage sag severity have been analyzed. Current evaluation techniques, such as stochastic theory, fuzzy logic, as well as their fusion, are reviewed in detail. An index system about voltage sag severity is provided for comprehensive study. The main aim of this paper is to propose thought and method of severity research based on advanced uncertainty theory and uncertainty measure. This study may be considered as a valuable guide for researchers who are interested in the domain of voltage sag severity.

  13. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    Science.gov (United States)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  14. Voltage control on TEG-inverter system with pulse width modulation

    International Nuclear Information System (INIS)

    Kimura, N.; Kinoshita, H.; Matsuura, K.

    1984-01-01

    An ocean thermoelectric generating system can be expected to supply cheap electric power in future. And it can be used as base power supply or isolated power source in developing areas. The authors propose to apply forced-commutation inverter to thermoelectric energy conversion system and construct an electric power station which can be operated without any other synchronous generator (S-G) and can control ac system as stable as S-G. This paper shows that inverters can control voltage constant, though within a range of 10% load change, by using pulse width modulation (PWM). It also describes the design of the voltage control system covering from 50% to 100% load with combination of PWM and output voltage tap changing of TEG

  15. DC-link voltage oscillations reduction during unbalanced grid faults for high power wind turbines

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    During unbalanced grid voltage faults the Power injected to the grid experiences 100Hz oscillations as a result of interactions between positive and negative sequence components of three-phase voltages and currents. These oscillations can become as high as %50 percent of the rated power....... In this article an improved controller is proposed which present different behavior during normal operation and faults to keep track of non-sinusoidal current reference signals. The reference signals are calculated to obtain zero power oscillations. Reconfigurable resonant controllers are used for this purpose...

  16. Time-Domain Voltage Sag State Estimation Based on the Unscented Kalman Filter for Power Systems with Nonlinear Components

    Directory of Open Access Journals (Sweden)

    Rafael Cisneros-Magaña

    2018-06-01

    Full Text Available This paper proposes a time-domain methodology based on the unscented Kalman filter to estimate voltage sags and their characteristics, such as magnitude and duration in power systems represented by nonlinear models. Partial and noisy measurements from the electrical network with nonlinear loads, used as data, are assumed. The characteristics of voltage sags can be calculated in a discrete form with the unscented Kalman filter to estimate all the busbar voltages; being possible to determine the rms voltage magnitude and the voltage sag starting and ending time, respectively. Voltage sag state estimation results can be used to obtain the power quality indices for monitored and unmonitored busbars in the power grid and to design adequate mitigating techniques. The proposed methodology is successfully validated against the results obtained with the time-domain system simulation for the power system with nonlinear components, being the normalized root mean square error less than 3%.

  17. Selection of a conventional power distribution transformer as a voltage source for saline chambers; Seleccion de un transformador de distribucion convencional como fuente de voltaje en camaras salinas

    Energy Technology Data Exchange (ETDEWEB)

    Garza Macias, Anibal [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    In the Mexico`s Gulf Coast and in the North East part of the country there are severe pollution problems on the electric distribution power systems insulators. To solve this problem, in specialized laboratories are reproduced the pollution conditions for their quantitative and qualitative analyses. In general terms, for this purpose special voltage transformers have been used that, for being imported, are very expensive; furthermore there is no defined selection criterion that allows the voltage source to supply the current recommended by the IEC (International Electrotechnical Commission). In this article, a proposal is presented to select a transformer that fulfills the IEC requirements. This equipment, because of its acquisition easiness and economy, permits that any teaching or research institution have a voltage source that allows the experimentation of the pollution phenomena at a minimum cost. [Espanol] En la costa del Golfo de Mexico y en el noroeste del pais hay severos problemas de contaminacion en los aisladores de los sistemas electricos de distribucion. Para solucionar este problema, se reproducen, en laboratorios especializados, las condiciones de contaminacion para su analisis cualitativo y cuantitativo. En general, con este proposito se han utilizado transformadores especiales de voltaje que por ser de importacion son muy costosos; ademas, no existe un criterio definido de seleccion que permita suministrar a la fuente de voltaje la corriente recomendada por el IEC (International Electrotechnical Commission). En este articulo se presenta una propuesta para seleccionar un transformador que cumpla con los requerimientos del IEC. Esta, por su facilidad de adquisicion y economia, permite que cualquier institucion docente o de investigacion cuente con una fuente de voltaje que permita la experimentacion de los fenomenos contaminantes con un costo minimo.

  18. Small disturbance voltage stability assessment of power systems by modal analysis and dynamic simulation

    International Nuclear Information System (INIS)

    Amjady, Nima; Ansari, Mohammad Reza

    2008-01-01

    The introduction of liberalized electricity markets in many countries has resulted in more highly stressed power systems. On the other hand, operating points of a power system are acceptable in the feasible region, which is surrounded by the borders of different stabilities. Power system instability is critical for all participants of the electricity market. Determination of different stability margins can result in the optimum utilization of power system with minimum risk. This paper focuses on the small disturbance voltage stability, which is an important subset of the power system global stability. This kind of voltage stability is usually evaluated by static analysis tools such as continuation power flow, while it essentially has dynamic nature. Besides, a combination of linear and nonlinear analysis tools is required to correctly analyze it. In this paper, a hybrid evaluation method composed of static, dynamic, linear, and nonlinear analysis tools is proposed for this purpose. Effect of load scenario, generation pattern, branch and generator contingency on the small disturbance voltage stability are evaluated by the hybrid method. The test results are given for New England and IEEE68 bus test systems. (author)

  19. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao

    2015-01-01

    It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...... and distorted system voltage the proposed PLL can accurately detect the fundamental positive-sequence component of grid voltage thus accurate control of DC micro-grid voltage can be realized....... phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system...

  20. Genetic algorithm based reactive power dispatch for voltage stability improvement

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, D. [Department of Electrical and Electronics, Kalasalingam University, Krishnankoil 626 190 (India); Roselyn, J. Preetha [Department of Electrical and Electronics, SRM University, Kattankulathur 603 203, Chennai (India)

    2010-12-15

    Voltage stability assessment and control form the core function in a modern energy control centre. This paper presents an improved Genetic algorithm (GA) approach for voltage stability enhancement. The proposed technique is based on the minimization of the maximum of L-indices of load buses. Generator voltages, switchable VAR sources and transformer tap changers are used as optimization variables of this problem. The proposed approach permits the optimization variables to be represented in their natural form in the genetic population. For effective genetic processing, the crossover and mutation operators which can directly deal with the floating point numbers and integers are used. The proposed algorithm has been tested on IEEE 30-bus and IEEE 57-bus test systems and successful results have been obtained. (author)

  1. Power Quality Assessment in Real Shipboard Microgrid Systems under Unbalanced and Harmonic AC Bus Voltage

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Tarasiuk, Tomasz; Gorniak, Mariusz

    2018-01-01

    were proposed and carried out in a real ship under sea-going conditions to address this problem. The ship experimental results were presented and discussed considering non-linear bow thruster load and high power ballast pump loads under unbalanced and harmonic voltage conditions. In addition......, the analysis of voltage transient dips during ballast pump starting up is presented. Further, the voltage/current distortions of working generator, bow thruster and pump loads are analyzed. The paper provides a valuable analysis for coping with PQ issues in the real ship power system....

  2. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  3. Active control of flying capacitor currents in multilevel voltage-source inverters

    Czech Academy of Sciences Publication Activity Database

    Kokeš, Petr; Semerád, Radko

    2013-01-01

    Roč. 58, č. 4 (2013), s. 393-410 ISSN 0001-7043 Institutional support: RVO:61388998 Keywords : voltage source inverter (VSI) * multilevel inverter * flying capacitor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Science.gov (United States)

    2010-07-01

    ... portable or mobile equipment from low-voltage three-phase resistance grounded power systems shall contain... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage... STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage...

  5. Voltage-current characteristics of multiterminal HVDC-VSC for offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2., 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Liang, Jun; Ekanayake, Janaka; Jenkins, Nicholas [School of Engineering, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA, Wales (United Kingdom)

    2011-02-15

    Voltage-current characteristics and equilibrium points for the DC voltages of multiterminal HVDC systems using voltage source converters are discussed. The wind farm rectifiers and grid connected inverters are analyzed through their operating modes, governing equations and graphical characteristics. Using the converter equations and the HVDC grid conductance matrix the equilibrium voltages and currents are found. Case studies are presented considering wind power generation, loss of a converter and voltage sags in the AC grid. (author)

  6. Effect of state feedback coupling on the transient performance of voltage source inverters with LC filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; Antonio DeSouza Ribeiro, Luiz

    2016-01-01

    State feedback coupling between the capacitor voltage and inductor current deteriorates notably the performance during transients of voltage and current regulators in stand-alone systems based on voltage source inverters. A decoupling technique is proposed, considering the limitations introduced...

  7. Simulation of RF power and multi-cusp magnetic field requirement for H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manish [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Senecha, V.K., E-mail: kumarvsen@gmail.com [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Kumar, Rajnish; Ghodke, Dharmraj V. [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-12-01

    A computer simulation study for multi-cusp RF based H{sup −} ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H{sup −} Linac project for SNS applications. The average reaction rates for different reactions responsible for H{sup −} ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H{sup -} ion source for a maximum possible H{sup −} ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H{sup −} ion source like excited hydrogen molecular density, H{sup −} ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H{sup −} ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H{sup −} ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  8. Improved model predictive control for high voltage quality in microgrid applications

    DEFF Research Database (Denmark)

    Dragicevic, T.; Al hasheem, Mohamed; Lu, M.

    2017-01-01

    This paper proposes an improvement of the finite control set model predictive control (FCS-MPC) strategy for enhancing the voltage regulation performance of a voltage source converter (VSC) used for standalone microgrid and uninterrupted power supply (UPS) applications. The modification is based...

  9. Nonlinear Parasitic Capacitance Modelling of High Voltage Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    : off-state, sub-threshold region, and on-state in the linear region. A high voltage power MOSFET is designed in a partial Silicon on Insulator (SOI) process, with the bulk as a separate terminal. 3D plots and contour plots of the capacitances versus bias voltages for the transistor summarize...

  10. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    Science.gov (United States)

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  11. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament

    International Nuclear Information System (INIS)

    Ueno, A.; Oguri, H.; Ikegami, K.; Namekawa, Y.; Ohkoshi, K.; Tokuchi, A.

    2010-01-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB 6 ) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 μH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 Ax140 V) and a duty factor of more than 1.5%(600 μsx25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H - ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 μs and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  12. The structure and control method of hybrid power source for electric vehicle

    International Nuclear Information System (INIS)

    Li, Maobing; Xu, Hui; Li, Weimin; Liu, Yin; Li, Fade; Hu, Yue; Liu, Li

    2016-01-01

    In this paper, an electric vehicle powertrain configuration is presented, which the lithium-ion battery integrated with ultracapacitors is developed as the hybrid power system to improve the transient performance of an electric vehicle, and to decrease the damage to the battery pack. In the proposed system, a bidirectional direct current/direct current converter is used to couple the ultracapacitors bank to the main battery pack. The energy management strategy based on fuzzy logic for hybrid power system has been proposed to promote the performance of energy flow in the electric vehicle. The experiment results in urban driving cycles show remarkable advantages of the proposed hybrid system configuration and energy management strategy. About 30% of the battery capacity energy is saved while using the hybrid power source. Besides, the voltage and current curves of battery become smoother than that with the single power. - Highlights: • A hybrid power source electric vehicle powertrain configuration is presented. • The energy management strategy based on fuzzy logic is proposed. • The experiment results show remarkable advantages of the configuration and method.

  13. Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah

    2018-01-01

    Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...

  14. Repetitive plasma opening switch for powerful high-voltage pulse generators

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Zakatov, L.P.; Nitishinskii, M.S.; Ushakov, A.G.

    1998-01-01

    Results are presented of experimental studies of plasma opening switches that serve to sharpen the pulses of inductive microsecond high-voltage pulse generators. It is demonstrated that repetitive plasma opening switches can be used to create super-powerful generators operating in a quasi-continuous regime. An erosion switching mechanism and the problem of magnetic insulation in repetitive switches are considered. Achieving super-high peak power in plasma switches makes it possible to develop new types of high-power generators of electron beams and X radiation. Possible implementations and the efficiency of these generators are discussed

  15. Mobile medium-voltage switching system. Temporary standby power supply in record time; Mobile Mittelspannungsschaltanlage. Vorlaeufige Wiederversorgung in Rekordzeit

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, Matthias; Schwarz, Stefan [Siemens AG, Mannheim (Germany); Wingerter, Dieter [BASF SE, Ludwigshafen (Germany); Doering, Holger [B. Goebel und Sohn GmbH, Asschaffenburg (Germany). Fahrzeugbau

    2011-02-28

    BASF SE Ludwigshafen operates more than 100 medium-voltage switching stations for power supply to its plants. The complexity of the production plants and production method make it necessary to have immediate standby power supply in case of interruption of a medium-voltage switching station. For this purpose, a transportable emergency container was acquired that contains a medium-voltage switching system. Power can be supplied at very short notice, simply by plugging the necessary cable connections. No cranes or other tools are required for installation. The emergency container is designed for use at varying voltage levels and can be transported by road to other BASF sites in Europe. The switching station is a gas-insulated medium-voltage switching station 8DA10 by Siemens, designed for operating voltages of 6, 10, 20, and 35 kW.

  16. A micro-power LDO with piecewise voltage foldback current limit protection

    International Nuclear Information System (INIS)

    Wei Hailong; Liu Youbao; Guo Zhongjie; Liao Xue

    2012-01-01

    To achieve a constant current limit, low power consumption and high driving capability, a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented. The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA. To increase the loop stability of the proposed LDO, a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole, and a zero is designed for the purpose of the second pole phase compensation. The proposed LDO is fabricated in a BiCMOS process. The measurement results show that the short-circuit current of the LDO is 190 mA, the constant limit current under a high drop-out voltage is 440 mA, and the maximum load current under a low drop-out voltage is up to 800 mA. In addition, the quiescent current of the LDO is only 7 μA, the load regulation is about 0.56% on full scale, the line regulation is about 0.012%/V, the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA. (semiconductor integrated circuits)

  17. Characteristics of a lithium-thionyl chloride battery as a memory back-up power source

    Science.gov (United States)

    Iwamaru, T.; Uetani, Y.

    An Li/SOCl 2 battery of R6 size (ER6C) has been evaluated as a memory back-up power source for CMOS RAM. The working voltage is 3.6 V and the discharge capacity is 1900 mA h on a 1OK-ohm load. The cell exhibits satisfactory working voltage and discharge capacity over the temperature range -40 °C to 85 °C. The discharge reaction mechanism has been elucidated. Cumulative self discharge during 10 years discharge at 20 μA is estimated to be 3.5%. No serious problems have been observed during abuse tests.

  18. Characteristics of a lithium-thionyl chloride battery as a memory back-up power source

    Energy Technology Data Exchange (ETDEWEB)

    Iwamaru, T.; Uetani, Y.

    1987-05-01

    An Li/SOCl/sub 2/ battery of R6 size (ER6C) has been evaluated as a memory back-up power source for CMOS RAM. The working voltage is 3.6 V and the discharge capacity is 1900 mA h on a 10K-ohm load. The cell exhibits satisfactory working voltage and discharge capacity over the temperature range -40/sup 0/C to 85/sup 0/C. The discharge reaction mechanism has been elucidated. Cumulative self discharge during 10 years discharge at 20 ..mu..A is estimated to be 3.5%. No serious problems have been observed during abuse tests.

  19. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  20. Power system voltage stability and agent based distribution automation in smart grid

    Science.gov (United States)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  1. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    Science.gov (United States)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  2. Medium and high voltage power cables market in Europe

    International Nuclear Information System (INIS)

    Kupiec, M.

    1992-06-01

    This note gives an overview of the European market for medium and high voltage power cables. In this text, emphasis is placed on suppliers and important European clients; there is also a brief review of the different techniques for cable laying and utilization in Europe. This not has mainly been drafted from informations supplied by EUROPACABLE

  3. A new algorithm for optimum voltage and reactive power control for minimizing transmission lines losses

    International Nuclear Information System (INIS)

    Ghoudjehbaklou, H.; Danai, B.

    2001-01-01

    Reactive power dispatch for voltage profile modification has been of interest to power utilities. Usually local bus voltages can be altered by changing generator voltages, reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control parameters, however, is not simple for modern power system networks. Heuristic and rather intelligent algorithms have to be sought. In this paper a new algorithm is proposed that is based on a variant of a genetic algorithm combined with simulated annealing updates. In this algorithm a fuzzy multi-objective a approach is used for the fitness function of the genetic algorithm. This fuzzy multi-objective function can efficiently modify the voltage profile in order to minimize transmission lines losses, thus reducing the operating costs. The reason for such a combination is to utilize the best characteristics of each method and overcome their deficiencies. The proposed algorithm is much faster than the classical genetic algorithm and cna be easily integrated into existing power utilities software. The proposed algorithm is tested on an actual system model of 1284 buses, 799 lines, 1175 fixed and ULTC transformers, 86 generators, 181 controllable shunts and 425 loads

  4. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....

  5. Mechanism of Occurring Over-Voltage Phenomena in Distributed Power System on Energization of Transformers

    Science.gov (United States)

    Nakachi, Yoshiki; Ueda, Fukashi; Kajikawa, Takuya; Amau, Tooru; Kameyama, Hirokazu; Ito, Hisanori

    This paper verifies the mechanism of occurring over voltage phenomena in the distributed power system on energizing the transformer. This over-voltage, which is observed at the actual distributed power system, with heavy inrush current is found to occur at about 0.1-0.2sec after the energizing and continue for a duration of more than 0.1[sec]. There is a concern that this over-voltage may operate the protection relay and deteriorate the insulation of apparatus. It is basically caused by the resonance between the shunt capacitors and saturated/unsaturated magnetizing inductance of transformer, system inductance. By using analytical formulation of a simple equivalent circuit, its mechanism has been verified through simulations carried out by using EMTP. Moreover, the sympathetic interaction between transformers is prolonged the duration of the over-voltage by the field test data is discussed in this paper.

  6. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    International Nuclear Information System (INIS)

    Saminto; Eko Priyono; Sugeng Riyanto

    2013-01-01

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  7. Development of microcontroller based remote control system for HV power supply of ECR ion source for ADSS project

    International Nuclear Information System (INIS)

    Srivastava, S.; Misra, A.; Thakur, S.K.; Pandey, H.K.; Pandit, V.S.

    2009-01-01

    In this paper we will describe the design and development of the microcontroller based interface card used to control and monitor the operation of High Voltage Power supply 120kV/50mA (HVPS). This power supply is deployed for the extraction of proton beam from the microwave ion source in the ADSS project. (author)

  8. Grid Voltage Modulated Direct Power Control for Grid Connected Voltage Source Inverters

    DEFF Research Database (Denmark)

    Gui, Yonghao; Kim, Chunghun; Chung, Chung Choo

    2017-01-01

    -loop system is exponentially stable in the whole operating range. The proposed method is verified by using MATLAB/Simulink with PLECS blockset. The simulation results show that the proposed method has not only good tracking performances in both active and reactive powers but also a lower current total...

  9. Static compensators (STATCOMs) in power systems

    CERN Document Server

    Shahnia, Farhad; Ghosh, Arindam

    2014-01-01

    A static compensator (STATCOM), also known as static synchronous compensator, is a member of the flexible alternating current transmission system (FACTS) devices. It is a power-electronics based regulating device which is composed of a voltage source converter (VSC) and is shunt-connected to alternating current electricity transmission and distribution networks. The voltage source is created from a DC capacitor and the STATCOM can exchange reactive power with the network. It can also supply some active power to the network, if a DC source of power is connected across the capacitor. A STATCOM

  10. Controlling Chaos and Voltage Collapse using Layered Recurrent Network-based PID-SVC in Power Systems

    Directory of Open Access Journals (Sweden)

    I Made Ginarsa

    2013-11-01

    Full Text Available Chaos and voltage collapse occurred in critical power systems due to disturbing of energy. PID-SVC layered reccurrent neural network-based (LRN-based PID-SVC was proposed to solve this problem. A PID was used to control chaos and voltage collapse. Then, an SVC LRN-based to maintan the load voltage. By using the proposed controller, chaos and voltage collapse were able to suppress and maintain the load voltage around the setting value. Furthemore, the proposed controller gives better response than PI-SVC controller.

  11. POWER ELECTRONIC SYSTEM FOR POWER ELECTRIC VEHICLES WITH ALGORITHMS OF SYNCHRONOUS MODULATION

    Directory of Open Access Journals (Sweden)

    Oleschuk V.

    2014-04-01

    Full Text Available Schemes of synchronous space-vector modulation have been adapted for control of split-phase drive for electric vehicle with open-end windings of induction motor, supplied by several voltage source inverters. MATLAB-based simulation of processes in this system has been executed. It has been shown, that the use of algorithms of synchronous modulation provides symmetry of phase voltage waveforms for any ratio between the switching frequency and fundamental frequency, and for any voltage magnitudes of dc-sources. Spectra of the phase voltage of system do not contain even harmonics and subharmonics (of the fundamental frequency, which is especially important for drives for the medium-power and high-power electric vehicles.

  12. An optimized low-power voltage controlled oscillator

    Science.gov (United States)

    Shah, Kriyang; Le, Hai Phuong; Singh, Jugdutt

    2007-01-01

    This paper presents an optimised low-power low-phase-noise Voltage Controlled Oscillator (VCO) for Bluetooth wireless applications. The system level design issues and tradeoffs related to Direct Conversion Receiver (DCR) and Low Intermediate Frequency (IF) architecture for Bluetooth are discussed. Subsequently, for a low IF architecture, the critical VCO performance parameters are derived from system specifications. The VCO presented in the paper is optimised by implementing a novel biasing circuit that employs two current mirrors, one at the top and the other one at the bottom of the cross-coupled complementary VCO, to give the exact replica of the current in both the arms of current mirror circuit. This approach, therefore, significantly reduces the system power consumption as well as improves the system performance. Results show that, the VCO consumes only 281μW of power at 2V supply. Its phase noise performance are -115dBc/Hz, -130dBc/Hz and -141dBc/Hz at the offset frequency of 1MHz, 3MHz and 5MHz respectively. Results indicate that 31% reduction in power consumption is achieved as compared to the traditional VCO design. These characteristics make the designed VCO a better candidate for Bluetooth wireless application where power consumption is the major issue.

  13. The LMF triaxial MITL voltage adder system

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Bennett, L.F.; Lockner, T.R.; Olson, R.E.; Poukey, J.W.

    1992-01-01

    The light-ion microfusion driver design consists of multiple accelerating modules fired in coincidence and sequentially in order to provide the desired ion energy, power pulse shape and energy deposition uniformity on an Inertial Confinement Fusion (ICF) target. The basic energy source is a number of Marx generators which, through the appropriate pulse power conditioning, provide the necessary voltage pulse wave form to the accelerating gaps or feeds of each module. The cavity gaps are inductively isolated, and the voltage addition occurs in the center conductor of the voltage adder which is the positive electrode while the electrons of the sheath flow closer to the outer cylinder which is the magnetically insulated cathode electrode. Each module powers a separate two-stage extraction diode which provides a low divergence ion beam. In order to provide the two separate voltage pulses required by the diode, a triaxial adder system is designed for each module. The voltage addition occurs in two separate MITLs. The center hollow cylinder (anode) of the second MITL also serves as the outer cathode electrode for the extension of the first voltage adder MITL. The voltage of the second stage is about twice that of the first stage. The cavities are connected in series to form the outer cylinder of each module. The accelerating modules are positioned radially in a symmetrical way around the fusion chamber. A preliminary conceptual design of the LMF modules with emphasis on the voltage adders and extension MITLs will be presented and discussed

  14. Secondary Droop for Frequency and Voltage Restoration in Microgrids

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Peng, Wang; Blaabjerg, Frede

    2015-01-01

    Droop based autonomous control offers several advantages such as communication independence, plug-n-play capability and enhanced reliability of the system. Despite these advantages, frequency and voltage of droop controlled microgrid varies with the load change which is one of the major drawback...... of the droop control. Presently, the frequency and voltage restoration in microgrid is achieved through secondary control using low bandwidth communication links. This paper presents secondary-droop based frequency and voltage restoration method which is fully autonomous and independent of communication links....... With the proposed method, the microgrid frequency and voltage can be restored back to nominal value without affecting the power sharing performance of the generation sources. The proposed scheme performance has been validated in simulation for several cases of active and reactive power load conditions....

  15. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    The proximity effects of high voltage electric power transmission lines on Leyland Cypress (xCupressocyparis leylandii (Dallim. and A.B. Jacks.) Dallim) and Japanese Privet (Ligustrum japonicum Thunb.) growth were examined in a private nursery located in Sakarya, Turkey. Five transect were randomly chosen in both ...

  16. Discrete-Time Domain Modelling of Voltage Source Inverters in Standalone Applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2017-01-01

    modelling of the LC plant with consideration of delay and sample-and-hold effects on the state feedback cross-coupling decoupling is derived. From this plant formulation, current controllers with wide bandwidth and good relative stability properties are developed. Two controllers based on lead compensation......The decoupling of the capacitor voltage and inductor current has been shown to improve significantly the dynamic performance of voltage source inverters in standalone applications. However, the computation and PWM delays still limit the achievable bandwidth. In this paper a discrete-time domain...

  17. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    Science.gov (United States)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  18. Enhanced Voltage Control of VSC-HVDC Connected Offshore Wind Farms Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2018-01-01

    This paper proposes an enhanced voltage control strategy (EVCS) based on model predictive control (MPC) for voltage source converter based high voltage direct current (VSCHVDC) connected offshore wind farms (OWFs). In the proposed MPC based EVCS, all wind turbine generators (WTGs) as well...... as the wind farm side VSC are optimally coordinated to keep voltages within the feasible range and reduce system power losses. Considering the high ratio of the OWF collector system, the effects of active power outputs of WTGs on voltage control are also taken into consideration. The predictive model of VSC...

  19. Calculation of Voltages in Electric Power Transmission Lines During Historic Geomagnetic Storms: An Investigation Using Realistic Earth Impedances

    Science.gov (United States)

    Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna

    2018-02-01

    Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.

  20. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  1. A comparative study of different transformer connections for railway power supply- mitigation of voltage unbalance

    DEFF Research Database (Denmark)

    Firat, Gurkan; Yang, Guangya; Ali Hussain Al-Ali, Haider

    2015-01-01

    The railway represents a large power consumer that can cause uneven loading of the phases in the high voltage grid. These unbalanced loads supplied by the utility may lead to voltage unbalance problems in the system and thereby affects the other consumers connected to the same network. It is fact...... that, voltage unbalance appears mainly as a result of unbalanced currents at the points of common coupling drawn by unevenly distributed loads. Because of a significant amount of negative sequence current injected to the system, the power system components will suffer from consequent negative effects...... such as overheating, additional losses of lines and transformers, interference with communication systems etc. This paper presents a comparative study of some transformer connections which commonly used in railway supplying AC traction loads, for voltage unbalance mitigations. Simulations for comparison...

  2. Charging system of ECRH high-voltage power supply and its control system

    International Nuclear Information System (INIS)

    Hu Guofu; Ding Tonghai; Liu Baohua; Jiang Shufang

    2003-01-01

    High-voltage power supply (HVPS) of Electron Cyclotron Resonance Heating (ECRH) for HT-7 and HT-7U is presently being constructed. The high voltage (100 kV) energy of HVPS is stored in the capacitor banks, and they can power one or two gyrotrons. All the operation of the charging system will be done by the control system, where the field signals are interfaced to programmable logic controller (PLC). The use of PLC not only simplifies the control system, but also enhances the reliability. The software written by using configuration software installed in the master computer allows for remote and multiple operator control, and the status and data information is also remotely available

  3. Voltage and Frequency Control for Future Power Systems: the ELECTRA IRP Proposal

    DEFF Research Database (Denmark)

    D’hulst, R.; Merino Fernandez, J.; Rikos, E.

    2015-01-01

    In this paper a high level functional architecture for frequency and voltage control for the future (2030+) power system is presented. The proposal suggests a decomposition of the present organization of power system operation into a ”web of cells”. Each cell in this web is managed by a single...

  4. Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour

    International Nuclear Information System (INIS)

    Chang Hungwen; Hsu Chengche

    2012-01-01

    In this work, three major problems, namely severe electrode damage, poor plasma stability and excess power consumption, arising in ac-driven plasmas in saline solutions are solved using a rectified power source. Diagnostic studies on the effects of power source polarity and frequency on the plasma behaviour are performed. Examination of I-V characteristics and temporally resolved light emission shows that the polarity significantly influences the current amplitude when the plasma exists, while the frequency alters the bubble dynamics, which in turn affects the plasma ignition voltage. When the plasma is driven by a rectified ac power source, the electrode erosion is reduced substantially. With a low frequency, moderate applied voltage and positively rectified ac power source (e.g. 100 Hz and 350 V), a stable plasma is ignited in nearly every power cycle. (paper)

  5. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  6. Complete low power controller for high voltage power systems

    International Nuclear Information System (INIS)

    Sumner, R.; Blanar, G.

    1997-01-01

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components

  7. Power flow controller with a fractionally rated back-to-back converter

    Science.gov (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  8. Microbial fuel cells as power supply of a low-power temperature sensor

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  9. Structure Design and Analysis of High-Voltage Power Supply for ECRH

    International Nuclear Information System (INIS)

    Wang Lei; Huang Yiyun; Zhao Yanping; Zhang Jian; Yang Lei; Guo Wenjun

    2014-01-01

    In order to develop a high-voltage power supply (HVPS) with high quality parameters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electrical field and potential simulations of its main devices are analyzed. Finally, relevant calculations and conclusions are given. (fusion engineering)

  10. A new VME-based high voltage power supply for large photomultiplier systems

    International Nuclear Information System (INIS)

    Neumaier, S.; Hubbeling, T.; Kolb, B.W.; Purschke, M.L.; Ippolitov, M.; Blume, C.; Bohne, E.M.; Bucher, D.; Claussen, A.; Peitzmann, T.; Schepers, G.; Schlagheck, H.

    1995-01-01

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10,080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.)

  11. Voltage and Current Regulators Design of Power Converters in Islanded Microgrids based on State Feedback Decoupling

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    In stand-alone microgrids based on voltage source inverters state feedback coupling between the capacitor voltage and inductor current degrades significantly the dynamics performance of voltage and current regulators. The decoupling of the controlled states is proposed, considering the limitations...

  12. Synchronverter-Enabled DC Power Sharing Approach for LVDC Microgrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Davari, Pooya; Mokhtari, Hossein

    2017-01-01

    by introducing a small ac voltage superimposed onto the output dc voltage of converters. Therefore, dc sources can be coordinated together with the frequency of the ac voltage, without any communication network like Synchronous Generators (SGs) in conventional power systems. Small signal stability analysis......In a classical ac Micro-Grid (MG), a common frequency exists for coordinating active power sharing among droop-controlled sources. Like the frequency droop method, a voltage based droop approach has been employed to control the converters in dc MGs. However, voltage variation due to the droop gains...... and line resistances causes poor power sharing and voltage regulation in dc MG, which in most cases are solved by a secondary controller using a communication network. To avoid such an infrastructure and its accompanied complications, this paper proposes a new droop scheme to control dc sources...

  13. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  14. Design and construction of constant voltage and current regulated source with proper characteristics to be used in electronics laboratory designs

    International Nuclear Information System (INIS)

    Peon A, R.

    1978-01-01

    A regulated direct current feeding source was designed for the Nuclear Energy National Institute Electronics Labortory, with the following characteristics: a) voltage input 105-130V a.c. 50-60 Hz; b) voltage output 0.40 V d.c.; c) output current 0-2 Amp d.c.; d) load regulation 0.001%; e) line regulation 0.001%; f) ripple and noise 200 μ Vpp; g) temperature interval 3-60 0 C; h) stability 0.5%; i) output impedance as voltage source 0.01 ohms; j) transient response 50 μ seg. Besides of operating normally, that is as voltage source or current-source through the front controls, the source can be used and interconnected with one or other compatible sources (autoseries, autoparallel and programmed reference). The source will cost 70,000 pesos approximately. (author)

  15. Performance Analysis of Phase Controlled Unidirectional and Bidirectional AC Voltage Controllers

    Directory of Open Access Journals (Sweden)

    Abdul Sattar Larik

    2011-01-01

    Full Text Available AC voltage controllers are used to vary the output ac voltage from a fixed ac input source. They are also commonly called ac voltage regulators or ac choppers. The output voltage is either controlled by PAC (Phase Angle Control method or on-off control method. Due to various advantages of ac voltage controllers, such as high efficiency, simplicity, low cost and ability to control large amount of power they efficiently control the speed of ac motors, light dimming and industrial heating, etc. These converters are variable structure systems and generate harmonics during the operation which will affect the power quality when connected to system network. During the last couple of years, a number of new semiconductor devices and various power electronic converters has been introduced. Accordingly the subject of harmonics and its problems are of great concern to power industry and customers. In this research work, initially the simulation models of single phase unidirectional and bidirectional ac voltage controllers were developed by using MATLAB software. The harmonics of these models are investigated by simulation. In the end, the harmonics were also analyzed experimentally. The simulated as well as experimental results are presented.

  16. A new VME based high voltage power supply for large experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M. (Fermi National Accelerator Lab., Batavia, IL (United States)); Franzini, P. (Columbia Univ., New York, NY (United States)); Jones, A.A. (Superconducting Super Collider Lab., Dallas, TX (United States)); Lopez, M.L. (La Plata Univ. Nacional (Argentina)); Wimpenny, S.J.; Yang, M.J

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  17. A new VME based high voltage power supply for large experiments

    International Nuclear Information System (INIS)

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M.; Franzini, P.; Jones, A.A.; Lopez, M.L.; Wimpenny, S.J.; Yang, M.J.

    1991-11-01

    A new VME based high voltage power supply has been developed for the D OE experiment at Fermilab. There are three types of supplies delivering up to ±5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs

  18. Voltage inverter with push-pull topology to inject energy into electrical systems with modulation SPWM

    Directory of Open Access Journals (Sweden)

    Emerson Charles M. Silva

    2013-09-01

    Full Text Available This paper presents a proposal for a voltage inverter topology based on push-pull converters, switched at high frequency to inject energy into the grid from a source of DC power. A system using two reverse voltage static converters provides the power grid; energy in the form of alternating current, that can work in conjunction with the provision of utility power. Aiming at the possible use of renewable energy sources, that can be stored in the form of voltage continuous, such as wind, solar, hydroelectric and others. The functioning of topology is presented, such as the power and control circuits, as well as sizing components, theoretical and practical results achieved with the assembly of a prototype 100W of power and switching in 40khz, which after filtering provides the frequency of 60Hz, which is compatible with the Brazilian electrical system.

  19. Active and reactive power control schemes for distributed generation systems under voltage dips

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2009-01-01

    During voltage dips continuous power delivery from distributed generation systems to the grid is desirable for the purpose of grid support. In order to facilitate the control of distributed generation systems adapted to the expected change of grid requirements, generalized power control schemes

  20. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.